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Abstract

In the rapidly evolving domain of streaming platforms, the richness and complexity of
content catalogs present both opportunities and challenges for advanced search technolo-
gies. The diversity in genre, style, and language, mirrors the content’s origins and the
platforms’ global reach, enhancing user experience, but complicating content discoverabil-
ity. This scenario sets the stage for our investigation into enhancing content discovery
through innovative search methodologies. Our work introduces a novel system implement-
ing a hybrid search mechanism. This approach combines the precision of keyword search
with the depth of semantic understanding, offering a more human-like search experience
where users can input queries as if conversing with another person. At the heart of our
system is a custom embedding model, trained to capture the semantic nuances of user
queries and retrieve content that not only matches the keywords but also aligns with
the query’s underlying intent. The development of our system is based on fine-tuning
approach, allowing us to adapt and enhance the capabilities of an existing open-source
embedding model for our specific use case. This methodology ensures our model’s effec-
tiveness in understanding and processing queries across a broad spectrum of languages,
addressing the multilingual needs of global streaming platforms and their diverse user
base. Structured as an online service, our solution is designed for easy integration by any
streaming company, offering a scalable and adaptable tool to improve content discovery.
Through this system, we aim to redefine user interaction with streaming platforms, en-
abling searches that are more intuitive, efficient, and responsive to the varied ways in
which people communicate their content preferences.

Keywords: Semantic Search, Hybrid Search, Embeddings, Transformers, Fine-tuning,
Information Retrieval





Abstract in lingua italiana

Nel dominio in rapida evoluzione delle piattaforme di streaming, la ricchezza e la com-
plessità dei cataloghi di contenuti presentano sia opportunità che sfide per le avanzate
tecnologie di ricerca. La diversità di genere, stile e linguaggio, che riflette le origini dei
contenuti e la portata globale delle piattaforme, migliora l’esperienza dell’utente ma com-
plica la scoperta dei contenuti. Questo scenario pone le basi per la nostra ricerca sul
miglioramento della scoperta dei contenuti attraverso metodologie di ricerca innovative.
Il nostro lavoro introduce un nuovo sistema che implementa un meccanismo di ricerca
ibrido. Questo approccio combina la precisione della ricerca per parole chiave con la
profondità della comprensione semantica, offrendo un’esperienza di ricerca più simile a
quella umana, in cui gli utenti possono inserire le domande come se stessero conversando
con un’altra persona. Il cuore del nostro sistema è un modello di embedding person-
alizzato, addestrato per catturare le sfumature semantiche delle domande degli utenti e
recuperare i contenuti che non solo contengono le parole chiave, ma sono anche in linea
con l’intento della domanda. Lo sviluppo del nostro sistema si basa su un approccio di
fine-tuning, che ci permette di adattare e migliorare le capacità di un modello esistente e
open-source che genera embedding per il nostro caso d’uso specifico. Questa metodologia
garantisce l’efficacia del nostro modello nella comprensione e nell’elaborazione di domande
in un ampio spettro di lingue, rispondendo alle esigenze multilingua delle piattaforme di
streaming globali e della loro variegata base di utenti. Strutturata per essere un servizio
online, la nostra soluzione è progettata per essere facilmente integrata da qualsiasi società
di streaming, offrendo uno strumento scalabile e adattabile per migliorare la scoperta dei
contenuti. Attraverso questo sistema, ci proponiamo di ridefinire l’interazione degli utenti
con le piattaforme di streaming, consentendo ricerche più intuitive, efficienti e reattive ai
diversi modi in cui le persone comunicano le loro preferenze in fatto di contenuti.

Parole chiave: Ricerca Semantica, Ricerca Ibrida, Embeddings, Transformers, Fine-
tuning, Recupero di Informazioni
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1| Introduction

This thesis work has been developed over a period of six months during an internship
program at ContentWise, a software company known for providing its clients with a com-
prehensive suite of tools and expertise necessary for crafting engaging experiences for
end-users. As an innovator within the video streaming industry, ContentWise special-
izes in the development of advanced recommender systems, continuously exploring new
technologies to enhance digital content interaction and personalization.

Building on this spirit of innovation, this thesis work aims to enhance ContentWise’s of-
ferings by integrating a novel service into its framework: hybrid search functionality. This
novel service is designed to revolutionize the way users interact with streaming platforms,
allowing them to conduct searches in natural language. By combining the results of se-
mantic queries with traditional keyword-based search, this service aims to deliver a more
intuitive and efficient search experience. This work not only aligns with ContentWise’s
mission of being a leader in cutting-edge technologies for the video streaming market but
also sets a new benchmark for personalization and user engagement in digital content
discovery.

1.1. Context

The rapidly evolving domain of streaming platforms, rich with diverse content ranging
from films to series, presents a unique challenge and opportunity for enhancing content
discoverability. Recognizing this, ContentWise has identified a critical need for a new
service that enhances the way users find and interact with content. The proposed solution
uses semantic search technology, addressing the limitations of traditional search methods
and setting a new standard for content discovery.

This need for advanced search capabilities aligns with the broader research area of Nat-
ural Language Processing (NLP), a branch of Artificial Intelligence focused on facilitat-
ing meaningful and useful interactions between computers and humans through natural
language. NLP encompasses a range of techniques and technologies for understanding,
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interpreting, and generating human languages, laying the foundation for this thesis work.

More precisely, the NLP’s application in this research is Information Retrieval (IR), a
subfield focused on extracting relevant information from extensive datasets in response to
specific queries.

Semantic search is a particular aspect of IR. This approach involves comparing the em-
beddings of user queries with those of available content to identify items that are not
just relevant but semantically aligned with the user’s intentions. By leveraging advance-
ments in embedding technologies, semantic search offers a refined and effective method
for connecting users with the content they seek on streaming platforms.

1.2. Scenario

The contemporary landscape of streaming platforms, such as the well-known Netflix,
Disney+, and Amazon Prime, offers a rich and complex domain for the application of
advanced search technologies. Each streaming company has a distinct catalog of items,
reflecting a diversity of content that varies in genre and style in addition to the languages
used. These variations are influenced by the origins of the content and the geographical
distribution of the platforms. This diversity, while enriching the user experience, also
introduces challenges in content discoverability, particularly when users are navigating
through vast catalogs.

Traditional recommender systems aim to enhance content discovery by guiding users
toward elements that align with their interests and viewing history, by predicting the
"ratings" and "preferences" of users. However, this approach may not always satisfy the
users’ specific needs or desires for new and specific content. Users often have precise
content in mind, whether it be a theme, a mood, or a storyline, which cannot be easily
articulated through simple keywords or genres. The volume of available content and the
complexity of possible user queries necessitate a more sophisticated approach to search,
a strategy that transcends the limitations of traditional keyword-based searches.

This is where semantic search emerges as a revolutionary solution, offering a more intuitive
and human-like interaction with the platform while improving content discoverability.
Importantly, semantic search is adept at overcoming common human errors such as typos
or the use of abbreviations, further enhancing its effectiveness. However, a critical obstacle
in implementing effective semantic search is the absence of embedding models specifically
trained for this task.

To address these complexities, fine-tuning stands out as a promising strategy. By adapting
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pre-trained models to the specific nuances of this task through additional training on
smaller, targeted datasets, fine-tuning enables the enhancement of model performance in
semantic understanding.

Additionally, the performance of models in Information Retrieval (IR) tasks does not
guarantee their efficacy in understanding and processing multiple languages. This mul-
tilingual capability is crucial, not only for the linguistically diverse nature of content on
streaming platforms but also due to user preferences for querying in one language over an-
other. Achieving excellence in semantic search while ensuring multilingual comprehension
presents a significant challenge.

1.3. Contributions

Recognizing the power of embedding models to deeply understand text, in this work we
decided to adapt these models for their applicability in the domain of streaming platforms
for the discovery of movies and series. Drawing from state-of-the-art models and tech-
niques, we propose a novel approach that constructs a hybrid search system, combining
semantic search with traditional keyword search mechanisms. This innovative fusion aims
to leverage the strengths of both methodologies.

Central to our contribution is the development of our own embedding model, designed to
perform queries independently of external services. This strategic move avoids additional
costs and potential service discontinuity. By re-training an open-source model, we gener-
ate a customized solution for our specific task. This custom model is stored and managed
internally, ensuring greater control over its application and optimization.

Nowadays, people are used to adopting a keyword-based search approach across various
search engines. Inspired by the rapid increase in popularity of conversational AI tech-
nologies, such as chatGPT, our research is driven by the principle that a more human-like
approach to machine interaction is highly preferable. This inspiration leads us to adopt
similar principles of natural language understanding to revolutionize the way users inter-
act with and navigate streaming platforms.

Through these contributions, this thesis addresses a practical need within a specific ap-
plication domain and contributes to the research for the integration of human-centric AI
technologies in everyday digital interactions. Our work exemplifies the potential of NLP
techniques to enhance user experience, paving the way for future innovations in the field.
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1.4. Structure of the thesis

This section aims to provide an overview of this document’s structure:

• Chapter 2 presents an exploration of the state-of-the-art methodologies and tech-
nologies essential for this study, ensuring the essential knowledge to the reader.

• Chapter 3 details the datasets used and employed for training and evaluating our
system, highlithing their features and operations to prepeare and clean them.

• Chapter 4 explores the model selection phase, the implementation of similarity ma-
trices, and fine-tuning strategies adopted for the development of our system.

• Chapter 5 discusses the final implementation and integration of our model into a
proposed hybrid search system, operating as the final solution of our research.

• Chapter 6 offers the most significant results of our research, both through theoretical
analysis and schematic representations, complemented by manual evaluations to
mirror real-world application scenarios.

• Chapter 7 summarizes the contributions, constraints, and achievements of our study
and proposes directions for future investigation.



5

2| State of the Art

This chapter attempts to provide a thorough overview of the state of the art in Natural
Language Processing (NLP) and Information Retrieval (IR). We explore the mechanisms,
challenges, and potential of these technologies, from the fundamental discoveries in word
embeddings and Transformer architectures to the sophisticated applications in semantic
search and fine-tuning techniques. Our investigation highlights the advances and opens
the way for further innovations in this rapidly evolving field.

2.1. Word Embeddings

In Natural Language Processing (NLP), the computer science and linguistic subfield that
enables machines to understand human language, word embedding has a pivotal role.
Machines work only with numeric elements, they are not able to work directly with
words. Unlike images and audio, words are not represented automatically as digital
signals. A numerical representation of a word is inadequate; for instance, representing
the word "cat" as 37 and "dog" as 135 cannot say anything about each word or their
relationship. Moreover, words and texts are sparse data: changing a word in a text can
lead to a completely different meaning, diversely than images, which are dense data, in
which changing one or few pixels does not change the sense of the image.

A simple solution is a one-hot representation (Li et al. [12]) of words, a sparse discrete
vector. Given a text, the list of all the unique words forms a vocabulary, where each
word appears as a binary vector of length equal to the vocabulary size. In each vector,
the position of the corresponding word in the vocabulary is marked with a 1, and all
the other positions are marked with a 0. For instance, with the sentence ’the cat sat on
the mat’ the vocabulary is ["the", "cat", "sat", "on", "mat"] and the word ’cat’
is represented as [0, 1, 0, 0, 0]. The main problems of this technique arise from the
loss of the order of the words and the context of the sentence; this representation cannot
reflect the semantic meaning and relationship between the words in a sentence. Besides,
the resulting vectors are sparse (composed of mostly zeros), and the dimension of the
vectors grows with the vocabulary size, leading to memory and computation issues. The
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result is an inefficient model, impractical to adopt with large vocabularies.

The N-gram statistic model [29][25] involves the relationship between words, representing
the probability of a sentence. This model considers n consecutive words; in a sentence,
a ’1-gram’ takes into consideration each word, a ’2-gram’ takes every sequence of two
consecutive words, and so on. N-gram predicts the probability of a word based on the
occurrences of its preceding N-1 words, from the Markov assumption that the probability
of a word occurring in a text depends on the previous words. The main drawbacks
of this model are: as the value n increases, the number of possible combinations in the
vocabulary increases, leading to storage and training issues (the phenomenon called ’curse
of dimensionality’[2]). Secondly, the N-1 window blocks the possibility of capturing longer
dependencies in the language.

The breakthrough came with the advent of dense word embedding. Embeddings are
vectors that encode semantic and syntactic meanings of words, mapping textual words
into a multi-dimensional continuous space. In particular, word embedding models convert
the semantics of words into geometric properties. Vectors representing similar words are
positioned closely in the feature space, and the difference between two embeddings denotes
the relationship between the corresponding words. For instance, it is possible to derive
analogies in the relations between "man: king = woman: queen" from the difference
between the vectors for "queen", "king", and "woman", "man"; since they share the same
direction, we have two similar relational meaning denoted by ’gender’ purple arrows in
the Figure 2.1. Similar to the result obtained by subtracting "king", "man", and "queen",
"woman" as the ’royal’ yellow arrow in Figure 2.1.

Figure 2.1: Semantic analogies derived from subtraction between word embeddings.

The concept of word embedding is associated with the contribution made by Bengio et
al. [3] with a neural network able to learn a distributed representation of words without
incurring the curse of dimensionality[2] of the statistical language models. Instead of
learning every possible combination of a probability distribution, this model embeds the
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sequence of preceding words in a smaller dimensional space to obtain the probability
distribution of the subsequent word. The model has two hidden layers: a projection
layer, which is linear and contains the word representation in the features space, and a
hyperbolic tangent layer. The output comes from the final computation of the softmax
function. The introduction of word embedding and neural approach to language modeling
opened the way for the deep learning revolution in NLP.

Inspired by the work of Bengio [3], Maikolov et al. [15] focus on a shallower model called
Word2Vec, trained on more data to achieve better performances. The main idea is to move
from the prediction of the next word in a sentence to two new approaches: Continuous
Bag of Words (CBOW) learns to encode a word based on its context, composed by the
surrounding words, and Skip-gram learns the representation of the context, given a word.
To reduce the computational complexity of the model, the hidden layer of Bengio’s model
is removed and the projection layer is shared among all the inputs. The two models
offered by Word2Vec are shown in the following Figure 2.2.

Figure 2.2: Word2Vec models

Word2Vec achieves higher performance than its predecessors. However, this model en-
counters challenges in processing long sentences or entire documents.

An alternative primary word embedding model is Global Vectors for word representa-
tions (GloVe), proposed by Pennington et al. [18], which combines matrix factorization
and shallow window-based methods. Matrix factorization produces low-dimensional word
representation by employing low-rank approximations to break down expansive matrices
that encapsulate statistical information about a corpus. The window-based method in-
volves acquiring word representations designed to facilitate predictions within local con-
text windows, such as Word2Vec [15]. In contrast to matrix factorization techniques,
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shallow window-based methods face a drawback in that they don’t directly leverage the
co-occurrence statistics of the corpus. Rather than operating directly on the corpus’s
co-occurrence patterns, these models scan context windows throughout the entire corpus,
missing out on the substantial repetition present in the data. This hybrid approach allows
GloVe to capture more complex word relationships, by learning word vectors from word
co-occurrences (the counts of how often words appear together in a given context, giving
a global statistical overview of word associations) and local context.

2.2. Transformers

Embedding has a fundamental role in Natural Language Processing (NLP) because ma-
chines necessitate a way to represent words and text to elaborate natural language results.
Statistical techniques, like the known N-gram model[29], can process natural language but
are outperformed by even simple deep learning techniques, such as multi-layer perceptron.
With the process in this research area, new and more complex models, like Word2Vec [15]
and GloVe [18], set the fundamentals of language models. Their ability to represent words
in vectors, called embeddings, that contain both the syntactic and the semantic mean-
ing, brings them to achieve state-of-the-art in many NLP tasks. Their weakness is their
context-independent nature. With the advent of the Transformer, introduced by Vaswani
et al. [26], a revolution in the way sentences are read and understood by machines is
made in NLP.

2.2.1. Vanilla Transformers

Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs) [9],
and Gated Recurrent Neural Networks [5] at first, represented the state-of-the-art ap-
proaches for addressing problems such as language modeling and machine translation.
Their structure includes feedback connections, or cycles, to incorporate in each computa-
tion the previous ones, simulating a memory, allowing for more context compared to the
classic Feed Forward Neural Networks (FFNNs). Despite having the concept of context,
these models are limited: provided with a long sentence as input, they tend to forget
the beginning while still completing the processing of the text. Furthermore, their se-
quential nature precludes parallelization within training examples. Another issue only
RNNs present is that they are known for suffering from exploding or vanishing gradient
problems.

With the work of Vaswani et al. [26], they propose a new model called Transformer.
This model maintains the sequential structure of the previously mentioned models. The
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key innovation of this model is that it relies entirely on the attention mechanism to link
the dependencies between inputs and outputs, admitting more extended contexts. The
transformer model can parallelize the process, leading to faster training and enhanced
performance, and is considered the actual state-of-the-art in translation quality. Despite
being initially developed for text processing, today its application extends to various types
of data, including images, videos, audio, or virtually any other sequential data.

The preliminary step to using the Transformer model involves converting raw data into a
structured format to facilitate machine understanding. This process is called tokenization,
followed by encoding. Tokenization is the process of segmenting text into meaningful
smaller chunks, referred to as tokens. These tokens often represent words but can also
include subword units. Afterward, the procedure of encoding translates each token into
numerical values. The choice of the tokenization method and the encoding scheme is
crucial and can impact the model’s performance.

The Transformer model can process sentences and produce word embeddings of each
word, vectors containing different aspects of the word itself based on its context. The
methodology used by the model to extract the context of each word is by analyzing the
entire input sentence and focusing on different parts of it. This technique is called the
attention mechanism [26].

Figure 2.3: Transformer model architecture.
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Transformer architecture follows the Encoder-Decoder structure as illustrated in Figure
2.3. The encoder maps the input sequence to a continuous representation that the decoder
uses to generate an output sequence of symbols. The model is auto-regressive, computing
one part of the output at each step taking into consideration the previously generated
part of the output as additional input.

The encoder is composed of six identical layers, each with two sub-layers: the first is a
multi-head self-attention mechanism and the second one is a simple fully connected feed-
forward network. Around each sub-layer is built a residual connection, followed by a layer
normalization. The dimension of the output of the embedding layer and the sub-layers is
512. (Vaswani et al. [26])

The decoder is also composed of six identical layers, as the encoder, with an additional
third sub-layer that performs multi-head attention over the output of the encoder. An-
other modification is applied on the self-attention sub-layer to avoid positions from at-
tending to consecutive positions. In the decoder, as in the encoder, each sub-layer has a
residual connection followed by a layer normalization. (Vaswani et al. [26])

Current Transformer models can be either an encoder, a decoder, or both, depending on
the specific task they are designed to accomplish.

Since the Transformer does not have recurrence or convolution, which gives the ability to
consider the order of a sequence to RNNs, it adds this information through positional
encodings. It works by injecting a combination of sine and cosine functions with different
frequencies about the position of the tokens in the sentence. Because positional encodings
share identical dimensions with the embeddings, it is possible to aggregate them through
summation at the bottom of the encoder and decoder stacks.

Self-attention, also called intra-attention, is the key element to empower the model to
select which tokens of a sentence are the most relevant to understand the meaning of
a single token. This mechanism differs from vanilla attention, which focuses specifically
on attention between encoders and decoders. With self-attention, the transformer calcu-
lates all words of a sentence simultaneously and not sequentially as RNNs, which allows
for parallelizing the computation. Another advantage is the consideration of long-range
dependencies, which leads to the creation of contextualized word embeddings: represen-
tations of words taking into account their meaning within sentences.

Self-attention refers to a single attention layer in the multi-head attention block shown
in Figure 2.3, where each node maps a query and a pair of key-value to an output, all
of which are vectors. The Transformer does not rely on just one attention head but uses
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multiple attention heads in parallel, as shown in Figure 2.4. This technique allows the
model to achieve a more comprehensive and accurate understanding considering different
relationship representations.

Figure 2.4: (left) Single head attention (right) multiple-head attention

Despite their revolutionary influence, Transformers have certain drawbacks; when pro-
cessing longer texts, the self-attention mechanism can lead to quadratic computational
costs with sequence length. Furthermore, in some situations, the need for significant
computational resources and extensive pre-training datasets can be a limitation. These
challenges highlight the need for more advanced models that improve and expand upon
the Transformer design.

2.2.2. BERT

The scarcity of training data in Machine Learning (ML) is one of the main obstacles. To
fill this gap, researchers designed a technique called pre-training. In the NLP research
area, pre-training enables general language representation models to be trained on a large
corpus of unannotated web content. Compared to training on smaller and more specific
datasets from scratch, the pre-trained model can be improved significantly in accuracy
by fine-tuning on NLP tasks with small amounts of data, such as question answering and
sentiment analysis.

Pre-trained representations may be contextual or context-free, and contextual representa-
tion can be further classified as bidirectional or unidirectional. Word2Vec [15] and GloVe
[18] are examples of context-free models that provide a word embedding representation
for every word in the vocabulary. For instance, without considering the context, the
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term "bank" would be represented the same way in "bank account" and "bank of the
river". Contextualized unidirectionally models, such as GPT, consider the context from
the preceding or following tokens. The word representation of "bank" in the sentence "I
accessed the bank account" considers the phrase "I accessed the" rather than "account".
The introduction of Bidirectional Encoder Representations from Transformers (BERT)
by Devil et al. [8] [24] marks a paradigm change in the way models address language’s
bidirectionality. It is a bidirectional contextual model that allows transitioning from word
embeddings to contextualized word embeddings, in which the context of each word de-
termines its unique representation from both the preceding and subsequent words. In
the above instance, the word "bank" is represented by the entire sentence "I accessed
the...account". (Devil et al. [7])

BERT relies on the Transformer’s neural network architecture, where the self-attention
mechanism is bidirectional, allowing BERT to evaluate each word according to its previ-
ous and subsequent context, to determine its meaning. BERT can produce contextualized
word embeddings in this manner. BERT relies on the masked language model (MLM)
to generate high-quality contextual word embeddings. The masked language model aims
to estimate the original vocabulary ID of a masked word based only on its context, by
randomly masking a portion of the input tokens. The MLM aim permits the representa-
tion to combine the left and right context, which enables pre-train a deep bidirectional
Transformer, in contrast to the left-to-right language model pre-training.

Figure 2.5: (left)BERT pre-training (right) BERT fine-tuning

Pre-training and fine-tuning are the two stages of developing BERT, as illustrated in
Figure 2.5. BERT stands out for having a consistent design, suitable for a wide range
of activities. The final downstream architecture and the pre-trained architecture differ
slightly. The input can represent a single sentence or a pair of phrases (e.g. <question,
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answer>) to allow the model to perform different tasks. BERT uses WordPiece tokeniza-
tion to divide text into smaller units called tokens. In each sequence, the first token is a
classification token ([CLS]). Sentence pairs are packed into one lengthy sequence. First,
a unique token ([SEP]) is added to the input to distinguish them. Secondly, a learned
embedding is assigned to each token, indicating to which sentence it belongs. The cor-
responding token, segment, and position embeddings are summed to obtain the input
representation. The Figure 2.6 shows a description of this structure.

Figure 2.6: BERT input representation

The pre-training consists of two unsupervised tasks, the masked language model (MLM)
and the next sentence prediction (NSP), based on plain text from a Wikipedia corpus [8].
In masked LM, part of the input is masked with a special token ([MASK]). The model aims
to predict these masked words. The problem is that this leads to a discrepancy between
the pre-training and the fine-tuning, as the [MASK] token does not appear in the fine-
tuning. To mitigate this, the masked words are not always replaced by the actual [MASK]
token: in 80% of cases, the randomly selected token is replaced by the [MASK] token, in
10% of cases it is replaced by a random token, and in 10% of cases it is not replaced. The
model in NSP is trained to comprehend the relationships between sentences. The text
corpus is binary, meaning that each pair of sentences in the corpus is assigned a label,
either ’isNext’ or ’isNotNext’. The training set contains half of the pairs that are truly
one subsequent to the other. These pre-training are helpful for subsequent fine-tuning on
tasks such as natural language inference (NLI) and question answering (QA).

Following pre-training, BERT can be fine-tuned for a specific language task, like question-
answering (QA) and sentiment analysis (SA), as shown in Figure 2.5. It is possible to train
the inner layers of the model in addition to the last layer during fine-tuning. Furthermore,
it can handle words outside its vocabulary (OOV) by breaking them down into smaller
chunks or using a unique token [UNK]. This possibility to refine the model for a specific
task gives rise to numerous BERT variants. RoBERTa[13], ALBERT, distilBERT, and
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others are some of the BERT variants.

The BERT model has some issues despite being an effective model. The drawback of
this model is that its self-supervised pre-training focuses primarily on generating high-
quality contextual word embeddings, resulting in sentence embeddings not as well-built.
BERT is also incompatible with multilingual processing as it has been pre-trained solely
on English text. Additionally, there is a token limit for the input, which means that text
too long may be removed.

2.2.3. sBERT

Sentence-BERT (sBERT) by Reimers & Gurevych [21], is a BERT [7] model modification
that derives semantically relevant sentence embeddings compared via cosine-similarity
using siamese and triplet network architectures. Semantically meaningful refers to the
proximity of semantically related statements in vector space. In terms of accuracy and
time spent, sBERT performs better on the semantic text similarity (STS) problem than
the BERT [7] and RoBERTa [13] models.

BERT uses a cross-encoder approach for tasks such as sentence-pair regression. Unfor-
tunately, because there might be too many possible combinations this strategy is often
not practicable. For tasks such as clustering and semantic search, where each sentence
is mapped to a vector space in which sentences that are semantically related are close
to each other, BERT has problems. Using the output of the first token ([CLS]), or out-
put layer averaging is the most frequently used method to obtain the fixed-size BERT
vector from each sentence. The sentence representations obtained with this method are
extremely poor and often worse than averaging the GloVe [18] embedding.

These problems are resolved by sBERT [21], a Siamese network architecture that produces
input sentence vectors of a certain size. Semantically similar sentences can be identified
using similarity metrics such as Euclidean distance or cosine similarity. With sBERT the
process of identifying the most similar pair among 10,000 sentences is simplified from 65
hours with BERT to about 5 seconds.

To generate fixed-size sentence embeddings, the sBERT model architecture combines a
pooling layer with the output of the BERT or RoBERTa network. A Siamese and triplet
network is developed to update the weights of the fundamental block model, BERT or
RoBERTa, so that the resulting sentence embeddings are semantically meaningful and
comparable. This Figure 2.7 illustrates the structure.
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Figure 2.7: sBERT pre-training

A family of neural networks, called Siamese neural networks, consists of two or more
subnetworks that are the same, meaning that the parameters and weights are identical.
The parameter updates are replicated in both sub-networks. Two sentence embeddings
u and v are generated by the Siamese network, then concatenated with the element-wise
difference |u− v| and multiply it with the trainable weight Wt ∈ R3n×k:

o = softmax (Wt(u, v, |u− v|)) (2.1)

where n is the dimension of the sentence embeddings and k is the number of labels
(Reimers & Gurevych [21]). The cross-entropy loss is calculated based on the true label
expected between entailment, neutral or contradiction, and softmax function. At inference
time, the similarity score is directly calculated using the two sentence embeddings (u
and v), eliminating the concatenation and classification layer. Regression tasks are also
performed with this layout; in this case, during training, the mean squared-error loss is
used.

Triplet loss is frequently used when training Siamese networks. It is a loss function where
a baseline input a is compared to a positive input p and a negative input n. The goal is
to reduce the distance between the anchor input and the positive input and to maximize
the distance between the anchor input and the negative input. The loss function that is
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minimized mathematically is:

max(∥sa− sp∥ − ∥sa− sn∥+ ε, 0) (2.2)

where sx is the sentence embedding for a/n/p, || · || is a general distance metric and ε the
margin that ensures that sp is at least ε closer to sa than sn. (Reimers & Gurevych [21])

Benchmark tests show that sBERT performs better on semantic similarity tasks than
BERT and other sentence embedding algorithms. Despite its advances, sBERT still has
drawbacks, including its dependence on the quality of pre-training data and difficulties in
multilingual environments.

2.3. Semantic Search

Conventional search engines, such as Elasticsearch, are usually based on a bag-of-words
strategy (keyword search) that combines the ranking functions TF-IDF or BM25 with
an inverted index. With the introduction of semantic search, the capabilities of search
engines have evolved significantly. Semantic search is an advanced method for information
retrieval that goes beyond keyword-based techniques by interpreting the meaning and
intent of the user’s query. Instead of looking for exact word matches, this method matches
a query and a text document that are semantically related. For this reason, it is sometimes
referred to as a natural language search.

Semantic search technology can be distinguished between two alternative approaches:
symmetric and asymmetric. A scenario known as symmetric semantic search occurs when
the length and contextual information content of the user query and the corpus documents
are similar. An asymmetric semantic search, on the other hand, occurs when the length
and information content of the query and the searched pages differ. Typically, the query
in this scenario is short and concise, often formulated as a brief question or a set of
keywords, while the documents containing the answers or relevant information are much
more extensive.

Semantic search relies on the concept of embeddings and Natural Language Process (NLP)
models. Technically, a model is trained to generate question and item vector embeddings
using a machine-learning approach known as dense retrieval. The items, or parts of the
text corpus to be retrieved, can vary depending on the application and can include different
formats, including web pages, podcast episodes, and movies/series. The objective is to
obtain vectors of query and relevant items close to each other in the embedding space, as
shown in Figure 2.8.
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Figure 2.8: The retrieving process where query and relevant items (red points) are close
to each other in the vector embedding space.

Assuming that the model is robust and produces an efficient embedding, the retrieval
step involves using an algorithm that determines the similarity between the query and
object vectors and then ranks the most relevant vectors according to the highest similarity
score. The distance between these vector representations is used to calculate the similarity
between the elements: the closer the vectors are in the embedding space, the higher their
similarity score. Manhattan, Euclidean, Cosine, Dot product, and Chebyshev are the
most commonly used distance metrics; the selection is based on the specific use case. It’s
important to note that when embedding vectors are normalized, cosine similarity and the
dot product return equivalent results.

An effective method to find the closest vectors in a space for a given query vector is K
nearest neighbors (k-NN) [19] [6]. The hyperparameter k specifies the number of nearest
neighbors to be retrieved. One major limitation of k-NN is that to find the nearest vectors
for a given query, it must first compute the distance between each vector in the database.
If the database contains a large number of elements, this is extremely inefficient, due to the
curse of dimensionality [2]. The curse of dimensionality describes the phenomenon that as
the dimensionality of data increases, the volume of space increases so exponentially that
the available data becomes sparse. Because of this sparsity, it is challenging to determine
the precise nearest neighbors without incurring significant computational costs.

A variant of the original algorithm can obtain a good estimate instead of computing the
distance between all the items in the corpus, even at the cost of losing accuracy. One
common k-NN variant in the field of data analysis and retrieval is Approximate Nearest
Neighbors Search (ANNS) [11]. ANNS is a technique that searches for an object in a
reference dataset that is approximately the closest to a query object. Without performing
an exact nearest neighbor, this algorithm does not incur complex and time-consuming
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elaborations. This enhancement is particularly useful for a variety of applications where
searching for multiple similar objects is required.

2.4. Fine-Tuning

The performance of semantic search is directly linked to the quality of the embedding
model used. It is important to remember that embedding models — such as BERT
— were not originally developed for semantic similarity. Instead, they were trained to
predict words with masks in huge text corpora; as a result, they learned that texts with
comparable meanings also tend to have similar embeddings.

The ability of LLMs to generalize well over a wide range of domains is due to their ex-
tensive training with large datasets. Nevertheless, domain-specific precision is sometimes
sacrificed in the interest of this broad application. To overcome this limitation, fine-
tuning procedures are used to more accurately fit these models to the specific domain.
Fine-tuning is the process of improving a pre-trained LLM by training it on a smaller,
more specialized dataset to tune it to a specific task or to improve its performance, as
illustarted in Figure 2.9. To optimize the model for tasks such as semantic search, this
strategy ensures that the model gains a greater understanding of domain-specific material
while maintaining its adaptability.

Figure 2.9: Fine-tuning pipeline for Information Retreival.

Sentence-BERT (sBERT) fine-tuning provides a practically accurate solution to improve
the performance of semantic search in specific domains. Fine-tuning this model enables
a targeted augmentation of its semantic understanding and retrieval performance, as
sBERT is designed to generate semantically rich phrase embeddings. To better capture
the intricacy and complexity of domain-specific language and purpose, this procedure may
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alter not only the final layer of sBERT but also its intermediate layers.

The efficiency and effectiveness of fine-tuning embedding models for semantic search tasks
is influenced by the choice of loss function. This function is essential for training the model
to recognize the semantic similarity of sentence pairs and, consequently, their proximity in
the embedded vector space. This is accomplished by the triplet loss function, augmented
with the cosine distance as the metric to determine the space between the vectors.

Contrastive Learning (CL) has become a key strategy for improving natural language pro-
cessing (NLP) task performance. This self-supervised learning paradigm aims to improve
the semantic extraction of sentences by maximizing the distance between dissimilar sam-
ples and decreasing the distance between semantically similar samples. Formally, given
a sample x that shares similarity with x1 but not with x2, contrastive learning aims to
learn an encoder function f , ensuring that

sim(f(x), f(x1)) ≫ sim(f(x), f(x2)) (2.3)

where sim(·, ·) denotes a similarity function, such as cosine similarity. This methodology
involves training models with batches composed of a similar sample x1 and N−1 dissimilar
samples x2, x3, . . . , xN , emphasizing the contrast between the ’anchor’ sample and a
multitude of ’negative’ samples [33], as illustrated in Figure2.10.

Figure 2.10: Visualization of triplet loss goal, reduce the distance of an anchor to the
positive example and increase the distance to the negative one.

A key advantage of CL over generative self-supervised learning approaches is its focused
attention on the high-level features of the samples. Unlike generative models that unin-
tentionally focus more on fine-grained details, which could compromise the model’s ability
to capture broader semantic meanings, CL ensures that the model’s learning process fo-
cuses on understanding and differentiating the high-level semantic relationships among
samples. Due to this feature, CL performs better in semantic search applications, when
used for tasks that require a sophisticated understanding of semantic similarity.



20 2| State of the Art

Multiple Negative Ranking Loss (MNRL) is a variant of triplet loss, and operates on
the principle of contrastive learning, using sentence pairs [(a1, b1), . . . , (an, bn)] where each
ai, bi pair consists of semantically similar sentences, and ai, bj (for i ̸= j) are considered
semantically dissimilar. The objective of MNRL is double: to minimize the distance be-
tween embeddings of similar sentence pairs (ai, bi) while maximizing the distance between
dissimilar pairs (ai, bj). This dual focus aligns with the core methodology of contrastive
learning, promoting a more refined and effective embedding space for semantic search
applications. This framework can be directly applied to semantic search by treating
query-satisfying items in the corpus as positive examples and all others as negatives.

To further refine the effectiveness of MNRL, it is possible to introduce triplets
[(a1, b1, c1), . . . , (an, bn, cn)] into the training data. Here, ci represents a hard negative for
each ai, bi pair — sentences that are semantically distinct to ai and bi, ensuring that they
are far from each other in the embedding space.

However, the effectiveness of CL is not without its challenges. One notable issue is its
sensitivity to the size and selection of negative samples. The balance and diversity of
these samples are crucial for the effective training of the model, as they directly impact
the model’s ability to accurately discern semantic similarities and differences across a wide
range of contexts.

Updating the entire model, including all its weights, can lead to significant perfor-
mance improvements, but it has one possible drawback: a phenomenon known as catas-
trophic forgetting. This phenomenon occurs when, after fine-tuning, the model loses the
knowledge it acquired in the initial pre-training phase. The source of this problem is the
change in the embedding layers. Since the learned information is embedded in each layer,
any modifications during fine-tuning can lead to the loss of this pre-trained knowledge.

To mitigate the risk of catastrophic forgetting, a possible strategy is to use adapter
modules. In this approach, one or more additional layers are integrated on top of the
existing architecture of the embedding model, with fine-tuning applied exclusively to
these newly added components. By maintaining the layers of the original model, the
adapter technique not only protects the previously learned knowledge but also adapts the
representations of the model to a new latent space, specific to the retrieval tasks related
to the particular dataset and queries. Nevertheless, there are disadvantages associated
with this approach. While catastrophic forgetting is avoided, the improvement in model
performance can be modest. Furthermore, adding additional layers can cause the model
to respond more slowly.

Hu et al. [10] present a novel approach called Low-Rank Adaptation (LoRA) that ad-



2| State of the Art 21

dresses the weaknesses of the previously discussed fine-tuning methods. This method
integrates trainable low-rank decomposition matrices into the layers of the Transformer
architecture while preserving the pre-trained model weights. This strategy drastically
reduces the number of trainable parameters needed for downstream tasks. By optimizing
the rank-decomposition matrices of these layers, LoRA facilitates the indirect training of
certain dense layers in a neural network while keeping the pre-trained weights unchanged,
as shown in Figure2.11.

Figure 2.11: Visualization of low-rank decomposition.

The dense layers of a neural network that perform matrix multiplications usually have
full-rank weight matrices. Aghajanyan et al. [1] have shown that pre-trained language
models have a low "intrinsic dimension" during task-specific adaptation, which enables
effective learning even in the case of random projection into a smaller subspace. Inspired
by this finding, Hu et al. [10] suggested that during adaptation, the updates of the weights
also have a low "intrinsic rank".

For an original weight matrix W0, its update is represented by a low-rank decomposition
W0 +△W = W0 + BA. During the training process, W0 remains constant and does not
receive gradient updates, whereas A and B consist of trainable parameters. Both W0

and △W = BA are multiplied by the same input, and their outputs are aggregated on a
coordinate-wise basis. Consequently for h = W0x the forward pass is modified as follows:

h = W0x+△Wx = W0x+BAx (2.4)

as shown in Figure 2.11. The initialization of the two low-rank matrices decomposing W0

is as follows: A is initialized with a random Gaussian distribution, and B is initialized to
zero. (Hu et al. [10])
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One of the many advantages of LoRA is that a trained model can be used for multiple
tasks by deploying several small LoRA modules, each customized for a specific task. This
feature significantly reduces the overhead related to task switching and memory require-
ments. In addition, LoRA eliminates the need to calculate gradients and maintain an
optimization state for most parameters, improving training efficiency and reducing hard-
ware requirements by about three times when using adaptive optimizers. Unlike a fully
optimized model, the simplicity and linear design of LoRA allow for easy integration of
the trainable matrices with the static weights at deployment, preventing the introduction
of additional inference latency. This feature ensures that LoRA maintains operational
efficiency and practicality for real-world applications.

2.5. Hybrid Search

The development of sophisticated embedding models represents a step forward in the
realization of powerful semantic search functions. Despite these developments, traditional
term-based search techniques — such as BM25 by Robertson and Zaragoza [22] — remain
relevant and often outperform even the most advanced deep learning models for certain
tasks. This discrepancy presents an interesting idea: the combination of term-based and
neural models in a single hybrid multi-retriever system that utilizes the advantages of
both methods.

Vector search is based on semantic similarity, and keyword search is based on the frequency
of query terms in texts; both have advantages and disadvantages: Vector search is superior
in terms of semantic similarity, but keyword search is more precise. To maximize search
results, the hybrid search model combines the "best-of-both-worlds" strategy by using
both sparse and dense vector search. At its core, a hybrid search system has two work
processes. A vector search is performed to find elements that come close to the vector
representation of the search query. At the same time, a keyword search sorts the results
according to the frequency of occurrence of the query words. This dual method not only
combines the results of the two search processes but also attempts to summarize several
score measures (such as cosine similarity and BM25) in a single rating, that cannot be
directly combined due to different scales and statistical distribution.

The hybrid search uses a fusion algorithm to incorporate the model scores. These algo-
rithms offer a new ranking approach by balancing and combining the results of vector and
keyword searches, as illustrated in Figure 2.12.
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Figure 2.12: Visual schema of fusion algorithm.

The relativeScoreFusion and rankedFusion algorithms represent two different approaches
to score fusion. The rankedFusion method assigns a score to each object depending on
where it appears in the search results. The highest score is given to the object that
comes first, and the scores drop down in order of the ranking. These rank-based scores
from the vector and keyword searches are added together to determine the final score.
However, with relativeScoreFusion, the score of each object is determined by normalizing
the metrics generated by the vector and keyword searches, respectively. According to this
scale, the highest value becomes 1, the lowest value becomes 0, and the remaining values
fall somewhere in between. The final result is therefore determined by a scaled sum of
the normalized vector similarity and the normalized keyword search.





25

3| Dataset

In the realm of Machine Learning research, the quality and diversity of the underlying data
have a direct impact on the effectiveness and generalization of the results. The potential
achievements of any model, especially in terms of performance and applicability, depend
on how relevant and rich the data used for training and testing is. The purpose of this
chapter is to provide insight into the available data and a description of the datasets
used to train and evaluate our search model. We provide a detailed overview of the
structure of the dataset and describe the pre-processing steps used to provide insight into
the applicability of the dataset in real-world situations as well as its suitability for our
academic goals. It is important to point out that the data we used for this study comes
from internal company sources and industry partners, rendering it not publicly available.

3.1. Industrial datasets

In this section, we detail three datasets containing the metadata employed in our study.
Originating from diverse companies, these datasets exhibit both similarities and differ-
ences in their structure and content.

3.1.1. Industrial dataset 1

The dataset provided by Contentwise, assembled with the open-source community database
known as The Movie Database (TMDB), includes 9531 entries, each representing either
a movie or an episode of a series. Initially, these entries come with a comprehensive set
of attributes. However, for the purposes of this study, we have curated the dataset by
excluding some attributes that are not useful to our research objectives. The dataset
is structured as a JSON file, with each object representing a unique entity defined by
key-value pairs that specify attributes and their corresponding values. Property keys are
intuitively named and allow for easy interpretation. Here is an example of one sample:
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{
"Id": 3514,
"Title": "Gilmore Girls",
"Summary": "Christopher talks

Lorelai into visiting Rory during
Parents’ Weekend at Yale; Luke meets
April’s swimming coach, who convinces
him to take her adult swimming class.",

"Episode name": "Go, Bulldogs!",
"Counrty of origin": "USA",
"Score": "8.1",
"Show type": "Episode",
"Release year": "2000",
"Duration": "43",
"Cast": [

"Lauren Graham",
"Alexis Bledel",
...
"Alia Rhiana Eckerman"

],
"Genres": [

"Comedy drama"
],
"Award": [

"Screen Actors Guild Awards",
"Golden Globe"

],
"Mood": [

"Amusing",
"Endearing",
"Emotional"

],
"Settings": [

"Connecticut",
"Small town",
"Household",
"Inn"

],
...

...
"Director": [

"Wil Shriner"
],

"Keywords": [
"Mother/daughter relationship",
"Small-town life",
"Friendship",
"Family dysfunction",
"Romance"

],
"Characters": [

"Mother",
"Daughter",
"Friend",
"Love interest"

],
"Subjects": [

"Mother/daughter relationship",
"Small-town life",
"Friendship",
"Family dysfunction",
"Romance"

],
"Semantic categories": [

"FemaleLead"
]

}
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3.1.2. Industrial dataset 2

This dataset comes from a large Northern European company operating in Denmark, Fin-
land, Norway, and Sweden and specializing in satellite television and broadband services.
The dataset under consideration consists of 23410 entries, all of which are distinctive ex-
amples of visual media content such as TV shows or movies. Carefully categorized and
tagged with several descriptive attributes, these entries allow for a closer examination of
the content collection. Also in this case it is structured as a JSON file. A unique aspect
of the dataset is its organization into five parallel versions, each suitable for one of the
five main languages spoken in the provider’s service regions: English, Danish, Finnish,
Norwegian, and Swedish. It is noteworthy that each element is consistently available in
all language versions of the database, even if the completeness of the attributes varies
depending on the language.

3.1.3. Industrial dataset 3

The third dataset used in this study comes from a top global telecommunications com-
pany operating in Europe and the Americas. The dataset under consideration consists
of 1158509 unique entries for movies or TV shows originating from eight different Latin
American countries: Brazil, Chile, Peru, Argentina, Colombia, Uruguay, Ecuador, and
Mexico. The attribute ’TenantId’ facilitates the differentiation of the entries based on
country by serving as an alias for the geographical origin of the content. This dataset
is singular and unified, unlike the previously discussed dataset (Section 3.1.2), which is
divided into five versions based on language resulting in duplicate entries across each ver-
sion. In order to classify the content by country, this dataset is segmented based on the
’TenantId’ attribute after collection. The adjacent bar plot (Figure 3.1) provides a visual
representation of the distribution of entries across these countries.
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Figure 3.1: Item distribution based on TenantId

The subset that corresponds to Brazil is chosen for testing because is the biggest por-
tion, encompassing approximately 20% of the dataset with 231743 entries. The dataset
predominantly features attributes in Portuguese and is structured as a JSON file.

Attributes and comparison

In Table 5.1 we outline the attributes across three industrial datasets related to streaming
content metadata. Each attribute is briefly described, followed by three columns indicat-
ing its presence (✓) or absence in each dataset. This format offers a clear comparison,
highlighting unique and shared attributes.

Attributes Description dataset1 dataset2 dataset3

Id A unique identifier for each
content

✓ ✓ ✓

Title The title of the movie or serie ✓ ✓ ✓

Episode name For series, the title of the spe-
cific episode

✓ ✓

Episode number The sequence number of the
episode within its serie

✓

Season number The season number to which
the episode belongs

✓

Country The originating country ✓ ✓
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Original language The originating language ✓ ✓

Show type Description of the content
type

✓ ✓

Release year The release year ✓ ✓ ✓

Decade The decade in which the con-
tent is set

✓

Duration The duration of the content
expressed in minutes

✓ ✓

Summary A brief outline of the content’s
storyline

✓ ✓

Actors A list of actors ✓ ✓ ✓

Director The name of the director ✓ ✓ ✓

Gernres A list of the categorized style ✓ ✓

Mood A list of emotional tone or
athmosphere

✓

Scenario The settings and contextual
background

✓

Theme The central topic or underly-
ing subject

✓

Settings The time and location ✓

Score Ratings given by users ✓

Award A set of award the content has
received

✓

Keyword A set of terms associated with
the content

✓ ✓

Characters Key figures and personas
within the narrative

✓

Subjects Main topics or elements ex-
plored in the content

✓

Subgenres Categories that further refine
the genres

✓

Genres2 An additional list of genres ✓

Semantic categories Conceptual groups for classify
the content

✓
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IsKid A boolean attribute indicat-
ing whether the content is
suitable for children

✓

TenantId An identification number for
the country in which is dis-
tributed

✓

Table 3.1: Comparison of attributes in industrial datasets

From the table, it becomes immediately evident that dataset 1 possesses the biggest set
of attributes in comparison to datasets 2 and 3, particularly dataset 3, which exhibits a
significant deficiency in content attributes.

An additional evaluation of the three datasets is placed, with a particular emphasis on
their utility to semantic search. Beyond the universally present title attribute, the pres-
ence of an overview assumes a significant role. The overview provides the most general
and comprehensive description of the content, its presence enriches each item with perti-
nent information that can potentially enhance performance. We quantified the number of
items with and without an overview for each dataset in order to provide a more thorough
explanation of the expressiveness and completeness of the datasets, especially for semantic
tasks. In Figure 3.2 below, a graph visually represents the proportion of items featuring
an overview relative to the total number of items within each dataset.

Figure 3.2: Comparison of items with overview and total items per dataset
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3.2. Synthetic query-answer dataset generation

The availability and cost of training and evaluation data is one of the challenges in building
models in the field of Deep Learning. Due to the sensitive and valuable nature of the data
in many sectors, it can be protected by law or business interest. Health data and private
company information are typical examples. There is also a possibility that there is no
dataset for a certain downstream task and that creating one by hand is impractical. It
describes our scenario: we lack an open-source dataset applicable to our specific task, and
our data remain confidential, sourced directly from our partners. Furthermore, manually
curating the most relevant items in response to a variety of potential user queries—based
on the semantic essence of each query—would demand an excessive amount of time and
effort. A strategy for resolving these data problems is the preparation of synthetic data,
which is a labeled dataset designed for a particular use case utilizing an existing trained
model or advanced data manipulation techniques [16] [20].

In the following Figure 3.3, we represent the pipeline employed to generate distinct ver-
sions of synthetic datasets, each comprising query-ranked list answers (QA), through the
utilization of gpt-3.5-turbo and customized for the respective industrial datasets.

Figure 3.3: Workflow diagram for synthetic Question-Answer dataset generation
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To generate our synthetic dataset, we start by creating a diverse array of queries, dis-
tinguished from one another through four distinct methods. First, we generated a basic
type of query utilizing the varying values present in industrial dataset 1, each categorized
according to corresponding attributes.

"show me something with Derek Johns"

Second, we formulate more complex queries by combining different values across various
keys (in pairs, triplets, or quartets).

"show me something rousing thrilling",
"show me something bad choices dreams come true living with mental illness"

The third category of queries employs ’dynamic categories ’, attributes retrieved from an
algorithm developed by Contentwise. In this context, a demo environment was populated
with fictitious users, each associated with a history of content viewed from the catalog
and their respective ratings for those items, enabling user profiling. Based on the users’
ratings, the algorithm generates these ’dynamic categories’ to customize content selections
to the users’ preferences.

"Drama movies starring Matthew McConaughey",
"2000s Dark movies shot in Hospital and New York City"

Lastly, considering all queries previously mentioned are in English and our objective is
to evaluate the model across multiple languages, we translated the queries into several
languages, including Italian, Spanish, French, German, Portuguese, and Chinese.

"Encuentrame algo con Jake LLoyd",
"Trovami un vincitore del Premio Robert",
"Trouvez-moi qualque chose cuisine arts martiaux medical",
"Finde mich etwas erschreckend ironisch stilvoll"

Each language maintained an equal number of translated queries for each query type,
ensuring no repetitions.

The resulting list is composed of a total of 46358 queries. Below, a bar graph Figure 3.4
illustrates the distribution of queries by type.
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Figure 3.4: Query distribution per type

With the power of the language model ChatGPT, developed by OpenAI, we build the
dataset by ranking movies or series on the previously constructed set of queries. The
objective is to establish a rating of twenty streaming items for each query, based on the
semantic similarity between the query and possible suggestions. This is accomplished
through the gpt-3.5-turbo model via OpenAI’s API. The requests are structured to
provide the model with explicit context, which improves the relevance and precision of
the output. The API requests are formulated as follows:

jobs = [{
"model": "gpt-3.5-turbo",
"messages": [

{"role": "system",
"content": "You are a movie recommendation system. Provide a ranked list of 20

movies or series. The answer must be in json format with the movies title in a
list of this type {movies:[]} , in the order of the ranking."},

{"role": "user",
"content": question}]} for question in questions]

The final step in answers construction involves cleaning the responses obtained from GPT.
Firstly, we exclude any responses that contain error messages. Secondly, the procedure
requires the removal of any ranking positions prefixed to each movie or series title (from ’1.
Interstellar’ to ’Interstellar’). Additionally, we eliminate any explanatory text following
the titles that may have been provided by the model to justify its selections. This step
ensures that the answer lists in the dataset solely consist of the titles of movies or series.
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3.2.1. Filtering and splitting

A data filtering process is implemented afterward to ensure the integrity and utility of
our synthetic dataset. Each title generated by GPT is scrutinized to verify the presence
in each industrial dataset, resulting in three versions of the query-answer (QA) synthetic
dataset. Titles found within the dataset are maintained in the response, accompanied by
their identification number (‘Id’). Contrarily, titles not present in the dataset are excluded
from the response list. The final step in the filtering process involves eliminating queries
for which the response is an empty list, indicating either an inability of GPT to provide an
answer or the absence of any generated titles within the dataset. The uniqueness of each
query is guaranteed by hashing the query string with the SHA-256 function, generating
a 256-bit alphanumeric identifier (‘itemID’) for each query. Thus, the QA dataset is
formatted as a JSONL file. An example is provided below:

{
"question": "Dark Sci-Fi movies",
"answer":

[
{"Title": "Blade Runner", "Id": 1716},
{"Title": "The Matrix", "Id": 1693},
{"Title": "Inception", "Id": 70784},
{"Title": "Ex Machina", "Id": 33544},
{"Title": "Interstellar", "Id": 33415},
{"Title": "The Terminator", "Id": 702},
{"Title": "A Clockwork Orange", "Id": 2386},
{"Title": "Mad Max: Fury Road", "Id": 33411},
{"Title": "Eternal Sunshine of the Spotless Mind", "Id": 199},
{"Title": "The Fifth Element", "Id": 1129},
{"Title": "Minority Report", "Id": 955},
{"Title": "Akira", "Id": 1215},
{"Title": "Metropolis", "Id": 2008},
{"Title": "Ghost in the Shell", "Id": 38818},
{"Title": "Children of Men", "Id": 3171},
{"Title": "Upgrade", "Id": 71032}

],
"itemID":

"b8bfd297351368655a5744672f1c34b7e6c9b6c89e2b40059bb12adb1be204e9"
}

Every entry in this file consists of a query and a list of titles and IDs, designed as the
ground truth for that query. The dataset shows variation in the number of responses per
query, ranging from 1 to 20, with an average of 7.6 responses.
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Following the data filtering, the dataset is divided into three segments: training, val-
idation, and testing, assigned in proportions of 60%, 10%, and 30%, respectively. The
development phase of the thesis saw the inclusion of an additional 1389 translated queries,
enhancing the diversity of the dataset and improving evaluation outcomes, thus expanding
the total number of queries to 47747.

The distribution of dataset samples across the training, validation, and testing sets, is
illustrated in the Table 3.2. The additional version of the QA synthetic dataset with more
translated queries is detailed exclusively for the industrial dataset 1 to avoid redundancy,
as the distribution proportions are consistent across all dataset segments.

dataset1 v1 dataset2 dataset3 dataset1 v2
train 25105 25518 27482 25792

validation 3976 2835 3053 4103
test 11802 11573 12737 12166

empty 5475 6432 3086 5686

Total valid 40883 39926 43272 42061

Table 3.2: Distribution of query-answer pairs across Train, Validation, and Test sets for
each industrial dataset, including counts of excluded queries with Empty answers. The
Total valid is the aggregate number of samples, excluding the empty samples.

3.3. Human query generation

The objective of this thesis covers both research pursuits and practical applications, ne-
cessitating manual validation to address and benefit from GPT’s limitations. Despite its
impressive capabilities and broad knowledge base, GPT’s information is current only up
to 2021. Consequently, it may not recognize a movie or series released after this year that
could provide an ideal answer to a query. Moreover, the QA dataset processed includes
responses ranging from one to twenty items, from catalogs with thousands of entities,
suggesting that additional items may still represent optimal responses.

To emulate an online application environment while performing human validation we
develop a form. This form first clarifies the principle behind semantic search with a
particular focus on its application to films and series. Participants were asked to submit
queries they would ask to such a search engine. This method allowed for manual evaluation
of our system response, because of a resulting smaller number of questions compared to
the size of the test set generated. The form collect a total of 50 questions.





37

4| Methodology

This chapter presents a comprehensive examination of the model selection process, the
implementation of similarity matrices, and fine-tuning strategies adopted. These are key
components in the development of semantic search and information retrieval systems. The
effectiveness of the search engine is directly correlated with the performance of the model
and the effectiveness of the corresponding generated embeddings in semantic search tasks,
highlighting the central role in making the right choice of the model and training in the
proper way.

4.1. Model selection

The first step in this part of our work consists of the model selection. The objective is
to identify an embedding model that demonstrates high performance on the question-
answer (QA) synthetic test set, delineated in Section 3.2.1. Our selection criterion relies
on the examination of open-source models that are both available for download and offer
the flexibility for customization through fine-tuning processes. The choice of open-source
models is motivated by the desire for customizable solutions that avoid additional costs
and reduce dependency on external services, which may compromise system availability
in case of service problems.

Our search for suitable models primarily targets the Hugging Face model repository,
renowned for its extensive collection of pre-trained models. The performance of these
models on established benchmark datasets is one of the main criteria for our selection.
Specifically, models that demonstrate impressive performance in semantic search and in-
formation retrieval (IR) tasks.

Another important consideration is the size of the model. Given that the end product
of our research is planned to be a real-time application, it is imperative to select models
that are not excessively large and fast. The rationale behind this is twofold: ensure the
responsiveness of the service by minimizing latency in model inference and mitigate the
cost associated with storage requirements.



38 4| Methodology

In addition to exploring HuggingFace models, we include the embedding model called
Titan, from AWS. It is important to clarify that the inclusion of Titan in our analysis is
not to adopt it as the exclusive model for our application. Rather, its evaluation serves
as an auxiliary benchmark, offering an extra comparative viewpoint about the models
under consideration. This method differs from our application of gpt-3.5-turbo as a
benchmark, which is used in a different ability. Specifically, gpt-3.5-turbo is used to
generate the QA test set through an API call, functioning as a chatbot. This mechanism
facilitates the selection of the top K items based on similarity, without necessitating the
computation of embeddings by the model itself.

The model selection involves the following:

• multi-qa-MiniLM-L6-cos-v1: This is a sentence transformer model from Hug-
ging Face, designed for semantic search. It maps phrases and paragraphs to a
384-dimensional vector space. The model is trained on 215 million (question, an-
swer) pairs from various sources and uses MiniLM, a variant of BERT, as its base
architecture. During training, a self-supervised contrastive learning objective is used
where the model identifies matching sentence pairs from a set of candidates. The
Multiple Negative Ranking Loss (MNRL) is employed during training. The model
produces normalized embeddings, and the preferred scoring function in this case is
the dot product due to its efficiency when dealing with normalized vectors.

• multi-qa-mpnet-base-dot-v1: Similar to multi-qa-MiniLM-L6-cos-v1, this model
is from the sentence-transformers library and designed for semantic search. However,
it uses mpnet-base (a Transformer-based architecture) as its base model and pro-
duces embeddings with a higher dimensionality (768). Unlike the previous model,
the embeddings here are not normalized, making the dot product the only suit-
able scoring function. It also utilizes a self-supervised contrastive learning objective
during training and has a maximum input window of 512 tokens.

• all-mpnet-base-v2: This model, a sentence transformer (sBERT) built on the
pre-trained microsoft/mpnet-base model, is specifically designed for tasks like in-
formation retrieval, clustering, and sentence similarity. The pre-trained model is
fine-tuned on a massive dataset exceeding 1 billion sentence pairs. Cross-entropy
loss guides the fine-tuning process by comparing the model’s predictions with the
actual matching sentences. It generates 768-dimensional dense vectors as sentence
embeddings, capturing the semantic meaning of the input text. It can handle text
with a maximum length of 384 tokens, truncating longer inputs.

• msmarco-roberta-base-ance-firstp: This model is designed for semantic search
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tasks. It builds upon RoBERTa by adding pooling, dense, and normalization layers.
This ensures the generated 768-dimensional sentence embeddings have a consistent
unit length, making them suitable for tasks like dot product similarity calculations.
The model is trained using Approximate Nearest Neighbor Negative Contrastive
Estimation (ANCE) [32]. This training method utilizes the corpus’s approximate
nearest neighbor (ANN) index to create more realistic negative examples for im-
proved model performance.

• all-MiniLM-L6-v2: This model is the result of fine-tuning the nreimers/MiniLM-
L6-H384-uncased pre-trained model. It is particularly suitable for tasks like cluster-
ing or semantic search. It produces a 384-dimensional dense vector representation
for each input text. The model is designed to handle short text inputs due to its
limited token input window. Inputs exceeding 256 tokens will be truncated.

• bge-large-en-v1.5,bge-base-en-v1.5, bge-small-en-v1.5: The BGE (Big Gra-
dient Embedding) models belong to the FlagEmbedding family, which focuses on
retrieval-augmented Large Language Models (LLMs). These models are trained us-
ing contrastive learning on large-scale datasets of English text pairs [31]. Hugging
Face offers three BGE models for English text processing: the largest model, gen-
erating 1024-dimensional embedding vectors, the medium-sized model (base) pro-
duces 768-dimensional embedding vectors, and the smallest model, generating 384-
dimensional embedding vectors. All three models can handle inputs up to 512 tokens
and cosine similarity is the recommended scoring function to compare retrieved em-
beddings. A separate BGE model version (bge-large-zh-v1.5) is also available for
Chinese text processing.

• multilingual-e5-base and multilingual-e5-large: These are multilingual text
embedding models from Wang et al. [27]. They are based on the xlm-roberta
architecture and come in two sizes: base (12 layers, 768-dimensional embeddings)
and large (24 layers, 1024-dimensional embeddings). Both models are trained in
two stages: first with contrastive pre-training using weak supervision, followed by
supervised training on a mix of multilingual datasets. This approach allows them
to capture semantic similarities across 100 different languages.

• Titan: This model, a text embedding model from AWS Bedrock, is designed for
tasks involving semantic similarity, such as information retrieval, recommendation
systems, and document clustering. It excels in text retrieval tasks, supporting Re-
trieval Augmented Generation (RAG) use cases. Titan converts textual data into
numerical representations (embeddings) for efficient searching of relevant passages
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within a large dataset. The model handles a wide range of text lengths, including
very long inputs of up to 8192 tokens, and supports over 25 languages including En-
glish, Chinese, and Spanish. Offered through a serverless API, Titan prioritizes low
latency and cost-effectiveness, eliminating the need for infrastructure management.
However, fine-tuning this model is not supported.

4.1.1. Approach

A bifurcated testing methodology intends to measure the effect of input data granularity
on the performance of the selected models, and empirically evaluate the effectiveness of the
models. The models are put through two different experimental setups, with the metadata
from the industrial dataset 1 (Section 3.1.1) and the list of queries in the corresponding
QA synthetic dataset:

1. All-inclusive Metadata Input: In this scenario, models received a comprehensive
collection of all item metadata. This method is based on the theory that a greater
variety in the input context may improve the capacity to produce more precise
embeddings of the model, which consequently may increase the relevance of items
that are retrieved in response to a query.

2. Condensed Input (Title and Overview Only): This experimental setup, in contrast
to the first condition, restricts the input to just the item titles and overviews. This
condition looks at the performance of the model in a scenario with limited input,
which is representative of a typical use case where precise metadata might not be
easily available.

It is essential to keep in mind that despite the availability of rich metadata, the embedding
models’ intrinsic architecture places a cap on the maximum input length, expressed in
tokens. As a result, inputs larger than the maximum token capacity of the model are
truncated.

The evaluation approach proposed in Chapter 6, employs a wide range of metrics to
measure the efficacy of the models. This structured methodology enables a comprehensive
evaluation of the selected embedding models in various input conditions, with metadata
in English derived from industrial dataset 1.

To further explore this area, we intend to evaluate the cross-lingual robustness and gen-
eralization capabilities of the top six models across multilingual datasets. These models
include the previously mentioned Titan from Amazon and the open-source Hugging Face
models multi-qa-mpnet-base-dot-v1, the large and base versions of bge-*-en-v1.5,
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and multilingual-e5-base. This evaluation involves conducting tests on a secondary
dataset versioned into six catalogs, referred to as dataset 2 (Section 3.1.2). Each catalog
corresponds to a distinct language, facilitating an examination of how well the models
perform when used with metadata in different languages.

Furthermore, is conducted an evaluation of a third dataset (dataset 3, Section 3.1.3),
characterized by its metadata entirely in Portuguese. This specific dataset adds another
level of analysis, which furthers our understanding of how adaptable the models are to
languages other than English.

In addition to the automated tests, we conduct a manual evaluation. This involves se-
lecting particular queries that originate from an established form (Section 3.3), and then
examining the search results that each model produces. Such manual testing plays a cru-
cial role in detecting details in the models’ output that automated metrics might miss,
offering an accurate diagnosis of their effectiveness in semantic search and information
retrieval tasks across diverse linguistic contexts.

4.2. Similarity matrix

Nowadays, recommender systems are essential tools on a wide range of online platforms,
such as YouTube, Facebook, Netflix, and Amazon. These systems help decision-making for
users by customizing recommendations based on their preferences. The most commonly
employed strategies among the multitude of techniques utilized are collaborative filtering
(CF), content-based filtering (CBF), and hybrid approaches [4][23].

Sharing similar tastes and preferences among users is the foundation of Collaborative
Filtering (CF). It assumes that people who have shown comparable preferences in the
past will probably continue to have similar interests. Therefore, if two users are judged
similar and one of them expresses a preference for a specific item, that item is then
suggested to the other user with the expectation that it will be appreciated.

Conversely, Content-Based Filtering (CBF) focuses on the attributes of the items them-
selves, along with the user’s preferences. This approach makes recommendations for prod-
ucts by finding similarities between the attributes of products the user has liked in the
past and those of novel, unknown products. If a user expresses a preference for a particu-
lar item, CBF looks for and recommends other items that have the same characteristics.
This allows recommendations to be customized to each user’s individual preferences.

Hybrid models combine the strengths of both CF and CBF approaches to improve the
diversity and accuracy of recommendations. The majority of research in the field of
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recommender systems has focused on CF because of its ability to capture user preference
patterns from past data.

Embeddings play an important role in the development and improvement of these tech-
niques, especially for content-based filtering. It is also essential to investigate the con-
struction and utility of similarity matrices. The foundation of this method is the idea that
objects can be represented in a multidimensional embedding space, where the similarity
between two points is determined by their distance from each other, as well explained in
detail in Section 2.1.

Central to our methodology is the construction of similarity matrices, wherein the similar-
ity or distance between items is stored. Specifically, for a given item A, its corresponding
row in the similarity matrix encapsulates the degree of similarity between A and every
other item in the corresponding column. This structure facilitates the identification of
items that are similar to A. Motivated by this utility, we have constructed various matrices
utilizing different embedding models. This approach allows us to assess the informational
richness of the resulting embeddings, thereby providing insights into their effectiveness in
capturing the nuances of item similarities.

The initial step involves embedding each item in the catalog, referred to as industrial
dataset1, into a high-dimensional space. This process is executed by each of the embed-
ding models selected from the previous section of this chapter. Once embedded, these
representations are normalized (if not already done by the last layer of the model itself)
and organized into a matrix, where each row corresponds to an item’s embedding vector.
This matrix serves as the foundation for constructing the similarity matrix. For simplicity,
we will refer to it as E.

The similarity matrix is constructed by performing a matrix multiplication between E

and its transpose. Mathematically, given S the similarity matrix it is computed as:

S = EET (4.1)

The resulting matrix has the following properties: it is symmetric, with diagonal elements
equal to 1, it is square, its values are in a range from -1 to 1, and is positive semidefinite.
Each element in the matrix si,j denotes the similarity between items i and j, where each
diagonal element represents self-similarity, thereby justifying the value of 1.

Following the generation of the similarity matrix, a refinement procedure is implemented
to enhance its usability and computational efficiency. This procedure entails the removal
of negative values and the application of sparsity techniques: we remove negative values
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from the matrix by simply clipping it within the range from 0 to 1. In the sparsification
process, a sorting of similarity scores within each row of the matrix is performed. Only
the top 100 scores are subsequently kept. The selection criterion is based on the idea that,
for each item, the most significant connections are those with the highest similarity scores,
reflecting the closest item-to-item relationships. Consequently, every other entry in the
matrix is set to zero. By concentrating on the most relevant similarities, this reduction
not only simplifies the matrix but also drastically lowers processing and storage needs,
increasing system efficiency.

The refined similarity matrix serves as the basis for an empirical demonstration of the em-
bedding model capabilities. To this end, the matrix is uploaded to a bucket to be accessed
by an AWS EC2 instance, which has been configured to replicate the demo environment
of Contentwise that emulates a real-world application scenario. This environment is pop-
ulated with the catalog data from dataset1, including a wide variety of items, such as
films and series episodes.

Within this demo environment, each item’s visualization page is enriched with multiple
carousels, each corresponding to the results obtained by the similarity matrices derived
from different embedding models. This includes the following models: ada from Ope-
nAI, Titan, bge-*-en-v1.5 (both base and large variants), and multilingual-e5-base.
These carousels dynamically showcase the ten most similar items, the item itself excluded,
as determined by the sparsified similarity matrix, offering a visual and easy illustration
of the richness in the information of the generated embeddings. This deployment offers
a tangible platform for assessing the effectiveness and suitability of different embedding
models in an actual environment, in addition to serving as a proof of concept for the
theoretical concepts described in previous sections. We can evaluate the qualitative ef-
fects of various embeddings on recommendation diversity and accuracy by looking at the
recommendations made in this demo context. An example is provided in Figure 4.1.

This methodology provides a compelling visualization for comprehending the content
understanding capabilities of these models. However, because of the complex nature of
the embeddings’ performance, choosing the best model outright turns out to be difficult,
if not impossible. Furthermore, fully interpreting the reasons behind the observed results
remains an intricate work. Navigation through the demo for each item is often unclear
the correlations among the displayed item and its ten most similar counterparts within
the carousels. These similarities may result from several attributes, such as genre, cast,
directorship, or the setting of the content itself. Thus, while this approach offers useful
initial observations, it cannot be considered the definitive metric for determining the
superiority of one model over others.
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Figure 4.1: Interface snapshot within demo environment, showing carousels of items sim-
ilar to the selected one, based on similarity matrices developed with different embedding
models
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4.3. Fine-tuning strategies

Within the domain of deep learning, fine-tuning is a process where a pre-trained model
is further optimized to enhance its performance on a more specific task. This approach
maintains the original knowledge the model has acquired during its initial training phase,
applying it to a smaller, task-specific dataset. The objective of fine-tuning is to refine
the model’s capabilities, enabling it to generate outputs that are more aligned with the
particular needs of the task at hand.

Fine-tuning plays a crucial role in our study, which focuses on the Large Language Model
(LLM) for Information Retrieval (IR) in the field of semantic search. Our approach in-
volves fine-tuning two embedding models: bge-base-en-v1.5 and multilingual-e5-base,
with a focus on semantic search in retrieving relevant movies or series based on queries.
The selection of the model is due to their excellent ability to generate rich embeddings,
as explained in details in Section 6.4.

4.3.1. Adapter fine-tuning

The first approach to fine-tune our models involved the application of an adapter mech-
anism. Adapters facilitate the improvement of pre-trained models by introducing one
or more additional layers. This allows specific updates to these extra weights without
changing the original model’s parameters. This technique allows the specialization of a
high-performing model to a specific domain or task, without the need for comprehensive
retraining of the entire model architecture.

We implement this method with the llama-index library, which simplifies incorporating
adapter layers into models built using the Hugging Face framework. The default adapter
configuration is characterized by a single fully connected linear layer added on top of
the base model. Additionally, the llama-index provides the option to employ a two-layer
adapter, which requires the specification of an input dimension (corresponding to the
output dimension of the underlying model), a hidden dimension, and the desired output
dimension. The flexibility of the llama-index library also allows for the development of
customized adapter configurations, allowing the developer to define any preferred number
of layers.

We adopt in our experiments both the default single-layer adapter configuration and the
more complex two-layer adapter setup. Each configuration is subject to a fine-tuning
process of a single epoch. In particular, we assigned the dimensionality of 1024 to the
hidden layer of the two-layer adapter.
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For the preparation of our dataset, we utilize the EmbeddingQAFinetuneDataset class
from the llama-index library, which is adept at formatting data for our specific training
needs. This class transforms our dataset, originally stored in a JSON format, into a format
compatible with PyTorch’s DataLoader. The structured dataset comprises a dictionary
labeled ’queries’, mapping each query ID to its respective string representation (’query’).
Additionally, it includes a dictionary for the ’corpus’, linking each corpus ID to a string
that concatenates all metadata of an item. Furthermore, a ’relevant_docs’ dictionary
associates each query ID with a list of relevant corpus IDs, establishing the ground truth
for training, based on our QA synthetic training set.

We use the EmbeddingAdapterFinetuneEngine class from the llama-index library to
start our fine-tuning. This class is specifically designed to facilitate the fine-tuning of our
model by leveraging the pre-existing structure and adapter configurations. It requires the
original model, a DataLoader containing the formatted dataset, and the name of the folder
where the newly fine-tuned model will be saved. Within the finetune() method of this
class, a customized MultipleNegativeRankingLoss is embedded. This loss function is
akin to the one available in the sentence_transformer library, discussed in Section 2.4.
The optimization of the model during the fine-tuning process is handled by the Adam
optimizer, a widely used optimization algorithm that adapts the learning rate for each
parameter, contributing to a more effective and efficient training phase.

To enhance the fine-tuning strategy for our models, we integrate Automatic Mixed Pre-
cision (AMP) into our training process, by setting to True the specific parameter in the
finetune() method. AMP is a technique that allows for faster training and reduced mem-
ory usage by dynamically scaling the numerical precision of floating-point calculations.
This method achieves a balance between computational efficiency and model accuracy,
facilitating more efficient training iterations.

A significant advantage of fine-tuning with an adapter is its computational efficiency: it
does not require extensive computational resources or prolonged periods. Consequently,
this optimization is executed locally on a standard personal computer with the competi-
tion of one epoch of training in a few hours.

4.3.2. Traditional fine-tuning

As a second method to refining our models, we develop the fine-tuning of the entire model
architectures. This method diverges from the adapter fine-tuning method by updating all
the model parameters during the training phase and does not add any additional layer
to the model structure. Within the context of semantic search for the information re-



4| Methodology 47

trieval area, the Multiple Negative Ranking Loss (MNRL) is the most appropriate
loss function for this task. MNRL facilitates contrastive learning, wherein the training
dataset comprises question-answer pairs (movies or series matching the query). In a
training batch, each pair considers the query and the corresponding answer as a positive
(similar) instance, whereas the same query and all the other answers as negative (dissimi-
lar) instances. A depth explanation of this learning procedure is described in Section 2.4.
This methodological choice addresses the absence of explicit negative samples, a common
challenge in Natural Language Processing (NLP) tasks, using the intrinsic diversity within
the batch as a source of contrastive examples.

In the implementation of this fine-tuning process, we have opted for a batch size of
5 elements. This decision is driven by the computationally demanding nature of the
process and the strategic consideration of contrastive learning dynamics. A smaller batch
size mitigates the computational load, ensuring that the training remains feasible on
available hardware resources. By maintaining all other answers in a batch as negatives,
except for the one corresponding to the query, we inherently increase the model’s ability
to discern relevant from irrelevant information. However, with larger batch sizes, there is
a higher probability of including another answer that may still bear substantial similarity
to the query’s corresponding answer. This potential overlap may inadvertently introduce
ambiguity in the negative samples.

We use the NoDuplicatesDataLoader class from the sentence-transformer library to im-
prove our training procedure. This class ensures the uniqueness of queries and answers
within each batch by subdividing the training set into batches of a size specified by the
developer, preventing the duplication of training data. The fine-tuning is performed en-
tirely in one epoch. Also in this case, we integrate AMP strategy and Adam as optimizer.
Due to the computational demand of full-model fine-tuning, this process is executed on
an AWS EC2 instance specifically configured for this purpose, with a training duration
of approximately three days.

In addition to MNRL, another experiment explores the use of Cosine Similarity Loss
(CSL) for training. In this case, data are still considered in pairs but with a label as-
sociated, indicating the similarity between queries and answers. Because of the absence
of pre-defined similarity scores within our training set, labels are assigned based on the
relative ranking of answers, descending from the most (first) to the least (last) relevant.
However, this approach results in model overfitting, leading to a lower capacity for gen-
eralization and a tendency to recommend predominantly popular films from the training
set, discovered mainly by a manual evaluation.
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4.3.3. LoRA fine-tuning

Low-Rank Adaptation (LoRA) is the third methodology adopted for fine-tuning our mod-
els, which deviates from traditional fine-tuning practices. LoRA introduces a more sophis-
ticated approach by embedding trainable low-rank decomposition matrices into specific
or all layers of the Transformer architecture, thus maintaining the original pre-trained
model weights intact. This approach stands out for its efficiency, which can be attributed
to these matrices having fewer parameters than the entire model. A thorough explanation
of LoRA can be found in Section 2.4.

For the practical implementation of this approach, we utilized the peft library, which
makes it easy to incorporate these extra trainable matrices and produce a modified model
encapsulated within the PeftModel class. The configuration of LoRA is conducted via
the LoraConfig class from the same library, as demonstrated below:

peft_config = LoraConfig(
r=8,
lora_alpha=8,
bias="none",
task_type=TaskType.FEATURE_EXTRACTION,
target_modules=["key", "query", "value"],

)

The r parameter specifies the rank of the introduced low-rank matrices. This parameter
is crucial in balancing the trade-off between the model’s expressiveness and its compu-
tational efficiency. A lower r value signifies a model with fewer parameters, enhancing
efficiency but potentially limiting the model’s adaptability to new tasks. Conversely, a
higher r value augments the model’s flexibility but increases computational demands.
This parameter is evaluated in configurations of 4 and 8.

The alpha parameter, or scaling factor, controls how much the low-rank matrices influence
the pre-trained model weights. A higher alpha value amplifies the impact of these matrices
on the model’s behavior, whereas a lower value ensures a more nuanced integration of
changes. This parameter is also subjected to experimental validation with values set
at 8 and 16, leading to the exploration of three distinct configurations from different
combinations of r and alpha: 4-8, 8-8, and 8-16.

The bias parameter addresses the treatment of bias terms within the adapter layers, of-
fering strategies such as "none", "all", or "lora_only" for updating bias terms during
the training phase. Opting for "none" precludes the addition of any bias, which, while re-
ducing the model’s expressiveness and parameter count, also diminishes its computational
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demands.

The task_type parameter clarifies the LoRA adaptation’s intended application.
"TaskType.FEATURE_EXTRACTION" indicates that the adapted model is intended for ex-
tracting features from inputs, which is common in tasks like embedding generation or
intermediate representations in transfer learning scenarios.

Lastly, the target_modules parameter lists the Transformer model components to be
adapted using LoRA. Common targets include the "key", "query", and "value" compo-
nents of attention mechanisms in transformer models. This selective adaptation enables
control of the changes in the model behavior and targeted enhancements in model per-
formance for specific tasks.

In this scenario, we designed a custom function to emulate the behavior of a DataLoader.
This function is designed to load the training dataset and systematically divide it into
batches, ensuring that no duplicates exist within a batch in terms of queries and their
corresponding answers. The batch size for this method is set at 5 elements, echoing
our strategy from previous methodologies to balance computational efficiency with the
effectiveness of contrastive learning. Moreover, we developed a custom class responsible
for implementing the Multiple Negative Ranking Loss (MNRL). Given that the available
libraries, such as peft, do not furnish a method for our specific training demands, we
undertook the development of the entire training process.

A single epoch of the fine-tuning process with LoRA needs about 5 hours to complete
on the same AWS EC2 instance used for the previous methodologies. This effectiveness
highlights the suitability of LoRA as a fine-tuning method, particularly in situations where
computational resources are a limiting factor.
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In this chapter, we explain the actual implementation of our system. The previously
exposed models serve as the backbone for constructing a vector database capable of per-
forming efficient query and retrieval operations, targeting the top k elements, within the
video streaming context. After careful consideration of various technologies, we deter-
mined that Weaviate, an AI-native and open-source vector database, stands out as the
optimal choice for our requirements.

Initially, the system assimilates the entirety of the dataset’s catalog, with raw data and
their corresponding embeddings, generated through our integrated embedding model. At
the inference stage, the user submits a query, and our model translates it into a vector
representation. This vectorized query subsequently serves as the basis for retrieval opera-
tions within the vector database. The final phase of the workflow involves an aggregation
of the retrieval scores, from semantic and keyword searches, which culminates in the gen-
eration of a ranked list of results. This ranked output is then presented to the user. The
workflow schema is illustrated in the Figure 5.1 below:

Figure 5.1: Schema of our information retrieval system: from data integration, to query
processing and result ranking
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5.1. Weaviate

Weaviate is a vector database designed to be AI-native and open-source that assists devel-
opers in building robust and intuitive applications that use AI. It allows for hybrid search
over unstructured data. Several search methods are used in hybrid search to increase the
precision and applicability of search results. The most efficient aspects of vector search
techniques and keyword-based search algorithms are combined. It gives customers a more
productive search experience by utilizing the advantages of several algorithms. Different
algorithms calculate sparse and dense vectors. Dense vectors mostly contain non-zero
values, whereas sparse vectors generally contain zero values with just a small number of
non-zero values. Machine learning models, like GloVe and Transformers, provide dense
embeddings. Sparse embeddings are produced via algorithms such as SPLADE and BM25.

The version of Weaviate we use to deploy our system uses the BM25 (BM is an abbrevia-
tion for best matching) algorithm for keyword searches. By using the binary independence
model from the Inverse Document Frequency (IDF) calculation and adding a normaliza-
tion penalty that measures a document’s length in relation to the average length of all the
documents in the database, BM25 improves upon the keyword scoring technique Term-
Frequency Inverse-Document Frequency (TF-IDF). Given a query Q, containing keywords
q1, · · · , qn the BM25 score of a document D is:

score(D,Q) =
n∑

i=1

IDF (qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avfdl

)
(5.1)

where f(qi, D) is the number of times that the keyword qi occurs in the document D, |D|
is the length of the document D in words, and avgdl is the average document length in
the text collection from which documents are drawn. Additional static parameters, k1
and b, are included in BM25 and may be used to tune performance to specific datasets.
Weighing each query keyword’s uniqueness in relation to the collection of texts yields
the document-query pair score. IDF (qi) is the IDF weight of the query term qi. It is
computed as:

IDF (qi) = ln

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
(5.2)

where N is the total number of documents in the collection and n(qi) is the number of
documents containing qi.(Wikipedia [28])

Weaviate enables the usage of locally saved customized embedding models, open-source
models, and models obtained via OpenAI. For the latter, OpenAI’s price for each embed-
ding determines the expenses. The embeddings of every element in the dataset during the
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setup phase are kept in this vector database, which also calculates the distance between
the query embedding and the stored embeddings at inference time. Distance metrics
indicate the degree of similarity or dissimilarity between two embeddings.

The features of both semantic and keyword search techniques are merged in a hybrid
search through the combination of dense and sparse vectors. Sparse vectors are better at
matching keywords, whereas dense vectors are better at comprehending the context of the
query. There are several strategies to merge the outcomes of BM25 and dense vector search
into a single ranked list, as explained in Section 1.5. Two Reciprocal Rank Fusion (RRF)
algorithms are supported by Weaviate: rankedFusion and relativeScoreFusion. Reranking
is an essential stage in the hybrid search implementation process. Alpha is a parameter
that controls how each method is weighted and how the results are reranked. Its value
ranges from 0 (a keyword-only search) to 1 (a semantic-only search). Below, Figure 5.2
presents a conceptual visualization aimed at elucidating the mechanics of hybrid search
with Weaviate.

Figure 5.2: Illustration of hybrid search mechanism, from Weaviate blog post

5.2. Schema

In the integration of a vector database such as Weaviate into a system, it is crucial to
define the schema and its components. The schema essentially manages the creation of
collections, which are named entities facilitating the referencing and interaction with ag-
gregated data. The first step in the Weaviate schema definition is to designate a "class",
an essential component that specifies the name of the collection created by the schema.
Classes play a pivotal role in organizing the data within the database, allowing for more
efficient data retrieval and management. The structure of the Weaviate schema is illus-
trated by the following example:
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schema= {
"class": "Item",
"vectorizer": "text2vec-transformers",
"moduleConfig": {

"text2vec-transformers": {
"model": "e5b_mnrl",
"modelVersion": "v2",
"type": "text",
"vectorizeClassName": True

}
},
"vectorIndexType": "flat", #hnsw or flat
"vectorIndexConfig": {

"distance": "cosine" #cosine, dot, l2-squared, hamming, manhattan
},
"properties": [

{
"name": "item_id",
"dataType": ["int"],
"indexFilterable": True,
"indexSearchable": False,
"moduleConfig": {

"text2vec-transformers": {
"skip": True,
"vectorizePropertyName": True

}
}

},
{

"name": "n_actors",
"dataType": ["text[]"],
"tokenization": "word",
"indexFilterable": True,
"indexSearchable": True,
"moduleConfig": {

"text2vec-transformers": {
"skip": False,
"vectorizePropertyName": True

}
}

},
...
]

}



5| Implementation 55

Concerning the search algorithms, Weaviate uses the BM25 algorithm by default for key-
word searches and offers customization for two of its parameters: ’b’ and ’k1’. This
flexibility enables enhanced search accuracy based on specific dataset characteristics.
On the other hand, the dense vector search dimension is handled by configurations like
"vectorizer", which identifies the embedding model responsible for generating data em-
beddings, and "moduleConfig" for additional parameter settings. The "vectorIndexConfig"
defines the distance metric for vector comparison. The options it includes are ’cosine’
for cosine similarity, ’dot’ for dot product, and others including ’l2-squared’, ’hamming’,
and ’manhattan’.

The selection of the vector indexing approach is incorporated in the "vectorIndexType",
which separates the ’flat’ index from ’hnsw’ (Hierarchical Navigable Small World). The
’flat’ index is distinguished by its simple, minimalist construction, which is fast to gen-
erate and memory-efficient, but does not support scaling with large data volumes because
of its linear search complexity. The ’hnsw’ index, on the other hand, is an advanced imple-
mentation of the HNSW algorithm, optimizing for Approximate Nearest Neighbors (ANN)
searches through a multi-layered graph structure. By utilizing short-range connections in
lower levels for precision and long-range connections in top layers for quick navigation,
this method dramatically improves search speed and accuracy, with a logarithmic search
complexity.

As a variant of Approximate Nearest Neighbors (ANN) algorithms, the Hierarchical Navi-
gable Small World (HNSW) belongs to the "graphs" category, which together with "trees"
and "hashes" constitutes the tripartite categorization of ANN techniques. The layered
structure of skip lists serves as inspiration for the HNSW design, which combines shorter
edges in lower levels to improve search precision and longer edges in upper layers to enable
rapid search traversal. This dual-edged approach optimizes the search process, enabling
efficient navigation through the data space. A visual illustration of the HNSW structure
can be found below in Figure 5.3:
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Figure 5.3: Hierarchical Navigable Small World (HNSW) structure

HNSW builds upon the idea of Navigable Small World (NSW) graphs, which rely on
the construction of a proximity graph that incorporates both long-range and short-range
connections. Compared to more conventional search algorithms, such a design significantly
improves search speeds, reducing them to logarithmic complexity. In an NSW graph, each
vertex is linked to multiple other vertices, creating a dense network of connections. The
search process starts from a predefined entry point. The search progresses towards the
closest vertices, with the algorithm terminating when no closer vertices can be found,
potentially culminating in a local minimum. This mechanism reflects a sophisticated
approach to navigating the graph, ensuring efficient retrieval of nearest neighbors.

HNSW improves the NSW model by incorporating a hierarchical structure, where links are
distributed across different layers. This hierarchical arrangement allows for longer links
at the top layer, facilitating rapid initial search steps, and shorter links at the bottom
layer allow for more precise search results. Even when a local minimum is reached, unlike
in the NSW model, the search in HNSW shifts to a lower level, continuing until the local
minimum on the lowest layer is identified. The design of HNSW involves storing every
node at the bottom layer, with its presence in higher layers determined by a probabilistic
distribution similar to that used in skip lists. Reducing the overlap of common neighbors
between layers improves HNSW performance and increases search accuracy and efficiency.
However, there are trade-offs associated with this complex structure, including a notice-
able increase in memory consumption and the possibility of longer search times in some
situations. This compromise between resource efficiency and performance improvement
highlights the intricacy and inventiveness of the HNSW method in the context of vector
similarity searches.

In the subsequent phase of schema definition within Weaviate, the articulation of the ob-
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ject data structure is defined. This structure is delineated through a set of "properties",
each specifying attributes of the elements within a collection. These properties are de-
fined by a name and a corresponding data type. The schema includes vectorizer settings
in the "moduleConfig" to customize the vectorization procedure to certain attributes. It
includes the parameter "skip", a boolean setting that, when enabled (set to True), ex-
cludes property from vectorization during the indexing phase. This selective vectorization
approach allows for control over which attributes contribute to the semantic representa-
tion of the data. To further improve the data representation, the design also provides the
option to incorporate certain property names throughout the vectorization process.

The "indexFilterable" and "indexSearchable" parameters are optional and by default
set to True. They indicate whether a property is indexed for filtering and if it is indexed
for access through keyword or hybrid search methods. With the help of these parameters,
the search capability may be optimized, allowing for accurate and effective data retrieval
based on predetermined criteria.

Another decision in schema configuration involves determining which properties to embed
with the vectorizer, which to reserve for keyword search, and which are designated for
both functions. Because of the constraints set by the embedding model - the maximum
token input limit - this decision is particularly important. Thus, the strategic selection and
ordering of metadata for input into the embedding model can maximize semantic relevance
and model efficiency. The Table 5.1 provided illustrates this schema configuration strategy,
focusing on the catalog from industrial dataset1 (Section 3.1.1) due to its extensive size,
a similar strategy is applied to the other catalogs.
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Prefix Properties Semantic

aa_ TITLEFULL True
ab_ EPISODENAME True
b_ SUMMARYLONG True
c_ COUNTRYOFORIGIN True
d_ GENRESCRXARRAY True
e_ SCENARIOARRAY True
f_ SETTINGSARRAY True
g_ MOODSARRAY True
h_ THEMEARRAY True
i_ CHARACTERARRAY True
l_ SUBJECTARRAY True

ma_ YEAR True
mb_ TIMEPERIODARRAY True
n_ ACTORSLASTNAMEFIRSTARRAY True
o_ DIRECTORSLASTNAMEFIRSTARRAY True
p_ SEMANTICCATEGORIESARRAY True
q_ SUBGENRESARRAY True
r_ KEYWORDSARRAY True
s_ LEADACTOR True

AWARDSARRAY False
CONCEPTSOURCEARRAY False

SHOWTYPE False
RUNTIME False

SEASONNAME False

Table 5.1: Division of attributes for industrial dataset 1

Because of the alphabetic storage convention of Weaviate, a ’Prefix’ is added atop the
name of the attributes to ensure the inclusion of semantically significant properties in
the embedding process. This priority is particularly important for datasets with a large
number of tokens since the model’s performance and the precision of semantic searches can
be greatly affected by the features chosen for embedding. It is noteworthy to note that
all properties are considered in the BM25 because this does not produce performance
degradation or increased latency. This approach mitigates the risk of missing relevant
terms that fall outside the embedding model’s input token window, thereby enhancing
the robustness of the search functionality.
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5.3. Search configurations

Once the schema is settled, it is possible to index the whole catalog and populate the
collection inside the Weaviate vector database. Subsequently the indexing phase, Weavi-
ate allows for search queries through API calls. It is possible because Weaviate operates
as a service encapsulated within a Docker container, featuring a built-in functionality for
hybrid search. The evaluation of the system performance is made through a series of
experiments employing diverse configurations.

These configurations include the use of best-performing models fine-tuned with LoRA
or entirely. The objective is to determine which of these two models has the final best
performance in hybrid search tasks for video streaming platforms. Furthermore, the
experiments comprehend analysis of different values of the parameter alpha set to 1, 0.7,
and 0.5. Alongside tests are made with the encapsulation of metadata from the different
datasets available, to test our service on catalogs in various languages. The evaluation
methodology comprised two distinct approaches: an automated retrieval of the top twenty
items using a hybrid search for a set of test queries from the QA synthetic test set (Section
3.2), and a manual investigation of queries sourced directly from a form (Section 3.3). The
latter approach allows for direct observation of how the system’s results can vary based
on different configurations available in Weaviate. This includes the ability to apply filters
within a query, allowing for a more refined search process. Additionally, Weaviate enables
the weighting of specific attributes, thereby granting the flexibility to emphasize or de-
emphasize particular aspects as more relevant in the keyword search. Through this dual
approach, we aimed to capture a comprehensive view of the system’s efficacy across a
spectrum of search scenarios. The results are reported in detail in the Chapter 6.

It is crucial to underscore that the selection of query configurations does not stick to a
binary paradigm of ’right’ or ’wrong’. Instead, the best setup depends on the desired
outcomes and the specific requirements of the end-users. By experimenting with vari-
ous settings and scenarios, we demonstrate the system’s versatility and capacity to be
customized in alignment with the unique preferences and expectations of the final clients.
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In this section, we present an exploration of the results obtained from our work. First,
we present our findings, highlighting the achievements of our final solution through visual
demonstrations from a demo environment and specific examples. Following, we delve
into a comprehensive evaluation, beginning with practical applications within the Weav-
iate system and extending to theoretical metrics assessment. Our investigation covers a
broad spectrum, from the performances of different embedding models and fine-tuning
techniques to configurations of hybrid search. Through iterative testing and refinement,
we investigate these models’ efficacy across various linguistic contexts and query types.
This approach allows us to initially mark the advancements our solution brings to the
field, inviting readers to subsequently explore the depth of our research and the rationale
behind our decisions. This exploration aimed to contribute to the ongoing development
of sophisticated, efficient Information Retrieval (IR) technologies.

6.1. Metrics

Evaluation metrics for information retrieval (IR) systems define how effectively an index,
search engine, or database retrieves results from a resource collection in response to a
user’s query. Numerous factors are useful to evaluate an IR system’s performance, such
as relevance, speed, user satisfaction, usability, efficiency, and reliability [30].

Evaluation metrics can be categorized along multiple dimensions: offline versus online,
order-aware versus order-unaware, and user-based versus system-based. Online experi-
mentation evaluates user interactions with the search system in a live environment, and
offline evaluation measures how well an IR system performs in a controlled setting against
a static collection.

Offline metrics are divided into order-aware and order-unaware categories, based on
whether the ranking of results influences the metric’s score. Order-aware metrics con-
sider the position of relevant results in the list, highlighting the importance of retrieving
relevant information and presenting it in an order that reflects its relevance to the user’s
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query. Otherwise, are order-unaware metrics.

Due to the unavailability of a live demonstration of our system and subsequent online
metric collection, we primarily leverage offline metrics for performance evaluation. To
simulate user interactions and their search queries within our system, we utilize queries
collected through a form (Section 3.3). This approach, while innovative, inherently lacks
the direct measurement of user satisfaction and appreciation levels that online metrics
can provide.

6.1.1. Offline metrics

First, it is crucial to categorize the retrieval outcomes of our models in comparison to
a predefined test set. A ranked list of movies and series generated by a GPT model in
response to specific queries serves as a benchmark and constitutes the test set to evaluate
the effectiveness of our system (Section 3.2). The concepts worth explaining are:

• True Positive (TP): An item is considered a True Positive if it is retrieved by our
IR system and is also present in the GPT-generated test set.

• False Positive (FP): An item is classified as a False Positive if it is retrieved by our
system but does not appear in the test set.

• False Negative (FN): A False Negative occurs when an item, despite being included
in the test set, is not retrieved by our system.

• True Negative (TN): True Negatives are items not retrieved by our system and
absent from the test set. However, in the context of information retrieval, TNs are
less relevant since their absence in both system results and the test set does not
definitively indicate irrelevance. Thus, TNs are not utilized as an evaluation metric
in this study.

Order-unaware metrics

Recall, also known as sensitivity, quantifies the proportion of accurately identified relevant
items out of all relevant items in the test set. It is mathematically expressed as:

Recall =
TP

TP + FN
=

|relevantitems ∩ retrieveditems|
|relevantitems|

(6.1)

An extension of this concept, Recall@K focuses on the retrieval efficiency within the top
K outcomes of an information retrieval system. A perfect Recall@K score means a system
that retrieved all pertinent items within the top K results, in our case the same outcome
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returned by GPT.

However, Recall@K is not without limitations. One significant drawback is its potential
for manipulation; by adjusting K to cover the entire dataset (or close to it), an artificially
perfect score can be achieved. Furthermore, Recall@K does not account for the order in
which the relevant items are presented, it is order-unaware metrics.

Precision is a metric that measures the accuracy of the retrieval process by estimating the
proportion of retrieved instances that are relevant to the user’s query. It is also referred
to as the positive predictive value in some contexts. It is mathematically represented as:

Precision =
TP

TP + FP
=

|relevantitems ∩ retrieveditems|
|retrieveditems|

(6.2)

Recall becomes less useful in modern information retrieval systems, when a single query
may return thousands of potentially relevant items. In contrast, Precision at K (Preci-
sion@K) remains a useful metric.

Average Precision at K (AP@K) is a metric that averages the precision scores obtained
for each of the top K positions, weighted by the relevance of the items at each position.
The formula for AP@K is:

AP@K =

∑K
k=1 precision@k ∗ relk

numberofrelevantresults
(6.3)

relk is a binary relevance indicator, which equals 1 if the item at position k is relevant, and
0 otherwise. AP@K offers a single-query evaluation metric, denoted as AP@Kq, which
represents the average precision calculated for a specific query q at the cut-off K.

The F1-score is a comprehensive metric that synergizes precision and recall into a single
measure, employing the harmonic mean to balance the two. This metric, also known as
the balanced F-score or traditional F-measure, is calculated as:

F1− score = 2 · precision · recall
precision+ recall

(6.4)

Order-aware metric

Mean Average Precision at K (MAP@K) is a metric sensitive to the order in which items
are presented, focusing on the aggregated performance across multiple queries. It in-
tegrates the precision of retrieved items at every point up to K and their relevance by
quantifying the mean of the Average Precision at K (AP@K) scores for each query. For-
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mally, MAP@K is defined as:

MAP@K =
1

Q

Q∑
q=1

AP@Kq (6.5)

Q represents the total number of queries evaluated, and AP@Kq denotes the Average
Precision at K for a single query q. The binary relevance parameter relK represents its
limitation, precluding the possibility of gradational relevance of the items.

Moving forward to order-aware metrics within the realm of information retrieval evalua-
tion, we introduce Mean Reciprocal Rank (MRR), a metric specifically designed to assess
the position of the first relevant result returned by a search system in response to a query.
MRR is formulated as:

MRR =
1

Q

Q∑
q=1

1

rankq
(6.6)

Q is the total number of queries evaluated, and rankq indicates the rank position of the
first relevant item identified for query q.

However, MRR has its limitations. Primarily, it focuses solely on the rank of the first
relevant item, ignoring the overall distribution of relevant items within the retrieved set.
Furthermore, because MRR places more emphasis on ranking than on the presence of
relevant items, it might still be difficult to fully understand when compared to more
intuitive metrics like Recall@K, even though it has a simpler interpretation than some
assessment metrics.

To evaluate information retrieval systems with an emphasis on the relevance and ordering
of results, we introduce a series of metrics culminating in the Normalized Discounted
Cumulative Gain (NDCG). Beginning with Cumulative Gain at position K (CG@K),
which aggregates the relevance scores of items up to the Kth position:

CG@K =
K∑
k=1

relevancek (6.7)

It’s essential to note that CG@K does not account for the order in which items appear,
treating all positions equally. To address this and introduce a penalty for items appear-
ing later in the list, the concept of Discounted Cumulative Gain (DCG) incorporates a
logarithmic discounting factor:

DCG@K =
K∑
k=1

relevancek
log2(k + 1)

(6.8)
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where k is the position of the item in the ranked list, and the relevance score of the item
at position k is denoted by relevancek. Here, relevancek is a grading scale from k (first,
most relevant) to 0, rather than just a binary value indicating relevant or non-relevant.

The Ideal DCG (IDCG) is then introduced as the optimal DCG value that could be
achieved with a perfect ranking of items according to their relevance. The Normalized
DCG (NDCG) emerges as a solution to DCG’s interpretability challenge. For a specific
cut-off at K, the formula is:

NDCG@k =
DCG@k

IDCG@k
(6.9)

Because it is optimized for high relevance and sensitivity to result ordering, NDCG@K is
popular in offline evaluations, especially for web search engines, making it powerful and
easily interpretable. Nevertheless, it requires a comprehensive understanding of item rele-
vances within a query set, demanding more complex data preparation to discern different
levels of relevance across items.

6.2. Visual results

In this section, we first highlight outcomes from our final solution, integrated within a spe-
cially configured virtual environment designed to simulate the actual demo environment
of Contentwise. This demonstration is designed to offer customers a tangible experience
of the service, enabling them to visualize its functionality and directly interact with it.
Presented below are three queries (Figure 6.1, Figure 6.2, and Figure 6.3) with their first
9 items retrieved from our system in various languages. It’s important to note that the
demo environment contains metadata from industrial dataset 1, all in English. This choice
of test queries in languages other than English is driven by our intention to highlight the
model’s proficiency in interpreting queries across different languages, showcasing its ver-
satile linguistic capabilities. Consequently, the multilingual-e5-base model, fine-tuned
using the traditional technique, has been selected and integrated as the final solution for
deployment in production within the system. This decision is rooted in its demonstrated
ability to effectively understand, generalize, and process multilingual queries, aligning
with our objective of offering a universally accessible service.
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Figure 6.1: query: ’montre-moi des films avec des êtres d’autres planètes’ (translation:
show me movies with beings from other planets)

Figure 6.2: query: ’film con una donna forte come protagonista’ (translation: Movies with
a strong female as main character)
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Figure 6.3: query: ’Zeigen Sie mir Filme über Eltern-Kind-Beziehungen’ (transla-
tion:Show me movies about parent-child relationships)

The decision to opt for the multilingual-e5-base model over the bge-base-en-v1.5

model is driven by several considerations. The selection process focused on these two
models due to their respective performances and capabilities. A significant limitation
of the bge-base-en-v1.5 model is its pre-training focused exclusively on English text.
Consequently, despite fine-tuning with queries in various languages, it exhibits a notable
deficiency in comprehending queries formulated in languages other than English. Instead
of generating results pertinent to the query’s actual intent, it tends to associate the query
with elements related to the language itself. For instance, an Italian query might yield a
list of movies set in Italy, have Italian titles, or are otherwise connected to Italy, rather
than addressing the query’s substantive content.

In contrast, the multilingual-e5-base model demonstrates a superior ability to accu-
rately grasp and respond to the intended request in the query, regardless of the language.
Because of its built-in multilingualism, this model can interpret and process queries across
a diverse linguistic spectrum effectively. Therefore, the multilingual-e5-base model
with traditional fine-tuning, is our final choice. This decision demonstrates our commit-
ment to providing a solution that is not only versatile across different languages but also
accurately responsive to the users’ needs, making it the ideal candidate for integration
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into the production environment.

multilingual-e5-base multilingual-e5-b (MNRL) multilingual-e5-b (LoRA)

1 ’ISRA 88’ ’ISRA 88’ ’Aliens’
2 ’400 Days’ ’Star Trek Into Darkness’ ’2010’
3 ’Battlestar Galactica’ ’2010’ ’ISRA 88’
4 ’Battlestar Galactica’ ’Gravity’ ’Mars Attacks!’
5 ’Battlestar Galactica’ ’Passengers’ ’Starman’
6 ’Blush’ ’2001: A Space Odyssey’ ’Passengers’
7 ’Lost in Space’ ’The Space Between Us’ ’Dark Matter’
8 ’Above and Be-

yond:NASA’s Journey
to Tomorrow’

’Above and Be-
yond:NASA’s Journey
to Tomorrow’

’Alien’

9 ’Battlestar Galactica’ ’Lost in Space’ ’Arrival’
10 ’Battlestar Galactica’ ’Arrival’ ’Blush’

Table 6.1: Retreival results of multilingual-e5-base and its versions fine-tuned for the
query ’viaggi nello spazio’ (Space travel)

bge-base bge-base (MNRL) bge-base (LoRA)

1 ’Pompeii’ ’Under the Tuscan Sun’ ’Malena’
2 ’Bicycle Thieves’ ’Eat Pray Love’ ’Bicycle Thieves’
3 ’Under the Tuscan Sun’ ’Midnight in Paris’ ’The Getaway’
4 ’Suburra’ ’The Hundred-Foot Journey’ ’Under the Tuscan Sun’
5 ’Mean Streets’ ’La Strada’ ’Something in the Air’
6 ’Diners,Drive-Ins and

Dives’
’Malena’ ’Mean Streets’

7 ’Night on Earth’ ’Bicycle Thieves’ ’Le Violon Rouge’
8 ’Tini:The New Life of Vio-

letta’
’Suburra’ ’The Italian Job’

9 ’Eat Pray Love’ ’The Italian Job’ ’Cannibal Holocaust’
10 ’Turistas’ ’Lost in Translation’ ’The Italian Job’

Table 6.2: Retreival results of bge-base-en-v1.5 and its versions fine-tuned for the query
’viaggi nello spazio’ (Space travel)

An illustration of the disparities between the two models discussed is detailed in Table
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6.1 and Table 6.2 above, showcasing the results for the query "viaggi nello spazio" which
translates to "space travel."

Furthermore, we present an example to illustrate the performance of the multilingual-e5
-base model fully fine-tuned (denoted with ’MNRL’) and its version fine-tuned with the
LoRA technique. Additionally, we examine the outcomes of these two models when inte-
grated within the Weavite platform, executing hybrid searches with an alpha parameter
set at 0.7 (denoted with ’Hybrid’). This comparison aims to showcase the nuanced differ-
ences in model effectiveness in a hybrid search environment.

In Table 6.3, the results are displayed for the two fine-tuned versions of the model and
their corresponding outcomes when employed in a hybrid search context. The query
formulated is "mostre-me documentários sobre a sustentabilidade do alimento" (show me
documentaries about food sustainability).

MNRL MNRL Hybrid LoRA (LoRA Hybrid

1 Before the Flood Parched Hover Hover
2 The Founder Parched Shark Tank Shark Tank
3 Parched Last Call at the

Oasis
Diners, Drive-Ins
and Dives

Chopped

4 Parched Parched Guy’s Grocery
Games

Before the Flood

5 Pandora’s
Promise

Hover Guy’s Grocery
Games

Guy’s Grocery
Games

6 Chef Call the Council Bob’s Burgers Ice on Fire
7 Last Call at the

Oasis
Man v. Food Na-
tion

Guy’s Grocery
Games

Parched

8 Where to Invade
Next

Ice on Fire Guy’s Grocery
Games

Guy’s Grocery
Games

9 Parched Shark Tank Chopped Shark Tank
10 The Hundred-

Foot Journey
Diners, Drive-Ins
and Dives

Guy’s Grocery
Games

Parched

Table 6.3: Retreival results of multilingual-e5-base and its versions fine-tuned inside
weaviate, performing an hybrid search with alpha = 0.7, for the query "mostre-me doc-
umentários sobre a sustentabilidade do alimento" (show me documentaries about food
sustainability)

These results provide insight into the different capacities of each model in understanding
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and addressing the specificity of the query. The variety of suggestions, involving broader
environmental documentaries alongside those with a culinary focus, highlights a funda-
mental challenge in semantic search: the capability of models to accurately interpret and
reflect the core intent of queries that traverse overlapping thematic domains.

The ’MNRL’ model, along with its hybrid version, demonstrates its ability to combine
themes of environmental sustainability with culinary content. This synergy reflects the
model’s capacity to grasp and integrate the multifaceted nature of the query. In contrast,
the LoRA model, despite its strengths, shows a predisposition towards emphasizing culi-
nary themes, somewhat at the expense of the sustainability aspect, suggesting a possible
overgeneralization.

This performance distinction underscores the ’MNRL’ model’s ability to interpret complex
and theme-interconnected queries, highlighting its suitability for applications that demand
nuanced understanding, thereby ensuring search results closely align with the user’s intent.

Below, Table 6.4 is presented to illustrate how variations in the alpha parameter influence
the outcomes. The query submitted is: ’I would like to watch a sci-fi movie with time
travels, possibly with paradoxes, it must include a love story.’

alpha=0 alpha=0.5 alpha = 0.7 alpha = 1

1 Galaxy Quest The Map of Tiny
Perfect Things

The Map of Tiny
Perfect Things

The Map of Tiny
Perfect Things

2 The Map of Tiny
Perfect Things

I Origins MyFutureBoyfriend Predestination

3 The 100 Galaxy Quest Moonshot The Time Ma-
chine

4 The 100 MyFutureBoyfriend Time Lapse 12 Monkeys
5 Outlander Moonshot 12 Monkeys Time Lapse
6 Before I Fall The 100 12 Monkeys MyFutureBoyfriend
7 Before I Fall The 100 The Time Ma-

chine
Blush

8 Power Time Lapse 12 Monkeys Passengers
9 Power Outlander 11.22.63 Age of Tomorrow
10 Black Sails 12 Monkeys 12 Monkeys Titan A.E.

Table 6.4: Retreival results of multilingual-e5-base fine-tuned with LoRA technique
on dataset 1, with the query I would like to watch a sci-fi movie with time travels, possibly
with paradoxes, it must include a love story.
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The hybrid search mechanism, designed to blend keyword and semantic search capabil-
ities, introduces a strategic approach to query interpretation. By setting the alpha pa-
rameter to 0.7, the aim was to enhance the relevance of search results through a nuanced
understanding of content.

The results from our evaluations show good performance; however, depending on the
query, there may be instances of a scarce or limited selection of items matching the
query’s intent precisely. To address this variability and mitigate the risk of overfitting
to the metadata of dataset 1, on which the model is trained, our approach includes
conducting identical tests across different datasets. Specifically, we applied the same
queries but sourced the retrieval elements from datasets 2 and 3. This methodology not
only aims to assess the impact of having items more closely aligned with the queries in
these additional datasets on the model’s overall effectiveness and applicability but also
verifies its robustness and adaptability to data it has never seen before, ensuring it can
cater to a broader range of informational needs.

The query previously mentioned in Table 6.3 is also evaluated using dataset 3. The
outcomes derived from employing the multilingual-e5-base model, fine-tuned with the
traditional approach in a hybrid search context, are documented in Table 6.5 provided
below.

Industrial Dataset 1 Industrial Dataset 3

1 Parched Fernando Gabeira
2 Parched Diário de uma Vegana T01 Ep06
3 Last Call at the Oasis Eating Our Way To Extinction
4 Parched Eating Our Way To Extinction
5 Hover Diário de uma Vegana T01 Ep09
6 Call the Council Diário de uma Vegana T01 Ep10
7 Man v. Food Nation Rotten
8 Ice on Fire 10 Bilhões - O que tem para comer?
9 Shark Tank 10 Bilhões - O que tem para comer?
10 Diners, Drive-Ins and Dives Hambúrguer de Feijão com Cheddar Vegano

Table 6.5: Retreival results of multilingual-e5-base fine-tuned, on dataset 1 and
dataset 2, with the query "mostre-me documentários sobre a sustentabilidade do alimento"
(show me documentaries about food sustainability) and alpha = 0.7

However, due to the extensive time and resources required to upload entire datasets
into Weaviate and to configure the schemas, a comprehensive exploration of all possible
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combinations and queries was beyond our scope. Nonetheless, the variety of compar-
isons conducted has given us a general idea of the interplay between customer demands,
Weaviate configuration, and model selection. This knowledge serves as a crucial guide in
customizing the environment to best meet the specific needs of clients, ensuring that the
selected model and configuration of Weaviate optimally support their objectives.

6.3. Weaviate hybris search results

This section aims to evaluate also in an automatic way our models integrated into Weav-
iate, a system where it is possible to perform hybrid search mechanisms, with many
possible search customizations.

We conduct evaluation with standard tests, under three distinct settings of Weaviate
hybrid search: alpha = 1 (exclusively semantic search), 0.7, and 0.5 (where semantic and
keyword searches are weighted equally). These tests were performed on the second version
of the synthetic QA test set 1 (with additional queries translated into other languages
different from English), embedding the metadata from industrial dataset 1 and a Top K
setting of 20.

Figure 6.4: Metrics evaluation on test set v2 with catalog 1 of fine-tuned model
’multilingual-e5-base’ integrated in Weaviate tested with three alpha configurations (1,
0.7 and 0.5)

Figure 6.4 illustrates the following results: LoRA (8-8) shows slight performance variabil-
ity with changes in the alpha parameter, lacking a consistent trend tied to any specific
alpha value. Traditional fine-tuning (denoted with MNRL) demonstrates a positive corre-
lation with increasing alpha values, indicating a benefit from relying on a higher emphasis
on semantic search.
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These results serve as a valuable indicator of performance across different hybrid search
configurations; however, they do not provide a comprehensive evaluation of how outcomes
vary under diverse hybrid search settings. Consequently, the inspections in the previous
Section 6.2 conducted manually with several human queries retrieved from the form, as
detailed in Section 3.3, hold greater significance. The applicability in real-world scenarios
is one of the main factors guiding our selection of the final model for our system.

6.4. Fine tuned model results

This section delves into the examination of the efficacy of advanced fine-tuning techniques
adopted, providing deeper insights that further demonstrate the rationale behind our final
choice. Specifically, we explore three distinct strategies: the utilization of Adapters, the
comprehensive model updating employing two divergent loss functions—Modified Nor-
malized Rank Loss (MNRL) and Contrastive Semantic Loss (CSL), and the application
of Low-Rank Adaptation (LoRA)as delineated in Section 4.3. Here, we evaluate their
impact on model performance, aiming to reveal the most effective strategy for refining
semantic search outcomes within the constraints of computational efficiency and model
scalability, which as previously anticipated are LoRA(8-8) and traditional fine-tuning with
MNRL.

For the fine-tuning process, various tests are conducted. The bge-base-en-v1.5 is the
one on which more configurations of this training process are made, not because it stands
as the absolute best in terms of performance, nor because it is the smallest in terms of
model size and embedding dimensions but for its optimal trade-off. Given that fine-tuning
is a resource-intensive process, demanding significant time, memory, and computational
power, the bge-base-en-v1.5 emerged as the preferred choice. For these same consid-
erations, we later opted to fine-tune the multilingual-e5-base model rather than its
larger counterpart, with only the most effective strategy.

The tests reported below, in Figure 6.5, evaluate the fine-tuning approaches, performed
on data of the industrial dataset 1 and the corresponding QA test set. It is important to
note that the metrics reported in the table correspond to evaluations where the Top K
value is set to 20, even though tests were also carried out with K set to 10 (reported in
Appendix A).
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(a) Precision, Recall and F1-score on different fine-tuning techniques on
bge-base-en-v1.5 model, dataset 1 and K = 20

(b) MRR, MAP@10, NDCG and NDCG@10 on different fine-tuning tech-
niques on bge-base-en-v1.5 model, dataset 1 and K = 20

Figure 6.5: Comparison of order-aware and order-unaware metrics on bge-base-en-v1.5

model fine-tuned with different techniques, performing query on QA datset 1 and meta-
data from industrial dataset 1, retreiving the Top K = 20 items per query

In Figure 6.5 the label ’No Fine-tuning’ represents the performance of bge-base-en-v1.5
without fine-tuning. The term ’Adapter(default)’ refers to the default configuration of the
llama-index library, incorporating a single additional layer, whereas ’Adapter(2Layer)’
denotes two supplementary layers atop the model. The acronym MNRL signifies the fine-
tuning of the entire model using Multiple Negative Ranking Loss, while CSL indicates
a similar full-model update using Cosine Similarity Loss. The graphs also detail three
distinct configurations of LoRA (Low-Rank Adaptation), differentiated by the parameters
r and alpha. Specifically, ’LoRA(4-8)’ corresponds to a configuration with r=4 and
alpha=8, and similarly, ’LoRA(8-8)’ and ’LoRA(8-16)’.

From Figure 6.5a and Figure 6.5b several considerations can be made: Adapter (default)
exhibits a modest rise across all metrics, with improvements ranging approximately from
11.5% to 17.2%. This indicates a uniform enhancement across all evaluated metrics.
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Adapter (2 Layer) is similar to the default adapter setup, with a slightly more limited
range of increase, about 9.1% to 12.0%. MNRL marks the most pronounced performance
elevation, with increases spanning from 176% to 257.5% across all metrics. CSL also
achieves notable enhancements in model performance, with increases observed between
22.2% and 42.0% across all metrics. LoRA demonstrates a significant uplift in perfor-
mance, with improvements ranging from 60% to 80% across all metrics.

The MNRL fine-tuning method distinctly stands out for its surprising improvements
across all metrics, further validated by the manual tests illustrated in the previous Section.
While the Adapter-based approaches and CSL yield positive results, LoRA configurations
offer more significant and balanced improvements.

In the subsequent Figure 6.6, various graphs are presented to illustrate the performance
of the multilingual-e5-base model in three distinct conditions: without fine-tuning,
fine-tuned entirely (labeled with MNRL), and fine-tuned using LoRA. These results are
compared across the three available datasets, offering insights into the impact of different
fine-tuning approaches in diverse data environments.

Figure 6.6: Performance comparison of the multilingual-e5-base model across different
Fine-Tuning approaches and datasets
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The comprehensive evaluation of the multilingual-e5-base model, when subjected to
various fine-tuning approaches across three distinct datasets, highlights the potential of
fine-tuning on model performance. The traditional fine-tuning method (updating the
whole model), in particular, demonstrates a significant improvement in performance met-
rics. Across datasets 1 and 2, this method produced enormous performance enhancements,
with increases exceeding 300% in several metrics such as MRR, MAP@10, NDCG, and
NDCG@10. Importantly, this trend persisted in tests across all three datasets, reinforc-
ing the method’s efficacy and its superiority over the LoRA fine-tuning approach, which
showed moderate improvements. The consistent results across datasets 1, 2, and 3 — the
latter containing data never seen by the model during training — help exclude the possi-
bility of overfitting or misjudged evaluation, affirming the robustness and generalizability
of the traditional fine-tuning method.

The decision to conduct further evaluations exclusively on LoRA (8-8) and traditional fine-
tuning is driven by these findings. On the other hand, we opt not to further examine the
adapter technique, as it demonstrated no significant improvements. Regarding traditional
fine-tuning with CSL loss, while initially promising (yet still less performant than LoRA),
a manual evaluation of the actual results revealed that this approach is not adequate. We
hypothesize that assigning high labels to the true positives in the training set results in
an excessive closeness of the embeddings within the vector space, leading to a tendency
to return often similar results and a reduced exploration of the space.

6.5. Model selection results

In this section, we present our evaluations on the model selected, as listed in Section 4.1,
without any modifications. These results explain the initial evaluation process applied to
the entire list of models, which leads to a smaller subset. This process reduced the number
of models to the last two subjected to final evaluations, guiding our decision for the final
model selection. Our analysis starts with the industrial dataset 1 and an evaluation based
on the respective QA synthetic test set. We examine the model’s performance in scenarios
where the retrieved list encloses the first 20 or 10 elements. Subsequently, we delve into
an additional evaluation that considers only the availability of the title and overview
from industrial dataset 1, aiming to understand the implications of information reduction
on model efficacy. We subsequently apply the model to additional QA test sets and
metadata from industrial datasets 2 and 3. This step is crucial for assessing the model’s
robustness across different languages, thereby providing a comprehensive understanding
of its versatility and effectiveness in multilingual contexts.
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6.5.1. Tests on dataset 1

After retrieving the number of TP, FP, and FN we can calculate Precision, Recall, and
F1-score, treating each query as an individual classification problem. It is important to
remember that these metrics might not fully capture the nuances of ranking tasks. These
results are calculated on the first version of QA test set 1 (with fewer queries translated)
and the industrial dataset 1, as a catalog of the item to retrieve, with top K as 20.

Figure 6.7: Precision Recall and F1-score with industrial dataset 1 and K= 20

The bar graph (Figure 6.7) presents a comparative analysis of various embedding models,
elucidating their performance across precision, recall, and F1-score metrics. By estab-
lishing Titan as our benchmark for comparison, we observe that bge-large-en-v1.5

closely aligns with the benchmark’s performance. The distinction in performance be-
tween bge-large-en-v1.5 and bge-base-en-v1.5 is marginal. Conversely, a substantial
performance gap is observed with bge-small-en-v1.5.

A further observation from the analysis reveals that models generating smaller embed-
dings (384 dimensions), namely multi-qa-MiniLM-L6-cos-v1, all-MiniLM-L6-v2, and
bge-small-en-v1.5, belong in the lower performance category. This correlation between
embedding size and model performance suggests that reduced dimensionality may com-
promise the model’s ability to capture and utilize semantic relationships effectively.

Interestingly, despite having a larger embedding size (768 dimensions),
msmarco-roberta-base-ance-firstp performs comparably to the models with smaller
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embeddings mentioned above. This similarity in performance may indicate that it can
not be adequate for our final purpose.

The graph also features the performance of a random algorithm as a baseline to emphasize
the effectiveness of the models. Notably, all models outperform this random baseline, with
an approximate increase of F1-score of 4000%.

After the initial evaluation, the analysis considers a scenario wherein the evaluation metric
considers the top 10 retrieved items (k=10). This additional test is based on the realistic
application scenario where the retrieval of a smaller set of items is preferred, assuming
that users are most interested in the first results returned by a query. The results are
illustrated in the bar plot Figure 6.8:

Figure 6.8: Precision Recall and F1-score with industrial dataset 1 and K= 10

In contrast to the previous results, this evaluation reveals a more uniform distribution
across the precision, recall, and F1-score metrics among the models tested. Despite this
overall homogeneity, a distinct subset of models still manages to outperform the others,
although the dissimilarities in their performance metrics are less pronounced than in the
initial evaluation. This observation suggests a leveling effect of the Top k=10 criteria on
model performance distinctions.

Within this context, the performance of bge-large-en-v1.5 beats that of the benchmark
model Titan. The margin of this outperformance is not substantial, from a recall metric
of 0.052335, slightly higher than the one of Titan, which is 0.051278. It is nevertheless sig-
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nificant, underscoring bge-large-en-v1.5’s superior efficacy in retrieving relevant items
within the top 10 results, further affirming its utility in scenarios where precision in early
retrieval ranks is essential.

The next phase of our analysis evaluates the performance of the embedding models using
Recall@K for K values ranging from 1 to 10. This test aims to demonstrate two key points:
first, as previously anticipated, recall increases as the value of K increases, reflecting a
model’s improved capability to retrieve a larger set of relevant items. Secondly, it looks
for differences in how increasing K affects the performance of the models. This systematic
methodology clarifies how scalable the model performance is concerning retrieval depth,
providing information on how well each model performs in expanding search fields.

Figure 6.9: Recall@K with K from 1 to 10 in the QA test set 1

In Figure 6.9 we demonstrate the trend across the models where recall increases as K
increases. It is immediately clear that bge-large-en-v1.5 stands out for its superior
performance across the entire range of K, starting from Recall@1 through Recall@10.
This model not only starts from a higher baseline but also maintains a steeper increase
in recall as K grows, highlighting its effectiveness in capturing relevant information even
in the top ranks.

In contrast, models like multi-qa-MiniLM-L6-cos-v1 and msmarco-roberta-base-ance-

firstp show lower recall values overall, suggesting these models might have difficulties
with precision in the early retrieval stages or possibly lack the same degree of semantic
understanding and retrieval effectiveness as their counterparts.
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Continuing with our comprehensive evaluation of embedding models, we extend our anal-
ysis to incorporate order-aware metrics, specifically Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP), and Normalized Discounted Cumulative Gain (NDCG). These
metrics provide deeper insights into the models’ ability to retrieve relevant items while
ranking them in an order that reflects their relevance more accurately. The following
results reflect the scenario with 20 as Top K retrieval.

Figure 6.10: Comparative analysis of embedding size impact on model performance with
order-aware metrics

The scatter plots for each performance metric (MRR, MAP@10, NDCG, NDCG@10)
against embedding size in Figure 6.10 illustrate the relationship between the embedding
size of the models and their respective performance metrics. The correlation coefficients
between embedding size and each metric are as follows:

• MRR: 0.629

• MAP@10: 0.624

• NDCG: 0.583

• NDCG@10: 0.567
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A correlation coefficient can range from -1 to 1, where 1 indicates a perfect positive
correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation.
These positive correlation coefficients indicate a moderately strong positive relationship
between embedding size and model performance across the metrics evaluated. As the
embedding size increases, the performance metrics tend to improve as well, suggesting
that models with larger embedding sizes might perform better on the tasks measured by
these metrics. However, it’s also important to note that while there is a positive trend,
the correlation is not perfect, indicating that other factors beyond embedding size also
impact these metrics.

Figure 6.11 Figure 6.12 and Figure 6.13 illustrates a bar plot to a more intuitive com-
parison of the performance of the different embeddings models, displaying their scores in
MRR, MAP@10, NDCG, and NDCG@10. The results are again compared with those
obtained from a random algorithm for comparative analysis.

Figure 6.11: Bar plots of MRR on dataset 1 with all embeddings models and K=20

Figure 6.12: Bar plots of MAP@10 on dataset 1 with all embeddings models and K=20
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Figure 6.13: Bar plots of NDCG and NDCG@10 on dataset 1 with all embeddings models
and K=20

The model that performs best in this scenario is bge-large-en-v1.5. This is because
it is not only the most effective at placing the first relevant document in a higher posi-
tion within the ranked list (higher MRR) but also maintaining consistent performance in
ensuring the top 10 ranked documents are relevant (MAP@10 and NDCG@10), even out-
performing Titan. It is noteworthy that bge-base-en-v1.5 also demonstrates good per-
formances, making it a strong contender for applications requiring precision and depth in
search results. multi-qa-mpnet-base-dot-v1 stands out for its significant performance
improvement compared to some smaller or similarly sized models, even if far from top
results as bge-base-en-v1.5. On the lower end, msmarco-roberta-base-ance-firstp
and multi-qa-MiniLM-L6-cos-v1 show more modest results, confirming their difficulties
in this task.

Across all models, there is an observable increase in NDCG when moving from the
NDCG@10 to the general NDCG score, which considers a broader set of returned items
(in this case @20). This pattern underscores a general capability to identify relevant
documents beyond the top 10 rankings.

Restricted information scenario

An additional test is conducted on industrial dataset 1, focusing on a more realistic seman-
tic search scenario where only the Title and Overview of catalog elements are embedded,
contrasting with previous tests that utilized a more complete dataset. This test aimed to
isolate and understand the impact of the quantity and type of information available on
the performance of various semantic search models. Also in this scenario, we explore the
effects of different retrieval depths, with both the top 10 and top 20 elements. However,
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to understand how the modification in data granularity affects model effectiveness, the
analysis primarily emphasizes the results for the top 20 elements. The outcome of this fo-
cused test is directly compared with those from the initial, more information-rich catalog
using the same metrics.

The subsequent graph (Figure 6.16) provides a visual comparison of model performance
in these two distinct scenarios:

Figure 6.14: Comparison of order-aware metrics in full metadata availability and restricted
information scenario across different embedding models with K=20

The results reveal varying degrees of robustness among the models when subjected to
a change in available metadata. Here, robustness refers to the model’s ability to main-
tain performance despite reduced information. Titan emerges as the most robust model,
exhibiting the smallest performance degradation across all metrics, around 14 and 15%.
Multi-qa-MiniLM-L6-cos-v1 also demonstrates notable robustness with a moderate de-
crease in metrics: between 18% for MRR and MAP, and 24 and 27% for NDCG and
NDCG@10. In contrast, models like all-mpnet-base-v2, bge-base-en-v1.5,
bge-large-en-v1.5, and bge-small-en-v1.5 exhibited more substantial decreases in
performance metrics, indicating a higher sensitivity to the reduction in available meta-
data. Specifically, bge-base-en-v1.5 faced the most significant declines, with around a
50% decrease in the metrics.
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The evaluation of the order unaware metrics—Precision, Recall, and F1-score—provides
an additional perspective on the models’ performance under conditions of reduced meta-
data availability. Despite these metrics not being the optimal choice for this specific task,
their inclusion offers a more comprehensive view of each model’s robustness. Titan again
shows the most solidity among the models evaluated, with a decrease in Precision, Recall,
and F1-score all around 17% . bge-base-en-v1.5 exhibits the most significant decrease
across these metrics, with Precision, Recall, and F1-score all dropping by approximately
49.9%. The other models experience varying degrees of performance decline, ranging from
approximately 28% to nearly 35% in Precision, Recall, and F1-score.

An extensive documentation of all the results presented so far can be found in Appendix
A.

6.5.2. Tests on dataset 2 and 3

The next part of our analysis consists of the evaluation of embedding models with two
additional datasets, specifically industrial dataset 2 and industrial dataset 3, which differ
in contents and language composition from industrial dataset 1. This evaluation aims to
evaluate the adaptability of model performance across varied linguistic contexts, offering
insights into the generalizability of the models.

Based on the performance in previous tests conducted on industrial dataset 1, a first selec-
tion of a subset of the model is made, resulting in the following group: Titan also in this
scenario as a benchmark model or standard comparison. Alongside, bge-large-en-v1.5
and bge-base-en-v1.5 are included due to their superior efficacy and nuanced capabili-
ties in processing and retrieving relevant information. multi-qa-mpnet-base-dot-v1 is
chosen for its significant performance, potentially indicative of its adaptability to various
datasets. Lastly, multilingual-e5-base is selected to specifically assess the performance
of a model designed with multilingual capabilities in mind.

In the following images are illustrated the results of just bge-large-en-v1.5, because
its superior performance on previous tests, on different datasets compared with Titan

performances. The other model’s results are reported in Appendix A.
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(a) Precision (b) Recall

(c) F1-score

Figure 6.15: The graphs represent the Precision, Recall, and F1-score results of
bge-large-en-v1.5 with different dataset metadata to see how the metadata in different
languages influence the model’s results, compared with Titan in the most representative
examples, and K=20

In the illustration presented in Figure 6.15, we delineate and compare the performances
of two models, bge-large-en-v1.5 and Titan. The distinction among the datasets,
as described in Chapter 3.1.3, aims to measure the influence of metadata language on
model performance. Industrial dataset1, comprising entirely English metadata, serves as
a baseline for model evaluation. In contrast, dataset2 is segmented into versions based on
the language of the metadata, facilitating a direct comparison of how linguistic variations
influence model performance. Within dataset2, metadata is provided in English (Eng),
Danish (Da), Finnish (Fi), Norwegian (No), and Swedish (Sv). In the graphs, with the
label ’dataset2’ we refer to the version of the dataset wherein, for each item, the available
language versions of the overview (e.g., ’overview_eng:...’, ’overview_da:...’) are included.
Dataset3 introduces metadata in Portuguese, thus expanding the linguistic scope of the
evaluation. The test utilizes all metadata from the different catalogs, with a retrieval
cutoff of the top K=20 results.
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To get an overview of the models’ performances, we first evaluate standard metrics such
as Precision, Recall, and F1-score. When bge-large-en-v1.5 is applied on multilingual
dataset 2, there is a noticeable decrease in performance metrics compared to its application
on monolingual dataset 1. Interestingly, the metrics for the English version of dataset2
closely mirror those of the aggregated dataset2. This reflects the fact, as highlighted in
Section 3.1.3, that this dataset contains less metadata, particularly for the overview field,
which is extremely relevant for accomplishing semantic search.

Further granular analysis of dataset2, delineated by language (Danish-Da, Finnish-Fi,
Norwegian-No, Swedish-Sv), reveals disparities in model performance that are not solely
due to the linguistic characteristics of the data. Danish and Swedish metadata show
performances barely distinct from that of English, suggesting minimal linguistic diver-
gence. Norwegian data records a marginal decline, while Finnish data’s performance is
noticeably inferior. These observations, however, should be considered in light of the
fact, as highlighted previously, that this dataset’s versions with fewer items containing
the overview metadata exhibit lower performances. This indicates that the disparities in
model performance may also reflect the reduced availability of critical metadata in certain
language versions, rather than just the model’s capacity to understand or process specific
languages.

When evaluating dataset3, composed of Portuguese metadata, a significant decrease in
performance is observed for both models. Titan, despite its design for multilingual com-
prehension, does not avoid this trend and registers lower performance metrics in compari-
son to bge-large-en-v1.5. It is noteworthy that this third dataset contains no overviews
for the items and exhibits a general scarcity of attributes, which also significantly influ-
ences the model’s performance.

In Figure 6.16, alternative metrics are reported, as more aligned with the objectives of
the current study as they offer a nuanced perspective on the models’ ability to retrieve
and rank relevant items within a dataset. The outcomes support the conclusions drawn
from the primary metrics (Precision, Recall, and F1-score). Across the alternative metrics
considered, there is a noticeable decrease in the performance of the models when applied
to these two other datasets.
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Figure 6.16: The graphs represent the MRR, MAP@10, NDCG, and NDCG@10 results of
bge-large-en-v1.5 with different dataset metadata to see how the metadata in different
languages influence the model’s results, compared with Titan in the most representative
examples, and K=20

The diminution in performance is most acute for Finnish language data within dataset2(Fi),
with reductions ranging from approximately 81% to 84% across the assessed metrics.
Dataset3 also exhibits a considerable decline in performance, with reductions of approx-
imately 71% to 75% across the metrics, which could reflect the inherent challenges in
handling Portuguese data. Conversely, while dataset2(Eng) also experiences a decrease
in performance, the extent of this reduction is less severe.

This consideration highlights the role of metadata volume and detail in influencing model
performance. As previously evidenced, the models exhibit performance degradation when
supplied with metadata that is sparse in information content, such as when only titles
and overviews are provided. The additional datasets examined not only contain limited
information but also suffer from less precise or poorly articulated metadata elements. Such
conditions simulate more realistic scenarios where data are unstructured, multilingual, and
shallow explicable.

These tests are essential for assessing model robustness in real-world scenarios, highlight-
ing the need for models that excel not only under ideal conditions but also demonstrate
strength across varied, possibly challenging, data environments. Moreover, the results
underline the significance of well-structured metadata in maximizing model performance,
affirming that even the most advanced models benefit from access to comprehensive
datasets.
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developments

This chapter delineates and discusses the principal findings, contributions, and implica-
tions of this thesis. With the proliferation of digital streaming services, users are often
overwhelmed by the vast amount of content options available, making the discovery of rel-
evant and desired content challenging. This difficulty is further aggravated by traditional
search mechanisms that rely on precise keyword matches, often failing to understand
the complex meanings underlying user queries, further complicated by the potential for
typographical errors within queries.

In response to this issue, this thesis introduces a novel approach to content discovery
that leverages advancements in Natural Language Processing (NLP) and Information
Retrieval (IR) technologies. By developing a hybrid search system that integrates semantic
search capabilities with traditional search methods, we aim to transform how users explore
and engage with streaming content, enabling a more intuitive and human-like search
experience.

7.1. Contributions

Our research has made significant improvements in the realm of streaming platforms, pri-
marily through the development of innovative technologies and methodologies to improve
user experience in content discoverability. We have successfully developed a novel hybrid
search system that integrates semantic search capabilities with traditional keyword search
methodologies, enabling a more human-like interaction with digital content catalogs.

One of our main research contributions is the development and integration of a custom
embedding model, specifically designed for the streaming platform context. By fine-
tuning an open-source model, we designed a solution that is optimized for the challenges
and requirements inherent in streaming content discovery. This approach increased the
model’s performance and adaptability, ensuring its alignment with the requirements of
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our task.

Our work comprehends an exploration and application of advanced fine-tuning techniques,
including Adapters, traditional fine-tuning, and Low-Rank Adaptation (LoRA). By effec-
tively applying these techniques, we have demonstrated their potential in refining the
semantic understanding and retrieval capabilities of our embedding models.

Another significant contribution to our study is the creation of an exhaustive evalua-
tion framework, allowing for a detailed analysis of embedding models and fine-tuning
techniques across languages and datasets. This evaluation approach has been crucial in
validating the efficacy of our contributions.

Finally, our work includes the successful integration of the optimized models into the
Weaviate system. This achievement not only demonstrates that implementing sophisti-
cated IR models in real-world search systems is feasible but also indicates the potential of
our research to revolutionize the field of content discoverability on streaming platforms.

7.2. Limitations

Our research encounters certain limitations that merit discussion. The efficacy and preci-
sion of the task are intrinsically subjective, varying according to the final results expected
by different users or clients. Our model’s design handles this variability by allowing
customizable weighting between semantic and keyword-based queries. However, this flex-
ibility also introduces complexity in determining a universally optimal balance and is
difficult to determine.

A significant challenge encountered in our research is the availability and quality of data.
We observed that a lack of metadata leads to a degradation in model performance. Real-
world scenarios, as demonstrated by datasets from ContentWise’s partner companies,
often feature sparse data availability. This limitation not only impacts the effectiveness of
our system but also reflects a common constraint in similar scenarios across the industry.

The generation of our QA datasets, synthesized with gpt-3.5-turbo, presents two pri-
mary limitations. Firstly, the use of such technology has a cost. Secondly, as GPT is
a Large Language Model (LLM) with knowledge up to 2021, it can make errors or miss
possible solutions in the synthesized datasets.

Developing a system that operates effectively in real time imposes stringent requirements
on latency and computational efficiency. Despite the demonstrated robustness of larger
model versions, we opted for smaller, slightly less performant models due to their lower
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response times and reduced memory requirements. This trade-off between performance
and operational efficiency highlights a critical limitation in the practical deployment of
advanced IR models.

Our investigation into multilingual support revealed a trade-off between specialized perfor-
mance in a single language versus broader linguistic comprehension. Models specifically
optimized for IR tasks in English showed superior performance on English queries but
struggled with other languages. Conversely, multilingual models, while offering broader
linguistic support, tended to perform slightly worse in IR-specific tasks. This limitation
points to the inherent challenge of developing a model that excels both in specific language
tasks and across multiple languages.

7.3. Future Work

From the work of Lu et al. [14], the integration of a reranking model, trained and fine-
tuned for reorganizing retrieval outputs, emerges as a promising direction. However, a
critical examination is required to verify whether the computational overhead introduced
by such a model increases the response latency, thus maintaining a balance between
performance and efficiency.

Furthermore, inspired by the research of Penha et al. [17], a preliminary model dedicated
to refining user queries presents a possible improvement. Given the common occurrence of
typographical errors, the use of acronyms, or the formulation of queries that lack clarity,
the deployment of a model capable of modifying user queries could substantially increase
the effectiveness of an information retrieval system.

In the evolving domain of Natural Language Processing (NLP), the advent of new mod-
els and technologies is a constant. The introduction of new embedding models, both
multilingual and highly performant on IR tasks, could offer the possibility for future
enhancements.

The potential applications of our system extend beyond the realm of streaming media.
The flexible and adaptive nature of our approach makes it suitable for a wide array of
other domains. For example, sectors such as e-commerce, cosmetics, and pharmacy, which
feature extensive product catalogs, would benefit from a more intuitive search experience.
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A.1. Model selection

Below are presented results for offline testing considering all the embedding model take
into consideration.

A.1.1. dataset 1

Model TP FP FN

random 181 235759 88688
multi-qa-MiniLM-L6-cos-v1 3497 232443 85372
multi-qa-mpnet-base-dot-v1 6033 229907 82836

all-mpnet-base-v2 4989 230951 83880
msmarco-roberta-base-ance-firstp 3340 232600 85529

all-MiniLM-L6-v2 3054 232886 85815
bge-large-en-v1.5 6732 229208 82137
bge-base-en-v1.5 6304 229636 82565
bge-small-en-v1.5 3746 232194 85123

multilingual-e5-large 4561 231279 84308
multilingual-e5-base 3980 231960 84889

Titan 6842 229098 82027

Table A.1: Calculous of True Positive (TP), False Positive (FP), and False Negatives
(FN) by all selected models with K=20 on industrial dataset1
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Model K Precision Recall F1-score

random 20 0.000767 0.002037 0.001114
random 10 0.000839 0.001114 0.000957

multi-qa-MiniLM-L6-cos-v1 20 0.014800 0.039000 0.021500
multi-qa-MiniLM-L6-cos-v1 10 0.019000 0.025600 0.022000
multi-qa-mpnet-base-dot-v1 20 0.025570 0.067886 0.037000
multi-qa-mpnet-base-dot-v1 10 0.034627 0.045967 0.039499

all-mpnet-base-v2 20 0.021100 0.056100 0.030710
all-mpnet-base-v2 10 0.028300 0.037600 0.032300

msmarco-roberta-base-ance-firstp 20 0.014156 0.037583 0.020566
msmarco-roberta-base-ance-firstp 10 0.018513 0.024575 0.021100

all-MiniLM-L6-v2 20 0.012940 0.034365 0.018805
all-MiniLM-L6-v2 10 0.017988 0.023878 0.020518
bge-large-en-v1.5 20 0.028530 0.075750 0.041452
bge-large-en-v1.5 10 0.039420 0.052335 0.044972
bge-base-en-v1.5 20 0.026719 0.070930 0.038817
bge-base-en-v1.5 10 0.036569 0.048540 0.041710
bge-small-en-v1.5 20 0.015877 0.042151 0.023066
bge-small-en-v1.5 10 0.021500 0.028540 0.024530

multilingual-e5-large 20 0.019330 0.051323 0.028084
multilingual-e5-large 10 0.025498 0.033848 0.029085
multilingual-e5-base 20 0.016869 0.044785 0.024507
multilingual-e5-base 10 0.022523 0.029898 0.025691

Titan 20 0.028999 0.076990 0.042129
Titan 10 0.038600 0.051278 0.044060

Table A.2: Performances evaluated with Precision, Recall, and F1-score of all selected
models with dataset1 and K=20, 10
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Model Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

multi-qa-MiniLM-L6-cos-v1 0.00670 11.00000 0.01440 0.01667 0.01890
multi-qa-mpnet-base-dot-v1 0.01348 0.02126 0.02697 0.03120 0.03530
all-mpnet-base-v2 0.01173 0.01890 0.02456 0.02920 0.03276
msmarco-roberta-base-ance-
firstp

0.00629 0.01043 0.01352 0.01606 0.01850

all-MiniLM-L6-v2 0.00848 0.01318 0.01615 0.01909 0.02137
bge-large-en-v1.5 0.01687 0.02713 0.03370 0.03967 0.04479
bge-base-en-v1.5 0.01358 0.02111 0.02701 0.03232 0.03696
bge-small-en-v1.5 0.00912 0.01420 0.01824 0.02187 0.02442
multilingual-e5-large 0.01085 0.01691 0.02164 0.02565 0.02886
multilingual-e5-base 0.01012 0.01551 0.01970 0.02335 0.02630
Titan 0.01170 0.02025 0.02612 0.03164 0.03584

Table A.3: Recall@K with K from 1 to 5 of all selected models with K=20

Model Recall@6 Recall@7 Recall@8 Recall@9 Recall@10

multi-qa-MiniLM-L6-cos-v1 0.020800 0.022626 0.024537 0.026489 0.028247
multi-qa-mpnet-base-dot-v1 0.038880 0.042100 45.000000 0.048100 0.050777
all-mpnet-base-v2 0.036700 0.039910 0.042400 0.045200 0.047690
msmarco-roberta-base-ance-
firstp

0.020510 0.021974 0.023677 0.024939 0.026369

all-MiniLM-L6-v2 0.023207 0.024918 0.026710 0.028001 0.029100
bge-large-en-v1.5 0.049269 0.053500 0.057508 0.060630 0.063700
bge-base-en-v1.5 0.040467 0.044009 0.047653 0.050788 0.053727
bge-small-en-v1.5 0.026890 0.029044 0.030949 0.032555 0.034279
multilingual-e5-large 0.031905 0.034534 0.036770 0.039481 0.041457
multilingual-e5-base 0.029001 0.031980 0.033830 0.036021 0.038550
Titan 0.039360 0.042890 0.046309 0.049430 0.052370

Table A.4: Recall@K with K from 6 to 10 of all selected models with K=20
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Model MRR MAP@10 NDCG NDCG@10 embed size

random 0.00312 0.0026645 0.00152 0.00111 -
multi-qa-MiniLM-L6-cos-v1 0.06100 0.054156 0.033000 0.027639 384
multi-qa-mpnet-base-dot-v1 0.113000 0.100500 0.060000 0.051000 768

all-mpnet-base-v2 0.094300 0.084169 0.052860 0.044700 768
msmarco-roberta-base-ance-firstp 0.064700 0.057450 0.031655 0.026322 768

all-MiniLM-L6-v2 0.064030 0.057680 0.033406 0.029107 768
bge-large-en-v1.5 0.124610 0.111201 0.071632 0.061730 1024
bge-base-en-v1.5 0.114478 0.101580 0.062520 0.053287 768
bge-small-en-v1.5 0.072087 0.064195 0.039098 0.033397 384

multilingual-e5-large 0.088270 0.078843 0.047090 0.039557 1024
multilingual-e5-base 0.077212 0.068639 0.042360 0.036103 768

Titan 0.117470 0.103500 0.062400 0.052220 1536

Table A.5: Performances evaluated with MRR, MAP@10, NDCG and NDCG@10 of all
selected models with dataset1 and K=10

Model Precision Recall F1-score Catalog

multi-qa-MiniLM-L6-cos-v1 0.014800 0.039000 0.021500 all data
multi-qa-MiniLM-L6-cos-v1 0.009888 0.026000 0.014000 title + overview
multi-qa-mpnet-base-dot-v1 0.025570 0.067886 0.037000 all data
multi-qa-mpnet-base-dot-v1 0.017700 0.047000 0.025700 title + overview

all-mpnet-base-v2 0.021100 0.056100 0.030710 all data
all-mpnet-base-v2 0.013750 0.036550 0.019980 title + overview

msmarco-roberta-base-ance-firstp 0.014156 0.037583 0.020566 all data
msmarco-roberta-base-ance-firstp 0.009740 0.025870 0.014156 title + overview

bge-large-en-v1.5 0.028530 0.075750 0.041452 all data
bge-large-en-v1.5 0.017195 0.045650 0.024981 title + overview
bge-base-en-v1.5 0.026719 0.070930 0.038817 all data
bge-base-en-v1.5 0.013380 0.035535 0.019445 title + overview
bge-small-en-v1.5 0.015877 0.042151 0.023066 all data
bge-small-en-v1.5 0.011405 0.030280 0.016500 title + overview

Titan 0.028999 0.076990 0.042129 all data
Titan 0.023955 0.063599 0.034800 title + overview

Table A.6: Precision, Recall, and F1-score comparison between full data and restricted
data information (title and overview only) on dataset1 and K=20
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Model MRR MAP@10 NDCG NDCG@10 Catalog

multi-qa-MiniLM-
L6-cos-v1

0.061000 0.054156 0.033000 0.027639 all data

multi-qa-MiniLM-
L6-cos-v1

0.048979 0.043955 0.023900 0.020900 title + overview

multi-qa-mpnet-
base-dot-v1

0.113000 0.100500 0.060000 0.051000 all data

multi-qa-mpnet-
base-dot-v1

0.079490 0.070600 0.040180 0.034000 title + overview

all-mpnet-base-v2 0.094300 0.084169 0.052860 0.044700 all data
all-mpnet-base-v2 0.058600 0.051850 0.030880 0.025556 title + overview
msmarco-roberta-
base-ance-firstp

0.064700 0.057450 0.031655 0.026322 all data

msmarco-roberta-
base-ance-firstp

0.046480 0.041336 0.021556 0.017688 title + overview

bge-large-en-v1.5 0.124610 0.111201 0.071632 0.061730 all data
bge-large-en-v1.5 0.067979 0.060513 0.038278 0.032290 title + overview
bge-base-en-v1.5 0.114478 0.101580 0.062520 0.053287 all data
bge-base-en-v1.5 0.058581 0.051625 0.030828 0.026463 title + overview
bge-small-en-v1.5 0.072087 0.064195 0.039098 0.033397 all data
bge-small-en-v1.5 0.049949 0.044267 0.024930 0.021077 title + overview
Titan 0.117470 0.103500 0.062400 0.052220 all data
Titan 0.100480 0.088327 0.052880 0.044296 title + overview

Table A.7: MRR, MAP@10, NDCG, and NDCG@10 comparison between full data and
restricted data information (title and overview only) on dataset1 and K=20



102 A| Appendix A

A.1.2. dataset 2 and 3

Dataset K Precision Recall F1-score MRR MAP@10 NDCG

dataset1 20 0.025570 0.067886 0.037000 0.060000 0.100500 0.0600
dataset1 10 0.034627 0.045967 0.039499 0.050210 0.100500 0.0502
dataset2 20 0.009392 0.026438 0.013860 0.024817 0.043202 0.0248
dataset2 10 0.013050 0.018360 0.015256 0.020800 0.043202 0.0208

dataset2(Eng) 20 0.007270 0.020467 0.010730 0.018108 0.032320 0.0181
dataset2(Eng) 10 0.009565 0.013460 0.011184 0.014750 0.032320 0.0147
dataset2(Da) 20 0.009198 0.025891 0.013570 0.023349 0.039939 0.0233
dataset2(Da) 10 0.012529 0.017630 0.014649 0.019390 0.039939 0.0194
dataset2(Fi) 20 0.009177 0.025830 0.013540 0.022800 0.040600 0.0228
dataset2(Fi) 10 0.012000 0.017020 0.014144 0.018700 0.040600 0.0187
dataset2(No) 20 0.009177 0.025830 0.013542 0.022806 0.040604 0.0228
dataset2(No) 10 0.012097 0.017026 0.014144 0.018700 0.040604 0.0187
dataset2(Sv) 20 0.005987 0.017820 0.008960 0.013860 0.025003 0.0139
dataset2(Sv) 10 0.007529 0.011200 0.009007 0.010870 0.025003 0.0109

dataset3 20 0.003490 0.007422 0.004751 0.008078 0.014590 0.0081
dataset3 10 0.004357 0.004628 0.004489 0.006386 0.014590 0.0064

Table A.8: multi-qa-mpnet-base-dot-v1 performance with order-unaware and order-
aware metrics on different datasets with K=20, 10

Dataset K Precision Recall F1-score MRR MAP@10 NDCG

dataset1 20 0.028999 0.076990 0.042129 0.117470 0.10350 0.062520
dataset1 10 0.038600 0.051278 0.044060 0.113850 0.10350 0.052416
dataset2 20 0.011358 0.031970 0.016760 0.051646 0.04618 0.030290
dataset2 10 0.014499 0.020406 0.016953 0.048665 0.04618 0.024500
dataset3 20 0.005140 0.010900 0.006990 0.025200 0.02252 0.017775
dataset3 10 0.006470 0.006870 0.006700 0.023500 0.02252 0.014270

Table A.9: Titan performance with order-unaware and order-aware metrics on different
datasets with K=20, 10
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Dataset K Precision Recall F1-score MRR MAP@10 NDCG

dataset1 20 0.028530 0.075750 0.041452 0.071632 0.111201 0.0716
dataset1 10 0.039420 0.052335 0.044972 0.060890 0.111201 0.0601
dataset2 20 0.011210 0.031570 0.016550 0.031499 0.048417 0.0315
dataset2 10 0.015150 0.021330 0.017720 0.026142 0.048417 0.0261

dataset2(Eng) 20 0.011216 0.031570 0.016551 0.033317 0.049680 0.0333
dataset2(Eng) 10 0.015510 0.021829 0.018135 0.028068 0.049680 0.0281
dataset2(Da) 20 0.010140 0.028567 0.014977 0.029447 0.045440 0.0294
dataset2(Da) 10 0.013470 0.018959 0.015750 0.024400 0.045440 0.0244
dataset2(Fi) 20 0.004031 0.012900 0.006140 0.012958 0.018248 0.0129
dataset2(Fi) 10 0.005499 0.008799 0.006768 0.010953 0.018248 0.0109
dataset2(No) 20 0.009868 0.027776 0.014560 0.027700 0.044379 0.0277
dataset2(No) 10 0.013246 0.018643 0.015488 0.022980 0.044379 0.0230
dataset2(Sv) 20 0.010080 0.028384 0.014880 0.029110 0.046260 0.0291
dataset2(Sv) 10 0.013687 0.019260 0.016003 0.024350 0.046260 0.0244

dataset3 20 0.008270 0.017570 0.011250 0.018890 0.032350 0.0189
dataset3 10 0.010756 0.011420 0.011080 0.015398 0.032350 0.0154

Table A.10: bge-lange-en-v1.5 performance with order-unaware and order-aware met-
rics on different datasets with K=20, 10

Dataset Precision Recall F1-score MRR MAP@10 NDCG
dataset1 0.016869 0.044785 0.024507 0.077212 0.068639 0.042360

dataset2(Da) 0.003280 0.009242 0.004846 0.019650 0.017808 0.009529
dataset2(Eng) 0.009300 0.026180 0.013730 0.046300 0.042202 0.025850
dataset2(Fi) 0.002610 0.007345 0.003850 0.016360 0.014940 0.007615
dataset2(No) 0.004748 0.013365 0.007007 0.025130 0.022776 0.012530
dataset2(Fi) 0.004096 0.011529 0.006040 0.022270 0.020353 0.011288

dataset3 0.003816 0.008106 0.005189 0.017920 0.016230 0.008570

Table A.11: multilingual-e5-base performance with order-unaware and order-aware
metrics on different datasets with K=20, 10
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Dataset K Precision Recall F1-score MRR MAP@10 NDCG

dataset1 20 0.026719 0.070930 0.038817 0.114478 0.101580 0.062520
dataset1 10 0.036569 0.048540 0.041710 0.110653 0.101583 0.052416
dataset2 20 0.011670 0.032859 0.017227 0.048860 0.043900 0.030290
dataset2 10 0.015060 0.021197 0.017610 0.046167 0.043915 0.024500

dataset2(Eng) 20 0.015839 0.044583 0.023373 0.065530 0.058945 0.042509
dataset2(Eng) 10 0.020686 0.029114 0.024187 0.062374 0.058945 0.034660
dataset2(Da) 20 0.013588 0.038247 0.020050 0.055167 0.049600 0.035550
dataset2(Da) 10 0.017057 0.024006 0.019940 0.052080 0.049600 0.028000
dataset2(Fi) 20 0.013900 0.039135 0.020517 0.061815 0.056234 0.037574
dataset2(Fi) 10 0.018154 0.025550 0.021227 0.058900 0.056234 0.030860
dataset2(No) 20 0.014570 0.041020 0.021500 0.060950 0.055190 0.038315
dataset2(No) 10 0.018586 0.026159 0.021730 0.057660 0.055190 0.030860
dataset2(Sv) 20 0.013670 0.038478 0.020173 0.055599 0.050201 0.035090
dataset2(Sv) 10 0.017437 0.024541 0.020388 0.052500 0.050201 0.028020

dataset3 20 0.007886 0.016750 0.010720 0.033947 0.030868 0.017775
dataset3 10 0.010026 0.010649 0.010328 0.032022 0.030868 0.014270

Table A.12: bge-base-en-v1.5 performance with order-unaware and order-aware metrics
on different datasets with K=20, 10

A.2. Fine-tuning

Below are presented results considering models fine-tuned with different approaches.

Fine-tuning TP FP FN

None 6304 229636 82565
Adapter (default) 7032 228908 81837
Adapter (2 Layer) 7028 228912 81841

MNRL 22423 213517 66446
CSL 8465 227475 80404

LoRA(8-16) 13459 222481 75410
LoRA(8-8) 13045 222895 75824
LoRA(4-8) 12202 223738 76667

Table A.13: Calculous of TP, FP, and FN by bge-base-en-v1.5 fine-tuned with Adapter,
traditional and LoRA fine-tuning techniques with K=20 on industrial dataset1
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Fine-tuning k Precision Recall F1-score MRR MAP@10 NDCG

None 20 0.0256 0.0679 0.0370 0.113 0.1005 0.0600
Adapter(default) 20 0.0263 0.0691 0.0378 0.117 0.1047 0.0630

None 10 0.0346 0.0460 0.0395 0.109 0.1005 0.0502
Adapter(default) 10 0.0356 0.0472 0.0406 0.113 0.1047 0.0533

Table A.14: multi-qa-mpnet-base-dot-v1 finetuned with Adapter performances

Fine-tuning Precision Recall F1-score MRR MAP@10 NDCG

None 0.0267 0.0709 0.0388 0.1145 0.1016 0.0625
Adapter (default) 0.0298 0.0791 0.0433 0.1302 0.1153 0.0732
Adapter (2Layer) 0.0298 0.0791 0.0433 0.1259 0.1109 0.0700

MNRL 0.0950 0.2523 0.1381 0.3200 0.2804 0.2175
CSL 0.0359 0.0952 0.0521 0.1626 0.1425 0.0764

LoRA (8-16) 0.0570 0.1514 0.0829 0.1953 0.1690 0.1132
LoRA (8-8) 0.0553 0.1468 0.0803 0.1890 0.1644 0.1094
LoRA (4-8) 0.0517 0.1373 0.0751 0.1782 0.1543 0.1024

Table A.15: bge-base-en-v1.5 finetuned with Adapters, hole update and MNRL or CSL
loss, and LoRA performances

Fine-tuning dataset Precision Recall F1-score MRR MAP@10 NDCG

None dataset1 0.0168 0.0439 0.0243 0.0768 0.0668 0.04200
LoRA(8-8) dataset1 0.0227 0.0594 0.0328 0.0977 0.0880 0.05211

MNRL dataset1 0.0969 0.2535 0.1402 0.3118 0.2740 0.21060
None dataset2 (Da) 0.0033 0.0092 0.0048 0.0196 0.0178 0.00950

LoRA(8-8) dataset2 (Da) 0.0257 0.0724 0.0380 0.1045 0.0927 0.06200
MNRL dataset2 (Da) 0.0054 0.0153 0.0080 0.0221 0.0198 0.01440
None dataset3 0.0038 0.0081 0.0052 0.0179 0.0162 0.00860

LoRA(8-8) dataset3 0.0094 0.0199 0.0127 0.0307 0.0271 0.01850
MNRL dataset3 0.0040 0.0084 0.0054 0.0178 0.0163 0.00900

Table A.16: multilingual-e5-base finetuned with LoRA and hole update performances
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A.3. Hybrid search

Below are presented results considering models fine-tuned integrated into a hybrid search
system.

Fine-tuning Precision Recall F1-score MRR MAP@10 NDCG

MNRL 0.0471 0.1249 0.0684 0.1565 0.1411 0.0956
LoRA 0.0439 0.1166 0.0638 0.1508 0.1342 0.0890

Table A.17: bge-base-en-v1.5 performance in hybrid search environment with dataset1
and QA test set v2 alpha=0.7 and K=20

Alpha Precision Recall F1-score MRR MAP@10 NDCG

1.0 0.0204 0.0534 0.0290 0.0916 0.0818 0.0474
0.7 0.0210 0.0550 0.0304 0.0907 0.0825 0.0494
0.5 0.0195 0.0511 0.0283 0.0921 0.0846 0.0577

Table A.18: multilingual-e5-base fine-tuned with LoRA performance in hybrid search
environment with dataset1 and QA test set v2 and K=20

Alpha Precision Recall F1-score MRR MAP@10 NDCG

1.0 0.0313 0.0819 0.0453 0.1174 0.1025 0.0623
0.7 0.0323 0.0845 0.0467 0.1178 0.1054 0.0658
0.5 0.0255 0.0666 0.0368 0.1097 0.0998 0.0664

Table A.19: multilingual-e5-base fine-tuned with hole update and MNRL loss perfor-
mance in hybrid search environment with dataset1 and QA test set v2 and K=20
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To evaluate the reachness of the outputs generated by different embedding models, we
choose a diverse set of movies and series that cover various genres, themes, and styles.

Figure B.1: Carousels of items similar to Inception
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Figure B.2: Carousels of items similar to The Godfather
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Figure B.3: Carousels of items similar to Pulp Fiction
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Figure B.4: Carousels of items similar to Toy Story
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Figure B.5: Carousels of items similar to Stranger Things
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