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Abstract

The bark beetle, a destructive insect pest, poses a significant threat to forests worldwide.
Over the past few decades, the incidence and severity of bark beetle attacks on trees (es-
pecially spruce and pine trees) have increased due to the effects of climate change, leading
to substantial economic and ecological consequences. These tiny insects, often attracted
to weakened or stressed trees, infest and feed on the inner bark, disrupting the tree’s
nutrient transport system and ultimately resulting in widespread tree mortality. Detect-
ing unhealthy trees and limiting the effects of the parasite on the vegetation is crucial to
prevent the infestation to spread. This is why remote sensing plays a crucial role in Bark
Beetle detection, often used in synergy with ground surveys. These analyses are usually
carried out by aerial Hyperspectral inspections, which need to be properly scheduled and
planned ahead of time, entailing significant costs and efforts. The presented study aims
at developing a free alternative solution to the usual aerial Bark Beetle detection, using
Hyperspectral satellite data from the PRISMA sensor. Satellite data coming from this
sensor has not only free access and greater temporal availability, but it allows to perform
analyses over a broader land extension at the cost of a lower spatial resolution. The first
part of the analysis includes most of the innovative aspects, as it implies the extraction
of trees’ crowns from satellite data through an Unmixing procedure that relies on aerial
spectral signatures. The second one, involves the assessment of the Beetle attack’s risk,
through the computation of spectral vegetation indexes over the trees’ areas extracted
from the Unmixing step. The algorithm is calibrated on aerial data of a specific area and
tested over a completely different land sector. Once calibrated, Thanks to the complete
availability of satellite data, the procedure can be applied to any other area of interest,
proving the scalability of the study. The results are provided in the form of binary masks,
supplying insights on the zones subjected to the highest risk of infestation. The outcomes
of the analysis have proven good signs of compatibility between aerial and satellite data,
however, some issues emerged from the significant difference in spatial resolution between
the aerial and satellite sensor. Nevertheless, the possibility of extending the analysis over
several kilometres of land with limited to no costs makes the new satellite algorithm an
important strategical help in the planning of more precise aerial and ground surveys.
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Abstract in lingua italiana

Il Bostrico, un insetto nocivo distruttivo, rappresenta una minaccia significativa per le
foreste di tutto il mondo. Negli ultimi decenni l’incidenza e la gravità degli attacchi del
Bostrico sugli alberi (soprattutto abeti e pini) sono aumentate a causa degli effetti del cam-
biamento climatico, con notevoli conseguenze economiche ed ecologiche. Questi minuscoli
insetti, spesso attratti da alberi indeboliti o in condizioni di stress, infestano e si nutrono
della corteccia interna, interrompendo il sistema di trasporto dei nutrienti dell’albero e
provocando infine una diffusa mortalità degli alberi. Individuare alberi sotto attacco del
parassita e limitarne gli effetti è fondamentale per evitare che l’infestazione si diffonda.
Ecco perché il telerilevamento gioca un ruolo cruciale nella rilevazione del Bostrico, spesso
utilizzato in sinergia con i rilievi a terra. Queste analisi vengono solitamente effettuate
mediante ispezioni aeree iperspettrali, che devono essere opportunamente programmate e
pianificate in anticipo, comportando costi e sforzi significativi per le aziende. Il presente
studio mira a sviluppare una soluzione alternativa gratuita al consueto rilevamento aereo
del Bostrico, utilizzando i dati satellitari iperspettrali del sensore PRISMA. I dati satelli-
tari di questo sensore non solo sono di libero accesso e dispongono di maggiore disponibilità
temporale, ma consentono di eseguire analisi su un’estensione territoriale più ampia, al
costo di una risoluzione spaziale inferiore. La prima parte dell’analisi comprende la mag-
gior parte degli aspetti innovativi, in quanto include l’estrazione delle chiome degli alberi
dai dati satellitari attraverso una procedura di Unmixing che si basa su firme spettrali
aeree. La seconda, invece, prevede la valutazione del rischio di attacco del parassita,
attraverso il calcolo degli indici spettrali di vegetazione sulle aree arboree estratte nella
fase di Unmixing. L’algoritmo è calibrato su dati aerei di un’area specifica e testato su
un’area completamente diversa. Grazie alla complete disponibilità dei dati satellitari,
una volta calibrata, la procedura può essere applicata a qualsiasi altra area di interesse
e questo ne dimostra la scalabilità. I risultati sono forniti sotto forma di maschere bi-
narie, le quali individuano le zone soggette a maggior rischio di infestazione. Durante
lo studio sono emerse alcune difficoltà dovute alla significativa differenza di risoluzione
spaziale tra il sensore aereo e quello satellitare, ma la possibilità di estendere l’analisi su
diversi chilometri di terreno, rende questo nuovo algoritmo satellitare un importante aiuto



strategico nella progettazione di più precise misurazioni aeree e terrestri.
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1| Introduction

Hyperspectral imaging is becoming common practice in the remote sensing field. Nowa-
days, Earth Observation can benefit from the advantage of having denser bands in the
spectrum, that can provide better and well-defined spectral signatures, helping in the
detection of more material types on the ground. The need of having higher spectral reso-
lution sensors was born around 1970 when geologists found that many mineral morpholog-
ical features weren’t correctly detected by the few bands of Landsat MSS (Multispectral
Scanner System). It was during this period that airborne Hyperspectral sensors started
to be developed as precursors of the newer satellite or spaceborne cameras [27].

Bark beetle is nowadays a relevant source of concern for trees’ health, as the increasing
effects of climate change are improving the European spruce bark beetle life condition,
most of the trees in the whole European area are now in danger.
When this insect attacks, it spreads a chemical substance that attracts thousands of other
beetles, that can potentially kill a tree. The freezing cold of winter is supposed to act
against this insect and kill most of its own kind, but as known climate change’s warming
effects, caused winter to shorten and summer to stretch, allowing more sustainable liv-
ing conditions for this creature. It has also been proven that the increase in trees death
causes a vicious circle to the Bark Beetle life cycle, as, once dead, a tree can release a
large amount of carbon and VOC (Volatile Organic Compounds) that will contribute to
climate change and thus to global warming [19] [13].
Remote sensing plays a fundamental role in the detection and prevention of Bark Beetle
attacks; in particular, thanks to vegetation spectral indexes obtained from satellite data,
it is possible to monitor trees’ health state and thus keep track of the infection.
Once attacked by a beetle a tree goes through three different stages [10]:

• green phase: tree’s needles or leaves stays green in this time period

• red phase: tree’s leaves or needles turn progressively from green to yellow and then
to a reddish tone

• grey phase: this is the last phase of the attack, in which the parasite has concluded
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the infestation and the tree reaches its maximum level of decay towards death. Dead
leaves or needles fall from branches and the bare tree stands in a grey.

The goal of this study is to evaluate trees’ exposure to the parasite attack, by making use
of free access hyperspectral imagery from the PRISMA (PRecursore IperSpettrale della
Missione Applicativa) satellite.
Due to the small size of this insect (around 5mm) and the coarse resolution of PRISMA
data (30m), it’s undoubtedly unfeasible to directly detect the parasite from satellite im-
agery. Exactly for this reason, Bark Beetle detection is only possible through a proper
assessment of its effects on trees’ health, by the extraction of specific spectral vegetation
indexes related to the stress state of the plant. Moreover, the mean size of a tree is still
quite small to be recognized by the most common GSDs (Ground Sample Distance) of
satellite data, which implies the need for an improved spatial resolution. Therefore Bark
Beetle detection is a procedure, generally carried out by airborne sensors, which by being
mounted on aircrafts or helicopters, are able to collect images with a very short GSD.
Nevertheless, to obtain such a high spatial resolution, aircrafts need to fly at close dis-
tances to the ground, which in turn causes a much smaller ground coverage area when
compared to satellite sensing. Another drawback of airborne remote sensing concerns the
costs, since those flights are often carried out as one-time operations, that need to be
properly scheduled and performed on demand.
However, satellite hyperspectral imagery offers images with high coverage area at zero
costs for the user, giving the possibility of continuous monitoring of the Earth in time.
Of course, these benefits come with a cost: a much coarser spatial resolution.
To overcome this important boundary, this study implements an unmixing procedure, that
helps satellite imagery discern trees from other features by exploiting the higher spectral
and spatial resolution content of the aerial data. This allowed to build the foundations of
a model able to spare time and expenses of high-cost survey planned operations and to
expand, replicate and possibly improve the aerial analysis to a much wider geographical
area with zero costs.
The area chosen to perform the aforementioned analysis is the Gadertal Valley (Trentino-
Alto Adige, Italy).
Aerial data were used to improve satellite hyperspectral imagery for parasite detection.
The aerial images used as the main reference are the outputs of an aerial survey performed
by the "AVT AS Italia" company, which have been used both as training and validation
datasets for this current study. The survey was carried out with the objective of monitor-
ing the health state of the Spruce trees, present in the Gadertal forest (Northern Italy),
which has been subjected to a remarkable Bark Beetle attack in the past few years.
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The inspection has been performed with the "AisaFENIX" hyperspectral aerial sensor on
the 8th of October 2022, by collecting images of six zones distributed over the Gadertal
area (see Figure 1.1).

Figure 1.1: Geographical distribution of the study area and the extent of the two sensor
acquisitions. In red it is possible to appreciate the Gadertal study area outline, in blue the
PRISMA image outline and in green the airborne acquisitions with their corresponding
area number in black

As can be appreciated from the geographical overview in Figure 1.1, just two of the six
zones, happened to be completely included in a 30km x 30km square tile of the selected
PRISMA acquisition. Their size is variable and depends on the way they have been
cropped from the entire acquisitions stripe during the survey. Area 5 has been used to
train the model and has a size of 758m x 1064m, while Area 3 has been used for validation
purposes and has a size of 720m x 552m.
The results of the analysis consist mainly of binary maps, reporting areas with a high
risk of attack with a value of 1 and low-risk ones with a value of 0. They were produced
by computing and thresholding vegetation indexes related to the Bark Beetle effects on
trees.
Despite the spatial resolution of the binary maps produced from the PRISMA satellite
imagery (30m resolution), the algorithm can be potentially used as an early inspection
tool, providing insights into larger portions of land and aiding the planning of further
ground or aerial surveys.
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The remainder of the thesis is structured as follows. First of all, in view of the research
and innovative nature of this study, it is imperative to understand the current state of the
art within Bark Beetle’s detection, which will be the first chapter of this analysis. The
second chapter is the material and methods one, which involves a comprehensive literature
review, data collection, and analysis. By leveraging established theories and frameworks,
combined with ad-hoc techniques implemented for this current study, the chapter aims
to provide a deeper understanding of the subject matter. The results obtained from this
investigation are thoroughly examined and commented upon in the third chapter, high-
lighting the key findings, trends, and correlations discovered. These findings form the
basis for drawing meaningful conclusions and making informed recommendations, part
of the last chapter. The subsequent sections of this thesis will delve into each aspect in
greater detail, providing a comprehensive analysis of the research methodology, results,
and their implications.
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2.1. Useful indexes in Bark Beetle’s detection

As anticipated in section 1, the Bark Beetle attack may happen in 3 different phases
(green, red and grey). It is very important to choose the correct index for Beetle detec-
tion, in order to target the right temporal phase of the attack (the green one, which is
the hardest to detect since it doesn’t leave any visible sign on vegetation), and thus to
design the right plan to contain the outbreak. As stated in the literature, in fact, there
are several ways to mitigate insect infestation, that should be properly picked, such as
pheromone trapping, burning, clearing of wind-thrown trees and selective thinning [11].
It must be considered that indexes don’t directly detect the parasite’s presence (which
it would be impossible to be spotted only by reflectance values as well as due to the
pixel resolution), but an anomalous index value may explain some stress or illness tree’s
condition, which could then be correlated, after a proper validation with ground truth,
to the insect attack.
Once computed, indexes can be used alone or combined in groups of several indexes to
assess the risk of attack. Single indexes or groups of them can be used as training inputs
for different Machine Learning algorithms (SVM Support Vector Machines, Neural Net-
works and other Machine Learning Solutions) to produce a more articulated and targeted
infestation identification. Moreover, the use of hyperspectral satellite data can possibly
allow the above-mentioned algorithms to perform at higher accuracy levels with respect
to the common multispectral data, thanks to its higher spectral resolution, which grants a
higher precision in the spectrum while computing a larger number of indexes. In the next
subsection the main indexes used in literature to detect Bark Beetle, grouped depending
on the purpose for which they are employed, will be presented.

2.1.1. Infrared and red-edge indexes

In this category are included infrared indexes (Table 2.1), which help to monitor pho-
tosynthetic activity, and the most common vegetation indexes, indicators of the general
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health state of the flora. As stated in [15], for example, NDVI (Normalized Difference
Vegetation Index) is an index available in most multispectral satellite systems which, by
making use of red and infrared bands, helps to evaluate the photosynthetic activity, which
is crucial to estimate the effects of living organisms on vegetation. Infrared spectral bands
are affected by several changes in reflectance values, as the stress biases vegetation’s phys-
ical and chemical properties. Several examples are available in the literature, for example,
[15] states that NDVI time series extracted from MODIS were able to spot tree leaf loss
by gipsy moth outbreaks in eastern North America. And again, the same data products
were useful to map dead trees in forests affected by mountain pine beetle attacks and
droughts. In table 2.1 a list of infrared indexes, together with the involved bands and
their formula is reported.

Infrared Indexes

bands formula

(NDII) Normalized Difference
Infrared Index

833nm, 1649nm 833−1649
833+1649

(NDVI) Normalized Vegeta-
tion Index

RED, NIR NIR−RED
NIR+RED

(TVI) Transformed Vegeta-
tion Index

NDVI
√
NDV I + 0.5

(MSAVI) Modified Soil-
Adjusted Vegetation Index

NIR, RED 2NIR+1−
√

(2NIR+1)2−8(NIR−RED)

2

(NBRI) Normalized Burn Ra-
tio Index

NIR, SWIR NIR−SWIR
NIR+SWIR

(NRVI) Normalized Ratio
Vegetation Index

RED, NIR
NIR
RED

−1
NIR
RED

+1

(GNDVI) Green Normalized
Difference Vegetation Index

NIR, 540:570nm NIR−[540:570]
NIR+[540:570]

Table 2.1: Infrared indexes’ involved spectral bands with their formulas

In addition, red-edge indexes are used to monitor chlorophyll content (Table 2.2), so that
high values in this band are strictly correlated to the infestation state of the parasite [1].
In [1], Haidi et al. were able to discriminate between healthy and infested trees sooner
than other vegetation indexes, proving the effectiveness of red edge and SWIR indexes.
Moreover, it has been found that red edge and SWIR bands showed successfully their
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ability to detect bark beetle infestation, in both the early and late stages of the attack.
Their results revealed that these indexes can potentially improve the monitoring and
detection of this insect with crucial implications for European bark beetle future studies.

Red-edge Indexes

bands formula

(NDRE) Normalize difference
red-edge index

NIR, red-edge NIR−rededge
NIR+redege

(REIP) Red-edge inflection
point

670nm, 700nm, 740nm, 780nm 700 + 40(
( 670+780

2
)−700

740−700
)

(CLRE) Red-Edge Band
Chlorophyll Index

690:720nm, 760:800nm ( [760:800]
[690:720]

)
(−1)

Table 2.2: Red-edge indexes’ involved spectral bands with their formulas

2.1.2. Leaf and Water indexes

Foliage is one of the first signs of trees’ health, indeed, while the attack progresses, after
the green phase, leaves start gradually changing colour (from yellow to red) in the red
stage of the infestation, until they fall and lose their photosynthetic ability as well as
water and chlorophyll, during the grey stage. Due to this, it is important to anticipate
detection to the green stage, where infestation’s effects are not visible to human sight,
and plant decay proceeds unseen. This is possible also by monitoring leaves’ health and
stress state, through several indexes related to water content and contained biochemical
substances (Table 2.3). Some of these indexes belong also to the aforementioned red-edge
category, as they are computed using the same band.
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Leaf and Water Indexes

bands formula

(WBI) Water
Band Index

970nm, 900nm 970
900

(NDWI) Normal-
ized Difference
Water Index

869nm, 1240nm 860−1240
860+1240

(mNDWI) Mod-
ified Normalized
Difference Water
Index

green, SWIR green−SWIR
green+SWIR

(LWCI)Leaf wa-
ter content index

NIR, MIDIR log(1−(NIR−MIDIR))
−log(1−(NIR−MIDIR))

(DSWI)Disease
stress water index

547nm, 682nm, 802nm, 1657nm 802+547
682+1657

(CIG) Chloro-
phyll index green

NIR, GREEN NIR
GREEN

− 1

(GLI)Green leaf
index

547nm, GREEN, RED, BLUE 2GREEN−RED−BLUE
2GREEN+RED+BLUE

(CVI) Chloro-
phyll vegetation
index

NIR, RED, GREEN NIR RED
GREEN2

(PBI)Plant bio-
chemical index

NIR, GREEN NIR
GREEN

(SLAVI) Specific
Leaf Area Vegeta-
tion Index

NIR, RED, SWIR NIR
RED+SWIR

(MCARI) Modi-
fied Chlorophyll
Absorption Ratio
Index

550nm, 705nm, 750nm ((750− 705)− 0.2(750− 550))750
705

(MTCI-MERIS)
Terrestrial
Chlorophyll In-
dex

681nm, 709nm, 754nm 754−709
709−681

Table 2.3: Leaf and water indexes’ involved spectral bands with their formulas
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Moreover, bark beetle infestation is often followed by a decrease in stomatal conductance
and foliage in trees, often related to droughts and moisture content (Table 2.4). The
canopy conductance is a vital parameter for trees’ health since it represents water vapour
exchanges between vegetation and the atmosphere. In response to drought or hydraulic
limitation, the canopy conductance changes the response to its environmental drivers. Due
to drought, it can be faced a reduction in needle conductance. Light, photosynthesis and
stomatal conductance are all related to one another such that a decrease in photosynthesis
may be a signal by a hydraulic failure. In fact, the reduction in canopy conductance
response may be explained by a decrease in photosynthesis due to sapwood occlusion and
hydraulic failure from restricted gas exchange [12]. Sapwood occlusion is a tree response to
the spread of pathogens and wood decay organisms, also as part of compartmentalization
after wounding. It can be considered to be an effective stress response [8].

Moisture and drought Indexes

bands formula

(MSI) Moisture Stress Index 820nm, 1600nm 1600
820

(NDMI) Normalized Differ-
ence Moisture Index

820nm, 1600nm 820−1600
820+2600

(RDI)Ratio drought index MIR, NIR MIR
NIR

Table 2.4: Moisture and drought indexes’ involved spectral bands with their formulas

2.1.3. Tasseled-cap indexes

There are 3 indexes falling into this category:

• Brightness: used to monitor the ground

• Wetness: used to monitor canopy moisture and soil interaction

• Greenness: used to monitor vegetation

They allow computing relevant properties by compressing spectral content in just three
indexes through principal component analysis (Table 2.5). Several studies proved that
a drop in time of Tasseled cap indexes is related to bark beetle attack, in particular, to
identify preliminary stages (green phase) [4] [22].
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Tasseled cap Indexes

bands formula

Brightness

450:520nm, 520:600nm,
630:690nm, 760:900nm,

1150:1750nm, 2080:2350nm

0.3037[450:520]+0.2793[520:600]+
0.4743[630:690]+0.5585[760:900]+

0.5082[1150:1750]+0.1863[2080:2350]

Greenness

450:520nm, 520:600nm,
630:690nm, 760:900nm,

1550:1750nm, 2080:2350nm

-0.2848[450:520]-0.2435[520:600]
0.5436[630:690]+0.7243[760:900]+

0.0840[1550:1750]-0.1800[2080:2350]

Wetness

450:520nm, 520:600nm,
630:690nm, 760:900nm,

1550:1750nm, 2080:2350nm

0.1509[450:520]+0.1973[520:600]+
0.3279[630:690]+0.3406[760:900]-

0.7112[1550:1750]-0.4572[2080:2350]

Table 2.5: Tasseled cap indexes’ involved spectral bands with their formulas

2.1.4. Other indexes

The aforementioned indexes are just a small part of all the possible spectral vegetation
indexes that can be computed to analyse the effects of this parasite. All the other in-
dexes not falling into one of the previous categories, are resumed in this section. Foster
A. et al (2017) found clear spectral evidence of the correlation between bark beetle at-
tack and Red/Green Index (RGI) [11]. While in [7] the SVM model, trained just with
(NGRDI) Normalize Green/Red Difference Index, obtained 63.5% balanced accuracy in
the detection of Bark Beetle attack (Table 2.6).

Moisture and drought Indexes

bands formula

(RGI) Red/Green index RED, GREEN RED
GREEN

(NGRDI) Normalize differ-
ence Green/red

GREEN, RED GREEN−RED
GREEN+RED

Table 2.6: Other spectral indexes’ involved spectral bands with their formulas
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2.2. Techniques for Spectral Unmixing in Remote Sens-

ing

Nowadays, hyperspectral satellites have emerged as pivotal scientific tools that, by ex-
ploiting their very high spectral resolution, enable the detection of a greater variety of
Earth surface materials. However, for technical tradeoff reasons, a denser spectrum sam-
pling must pay the costs of having a lower spatial resolution, as opposed to what usually
happens for multispectral satellites, which allow gathering higher spatial resolution im-
ages, with coarser spectral resolution. Indeed, a small percentage of radiant energy is
accessible in each band, because spectral bands are narrow. As a consequence, the sensor
area per pixel must be very wide to achieve an acceptable Signal-to-Noise Ratio (SNR),
which causes the geometric resolution to be coarser. In multispectral cameras, the situa-
tion is the opposite, a lot of spectral information is left aside since the scene radiance is
focused over fewer but wider spectral bands [20]. This project evaluated the feasibility of
using PRISMA hyperspectral satellite images to classify trees under bark beetle attack,
instead of using field surveys or analyses based on aerial hyperspectral imaging. To this
point, PRISMA spatial resolution (30m) could introduce ambiguity in the model, due to
the presence of so-called "mixed pixels". Inside a single PRISMA pixel, more than one
spectral signature can be hidden, meaning more trees belonging to a different class may be
masked by the same larger pixel. For this reason, the benefits of an unmixing procedure
will be evaluated. Spectral Unmixing is a diffused technique in the literature and it is
often used to create abundance maps or even super-resolution satellite images. These are
acquisitions having both high spectral and spatial resolution, which is the result of the
combination of hyperspectral and multispectral data.
In this chapter, the aim is to explore various spectral unmixing techniques within the
realm of remote sensing. While several methodologies will be presented as examples, it
is important to note that this study only focuses on leveraging the Google Earth Engine
Unmixing procedure. The decision to utilize this particular approach was driven by the
need for enhanced computational power, which was made possible through the utilization
of Google’s cutting-edge facilities. By employing this powerful tool, we can effectively
address the specific objectives of our research with greater efficiency and accuracy.
As for many LSU (Linear Spectral Unmixing) methods, the "ee.Image.unmix()" function
in Google Earth Engine (GEE) is used to decompose mixed pixel information into its
constituent endmember fractions. This technique assumes that the observed spectral sig-
nature of a pixel is a linear combination of the spectral signatures of the endmembers
present in that pixel. This function allows to perform spectral unmixing using linear
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models and provides the fraction of each endmember present in each pixel of the image.
One example of a linear Unmixing procedure is represented by [20], a classical linear spec-
tral mixing model, in which a super-resolution image is computed as a factorization of the
acquisition into a non-orthogonal basis of endmembers, also defined as spectral signatures
and the related coefficients in this basis, as fractional abundancies, which are a frequency
percentage inside the pixel, in the form of maps. In the linear mixing model, the aim is to
find the image (Z) by considering the image itself as a linear combination of abundancy
maps and endmembers, meaning that each pixel “i” can be seen as a combination of the
spectral signature of a specific material (ej) and the percentage of material in the pixel
for each pixel “i” (aij):

zi =

p∑
j=1

ejaij , Z = EA (2.1)

With a matrix E = [e1, e2, ..., ep] of pure spectra (endmembers) a matrix A = [a1, a2, ..., aNm ]

of per-pixel mixing coefficients (abundances) and ai = [ai1; ai2; ...; aip] the abundances at
pixel i. Before computing E and A it is necessary to write H (hyperspectral image)
as a spatial downsampled version of the super-resolution one (Z) and the multispectral
acquisition (M) as a spectral downsampled version of Z. Therefore, H can be written as:

H ≈ ZBS = EABS = EÃ (2.2)

Where B is a matrix that blurs A accordingly to the hyperspectral sensor’s spatial response
and S, also known as downsampling operator, depends on the difference in resolution
between the two acquisitions. Therefore, Ã = ABS can be considered as lower resolution
abundances and considering that all the hyperspectral bands are blurred in the same way,
it results that the effect is the same as blurring A directly. The multispectral image M,
instead can be written as:

M ≈ RZ = REA = ẼA (2.3)

Where Ẽ = RE are the spectrally reduced endmembers and R the sensor’s spectral
response. B and R, respectively the hyperspectral spatial response function and the
multispectral spectral response function, are either given by camera specifications, or
they can be computed by combining equation (2.2) and (2.3):

MBS = RH (2.4)
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Finally, starting from the following constraints:

aij ≥ 0 ∀i, j

1TA = 1T

0 ≤ eij ≤ 1 ∀i, j

(2.5a)

(2.5b)

(2.5c)

Where constraint (2.5a) stands for non-negative abundance, constraint (2.5b) for abun-
dances sum to one and (2.5c) for non-negative, bounded reflectance. In addition, taking
into account the aforementioned equation (2.2), (2.3), (2.5a), (2.5b) and (2.5c), the prob-
lem can be solved by computing endmembers and abundancy maps (E and A) from a
least square minimization procedure:

minE,A
1

2
||H − EABS||2F +

1

2
||M −REA||2F +

λ

2
||ADhW ||2F +

λ

2
||ADvW ||2F (2.6)

Where equation (2.6) is subject to constraints (2.5a), (2.5b),(2.5c) and ||A||0 ≤ s. Where
||·||F stands for the Frobenius norm and ||A||0 is the number of non-zero elements of A. Dh

and Dv are, instead, the matrices computing the discrete gradients between neighbouring
pixels in the horizontal and vertical directions. W is a diagonal weight matrix and λ has
control over the strength of the regularization [20]. Code for Lanaras’ CMF (Coupled
Matrix Factorization) is freely available on GitHub at Lanaras code Matlab.
In [32] other three unmixing algorithms are explained as possible solutions to mixed pix-
els issues, in particular CNMF (Coupled Nonnegative Matrix Factorization), Akhtar’s
Method and HySure. As for Lanaras’ CMF [20], CNMF [31] computes super-resolution
images as the product of the spectral signatures and the high-resolution abundance maps.
The difference with respect to [20] is that CNMF initializes its spectral endmembers by
VCA [24] (Vertex Component Analysis) as opposed to SISAL [5] (Split Augmented La-
grangian) for Lanaras and later CNMF alternately unmixes the HS and MS images by
NMF [21] (Normalized Matrix factorization) to estimate the spectral signatures, instead of
using a projected gradient method. Python and Matlab code can be downloaded from the
Naoto Yokoya web page, at the following link: CNMF code. Akhtar’s algorithm, instead,
uses an online dictionary-learning method to obtain the spectral signatures of the end-
members. On the other side, high-resolution abundances are computed from sparse coding
(Akhtar’s method code) Hysure is another different algorithm which uses variation regu-
larization into the subspace-based Hyperspectral–Multispectral fusion framework, which
is computed as the minimization of a convex objective function in relation to subspace
coefficients. Then, the subspace transformation is obtained by endmember extraction or
by SVD (of the low-resolution Hyperspectral image). The full code implementation can

https://github.com/lanha/SupResPALM
https://naotoyokoya.com/Download.html
https://openremotesensing.net/knowledgebase/sparse-spatio-spectral-representation-for-hyperspectral-image-super-resolution/
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be accessed at HySure code. Among these four algorithms, Yokoya et al. (2017) identified
HySure as the best in terms of performance, immediately followed by CNMF; Akhtar’s
lies in the last position, while Lanaras performs slightly better (with respect to Lanaras
only). Finally Hong et al. (2022) [16], recently proposed a new solution, inspired by
Deep Learning techniques. Differently from all the previously mentioned methods, this
algorithm allows to achieve higher performances, disregarding sensor-related information,
needed for sensor calibration. This type of information is, indeed, often hard to be gath-
ered, hence this is a great advantage for unmixing purposes. The purpose is to model
a novel network architecture (DC-Net), consisting of two subnetworks. First, DC-Net
decomposes Hyperspectral and Multispectral data in order to get common content and
sensor-specific information, then the latter is used for a better fusion between HS and MS
data. Finally, this sub-pixel fusion is computed by taking as input the recombined HS-MS
image and producing as output the classical abundancies and endmembers. As stated by
Hong et al. (2022) "DC-Net behaves superiorly compared to ex-using state-of-the-art
DL approaches," but also outperforms Lanaras algorithm in 5 picture quality indexes
out of 5. Although all these implementations are often used unmixing procedures, the
spatial distribution of each endmember in the mixed pixel often still remains unknown.
This project, in particular, aims not only at implementing an unmixing procedure, by
exploiting the high resolution of a hyperspectral airborne sensor (rather than multispec-
tral, as commonly done in literature [20]), but also to track down the spatial distribution
of the different abundancy percentages, thanks to a subpixel mapping with respect of
the 30m resolution pixel of PRISMA. By subdividing the "mixed pixel" into smaller and
more "subpixels" and by assigning to each pixel a specific class, this technique will allow
classifying at higher resolution starting from lower resolution abundancy maps [29]. The
whole principle is based on spatial dependence, which refers to the tendency for spatially
close observations to be more alike than distant observations. To this purpose in [23]
Sub-pixel mapping (or super-resolution mapping) was formally introduced by Atkinson.
To implement the Atkinson algorithm it is necessary, first of all, to define a scaling fac-
tor S, where S2 represents the number of high-resolution subpixels (aerial hyperspectral
sensor) contained in the low-resolution image (PRISMA). In addition to this, it should
be previously defined the neighbourhood model, namely which pixels will be considered
as neighbours and, thus, the only ones that will be used to assign a class to the selected
subpixel.

The choice is restricted to one of the following 3 models:

• Touching neighbourhood: Only pixels physically touching the sub-pixel under con-
sideration

https://openremotesensing.net/kb/codes
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• Quadrant neighbourhood: Only pixels in the same quadrant as the sub-pixel with
respect to the centre of its comprising pixel

• Surrounding neighbourhood: All surrounding pixels

A visual representation of the aforementioned neighbourhood models is shown in Figure
2.1.

Figure 2.1: Visual representation of the three neighbourhood models as a function of the
scale factor S. Credits: [23].

The raw attraction value pa,b(c) for sub-pixel pa,b is calculated as the average of all fraction
values Pi,j(c) of the pixels Pi,j in the neighbourhood of pa,b divided by the distance between
pixel Pi,j and sub-pixel pa,b:

Pa,b(c) = Avg

{
Pi,j(c)

d(Pa,b, Pij)
|Pi,j ∈ Nt[Pa,b]

}
(2.7)

It is important to underline that in Pi,j, “i” and “j” are referred to the coordinates of the
top left subpixel in the high-resolution image, used to identify the bigger low-resolution
neighbour pixel Pi,j. Furthermore, the distance between the neighbour pixel and the
subpixel is computed as:

d(Pa,b, Pi,j) =
√
[a+ 0.5− S(i+ 0.5)]2 + [b+ 0.5− S(j + 0.5)]2 (2.8)

Finally, in Equation (2.7), Nt[Pa,b] identifies one of the three aforementioned neighbour-
hood models, whose equation can be found in (2), (3) and (4) of [23]. Once the attraction
value pa,b(c) is computed for each subpixel in each category, this value will explain the
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amount of attraction of the subpixel pa,b to the class c. Therefore, these values can then be
used for the assignment of sub-pixels to the different classes: sub-pixels with the highest
attractions are assigned first.
Different studies also evaluated the possibility to consider spatial correlation among the
different image’s pixels [30], [9], [3]. Moreover, this is a possible solution that can improve
the abundance classification of the single pixel and consequentially the pixel’s classification
quality.
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3.1. Sensors and Data

As anticipated, the hyperspectral satellite chosen to replicate and possibly improve Bee-
tle’s detection performed by the aerial asiaFENIX sensor is PRISMA (launched by ASI
- Agenzia Spaziale Italiana on 22th of March 2019). The main characteristics of the two
sensors have been reported in the following list:

• AisaFENIX": Hyperspectral aerial data has been gathered by the AisaFENIX
sensor, from Specim company. This sensor acquires data in push broom modality,
with a spectral resolution of 345 bands and a spatial resolution of 2m, distributed in
a continuous spectral span (which ranges between 400nm – 2500nm). These specifics
allow for good spectral compatibility with PRISMA. The aerial data extracted from
the initial survey has the following structure:

– Datacube: band sequential data file, it contains all the intensity values atmo-
spherically corrected by the ACTOR4 software, to be converted to reflectance
during the pre-processing phase.

– Classification Map: Raster file, this map has been pre-computed and provided
by the "AVT AS" company to be used as "ground truth" because of the ab-
sence of field survey data. It provides a classification of the area by assigning
one of the 7 categories to each pixel: 0 for "unclassified", 1 for "dead spruce",
2 for "spruce", 3 for "larch", 4 for "deciduous trees", 5 for "shadow" and
6 for "scotch pine" (Figure 3.1 and 3.2). These maps have been computed
from the analysis of the following indexes: Anthocyanin Reflectance Index,
Atmospherically Resistant Vegetation Index, Carotenoid Reflectance Index,
Carotenoid Reflectance Index, Enhanced Vegetation Index, Leaf Chlorophyll
Index, Modified Chlorophyll Absorption Ratio Index, Modified Red Edge Nor-
malized Difference Vegetation Index, Modified Red Edge Simple Ratio, Mod-
ified Triangular Vegetation Index, Normalized Difference Vegetation Index,
Optimized Soil Adjusted Vegetation Index, Photochemical Reflectance Index,
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Plant Senescence Reflectance Index, Red Edge Normalized Difference Vegeta-
tion Index, Red Edge Position Index, Red Green Ratio Index, Simple Ratio,
Structure Insensitive Pigment Index, Sum Green Index, Transformed Chloro-
phyll Absorption Reflectance Index, Triangular Vegetation Index, Vogelmann
Red Edge Index.

Figure 3.1: Area 5 classification map provided by the AVT AS company
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Figure 3.2: Area 3 classification map provided by the AVT AS company

• PRISMA: it is a Sun-synchronous hyperspectral satellite, deployed by ASI (Agen-
zia Spaziale Italiana). Its revisit time is 29 days with a relook of 7 days and it is
a pushbroom satellite based on a prism technology. Being a hyperspectral satellite,
PRISMA can cover the 400– 2500 nm spectral range with 240 bands (split in 66
bands for the Visible and Near Infrared cube and 174 for the Short Wave Infrared
one) at a very small spectral resolution (9–13 nm VNIR and 9–14.5 nm for SWIR).
Acquisitions are taken with a swath of 30km at a spatial resolution of 30.7m [6].
PRISMA has also an additional band, coming from a panchromatic sensor, with a
higher GSD (5m), that can be used to improve the spatial resolution with the help
of pansharpening techniques [18] (those methods have not been used in this study).
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Figure 3.3: A visual representation of PRISMA and AisaFENIX" bandset; each seg-
ment represents a sensor band (wavelengths in nanometers) for the Aerial, PRISMA and
PRISMA reduced hyperspectral cube (the latter is a PRISMA cube with a cut on the last
15 bands, to match the same final wavelength of the aerial sensor, as it will be further
explained in the next chapters)

In order to have a proper validation (with the aerial data) of the PRISMA analysis that
has been developed, it is important to have temporal coherence between the aerial sensor
acquisition and the satellite one.
Since the aerial survey has been performed on 8th of October 2022, the closest cloud-free
acquisition in time, intersecting the Gadertal area, has been researched in the PRISMA
catalogue through the ASI portal.
As a result, the best match in the PRISMA catalogue has been found on October 16th

2022. In the following table, the main information on the aerial and PRISMA acquisitions
has been resumed:

Date Central Coordinates (lat,long)

PRISMA 16/10/2022 46.565, 11.771
aerial 08/10/2022 43.626,11.895

Table 3.1: Satellite and aerial image information
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Figure 3.4: RGB representation of PRISMA’s study area. The pixel coordinates are
represented on the x and y axis (as for all the other following images)

Figure 3.5: RGB representation of aerial study area (area 5)
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Figure 3.6: RGB representation of aerial study area (area 3)

The full code implementation of this study can be freely accessed on GitHub. In devel-
oping the Python code for this project, the power of several libraries and technologies
has been exploited. Key among these were numpy, rasterio, gdal, h5py, PIL, cv2, scipy,
sklearn, seaborn, pandas, and geopandas. The numpy library enabled efficient numeri-
cal operations and array manipulation, while rasterio and gdal facilitated the handling
and processing of geospatial raster data. h5py provided a convenient interface for work-
ing with the Hierarchical Data Format (HDF) in which PRISMA data is provided, and
PIL empowered image processing capabilities. Additionally, cv2 (OpenCV) was used to
aid image interpolation and resizing tasks, while scipy facilitated scientific statistical test
computations (e.g. Shapiro test). To produce validation matrics, sklearn (Scikit-learn)
offered a comprehensive toolkit, and seaborn provided aesthetically pleasing visualiza-
tions. Finally, the combined power of pandas and geopandas allowed for efficient data
manipulation and analysis, particularly for geospatial datasets. Leveraging these libraries
and technologies greatly enhanced the efficiency and effectiveness of the project.

3.2. Pre-Processing

Pre-processing is a crucial step in remote sensing data analysis. In this preliminary phase,
images are prepared to go through the main processing of the study: the Beetle detection.

https://github.com/AlessandroAustoni/Satellite_Bark_Beetle_Detection
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As anticipated from Figure 3.8, the procedure has been customized accordingly to the type
of sensor: aerial or satellite. In figure 3.7 a legend of the chapter flowchart is presented.

Figure 3.7: legend workflow schema

Figure 3.8: pre-processing workflow schema

3.2.1. PRISMA data pre-processing

After downloading the acquisitions from the PRISMA portal at their highest available
processing level (L2D), the data have been first accessed in the HDF5 (Hierarchical Data
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Format) format and then copied inside two different data cubes (a Numpy stack of the
different bands stacked along the third dimension, one for VNIR and another for SWIR)
and then processed in order to transform the raw Digital Number into a reflectance value,
following the procedure explained in PRISMA manual (User Manual).

XXX = L2scaleXXXmin +XXXDN
.(L2scaleXXXmax − L2scaleXXXmin)

65.535
(3.1)

Where XXX refers to the specific datacube of the dataset: “PAN”, “VNIR” or “SWIR”.
Finally, the VNIR and SWIR cubes (in WGS84 Coordinate Reference System) have been
stacked together, converted into a TIFF file and projected to UTM zone 32N to be
compatible with aerial data. The separation of the two datacubes before computing the
reflectance is crucial since the scaling factor in equation 3.1 is specific for the type of cube
(different from VNIR to SWIR).
After those initial steps, the first output of the procedure is created: the reflectance
PRISMA datacube.
The TIFF file obtained, however, is not perfectly aligned with the aerial data. This
phenomenon suggests the need for a coregistration step.
Coregistration is a fundamental task in remote sensing data analysis because it allows
images to be perfectly overlapped and match each other. The classification analysis can
benefit from coregistration, by reducing the number of ‘false positives’ or ’false negatives’
(wrongly detected because of the misalignment of the aerial and satellite acquisition).
According to [28], PRISMA L2D data is already geocoded and orthorectified, but the
lack of PRISMA Ground Control Points, causes the georeferencing accuracy to reach a
very low level, where images from the same sensor in different time instants are shifted in
the order of 2-3 pixels (up to 5-8 pixels).
Since the two sensors have different ground coverage, it would have been complicated
to rely on coregistration techniques based on pixel intensity (e.g. Gefolki [26]), because
images need to have the same extent and frame the same portion of land. By cropping
the PRISMA acquisition to the small local area framed by the asiaFENIX aircraft sensor
of 758m x 1064m, it would only be possible to coregister satellite data in this zone and
not to its complete 30km x 30km extent.
Given that, it has been chosen to not perform a proper coregistration, but an actual new
georeferencing for the satellite image. By doing so, the aerial image is taken as a reference,
so that PRISMA and asiaFENIX data could share the same GCP grid (actually the aerial
GCP grid, since as anticipated is the most accurate between the two).
Since the procedure is only necessary in order to avoid errors in the validation step, the
satellite image has been coregistered only with area 3 of the aerial sensor, which is the

http://prisma.asi.it/missionselect/docs/PRISMA%20Product%20Specifications_Is2_3.pdf
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hold-out data, used for the validation step. The procedure has been implemented on
QGIS, by manually selecting a set of double points (points corresponding to the same
pixel on both aerial and satellite data) as evenly distributed on the image border and
centre as possible (given the lack of recognizable features, due to the low resolution of
PRISMA images). In order to explore the best possible algorithm for the transformation,
a k-fold cross-validation technique has been implemented, comparing the residuals of each
procedure:

• Linear transformation

• Helmert transformation

• 1st degree Polynomial transformation

• 2nd degree Polynomial transformation

• Projective transformation

In the k-fold validation procedure, the first set of fixed points has been chosen (used for
warping), meaning that none of those points will be removed in each step of the k-fold
comparison. The smallest set of remaining points has been kept as leave-one-out so that
the residuals will be computed for each transformation as many times as the leave-one-
out points (k). The residuals evaluated leaving out each point of the smallest set, will be
lately averaged, in order to assign a mean residual pixel value to the transformation type.
Finally, after comparing the different residuals and once the transformation has been
chosen, the reflectance cube is georeferenced on the aerial data and a new coregistered
cube is produced as output.
The second output of the pre-processing phase is obtained by cutting out the last 15
bands from the datacube, resulting in a new "reduced" datacube of 215 bands. This
intermediate result is fundamental for the following "band pairing" procedure, in the
Unmixing step. Here, each band of the aerial sensor (345 in total) is paired to the closest
band of the PRISMA reduced cube (215 in total). Without this removal, the band pairing
algorithm wouldn’t perform correctly, whereas by removing the last 15 satellite bands, the
last wavelength in the cube would be the same as the aerial one (2400nm as explained in
Figure 3.3, instead of 2500nm for the original PRISMA image). For a deeper explanation
of the band-paring algorithm see Section 3.3.
In the following list, the inputs and final outputs of the PRISMA pre-processing step have
been summarized:
INPUTS:

• PRISMA cube: datacube, composed of raw DN (digital numbers) of the PRISMA
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acquisition

OUTPUTS

• PRISMA coregistered reflectance cube: datacube, composed by reflectance values
and aligned with the aerial acquisition

• PRISMA reduced cube: coregistered reflectance cube, which size is reduced from
230 bands to 215 (cut on last 15 wavelengths)

3.2.2. asiaFENIX data pre-processing

The asiaFENIX acquisitions are provided in a BSQ (band sequential) data format, which
is projected in "WGS84 / UTM zone 32N".
Since the images have been already preprocessed by the AVT AS company, the procedure
to convert raw values into reflectance is not as complex as the satellite one. Therefore,
after the atmospheric correction of the ATCOR4 software used by the company, the data
is delivered with a reflectance scale factor of 10000 and a "No Data" value of 15000, so
the procedure used to correct the values is the following:

reflectance =
DN

10000
(3.2)

Where DN stands for Digital Number. Once the reflectance is computed, Area 3 of the
aerial study area is used as a reference to coregister PRISMA images (as explained in
Section 3.2.1).
In the following paragraph, the inputs and final outputs of the asiaFENIX pre-processing
step have been summarized:
INPUTS:

• Aerial BSQ file: datacube, composed by raw DN (digital numbers) of the asiaFENIX
acquisition

OUTPUTS

• Aerial reflectance cube: GeoTIFF datacube, composed by reflectance values of the
asiaFENIX acquisition

3.3. Spectral Unmixing

Since the difference in spatial resolution of the aerial and satellite sensor is very significant,
the analysis may suffer from the presence of the so-called "mixed pixels". As anticipated,
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the PRISMA sensor has a resolution of almost 30.7m, while asiaFENIX allows for a
resolution of 2m, this means that a single satellite pixel may contain approximately 240
aerial pixels. Given that, it is clear that different classes of land cover (unclassified, dead
spruce, spruce, larch, deciduous trees, shadow, scotch pine) may be contained in the same
PRISMA pixel. The strategy adopted to estimate the percentage of pure PRISMA pixels
is to compare the satellite acquisition with the classification map of the company, which
allowed the computation of the percentage of pixels containing a unique class.
From this analysis, it turned out that only the 25% of PRISMA pixels (intersecting with
area 5) are pure and the 99% of these pixels fall in the category of unclassified pixels,
while just the remaining 1% are pure Spruce tree pixels. This undoubtedly explains why
it is crucial to apply Unmixing (the general schema followed in this study is presented in
Figure 3.9).

Figure 3.9: unmixing workflow schema

Since the unmixing algorithms require large computational capabilities, Google Earth
Engine has been chosen as an auxiliary platform for the implementation. By simply
making use of the "ee.Image.Unmix" (GEE Unmix) procedure (see section 2.2), this
powerful function is able to produce several abundance maps of different user selected
classes, exploiting Google resources to speed up the computation.
Given that the main objective of this study is to inspect spectral indexes of trees only, to
detect the ones affected by possible diseases, it is necessary to detect trees’ crowns first.
In this way, the index extraction can be isolated just in the area covered by trees.
That being said, the unmixing procedure has been adopted with the main goal of creating
trees’ binary masks. Before producing the abundance map, the user is required to select
the different classes that need to be detected by the algorithm, and in particular, given the
features contained in the studied acquisitions, it has been chosen to inspect the following
categories:

• Healthy trees: areas of green and healthy trees

• Unhealthy trees: tree’s areas affected by visible diseases (grey/red leaves)

https://developers.google.com/earth-engine/apidocs/ee-image-unmix
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• Unvegetated areas: area not covered by green vegetation (artificial surfaces, bare
soil, snow and river bed)

• Grassland: areas covered by green grass

• Water: rivers or lakes

• Shadow: pixels in which the shadow, produced by trees’ canopy, buildings, hills
and many other features, obstruct the classification

3.3.1. AsiaFENIX image spectral unmixing

The first step of the unmixing procedure is the extraction of the endmembers, also known
as spectral signatures as shown in Figure 3.9. Each different surface type, such as grass-
land, water, trees, and shadows reflects radiation in each channel in a peculiar way. The
spectral signature is the radiation reflected as a function of the wavelength. Since the
aerial sensor contains 345 bands, while the PRISMA one has only 230, the aerial cube has
been used as a reference to extract the spectral signature, in order to exploit the content
of the sensor with greater spectral resolution.
Spectral signatures have been extracted from QGIS, by manually defining vector regions
of interest (ROI), for each unmixing class. Once ROIs have been chosen, it has been se-
lected the median of the reflectance of each pixel inside every region for each band of the
sensor, which produced a set of 6 arrays with size 345 (one reflectance value for each band
of the sensor). As already stated, the operator used to average the pixel values in each
region is the median, which is a more robust indicator of the actual average reflectance
in case outliers are present (differently from the mean operator).
ROIs have been created starting from area 5 and inferring classes from the RGB repre-
sentation, as can be observed in Figure 3.10.
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Figure 3.10: Training regions of interest for the unmixing procedure

Aerial endmembers’ spectral signatures are used as input of the Google Earth Engine
"ee.Image.Unmix" procedure, together with the aerial cube, and the function will return
the abundance maps of each selected class. Abundance maps are in the form of TIFF
files, as single bands containing a percentage value. Each value represents the raster of a
given class contained in each pixel, expressed as the percentage of mixing. By summing
up all values belonging to the same pixel in each abundance map, the result obtained
would be 1 (100%).
Since abundance maps contain continuous values ranging between 0 and 1, it is not
possible to use them as masks to filter out trees’ crowns. To overcome this, a threshold
has been selected to produce binary maps from trees’ abundance maps. Binary maps are
produced just for two classes, which are healthy and unhealthy trees, which will be unified
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(by a simple union operation) to obtain a single binary mask for trees. The threshold to
extract binary images is calibrated on the area 5 classification, provided by the company.
The percentage of healthy and unhealthy pixels is deduced by counting pixels belonging
to these classes in the classification map. The percentage (Pixel%) is not directly applied
to filter the abundance map, but it will be used to define the percentile. This percentile is
the abundance value that will split the continuous distribution into two separate groups
(Percentile = 100% - Pixel%): the values greater than the percentile will be considered as
ones while the lower ones as zeros. In this way, only the Pixel% of the highest values in
the image (the most representative of that class) will be extracted, therefore the binary
map will reflect the same percentage of healthy and unhealthy trees estimated by the
company.
The abundance value of pixels extracted with the aforementioned technique may include
also low abundance percentages, which are not exactly representative of the class they are
assigned to. Nevertheless, the low spatial resolution of PRISMA increases the number of
mixed pixels in the image, reducing considerably the number of pure pixels, which makes
the selection of a more conservative threshold a needed choice.
Since binary maps produced in the aforementioned way, are affected by the so-called "salt
and pepper" effect, they will go through an additional processing step before being used:
sieving. In order to remove the isolated pixels and smooth the results, a median blur filter
is applied to the binary image, with the following formula. This is a non-linear filtering
technique, that takes a median of all the pixels under the kernel area and replaces the
central element with this median value. That technique is quite effective in reducing
a certain type of noise (including the salt-and-pepper one) with considerably less edge
blurring as compared to other linear filters of the same size.
Once produced, the final binary tree binary mask will be useful in the next step of Spectral
Indexes Extraction (Chapter 3.4).
INPUTS

• Aerial reflectance cube: output of the previous pre-processing step

OUTPUTS

• Endmembers arrays: 6 arrays of size 345, containing a reflectance value for each
band of the aerial sensor. Each array is the pure signature of the six unmixing
classes

• asiaFENIX trees’ masks (one for healthy and one for unhealthy trees): binary mask
of tree’s canopies (1 for tree’s pixels, and 0 for non-trees)
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3.3.2. PRISMA image spectral unmixing

After endmembers are extracted from the aerial sensor, they need to be transformed in
order to be used with the PRISMA datacube for the same unmixing procedure. As antici-
pated in the previous section, this will allow augmenting the satellite’s spectral capabilities
by leveraging the aerial high spectral resolution data. Therefore aerial endmembers need
to be resized, from a vector of length 345 to a vector of size 230, so that it will match the
PRISMA satellite band number.
To reach this objective, a technique to pair the different bands of the aerial and satellite
sensor was implemented by averaging aerial bands in groups. First of all, each PRISMA
band (wavelength) is associated with an id (1,2,3...230). Then, each aerial wavelength is
assigned with the id of the corresponding closest PRISMA band, creating what has been
named as "pairing array" (Figure 3.11).

Figure 3.11: Visual representation of the "pairing array" extraction

Once obtained, the "pairing array" is used to average the aerial endmembers, by com-
puting the mean of all the aerial endmembers with the same id and finally obtaining an
endmember vector of 230 bands, suitable for satellite data.
In order to validate this approach, spectral signatures of the 9 pure tree PRISMA pixels
have been compared with the 1924 aerial ones, falling inside this first 9.
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Figure 3.12: Mean and standard deviation of pure PRISMA healthy Spruce trees’ spectral
signatures. The solid lines represent the mean of the 9 spectral signatures of PRISMA and
the 1924 ones of asiaFENIX, while the transparent area around it, identifies the standard
deviation of the same endmembers

Figure 3.13: Mean and standard deviation of pure asiaFENIX healthy Spruce trees’ spec-
tral signatures. The solid lines represent the mean of the 9 spectral signatures of PRISMA
and the 1924 ones of asiaFENIX, while the transparent area around it, identifies the stan-
dard deviation of the same endmembers

Figure 3.12 and 3.13, show respectively the mean and standard deviation of the reflectance
value assumed in the different wavelength spans.
As can be appreciated from this comparison, the two spectral signatures have the same
trend over almost the same spectral range, with a small difference in the reflectance
peak reached in the curve between 600nm and 1300nm (0.2 for asiaFENIX and 0.125 for
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PRISMA).
This spectral correspondence, reveals a good compatibility of cross-sensor signatures,
which enforces the validity of the band pairing procedure.
Finally, once satellite endmembers are computed, the trees’ binary masks are extracted
in the complete PRISMA tile with the same pipeline explained for the aerial sensor in
Section 3.3.1.
INPUTS

• PRISMA reduced cube: output of the pre-processing step

• Endmembers arrays: 6 arrays of size 230, containing a reflectance value for each
band of the satellite sensor. Each array is the pure signature of the six unmixing
classes, obtained by the band pairing with aerial endmembers

OUTPUTS

• PRISMA tree’s mask: satellite binary mask of tree’s crowns (1 for tree’s pixels, and
0 for non-trees)

3.4. Vegetation Indexes Extraction

The index extraction phase, is the main step of the workflow chain, as vegetation indexes
are calculated in the zones with trees presence, to infer their health status. The main
pipeline is summarized in Figure 3.14

Figure 3.14: Vegetation Index Extraction workflow schema
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3.4.1. Threshold extraction on asiaFENIX data

Since area 5 of the aerial data set is used as training input for the analysis, the starting
point of this step is masking the aerial reflectance cube (of area 5), with the healthy and
unhealthy trees’ mask obtained from the unmixing procedure (chapter 3.3). Once done,
the result will be a set of two reflectance datacubes, one with only reflectance value be-
longing to healthy trees and the other with just unhealthy ones.
After that, datacubes are ready to be processed in order to obtain vegetation indexes.
To select the best suitable indexes to assess a possible bark beetle attack, a subset of the
most influential indexes have been extracted from the collection of the ones present in
the State of the Art of this study (chapter 2). The selection has been carried out accord-
ingly to the result of [7], in which a Feature selection over several indexes was realized
using the sequential floating forward selection (SFFS) method as the search strategy and
a separability measure for the accuracy of the wSVM classifier after cross-validation on
the training set. Conforming to [7], the feature selection algorithm selected eight indexes
for the classification: CLRE, GNDVI, NBRI, NDREI, NDVI, NRVI, REIP and SLAVI.
The only index that didn’t produce meaningful results for the study is REIP. As a matter
of fact, the value distributions of healthy and unhealthy vegetation didn’t show a clear
separation, which resulted in the impossibility to set a proper threshold for this index (as
will be explained later in this Chapter). Each of these seven indexes (neglecting REIP),
has been computed by implementing a Python function on both reflectance cubes (healthy
and unhealthy datacube).
This separated approach allowed to perform independent statistics over the healthy and
unhealthy data sets, giving more insight into the values assumed by the two different
categories. As a matter of fact, a random sample of pixels has been extracted from both
healthy and unhealthy index maps for each index in the subset, and a histogram of the
corresponding values has been produced.
The size of the random sample has been selected accordingly to Cochran’s equation for
large populations, selecting a proper precision level and confidence (formula 3.3).

n0 =
Z2pq

e2
(3.3)

Where:

• e: is the desired level of precision (i.e. the margin of error)

• p: is the (estimated) proportion of the population which has the attribute in ques-
tion,
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• q: is 1 – p.

As the final objective of index extraction is to create a binary map for unhealthy (or dead)
trees for each of the seven indexes computed from the satellite data, the last step in the
asiaFENIX chain is to find a suitable threshold to binarize satellite index maps, starting
from some tuning based on the aerial area 5.
Each threshold is computed by calculating the intersection between the distribution of
samples from healthy and unhealthy trees, for each one of the seven aerial index maps
(Results of the procedure are reported in Section 4.3).
INPUTS

• Aerial reflectance cube: output of the previous pre-processing step

• asiaFENIX trees’ masks (one for healthy and one for unhealthy trees): output of
the previous unmixing step

OUTPUTS

• Vegetation map threshold: seven thresholds (one for each index of the subset selec-
tion), used to binarize satellite index maps

3.4.2. Index binary map production from PRISMA data

For PRISMA the index extraction pipeline is the same as the aerial one up to the index
computation. Therefore, the 30kmx30km reflectance tile is masked through the binary
trees’ mask (which in this case it is just a single mask, summing up healthy and unhealthy
trees). The seven indexes from the index selection are then computed on the aforemen-
tioned reflectance cube, producing seven index maps. As anticipated in Section 3.4.1, each
index map is then binarized through a threshold computed from a statistical analysis of
aerial data (area 5). Being these indexes a measure of the vegetation health, each pixel
lower than the threshold will be assigned a value of 1, which stands for unhealthy trees,
while all the others will be given a value of 0, which represents a healthy tree. The only
exception is made for the CLRE (Chlorophyll Red Edge Index) which differently from all
the other seven indexes decreases with the health state of the tree since it is sensible to
the red edge band, which is an indicator of plant stress. For this particular case only, the
value of 1 (unhealthy) will be assigned to pixels exceeding the threshold.
INPUTS

• PRISMA reflectance cube: output of the previous pre-processing step

• PRISMA trees’ mask: output of the previous unmixing step
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OUTPUTS

• Vegetation index binary maps for unhealthy trees: 7 binary maps (one for each
index in the subset), underling the presence of unhealthy trees

3.5. Frequency Analysis

The last step before data validation is the frequency analysis, where for each pixel it is
computed the frequency with which the threshold is exceeded in the seven thresholded
index maps. More accurately, all the seven binary maps obtained from the previous Index
Extraction step are summed together, so that the new map will assume values ranging
from 0 (minimum frequency) to 7 (maximum frequency).
Since the resulting frequency map is composed of continuous integer values, it is crucial,
in order to make results comparable with the aerial classification, to preserve the binary
classification (0 for healthy and 1 for unhealthy). This last step is obtained (as can be
appreciated from the schema in figure 3.15), by making use of a specific threshold. This
threshold is selected with the same approach explained in section 3.9, which involves
counting the percentage of unhealthy pixels in the validation classification map provided
by the AVT AS company and replicating the same percentage of unhealthy pixels in the
binary frequency map.

Figure 3.15: Frequency analysis workflow schema

INPUTS

• PRISMA index binary map: seven binary maps of unhealthy trees, outputs of the
previous Vegetation Index Extraction step
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OUTPUTS

• PRISMA final binary map: a single binary map that classifies unhealthy and healthy
trees (with respectively 1 and 0)

3.6. Validation

The last step in the workflow pipeline is the validation of the results obtained from the
satellite PRISMA data using as a reference the output of the AVT AS company aerial
survey. Since area 5 (Figure 3.5) was used for training purposes, area 3 was devoted to
validation (Figure 3.6).
The entire procedure involves mainly the processing of PRISMA images and it is resumed
in Figure 3.16.

Figure 3.16: Frequency analysis workflow schema

Starting from the PRISMA output of the previous workflow step of Frequency Analysis
(final binary mask of unhealthy trees), the map has been clipped in order to frame the same
land portion of the aerial area 3. It is important to underline that this final binary map
has been obtained, after the whole workflow procedure explained in the previous chapters,
starting from data already coregistered with area 3, in the first step of preprocessing
(explained in section 3.2.1). Because of that, the map is perfectly aligned with the aerial
data after clipping.
Given the higher spatial resolution of aerial data, it is crucial to resample the satellite
image to match the aerial resolution (from (20, 26) to (276, 360) pixel size).
Finally, the binary maps resulted from this study (obtained from PRISMA) were compared
with the unhealthy binary maps extracted from the aerial survey classification map in two
different ways:
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• Creating a confusion matrix: to create a confusion matrix, satellite data is assigned
to the predicted dataset, while aerial data is assigned to the actual one. Finally, the
matrix counts the number of pixels corresponding to TP (True Positive), TN (True
Negative), FP (False Positive) and FN (False Negatives), allowing to compute the
accuracy and precision parameters, including the overall accuracy.

• Creating an error map: the error map is a spatial representation of TP, TN and
misclassified pixels. It is obtained by a simple sum of the two actual and predicted
binary maps, where values range between 0 and 2. The value of 0 corresponds to
True Negative pixels, the value of 1 corresponds to misclassified pixels and 2 for
True Positives.

INPUTS

• PRISMA final binary map: output of the previous frequency analysis step

• Aerial classification map: raster file that classifies area 3 of the survey accomplished
by AVT AS company (as described in Chapter 3.1)

OUTPUTS

• Confusion matrix: confusion matrix of predicted values in the final satellite binary
map

• error map: spatial distribution of TP, TN and misclassified pixel
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In the following section, the results of the different workflow steps will be presented sepa-
rately. No distinction was made on the type of sensor since most of the results produced
involve the combined analysis of data coming from both PRISMA and asiaFENIX.

4.1. Pre-Processing results

As anticipated in section 3.2.1, satellite data has been re-georeferenced (or coregistered),
using aerial data of area 3 as reference. As already stated, the coregistration has been
performed only with area 3, since only in the validation process binary maps will be su-
perimposed to obtain the error maps. If double points were collected also from area 5,
the coregistration would have taken into account double points’ displacements from both
areas, performing an averaged transformation, which would have been a more robust
transformation against outliers, but producing a locally misaligned image with respect to
area 3. The choice of co-registering with area 3 only was made since the purpose of the
coregistration step is not to improve PRISMA’s overall georeferentiation but to locally
align the image with validation data in order to reduce the number of false positives and
negatives.
Five different transformations have been explored following a k-fold cross-validation pro-
cedure, as already anticipated in Chapter 3.2.1.
This cross-validation procedure is very useful since it allows residuals to be affected by
only one displacement. By averaging the results for k possible configurations, it is possible
to take into account displacements in different portions of the image.
As a result, a total of seven tie points have been collected, where five of them have been
kept for warping (fixed points) and the remaining two for the "leave one out" procedure.
The spatial location of the seven tie points is represented in Figure 4.1 and 4.2, where
respectively the first show those points in the PRISMA cube, while the second in the
asiaFENIX one.
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Figure 4.1: The set of 7 tie points selected for image coregistration on PRISMA image

Figure 4.2: The set of 7 double points selected for image coregistration on asiaFENIX
image

As can be observed from Figure 4.2, points are mainly distributed on the borders of the
aerial image. Moreover, from image 4.1 it is clear how the low resolution of PRISMA,
makes features almost unrecognizable, therefore it has been possible to associate tie points,
just by using the shape of the edges of the forest as reference points, which are mainly
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located at the borders of the aerial acquisition. This limitation is also the reason why it
was not possible to collect a higher number of tie points. In Table 4.1, the list of mean
residuals for each transformation type is shown. Results have been averaged considering
all the leave-one-out configurations. Units are reported in pixels and the criteria to choose
the best transformation type is simply the selection of the method with the smallest mean
residual. As a result, the Helmert method has been selected as the transformation type.

Mean error for each coregistration algorithm

Mean residual

Linear transformation 1.04

Helmert 0.85

Polynomial of degree 1 0.92

Polynomial of degree 2 0.99
Projective transformation 0.92

Table 4.1: Pixel mean error for each transformation type (pixel units)

Finally, the effects of the coregistration procedure with the Helmert transformation can
be appreciated from the before and after representation in Figure 4.3

Figure 4.3: Before and after representation of the satellite image coregistration

Before coregistration, the two images are clearly misaligned, as can be evicted from the
main features of the area: the forest and the unvegetated path crossing in the middle.
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The co-registration is fundamental, since considering the significant error between the two
acquisitions, a validation procedure wouldn’t be possible without aligning the two images.
The results show how after the coregistration procedure, the situation is visibly improved.
Needless to say, the results are not perfect, as the coregistration procedure is performed
with a low amount of double points, not evenly distributed in the image space. Although
this may not result extremely accurate for other types of analysis (e.g. change detection),
the solution is expected to provide sufficiently precise outcomes for a simple validation
procedure considered in this work.

4.2. Unmixing results

The first results of the unmixing procedure are the asiaFENIX spectral signatures ex-
tracted from the ROIs of area 5 presented in Chapter 3.3.1 (Figure 3.10). The PRISMA
satellite signatures are then obtained from a "band pairing" procedure, deeply explained
in Section 3.3.2, which allows to average the reflectance between the aerial bands.
Trees signatures in Figure 4.4 are extremely coherent with the classical signatures of
healthy vegetation. The reflectance, as can be observed from the graph, is generally ab-
sorbed in the visible range by healthy leaves, and reflected in the higher portion of the
visible spectra, around the green and blue band [17]. The healthy vegetation usually
experiences a strong response between the green and Near Infrared range, as confirmed
in Figure 4.4.
As expected, the curve is almost flat to 0 in the SWIR region, as higher values in this
portion are usually associated with low water content. Water, in fact, tends to absorb
light in this region and if the vegetation is healthy, water content is usually higher [2].
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Figure 4.4: Healthy tree spectral signature of aerial sensor and PRISMA band paired
version. The blue curve is used to represent the satellite signature, while green is used
for the aerial one

By comparing the spectral signature of unhealthy trees with the healthy ones, it can be
immediately noticed how the visible and NIR spectra trend is clearly flattened. While
healthier trees (as well as grassland) see their reflectance increase around the green band
(with a clear first increasing trend at 550-600nm, which becomes stable at a reflectance
value of 0.2), unhealthy ones have a more constant trend in the visible and near-infrared.
Despite this, the same peak observed in healthy trees can be appreciated at 1250nm.
After this maximum, the curve is almost the same up to the middle of the SWIR spectra
(1785nm), but after that unhealthy trees have a higher response up to 2500nm (with a
reflectance constant value of 0.1), while the response of healthy trees is almost absent.
As known from the literature, vegetation health is characterized by a good response in the
visible and NIR spectra, and this explains the flattening trend experience in this region
by unhealthy trees. At the same time, as anticipated, both curves have a peak around
1250nm. This region, at the border of NIR and SWIR, is commonly used to assess the
type of vegetation, which is totally coherent with the fact that independently from their
health, both classes belong predominantly to the category of Spruce trees.
Moreover, the lower reflectance values in the SWIR region are consistent with the expec-
tations since the absence of water in unhealthy vegetation allows for higher reflection (less
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absorption) of light in this spectrum range.

Figure 4.5: Unhealthy tree spectral signature of aerial sensor and PRISMA band paired
version. The blue curve is used to represent the satellite signature, while green is used
for the aerial one

Since the objective of unmixing is to depict tree canopy abundances per pixel, in order to
extract binary trees’ masks, it was chosen to select a restricted amount of classes. This
choice is justified by the fact that to properly define the boundaries of trees’ zones, it is
important to have a small amount of well-distinct classes. For this reason, some of these
next signatures may contain more than one category of land under the same class.
With the term "unvegetated area", it has been decided to encompass all those categories
which do not belong to vegetation: river bed, bare soil, rocks, and artificial surfaces
(buildings and roads). The curve in Figure 4.6 reflects the usual trend of soil [14] in the
first part of the visible and NIR portion, while it shows signs of a faint reflectance decline
in the SWIR spectra, more common of artificial surface signatures [33].
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Figure 4.6: Unvegetated area spectral signature of aerial sensor and PRISMA band paired
version. The blue curve is used to represent the satellite signature, while green is used
for the aerial one

Grassland class falls into that category of green vegetation, which not includes trees (e.g.
grass or small green plants). Figure 4.7 shows even greater similarity to the healthy
vegetation signatures trend, with respect to the trees’ signature seen in the previous lines.
This is something that can be expected, as trees may contain mixed pixels composed of
wood or shadow (in addition to canopy), which can affect the pure signature distribution
over the spectra.
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Figure 4.7: Grassland spectral signature of aerial sensor and PRISMA band paired version.
The blue curve is used to represent the satellite signature, while green is used for the aerial
one

Figure 4.8: Water spectral signature of aerial sensor and PRISMA band paired version
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Regarding water and shadow in Figure 4.8 and 4.9, it is possible to appreciate a very
similar curve, with values always almost close to zero, because of the absence of light
scattering.
The only difference is a weak response in the low portion of the visible spectra of water,
which matches with literature results [25].

Figure 4.9: Shadow spectral signature of aerial sensor and PRISMA band paired version.
The blue curve is used to represent the satellite signature, while green is used for the
aerial one

Finally, it can be noticed for all spectral classes, that the PRISMA band paired signatures
follow the same pattern as the aerial ones, proving the right operating principle of the
"band pairing procedure".
Once satellite band-paired spectral signatures have been produced, they are used as input
for the Unmixing procedure to produce abundance maps. The complete results for the
entire 30km x 30km tile are reported in Figure 4.10. Without a closer look at the single
study areas, it is quite hard to understand the effectiveness of those maps, due to the
large coverage of the sensor (images frame a big portion of land). Despite this, by a quick
comparison with the RGB representation in Figure 3.4, it is possible to infer that the
algorithm is correctly identifying the shadows, which appear as black areas in the RGB.
Concerning the unvegetated area, a village at the top left of the acquisition is correctly
detected from the maps, as well as snow which is correctly identified as a non-vegetated
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area. On the other side, the remaining classes need to be further inspected from a closer
look at the training and validation area.

Figure 4.10: PRISMA abundance maps of the entire 30km2 acquisition tile

Figure 4.11: PRISMA abundance maps of area 5
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Figure 4.12: PRISMA abundance of area 3

In both cases (areas 3 and 5), a significant amount of healthy trees’ crowns seem to
be properly detected by a high tree abundance, depicting an accurate boundary with
grassland, which is also precisely identified by the algorithm. However, due to the coarse
spatial resolution of the PRISMA image, it is visibly hard for the algorithm to outline
the small shadow areas that are included inside the forest. As a matter of fact, by a
close look at both areas 5 and 3, it can be evicted how the shadow abundances are not
properly isolated, but on the contrary, they are quite spread in the trees’ crown area. This
situation is quite comprehensible, considering that the spatial resolution of the satellite is
30m, while the size of the smallest shadow holes in the aerial acquisition doesn’t exceed
the meter level (as can be observed from the unclassified and shadow areas in the aerial
classification map in Figure 3.2 and 3.1).
After producing the abundance maps, the algorithm automatically extracts, from a quick
analysis of the classification map of the training area (area 5), the exact number of pixels
and produces the percentage of unhealthy pixels to use as a threshold for the abundance
map binarization: 39%. The results of the entire PRISMA acquisition are collected in
Figure 4.13.
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Figure 4.13: PRISMA binary maps of trees (healthy and unhealthy together) before and
after sieving

The last step is the sieving of the mask, to remove possible salt and pepper effects. For
this study, it has chosen to apply a median blur filter with a kernel size of 3. On the
right side of Figure 4.13, the effects of sieving are voluntarily slightly noticeable, since
with such a small kernel size, it will be possible to filter out just the finest imperfections
at the pixel level (which may be generated by outliers).

Figure 4.14: PRISMA binary maps of trees (healthy and unhealthy together) of area 3
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Figure 4.15: PRISMA binary maps of trees (healthy and unhealthy together) of area 5

After observing the zoom on the binary map produced on the validation and training area,
it is possible to appreciate how the aforementioned phenomenon of shadow overestimation
in the abundance maps is propagated to the binary results. Despite this, the majority of
the trees’ crowns are still identified by the algorithm.
Finally, to produce the training input for the spectral index extraction step, the same
process is replicated for aerial images of area 5, but in this case, two different binary
maps will be produced instead of one. The first map is a mask for healthy trees, while the
second corresponds to unhealthy ones. The results are reported in the following figures
(figure 4.17 and 4.16), and they are proving the higher effectiveness of this algorithm with
higher spatial resolution data.
From a quick inspection of the areas detected by the binary mask in Figure 4.17, it can
be discovered a close similarity to the stressed areas detected by the survey of the "AVT
AS" company in Figure 3.1
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Figure 4.16: Binary mask of healthy trees of area5, extracted from aerial data for training
purposes

Figure 4.17: binary mask of unhealthy trees of area 5, extracted from aerial data for
training purposes
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4.3. Spectral Indexes Extraction results

Before inspecting each PRISMA spectral vegetation index and analysing its spatial dis-
tribution in a map, it is important to work on aerial data to produce training inputs.
In the first place, the binary maps obtained from the previous Unmixing step (Figure
4.17 and 4.16) are used to separately compute the vegetation indexes on aerial data for
healthy and unhealthy trees. In the two maps in Figure 4.18, it can be appreciated one
example of vegetation index (in particular NDVI). This example, clearly explains how the
two tree classes exhibit different clusters of NDVI values, which are closer to 1 in healthier
vegetation and to 0 in unhealthier trees.
Since the aim of this chapter is to obtain results from the satellite data, the same vegeta-
tion map is reproduced with the PRISMA acquisitions, for each of the seven indexes.
The next step in the chain is the binarization of each satellite vegetation map. To this aim,
a proper threshold needs to be selected. First of all, the aerial vegetation index value dis-
tribution of area 5, split by unhealthy and healthy class, are plotted into the same graph,
as shown in Figures 4.19, 4.20, 4.21 and 4.22. Those values are extracted from a random
sample of pixels from the healthy and unhealthy class, by following Cochran’s formula,
explained in section 3.4.1. Therefore, considering a total population of 201628 (total num-
ber of pixels in area 5 aerial acquisition), a confidence level of 95% and a precision level
of 3%, the optimal sample turned out to be 1068 pixels by class.

Figure 4.18: NDVI aerial vegetation maps example used for training
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Figure 4.19: CLRE and GNDVI values distribution for healthy and unhealthy trees in
random sample

Figure 4.20: NBRI and NDREI values distribution for healthy and unhealthy trees in
random sample

Figure 4.21: NDVI and NRVI values distribution for healthy and unhealthy trees in
random sample
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Figure 4.22: SLAVI values distribution for healthy and unhealthy trees in random sample

In each graph, it can be appreciated a sharp separation of the two distributions, which
bodes well for the threshold extraction. As a matter of fact, the binarization threshold
is inferred from aerial data by looking at the intersection of the two distributions and
extracting the index value corresponding to this junction point.
From a brief look at the distributions it stands out how, differently from all the other six
indexes, CLRE is the only index where the healthy distribution precedes the unhealthy
one in the graph. As anticipated in Chapter 3.4.2, this phenomenon finds confirmation
in literature, being CLRE directly proportional to the stress of the vegetation (instead
of the health, like all the other six indexes). The thresholds gathered from each index
vegetation map are reported in Table 4.2.

Mean error for each coregistration algorithm

Threshold

CLRE 0.44

GNDVI 0.64

NBRI 0.44

NDREI 0.39

NDVI 0.63

NRVI 0.64
SLAVI 1.7

Table 4.2: Threshold selected for each index vegetation map binarization

Finally, each of these aerial thresholds is applied to its relative PRISMA satellite index
vegetation map, obtaining the corresponding binary representation in Figure 4.23. The
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entire set of index maps seems to provide various and useful insights to the analysis, with
the only exception of the NDREI index, since its patterns appear really similar to the
general binary tree map in Figure 4.13.

Figure 4.23: PRISMA vegetation index maps binarized with the threshold. In black are
represented pixels exceeding the threshold (pixels with a higher risk of being unhealthy
trees) and in white healthy trees or pixels masked out by the trees mask

4.4. Frequency Analysis results

By performing the addition of all the seven index binary maps, it is possible to evaluate
the frequency of trees’ exposure to possible stresses (e.g. Bark Beetle attack). On the
left side of Figure 4.24 it is reported the index map computed on the entire PRISMA
acquisition. On the right, instead, a binary map is extracted from the same frequency
map, by selecting the 39% of the pixels with the highest frequency (to replicate the same
percentage of unhealthy trees’ pixels of the aerial classification map as explained in Section
3.3.1). Judging from this first result, it appears that the zones most subjected to Beetle’s
attacks are mostly located toward the east and south of the interested area. Nevertheless,
it is important, in order to have a first proper visual feedback, to compare this data with
existing classifications. As a matter of fact, a closer look at areas 5 and 3, can potentially
help with a first high-level validation (Figure 4.25 and 4.25).
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Figure 4.24: On the left side, the frequency map of unhealthy trees, where each pixel value
corresponds to the number of indexes that exceeded the threshold in the spectral index
analysis. On the right side, the binarized frequency map, where black pixels correspond
to the 39% of the pixels with the highest frequency.

Comparing these results with the aerial classification data (Figure 3.1 and 3.2), it can be
pointed out that the algorithm is more prone to detect larger unhealthy areas, if compared
to the aerial classification. This behaviour is totally expected, considering the difference in
scale between the two sensors’ spatial resolutions (almost 1:15). In particular, the large
spot detected by the algorithm located approximately at [10,20] (pixel coordinates) in
Figure 4.25, finds confirmation in the AVT AS classification (in Figure 3.1). However, the
satellite results are showing some erroneous detections over the river borders (northwest
side of the acquisition at about [10,10]). This is imputable to the small size of the river
cross-section with respect to the PRISMA spatial resolution, which caused the generation
of a too much generous tree’s mask contour in the unmixing phase.
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Figure 4.25: On the left side, frequency map of unhealthy trees in area 5, where each
pixel value corresponds to the number of indexes that exceeded the threshold in the
spectral index analysis. On the right side, the binarized frequency map, where black
pixels correspond to the 39% of the pixels with the highest frequency.

Regarding area 3 the situation is totally different, as the unhealthy trees’ spots in the
aerial validation map (Figure 3.2) are far smaller than the actual satellite’s GSD. For
this reason, it is quite difficult to assess results from a qualitative comparison with the
classification map, as the map is not able to replicate such a local effect on the vegetation.

Figure 4.26: On the left side, frequency map of unhealthy trees in area 3, where each
pixel value corresponds to the number of indexes that exceeded the threshold in the
spectral index analysis. On the right side, the binarized frequency map, where black
pixels correspond to the 39% of the pixels with the highest frequency.
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4.5. Validation results

In this section, only the results of area 3 will be considered allowed for validation, since
this is the only area that has not been used for model training. Results of area 5 are
presented just for comparison and commenting purposes.
The validation binary map in figure 4.27, is extracted from the classification data provided
by the AVT AS company (Figure 3.2).
The first step to perform a proper validation, is the resample of the PRISMA images,
in order to match the aerial resolution. Images are upsampled from a size of (20, 26) to
a size of (276, 360), with a Nearest Neighbor interpolation. The choice of upsampling
lower-resolution images to higher-resolution ones (and not the way around) is made with
the purpose of preserving the shape of the detected areas by PRISMA, by increasing only
the number of pixels. By downscaling the aerial image, on the other side, the pixel content
would have been averaged, hence altering the shape of the aerial acquisition.
The upscaled PRISMA image and the validation map (area 3) are shown in Figure 4.27

Figure 4.27: On the left, resampled PRISMA frequency binary map. On the right, aerial
validation binary map (area 3)

The statistics of the prediction performed by the algorithm on satellite data are collected
in a confusion matrix, obtained by superimposing the two images and comparing the
predicted results (PRISMA) with the actual ones (asiaFENIX). Results are reported in
Figure 4.28
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Figure 4.28: Confusion matrix of the satellite prediction over the validation area (area 3)

The model produced is performing with an accuracy of 95% and a precision of less than
1%. These results are not surprising, considering the nature of the validation data. As a
matter of fact, the percentage of unhealthy trees in the validation area is highly smaller
with respect to the training one. In area 3 only less than 1% of the pixels are unhealthy
trees, which is even smaller than the 4% of area 5. Moreover, the accuracy level is able to
reach such a high percentage, due to the high number of True Negatives (corresponding
to healthy and non-tree zones) that are correctly detected by PRISMA. Since the amount
of unhealthy trees is so scarce, the performance of the detection of healthy vegetation is
necessarily boosted.
Moreover, in addition to the lack of unhealthy data, unhealthy pixels are also unevenly
distributed over the map, which makes the detection for a 30m satellite impossible, as
it would require making detections under the pixel level (as anticipated in the previous
chapter). This causes a strong decline in the precision level.
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Figure 4.29: Error map of the satellite prediction over validation data (area 3). True
positives are represented in red, True Negative in blue and misclassified pixels in green

The error map in Figure 4.29 highlights the aforementioned issue, as it shows that a single
PRISMA pixel is bigger than the actual spot to be detected.
To show how the size of the unhealthy tree zones is impacting the prediction, the error
map of the training data is reported in Figure 4.30.

Figure 4.30: On the left, the error map of satellite prediction over training data (area 5).
On the right, detected true positive over training data (area 5)
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This map has no validation purposes, as it corresponds to the data used for training, but
it is effective to show how, depending on the size, wider areas of risk may be detected
by the algorithm. In this area (area 5), the percentage of unhealthy pixels rises up only
to the 4%, but its effects on the prediction are still significantly high, as the algorithm is
able to reach a precision level of the 12% (almost ten times higher than the area 3 one).
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improvements

Given the results obtained from the current study, it can be stated that it has been pos-
sible to realize a new framework analysis, capable of detecting the potential effects of
Bark Beetle attacks on trees from satellite Hyperspectral imagery on large infested areas.
Moreover, the vegetation indexes extracted from the satellite reflectance have proven to
be effective to achieve the aforementioned premise.
Nevertheless, due to an inevitable loss in spatial resolution because of the PRISMA sensor
limitations, this solution cannot fully replace, in its current implementation, the function
of aerial and ground surveys. This analysis has indeed proven that the Unmxixing tech-
niques can definitively improve the detection of trees’ crowns, but the effects of a coarser
resolution will eventually return to affect results in the spectral index extraction phase.
As acknowledged in Chapter 4, a spatial resolution of 30m is far wider than the diameter
of a single tree, which makes a single pixel not capable of detecting sharp changes between
one tree and the other one. Because of this, the algorithm is only able to discover larger
damaged areas. Concerning this point, it is important to underline that the model has
been trained on a single image of 0.8 km2, but it is able to recognize larger attacks on
a 1721 km2 size image. This bodes well for the future as it paves the way to a signifi-
cant improvement, that can be brought by further analysis with more and larger training
datasets.
However, training data is not the only source of data improvement, as also validation
data has shown its limits. As anticipated in Chapter 4, the population of unhealthy trees
in the validation area was almost absent and scattered under the pixel level, making it
almost impossible to be detected by the algorithm. Therefore, it is worth saying that data
availability played a crucial role in the outcome of the study.
Finally, it can be concluded that this satellite analysis cannot obviously substitute the
accuracy and effectiveness of a pre-scheduled aerial survey, nor eliminate the costs of such
a fundamental procedure, but it can be used as an important instrument to reduce the
survey expenses, allowing to perform more qualitative analysis and optimize the planning
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of aerial surveys, by inspecting larger land extensions and limiting the survey to the most
likely vulnerable areas detected by the PRISMA satellite.
During the development of this study, the weaknesses and strengths of the model have
been highlighted. In the following list, a set of useful hints has been drafted to pave
the way for future further research in the field and possibly improve the outcomes of our
analysis:

• first of all, since the shadow abundance map is including a large portion of trees’
canopy (Figure 4.9), it can be evaluated to unify under the same class water and
shadow, considering the similarity of their spectral signatures (observable in Figure
4.8 and 4.9). This can possibly improve the outline of trees’ crowns by reducing the
number of classes detected in the Unmixing phase

• as anticipated in Chapter 2, Unmixing can improve the detection of unhealthy veg-
etation, but the created abundance map are not taking into account the spatial
distribution of every single abundance inside a PRISMA pixel. A further develop-
ment can be the implementation of a super-resolution Hyperspectral satellite image,
using one of the techniques presented in the State of the Art Chapter. By creat-
ing an image at high spectral and spatial resolution, the algorithm can surely deal
with the local effects caused by the high resolution of validation data, and produce
reliable results also in the validation step

• it could be evaluated the possibility to build a Machine Learning model, trained on
the results of the current study, able to discriminate between healthy or infested
trees. In a later stage, once the model will be properly trained and validated, it will
be possible to ignore completely aerial data and classify the interested vegetation,
using satellite data as the only input. This will allow to completely spare the
planning and execution of complex aerial missions (as well as totally eliminating
survey costs)
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