
Deep Reinforcement Learning for
Concentric Tube Robot Control

Tesi di Laurea Magistrale in
Biomedical Engineering - Ingegneria Biomedica

Author: Lorenzo Valente

Student ID: 963989
Advisor: Prof. Elena De Momi
Co-advisors: Ing. Keshav Iyengar
Academic Year: 2021-22

i

Abstract

Minimal Invasive Surgery (MIS) has introduced a new and more efficient way of perform-
ing many surgical procedures; accessing the surgical site through tiny incisions leads to
less pain, less tissue damage, and reduced hospitalization time. MIS has faced skepticism
from clinicians due to confined workspace, compromised hand-eye coordination, extended
learning curves, and procedure duration. The introduction of Robotic-Assisted instrumen-
tation has helped with instrument manipulation. However, when dealing with complex
procedures where the interested area is very deep and the path to follow is tortuous in-
strumentation with higher dexterity and flexibility is needed. Multi-segmented arms with
high degrees of freedom (DOF) like Concentric Tube Robot(CTR) are one of the most
investigated technologies to solve those issues. CTRs are made of multiple pre-curved tele-
scopic tubes, which actuation mechanism is based on independent axial translation and
rotation of each tube making kinematics and control challenging. Ablation procedures like
Fetoscopic Laser Coagulation for Twin Twin Transfusion Syndrome are eligible for CTRs
employment. CTRs learning-based control strategies have been demonstrated to outper-
form the classical model-based approach. In this thesis, a model-free Deep Reinforcement
Learning(DRL) method has been investigated as a control strategy to be involved in a loop
control where the surgeon selects a Cartesian point or trajectory through a haptic device
and the controller computes the inverse kinematics to achieve the target. The controller is
represented by the trained policy obtained from a DRL problem solution where an agent
interacts with a CTR simulation environment learning to choose the correct joint values
to perform a targeting task. Two DRL algorithm has been tested, PPO and A2C, and
compared with previous work DDPG algorithm and a Jacobian-based model. Observing
training metrics as well as policy evaluation test, performed through targeting and path-
following tasks, PPO turns out to outperform both A2C and Jacobian-based methods for
tracking error and computational time, while reaching the same DDPG tracking error in
a significantly inferior number of training steps.

Keywords: Concentric Tube Robot, Control, Kinematics, Deep Reinforcement Learning

iii

Abstract in lingua italiana

La Chirurgia Mininvasiva (CM) ha introdotto una nuova e più efficiente strategia per svol-
gere molte procedure chirurgiche, accedendo alla zona da operare tramite piccole incisioni
cutanee che riducono il danno ai tessuti, provocano meno dolore e minimizzano il tempo di
ospedalizzazione.La CM ha generato alcuni scetticismi nel mondo della medicina a causa
di un ridotto spazio di lavoro, una compromessa cordinazione occhio mano, estese curve di
apprendimento e per la durata delle procedure. L’introduzione di strumentazione robot-
ica ha aiutato nella manipolazione degli strumenti, ma comunque in caso di procedure
complesse, dove l’area interessata è molto in profondità e il percorso per raggiungerla
tortuoso, una strumentazione con maggiore destrezza e flessibilità è necessaria. Bracci
robotici multisegmentati con elevati gradi di libertà (GDL) come i Robot a Tubi Concen-
trici(RTC) sono tra le tecnologie più esaminate per risolvere queste problematiche. I RTC
sono composti da multipli tubi precurvati e disposti telescopicamente, il cui meccanismo
di attuazione è basato sulla traslazione e rotazione assiale relativa di ogni tubo, rendendo
impegnativi la formulazione della cinematica e il controllo. I RTC possono essere sfruttati
per procedure di ablazione come la Coagulazione Fetoscopica con Laser per curare la sin-
drome da trasfusione feto-fetale. Le strategie di controllo dei RTC basate su insiemi di dati
risultano essere più performanti rispetto a quelle basate su modelli cinematici. In questa
tesi, una strategia model-free Deep Reinforcement Learning (DRL) è stata studiata come
metodo da includere in un processo di controllo in cui idealmente un chirurgo seleziona un
punto o una traiettoria Cartesiani attraverso un dispositivo aptico e il controllore risolve
la cinematica inversa per raggiungere il target. Il controllore in questo caso è rappresen-
tato dalla rete neurale allenata tramite DRL. La fase di allenamento prevede l’interazione
di un agente con un ambiente di simulazione del RTC, e la selezione dello stesso di valori
dei giunti necessari per raggiungere il punto selezionato. Due algoritmi DRL sono stati
testati, PPO e A2C, e comparati con il metodo del precendente lavoro, DDPG, e con
un modello di controllo. Osservando i risultati degli allenamenti così come quelli dei test
di valutazione, PPO risulta avere performance migliori rispetto a A2C e al modello Ja-
cobiano per quanto riguarda l’errore di tracciamento e il tempo computazionale, mentre
raggiunge lo stesso errore di tracciamento di DDPG ma in un numero significativamente

iv | Abstract in lingua italiana

inferiore di passi durante la fase di allenamento.

Parole chiave: Robot a Tubi Concentrici, Controllo, Cinematica, Deep Reinforcement
Learning

ABBREVIATIONS

Minimal Invasive Surgery (MIS)
Concentric Tube Robots (CTR)
Twin-Twin Transfusion Syndrome (TTTS)
Fetoscopic Laser Coagulation
Inverse Kinematics (IK)
Forward Kinematics (FK)
Boundary Value Problem (BVP)
Model Predictive Controller(MPC)
Initial Value Problem (IVP)
Multilayer Perceptron
Deep Reinforcement Learning (DRL)
Reinforcement Learning (RL)
Markov Decision Process (MDP)
Actor-Critic (AC)
Advantage Actor-Critic (A2C)
Proximal Policy Optimization (PPO)
Deep Deterministic Policy Gradient (DDPG)
Hindsight Experience Replay (HER)
Stable Baselines 3 (SB3)

vii

Contents

Abstract i

Abstract in lingua italiana iii

Contents vii

1 Introduction 1
1.1 Minimally Invasive and Robotic Assisted Surgery 1
1.2 Concentric Tube Robots . 2
1.3 Twin-twin transfusion syndrome treatment 5
1.4 Aim of the work . 7
1.5 Thesis structure . 8

2 Background 9
2.1 Related works . 9
2.2 Reinforcement Learning background . 19

2.2.1 Advantage Actor-Critic . 27
2.2.2 Proximal Policy Optimization . 27
2.2.3 Previous work method . 29

2.3 Thesis objective . 30

3 Materials and Methods 33
3.1 Workflow overview . 33
3.2 CTR model . 34
3.3 Controller development . 36

3.3.1 Concentric Tube Robot control problem in Reinforcement Learning 36
3.3.2 MDP formulation . 38
3.3.3 Training strategy . 40
3.3.4 Methods . 41

3.3.5 Hyperparameter Tuning setup . 43
3.3.6 Hardware and Software specifications 44

4 Experimental Setup and Results 45
4.1 Experimental setup . 45
4.2 Results . 47

4.2.1 PPO vs A2C . 47
4.2.2 Dense vs Sparse reward . 49
4.2.3 PPO vs Jacobian . 52
4.2.4 PPO vs DDPG+HER . 53
4.2.5 Domain Randomization . 55

5 Discussion 57

6 Conclusion and Future Developments 59

Bibliography 63

A Appendix A 69

List of Figures 71

List of Tables 73

Acknowledgements 75

1

1| Introduction

1.1. Minimally Invasive and Robotic Assisted Surgery

One of the most important discovery in the surgical field is the Minimal Invasive Surgery
(MIS) technique, which has established a new and more efficient way to intend many
of the surgical procedures. With respect to open surgery what makes MIS a preferred
practice is that the area where the surgeon acts is limited to the damaged area and the
surrounding healthy tissues should not be affected. In fact in MIS usually for entry to
the surgical site the accesses, single or multiple, are very tiny incisions or the natural
orifices are exploited. This kind of approach enables less pain, less tissue damage and
reduced hospitalisation time [1]. A large number of clinical trials about short and long-
term recovery from numerous kind of surgical procedures comparing laparoscopic and
open approaches were conducted [2, 3]. They highlight all the benefits of the avoidance of
large wounds which leads to minimal morbidity due to post-operative immobility, shorter
convalescence, improved cosmesis and an improved immune response.
However, MIS encountered also some skepticism since its introduction due to several
drawbacks addressed by clinicians like confined workspace, lack of stereo vision, loss of
depth perception, compromised hand-eye coordination, extended learning curves and pro-
cedure duration [4]. Thanks to the technological innovations in the medical field like
the introduction of miniaturized high-resolution cameras, stereoscopic systems or force-
feedback sensory systems those limits have been minimized. Moreover, the introduction
of Robotic-Assisted instrumentation has helped the surgeon overcome the difficulties re-
lated to instrument manipulation during MIS procedures. In this way, the tools are
not controlled directly by the surgeon but through controllers and with the benefits of
articulation, tremor filters and haptic feedback surgeon’s dexterity and eye-hand coordi-
nation are enhanced, improving surgical performance. One of the first and more successful
robotic system for surgery is the da Vinci SP (Intuitive Surgical, Sunnyvale, California,
USA)(Fig. 1.1). Its master console is equipped with controllers that the surgeon uses
to steer the slave unit, made of up to four arms and a 3D HD Camera. Custom-made
tools and articulated end-effectors can be mounted to the robotics arms allowing for MIS

2 1| Introduction

Figure 1.1: The da Vinci surgical platform

procedures.
However, while a surgeon is dealing with difficult procedures like brain and skull-based
surgery or eye and deep-orbital intervention, where the interested area is very deep and
the path to follow is tortuous, rigid instrumentation even if mounted on robotics arms
could be limiting. Instrumentation with higher dexterity and flexibility is needed.
The introduction of multiple segments and flexible kind of instrumentation enables MIS
to reach a very high accuracy and resolution. For a single-segment rigid arm is impossible
to follow body cavities with different curves without damaging other tissues. Hence, the
robotic community has focused its attention on Continuum Robots (CR). CR are flexible
multi-segmented arms with high DOF and typically constructed at smaller scale than
rigid arms thanks to the simplicity of their structures. This kind of structure makes them
useful in procedures where narrow and complex passages inside the body are involved, CR
are capable to deform and adapt to the external environment and their limited dimensions
can limit tissues damages. Burgner et al. [5] classified CR based on their structural design
and actuation strategy as see in Fig. 1.2.

1.2. Concentric Tube Robots

Among CR technologies Concentric Tube Robot (CTR), also known as Active Cannu-
las(AC), have been the subject of much investigation in the last years [5]. Made of
multiple precurved telescopic super-elastic Nickel-Titanium (NiTi) alloy tubes, CTR ac-
tuation mechanism is based on axial translation and rotation of each tube with respect

1| Introduction 3

Figure 1.2: CR classification based on [5]

Figure 1.3: Rotation and translation of each tube

to the others as see in Fig. 1.3. Bending actuation arises from tubes elastic interaction
resulting in a high curvature steering which enables to overcome complicated passages
inside body cavities. Since the actuation method is separate from the backbone itself, the
robot diameter can be reduced, essential for narrow paths.
CTRs can be classified based on the stiffness model: Dominant-Stiffness Tube Pair with
fixed curves that consequently is more patient-specific, while on the other hand Balanced-
Stiffness Tube Pair, with flexible curvatures, where all the tubes have the same stiffness
[6].
The first motorized system was the Furusho et al. [7] (2005) curved multi-tube catheter
for percutaneous umbilical blood sampling and control methods, where the tip position
of the central needle is controlled by rotation and translation of the two outermost tubes.
CTRs can also be hand-held like Girerd et al. 6-DOF CTR [8] as see in Fig. 1.4(a) which
still offers a higher dexterity with respect to other hand-held rigid tools. The device is
equipped with a handle composed of a trackball between two buttons: pressing the button
in the front leads the robot’s tip moving forward, while pressing the button in the back
leads the tip moving backward, the trackball enables the user to control in-plane motions

4 1| Introduction

(a) Hand-held CTR device. (b) Control units

Figure 1.4

(Fig. 1.4(b)). Experiments, conducted with this device by clinical operators, have been
carried out. An operator was asked to use the trackball and buttons to have the CTR
tip follow two different paths, repeating each path task three times. Thanks to a 6-DOF
sensor attached to CTR tip to sense its position, the tip positioning errors are measured
with an average of 0.7mm for path 1 and 0.9mm for path 2.
CTRs have been primarily designed for diagnostic purposes and here is where we can
classify CTRs as steerable needles like Sears et al. [9] and Gilbert et al. [10] solutions.
In particular in the latter model a "follow the leader" deployment was applied which was
enabling the robot to follow exactly the path described by the tip, very useful to avoid
healthy tissue damage.
On the other hand, CTRs as a surgical manipulator needs accurate steering and naviga-
tion through body lumens and position and force control of the distal tip because it will
interact directly with tissues. This is the case of endonasal skull base surgery, a techni-
cally challenging procedure with standard rigid tools, that with a telerobotic system like
Burgner et al. [11] one can potentially increase surgical dexterity. Here, two concentric
tubes manipulators are teleoperated via haptic devices under endoscopic visualization as
see in Fig. 1.5, one manipulator end effector is a curette and the other one is a gripper.
They demonstrate how users of widely varying skill levels and backgrounds are able to
achieve laparoscopic training tasks.
An improved version of a multi-arm CTR is the Wang et al. system, made of three chan-
nels: one is a four-DOF active vision arm, the other two are six-DOF manipulators with
scissors or forceps. This active cannula is also intended for transnasal procedures.

1| Introduction 5

Figure 1.5: Teleoperated CTR for transnasal surgery

1.3. Twin-twin transfusion syndrome treatment

Among all the possible clinical scenarios this study is more addressed to ablation pro-
cedures where robot end-effector tip control is crucial with respect to full shape control.
Fetoscopic interventions could potentially benefit from CTR technology, as delicate ma-
noeuvres under poor visualisation conditions are required and high accuracy is essential
as both mother and fetus wellbeing are involved.
Twin-Twin Transfusion Syndrome (TTTS) is a condition that requires a fetoscopic in-
tervention. This pathology occurs in monochorionic diamniotic (MCDA) twin pregnancy
where anastomoses (communications between the two fetal circulations within the pla-
centa) can results in unbalanced blood flow between twins, in this way the two fetuses
grow at different rates. The prevalence of TTTS is approximately 1-3 per 10,000 births
[12], over three-fourths of diagnosed stage I TTTS remain stable or regress without inva-
sive intervention. Furthermore, TTTS accounts for up to 17 % of total perinatal mortality
in twins, and for about half of perinatal mortality in MCDA twins [13].
Fetoscopic Laser Coagulation (FLC) of placental anastomoses is considered to be the best
approach for stages II, III and IV TTTS. In fact, according to Simpson et al. [13] trials
analysis: perinatal deaths are 44% of the cases after laser photocoagulation while 61%
after amnioreduction, and free of neurological complications are the 52% of the cases after
FLC and 32% after amnioreduction.
FLC procedure involves coagulating placental anastomoses, so interrupting some links,
that give rise to TTTS. Coagulation is performed by using a laser fibre through the work-
ing channel of a fetoscope, thus a small skin incision is required, where a small diameter
cannula is inserted under ultrasound guidance as see in Fig 1.6. Usually, a rigid fetoscope

6 1| Introduction

Figure 1.6: FLC procedure for the treatment of TTTS, showing the endoscope positioned
to coagulate the placental vessel anastomoses

is used to observe the placenta and coagulate vessels, but due to the small incision mo-
tions are constrained and so the treatable area is limited. Moreover, the surgeon must
maintain a correct distance from the placenta in order to deliver appropriate laser power
to the tissue and also because physical contact with the placenta may cause bleeding
and lead to a loss of sight and other complications [14]. A robotic system like CTR can
overcome these difficulties: the augmented dexterity of these robots helps in observing
and delivering therapy to the placenta; while stability can be reached by controlling the
instrumentation with an articulated arm.
CTR should be compatible with laser fibres technology and this kind of ablation procedure
facilitates end-effector position control since no forces are involved at the robot tip.

1| Introduction 7

1.4. Aim of the work

To perform complex tasks, like the above-mentioned FLC surgery, accurate robot tip posi-
tion control is needed. In order to move the robot end-effector the actuation unit imposes
some changes on the joint values, the analytical relationship between joint positions and
the robot tip’s position and orientation is known as kinematics. The forward kinemat-
ics problem involves the determination of a general method to describe the end-effector
motion as a function of joint motion. In contrast, the inverse kinematics problem is the
process to compute the joint values that would enable the robot tip to achieve a spe-
cific pose. While, differential kinematics describes the analytical relationship between the
joint motion and the end-effector motion in terms of velocities, through the manipulator
Jacobian.
The availability of a kinematic model for most robotics systems is essential for the resolu-
tion of these problems but in the case of CTRs finding this model is not so straightforward
mainly because of the complex interactions between tubes which lead to non-linear back-
bone curvature. Hence, model-based strategies for controlling CTRs do not allow for
real-time applications since the complexity of a very accurate kinematic model increases
too much the computational cost. For this reason, Iyengar et al. focused on the use of
an accurate forward kinematics solver to collect data and experiences for training, then a
data-driven method to predict output from the collected data as inputs. In this case the
collected data come from a CTR simulated environment and a Reinforcement Learning
training is used to learn from those data different tasks like targeting and path following.
This method aims to combine accuracy and computational speed of data-driven approach
in order to pass physical model-based control limits like the difficulties to model phenom-
ena such as friction, shear, plastic deformation that lead to errors.
The aim of this thesis is to enhance the above mentioned model and the standard control
methods in order to:

• improve the accuracy, so minimize the error between desired and achieved end-
effector position or trajectory;

• decrease computational cost, so minimize the training time and number of steps;

• optimize generalization, make the model functional for several CTRs systems.

• include joint extension constraints to avoid unstable CTR configurations that cannot
be avoided in traditional control methods.

8 1| Introduction

1.5. Thesis structure

In the first chapter of this thesis 2 an overview of the most common CTRs control meth-
ods is conducted, starting from model-based methods and going through learning-based
and hybrid ones. while a recap about the most important RL methods is coupled with
a detailed description of the exploited CTR simulation environment and of the training
strategy within the Material and Methods chapter 3. In chapter 4 the performed exper-
iments to validate the proposed method with their results are discussed, while chapter 5
is an analysis of the obtained results. In the final chapter 6 the overall work is resumed
and some future developments are discussed.

9

2| Background

In this section an overview of the most relevant state of the art CTRs control methods
is conducted. We can classify these methods into model-based and learning-based ap-
proaches. Then, an hybrid solution between the two approaches is analyzed. In the end
of the chapter an overview of Reinforcement Learning theory is conducted.
Accurate control of CTRs is essential as they move in constrained environments, so a
good controller has to avoid any possible tissue damage and at the same time be able to
reach targets in the surgical workspace for ablation or biopsy.

2.1. Related works

MODEL-BASED POSITION CONTROL

One approach for solving the Inverse Kinematics (IK) or Forward Kinematics (FK) prob-
lem for CTRs analytically is to use geometric techniques to derive expressions for the
lengths and curvatures of the tubes as a function of the end-effector position and orien-
tation. These expressions can then be used to calculate the required tube lengths and
curvatures for a desired end-effector position and orientation.
For example, [15] presents a geometric method to solve IK for single- and multi-section
continuum robots. In this work, the single-section part of the algorithm models the con-
tinuum manipulator as an arc of a circle and calculates its arc length s, its curvature k and
its direction of curvature ϕ as a function of the desired endpoint position P . These trunk
parameters can be converted into desired actuator parameters using the robot-specific
mapping. The single-section inverse kinematics can be iteratively applied to multiple,
serially linked continuum sections to model an n-section continuum manipulator. In this
case the values of s, k and ϕ can be computed for each section by determining the values
of s, k and ϕ for the base section, subtracting the translation due to the base section
from the remaining endpoints, applying the opposite rotation due to the base section to
the remaining endpoints, then repeating this process with the remaining sections. This
algorithm is tested in a closed-loop controller.

10 2| Background

While Dupont et al. in [16] developed a tool-frame position control which involves solving
the IK and FK problems for CTRs at real-time rates. To implement this in real-time,
a pre-computation of the FK solution over the robot’s workspace is performed, and it
is then approximated with a truncated Fourier series. Moreover, the FK model used in
this work includes torsional compliance along the entire length of the tubes [17–19], with
respect to previous models which include torsion only in the straight proximal portion of
the tubes. The IK solution is calculated at each time step by using a root-finding method
on the functional approximation. Therefore, a closed-loop control as in (Fig. 2.1) was
deployed, where the master arm is a haptic device and the slave arm is a CTR.
The complexity of the Boundary Value Problem (BVP) model for CTRs brought re-
searchers to study new computationally efficient IK methodologies. In Leibrandt et al.
[20] work for example it was decided to approximate the Jacobian of the robot by finite
differences on the solution of the BVP. While Rucker et al. [21] tried to increase the com-
putational efficiency of Jacobian estimation of CTR under external loading. As well as
Xu et al.’s work [22] that discretizes the robot into small sublinks for real-time estimation
of the robot Jacobian. For all these cases the Jacobian was then exploited for closed-loop
control of the robot.

Figure 2.1: Dupont et al. control diagram

It should be noted that these control methods rely only on contemporary information and
this could lead the robot to instabilities or configurations from which it cannot recover.
This is mainly due to workspace constraints, influenced by tubes’ precurvature, that
make the tip trajectory and joint values dependent on the path already taken. This is why
Khadem et al. [23] decided to develop a novel Model Predictive Controller(MPC) in order

2| Background 11

(a) MPC controller and Jacobian-based
controller comparison

(b) MPC block diagram

Figure 2.2

to steer CTR’s end-effector inside tortuous pathways avoiding unstable configurations that
may lead for instance to robot’s neighbouring tubes colliding, while Jacobian approach
does not take account of these joint limits. This model predicts future robot behaviours
and based on those it controls robot’s inputs. The advantage of this approach is evident
in Fig. 2.2(a), where state of the art Jacobian-based controllers steer the robot blindly
and unstable configurations are reached with respect to MPC controller which is able to
follow optimal paths.
Looking at the block diagram in Fig. 2.2(b) is inferred that the idea of MPC controller

is based on the measurement of the state of the system through image feedback at each
sampled time instant which will be used as initial boundary condition to solve the Initial
Value Problem (IVP) of CTR. The solution to this problem will be extended to a defined
time horizon generating future trajectories, then the MPC controller try to optimize the
robot predicted behaviour with proper control inputs. The controller generates a certain
control action based on the minimization of a quadratic cost function:

L(xp, q) = (xp(t)− xd(t))W (xp(t)− xd(t))
T (2.1)

where xd(t) is the desired trajectory and xp(t) is the predicted future trajectory given
an initial value of control input q0 and a control sequence q(0). The predicted trajectory
xp(t) is calculated through the CTR kinematic model:

y(tk+1) = g(y(tk), q(tk)),

xp(tk+1) = f(y(tk+1)).

(2.2)

(2.3)

12 2| Background

(a) MPC,Jacobian and DLS controller evaluation

(b) Error comparison

Figure 2.3

where k is the length of the time horizon.
In order to include the boundary condition at the robot’s tip was implemented a method-
ology where CTR states (i.e. initial curvature of the tubes) and kinematics (i.e. final
curvature of the tubes) are independent optimization variables and constraints, respec-
tively. The optimization variables are the tubes’ curvatures along a certain direction
at the entry point, and then they impose a set of constraints on the endpoint to make
the optimal solution satisfies the boundary conditions. The controller performances were
evaluated in reaching 3-D points and following linear and circular trajectories, comparing
it with the state-of-the-art Jacobian-based and Damped-Least-Squares(DLS) controllers.
They found that the MPC controller in point reaching task has a mean error as a per-
centage of the robot length of 0.03%. While in Fig. 2.3 it is evident that Jacobian and
DLS methods were not able to follow a circular path, they skipped part of the path when
unstable configurations were reached. Furthermore, they found that the optimal K time
horizon length for future trajectories is 5. Root mean square error and standard deviation
are described in Fig. 2.3.

2| Background 13

Learning based

The complexity of CTR’s tube interaction results in a path dependence behaviour of
them increasing the difficulty to model physical phenomena (like friction, shear, plastic
deformation); and this is what makes CTR’s model solving a computationally demanding
procedure. Therefore model-based control strategies could not fit real-time applications.
This is why research in the last years is focusing on data-driven or learning-based methods
for CTRs control. The main advantage of these methods is learning to solve the kine-
matics by exploiting a certain amount of collected data and then using in real-time this
knowledge, usually with higher accuracy and less time-consuming resources.
Many Machine Learning methods have been explored for CTRs control starting from Mul-
tilayer Perceptron (MLP) to Locally Weighted Projection Regression (LWPR). In one of
the first works with MLP [24], a single hidden layer MLP was used to solve FK and two
hidden layers one to solve IK. A mechanics model was exploited to create a dataset made
of tube rotation/translation and tip pose. Then the loss function that guided training
was based on the mean square error at the tip of the robot. No hardware experimental
evaluation was performed.
Another interesting contribution was from Grassman et al. [25]. They introduce a com-
plete approximation approach of the FK and IK of CTRs based on neural networks, adding
a novel trigonometric joint description for learning purposes. In this case a cylindrical
representation of CTR’s joints was introduced defining γi for each tube as:

{γi} = {γ1,i, γ2,i, γ3,i} = {cos(αi), sin(αi), βi} (2.4)

where αi is the ith tube rotation and βi is the ith tube translation. In this way all entries
of γi are elements of R which is important considering that an artificial neural network
with a real activation function expects real input values. A feedforward network with
a Rectified Linear Unit(ReLU) activation function was used. The training and test set
were a set of tip poses measured through an electromagnetic tracking system, where for
each sample the measurement was repeated five times in order to reduce the error due to
the tracking system. For the FK an averaged result of 10 networks, whose input layers
were of 2.4 type, was computed. The approximation error of this set of networks was
ex = 2.23± 0.25mm and eθ = 1.04± 0.08◦ with respect to a model based approach which
achieved ex = 27.4±5.1mm and eθ = 88.3±37.3◦ which correspond to 1, where ex was the
position error while eθ the orientation error. In the case of the IK inputs and outputs are
flipped, so the network accepts tips poses while the outputs are joint values of 2.4 type.
They extended the network to two hidden layers with respect to the FK one, increasing

14 2| Background

the accuracy of the network since the IK problem usually is more complex. They achieved
an approximation error for the test set of eβ = 4.0± 0.6mm and eα = 8.21± 0.28◦.
Kuntz et al. [26] analyzed also performances of different kinds of neural networks employed
to compute the full shape of CTRs. In particular, these networks took as input each tube
configuration of 2.4 type and then parameterize the robot’s configuration as:

q = (γ1, γ2, ..., γk) (2.5)

and as output a set of coefficients useful for a set of 5 orthonormal polynomial functions
in x,y and z. In this way, three functions x(q,s), y(q,s) and z(q,s) are formed, for example:

x(q, s) = len(q)× (c1xP1(s) + c2xP2(s) + ...+ c5x(s)), (2.6)

where s is an arc length parameter between 0 and 1, len(q) is the total arc length of the
robot’s backbone at a given q configuration. The shape function is then calculated as:

shape(q, s) =< x(q, s), y(q, s), z(q, s) > (2.7)

So the network will be evaluated at q configuration giving as output the 15 parameters
that will define a space-curve function that can be evaluated at any arc length value.
Finally, having the knowledge of robot’s radius as a function of arc length, a prediction
of the robot’s shape in the world is given.
They tested multiple networks from 3 to 7 hidden layers and from 15 to 60 nodes, they
also trained each of these networks with simulated data alone, real data alone and pre-
trained with simulated data and fine-tuned with real data. Results highlight that both
real and simulated+real outperform the simulated-only network across all architectures.
Furthermore, simulated+real outperform real data type, underlining the theory that pre-
training on large data sets from the related domain and then fine-tuning on a smaller
data set from the exact domain of interest allows the model to be more accurate.
Liang et al. [27] work demonstrates how giving a shape type of input to the network for
IK resolution results in higher accuracy with respect to tip pose type of input as in [25].
So they tried to solve the Shape-to-Joint(S2J) IK where the shape S is described as a set
of m points pj = [xj, yj, zj]

T equidistant and ordered from the base to the tip of the robot
in a fixed reference frame at the robot’s base, therefore S is in the form:

S = [x2, y2, z2, ..., xm, ym, zm] ∈ R3(m−1). (2.8)

2| Background 15

While network’s output is of the type:

q = [γ1,1, γ2,1, γ1,2, γ2,2, γ1,3, γ2,3, β1, β2, β3] (2.9)

where γ1,i = cos(αi) and γ2,i = sin(αi), for α and β being joint’s rotation and translation.
In this way the network architecture was a feedforward neural network with fully con-
nected layers and input dimension of 3(m - 1) since the first point is the base and output
dimension of 9. They also proposed a customized loss function in order to improve αi and
βi learning. This function is composed of a first function based on the cosine distance
between the estimated α̂i and the real rotation angle αi, whose value is zero when the
angles are equal:

Di = 1− γ1,iγ̂1,i + γ2,iγ̂2,i√
γ2
1,i + γ2

2,i

√
γ̂2
1,i + γ̂2

2,i

(2.10)

while the second component is made of the squared error of the translational component
multiplied by a constant ω. The entire loss function is of this type:

L =
3∑

n=1

(Dt + ω(βt − β̂t)
2) (2.11)

They found that this loss function outperforms the common Root Mean Square Loss for
this task. The dataset was built calculating the Sk using the physics-based FK model
proposed by Rucker et al. [28] for each qk sample. They found that errors eαi

and eβi
are

consistent for m < 5 and remain constant with more points. In particular, for m = 20 the
median eαi

are 1.13°, 1.01°, 0.62°, and median eβi
are 0.39mm, 0.82mm, 0.72mm, for i=

1,2,3. Looking also at a comparison with a numerical approach solution for S2J-IK the
learning based S2J-IK has lower eαi

and eβi
, but in both case error decrease and remain

relatively constant for m > 10, proving that S2J-IK is more efficient then tip to joint IK.
What the previous model does not account for is that Young’s modulus or Poisson’s ratio
for a particular tube may contain inaccuracies, also precurvature, stiffness and length
estimation for each tube can contain errors. This can lead to incorrect tip pose estimation
even using the most advanced kinematics models. Fagogenis et al. [29] tried to overcome
this issue by working on a machine learning approach for adaptively modelling CTR’s
kinematics based on LWPR.
The LWPR concept is based on a kernel-based regression that predicts tip’s pose f(x) for
any configuration of the type x = [αi1, di1, ..., αn1, dn1]

T ∈ R2n−2 where n is the number of
CTR’s tubes, alphan1 and dn1 are the n-tube’s rotation and translation with respect to
the first tube; using training data. Configurations close to x provide information for the

16 2| Background

tip pose f(x), to define which x will provide information the kernel will assign a weight w
to any pair of robot configurations, all the pairs with w > ϵ > 0 will the define the kernel
receptive field(RF). For each receptive field LWPR fits training data with linear model
through Partial Least Squares (PLS). Learning the kinematics model means splitting the
robot’s configuration space in kernels and fitting local models to each kernel RF. So during
training a set of parameters that define RF and the local models are updated minimizing
a specific cost function C. Parameters for each RF are then update applying Stochastic
Gradient Descent on cost C:

θ := θ − η∇θC(θ) (2.12)

where θ summarizes all the training parameters of LWPR and η is the learning rate. For
a given configuration x, LWPR detects all the activated models and the kernel associated
to each of the models will assign a weight to each local prediction of the tip’s pose.
The final estimation of ŷ is the weighted sum of all activated model-predictions. The
way LWPR incorporates new information is through Adaptation concept: when a new
set of joint variables and tip pose (xi, yi) are provided the algorithm check the activated
models(those models whose weight is above a threshold) and let these models update
the local parameters through 2.12. This way, given a sample x1, activated models will
update local parameters, then for a small displacement ∆y in the task space such that
the generated x2 is within the same RF, so the prediction in x2 will be improved because
models’ parameters will be already updated.
For training, they used a dataset of 80 configurations states from which they derived
the corresponding end-effector position through a mechanics-based parametric model, the
resulting x,y pairs was used to train the LWPR model. Part of this dataset was employed
as test dataset, the RMSE of the model prediction with respect to the test dataset was
evaluated (Fig. 2.5). Where for orientation they used a relative angle between predicted
and measured tangent vectors at the robot’s tip.
Then, the model was tested on a three tubes CTR performing a trajectory-following task.
The current robot’s tip pose was estimated by the trained kinematics model. From Fig.
2.4 is evident that with Adaptation turned on, model-predicted path and sensed path
rapidly converge to the desired path. Here a teleoperated path was conducted showing
an high online adaptation despite the convoluted pathway.

2| Background 17

Figure 2.4: Teleoperated LWPR test

Figure 2.5: RMSE of LWPR trained model

18 2| Background

Hybrid model-based and model-free control

Most of these learning-based methods are used to control the robot without any informa-
tion about the environment or the external forces, mainly because it’s difficult to gather
a large dataset with this kind of information. On the other hand, model-based controllers
do not consider realistic environments. Hence, these methods can lead to tissues damages
as the robot will traverse constrained environments or couldn’t be able to exercise the
forces required for tissue manipulation. This is why Thamo et al. [30] decided to develop
a hybrid closed-loop data-driven controller initialized by the nominal kinematic model of
the robot. The proposed method was designed to control a CTR with unknown dynamics
and in contact with an unknown environment.
The model-based control is achieved by solving the Jacobian of the robot, which is nu-
merically estimated using :

JM =
∆x

∆q
=

xT (q + ∆q1

2
e1)− xT (q − ∆q1

2
e1)

...
xT (q + ∆q6

2
e6)− xT (q − ∆q6

2
e6)

 , (2.13)

where x is a 3x1 vector defining the cartesian coordinates of the robot’s tip and q =

[β1, β2, β3, α1, α2, α3] is the vector of joint inputs and ei is the ith unit vector of canonical
basis of joint space. This Jacobian is referred to a three tubes CTR whose end-effector
is the tip of the innermost tube and βi and αi refer to proximal translation and rotation
of the ith tube. The Jacobian is calculated by linearising the solution, leading to low
accuracy. Data-driven Jacobian could overcome this problem, it chooses a model that
compensates for disturbances and external forces updating the elements of the Jacobian
in real-time. The algorithm requires the measurements of the robot’s tip position x and
joint inputs q and updates the Jacobian following this law:

Ĵk+1
D = Ĵk

D + X ∆xk − Ĵk
D∆qk

(∆qk)T (∆qk)
(∆qk)T , (2.14)

where Ĵk+1 is the estimated Jacobian matrix at the sample time k+1, ∆xk the displace-
ment of the robot’s tip at sample time k, ∆qk a vector of joint input change and X is
the learning rate. The main drawback is the long learning time if the robot is interacting
with an unknown environment and if bad initialization happens.
To overcome both models’ issues they combine the two ideas. Therefore, the calculated
model-based Jacobian (using (2.13)) is used as a weighted initial guess for the data-driven

2| Background 19

method (2.14). The novel hybrid Jacobian ĴH will be:

Ĵk+1
H = e−λ1kJk

M +
1− e−λ2k

1 + e−λ2k
[Ĵk

H + X ∆xk − Ĵk
H∆qk

(∆qk)T (∆qk)
(∆qk)T], (2.15)

where ĴH is the data-driven while JM the model-based Jacobian, λ1 and λ2 are the
weighting factors. This way at the first time sample Ĵk

H is set to zero and so only the model-
based Jacobian will update Ĵk+1

H . In the next times model-based Jacobian contribution
will decrease exponentially and data-driven Jacobian one will increase exponentially. The
controller will find an optimal combination of joint values q useful to achieve a desired
cartesian position xd, a pseudo-inverse of the hybrid Jacobian will be computed to find
those values. The IK follows this equation:

q̇ =
ˆ
J†
H [ẋ+KP e] (2.16)

where e = xd − x is the error between desired and actual tip’s position.
Model-based, data-driven and hybrid controllers were tested on a simulated CTR envi-
ronment in three different kind of scenarios. The most complex one simulated the CTR
robot in contact with a soft tissue without any a priori knowledge of the tissue’s mechani-
cal features, trying to represent a tissue ablation procedure where the robot should apply
pressure and move on the tissue following a certain path. From Fig. 2.6 it’s evident that
has some difficulties when it approaches the tissue as the desired trajectory is changing
direction, but then it recovers quickly following the path with more accuracy then the
model-based method which is not able to impress any force as it remains close to the
tissue surface. The data-driven model is not represented as it fails to follow the trajectory
and the error is too large.

2.2. Reinforcement Learning background

Among robots’ control techniques, Reinforcement Learning (RL) has had an emergence
as popular for solving complex control tasks. Moreover, model-free learning methods
became popular among CTRs’ control strategies being able to overcome tube interaction
complexity and modelling for kinematics, as already deepened previously in this chapter.
In this work a model-free RL approach is experienced.
RL is a subfield of machine learning (ML) concerned with how an agent can learn to take
actions in an environment to maximize a reward signal. The agent is a learner, while the
environment is a context in which the agent takes actions. The goal is to optimize the
policy of the agent such that it maximizes the reward it receives from the environment.

20 2| Background

Figure 2.6: Tissue ablation simulation

RL is often used in scenarios where there is no direct supervision, and the agent must
learn by trial and error. For example, a game-playing agent may have to learn the rules
of the game and the strategies that lead to winning, without having access to an explicit
set of labelled examples. In this way, RL differs from supervised learning where a labelled
dataset is needed to learn a policy and also from unsupervised learning where the model
learns to identify hidden patterns in unlabeled data; in RL the agent goal is to learn a
specific task interacting in an unknown environment.
RL can be broadly divided into two categories: model-based and model-free. In model-
based RL, the agent learns a model of the environment, such as a probabilistic model of
the state transitions and rewards. It then uses this model to predict the consequences
of taking a particular action in a particular state. In model-free RL, the agent learns
directly from the data, without building a model of the environment. Instead, it learns to
associate actions with states based on the reward signals it receives and this is the case
of the current work.
A typical RL problem is described as a Markov Decision Process (MDP) that is a classical
formalization of sequential decision-making, where actions influence not just immediate
states but also subsequent situations and it involves:

• An Agent, the learner and decision maker.

• An Environment, physical world where the agent interacts.

• A State St, the current condition of the agent in the environment.

• An Action At, which changes the agent state in the environment.

2| Background 21

Figure 2.7: Action-Reward feedback loop of a generic RL model

• A Reward Rt, the feedback that discriminate actions effects.

As visualized in Figure. 2.7 and described by Barto et al. [31] at each time step t, the
agent observes the current state of the environment st and selects an action at based on
its policy π:

π(at|st) (2.17)

The action is then executed, and the environment transitions to a new state st+1 and
emits a reward signal rt+1. The goal of the agent is to learn a policy that maximizes
the expected cumulative reward over time, where the return Gt is defined as some specific
function of the reward sequence. In the simplest case, the return is just the sum of the
rewards:

Gt = Rt+1 +Rt+ 2 +Rt+3 + ...+RT , (2.18)

where T is the final time step. This approach is used in applications where agent-
environment interaction naturally ends in a terminal state which defines an episode, fol-
lowed by a reset to a starting state. In this case, we are talking about episodic tasks. On
the other hand, continuing tasks are that kind of agent-environment interactions where
there is no episode definition. Thus, the additional concept of discounting is needed where
the agent selects actions in order to maximize the sum of the discounted rewards. The
discounted return is defined as follow:

Gt =
∞∑
k=0

γkRt+k+1 (2.19)

where 0 ≤ γ ≤ 1 is a parameter called discount rate. The discount rate influences the
present value of future rewards. If γ < 1 the infinite sum in eq. 2.19) has a finite value. If
γ = 0 the agent is "myopic" and gives more weight to immediate rewards. As γ approaches

22 2| Background

1 the agent is more farsighted so takes into account more strongly future rewards.
One way to learn a policy in most of RL algorithms involves estimating a value function.
The value function measures how good it is to perform a given action at a given state. It
estimates the expected cumulative reward starting from a particular state and following
a particular policy. Where formally if the agent is following a policy π at time t, then
π(a|s) is the probability that At = a if St = s.
There are two types of value functions: state-value functions and action-value functions.
The state-value function vπ(s) estimates the expected cumulative reward starting from
state s and following the current policy π.

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] (2.20)

where Eπ[·] is the expected value of a variable following the policy π. While, the action-
value function qπ(s, a) estimates the expected cumulative reward starting from state s,
taking action a, and following the current policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a]. (2.21)

For finite MDPs solving an RL task means achieving an optimal policy, essentially a policy
whose expected return is greater than the other policies for all states. Optimal policies
share the same optimal state-value function, v∗, defined as:

v∗(s) = max
π

vπ(s), (2.22)

but also the same optimal action-value function, q∗, defined as:

q∗(s, a) = max
π

qπ(s, a). (2.23)

The optimal policy can be learned using a variety of algorithms, each with its own
strengths and weaknesses. RL algorithms can be generically devided into value-based
and policy-based methods. The former learn a value function, mapping each state-action
pair to a value, then selecting actions with the highest value. The latter directly optimize
a policy without using value functions, a score function is used to compute how good a
policy is.

VALUE-BASED METHODS

2| Background 23

Depending on state and action space dimension these algorithms can be differentiated
in tabular or approximate solution methods.
For tabular solution methods state and action space are small enough for the value func-
tion to be represented as arrays or tables. One of the tubular solution methods is the
Dynamic Programming(DP) [32] set of algorithms that compute the optimal policy using
a perfect model of the environment.
Instead, in Monte Carlo(MC) [31] algorithms there is no assumption of complete knowl-
edge of the environment, they require a complete episode of experience data to update the
policy. Without a model is particularly useful to estimate the values of state-action pairs,
q∗. Then, a policy evaluation followed by a policy improvement is repeated in loop until
an optimal value function and policy are obtained. The last family of tabular algorithms
are Temporal-Difference(TD) methods. TD is a combination of MC idea of learning from
raw experiences without the knowledge of the environment model and DP method to
update estimates based also on other learned estimates without waiting for a final out-
come(bootstrap). TD algorithms are divided into on-policy and off-policy methods. In
on-policy methods the evaluated or improved policy is the same used to make decisions,
whereas off-policy ones use a policy to be evaluated or improved and one to generate data.
The off-policy version of TD is the Q-learning [33] algorithm, which is one of the most
important among value-based algorithms. In this case, the learned state-value function
Q, approximates directly the optimal state-value function q∗, independent of the policy
being followed. The policy has the role to choose the state-action pair to be visited and
updated. The Q-learning algorithm will be of this type:

Algorithm 2.1 Q-learning (off-policy TD control) for estimating π ≈ π∗

Algorithm parameters: step size α ∈ (0, 1], small ϵ > 0

Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(terminal, ·) = 0

1: Loop for each episode:
2: Initialize S
3: Loop for each step of episode:
4: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
5: Take action A, observe R, S’

6: Q(S,A)← Q(S,A) + α[R + γmaxaQ(S
′
, a)−Q(S,A)]

7: S ← S
′

8: until S is terminal

24 2| Background

Under the assumption that all pairs continue to be updated, Q converge with probability
1 to q∗.
The motivation that moves to the on/off policy differentiation lies in the critical trade-
off between exploration of the environment and exploitation of the gained knowledge.
The introduction of off-policy methods like Q-learning should give more flexibility to this
trade-off, despite sometimes slowing learning.

POLICY-BASED METHODS

So far value-based methods have been analyzed that learn values of action and then
select actions based on their estimated action values, policy-based methods instead learn
a policy without consulting a value function. Policy-based methods directly search for a
policy that maximizes the expected cumulative reward. Essentially, the main difference
with value-based methods is that in this case the optimal policy is found by training
directly the policy, while in value-based cases finding an optimal value function leads to
having an optimal policy.
The most important subclass of policy-based methods are policy-gradient methods. Deal-
ing with these methods the idea is to parameterize the policy, for instance using a
neural network πθ where θ are the weights of this network. This policy will output
π(a|s, θ) = Pr(At = a|St = s|θt = θ) which is the probability for the action a to be
selected in state s, at time t and with parameters θ. The aim of this kind of methods is
to use gradient ascent to update the parameters of the policy function in the direction
that maximizes the expected cumulative reward. So the general policy gradient methods
update is:

θt+1 = θt + α∇̂J(θt). (2.24)

where ∇̂J(θt) is the gradient of an objective function J(θ), that is the expected cumula-
tive reward, and is computed according to the policy gradient theorem, which states the
gradient proportionality to the product of the advantage function:

A(st, at) = Q(st, at)− V (st) (2.25)

and the gradient of the log-probability of the selected action. In this frame REINFORCE
[34] is an important method to be analysed, where equation 2.24 become:

θt+1 = θt + αGt
∇π(At|St, θt)

π(At|St, θt)
(2.26)

2| Background 25

in this way each update is proportional to the gradient of probability of taking the ac-
tion actually taken, updating the parameter toward the direction that most increases the
probability of taking that action weighted by the return value Gt. On the other hand,
the inverse proportionality to the action probability makes more probable action not in
advantage with respect to others. In eq.2.26 the fractional vector is an extended form of
the most used ∇lnπ(At|St, θt).

ACTOR-CRITIC METHODS

A combination of value-based methods and policy gradient based methods is the fam-
ily of Actor-Critic(AC) methods.
They are based on two networks: the actor and the critic. The actor decides which action
should be taken and the critic judges the goodness of that action and how to adjust it.
The actor learns in a policy gradient way, while the critic computes the value function.
From Fig. 2.8 can be deduced how the agent selects an action in a certain state using the
policy πθ from the actor-network, generating a return. The critic network will use this
return to compute the Q-value of that action taken in that state, which in turn is useful
for actor gradient evaluation and policy parameter, θ, update.

DEEP REINFORCEMENT LEARNING

A notable and very popular method to approximate the value function instead of using
arrays or tables is the introduction of neural networks. DRL allows for high-dimensional
states and actions that are usually a limiting factor for classic RL methods.
One popular example of DRL is Deep Q-Learning(DQL) [35]. In this case, the neural
network will approximate, given a state, the Q-values for each possible action at that
state. Therefore, the Deep Q-network will take as input a state and will output a vector
of Q-values for each possible action at that state. Then after the evaluation, a policy that
selects which action to take according to Q-values is needed. Obviously, at the beginning,
the network estimation will be very bad, but during training the network’s weights will
be updated to achieve a better estimation.
In DQL the weights update is done using a stochastic gradient descent of a loss function.
The loss function is the difference between the predicted Q-value and the target Q-value:

L(θt) = E(rt + γmax
a′

Q(st, a
′, θt)−Q(st, at, θt))

2, (2.27)

where θ are the weights of the neural network, and the first two terms represent the

26 2| Background

Figure 2.8: Actor-Critic architecture. At each timestep t, the policy selects an action At

in the state St. The critic takes At and St as input and computes the Q-value for that
pair. A new state St+1 and return Rt+1 will be generated. The actor updates the policy
with the Q-value and produces a new action At+1, the critic then updates its network.

2| Background 27

Figure 2.9: Advantage function

optimal Q-value. Then, the DQL algorithm follows two phases:

• sampling, actions were performed and observed experiences stored in a replay mem-
ory

• training, a small batch of experiences was randomly selected and a gradient descend
update step was executed.

2.2.1. Advantage Actor-Critic

One of the selected methods in this work is Advantage Actor-Critic(A2C) [36] algorithm.
The idea is to stabilize further the Actor-Critic learning using the advantage function
(A, in eq.2.25) as critic instead of the action value function (Q-value). The advantage
function calculates how better taking that action at a state is compared to the average
value of the state, which is essentially the extra reward obtained if this action is taken at
that state compared to the mean reward obtained at that state. In this way:

• If A(s, a) > 0: the gradient is pushed in that direction

• If A(s, a) < 0: the gradient is pushed in the opposite direction.

Thus, two value functions are needed for advantage function calculation, Q(s,a) and
V(s,a). Fortunately, the TD error could be used as a good estimator of the advantage
function as see in Fig. 2.9.

2.2.2. Proximal Policy Optimization

Another exploited method in this thesis is Proximal Policy Optimization (PPO) [37], an
on-policy policy-gradient method. PPO is considered as the state of the art RL algorithm.

28 2| Background

The main idea behind PPO is to improve training stability by limiting the changes made
to the policy after each update. This theory is supported by two main reasons: smaller
updates during training are more likely to converge to an optimal solution and a too big
change can result in getting a bad policy and no possibility to recover from that.
Recalling the main objective to optimize in policy gradient methods:

L(θ) = Et[logπθ(at|st) ∗ At] (2.28)

where At is the advantage function. Taking a gradient ascent on this function should push
the agent to choose actions that increase rewards and avoid very bad actions. In order
to accomplish the main PPO idea, a new objective function that constrains the policy
change in a small range is needed and is the Clipped surrogate objective function:

LCLIP = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]. (2.29)

In this function rt(θ) represents the probability ratio between the old and the new policy,
thus is an estimation of the divergence dimension of the policy changes. The clipped part
of the function will constrain this ratio inside a range, avoiding too large policy updates.
Therefore, the policy will be updated only when the minimum is the unclipped part, while
if the minimum is the clipped part then the gradient will be zero and the weights will not
be updated. The advantage function has the role to define the direction of the gradient,
and also making the policy updated even if the ratio is outside the range.
The final objective function for PPO Actor-Critic style is:

LCLIP+V F+S
t (θ) = Êt[L

CLIP (θ)− c1LV F
t (θ)− c2S[πθ](st)] (2.30)

where LV F is the baseline update, it estimates how good is that state, while S is the
entropy argument and it guarantees enough exploration.
In PPO usually there are two threads alternating:

• for N parallel actors the current policy interacts with the environment for T timesteps
and calculate the advantage Ât

• contruct the surrogate loss L on this collected data and optimize it for K epochs

as described in pseudo code 2.2.

2| Background 29

Algorithm 2.2 PPO, actor-critic style
1: for iteration = 1, 2, ... do
2: for actor = 1, 2, ...N do
3: Run policy πθold in environment for T timesteps
4: Compute advantage estimates Â1, ..., Ât

5: end for
6: Optimize surrogate L wrt θ with K epochs
7: θold ← θ

8: end for

2.2.3. Previous work method

Previous work training were based on Deep Deterministic Policy Gradient(DDPG) [38]
method. DDPG is an off-policy algorithm that can be used to solve continuous control
problems and concurrently learns a Q-function and a policy. As in Q-learning algorithm
an optimal action-value function Q∗(s, a) is learned, then in any given state the optimal
action a∗ can be found:

a∗(s) = argmax
a

Q∗(s, a) (2.31)

Since DDPG is intended for continuous action space problems, calculate maxaQ
∗(s, a) is

a highly non-trivial problem. On the other hand, Q∗(s, a) is differentiable for a continuous
action space, thus a gradient-based learning rule could be exploited.Then DDPG learns
an approximator for Q∗(s, a) and one for a∗(s).
The Q-learning part of the algorithm aims to learn an approximator of Q∗(s, a) based on
Mean Squared Bellman error (MSBE) minimization, which explains how close a neural
network Qϕ(s, a) is satisfying the Bellman equation. For this scope, a replay buffer is
needed for the neural network to approximate Q∗(s, a), and this buffer is a set of previous
experiences with the correct dimension. Moreover, another method to stabilize MSBE
minimization is to use a target network which is a network, Qϕtarg that lags the first
Qϕ(s, a). Thus, a solution to find a maximum over actions in the target for continuous
action space is to exploit a target policy network, µϕtarg , that computes an action which
approximately maximizes Qϕtarg .
Dealing with the policy learning part of the algorithm the aim is to learn a policy µθ(s)

that maximizes Qϕ(s, a) performing a gradient ascent with respect to policy parameters
only to solve:

max
θ

E[Qϕ(s, µθ(s))] (2.32)

30 2| Background

Moreover to improve convergence Iyengar et al. applied Hindsight Experience Replay
(HER) [39]. HER is a replay strategy that relabels unsuccessful trajectories to successful
ones and stores them in a replay buffer, thus trajectories that does not reach the goal
(within some tolerance) are saved in the replay buffer as trajectories to achieve another
point in the workspace.
Compared to PPO and A2C, the substantial difference that mostly impacts the policy is
that DDPG is an off-policy method while PPO and A2C are both on-policy. This feature
has great relevance if the attempt of the RL training is to teach an agent to solve an IK
problem. Being off-policy DDPG collects experiences in a replay buffer and then tries to
learn a policy from those experiences. On the other hand, on-policy methods learn online,
which means that the policy is updated based on current experiences. This affects the
agent’s capability to solve the IK problem while some training parameters are changing.
For instance, if the requested accuracy for targeting tasks increases during training the
computation ability of on-policy methods is improved with respect to off-policy ones, thus
the number of necessary steps to reach error convergence decreases significantly.
The aim of this work is to prove that these theoretical improvements also transfer to the
analysed CTR control problem.

2.3. Thesis objective

As stated above the solutions found in literature for CTRs control have some limitations.
Model-based methods could reach a very high accuracy in modelling all the physical
phenomena that are involved in CTRs motion, but this will lead to a high computa-
tional cost not allowing these methods to be used in real-time applications. On the other
hand, learning-based approaches has the potential to increase accuracy and computational
speed. Differently from currently machine learning proposed solutions, the proposed DRL
solution has the advantage that no dataset is needed to train the network, since experi-
ence is gained during the training. This is what moved this thesis analysis towards DRL
method. The main concept behind DRL is that an agent will interact with an environ-
ment taking different actions which will generate a numerical reward. The agent aims to
learn a policy by maximizing the reward. In this case, the agent can collect experiences
interacting with a CTR simulation environment. At each episode of the training a new
target point inside the workspace will be fixed, the agent will change CTR joint values
trying to reach the desired goal and a reward is given based on goal distance. Once trained
the agent policy will be evaluated sampling a set of target points and computing the error
between reached and desired goal, and giving a certain path estimating agent capacity to

2| Background 31

follow it.
The objective of this thesis is to analyse other algorithms and reward functions in order
to improve the following performances: policy accuracy, training time, generalization.

33

3| Materials and Methods

3.1. Workflow overview

As already deepened, technological improvements in MIS have made these procedures
more and more exploited. The tiny incision performed enable to minimize the damages
of not interested tissues leading to a reduced risk of postoperative adversities, shortening
hospitalization time and convalescence. This is why, nowadays, MIS most of the time is
preferred to open surgery. However, this approach significantly confines the workspace,
compromising hand-eye surgeon coordination and so extending the learning curve and
the duration of the procedure. In this context, Robotic-Assisted instrumentation helps to
overcome these manoeuvrability issues; robotic control ensures human tremor cancellation
as well as more accurate motions. Coupled with robotic control high dexterity, flexibility
and small dimensions for the instrumentation are needed, for this purpose the investigation
of CTRs is important.
Interventions like FLC are eligible for CTRs employment thanks to the high DOFs of
this device, even in the confined environment, where this procedure is conducted, good
manoeuvrability could be reached. But the necessity to keep a correct distance from the
tissue and to ablate the right portion of tissue, make the tip position control a crucial
factor. The aim of this project is to develop a fast and accurate enough controller that
can be used in real-time conditions.
In order to pass all the model-based difficulties, a DRL-based control method has been
exploited. DRL-based model can potentially learn a more realistic behaviour since the
training phase can be translated on the hardware, representing in this way all the physical
phenomena involved. On the other hand, control strategies where a kinematic model of
CTR is involved are limited by the computational cost.
The model-free control of CTR is formulated as a Reinforcement Learning problem where
the agent interacts in CTR simulation environment. The training episode evolves as see in
Fig. 3.2 where a desired cartesian point is selected at the beginning, then the agent selects
different joint values at each step and will be rewarded according to a reward function.
Different algorithms have been tested to train the agent, preceded by an hyperparameters

34 3| Materials and Methods

Figure 3.1: Hyperparameters research workflow: for each algorithm and each reward
function the simulation environment was run for 600 trials. In every trial a targeting
task was simulated and the most rewarded trial was picked as hyperparameters reference.
Stable-Baselines 3 framework was involved for this process.

optimization (Fig. 3.1) process for each of them in order to achieve better results. Then
the obtained parameters have been used to train the agent as explained in Fig 3.2. Once
trained the model has been evaluated based on two different test: targeting and path
following.
The trained model could then be tested in a real loop control. For instance the surgeon
is performing an FLC procedure via a teleoperated haptic device for Cartesian position
control of the CTR tip position. The desired tip position can then be reached through
the trained policy which determines the joint values needed to achieve that position.

3.2. CTR model

As this thesis is intended to be a parallel study of Iyengar et al. [40–44] work, the focus
will be on the same CTR system. Made of three concentrically arranged tubes with index
i going from the innermost to the outermost tube as see in Fig. 3.4, where each tube
length is the summation of the curved and straight section. Each tube has two DOFs,
a rotation αi and an extension βi; defining in this way a full joint configuration of the
entire system in the form of q = [β1, β2, β3, α1, α2, α3]. The extension constraints due to

3| Materials and Methods 35

Figure 3.2: Training workflow: the tuned parameters are used to train the corresponding
method and reward function. In every episode of the training a DRL problem is solved
as a targeting task. The trained agent is saved after the end of the training.

Figure 3.3: Controller workflow: the surgeon selects a cartesian point or trajectory,
through a haptic device for instance, the cartesian coordinates become the input for
the trained model which computes the joints values to achieve that point or trajectory.
The selected joint values are sent to the robot actuation unit.

36 3| Materials and Methods

Figure 3.4: CTR system notation

actuation limitations are the following:

βi ∈ [−Li, 0)

β1 ≤ β1 ≤ β1 ≤ 0

0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1

(3.1)

Where the zero position is defined based on the reference frame represented in Fig 3.4.
Usually, in real systems, this point is a port where tubes can fully retract and is used
as global origin to define robot shape and end-effector position. While rotation is not
constrained, tubes can freely rotate relative to one another.

3.3. Controller development

3.3.1. Concentric Tube Robot control problem in Reinforce-

ment Learning

The CTR control problem in this case is an IK problem and is formulated in RL context
as an MDP. The agent is represented by the entire robot and it interacts in a simulated
environment where the possible actions are extension and rotation of each robot’s tube.
The state observations are described as current joint values, current end-effector posi-
tions and desired end-effector positions. The reward function is a numerical feedback
that penalizes the agent if it moves away from the target point and rewards it if it gets
close to the target, within some tolerance. Different type of reward functions has been

3| Materials and Methods 37

tested and will be described further on. As already underlined the proposed method is a
model-free strategy since there is no kinematic model involved in the learning process, the
agents learns the IK only based on experience. However, a CTR’s workspace definition
is needed otherwise unreachable points could be selected as target points. In order to do
so the following kinematic model is implemented to select points inside of the workspace
through a forward kinematic process. Thus the kinematic model is only used to simulate
the robotic system and to collect experiences useful for the training process.

CONSTANT-CURVATURE MODEL

The kinematic model exploited to solve the forward kinematic for target selection in-
side of robot workspace is the Constant-Curvature model [45]. This approach makes
multiple simplified assumption based on the principles of beam mechanics to solve the
forward kinematic problem: pure bending, no torsional deformation, no friction, no effect
of gravitation and external forces. Based on these assumptions the model can compute
the resulting centerline curvature in closed form.
The model assumes that CTR’s shape is composed of constant curvature segments, it can
be expressed as a concatenation of multiple circular arcs. Each circular arc corresponds
to one segment i and each segment is described by its length li, curvature ki, and bending
plane angle ϕi. Each segment is bounded by transition points T , where the component
tubes either end or transition from their straight to curved section. The set T of transition
points can be defined as algebraic functions of the tube geometry and the translational
joint positions β.
Thus, for each segment kx and kz can be computed using:[

kx

ky

]
=

1∑Nt

j=1EIj

Nt∑
j=1

EIjkj

[
cosαj

sinαj

]
. (3.2)

Which is the formula for the resulting curvature of a single segment composed of several
overlapping concentric curved tubes. The formula is generalized over j number of over-
lapping tubes and computes x and y components of segment curvature considering tubes’
axial rotation of an angle alpha. The robot shape is defined by the equilibrium plane
reached after tubes’ rotation, and its component are computed as:

ϕ = atan2(kx, ky)

k =
√
k2
x + k2

y

(3.3)

(3.4)

38 3| Materials and Methods

where ϕ is the equilibrium plane angle. Thus this kinematic model computes the overall
shape of the CTR system from joint values.

3.3.2. MDP formulation

State. The observation state st at timestep t is defined by a trigonometric joints rep-
resentation γi, the Euclidean norm error et between current tip position and desired tip
position and the current error tolerance δ(t):

γi = {cos(αi), sin(αi), βi},

st = {γ1, γ2, γ3, et, δ(t)},
(3.5)

Instead, the current error tolerance is a value useful for reward function definition and is
updated during training. Three different goal tolerance functions are implemented:

• constant, the tolerance δ(t) remains constant during training

• linear decay, the tolerance decreases linearly with timesteps. In the equation b is
the initial tolerance ,a the slope and Nts the current timestep:

δ(t) = at+ b

a =
δ(Nts)− δ(0)

Nts

b = δ(0)

(3.6)

• exponential decay, the tolerance decreases exponentially with training steps. In the
equation a is the initial tolerance while r is the rate decay:

δ(t) = a(1− r)t

a = δ(0)

r = 1−
(
δ(Nts)

δ(0)

) 1
Nts

(3.7)

About joint values two different representations are implemented. The propriocentric one
is an absolute representation where joint values are referenced from a base reference as
see in Fig. 3.5 from the previous Iyengar et al. work, while in the egocentric mode, the
current joint variable is relative to the previous tube. In Fig. 3.5 is visualized only the
rotation joint variable, and the same concept is applied to the translational one.

3| Materials and Methods 39

(a) Propriocentric (b) Egocentric

Figure 3.5: Rotation joint representation

Action. At each step the agent selects a set of joint values in order to reach the target.
Thus, actions are changes in extension and rotation for each tube, these changes are
constrained in a range that is ±1mm for extension and ±5◦ for rotation. The agent can
select any values in the continuous range between the limits, actions can be then defined
as:

a = (∆β1,∆β2,∆β3,∆α1,∆α2,∆α3) (3.8)

The joint constraints expressed in eq. 3.1 are implemented through a check that hap-
pens after each action is selected, joint values are clipped in a way that constraints are
respected. Moreover, the translational component of joint values is normalized over tube
length and extension values that cause tube collisions are avoided.

Reward. The action taken will lead the agent to a new state with new observations.
The policy will be updated according to a reward, which is a scalar value returned by the
environment as feedback from the chosen action. Different reward strategies have been
tested starting from the previous work ones that were divided in dense and sparse reward
functions.
The sparse rewards strategy in RL aims to give feedbacks for a small handful of states,
in this case the reward function is defined as:

r =

{
0, et ≤ δ

−1, otherwise,
(3.9)

40 3| Materials and Methods

where the error is the distance between the achieved end-effector position Ĝ and the
desired one G calculated as Euclidean distance at each timestep t:

et = ||G− Ĝ||2. (3.10)

In this case a constant -1 signal is provided for all the states with the exception for those
states with an error below the tolerance, thus the important signal is given only for few
states and this is why it is called sparse. On the other hand, with a dense reward function
the feedback signal is given at each step and the function is defined as:

r =

{
0, et ≤ δ

−et, otherwise,
(3.11)

In this way, smaller error distances are more rewarded than larger ones also outside of
the current tolerance, providing a more frequent reward signal. The reward feedback is
calculated at each timestep and is cumulative through an episode.

3.3.3. Training strategy

The training process is divided into episodes that are sets of training steps with a defined
maximum length. At the beginning of each episode a target point is selected inside of the
CTR workspace, then for each step of the episode, the agent selects an action and the
reward feedback is assigned. The episode terminates if the number of steps overcomes the
maximum episode length or if the currently observed error is below the current tolerance.
Once an episode is terminated the final robot pose becomes the starting pose for the
next episode and another point in the workspace is selected. The simulation environment
(Fig. 3.6) is modelled following OpenAI Gym [46] framework. Gym is a standard API for
reinforcement learning problems, focusing on episodic tasks, where the agent experience is
broken down into a series of episodes. Gym provides an abstraction for the environment,
not for the agent. A reset function is called at the beginning of each episode, which
samples the robot’s joint values (compliant with constraints) and computes the forward
kinematics based on those values to generate a new target point. Then, for each step of
the episode a step function is executed, that applies a set of actions (compliant with joint
constraints) to joints and computes the reward feedback based on the current end-effector
position achieved, also in this case computed through forward kinematics.
In both forward kinematic problem resolutions, the kinematic model is based on tubes’
parameters manually measured on a Cad program using scanned images coming from

3| Materials and Methods 41

a three tubes hardware system (provided in collaboration with King’s College London,
components described in appendix A) and are listed in Tab. 3.1. In addition, stiffness
and torsional stiffness are common parameters to all the tubes and correspond to 7.5 ×
1010Nm−2 and 2.5× 1010Nm−2.

Inner Tube Middle Tube Outer Tube

Length(mm) 340.36 169.69 72.75

Length Straight(mm)* 250.36 82.19 11.71

Length Curved(mm) 90.00 87.50 61.03

Inn. Diameter(mm) 0.51 0.70 1.15

Out. Diameter(mm) 0.66 1.00 1.63

Stiffness(GPa) 7.50 7.50 7.50

Torsional Stiffness(GPa) 2.50 2.50 2.50

Pre-curvature(mm−1) 24.61 19.12 14.04

Home offset(mm)** 24.61 19.12 14.04

Table 3.1: CTR tube parameters. *There is a straight section of 96.41 mm steel and
153.95 mm nitinol. **Home offset calculated from base plane to limit switch of each
extension block

3.3.4. Methods

To train the model Stable Baselines 3(SB3) [47] has been exploited, which is a set of
reliable implementations of DRL algorithms. SB3 provides policy networks for images
(CnnPolicies), other types of input features (MlpPolicies) and multiple different inputs
(MultiInputPolicies). For this work, an Mlp network was used.
SB3 implement these networks as separated into two main part:

• a feature extractor network that extract features from high dimensional observa-
tions,

• a fully connected network that maps features to actions.

Two different network for actor and critic are selected with two hidden layers of 256 units
each.
To the implemented simulation environment the following methods have been applied to
compare the control performance:

42 3| Materials and Methods

Figure 3.6: CTR simulation environment with starting end-effector position(black dot)
and target end-effector position(pink dot)

Figure 3.7: Network architecture

3| Materials and Methods 43

• PPO, a DRL on-policy policy gradient algorithm

• A2C, a DRL on-policy actor-critic algorithm

• DDPG + her, in a previous similar work Iyengar et. al [44] applied Deep Determin-
istic Policy Gradient (DDPG) an off-policy policy gradient algorithm to the same
environment with the addition of Hindsight Experience Replay (HER) strategy to
improve training convergence.

• Geometrical Jacobian-based controller that is one of the most common method for
CTRs control [11, 21, 22], where the exploited closed-form law to steer the CTR is
the following:

q̇d = J†[ẋd +Kp(xd − x)] (3.12)

where J† is the pseudoinverse of the robot Jacobian, Kp is a symmetric positive
definite matrix, given a desired joint values change q̇d as control input, ẋd the desired
change in Cartesian space and xd the desired Cartesian position.

All the DRL algorithms has been tested with both dense and sparse reward functions.

3.3.5. Hyperparameter Tuning setup

An essential step for an RL training process is Hyperparameters Tuning, because most of
these parameters will heavily impact on training performance. The discount factor γ for
the discounted reward calculation, network size and activation function, batch size, learn-
ing rate are some of the most important. This is why several automatic hyperparameters
optimization method have been developed, Zhang et al. [48] demonstrate how hyperpa-
rameters optimizer outperform human experts in model-based RL parameters tuning.
The exploited method for hyperparameters research is a framework developed by Akiba
et al. [49] called Optuna. The optimizer runs the environment for a predefined number
of trials and steps per trial, for each trial a set of hyperparameters values is sampled
from a group of standard values. The result of this research is the best combination of
parameters that comes from the best trial which is the trial with the highest reward.
In this study a Random sampler has been selected which determines the value of a sin-
gle parameter without considering any relationship between parameters; while a Median
pruner has been chosen, which will terminate a trial if its best intermediate result is worse
than the median of intermediate results of previous trials at the same step. The optimiza-
tion has been performed over 600 trials of 10000 episodes each.
Table 3.2 is the result of hyperparameters tuning for the two selected methods, some of
them have been manually adjusted in order to further improve training performance. One

44 3| Materials and Methods

of these parameters with the higher impact over training for both algorithms is learning
rate. It represents the step size at each iteration while moving toward a minimum of the
loss function, in other words is the measure of how much newly information overrides old
information. Moreover, PPO performs a stochastic gradient descend update of batch size
on all the gathered trajectories for a specified number of epochs, thus these two factors
have been tested as very influential over training performance.

PPO A2C

Horizon 512 8

Batch size 32 -

Gamma 0.9 0.999

Learning rate 0.0003 0.0003

epochs 4 -

Gae-lambda - 0.8

Max gradient norm - 0.7

Value-function coeff. 0.45 0.87

Actor net size (256,256) (64,64)

Critic net size (256,256) (64,64)

Table 3.2: Hyperparameters research results

3.3.6. Hardware and Software specifications

Both training and hyperparameters tuning have been performed on Univirsity College
London’s Myriad cluster, equipped with Intel(R) Xeon(R) Gold 6240 CPU and two
NVIDIA Tesla V100s for the node involved. Training results have been visualized by
TensorBoard, which is a web application for TensorFlow runs and graphs visualization.

45

4| Experimental Setup and

Results

4.1. Experimental setup

The tuned hyperparameters have been used as input for the training process. Both the
considered algorithms are compatible with continuous state and action spaces environ-
ments, which is a requirement for the reaching task involved in this case. The algorithms
have been applied to the environment using SB3 [47] implementations. Each algorithm
has been tested with longer and shorter trainings, three and one million steps respectively.
SB3 implementation supports environment parallelization, thus 1 and 8 parallel environ-
ments training have been tested. All the three goal tolerance decay functions (eq.3.6,3.7)
has been evaluated, resulting the linear the one with better performance. During each
training every 10000 steps the policy is evaluated on the same environment and the results
of this evaluation recorded.
The training performances evaluation have been conducted looking into this metrics:

• episode reward mean, the average reward of an episode for all the training’s episodes

• episode length mean, the average episode length for all the training’s episodes

• error, distance between desired and achieved end-effector position calculated at the
end of each training’s episode

• success rate, percentage of success among the evaluation episodes. The success of
an episode is established if the distance between desired and achieved end-effector
position is below the current tolerance.

In order to evaluate the trained models two kinds of experiments have been conducted:

• targeting, the trained policy is used to predict joint values in order to reach a
target point inside of the task space. The policy has been tested over 500 target
points. The trained agent interacts with the environment trying to reach the goal,
the episode stops if the error is below 1 mm and then, in the next episode, a new

46 4| Experimental Setup and Results

target is selected. The robot’s starting pose is resampled at each episode.

• path following, the trained policy is used to follow a predefined path. Two kinds
of path have been tested: linear and circular. The trajectory is built as a series of
consecutive points that the robot should reach in order to follow the path. The first
target point is sampled inside of the task space and then the following target points
form a line or a circle. The path following test is repeated with 10 different starting
points for each kind of trajectory and the results averaged.

For both experiments, the exploited simulation environment is the same of the training
phase, thus same tube parameters are described in Table 3.1.
These kind of evaluation tests are useful as similar to a real surgical scenario where a
surgeon control the end-effector tip position through a haptic device giving Cartesian
coordinates as input for the controller.
The quality of the obtained results from these two experiments has been established by
looking at the error distance between the achieved Cartesian tip position Ga and the
desired one Gd calculated as:

E =
√

(Gdx −Gax)2 + (Gdy −Gay)2 + (Gdz −Gaz)2 (4.1)

and episode length, which defines how fast is the policy to find joint values that perform
the required task.
The first comparison is between the two analysed method policies PPO and A2C. A
demonstration of better performance for dense reward with respect to sparse reward with
PPO policy is described in section 4.2.2 Then PPO’s trained policy has been compared
with the previous work method and with a Jacobian control method.

4| Experimental Setup and Results 47

4.2. Results

4.2.1. PPO vs A2C

The two proposed methods have been trained for three and one million each and with
both sparse and dense reward functions. Training results show that PPO outperforms
A2C in both three and one million steps training and with both sparse and dense reward
functions. Results for three million steps with dense reward training are shown in Fig.
4.3. PPO converges to a 100% success rate in less than 500000 steps, also reward and
episode length show better performance.
A targeting evaluation test has been conducted over 500 points in order to assess the
two methods performance in simulation environment. Fig. 4.2 demonstrates how PPO
outperform A2C also in evaluation test. The average error distance with its standard
deviation and the episode length mean of the targeting test are described in Tab. 4.1,
while a graphic visualisation of the same test is represented in Fig. 4.3.

48 4| Experimental Setup and Results

Figure 4.1: Training results, PPO vs A2C. (A) episode lenght mean, (B) episode reward
mean, (C) error during training, (D) success rate.

4| Experimental Setup and Results 49

Figure 4.2: Evaluation error boxplot

Average Standard deviation Episode Length mean

PPO 0.88 mm 0.90 mm 26.33 steps

A2C 37.2 mm 17.9 mm 50 steps

DDPG+HER 0.83 mm 0.16 mm 25.81 steps

Table 4.1: Targeting results of the three DRL methods: average and standard deviation
of error E, episode length.

4.2.2. Dense vs Sparse reward

As described in Section 3.3.2 the exploited reward signal is of two types: sparse and dense.
Training performance for PPO one million steps training in both sparse and dense reward
cases are resumed in the success rate parameter shown in Fig. 4.4. Both the trained
policy has been evaluated with a targeting experiment over 500 points, the error distance
is visualized in Fig. 4.5. The average error distance measured in the experiment is 0.8mm
with 0.6mm standard deviation for the dense reward policy, while for sparse reward the
mean is 29.3mm and the standard deviation 13.8mm.

50 4| Experimental Setup and Results

Figure 4.3: Evaluation error distribution, measured in mm. (A) PPO, (B) A2C

Figure 4.4: Success rate comparison between dense and sparse reward trainings.

4| Experimental Setup and Results 51

(a) Evaluation error boxplot

(b) Evaluation error distribution, measured in mm. (A) dense reward function, (B) sparse
reward function

Figure 4.5

52 4| Experimental Setup and Results

Figure 4.6: PPO vs Jacobian controller evaluation test, the black dot is the starting point
of the trajectory and the black one is the ending point while the green dots describe the
trajectory. The pink line is the end-effector trajectory. (A) is the Jacobian controller
trajectory, (B) is the PPO trajectory.

4.2.3. PPO vs Jacobian

Once established that PPO method is the most successful of the proposed methods it
has been compared with geometric Jacobian controller. The comparison between the two
methods has been done on the same system with parameters in Tab. 3.1, K=2I for Ja-
cobian control law and a PPO policy trained with dense reward function for one million
steps for DRL method has been employed.
The path-following test has been exploited with 10 different starting points for both linear
and circular trajectories, in order to strengthen the robustness of the experiment. In Fig.
4.6 is shown one the most successful of the experienced tests, while in most of the cases
the Jacobian controller steered the robot far away from the target trajectory, thus the
error metrics of this successful test is not a clear evidence of the bad Jacobian performance
and for this reason is not useful to compare them with the other methods.

4| Experimental Setup and Results 53

Figure 4.7: PPO vs DDPG+HER success rate

4.2.4. PPO vs DDPG+HER

In the previous work has been demonstrated that DDPG needs 2 million steps and 19
parallel workers to converge [41], while PPO method is able to converge with 8 parallel
workers and 1 million steps training showing on-policy method ability to learn faster for
this environment. This sample efficiency is reflected also in the overall training time pa-
rameter that settles around 10 hours for DDPG+HER training and around 4 hours for
PPO training. Training results over the same simulation environment are shown in Fig.
4.7, it is evident that PPO policy converges after 600000 steps while DDPG+HER after
1.6 million steps.
DDPG+HER and PPO policies has been evaluated over the same CTR simulation envi-
ronment with both targeting and path following test and the evaluation error (E) statistics
are shown in Fig. 4.2 and Tab. 4.1. The result of path following test with linear and
circular trajectories is shown in Fig. 4.8.

54 4| Experimental Setup and Results

Figure 4.8: Path following test. (A),(C) refers to PPO policy evaluation, (B)(D) refers
to DDPG policy evaluation

4| Experimental Setup and Results 55

4.2.5. Domain Randomization

Another experiment has been conducted to prove PPO method’s ability to learn a more
general policy. To this purpose a domain randomization strategy has been applied to
the environment during training. The concept of domain randomization is to sample at
each episode a set of parameters with a variation in tubes’ parameters inside of a defined
range. The chosen range in this experiment was 10% of the selected CTR system (3.1).
At each episode a random value of the parameter P inside the range between P +0.1 ∗P
and P − 0.1 ∗ P is selected and the episode executed with the selected parameters. This
kind of environment has been trained with PPO for one million steps.
The trained policy has been evaluated with a targeting task for 200 points, the average
and standard deviation of the distance error with the episode length are listed in Tab.
4.2. While, a graphical visualization of the distance error is represented in Fig. 4.9.

Average Standard deviation Episode Length mean

10% Randomization 1.62mm 6.8mm 28.6 steps

20% Randomization 1.28mm 2.99mm 26.82 steps

30% Randomization 2.74mm 10.9mm 30.45 steps

40% Randomization 2.39mm 6.4mm 31.31 steps

Table 4.2: Targeting results from Randomization

56 4| Experimental Setup and Results

Figure 4.9: Domain randomization error distance visualization, from the top to the bottom
the randomization range goes from 10% to 40%

57

5| Discussion

In this chapter a discussion about the obtained results will be conducted. The objective
of this study was to improve the performance of the DRL-based CTR control method.
For this purpose, two new DRL methods with respect to previous work have been tested.
From the analysis of the comparison between the two proposed methods, it has been ob-
tained that PPO outperforms A2C for the involved CTR simulation environment. This
is firstly observable from training performance where PPO has a higher reward, lower
episode length and faster convergence to 100% success rate. And it is confirmed in the
targeting evaluation test where PPO reaches a 0.88mm average error distance with re-
spect to the 37.2mm of A2C policy. This behaviour is justifiable by the clipped feature of
PPO’s loss function (eq.2.30) that keeps the policy changes in a limited range increasing
the convergence to an optimal solution probability. On the other side A2C loss function is
not clipped resulting in a higher probability of getting a bad policy without the possibility
to recover from that.
Once established that PPO is the working method, slightly better performance has been
assessed with a linear goal tolerance decay function with respect to the exponential and
constant functions. Moreover the reward function has been tested as a very influential
factor in training performance, indeed looking at Fig. 4.4 and Fig. 4.5 an important
gap between the two policies can be estimated in both training and evaluation results.
Being PPO an on-policy method is reasonable that a dense reward function is a better fit
because the policy is updated online based on current experiences, thus a more frequent
reward signal is necessary in order to push the agent in the right direction.
When compared to the geometric Jacobian control strategy, the selected DRL method
shows more stable and accurate performance. The trained PPO policy is able to follow
both a linear and circular path with a 0.7mm average error, while Jacobian controller
most of the time fails moving far away from the target. This is mainly due to the absence
of joint limits in Jacobian formulation that steers the robot to configuration it cannot
recover from. Without an implementation of these constraints (described in 3.1) tubes
could collide or the robot reach unfeasible configurations.
In section 4.2.4, is evident a faster and more stable convergence of PPO policy compared

58 5| Discussion

to the previous work one. The advantage of PPO sample efficiency can be useful in a
real scenario where a procedure-specific control strategy could be necessary, thus PPO’s
ability to learn a good policy with a smaller amount of collected experiences is helpful.
This is again addressable to the PPO’s on-policy nature that makes training faster with
respect to off-policy methods, the letter in fact uses one policy to be evaluated and up-
dated and one for data generation.
On-policy nature of PPO is also useful to learn a policy in a dynamic environment where
parameters change during training. Considering the domain randomization experiment
results it can be inferred that the trained agent has learned an inverse kinematic prob-
lem solution for CTRs systems with 10% and 20% randomization with an average error
calculated from evaluation test that is below 2 mm, while for 30% and 40% the average
is larger than 2mm. This result is an initial proof of concept that this method is able
to produce some form of policy generalization, despite improvements have to be done.
Moreover, the domain randomization technique is proved to be useful for policy transla-
tion from simulation to hardware domain [50]. In hardware scenario most of the tube’s
parameters can be affected by measuring errors, thus randomization helps train a more
flexible policy.

59

6| Conclusion and Future

Developments

In this thesis, a novel DRL-based method for CTRs control has been investigated. The
proposed method is intended for specific surgical scenario where no forces are involved at
the robot’s end-effector, such as ablation procedures like FLC for TTTS. The developed
controller could be involved in a closed-loop control where the surgeon selects the point
or the path that the robot should follow in the Cartesian space, through a haptic device,
and the trained policy solves the inverse kinematics to compute the joint values to send
to the actuation unit.
The controller is based on a DRL approach and PPO algorithm has been selected as the
most performant method to solve CTRs inverse kinematics. After hyperparameters tun-
ing the model has been trained in the CTR simulation environment for 1 million steps and
8 parallel workers in order to explore properly the workspace. Then the trained agent has
been tested in the same environment with targeting and path following tasks. The results
showed that PPO is able to solve the kinematic problem with a good accuracy and con-
sistency supported by a low computational reduced computational time when compared
with the very common Jacobian approach. Moreover, PPO model has been found to
converge faster to a solution during training with respect to previous work DDPG+HER
method, and to be promising for policy generalization solving the domain randomization
problem.
To further improve the method’s accuracy more workers could be involved during training
in order to extend the exploration feature of training in particular for the randomization
training which is essential for hardware translation. In addition, could be useful to train
the PPO agent in a noisy simulation environment, where some noise is introduced to joint
values and end-effector position tracking in order to simulate motors encoder errors and
end-effector tip position tracking errors. This is also very important for hardware work.
An additional future work can be a test exploited in the attempt to generalize the policy
over CTR systems. During the training phase a different CTR system with different tube
parameters can be sampled at each episode with the aim to train an agent able to solve

60 6| Conclusion and Future Developments

multiple kinematics problems.
Another common issue for CTR devices are the elastic instabilities that can rise from
high curvature structure. For instance, snapping is a phenomena that happens when tube
bending and twisting leads to the elastic potential energy storage followed by the sudden
release of it when unstable configurations are reached and the resulting loss of robot con-
trol. For this purpose different design [51–53], kinematic models [54] and path planning
[55] strategies tried to include this issue in order to improve CTR stability. Dealing with
the proposed DRL control method a future work idea could include the unstable robot
configurations, that lead to snapping, as penalizing in the reward function, training in
this way a model that avoids those configurations.
In conclusion, a future necessary step is to transfer the trained policies to a hardware
system to evaluate how policy performance adapts to a real system. The policy coming
from the CTR simulation environment is not directly applicable to the real CTR system.
Thus one important step is to test the hardware system to understand its functionalities.
For this purpose, a GUI to control CTR’s joint has been developed exploiting ROS rqt
framework. Rqt is a ROS package that enables plugin development. The work done is
based on a preexistent plugin for robotic control.
As see in Fig. 6.1 the plugin is made of three pairs of sliders, each pair control exten-
sion(vertical slider) and rotation(orizontal slider) of a single tube. Moreover, the top
couple controls the innermost tube, the middle one the middle tube and the lower one
the outermost tube. As a ROS application there are two nodes involved which communi-
cate using a publish/subscribe messaging model. Every time the user modifies any slider
position a Joint State message is sent to the Joint Command topic, the message is in the
form:

joint_state = (β1, β2, β3, α1, α2, α3) (6.1)

where the β values correspond to the vertical slider current values and will act on joint
extension, while α values correspond to the horizontal slider current value and will act on
joint rotation. Sliders have constrained values which reflect the hardware joint limits.
The plugin has been tested on the hardware system shown in Fig.6.2 whose components
are described in appendix A.

6| Conclusion and Future Developments 61

Figure 6.1: Joint Control Plugin

(a) Frontal view

(b) Top view

Figure 6.2: CTR harware system

63

Bibliography

[1] Hessa Alfalahi, Federico Renda, and Cesare Stefanini. Concentric tube robots for
minimally invasive surgery: Current applications and future opportunities. IEEE
Transactions on Medical Robotics and Bionics, 2(3):410–424, 2020.

[2] B Jaffray. Minimally invasive surgery. Archives of Disease in Childhood, 90(5):537–
542, 2005.

[3] Stavros A Antoniou, George A Antoniou, Athanasios I Antoniou, and Frank-
Alexander Granderath. Past, present, and future of minimally invasive abdominal
surgery. JSLS: Journal of the Society of Laparoendoscopic Surgeons, 19(3), 2015.

[4] Michele Tonutti, Daniel S Elson, Guang-Zhong Yang, Ara W Darzi, and Mikael H
Sodergren. The role of technology in minimally invasive surgery: state of the
art, recent developments and future directions. Postgraduate Medical Journal,
93(1097):159–167, 2017.

[5] Jessica Burgner-Kahrs, D. Caleb Rucker, and Howie Choset. Continuum robots for
medical applications: A survey. IEEE Transactions on Robotics, 31(6):1261–1280,
2015.

[6] Mohammed Abdel-Nasser and Omar Salah. New continuum surgical robot based
on hybrid concentric tube-tendon driven mechanism. Proceedings of the Institu-
tion of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
235(24):7550–7568, 2021.

[7] Junji Furusho, Tomoya Ono, Raifu Murai, Tatsuya Fujimoto, Yoshihide Chiba, and
Hiroyuki Horio. Development of a curved multi-tube (cmt) catheter for percutaneous
umbilical blood sampling and control methods of cmt catheters for solid organs.
IEEE International Conference Mechatronics and Automation, 2005, 1:410–415 Vol.
1, 2005.

[8] Cédric Girerd and Tania K. Morimoto. Design and control of a hand-held con-
centric tube robot for minimally invasive surgery. IEEE Transactions on Robotics,
37(4):1022–1038, 2021.

64 | Bibliography

[9] Patrick Sears and Pierre Dupont. A steerable needle technology using curved con-
centric tubes. In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2850–2856, 2006.

[10] Hunter B. Gilbert, Joseph Neimat, and Robert J. Webster. Concentric tube robots
as steerable needles: Achieving follow-the-leader deployment. IEEE Transactions on
Robotics, 31(2):246–258, 2015.

[11] Jessica Burgner, D. Caleb Rucker, Hunter B. Gilbert, Philip J. Swaney, Paul T.
Russell, Kyle D. Weaver, and Robert J. Webster. A telerobotic system for transnasal
surgery. IEEE/ASME Transactions on Mechatronics, 19(3):996–1006, 2014.

[12] I Blickstein. Monochorionicity in perspective, 2006.

[13] Lynn L Simpson, Society for Maternal-Fetal Medicine (SMFM, et al. Twin-twin
transfusion syndrome. American journal of obstetrics and gynecology, 208(1):3–18,
2013.

[14] Femke Slaghekke, Enrico Lopriore, Liesbeth Lewi, Johanna M Middeldorp, Erik W
van Zwet, Anne-Sophie Weingertner, Frans J Klumper, Philip DeKoninck, Roland
Devlieger, Mark D Kilby, Maria Angela Rustico, Jan Deprest, Romain Favre, and
Dick Oepkes. Fetoscopic laser coagulation of the vascular equator versus selective
coagulation for twin-to-twin transfusion syndrome: an open-label randomised con-
trolled trial. The Lancet, 383(9935):2144–2151, 2014.

[15] Srinivas Neppalli, Matthew A. Csencsits, Bryan A. Jones, and Ian D. Walker.
Closed-form inverse kinematics for continuum manipulators. Advanced Robotics,
23(15):2077–2091, 2009.

[16] Pierre E. Dupont, Jesse Lock, and Brandon Itkowitz. Real-time position control
of concentric tube robots. In 2010 IEEE International Conference on Robotics and
Automation, pages 562–568, 2010.

[17] Pierre E. Dupont, Jesse Lock, and Evan Butler. Torsional kinematic model for
concentric tube robots. In 2009 IEEE International Conference on Robotics and
Automation, pages 3851–3858, 2009.

[18] D. Caleb Rucker and Robert J. Webster. Mechanics of bending, torsion, and variable
precurvature in multi-tube active cannulas. In 2009 IEEE International Conference
on Robotics and Automation, pages 2533–2537, 2009.

[19] Pierre E. Dupont, Jesse Lock, Brandon Itkowitz, and Evan Butler. Design and control
of concentric-tube robots. IEEE Transactions on Robotics, 26(2):209–225, 2010.

| Bibliography 65

[20] Konrad Leibrandt, Christos Bergeles, and Guang-Zhong Yang. Concentric tube
robots: Rapid, stable path-planning and guidance for surgical use. IEEE Robotics
and Automation Magazine, 24(2):42–53, 2017.

[21] D. Caleb Rucker and Robert J. Webster. Computing jacobians and compliance matri-
ces for externally loaded continuum robots. In 2011 IEEE International Conference
on Robotics and Automation, pages 945–950, 2011.

[22] Ran Xu, Ali Asadian, Seyed Farokh Atashzar, and Rajni V. Patel. Real-time trajec-
tory tracking for externally loaded concentric-tube robots. In 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 4374–4379, 2014.

[23] Mohsen Khadem, John O’Neill, Zisos Mitros, Lyndon da Cruz, and Christos Bergeles.
Autonomous steering of concentric tube robots via nonlinear model predictive control.
IEEE Transactions on Robotics, 36(5):1595–1602, 2020.

[24] C Bergeles, FY Lin, and GZ Yang. Concentric tube robot kinematics using neural
networks. In Hamlyn symposium on medical robotics, volume 6, pages 1–2, 2015.

[25] Reinhard Grassmann, Vincent Modes, and Jessica Burgner-Kahrs. Learning the
forward and inverse kinematics of a 6-dof concentric tube continuum robot in se(3). In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5125–5132, 2018.

[26] Alan Kuntz, Armaan Sethi, Robert J. Webster, and Ron Alterovitz. Learning the
complete shape of concentric tube robots. IEEE Transactions on Medical Robotics
and Bionics, 2(2):140–147, 2020.

[27] Nan Liang, Reinhard M. Grassmann, Sven Lilge, and Jessica Burgner-Kahrs.
Learning-based inverse kinematics from shape as input for concentric tube contin-
uum robots. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 1387–1393, 2021.

[28] D. Caleb Rucker, Bryan A. Jones, and Robert J. Webster III. A geometrically exact
model for externally loaded concentric-tube continuum robots. IEEE Transactions
on Robotics, 26(5):769–780, 2010.

[29] Georgios Fagogenis, Christos Bergeles, and Pierre E. Dupont. Adaptive nonparamet-
ric kinematic modeling of concentric tube robots. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4324–4329, 2016.

[30] Balint Thamo, Farshid Alambeigi, Kev Dhaliwal, and Mohsen Khadem. A hybrid
dual jacobian approach for autonomous control of concentric tube robots in unknown

66 | Bibliography

constrained environments. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 2809–2815, 2021.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[32] Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

[33] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–
292, 1992.

[34] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Reinforcement learning, pages 5–32, 1992.

[35] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis
of deep q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR,
2020.

[36] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[39] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. Advances in neural information processing systems, 30,
2017.

[40] K Iyengar and D Stoyanov. Deep reinforcement learning for concentric tube
robot control with goal based curriculum reward. In https://cras-eu. org/wp-
content/uploads/2020/09/CRAS_2020_proceedings. pdf, pages 60–61. Computer-
Assisted Radiology and Surgery, 2020.

[41] Keshav Iyengar, George Dwyer, and Danail Stoyanov. Investigating exploration for
deep reinforcement learning of concentric tube robot control. International Journal
of Computer Assisted Radiology and Surgery, 15(7):1157–1165, 2020.

| Bibliography 67

[42] Keshav Iyengar and Danail Stoyanov. Deep reinforcement learning for concentric tube
robot control with a goal-based curriculum. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 1459–1465. IEEE, 2021.

[43] Keshav Iyengar, Sarah Spurgeon, and Danail Stoyanov. Unconstrained rotation for
control of concentric tube robots with deep reinforcement learning. CRAS, 2022.

[44] Keshav Iyengar, Sarah Spurgeon, and Danail Stoyanov. Deep reinforcement learning
for concentric tube robot path planning. arXiv preprint arXiv:2301.09162, 2023.

[45] III Robert J. Webster and Bryan A. Jones. Design and kinematic modeling of con-
stant curvature continuum robots: A review. The International Journal of Robotics
Research, 29(13):1661–1683, 2010.

[46] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[47] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
and Noah Dormann. Stable baselines3, 2019.

[48] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp,
Kurtland Chua, Frank Hutter, and Roberto Calandra. On the importance of hy-
perparameter optimization for model-based reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, pages 4015–4023. PMLR, 2021.

[49] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge dis-
covery & data mining, pages 2623–2631, 2019.

[50] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 23–30. IEEE, 2017.

[51] Hunter B Gilbert, Richard J Hendrick, and Robert J Webster III. Elastic stability
of concentric tube robots: A stability measure and design test. IEEE Transactions
on Robotics, 32(1):20–35, 2015.

[52] Richard J Hendrick, Hunter B Gilbert, and Robert J Webster. Designing snap-free
concentric tube robots: A local bifurcation approach. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 2256–2263. IEEE, 2015.

68 6| BIBLIOGRAPHY

[53] Ji-Suk Kim, Dae-Young Lee, Keri Kim, Sungchul Kang, and Kyu-Jin Cho. Toward
a solution to the snapping problem in a concentric-tube continuum robot: Grooved
tubes with anisotropy. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 5871–5876. IEEE, 2014.

[54] SM Hadi Sadati, Zisos Mitros, Ross Henry, Lingyun Zeng, Lyndon Da Cruz, and
Christos Bergeles. Real-time dynamics of concentric tube robots with reduced-order
kinematics based on shape interpolation. IEEE Robotics and Automation Letters,
7(2):5671–5678, 2022.

[55] Christos Bergeles and Pierre E Dupont. Planning stable paths for concentric tube
robots. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 3077–3082. IEEE, 2013.

69

A| Appendix A

CTR HARDWARE SYSTEM
The hardware system used for plugin experiments as well as for tube parameters mea-
surement has the following components:

• 3 nitinol tubes, 2 full nitinol, innermost has steel section in straight length

• Chassis: 3 aluminum extrusions of 200mm length, 3D printed plates for motor
mounts and robot front with tube entry

• 3x HANPOSE 17HS3401S for translation set to 4 microsteps (motor has 1.8 deg /
step accuracy)

• 3x HANPOSE 17HS3401S for rotation set to 16 microsteps (motor has 1.8 deg /
step accuracy)

• 6x limit switches (Creality Official Limit Switch End Stop 3PCS 3D Printer Part
Compatible with Ender 3 / Ender 3 Pro/Ender 3 V2 / Ender 5 Series/CR-10 Series
3D Printer)

• 3x brass collets and chucks (to hold tubes)

• 3x linear rails (RUOKL 2Kit Small V-Wheel Plate for 2020 Series V-Slot Aluminum
Profiles Linear Rail,Assembled V-Slot Gantry Plate with POM Wheels suitable)

• 3x 1 mm per rev linear screw

• 12x calibration pins (designed and 3D printed)

• 3x rotational bumps for rotation homing (designed and 3D printed)

• 3x transltation limit blocks (designed and 3D printed)

• 2x Arduinos uno

• 2x motor controller shields (Arduino GRBL CNC shield v3)

• Aurora tracking system

71

List of Figures

1.1 The da Vinci surgical platform . 2
1.2 CR classification based on [5] . 3
1.3 Rotation and translation of each tube . 3
1.4 . 4
1.5 Teleoperated CTR for transnasal surgery 5
1.6 FLC procedure for the treatment of TTTS, showing the endoscope posi-

tioned to coagulate the placental vessel anastomoses 6

2.1 Dupont et al. control diagram . 10
2.2 . 11
2.3 . 12
2.4 Teleoperated LWPR test . 17
2.5 RMSE of LWPR trained model . 17
2.6 Tissue ablation simulation . 20
2.7 Action-Reward feedback loop of a generic RL model 21
2.8 Actor-Critic architecture. At each timestep t, the policy selects an action

At in the state St. The critic takes At and St as input and computes the
Q-value for that pair. A new state St+1 and return Rt+1 will be generated.
The actor updates the policy with the Q-value and produces a new action
At+1, the critic then updates its network. 26

2.9 Advantage function . 27

3.1 Hyperparameters research workflow: for each algorithm and each reward
function the simulation environment was run for 600 trials. In every trial
a targeting task was simulated and the most rewarded trial was picked as
hyperparameters reference. Stable-Baselines 3 framework was involved for
this process. 34

72 | List of Figures

3.2 Training workflow: the tuned parameters are used to train the correspond-
ing method and reward function. In every episode of the training a DRL
problem is solved as a targeting task. The trained agent is saved after the
end of the training. 35

3.3 Controller workflow: the surgeon selects a cartesian point or trajectory,
through a haptic device for instance, the cartesian coordinates become the
input for the trained model which computes the joints values to achieve
that point or trajectory. The selected joint values are sent to the robot
actuation unit. 35

3.4 CTR system notation . 36
3.5 Rotation joint representation . 39
3.6 CTR simulation environment with starting end-effector position(black dot)

and target end-effector position(pink dot) 42
3.7 Network architecture . 42

4.1 Training results, PPO vs A2C. (A) episode lenght mean, (B) episode re-
ward mean, (C) error during training, (D) success rate. 48

4.2 Evaluation error boxplot . 49
4.3 Evaluation error distribution, measured in mm. (A) PPO, (B) A2C 50
4.4 Success rate comparison between dense and sparse reward trainings. 50
4.5 . 51
4.6 PPO vs Jacobian controller evaluation test, the black dot is the starting

point of the trajectory and the black one is the ending point while the green
dots describe the trajectory. The pink line is the end-effector trajectory.
(A) is the Jacobian controller trajectory, (B) is the PPO trajectory. . . . 52

4.7 PPO vs DDPG+HER success rate . 53
4.8 Path following test. (A),(C) refers to PPO policy evaluation, (B)(D)

refers to DDPG policy evaluation . 54
4.9 Domain randomization error distance visualization, from the top to the

bottom the randomization range goes from 10% to 40% 56

6.1 Joint Control Plugin . 61
6.2 CTR harware system . 61

73

List of Tables

3.1 CTR tube parameters. *There is a straight section of 96.41 mm steel
and 153.95 mm nitinol. **Home offset calculated from base plane to limit
switch of each extension block . 41

3.2 Hyperparameters research results . 44

4.1 Targeting results of the three DRL methods: average and standard devia-
tion of error E, episode length. 49

4.2 Targeting results from Randomization . 55

75

Acknowledgements

I would like to thank Prof.ssa Elena De Momi for giving me the opportunity to work on
a fascinating project in an inspiring environment like WEISS Lab in London.
I would like to express my gratitude to all the guys from WEISS for welcoming me
and teaching me so much. A particular mention to Keshav Iyengar, thank you for your
patience, care and humility, for expanding my technical and personal background.
A special thought to my family and all my friends who always supported me in all my
choices.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Minimally Invasive and Robotic Assisted Surgery
	Concentric Tube Robots
	Twin-twin transfusion syndrome treatment
	Aim of the work
	Thesis structure

	Background
	Related works
	Reinforcement Learning background
	Advantage Actor-Critic
	Proximal Policy Optimization
	Previous work method

	Thesis objective

	Materials and Methods
	Workflow overview
	CTR model
	Controller development
	Concentric Tube Robot control problem in Reinforcement Learning
	MDP formulation
	Training strategy
	Methods
	Hyperparameter Tuning setup
	Hardware and Software specifications

	Experimental Setup and Results
	Experimental setup
	Results
	PPO vs A2C
	Dense vs Sparse reward
	PPO vs Jacobian
	PPO vs DDPG+HER
	Domain Randomization

	Discussion
	Conclusion and Future Developments
	Bibliography
	Appendix A
	List of Figures
	List of Tables
	Acknowledgements

