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Sommario

Il Molecular Docking è una fase importante del processo di scoperta dei farmaci che
mira a predirre la posizione e la forma preferite da una molecola rispetto ad una seconda
quando sono legate l’una all’altra.

Durante questa parte dell’analisi, chiamata in silico, una rappresentazione 3D delle
molecole viene manipolata in base ai loro gradi di libertà con rototraslazioni rigide e
rotazioni dei frammenti lungo i legami chimici ruotabili.

Nel nostro lavoro, ci siamo concentrati su una fase specifica della procedura di doc-
king molecolare chiamata Small Molecule Unfolding, SMU, tradotto in italiano come
dispiegamento della piccola molecola. Questa fase viene utilizzata per rimuovere il
bias geometrico iniziale della molecola, tipicamente dovuto alla sua ricostruzione 3D,
espandendone la forma nel rispetto dei legami chimici.

Abbiamo proposto per lo SMU un approccio basato sull’algoritmo del quantum an-
nealing, formulando il problema di ottimizzazione come HUBO (High-order Unconstrai-
ned Binary Optimization), e poi lo abbiamo trasformato in QUBO (Quadratic Uncon-
strained Binary Optimization) per studiare come rendere la soluzione eseguibile sugli
hardware più recenti di D-Wave (D-Wave 2000Q e Advantage).

Il problema è stato definito considerando la posizione dei legami chimici ruotabili
della molecola come variabili di ottimizzazione. Abbiamo assunto dei valori di angoli
discreti per le possibili rotazioni dei legami chimici. L’obiettivo del problema SMU è
trovare la configurazione di angoli che massimizza il volume molecolare, o equivalente-
mente, che massimizza le distanze interne fra gli atomi che compongono la molecola.
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Abstract

Molecular Docking is an important step of the drug discovery process which aims at
calculating the preferred position and shape of one molecule to a second when they are
bound to each other.

During this part of the analysis, called in-silico, a 3D representation of the molecules
is manipulated according to their degrees of freedoms: rigid roto-translation, and frag-
ment rotations along the rotatable bonds. In our work, we focused on a specific phase
of the molecular docking procedure that is called Small Molecule Unfolding, SMU. This
phase is used for removing the initial geometrical bias of the molecule, typically due to
the 3D construction, by expanding the ligand to an unfolded shape.

We proposed a quantum annealing approach to SMU, by formulating the optimiza-
tion problem as a HUBO (High-order Unconstrained Binary Optimization), and then
we transformed it to QUBO (Quadratic Unconstrained Binary Optimization) in order
to study make the solution feasible on the latest D-Wave hardware (D-Wave 2000Q
and Advantage).

The problem has been defined considering the position of the rotatable bonds of the
molecule as the optimization variables. We assumed discrete possible rotation angles.
The objective of the SMU problem is to find the molecule configuration that maximizes
the molecular volume, or equivalently, that maximizes the internal distances of the atoms
that compose the molecule.
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Chapter 1

Introduction

The in-silico approach to drug discovery can be viewed as a multitiered process or a
pipeline that encompasses several sequential computational techniques with the aim of
screening virtual libraries of the order of billions of compounds for the most suitable
molecules to forward to later experiments. In-silico virtual screening often relies on the
molecular docking phase.

Molecular docking is a computational technique used to simulate the interactions
at the atomic level of a compound, called ligand, inside a protein’s binding site, to
highlight the possible biochemical reactions between them. From a geometrical point
of view, it can be also seen as a method to calculate by means of rototranslations, the
preferred position and shape of one molecule to a second when bound to each other. Since
the evaluation of each molecule based on pharmacophoric features is computationally
expensive, a geometric approach becomes a more viable method for sampling shape
combinations.

In the process of docking we considered [45], we can identify three phases: i) the
ligand expansion, ii) the initial placement, and iii) the shape refinement. In our work,
we focused on the first phase, which takes the same time as the docking and does not
belong to the actual procedure. This step cannot be skipped and must be performed for
each molecule analyzed in the chemical database.

Problems arise because the shape in the initial pose of the substance in the binding
site is chosen from a tool apriori, called SMILE-to-3D ; the shape is reproducible but
at first it is not useful because disconnected from any criteria. This is called a shape
bias, that can be removed by expanding the ligand to an unfolded shape. Consequently,
in this project we are dealing only with the study of the shape of the compound and
not with its spatial location. The expansion of a molecule to its unfolded shape is an
optimization problem where the variables are a subset of the chemical bonds that can be
rotated around their axis. The search for particular conformations of the molecule has
been treated in different works; in particular, the phase of expansion has been studied in
the development of tunable geometric docking applications [18], where the ligand expan-
sion was performed with a greedy approach, which creates and analyzes conformations
by rotating in order one rotatable bond at a time, by a discrete angle. Other works [33]
construct a methodology on the resolution of QUBO (Quadratic Unconstrained Binary
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Optimization) problem formulations, with an objective function that aims at reduc-
ing the total energy of the molecule. In the literature, we can find approaches to the
technique of molecular docking which makes use of particular devices called quantum
computers [5].

Our model attempts to describe the expansion problem as the maximization of the
volume of the molecule, or better expressed by the proxy measure of the total sum of
interatomic distances. This measure of the volume is constructed as a function of the
angles assumed by the rotatable bonds, and then after rewriting the values of the an-
gles again as a function of the assignment of binary variables, with a one-hot encoding,
the total of the internal distances is expressed as a HUBO (High-order Unconstrained
Binary Optimization). Afterward, the HUBO is converted into a QUBO, by making use
also of these three approximations: (i) the coarse-grained rotations, (ii) the landscape
alternations by coefficients chopping, and (iii) the fragments contraction, also called the
distances simplification. The three approximations allowed us to reduce the complexity
of the model to embed and run all our problems’ instances on two QPUs (Quantum
Processing Units). The possibility of tuning the thresholds for these approximations in
different sections of the implementation gives us the possibility of exploring the capa-
bilities of this method. The project aims to understand if it is possible to improve the
quality and the throughput of the ligand expansion phase, therefore we tried to lever-
age the potential of DWAVE’s latest hardware, Advantage and 2000Q, to answer the
question.

The thesis is organized as follows:

• In Chapter 2, we introduce the adiabatic quantum computing model, the function-
ing of devices that make use of the quantum annealing, called quantum annealers,
and the problem description to be input to these devices. In the same chapter,
the fundamental concepts on molecular docking are provided, together with our
assumptions on the type of docking, and we concluded the chapter with examples
of applications of quantum computing in medicine.

• In Chapter 3, the unfolding optimization problem is mathematically formalized
and translated in the form of a binary optimization as a QUBO. This formulation
is one of the central points for the work done.

• In Chapter 4, the whole pipeline for the resolution of the molecular problem is
described in detail. We start by explaining how the cost function is extracted from
the high-level description of a chemical substance, and we point out the assump-
tions, substitutions, approximations made for extracting a HUBO out of the initial
cost function. Finally, in this chapter, we explain also how the quadratization of
the HUBO works, and how we post-processed the results.

• In Chapter 5, we present the experimental results in applying the proposed tech-
nique. We introduce the experimental set-up we used in terms of dataset selection,
the target machines, and the software we used. Afterward, we proceed by explain-
ing the alternative search strategies to the quantum annealers that have been used
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to compare the results, and the exploration performed during the embedding phase
on the quantum devices.

• Chapter 6 concludes the work and describes some future extensions.

• Finally, the Appendix includes more plots and table of the results that have been
kept out of the Experimental Result section, and that can be used to have a deeper
look on the results we obtained.

9



Chapter 2

Background

In this chapter we discuss the background necessary for understanding the context, the
objectives, the construction and finally the functioning of the project. In section 2.1
we are exposing an overview regarding the quantum computing model used, with an
explanation of the quantum mechanical principles empowering it and an analysis of the
algorithmic implementation of the model. In section 2.2 preliminary knowledge regarding
the technique of molecular docking is illustrated, followed by innovative examples of
quantum computing in drug discovery.

2.1 Adiabatic Quantum computing: an Overview

The purpose of this section is to familiarize ourselves with what concerns quantum com-
putation, in particular the Adiabatic Quantum Computing (AQC) model. We will start
in the first two subsections to understand the history and the reasons for the existence
of this new technology; immediately after there will be a detailed exposition of the main
elements, and quantum mechanical phenomena that make the model something unseen
before, like: new concepts like the quantum bit or qubits, the operations that can be
applied to these bits, and what kind of behaviour we can impose to a system of qubits,
that we will define as Hamiltonians. In the subsection 2.1.4 we will see the theoretical
algorithm of AQC, the Adiabatic Quantum Algorithm (AQA), how many steps it com-
prises, what operations and what are the requirements for being run. In section 2.1.5
the quantum annealing metaheuristic is introduced and compared to simulated anneal-
ing (SA), then the theoretical advantage of the algorithm over SA is proved. In section
2.1.6 we define what is the programmable element of the AQA, which is the problem’s
Hamiltonian Hp, and how it is used for implementing the algorithm of quantum an-
nealing in terms of an AQA on a physical device. In 2.1.7 we formalize two methods
of assessment for the performance of quantum annealing. In section 2.1.8 we define the
mathematical representation used for constructing the Hamiltonian Hp and in 2.1.9 we
highlight the differences between two QPUs.



2.1.1 Motivations

Moore’s law has been known since the 1960s, which tells us that the number of transistors
that we can introduce inside our processors doubles every approximately 18 months. It
is easy to understand that doubling the elements on a finished surface implies halving
the area of the elements themselves.

Unfortunately, the realization of ever smaller transistors has a limit, these tech-
nologies are reaching dimensions of the order of magnitude of nanometers. While the
manufacture of individual components does not impose particular production limits, the
construction of circuits and devices based on these components is not as easy.

It is becoming impractical given that the dimensions of the components introduce
new behaviors and effects related to the world of quantum physics, such as the growth
of noise signals due to the duality of particle and wave of atoms. We might ask ourselves
why we need this trend in the evolution of technologies not to become stationary. The
reason lies in the use we make of computational resources. Nowadays, to give some
examples, many problems ranging from optimization, to artificial intelligence, from the
research of new medicines to that of new materials, and the research on the origin of the
matter are solved through the use of algorithms and computing systems.

The last three problems mentioned require the processing of large amounts of data,
and in particular the last one would require practically infinite computational resources
to be solved. If innovation in "classical" technologies slows down further, it will be
necessary to introduce new technologies like quantum computers that will allow the
solution of critical problems that would otherwise not be.

2.1.2 History

The first time that the idea of building quantum computers was proposed was by the
physicist Richard Feynman during his time at Caltech [16]. His proposal was divided in
two main points, the first was to get an efficient way to run simulations of quantum me-
chanics, which might be the most important application if we will get to see a completed
device.

The second reason was to find a proof for his idea that quantum systems would be
at least capable of universal classical computation, which was not sure in the early 80’s.

Later on, David Deutsch [1] would formalize again the two objectives of quantum
computing as a method for proving interpretations of quantum mechanics and to show
that nature has the property of computational universality, it means that every physical
process can be simulated by a universal computing device, which could be nature itself;
David Deutsch is also the creator of the well-known quantum gate model.

We must highlight the fact that none of them were wondering if we can solve prob-
lems that cannot be solve with classical randomized algorithms in polynomial time with
a "quantum polynomial time", which is the main question of contemporary quantum
computing, actually NP-complete problems were not even mentioned!

Today quantum computers cannot solve NP-complete problems in polynomial time,
and probably if a quantum algorithm that solves NP-complete problems existed at all,
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as Prof. Umesh Vazirani reminds us, it would be different from anything we know today.

The great optimism and misconception comes from what is called quantum speedup,
which is the idea that quantum algorithms might be able to leverage quantum phenom-
ena in order to deliver time and space complexity asymptotically lower than the best
classical algorithms. One example is Grover’s algorithm [38] that can search a database
in a O(

√
n) 1 time complexity, rather than Ω(n) 2 required by every classical algorithm.

The speed-up is of order
√
n. Another example is Shor’s algorithm [38], that can factor

an n-bit number in polynomial time on a quantum computer with gate model, where
the best classical algorithm takes superpolynomial time. The repercussions of this algo-
rithm are that modern encryption methods like RSA are in danger since it is based on
the complexity of factoring.

Adiabatic quantum computing is one of the alternatives to the gate model. The first
main results came from Farhi et al. [15] and then by Aharonov et al.[2] that proved that
the two models are polynomially equivalent. Since quantum computing is probabilistic,
the main key for analyzing the goodness of execution is the trade-off between time-to-
solution 3 and quality of the result.

a.

b.

Figure 2.1: Intuitive representations of the gate model (a) that possesses a discrete nature, and of
AQC (b) that is one continuous analog operation. Bottom image from [29].

1O(g(n)) = { f(n): there exist constants c > 0, n0 > 0 such that 0 ≤ f(n) ≤ cg(n),∀n ≥ n0.}
2Ω(g(n)) = { f(n): there exist constants c > 0, n0 > 0 such that 0 ≤ cg(n) ≤ f(n), ∀n ≥ n0.}
3explained at the end of section 2.1.7
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2.1.3 Basics of Quantum Mechanics and Computation

In this section we are going to explain the basic unit of information of quantum comput-
ers, the quantum bit or qubit, then the operations we can perform on them, and what
kind of behaviour we can impose to a system of qubits, that we call Hamiltonians.

Qubits

The first difference between classical and quantum computing is the representation of
information. In classical computers, the state of a machine can be stored in a register
that saves the value of N bits. The classical bit can be either 0 or 1, depending on its
voltage. In a quantum computer, the state is still represented by a register, but this time
it will contain N quantum bits, or Qubits. A qubit [42] is a quantum mechanical system
described by a two-dimensional Hilbert space denoted by H and called qubit space. The
information stored in a qubit is contained in the qubit state in H in which the system
is, and it is manipulated and read according to the postulates of quantum mechanics.
These qubits have properties of superposition, which means its state |ψ〉 (Dirac’s bra-ket
notation for a state) can be 0 or 1 at the same time .
|ψ〉 is a vector made of two complex numbers α and β. The coefficients α and β

denote a linear combination of the two bases states |0〉 =
(

1, 0
)
and |1〉 =

(
0, 1
)
like

this |ψ〉 = α|0〉+ β|1〉.
Unfortunately, the superposition cannot be observed directly. Instead, what we can

do is measure the qubit according to a basis and its state will collapse to a vector, either
|0〉 or |1〉.

The probability of measuring |0〉 is |α|2 (the squared magnitude of the complex num-
ber) and for |1〉 is |β|2; since these two are probabilities their sum must be |α|2+|β|2 = 1.

This property is the first point of one of the fundamental postulates of quantum
mechanics, the Born Rule.

Notice that we could have situations where the magnitude of α could be much greater
than that of β, so we will measure much more times |0〉 than |1〉 with a repetition of the
experiment, which consists in resetting the qubit to the |ψ〉 state and then measuring
again. It is important to understand that once we measure the qubit, its state has
changed to φ (|0〉 or |1〉) .

In Figure 2.2 you can see a three-dimensional sphere of unitary radius, the Bloch
sphere, where the state vector will be a point laying on the surface; the sphere is just a
theoretical representation that doesn’t exist in reality.

It is a usual convention to take the north pole as |0〉 and the south pole as |1〉, the
two basis vectors. Pay attention that we may change the basis of reference and take the
vector that corresponds to the orthogonal set of vectors laying on the x-axis, |+〉 and
|−〉, where

|+〉 =
1√
2
|0〉+

1√
2
|1〉 and |−〉 =

1√
2
|0〉 − 1√

2
|1〉
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Figure 2.2: The Bloch sphere, a graphical representation [43] of the qubit.

If you square the coefficients of these last vectors, it is possible to see that the probability
of measuring 1 or 0 is equal for both and it is 50%. These states are maybe the most
important ingredient of quantum algorithms.

Quantum Operators

Operators in physics are functions that map a space of states to another one. Every
observable quantity in the system, for instance, the spin of a particle, that we might
want to measure, is represented by a self-adjoint operator O on that space. If one builds
a device to retrieve the measure of the observable, the machine when used will output an
eigenvalue λ of that observable. This was the second point of the Born Rule. In the case
of a complex finite-dimensional Hilbert space (a vector space with an inner product),
these functions are just matrices with particular properties.

Three fundamental operators are the Pauli matrices σx, σy, σz.
These matrices are what define the gates in the gate model and they have the physical

meaning of performing rotations and symmetries of the states or dots on the Bloch
sphere, with the particular property of reversibility.

For example, the Pauli-x will bit flip the the basis vector as a classical not operation.

σx =

(
0 1

1 0

)
(2.1)

σy =

(
0 i

−i 0

)
(2.2)

σz =

(
1 0

0 −1

)
(2.3)

Each Pauli matrix presents as eigenvalues -1 and +1, which will be easy to convert
to 0 and 1 as our classical information. Let us see what are the respective eigenvectors.
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For Pauli-z:

σz|0〉 = +1|0〉
σz|1〉 = −1|1〉

For Pauli-x:

σx|+〉 = +1|+〉
σx|−〉 = −1|−〉

One last thing to mention is the composition of multiple qubits. When we are
performing a computation on multiple qubits, the state of the entire system is represented
by the tensor product of the single state of the qubits.

For example, if we had a state |ψ1〉 =
(
α1, β1

)
and a second state |ψ2〉 =

(
α2, β2

)
,

the state space of the system would be 4:

|ψ1〉 ⊗ |ψ2〉 = |ψs〉 =
(
α1α2, α1β2, β1α2, β1β2

)
The two qubit base will be: |00〉, |01〉, |10〉, |11〉 5. If we put all together:

|ψs〉 = α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉

Again, for the Born rule, the sum of the squared magnitude of the coefficients of the
linear combination will be 1.

A system composed of N qubits could be in a state of Entanglement.
This is a nice property of quantum mechanics where if some qubits directly interact

with the system, they are no longer independent from each other, and this dependency
will be preserved even if the system is torn apart. Entaglement is preserved even if
one of the interested qubits is subject to some operation, e.g. a Pauli-z operation, or a
measurement.

Mathematically, the entaglement of N qubits results in a state |ψE〉 that cannot be
written as a simple tensor product between all qubits anymore.

The most popular example is the Bell state

1√
2
· |00〉+

1√
2
· |11〉

Hamiltonian

The evolution and dynamical behaviour of closed quantum systems is described by
Schrodinger’s equation:

4Please look yourself how to compute a tensor product
5these are the short notations for |0〉 ⊗ |0〉, |0〉 ⊗ |1〉 etc...
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i~
∂|ψ(x, t)〉

∂t
= H(t)|ψ(x, t)〉 (2.4)

We know that ~ = h/2π and h is Planck’s constant. The equation says that the
instantaneous rate of change of the system’s state is proportional to the energy of the
system.

Usually ~ is put inside the H matrix. The matrix H is called Hamiltonian and it is
an operator of great interest since it is the operator that represents the total energy of
the system. Inside the square brackets of equation 2.5 you can see two contributions,
the kinetic and potential energy function depending on the position of the particles and
of time. The formula here presents a time-independent version of the Hamiltonian in
eq. 2.4

i
∂ψ (x)

∂t
=

[
− 1

2m

∂2

∂x2
+ V (x)

]
ψ (x) (2.5)

In the case of an N-qubit time-varying system, the evolution is directed by the
application of a physical action on it. Part of these actions are determined externally
and part is the result of the interaction between qubits.

All these actions can be described by a time-varying Hamiltonian. Since the Hamil-
tonian is an operator in a finite dimensional Hilbert space, it is a square matrix of N×N
and it is Hermitian with real-valued eigenvalues.

The Hamiltonian describes how the state of the system varies in time. For those who
have a good familiarity with the gate model, it represents a circuit applied in continuous
time rather than discrete time.

The fact that the matrix is Hermitian gives us particular properties of decomposition.
For example, by applying the Trotter formula [38] to simplify the simulation of the
matrix, we could decompose it in more unitary matrices to be applied in small intervals
of time one after the other.

Another interesting property of the Hamiltonian is that it can be written as the sum
of multiple local interactions, that will still be Hamiltonians themselves.

H =

N∑
n=1

Hn (2.6)

Every single Hn will be a Hamiltonian that will act on a subportion of the system,
it will be a one-body operation (on a single qubit) or it could be a two-body interaction
6.

The Ising model has this type of Hamiltonian, but it will be explained later.
This type of locality is reasonable since the spatial location of the particles in the

system and their state decoherence determine also their interactions.

Since the observables of the system are all the possible combinations of |q1, . . . qN 〉
in terms on 0 and 1, every possible outcome will have an energy level corresponding to

6it means it operates as a function on two qubits
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it. All possible energies will not be just +1 and -1 like before, but we will have a whole
energy spectrum[15].

The instantaneous eigenvalues and eigenvectors of the Hamiltonian will be all the
possible energies and states of the system, instantaneous because they will depend on
how long the Hamiltonian will have been applied to the system.

We will have at most N real values E0(s) < . . . < EN−1(s)
7. The lowest energy or

eigenvalue will be the ground state, all the rest will be excited states.

2.1.4 Adiabatic Quantum Algorithm

Now we will explain the algorithm which is the basis for the Adiabatic Quantum Com-
puting (AQC). AQC is an ideal quantum computational model, equivalent to others,
like the quantum gate model, but it has an application which is solving optimization
problems.

Given an objective function f that we must minimize, f maps the domain of binary
variables to the real one, as f : {0, 1}N 7→ R. The function f usually represents a CSP
(constraint satisfaction problem), and it can be divided into several components, for
example a sum of constraints and a function g.

In order to run the Adiabatic Quantum Algorithm (AQA) [15] the following points
are required:

1. The system has to start from an easily constructible state, which means we must
know the ground state of the initial Hamiltonian HB (beginning).

2. A time dependent Hamiltonian H(t) based on the problem we need to solve.

3. A total evolution time T.

4. The evolution must execute according to Schrodinger’s equation 2.4.

5. The final state of the system |ψ(T )〉, for a high enough T will be close to the
ground state of the Hamiltonian Hp constructed from the problem instance; since
the system will always be in ground state, we will be able to retrieve the optimal
solution.

6. The algorithm finishes with a measurement of the N qubits on Z1Z2 . . . ZN
8. If

repeated many times, the device will return all the assignments related to the
ground state 9.

Let us explain the various steps.

7s is the amount of time already passed
8measurement of the energy of each qubit on a space spanned by the basis of the eigenvectors of

Pauli-z
9In non-ideal versions of this model, it’s possible that many solutions will be invalid, even though

they minimized our function f
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The general form of HB is defined as Γ(t)
∑N

i=1 σ
x
i [37], and the choice of the

coefficient gi can be done arbitrary, but one choice could be

HB =
N∑
i=1

1− σxi
2

(2.7)

called the driver Hamiltonian [20]. We should notice that the Pauli-x operator is the
main ingredient and it has an i-index that is due to the property of composition of the
Hamiltonian. Each Pauli-x will act on the single i-th qubit of the system. A system that
is left in a quiet state for long enough, tends to settle into a conformation that allows it
to have the lowest possible energy according to its Hamiltonian.

By applying HB after some time the system will try to reach its ground state. The
lowest energy it could reach is 0, and to reach this each qubit will settle in a |+〉 state,
because the eigenvalue of plus is 1, then by filling the formula 1−1

2 = 0.
If you look carefully the choice for HB then isn’t so arbitrary, because by the end of

the evolution each of the qubits will be in a plus state, that is the superposition of |0〉
and |1〉 with equal probability of measurement. This is a convenient and neutral starting
point for a computation. The construction of HP is much less trivial than HB, later on
a possible choice will be proposed.

The time-dependent Hamiltonian H(t) has to be a convex linear combination [20] of
the form:

H(t) = (1− s(t))HB + s(t)HP (2.8)

where s(t) describes the evolution path or schedule.
If the schedule is s : [0, 1] 7→ [0, 1] and belongs to C2, with first derivative s′ > 0,

and guaranteed that s(0) = 0 and s(1) = 1, then the function s is called the adiabatic
schedule in the adiabatic algorithm .

The simplest function is a linear transition from 0 to 1, as

s(t) =
t− ti
T

where T = tf − ti

.
The evolution time T must be chosen carefully.
According to the adiabatic theorem, if the the gap between the two lowest energy

levels of the spectrum of the Hamiltonian, the difference E1(s)−E0(s), is strictly greater
than zero for all the duration of the schedule, then the nonzero gap will guarantee that
|ψS(t)〉 obeying 2.4 will remain very close to the instantaneous ground state of H(t) for
t going from the initial time ti to the final time tf . A better definition of the minimal
gap is spectral gap and it is mathematically defined as:

gmin = min
0≤s≤1

(E1(s)− E0(s)) (2.9)

The adiabatic theorem together with these considerations will translate in a more
specific consideration. Here I write a simplified version that has similar meaning to the
one you can find on [15]:
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∂sH(s)

∥∥∥
L2

g2min
(2.10)

In the original formula, the numerator is a number of the order of a typical eigenvalue
of H and it is not that big, so the formula is dominated by the denominator.

Thanks to Figure 2.3 we can see how the eigenvalues of the Hamiltonian H(t) are
changing depending on the progression of s(t), so it is clear that the total evolution time
must be set according to the change rate of the Hamiltonian 2.8 so that the gap term
loses relevance in the formula 2.10.

Figure 2.3: Examples of transitions of the eigenvalues over time, given the minimal gap at mid-
transition.

Since in reality a condition of complete adiabaticity is impossible, given that the
initial state is the ground state, the spectral gap is strictly greater than zero, and that
the process evolves slowly enough, then with high probability the evolution will end with
a final state equal to the ground state of the Hamiltonian fully developed.
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2.1.5 Quantum Annealing

Quantum annealing (QA) was born as a classical algorithm, a heuristic for addressing
challenging combinatorial problems. At first, it was just a variation of the Simulated
Annealing (SA) [23] algorithm that was supposed to classically simulate more phenomena
related to the quantum dynamics of a system rather than just the thermal fluctuations
and the thermal annealing of the systems.

This algorithm is successfully filling up the gap between Adiabatic Quantum Com-
puting (AQC) and classical simulation; there’s a parallelism between QA and AQA but
they have some differences.
Since quantum annealing can be described in terms of the few steps of the AQA, there is
a common misconception that they are the same algorithm, but we could refer to quan-
tum annealing as an implementation of the AQA restricted to a category of problems
which is the NP-Hard, while the AQA is designed for tackling the whole spectrum of
problems computable by a Turing machine; moreover since quantum annealing does not
respect the adiabaticy condition, we can say that it is not dealing with closed systems
anymore, hence the evolution of the system will be described more by a master equation
rather than the Schrodinger one.

Quantum annealing can be referred as a "less ideal AQA" since it usually performs
a probabilistic computation bounded by the limits of the adiabatic theorem for both
runtime and quality of results, thus the interchangeability of the two concepts.

From now on we will keep this convention of terms.
Quantum annealing has been implemented on quantum computers with supercon-

ductive qubits by the company D-WAVE. Since quantum computers are open systems
that cannot guarantee adiabaticity, then also the implementation will not respect the
condition for the AQA, so the algorithm becomes an heuristic.

A comparison with SA

Let us describe how the QA and SA differ from each other, even though they both
are heuristics. We will start by describing how the problem is described in this type
of algorithms. Given a minimization problem and its relative function f , the domain
composed by x = {0, 1}N should be feasible ∀x.

The solution space is a lattice of solutions. The function then will represent some-
thing similar to a landscape, as in figure 2.4, where the peaks are its points of maximum
and the valleys are the minimum points.

The search for the best solution is similar to a walk on the lattice; starting from an
initial choice, we evaluate the value of the initial solution and we move to a neighbouring
solution based on some rule (that is the main modus operandi for this type of algorithms),
until we meet some requirements; in the case of a minimization problem, we move until
reaching the lowest solution.

This is what is called a local search and the best landscapes are the "smoothest"
because of the small number of local minima, but also huge "valleys" are not welcome
since we would need powerful rules for distinguishing between neighbours with the same
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Figure 2.4: Example of Landscape. Image from [39]

evaluation. Simulated annealing starts with an initial guess sc = si with its evaluation
f(si), then the walk starts from there. If the neighbour has a lower evaluation, we take
it as the current solution sc.

If the neighbour has a higher evaluation, we accept it with a probability written as:

Paccept = min(e−
f(neigh.)−f(sc)

T , 1) (2.11)

T is the temperature that starts from a high value, and it decrements in time based
on the number of iterations, this is the "cooling schedule".

We talked about walking on the landscape since the mathematical model of S.A. is
a random walk.

If we look at the formula if T is decreasing, when it will be close to zero, the prob-
ability density will increase around the global minimum, but the rate of convergence
will become slow, this is happening because we want to quickly reach a steady state
concentrated on good solutions.

The advantage of this algorithm is the adaptability to different implementations, the
possibility of solving a problem with very little prior knowledge, almost like a black-box
optimization, although domain-specific solvers can achieve better results. Instead of
using temperature as a parameter for our optimization, in the classical original version
of quantum annealing, it uses the quantum tunneling effect, which is the phenomenon
where a particle instead of climbing up a potential barrier in the landscape, it just
propagates through it, due to the dual wave/particle nature of quantum mechanics.

Quantum tunneling is controlled through the Transverse field Hamiltonian Hd [37],
which is like a disordering operator.

H(t) = Hp + Γ(t)Hd (2.12)

The gamma factor is the transverse field coefficient and it decreases during the simu-
lation like the temperature before, this will slowly reduce the fluctuations in the solution
space and bring the system closer to the problem’s Hamiltonian.

Hd will be an Hamiltonian of just kinetic energy, and it will serve the purpose of
escaping local minima.

21



The first connection point of quantum annealing (QA) with the AQC is that Hd is
the initial Hamiltonian, and its high disordering property can be seen as a tentative of
simulating classically the possibility of beginning the computation "from any state", log-
ically we can fill this requirement in a quantum physical implementation by substituting
Hd with the superposition Hamiltonian of the AQA. Γ(t) will act as the schedule used
in the AQA.

The problem’s Hamiltonian that we haven’t described yet can be the same for both
the quantum physical version and the classical version, it just depends on what we want
to simulate or compute.

Tunnelling

Although there is a proof [14] that the physical implementation of QA may outperform
on some problems SA [3] and other classical implementations of QA, according to the
latest discoveries, the physical implementation of quantum annealing on D-WAVE pro-
cessors highlights the usefulness of the concept of quantum tunneling in this algorithm
and how the physical use of quantum resources is relevant in this context. It is relevant
to understand what is the computational value of finite range tunneling.

We can start from studying the exponential dependence of the annealing time on the
size of the tunnelling domain D TQA = BQAe

αD, where α is a constant representing a
rescaled instanton action 10.

In SA the time is TSA = BSAe
∆E
kBT , where ∆E is the energy difference between two

points in the landscape, or distance between two minima (kB is the Boltzmann constant).

∆E

kBT
> αD

It is clear that for tall and narrow enough energy barriers, QA can terminate with
exponential speed-up. This advantage can be found in the beginning of the algorithm
when the initial state is more likely to be an excited state of the spectrum, and it can
help in finding approximate solutions quickly, but it does not necessarily work steadily
as before when the objective is finding the ground state.

2.1.6 The Problem’s Hamiltonian, HP

Here we describe the last ingredient for Quantum Annealing and the Adiabatic Quan-
tum Algorithm, that can be anything of our choice but restricted from the possibilities
of physical implementations.

The Ising model is a mathematical model designated to describe ferromagnetism in
statistical mechanics. It is composed of discrete variables that represent the magnetic
dipole moments of atomic spins, that can be +1 or -1. The model places the particles

10in simplier terms a classical solution in the equation of motion in quantum mechanics
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in a lattice, where each spin interacts with its neighbours. The lattice can be a grid
of N dimensions and the spin configuration of the system is defined by the assignment
of the spin of each particle. The model is a simplified version of reality that takes into
account an external force hi applied to each individual particle, or our qubits, and the
interaction between the particles, called forces Jij . If we deal with a 2D Ising model,
two nonadjacent qubits will have Jij = 0.

D-WAVE’s quantum annealers are actually a chip designed for solving this problem,
but it will be discussed later on.

Ising’s Hamiltonian is the operator that will define the energy of the overall system
depending on these relations:

E(s) =
∑
i

hisi +
∑
i<j

Jijsisj (2.13)

The values of h and J have a practical meaning, since the spins 11 configuration must
reflect the lowest energy state possible, if hi is positive, we can minimize the energy of
that component by having spin +1, if the negative spin must be -1.

Another observation is that if Jij is negative ( ferromagnetic coupling), the spin of
two neighbours must be equal to agree in sign, if positive, they will have to disagree (
antiferromagnetic coupling ). Both hs and Js can be imposed by the scientist in reality
to artificially reproduce the configuration of spins.

Finding the optimal configuration for determining the ground state of this Hamilto-
nian in a multidimensional model is an NP-Hard problem, but the 2D version still can
lead to results in decent time. It is important to highlight that quantum coupling is an
effect in quantum mechanics where two or more quantum systems are connected in a
way such that a change of state in one of the systems will cause an instantaneous change
in all the others; it is different from the entanglement effect, since it can’t take place
over a long distance, but on the quantum annealers they are not mutually exclusive, as
proved in [26].

Let us assume that there is an ensemble of N qubits, each of them capable of inter-
acting with a subset of others, depending on their positioning and coupling. Given that
the system in the adiabatic quantum algorithm starts from a state of superposition with
Hamiltonian HB, Hp will be:

Hp =
∑
i

hiσ
z
i +

∑
(i,j)

Jijσ
z
i σ

z
j (2.14)

where the index i represents the single qubit, and the coupling i,j are the ferromag-
netic interactions between two qubits. Pay attention that this time we are not dealing
directly with spins anymore, but there are Pauli-z operators, it means that to minimize
the energy of the system, the qubits will take spin according to the eigenvectors and
eigenvalues of the operator. It is easy to convert the energy measurements to 0s and 1s,
thanks to the trick of the Boolean Fourier transform :

11s in this case is the variable defining the spin and not the schedule
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∑
i

hi(−1)qi +
∑
(i,j)

Jij(−1)qi(−1)qj (2.15)

We can derive the values of qi and qj that are the Boolean values that the i-th or
j-th qubit is supposed to represent after its energy measurement.

2.1.7 Runtime analysis

The runtime of an AQA is very dependent on the type of problem that will influence the
construction of H(t). Various studies have been made in order to give some method for
performing any type of analysis of the complexity of the algorithm and of the problem
instance. For instance, in SAT problems [15] the evaluation is theoretical since the con-
struction of the Hamiltonian for a 3-SAT problem is still feasible for a "pen-and-paper"
proof. For more general CSP formulations, [44] is a quite exhaustive methodological
discussion. Our project falls in the category of CSP problems.

Venturelli’s [44] work defines a few steps that we can apply to the more practical
implementation of the AQA, Quantum Annealing that runs on a system with related
measuring equipment called Quantum Annealer, we will delve on its details in another
section and from now on we will address the algorithm with the name of the device for
simplicity.

The analysis goes from a first identification of what parameters span the solution
space for our problem, to pre-characterize the families of instances with their minimal
computational cost. This implies determining a distribution of execution times and a
statistical distribution for the optimal results. Once the parameter space is defined, we
can continue by planning an ensemble of queries Q = q to the quantum annealer.

Since the adiabatic algorithm in reality starts to become more of a theoretical model,
every evolution does not really end in the ground state. We will need several executions
to collect reasonable data. Every query is defined by a triple (tA, R, T ). R indicates the
number of identical anneals, or evolutions, for the Hamiltonian forced on the system,
with each annealing time as tA.

Now we may be wondering how many queries are enough, but before this question
we need formal assumptions. For each query, the number of anneals should be high
enough to statistically draw conclusions at each run, and we need to create conditions
for a generalized adiabaticity during the evolution, our previous T will be what we called
tA, so tA will be optimized over the total maximal execution time (tA ∗ R), to be long
enough for performing anneals that will end up in the ground state.

The choices for these assumptions can be made through intensive tuning that requires
resources in terms of implementation and time that are beyond the possibilities of the
state-of-art devices.

What one can do is just a process of trial and error of these parameters until good
enough results are found. If one still wishes to drive his search through a less pragmatic
approach, we could set two variables r0 and rq, that represent respectively the target
success probability for the queries and the rate of occurrence of the ground state per
repetition for the following query.
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Then we can define R and total time to solution T as:

R =
log [1− r0]
log
[
1− rq

] (2.16)

T =
∑
q∈Q

tA

(
log [1− r0]
log
[
1− rq

]) (2.17)

Considering the large variability in the intrinsic nature of each problem, the number
of variables, and their influence on the construction of the Hamiltonian, it becomes
convenient sticking to the trial and error process. It is possible to moderately increase
the total execution time for improving the probability of success.

An interesting index of quality for the executions of the quantum annealing and
simulated annealing algorithms is the Time-to-solution [3] or TTS [22].

The time-to-solution equation is:

TTS =
time per anneal

ground state probability
(2.18)

but it is equivalent to calculate it as:

TTS =
total execution time

occurrence of the best solution
(2.19)

The total execution time can be an upperbound for the number of anneals for an
execution, times the duration set for one anneal, while the occurrence of the best solution
is the probability of finding the ground state times the number of anneals set for an
execution. If we put together multiples runs we can calculate the total time-to-solution
of an experiment, as the ratio between the cumulative sum of the runtimes and the sum
of the occurrences of the best solution. This measure will be useful during the analysis
of the results, for figuring out the differences, the pros and the cons, of the two types of
annealing discussed so far. We can see some similarity between the TTS and the T in
equation 2.17.

2.1.8 Quadratic Unconstrained Binary Optimization

From now, due to the duality between the Ising model and the Quadratic Unconstrained
Binary Optimization problems (QUBO), it will be important to understand how to derive
them the latter, and how to physically express it, or embed it, on a chip. The following
paragraphs will explain how to mathematically model a problem and turn it in the
problem Hamiltonian Hp that will be executed on the quantum annealer.

The Ising model represents two categories of problems: quadratic unconstrained
binary optimizations (QUBO) and weighted maximum 2-SAT problems [8]. We will
deal with the the first of the two.

The QUBO representation can be used for many types of optimization problems,
mostly combinatorial, and it is a conceptual link between the physical experimenta-
tion and the realization of quantum annealing, today available and implemented in
D-WAVE’s chips, and the general problems of optimization.
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The QUBO model is expressed by the optimization problem:

min f(x) = xtQx (2.20)

Or more formally:

{0, 1} 7→ R (2.21)

(x0, . . . , xn−1) 7→
n−1∑
i,j=0

xiQijxj (2.22)

where x is a vector of binary variables and Q is a square matrix n× n of constants.
The Q matrix can be symmetric or upper triangular.
If we want to use the symmetric form we should use:qij = (hi), ∀i,∀j, i = j

qij =
(Jij+Jji)

2 , ∀i,∀j, i 6= j

Meanwhile the upper triangular form:
qij = (hi),∀i,∀j, i = j

qij = (Jij + Jji),∀i,∀j, i > j

qij = 0,∀i,∀j, i < j

Notice that we used Jij and Jji with a little abuse of knowledge on the equivalence
between QUBO and Ising models to distinguish the entry in the Q matrix from the
coefficients that it represents.

Penalties

The definition that we just gave was that of an objective function minimization without
any constraint on the variables. This is very unrealistic since most of the interesting
problems impose constrains on solutions.

Many problems can be formulated in QUBO form, by introducing quadratic penalties
in the objective function, alternatively to filtering the solutions.

The solver will adapt its search by avoiding invalid solutions for the penalties injected.
A quadratic penalty is usually written as a function that is null for valid solutions and
positive for invalid ones.

For a minimization problem, these penalties, as described in [19], are added to create
an augmented objective function to be minimized. If the penalty term can be driven to
zero, the augmented objective function becomes the original function to be minimized.
When we add the penalty, since it is composed of just variables that are binary, this
component of the objective function is multiplied by a scalar constant A that must
be sufficiently large enough as it needs to be of the same order of the optimization
component, or contribution.

Here are some of the most used examples:
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Constraint Quadratic Constraint

x+ y ≤ 1 A(xy)

x+ y ≥ 1 A(1− x− y + xy)

x+ y = 1 A(1− x− y + 2xy)

x ≤ y A(x− xy)

x1 + x2 + x3 ≤ 1 A(x1x2 + x1x3 + x2x3)

x = y A(x+ y − 2xy)

The only limit for creating custom quadratic constraints is our ability in simplifying
and solving the squared form of classical constraints, which is the most generic method
up to today; another difficulty is also finding the right scalar constant A, such that
should not be too high or too low, in order to be returned with valuable results.

Example of QUBO construction

An example can be the "Minimum Vertex Cover" problem.
Given an undirected graph with a vertex set V and an edge set E, a vertex cover is

a subset of vertices such that each edge in the graph is incident to at least one vertex in
the subset. The Minimum Vertex Cover problem seeks to find a cover with a minimum
number of vertices in the subset.

Given that: xj = 1, xj ∈ Cover
xj = 0, otherwise

Then the problem becomes:

min
∑
j inV

xj

with constraint:

x+ y ≥ 1, ∀(i, j) ∈ E

By augmenting the objective function with the quadratic penalty component, we get
the unconstrained objective function:

min f(x) =
∑
j∈V

xj +A(
∑

(i,j)∈E

1− xi − xj + xixj ) (2.23)

When constructing the matrix Q, the constant in the expression is ignored.
Here’s an example of a graph with 5 vertices and 6 edges.
The instance’s expression to minimize, derived according to the generic rule 2.23, is

min y = (1− 2A)x1 + (1− 2A)x2 + (1− 3A)x3 + (1− 3A)x4+

(1− 2A)x5 +Ax1x2 +Ax1x3 +Ax2x4 +Ax3x4 +Ax3x5

+Ax4x5 + 6A

(2.24)
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Figure 2.5: Example graph for MVC

By arbitrarily choosing A equal to 8, we can rewrite the expression as the QUBO
matrix of the problem to solve.

Q =


−15 4 4 0 0

4 −15 0 4 0

4 0 −23 4 4

0 4 4 −23 4

0 0 4 4 −15

 (2.25)

The solver will take it from here and give us back the results. You can check yourself
that y = 3 for x = (0,1,1,0,1) meaning that the minimum cover is given by nodes 2, 3,
and 5.

2.1.9 Quantum Architectures

The D-WAVE quantum processing unit (QPU) is a lattice of interconnected qubits.
Although some qubits connect to others via couplers, the D-WAVE QPU is not fully
connected. In the earlier generations like D-WAVE 2000Q, qubits in the QPU are in-
terconnected in a topology known as Chimera, while the latest quantum annealers, like
Advantage QPU, incorporate the Pegasus topology. The topologies and the expression
of the QUBOs on these architectures are the topic of the next paragraphs.

Minor-embedding

The process of "compiling" our problem to a QPU is called embedding. The process
of embedding consists in a probabilistic algorithm that is trying to map our problem’s
graph to the one of a topology. This may lead to some new problems.

The first one may be that some small number of qubits and couplers in a QPU may
not work or be manufactured as desired. These are therefore are removed from the
programmable fabric that users can access.

Some other times, the graph representation of a QUBO may be too complex or
present a very much different structure to the one of the topology of the QPU utilized,
which may present a connectivity between the physical qubits, that does not match the
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one of the logical variables, or at least it does with great difficulty. The solution found
is chaining.

A chain is when a logical variable is represented during the run of an anneal by
more than just one physical qubit. Chaining qubits is done by setting the strength of
their connecting couplers negative enough to strongly correlate the states of the chained
qubits; if at the end of most anneals these qubits are in the same classical state, rep-
resenting the same binary value in the objective function, they are in effect acting as a
single variable; most of the time this does not happen, moreover very long chain require
setting the couplers to highly negative values that due to the limited the precision of
the device, will affect the scaling of the other coefficients.

The minor embedding algorithm [10] aims at mapping the QUBO to a "minor"
which is any graph that we can construct by contracting or removing an edge of the
programmable fabric. It would be easy if the minor would be always the same, but since
different devices have a unique QPUs, the algorithm must be probabilistic to achieve
a certain degree of generality, that is why we should always reiterate several times the
algorithm. It is of major importance to keep in mind the fact that logically equivalent
embeddings have different energy spectra, thus different performances, therefore the
need of performing this phase multiple times.

There are many versions of this algorithm, depending on the topology, but they try
to analyze the QUBO and then decide how to tackle the task, for example two differ-
ent approaches could be either performing a globally constructed or locally constructed
embedding, similar to an incremental bottom-up construction.

Topologies

The qubits in a topology are grouped in unit cells and they are connected between each
other by couplers that are categorized in internal and external just for starter.

Figure 2.6: The K4,4 unit cell of the Chimera topology.

In the chimera topology, the unit cell is called K4,4, it contains 8 qubits, and in
figure 2.6 we can see that they are divided in two equal groups, where each qubit is
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connected to 4 orthogonal qubits through the green internal couplers, and each one of
them has two external couplers, the blue ones, that connect them to each particle with
their counterpart in the neighbouring unit cells.

The qubits in the group on the left are connected with the neighbours along the
vertical axis, the qubits in the group on the right are connected with the closest unit
cells along the horizontal axis. The D-WAVE 2000Q has 2048 qubits divided in a grid
of 16X16 unit cells. The notation for this topology will be be "C16".

The Pegasus topology [9] [13] is an evolution of Chimera, and it contains circa 5000
qubits. It has unit cells of twenty-four qubits (K12,12), 12 qubits that are connected to
12 orthogonal qubits through internal couplers, and each qubit is coupled to 15 different
qubits.

The connectivity between the unit cells has also been improved by introducing an-
other type of coupler which can be called "odd". For the sake of simplicity, we can think
of it as adding a third dimension to the topology, since they connect an element of a cell
to cells that may not be direct neighbours; this allows stacking more instances of the
same topology on one chip. This idea not only brings new connectivity, but it might be
used in error-correction schemes that increase the energy scale for the embedding.

Differently from Chimera, the notation for this topology will be be "Pm", but the
number of qubits is calculated as 24M(M − 1), and for a more visual understanding of
the complexity of this new architecture, in Figure 2.7 you can see an instance of a P4
Pegasus topology.

Figure 2.7: The P4 unit cells of the Pegasus topology.
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2.2 Molecular Docking

Let us now introduce some basic concepts needed for understanding the target problem
we faced by using quantum annealing. In section 2.2.1 We will understand the objectives
of molecular docking, how the quality of the results is assessed, what types of docking
exist and what are the main phases. In section 2.2.2 we can get to know more about
the usage of quantum annealers in drug discovery and another example of quantum
molecular docking.

2.2.1 Basics

In-silico approach to drug discovery [31] [28] can be viewed as a multitiered process or
pipeline that encompasses several sequential computational techniques with the aim of
screening virtual libraries of the order of billions of compounds for the most suitable
molecules to forward to later experiments. This can be seen as an effort with the goal
of cutting down the research timeline, which can be years and cost, by reducing wet-lab
experimentation with computer modelling.

This virtual screening is driven by the structural characteristics of a target receptor,
which can be a protein, and of each molecule taken individually and independently from
each other from the database. After filtering part of the library and preparing the target
binding site, a subprocess is involved, the so-called molecular docking.

Molecular docking [34] is an approach used to simulate the interactions on the atomic
level of a compound, called ligand, inside a protein binding site, to highlight the possible
biochemical reactions between them and predict whether they can form a stable complex.

This process is divided in two main tasks:

• the first is to detect the valid conformations of the ligand inside the active site of
the protein, as well as its position and orientation, all together these will define
what is called a three-dimensional pose of the ligand.

The aim of this process is to achieve an optimized conformation for both receptor
and ligand and their relative orientation such that the free energy of the overall
system is minimized.

A famous metaphor used for describing the conformation search is that of the "Lock
and Key", where the binding site is the lock’s hole and the search is mimicking the
movement of the key. Due to the dimension of the binding site, the active region
will be called pocket.

• The second task is to score and rank the poses found. The process is successful if
the solutions are retrieved effectively and we used a scoring function that correctly
ranks them. Usually the more negative is the value of the docking score, the
better will be the binding affinity of the result. Clearly, high energy systems will
be very unstable. Unfortunately, scoring functions involve estimating, rather than
calculating the binding affinity between the protein and ligand, by adopting various
assumptions and simplifications.
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Figure 2.8: Insertion of the lingand in pocket, similar to the relation between locks and keys.

Scoring functions can be divided in macro areas, based on the fact whether they use phys-
ical features of the ligand and of the pocket, chemical features, or statistical knowledge
of the interactions between classes of chemical compounds and some typical patterns in
the shape of the pockets. There are geometrical scoring functions [25] [18] that rely on
a measurement of the steric effect of an interaction.

Steric effects are phenomena observed when two atoms are spatially located close
to each other, and this requires an energy cost. Since the electrons of the atoms are
repulsive to each other, this interaction will change the shape of the molecule and its
reactivity. Therefore, it is logical that if we can control the shape of the molecule, we can
predict its reactivity to a protein’s pocket and the energy cost of the shape. There are
emerging scoring functions based on a sort of consensus [24] algorithm, that combines
the outcomes of more scoring functions for more precise predictions.

The types of docking [34] are determined by some other particular assumptions. We
can define three main types:

• Rigid ligand and rigid receptor docking. Its results are not really fascinating
since the search space is very limited, considering only three translational and
three rotational degrees of freedom.

• Flexible ligand and rigid receptor docking. Almost all docking programs adopt
this type. Introducing a source of flexibility introduces a type of authenticity to
the method while still pursuing a trade-off between accuracy and computational
time.

• Flexible ligand and flexible receptor docking. This one is the most challenging
type because of its high computational expense, which prevents this method from
being used in the screening of large chemical databases.

In our approach, the docking considers the pocket a rigid structure, while the ligand
is a flexible set of atoms. Furthermore, from a strictly geometrical interpretation, the
ligand can also be seen as a set of chemical bonds (or edges) with a fixed length, where
a pair of consecutive bonds is fixed at a determined angle and a subset of edges will be
defined as "rotatable".
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The rotatable bonds ( or torsionals) are bonds that split the molecule in two nonempty
disjointed fragments when virtually removed, consequently when the two portions of the
compound are detected, they can rotate independently from each other around the axis
of the rotatable. This first definition is graphically reported in Figure 2.9, where the
rightmost rotatable bond is splitting the molecule in left and right fragment.

Figure 2.9: Fragments and rotatable bonds

A great number of degrees of freedom determine the solution space for the process
as well as the conformation space of each molecule, in addition because the evaluation
of each molecule based on pharmacophoric features is computationally expensive, a
geometric approach becomes a more viable method for sampling a set of likely ligands
that could fit the pocket with success and that later will validated for their chemical and
physical usefulness.

The main difference relies on the evaluation of the pose: on the one hand, the ge-
ometric docking is scored as a function of the shape and volume of the molecule, and
on the other hand the pharmacophoric docking scores a pose depending on its physico-
chemical properties.

The docking method related to our work is GeoDock [18]. We can point out three
main phases in the search for the most fit compound, and we can call them: Ligand
expansion, or better unfolding of the ligand molecule, Intial Placement and Shape Re-
finement inside the pocket.

The sampling of solutions through geometrical methods are susceptible to biases
induced by various factors. One of the crucial biases is introduced before the ligand
expansion, our mission becomes mitigating its effect.

Expansion for improving docking

The ligand expansion cannot be strictly associated with the docking process, since it
solves a problem induced just by the preprocessing tool "SMILE-to-3D". The tool is
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used for the translation of the structural information of a molecule, retrieved from a
mol2 file into a two-dimensional smile, and then from the smile to the three-dimensional
representation. The problem arises because the initial pose of the substance is chosen
by the tool apriori, meaning it is reproducible but disconnected from any criteria, thus
not useful. This can be defined as an example of shape bias that requires as much time
as the docking itself for being removed and its fix is unskippable.

2.2.2 Combining Quantum Computing and Medicine?

There are examples of attempts to apply quantum computation to medicine. One ex-
ample that we could relate to because of the usage of quantum annealers is the the work
of Babej et al. on coarse-grained lattice protein folding [4]. The second is the study of
a molecular docking implementation on a photonic quantum computer, which is com-
pletely different in every sense from our quantum annealers, but it still takes advantage
of quantum effects such as entanglement and superposition.

Figure 2.10: Example of the work from Babej et al., on proteing folding.

In the problem of lattice protein folding, we can view the protein as a sequence
of amino acids connected by peptide bonds, that all together form a chain. The final
objective is to embed the chain in a 2D or 3D lattice, with each amino acid at a vertex
and the bonds on the edges connecting them. Two of the constraints are that the chain
cannot overlap with itself, it means that vertices and edges can be occupied just by one
element of the chain, and it cannot fold back on itself.

The quality of the embedding is scored by an energy function calculated on the inter-
actions between neighbouring lattices. The lower the energy the better; this minimiza-
tion problem is still is a difficult task since it is an NP-Hard problem. The embedding of
the chain is represented by an encoding, that is a sequence of binary variables, that are
indications of the sequence of moves that have been performed when laying the chain
on the lattice.

The downside to the type of encoding is the massive number of qubits required for
a moderate encoding, this is caused by the linear growth of the encodings length with
the number of atoms; in many instances the QUBO formulation exceeds the number of
physical quibits. For small instances the annealer does not return optimal solutions, this
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may be due to the high degree of precision required in the scaling of the coefficients. In
Figure 2.10 is reported an example of how the encoding is used and how a protein is
folded on the grid.

Figure 2.11: A representation D-WAVE’s Chimera QPU.

There are not many works that we could compare ourselves with, while talking
about quantum molecular docking, in fact there is only one case. Gaussian Boson
Sampling (GBS) is a special model of photonic quantum computing. In this type of
architecture, the computation is realized via the interference of identical photons that
are passing through a circuit or a network of beam splitters and phase shifters, and that
are measured at the end of it, at the output ports. The power of this architecture is
the exponential speed up, achieved by physically generating the samples of the output
instead of classically simulating the output photon distribution.

Figure 2.12: Representation of the process of molecular docking on GBS.

In the work of Banchi et al. [5], GBS can be used to find docking configurations
between ligands and receptors. The method used extends the binding interaction graph
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approach, where the problem of identifying docking configurations can be reduced to
finding large clusters in weighted graphs. The work shows how GBS devices can be
programmed to sample from distributions that assign large probabilities to these clusters,
thus helping in their identification. The best docking configurations are selected based
on the weight of the corresponding clique.

The method is an improvement of the binding interaction graph that associates the
retrieval of docking configurations with the task of identifying large clusters in a weighted
graph. In this case, the quantum computer is used for the scope of sampling from the
distribution of clusters in the graph; GBS will assign large probabilities to the most
dense subgraphs. The beauty of the method is that while GBS is just looking for the
greatest cliques, the scoring function is implicit in the weights of the original graph.
This optical quantum computer doesn’t bother mitigating the difficulties associated
with scoring functions, which represent the major hurdle in accurate docking, while
still improving the sampling of docking configurations. Various classical techniques can
be applied during the execution or in postprocessing of the results. The variant can
be defined as a hybrid-quantum algorithm. In Figure 2.12 we can better visualize the
three steps for the solution of the problem of molecular docking on the GBS, where first
we construct the binding interaction graph from the graphs of the molecule and of the
pocket, then we convert it in a weighted graph and then we input it to the photonic
quantum computer. In Figures 2.13 and 2.11 we can see the difference in the type of
connections and components in the two quantum circuits, where the first is made of
optical waveguides and optical devices, while the second is a set of superconductive
resonators connected as a grid.

Figure 2.13: A representation of Xanadu’s Photonic chip that performs the GBS.
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Chapter 3

Problem Formulation

In this chapter is described the construction and the intuition behind the model used
for performing the ligand expansion. In the problem definition we are explaining how
the total distance is calculated, what conditions are involved in order to consider the
contribution of a couple of atoms and how the contribution of a couple of atoms is
dependent on the rotational matrices of the torsional bonds that are in the path that
connect them. In the binary optimization formulation we are exposing what steps are
needed in order to the translate the totality of the contributions in binary problem, the
constraints on the binary variables and the final construction of the binary optimization
function.

3.1 Problem Definition

Since the initial construction of each molecule is reproducible but it does not follow
any criteria, we can derive that this methodology is introducing a shape bias that is
distorting the sampling of the solution space for the docking. We need an initial shape
for the molecules to be neutral for the sampling, like an unfolded shape. The objective of
the project is to find this unfolded shape of the chemical substance, where by unfolded
we intend to discover the shape where the volume that the molecule is occupying is
maximised. Since we are not studying the spatial positioning of this structure, we are
going to measure, in substitution to the volume, the total sum of the internal distances
between pairs of atoms in the virtual graph of the compound. The starting point for the
algorithm is the biased molecule that was previously defined as formed by fixed bonds
and atoms, except for the rotatable bonds.

We can assign to each of the rotatable bonds Ti a variable corresponding to the
angle θi with which one of the fragments connected to the segment will rotate. As a
convention, we will define the ordered set of rotations by a vector of angles dictated by
the bonds as:

t =
[
θ1 θ2 . . . θn

]
We assume that each torsion θi around the bond’s axis can assume a values [0, 2π).
Given a molecule, it is possible to construct the associated graph as shown in Figure

3.1, where on the left we reported the 3D rendering of the chemical substance and on

37



its right the graph of the compound. The edges of the graph or bonds cannot contract
and the torsional bonds are depicted in red in the graph.

Figure 3.1: Illustration of a simple organic molecule on the left. The molecular structure, with 4
rotatable bonds highlighted in the graph representation on the right.

The scoring function for the operation of expansion, which was chosen as the total
sum of the internal distances of the molecule, is what we aim at maximizing. More
formally, the objective is the following: given a molecule, we want to find the "un-
folded" torsional configuration that maximises the molecular volume, or equivalently,
that maximises the distances between atoms, i.e., find

tunfold = [θunfold1 , . . . , θunfoldM ] (3.1)

such that the following quantity is maximised

D(t) =
∑
a,b∈M
a6=b

Dab(Θ)2 (3.2)

The function Dab(Θ) denotes the distance between an atom a and an atom b of the
molecule M , different from each other, and the quantity is then squared as it represents
a distance that if negative will be causing the cancellation of the contribution of other
couples of atoms, while D( t ) will be the sum of all atomic distances squared. It is
useful to label atoms from 1 to N as shown in Figure 3.1.

The rationale behind this choice is that the objective function is simple and relies
just on the geometry of the molecule, since each distance between pairs of atoms Dab(Θ)

depends directly on the angles assigned to the torsion induced by the rotatable bonds,
that appear in the shortest path that connects atom a to b in the graph.

It may seem redundant to make all these measurements, but actually it is not nec-
essary to calculate all the pairwise distances that are expressed in equation 3.2. In fact,
we can make some simplifications that will just rescale the measurement, and optimize
the resources needed in order to solve the expression, while still preserving the same
amount of information. For this reason, we are introducing two conditions for selecting
the couples of atoms for which to calculate the relative Dab(Θ). The conditoins are the
following two:
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Condition 1. The shortest path between two atoms must contain at least one tor-
sional, otherwise the distance is not counted in 3.2. This is due to the fact that their
relative position will never change because they will always belong to the same rigid
fragment.

Condition 2. The shortest path connecting two atoms must have at least three
edges, otherwise the distance is not counted in 3.2. This condition is caused by the fact
that in a chemical structure two consecutive bonds have always the same determined
angle, so if we pretend to have two atoms connected by only two bonds, their distance
is fixed as the sine of the angle between the two bonds, moreover if we rotated one of
the bonds around its axis the distance is unchanged.

A useful mathematical representation for rotations are rotation matrices; however, it
will be a function itself, R(θi), of the angle of the torsional Ti it is associated to. If two
atoms are connected via multiple torsional, the rotation matrix characterizing their rela-
tionship will be R(Θ) = R(θi, θj , . . . , θk) that is traduced by the ordered multiplication
of single torsion rotation matrices

R(Θ) = R(θi, θj , . . . , θk) = R(θi)×R(θj)× ...×R(θk) (3.3)

Each rotation matrix R(θi) recalls the structure of the homogeneous transformation
matrices that are rotations about the coordinate axes, typically used in robotics. R(θi)

is a 4× 4 matrix of the form:

39



              

(u
2

+
(v

2
+
w

2
)∗

c
o
s
t )

l2

(u
∗v

∗(
1
−
c
o
s
t)
−
w
∗l

∗s
in

t )
l2

(u
∗w

∗(
1
−
c
o
s
t)

+
v
∗l

∗s
in

t )
l2

( ( x
_
o
r
ig

∗(
v
2
+
w

2
)−

u
∗ (

y
_
o
r
ig

∗v
+
z
_
o
r
ig

∗w
)) ∗(

1
−
c
o
s
t)

+
(y

_
o
r
ig

∗w
−
z
_
o
r
ig

∗v
)∗

l∗
s
in

t)
l2

(u
∗v

∗(
1
−
c
o
s
t)

+
w
∗l

∗s
in

t )
l2

(v
2
+

(u
2
+
w

2
)∗

c
o
s
t )

l2

(v
∗w

∗(
1
−
c
o
s
t)
−
u
∗l

∗s
in

t )
l2

((
y
_
o
r
ig

∗(
u

2
+
w

2
)−

v
∗(

x
_
o
r
ig

∗u
+
z
_
o
r
ig

∗w
))
∗(

1
−
c
o
s
t)

+
(z

_
o
r
ig

∗u
−
x
_
o
r
ig

∗w
)∗

l∗
s
in

t)

l2

(u
∗w

∗(
1
−
c
o
s
t)
−
v
∗l

∗s
in

t )
l2

(v
∗w

∗(
1
−
c
o
s
t)

+
u
∗l

∗s
in

t )
l2

(w
2
+

(u
2
+
v
2
)∗

c
o
s
t )

l2

((
z
_
o
r
ig

∗(
u

2
+
v
2
)−

w
∗(

(x
_
o
r
ig

∗u
+
y
_
o
r
ig

∗v
))
∗(

1
−
c
o
s
t)

+
(x

_
o
r
ig

∗v
−
y
_
o
r
ig

∗u
)∗

l∗
s
in

t)

l2

0
0

0
1

              

40



The extremes of a bond are identified by the two atoms that they connect, and
they can be described by the coordinates of the atoms themselves, (x_vector, y_vector,
z_vector) and (x_orig, y_orig, z_orig), this will imply a sort of directionality, thus the
molecule will not be any longer just an undirected graph.

The other parameters are defined as follows:

u = x_vector - x_orig; v = y_vector - y_orig; w = z_vector - z_orig;
u2 = u * u; v2 = v * v; w2 = w * w;

l2 = u * u + v * v + w * w;
l =

√
(l2);

cost = cos(θ) ; sint = sin(θ) ;
one_minus_cost = 1- cos(θ).

The components of the matrix are almost self-explanatory; the notation is kept as in
the code. Consider the distance Dab(Θ). The representation of the coordinate system for
the atoms now has to adapt to the shape of the matrix, so the initial position of atom a is
identified with ~a0 = (xa0 , ya0 , za0 , 1) while the position of atom b is ~b0 = (xb0 , yb0 , zb0 , 1).

Relative positions are obtained by fixing one of the two atoms and by rotating the
other:

~a = ~a0 ~b = R(Θ)~b0 (3.4)

Hence, we can rewrite the single contributes to equation 3.2 as the Euclidean distance.

Dab(Θ)2 = ‖ ~a0 −R(Θ)~b0‖2 (3.5)

Figure 3.2: The a visual explanation of equation 3.5

Figure 3.2 is the result of the combination of the two conditions explained before
with the expression of the relative position as function of the angles assumed by the
rotatable bonds. We can count four bonds between the atom a and the atom b, there is
at least one torsional and the new position of b is found after the simultaneous rotation
of θ1 and θ2.

3.2 Binary Optimization Formulation

Here we formalize how the binary formulation is constructed from the distances made
of sines and cosines derived from the multiplication of rotation matrices, functions of
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the angles assumed by the torsionals. This step is required in order to retrieve the
mathematical formulation, the QUBO or also known as Ising problem , that permits
the usage of the D-WAVE quantum annealers, therefore we will obtain a formula of this
form:

O(x) =
∑
i

hixi +
∑
i>j

Ji,jxixj (3.6)

with xi ∈ {0, 1} binary variables and hi and Jij parameters whose values encode
the optimization task to solve in such a way that the minimum of O(x) represents the
solution to our optimization problem.

Note that, besides being a QUBO problem difficult to solve, it can be extremely
difficult as well constructing a formulation that could effectively lead to solutions of
high quality.

One of the main hurdles is, that is it is very likely ending up with formulations that
make use of terms of order higher rather than just quadratic, for example, terms like
xixjxk or xixjxkxl and so on.

In this case we refer to the binary problem as a high-order quadratic unconstrained
binary optimization (HUBO) problem. Fortunately, it is always possible to convert a
HUBO into QUBO, and the trick used is to add new ancillary binary variables and
to substitute the high-order terms with a sum of quadratic expressions, made from the
product of the original binary variables with the new ones, that preserve the local minima
described by the original set of variables in the high-order term.

As an example, a cubic term like ±x1 · x2 · x3 can be divided using the ancillary
binary variable a1 as :

±x1 · x2 · x3 → ±a1x3 + 2(x1x2 − 2x1a1 − 2x2a1 + 3a1) (3.7)

Equation 3.7 is a possible choice already tested in other works [35], but other substitu-
tions are possible [32].

After we understood that we there are little obstacles to the actual formulation, we
can continue with the rest. Let us consider a discretization of the angle θi associated to
a rotatable bond Ti into d possible values,

θi = [θ1i , θ
2
i , θ

3
i , ..., θ

d
i ] (3.8)

as a consequence, all continuous functions applied to the angles are discretized, there-
fore also the sines and cosines of the rotation matrix of the rotatable bond Ti become d
possible values

sin(θi) = [sin(θ1i ), sin(θ2i ), sin(θ3i ), ..., sin(θdi )] (3.9)

cos(θi) = [cos(θ1i ), cos(θ2i ), cos(θ3i ), ..., cos(θdi )] (3.10)

Since a torsional can take only one value at a time, it will be equivalent to force θi
being associated with only one value among all the possible θki . What we are formally
describing can be rewritten as a One-Hot Encoding ; we can use a set of binary vari-
ables to acknowledge the torsion of a rotatable bond according to one of these finite
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values. That is, for each torsional Ti, we assign a binary variable xik, with 1 ≤ k ≤ d,
such that

xik =

1 if θi = θki ;

0 otherwise.
(3.11)

Since the system 3.11 tells us that only one of the binary variable can be assigned a
one or truth value, out of all the binary variables representing the state of a torsional at
each time, then the sum of all the binary values must be one at all times, we can derive
the constraint on the binary variables as :

d∑
k=1

xik = 1 (3.12)

The problem of assigning only one value among all the possible, is the same constraint
of the graph coloring problem exemplified in [30] .

Then more in general, the value selection on sin(θi) and cos(θi) can be expressed as

sin(θi) =
d∑

k=1

sin(θki ) xik (3.13)

cos(θi) =
d∑

k=1

cos(θki ) xik (3.14)

A simple way to convert an algebraic constraint is to square it and so make it a quadratic
expression; then we proceed in the same way with constraint 3.12, but for all the rotat-
ables as:

∑
i

 d∑
k=1

xik − 1

2

(3.15)

The first summations is iterating the constraint over all the rotatables. Once the bino-
mial square is expanded, the term that is of the shape

 n∑
k=1

xik

2

=
n∑
k=1

x2ik + 2
n−1∑
k=1

n∑
h=k+1

xikxih

will introduce all the quadratic terms of the constraint; the two in front of the double
sum will be simplified with the rest of the sqaured binomial. Constraint of eq. 3.13 is
what will be called a hard constraint in QUBO terms.

With such encoding, the rotation matrix R(θi) associated to torsion Ti becomes a
function of all the binary variables xik needed to represent the angle θi

R(θi) = R(xi1, xi2, ..., xid) (3.16)
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For a generic rotation we have

R(Θ) = R(θi)×R(θj)× ...×R(θk)

= R(xi1, xi2, ..., xid)×R(xj1, xj2, ..., xjd)× ...×R(xk1, xk2, ..., xkd) (3.17)

A note regarding the granularity of the rotations, to obtain a precision of
∆θi = θk+1

i − θki = 0.02π in the representation of angle θi we need d = 100 variables
xik, in general the number of variables needed for each torsion will be given by

d =
2π

∆θi
=

2π

θk+1
i − θki

(3.18)

Given a number M of torsional bonds, the total number of binary variables is

n = d×M =
2π

∆θi
×M (3.19)

The general form of the HUBO optimization function is the following

O(xik) = A_const
∑
i

 d∑
k=1

xik − 1

2

−
∑
a,b

Dab(Θ)2 (3.20)

Here the second term is optimization constraint, and it has a minus sign in front be-
cause the quantity we must maximized (while the whole expression is minimized). The
first term is the hard constraint where the parameter A is the penalty scalar that will
modulate its strength and modify accordingly the problem landscape.
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Chapter 4

From the Representation to the
QUBO Formulation

The chapter has the objective of introducing the end-user to the application and the
mechanisms used for reconstructing the QUBO model starting from the data of the
molecules chosen. The application relies on two main features: computer algebra, also
called symbolic computation, and quantum annealers. Symbolic computation was ex-
ploited as a flexible and reliable instrument for manipulating mathematical expressions,
used as a vector for the translation of the position of atoms in space, which is a function
of one of the angles θi that the rolling segment Ti can take, into a score composed of
only Boolean variables. The chapter begins with section 4.1 that is an analysis of the
database with which the project interacts, in fact it is useful to understand how powerful
is our method and how many molecules we can actually solve.

Algorithm 1 Molecular Unfolder Routine
Require: molecule_descriptor, mode_selection, granularity
Ensure: Θmax = angles assignment maximising the volume.
1: M, angles = SetUp(molecule_descriptor, granularity)
2: M = MoveAtoms(M)
3: internal_distances = get_contributes_poly(M)

4: if mode_selection then
5: Θmax = classical_inspect(internal_distances, angles)
6: else
7: HUBO = huboization(internal_distances, angles)
8: Θmax = quadratization(HUBO)

9: end if

The main workflow used by the application is shown in algorithm 1; this is a sim-
plification made for understanding how the information flows in the project. The line 1
corresponds to section 4.2 where, taken the descriptor file of a molecule, we are returned
with the graph of the molecule (M), already split in fragments that follow the require-
ment that the atoms in the same fragment will have the same rotatables influece set, plus
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a list of the possible values an angles of a torsional can assume. Line 3 is still described
in section 4.2, and it’s where the expression of the total sum of the internal distances, in
terms of sines and cosines of the angles of the rotatable bonds, is derived from the graph
of the molecule. Line 5 tells us that in the workflow of the project there is a checkpoint
where we can decide if to solve the total contributions not yet manipulated, with one of
the classical algorithms in section 5.3, besides simulated annealing. Line 7 corresponds
to section 4.3, where we show what kind of substitutions and approximations are applied
in order to convert the original expression of the distances into a HUBO. The line 8 cor-
responds to section 4.4, where we take as input the HUBO expression of the problem,
and we show how the reduction by substitution works and enables the transformation
from HUBO to QUBO expression; the section ends with an attentive analysis on how the
embeddings are performed and on how the runs are executed on the quantum annealers
and SA.

4.1 Domain Analysis

Before discussing the methods, we should prove that the ligand expansion phase is some-
how useful. As proof that the initial conformation of the molecule cannot be considered
optimal, a sample of 118 substances ordered by increasing volume or by a proxy of it,
i.e. by the number of atoms and or by approximately the number of fragments divided
by two, was expanded with the use of the expansion algorithm inside GeoDock [18].

In Figure 4.2, it is easy to understand that the application of an expanding procedure
benefits the molecule with an increased volume determined by the height of the blue bar.
On average our classical reference algorithm improved the volume of each atom by 17%
starting from the initial pose.

4.2 Set up - Modelling the molecules

The first task performed is the set-up in line 1 of the workflow, where the main data
structures are created and manipulated. Line 1 hides a process that starts with the pars-
ing of the pharmacophoric information of the chosen molecule to analyze from a MOL2
file. A graph is constructed from it and it contains the three-dimensional description of
the substance, which includes the positional coordinates of the atoms, the bonds that
bind them and their type, other information are disregarded.

Bonds can be seen as a relationship that binds an origin atom and a target, and its
nature is identified by a type chosen from 1 (= single), (2 = double), (3 = triple), am
= amide) , ar (= aromatic), dummy, unknown, not connected.

In this pre-processing phase, two simplifications related to chemical-physical reasons
are applied: the first is that only single and aromatic bonds can be valid candidates to
be rotated, and the second requires the removal of terminal hydrogens in the molecule.

The reason for the latter is that the hydrogens’ distance from all internal atoms
does not affect the total sum of internal distances, and since the single bonds of the
hydrogens should be considered rotatable, their presence creates fragments of an element
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Figure 4.1: Analysis of the distribution of the two features selected for the molecules, number of
atoms and number of fragments.

Figure 4.2: Results of the expansion with the classical greedy algorithm for 118 compounds ordered
by volume.
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only, whose rotation has no effect, therefore a computational waste.
The removal of the terminal hydrogens triggers the generation of conformations that

would present what is called "internal bumping", that is when the final positions of two
virtual atoms are less than the sum of the van der Waals radii. These invalid shapes
will be removed in the post-processing phase among the available ones. In this setup
phase also the set of feasible discrete angles is identified and returned, as according to
3.18 and the granularity desired.

Once it is established that the initial conformation in the common case is to be
discarded, in line 2 we proceed by virtually dividing the graph of the substance into
fragments like in Figure 4.3.

The code here performs the identification of the fragments, which have a slightly
different definition from the one previously given as one of the two halves in which the
molecule is divided by the removal of a bond, from now it will have a new meaning. The
code starts by the calculation of the betweennes centrality [17], equation 4.1, of each
atom. This attribute allows us to define an ordering of the atoms by centrality within
the graph of the chemical substance.

betweeness centrality of atom v :
∑
v 6=s 6=t

σst(v)

σst
(4.1)

Formula 4.1 is calculated for each atom v, as the sum of the ratios between the number
of possible shortest paths between all the possible pairs of atoms s and t, different from
v, that cross it, and the number of all possible shortest paths between s and t that exist
with no restriction. Afterwards, the atom with the greatest centrality is chosen as the
centre of the structure and the origin for any ordering of the bonds; the subsequent action
performed is the construction of the routes in the graph starting from the central vertex
to all the vertices. The set of torsional bonds is constructed by removing iteratively one
edge at a time from the graph, and then by checking if the graph is still connected, if
the outcome is negative, it will be following the definition of torsional.

Each fragment is identified as a set of atoms influenced by the same set of rotatable
bonds, which we called rotatables influence set. The definition of rotatables influence
set is depicted below.

rotables influece set : Is = ECa,ak
∩ER

(4.2)
Ca = atom with greatest betweeness centrality or central atom

ER = Rotatable bonds

ECa,ak = Bonds on the shortest path σCa,ak

All atoms belonging to the same fragment are mapped to a unique shortest path
composed of the edges in their influence set, and a rotational matrix is created for
each bond. Eventually, a composite rotational matrix will be created as a product of
the single matrices, in order from the outermost bond to the innermost. The position
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vectors stored in the vertices of the graph as attributes are then multiplied with their
corresponding composite matrices.

Figure 4.3: An example of the principle of the rotatables influece set.

Here comes into play the usage of computer algebra, since the expressions, born from
the matrix products that appear in the rotation matrix 3.1 are symbolic expressions
constructed in Python with the help of the Sympy library [36]. Some atoms will have
their initial position, while others will have a position vector made of symbolic coefficients
as non-linear trigonometric functions, that will be turned into real numbers by their
evaluation at the angles assumed by the torsional.

In line 3 the contributions are computed as in equation 3.5 for each fragment, with
special care to the fact that the distances between a couple of atoms, one from a fragment
’A’ and one from a fragment ’B’, are calculated only once and especially that they respect
the conditions 1 and 2. Distances inside the same fragment are not calculated since they
do not change.

After recovering the partial contributions of a fragment, we sum all them up to get the
total of the internal distances. The total is also a non-linear symbolic expression where
the symbolic variables representing the turning angles are wrapped in trigonometric
functions. Now the formulation obtained is computed once and for all, and can be
saved for a variety of future applications. The same can be done for the graph with its
attributes, since the symbolic positions of the atoms are a function of the turning angles,
they could be exploited in the future for new applications that modify the shape of the
substance, like the successive phases of docking.

4.3 Huboization

We defined the procedure huboization where in simple words we substitute every trigono-
metric function into the expression of the total contributions as according to relation
3.13, and the result is then combined with the hard constraint 3.15.

The process of derivation is made of several steps, where after identifying the ordering
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of the bonds, we first we substitute the single cosines and sines representing a torsional,
with a placeholder ai, with i going from 0 to 2 ∗ number of torsionals.

The placeholders that are of the form a2i , are replaced by a symbol that keeps track
of the power but that mathematically will keep the power low in a term. As a third
step, instead of the placeholder it is put the one-hot encoding as sin/cos(θi) ∗ X0 +

sin/cos(θd) ∗Xd; each of the theta angles is one of the possible discrete angles that the
rotatable bond can take. Depending on the placeholder they replace the real valued
sines or cosines will be raised to a power. The expression is then expanded, and we end
up with owning a HUBO, since the terms will be for example · · ·+X0X2X4X5 + . . .

which is a product of two or more binary variables; the letters X are still symbolic binary
variables. Since binary variables with powers greater than one will be just 0 or 1 again,
as a major mathematical simplification, we set all the binary variables’ powers to 1 and
sum up the real part of the terms made up by the same literal part, this will decrease
the degree of power of each term. This phase of expansion that we just mentioned is
one of the most computationally intensive, at least when using a symbolic framework.
The challenges that arise during this part of the whole process are strictly related to the
enormous amount of memory used and the unparalleled implementation of the symbolic
compiler.

Proceeding with the derivation of the QUBO is unrealistic, several simplifications
allow us to reach the final phase in which we can feed the annealer with the data.

4.3.1 Approximations

The distance simplification

The greatest simplification introduced in the routine for calculating the respective con-
tributions is the simplification in the number of pairs considered; instead of measuring
the Euclidean distance of each atom a from a fragment A to each of the atoms b in a
fragment B, we consider only the median atom in each fragment, and since the atoms
inside the fragments are again ordered by centrality, these atoms will be the central com-
ponents of these molecule segments,a sort of barycenter. This is similar to an extreme
form of loop perforation, or an edge contraction on the graph of the molecule[33].

In almost the whole number of cases without this technique, the intermediate substi-
tutions did not even terminate with the current framework used, hence it was impossible
to compare the number of terms present in a HUBO where this simplification is trig-
gered and where it is not. For a small number of rotatables, e.g. 1, 2 , the number of
terms is almost identical, but for more difficult problems where the workflow deals with
3, 4 or more torsionals, it becomes already unfeasible since the number of terms grows
exponentially with the number of torsionals. The formulation will have much less terms
and the preprocessing times are much better performant.

Coarse-grained rotations

As the dimension and complexity of a molecule is increasing, we have to face several
problems connected with our limited computational resources. We have again to employ
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trade-offs that take us away from real optimal solutions but still of very much acceptable
quality.

Figure 4.4: Analysis on the results degradation by transitioning to a coarse-grained rotation.

A first precaution that we have been able to verify concerns the granularity with
which the rotations of the fragments can be performed.

In figure 4.4 we have again the 118 molecules shown before, always in order of
increasing volume. The vertical axis shows the percentage of degragation of the final
volume for each molecule when their expansion is made with an angle greater than 1
degree. The lines drawn in the plot concern rotations at multiples of 45, 20, 10, 5 and
2 degrees. The surprising result is that the degradation is lower in all cases below 2%
except for the rotations at 45 degrees which reach a peak of 4% but with average around
1.7%. There is an outlier at the last molecule which for rotations at 20 degrees explodes
at 15%. Even though we introduced the possibility of using different granularities (as the
granularity input), we believed in using multiples of 45 degrees, because the construction
of the instance would require only 8 logical qubits for each rotatable bond to identify its
position in the make of the HUBO, and the final potential quality loss is acceptable. On
the other hand, the other extreme would be using a granularity of 1 degree that would
require 360 logical qubits, a total waste of resources.

Landscape alterations

This last simplification proposed implies that if we wanted to use an exact mathematical
formulation for our application, we would have to use more qubits and use very complex
logical embeddings of the qubits. Eventually, we poured all our efforts in finding ways
that relax the problem instance, so that embedding less complex structures and using
fewer logical qubits would lead to near-to-optimal results more frequently as proved
in [41]. From the beginning of the experimental phase we noticed that we were running
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out of qubits as the number of rotatables was increasing, so in order to fit the problem
on the device two other remarkable simplifications are made. The first is the rounding
of the HUBO and QUBO coefficients due to the physical sensitivity1 of the quantum
devices and for faster formulations, the second is the elimination of HUBO and QUBO
terms from the whole expression, based on their multiplicative coefficients, or simply
called "chop".

The chopping consists in eliminating the terms from the optimization constraints
and not related to the hard constraints, that present a coefficient strictly less than a
threshold value in HUBOs and QUBOs. The fine art of chopping will be the trade-off
between less exact specifications and better embedding (thus improved quality). We
should have made a premise about the chop. As the elements in the QUBO are getting
chopped, there is the risk of eliminating all the terms that present a common variable
between each other. The missing variable is backtracked throughout the transformations
and it will result as "don’t-care" assignment to one of the logical variables assigned to
the rotatable bond, therefore the chances of getting worse solutions or even invalid ones
will increase dramatically.

The decision of when and where to apply this "chopping" phase can dramatically
change the landscape of the problem. In the context of this project, it was performed
after the application of the placeholders, together with the rounding of the coefficients,
and after the creation of the symbolic expression of the optimization constraint of the
objective function. In the code, this parameter is a float number that represents the
exponent of 1

10chop
, if chop is equal to 1, then any term with coefficient less than 0.1 in

absolute value will be deleted. Depending on the pre-existing landscape, this operation
can be seen as smoothing the surface by removing local minima close to each other and
that are not very deep; pay attention that smoothing can create valleys from which the
algorithm can’t escape anymore.

4.4 Quadratization

Once the HUBO is calculated as the summation of the hard constraints expression and
the optimization constraints, in order to perform the annealing, we need to derive the
QUBO form from it. Firstly, we apply recursively the substitution expressed in 3.7.
One can decide to build a custom function or exploit a wide range of functions present
in DWAVE’s software offer, as "make_quadratic". In our case, we developed a more
precise version of dimod.make_quadratic.

As a first step, the function must create new "slack variables", binary variables that
will keep track and split ternary products into quadratic ones; this can be applied recur-
sively. The creation of the slack variables can be done by either performing a reduction
by minimum selection or a reduction by substitution [21], from which are derived more
advanced works as [32].

We sticked to the method by substitution which introduces a new variable z in order
to express the product of two binary variables x1 x2 inside a function multiplied by a

1energy scaling of the couplers
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penalty term as:

P (x1, x2, z) = x1x2 − 2(x1 + x2)z + 3z , z ⇐⇒ x1x2 (4.3)

This shows that the term expanded adds a strictly positive energy cost to all the solutions
that do not reflect the equivalence between z and x1x2, so if the identity is injected in
a bigger formulation, its results will be:

x1, x2x3 = min
z
{zx3 +MP (x1, x2, z)} , Mpenalty > 1 (4.4)

The difference with the original function is that in our implementation P is equal to
the product of all the coefficients in the HUBO that are related to z, times an amplifica-
tion factor that is tuned depending on the factor. Meanwhile, the DWAVE implementa-
tion sets P to a constant unrelated to the energy of the variable but sets it equal to the
maximum of the function rescaled by a factor; this is completely deranging the walk of
the algorithm.

The QUBO now can be chopped again and tranformed in a python dictionary that
will be encoded in order to be launched via DWAVE’s sapi library on the device.

4.4.1 Physical embedding and post-processing

Finally we procede with the runs with attention to a slight tuning of the procedure.
The anneal is performed multiple times by trying different values for the ’A_const’

constant in the penalty function which we chose to be the maximum of the optimization
constraints, multiplied by an increasing amplifying scalar. Once we get the adjacency
matrix of the topology of the device available, we try several times the embedding and
we take the one that uses the least physical qubits, it’s implicit that this embedding
will also be the one with the shortest chains. The QUBO problem is transformed in an
instance of ideal Ising model, as in 3.6. The Ising model is then physically embedded
from which we fetch the the parameters h, Jq, Jc, that are respectively the linear terms,
the quadratic and the chain energy levels.

We performed runs only by forward annealing, where the state of the system is
modified from the initial state to the final state without any stops or any reversion of
the state to any intermediate ones, called "reverse annealing".

After the run we collect the results of the procedure that is a set of solutions or set of
assignments to the binary variables ~xsol, that represent an energy level of the quantum
system. Unfortunately, even though a related energy level is optimal, the assignments
could defy our initial conditions and constraints, due to the side effects of the procedure;
for example, we could have broken chains or chains that do not have the same value
on each physical qubits, to solve this problem we used majority voting to recover the
possible value of the whole chain. We finish by post-processing the result, where we
convert the Ising spins -1 and +1, in 0 and 1, and then we eliminate the solutions that
did not logically respect the hard constraint. It is often likely that even if the annealer
found many results, none of them could be valid.
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Chapter 5

Experimental results

In this chapter we will describe in detail all the results and experiments of the project.
After outlining the machines and the software libraries used in section 5.1, in section
5.2 we will give a short introduction on the data selected for the experiments, and on
the criteria adopted for the selection. In section 5.3 all the classical algorithms used as
comparisons with the quantum annealers are described in detail.

Experimental results in terms of optimizations and comparative results are shown in
the following sections:

• Complexity of the creation of the HUBO is shown in Section 5.4.

• The effects of chopping is Shown in Section 5.5.

• Algorithms Comparisons, also including the effect of the distances simplification,
is shown in Section 5.6.

5.1 Machines and libraries

The platform used for running the classical algorithms is based on NUMA nodes, fea-
turing 2 Intel(R) Xeon(R) CPU E5-2630 v3 CPUs (@2.40GHz), Virtualisation VT-x,
caches L1d, L1i cache of 32K. L2 and L3 caches are, respectively, 256K and 20480K.
RAM memory of 125 Gb and 114 Gb of SWAP memory. Operative system used is
Ubuntu 18.04.5 LTS Bionic. The code was written in python 3.9.1, compiled with gcc
9.2.0. The parallelization was actuated with the usage of mpi4py 3.0.3, compiled with
MPICH 3.3.2.

Since the classical probabilistic algorithms, grid search and random search, could
be run in parallel, mpi4py [11] [12] was used for a broadcast operation of the input
parameters at the beginning of the execution, and then for a successive MPI collective
"Gather", from all the processes to the root process, where the results were filtered for
the maximum value of volume and the value of the angles that maximise the volume of
the molecules. For each problem instance, the number of processes used for each run
was 32.
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Other libraries of support are: Pandas 1.2.1, Numpy 1.19.5, Biopandas [40], 0.2.7;
symbolic calculations were performed thanks to Sympy 1.7.1 [36]. Please be aware of the
version of Sympy, which has undergone through noticeable changes in the latest versions.

5.2 The Dataset

Since in Figure 4.1 we can see that 60% of the molecules of the database of compounds
at our disposal present on average 10 rotatable bonds, we made the choice of analyzing
molecules with the same features’ set.

The molecules were selected with the objective of representing compounds with very
different numbers of atoms, but we decided to concentrate our research only on molecules
that had at most only 12 rotatable bonds. Because of the statistical relevance of the
number 10 for the number of rotatables, we decided to study only the effect on the
complexity of the resolution for the first 10 central torsionals for each problem; the last
2 bonds have almost zero effect on the variation of the scoring function since they rotate
with high probability fragments of small cardinality, or they are terminal bonds that
disappear after the removal of the terminal hydrogens.

We started from seven mol2 files containing each of them respectively: 42, 40, 33 ,
35 , 30 , 28 and 25 chemical substances. Every mol2 file contains only molecules with
the same number of atoms; declared in the same order as before, with 20, 25, 30, 35, 40,
45 and 50 atoms. From each file, we randomly selected only two molecules from the set
of those which had the smallest initial volume. Once isolated in separate mol2 files, we
ran our experiments by considering only a subset of torsionals at a time, out of the 10 in
total. The results are statistics drawn from all the molecules selected, while considering
only the same number of degrees of freedom every time.

Our study aimed at highlighting the change of complexity in the problem’s instance
by augmenting the number of torsionals each time.

Figure 5.1: Average creation time for the unapproximated HUBO.
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5.3 Altenative Search Strategies

This part of the study is a clarification of the optimization strategies used later to
compare the classical methods against the quantum annealing device, in order to discover
the set of assignments that can maximize the evaluation of the contribution’s expression.

Since it is unfeasible to satisfactorily explore with runtimes comparable to real dock-
ing applications our solutions’ space, and given the impossibility of possessing the ex-
treme computational resources necessary to perform an exhaustive research, there is a
need for algorithms less expensive, primarly in terms of memory.

Grid Search

This algorithm is usually employed in the field of machine learning, where the models
need an hyperparameter optimization to perform optimally. The choice of the param-
eters are driven by a loss function on the given data, in our case the parameters to
optimize are the assignments of the angles that optimize the volume of the compound.

Grid search [27] is an exhaustive search on a subsample of parameters, usually picked
manually and repeated many times, in our case it will be randomic since we do not
currently have a measure that could tell us which angles could pilot a faster and more
conclusive search for the optimum. Grid search will still be bounded by a memory limit,
so the number of parameters selectable is quite low. One of the positive aspects of
this method is the chance of running it in an embarrassingly parallel mode, and that it
performs well on discrete spaces like ours.

Practically, selecting a subset of dimensions means rotating the corresponding bonds
and fixing to the initial value the other torsionals.

Algorithm 2 Grid Search

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set

Ensure: γmax : max Dab(Λ = γmax)2

1: Λ = {λ|λ ∈ T}, |Λ| = s . Random uniform selection of s torsional.
2: Γ = A1 ×A2 × ...×As . Cartesian product of the set of angles - s times.
3: for γi in Γ do
4: Evaluate Poly(Λ = γi) . Evaluate assignments and record the optimum.
5: end for
6: return [ γmax, max Poly]

Random Search

Random Search [7] belongs to the same family of probabilistic algorithms related to
hyperparameter optimization. It substitutes the exhaustive enumeration of all combi-
nations by picking up randomly from a uniform distribution and testing the candidate
solution. The pro of this method is the adaptability to a discrete setting, but also other
types of space can be searched, albeit in combination with techniques for improving the
outcome.
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It can outperform grid search when the number of dimensions is small. A big strength
of this method is again the high parallelization and the extendability to the use of
Bayesian techniques or the chance of using probability distributions that are more suit-
able for the problem.

In practice, this algorithm can be applied on smaller subdomains of the same number
of dimensions of the original solution space, where for a fixed time, a set of random points
will be picked out and the torsional bonds will rotate according to the discrete angles or
coordinates.

Algorithm 3 Random Search

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set

Ensure: γmax : max Dab(γmax)2

1: |T | = m

2: Γ = A1 ×A2 × ...×Am . Cartesian product of the set of angles - m times.
3: while t < MaxTime do
4: γ = pick_rand_uniform( Γ )

5: Evaluate Poly(Θ = γ) . Evaluate assignments and record the optimum.
6: end while
7: return [ γmax, max Poly]

The difference between random and grid search is crucial. Random search represents
the class of Monte Carlo algorithms, while grid search is a Las Vegas algorithm. Even
though both categories are randomized algorithms, the Las Vegas type always returns
the correct result, otherwise it signals the failure. The classical definition expects the
computational time to be a finite variable depending on the instance, and requires a sort
of bet on the resources. On the contrary, Monte Carlo algorithms are based on repeated
random sampling of results, while the runtime is fixed, but the answer will be incorrect
for a defined probability. The definitions reflect the modus operandi of the first two
methods.

GeoDock-inspired

The algorithm in this case is based on the mathematical method called dynamic pro-
gramming [6], that was coined by Richard Bellman, and it means tackling a problem by
dividing the decision process in intermediate steps over time, in a recursive manner. In
fact, the word dynamic denotes the time-varying aspect of the model and programming
is used for defying an ordering. This model cannot always be applied, but if it is, then we
can tell that the optimum solution to an instance of our problem, contains the optimal
solutions to the subproblems.

The GeoDock-inspired search is a greedy algorithm, which makes a decision locally
at each rotatable bond, it does not lead to an optimal solution for the majority of the
time, but it can give a good approximation in a reasonable time.

This algorithm is the only one that is not utilizing symbolic computation in our
experiments. Starting from the most central and internal bond, and going outwards by
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Algorithm 4 GeoDock-inspired Search

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set

Ensure: amax : max Dab(amax)2

1: |T | = m

2: for ti, θi in Tordered do . Ordered by betweenness centrality.
3: for a in A do
4: Evaluate Poly(θi = a) . Record intermediate optimums.
5: end for
6: end for
7: return [ amax, max Poly]

following betweenness centrality, each bond is rotated for each angle it could assume,
and only the conformation that improves the volume is recorded in a vector. The whole
process is repeated a number of times, or until a stalemate in the improvement is reached.

Simulated Annealing (SA)

Simulated annealing is a probabilistic algorithm which runs for approximating the global
optimum of the problem, in particular this is a metaheuristic useful in the search of the
optimum in large solution spaces.

Algorithm 5 Simulated Annealing Search

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set, Nmax =

Total Iterations

Ensure: amax : max Dab(amax)2

1: T ← Tmax
2: amax = NULL
3: while T > Tmin and N < Nmax do
4: next = pickNeighbour(T, best)

5: ∆E = Poly(next)− Poly(amax)

6: r = randomNumberUniform(0, 1)

7: if ∆E < 0 then
8: amax = next . The neighbour is accepted as the new optimum.
9: else if r < e

−∆E
kb∗T then

10: amax = next . Moving to a neighbour.
11: end if
12: T = geometricDecrease(T )

13: end while
14: return [ amax, max Poly]

We largely described it in background section and we used this algorithm as a the
main comparison against the QPUs. Since they both ran the QUBO formulations of
our problems, SA will be the benchmark for the resolutions based on the annealing
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Figure 5.2: Mean number of linear and non-linear terms in the unapproximated HUBOs.

phenomenon. In algorithm 5 you can find the pseudocode for a much clear understanding
of how the walk on the landscape of solutions is performed by SA.

5.4 Complexity on the HUBO Creation

In Figure 5.1 we can see the average creation time in seconds for an increasing number
of rotatable bonds. The numbers 2,4,5,6,8 were chosen with the intention of showing
a particular behaviour for the process of creation of the full HUBOs, constructed with
the use of the distance simplification. Our study stops at 8 rotatable bonds, since the
construction of a HUBO at 10 torsionals did not terminate with the current setup and
software.
The plots show three thresholds of chopping, 0.1, 30, 100. The value 0.1 represents an
almost null value of chopping, for which almost all the terms are preserved, meanwhile
30 and 100, are the minimal chop threshold for which the construction of a problem
with 6 and 8 rotatable bonds was possible, without exceeding the platform’s memory
and with a decent runtime. A chop at 0.1 can be considered a pretty good achievement,
although the time increases almost 239 times when going from 4 to 5 torsionals.
By increasing the chop in this first phase we managed to keep the construction, when
going from 4 to 6, and 4 to 8, only to approximately 25 times and 20 times, instead of
a lower bound of 57121 times regarding the scaling from 4 to 6.
This effect is due to the usage of a python symbolic library, but it can still be repre-
sentative of the complexity of the problem. We tried using C++ symbolic libraries,
but they can only moderately improve these runtimes, the solution could be introducing
parallelization which would give us runtimes with almost linear acceleration.

5.5 The Effects of Chopping and Embedding Exploration

Two other metrics for evaluating the complexity of the problem’s instances are the num-
ber of linear and high-order terms in Figure 5.2. The number of linear terms follows the
relationship: Number of rotables× granularity of rotation, so for 2 bonds considered
we will have 16 terms, for 4, 32 and so on... It is curious to see that the number of
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Figure 5.3: Average number of linear and non-linear terms in the approximated HUBOs.

Figure 5.4: Average number of linear and quadratic terms in the approximated QUBOs.

non-linear terms is increasing steadily but not exponentially. In fact, the number of
non-linear terms when going from 2 to 4, the size increases of 61.2 times, if we had
to average it would be almost 30.6 times per rotatable bond, and when from 4 to 5,
the expression becomes 21.23 times larger, the ratio for each bond actually decreases.
We are able to get this type of growth in the non-linear terms thanks the initial chop,
that is allowing us to avoid the exponential growth that these numbers would otherwise
follow. Although these numbers can give a positive feeling about the the complexity of
the general problem, we should keep in mind that this first part of the discussion was
only dealing with the construction of the expression to solve.

Since the final objective is to be able to embed our expressions into a QPU, we are
obliged to chop even more the HUBOs before applying the quadratization to the ex-
pression. The choice of the amount of chop is done by a fine tuning of this cancelling
threshold, that is lowered until the embedding cannot be performed anymore. We apply
it twice, once on the HUBO and then on the QUBOs derived from them.

This way of proceeding slowly acts as a classifier on the set of molecules, and catego-
rizes them in classes of "difficulty". Since there are three points in the workflow where
we are applying the chop, we can view this process as a decision tree of three levels where
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Figure 5.5: Plots depicting the average chain length and the average number of qubits in the
embeddings.

each node is a chopping phase, with leftmost branch the smallest chop and rightmost
branch the highest branch possible. The root is the initial expression, and the leaves
record the history of chop thresholds, required to allow us to perform the embedding of
a particular molecule, and the final QUBO. Each leaf is a sort of category that implies
the complexity of a molecule, and depending on the path in the tree, we can tell more
or less if the QUBO will be of high quality or not; the leftmost leaf will contain only
the easiest molecules that need only chops at 0.1, while the rightmost will be the most
difficult ones. If the molecule can end up in the more categories the leftmost will be the
one with the highest quality of QUBO.

The plots in Figure 5.3 and Figure 5.4 may not have a direct connection, but we
can glimpse an increasing trend in the columns representative of the same chops for
an increasing number of rotatables. There is an increase in the number of linear terms
because of the quadratization as expected, and the number of linear terms is decreasing
for an increasing chop for molecules with the same number of torsionals. It is likely that
these molecules come from HUBOs that have already been stripped of the highest order
terms, which would have induced the introduction of new linear substitutive variables.
There is an odd fact concerning these data, and it’s the oscillation in the case of 8 rotat-
able bonds. This is due to the skewness of the difficulty’s distribution of the molecules,
that is concentrated around what we would call, the "8-200.0 class". This is why the
plots should be read by following the strong colors, then combined with the use of the
x-axis, and not the opposite.

The plots of the embeddings at Figure 5.5 are highly representative of what are the
capabilities of each topology. There is an important detail regarding these two plots,
that the columns of 2000Q at 8 − 100.0, both for the average chain length and the
average number of qubits are saturated to the maximum value for the that topology.
This is because the topology couldn’t embed all the possible molecules for that category,
therefore when averaging the values radically increased.

61



Now we can see a clear difference in connectivity of the topologies, since the Chimera
QPU has visibly chains almost twice longer than those of Pegasus in average. To be pre-
cise, for Chimera, the maximal value is 2.82 times the chain of Pegasus and corresponds
to the columns at 8− 200.0, while the minimal value is 1.56 and it is the ration between
the columns at 8− 100.0. On average the chains of Chimera are 2.09 times longer than
those of Pegasus, therefore Pegasus returns chains 52% shorter.

Regarding the number of qubits, Pegasus is again the winner in terms of performance,
it presents embedding with 1.39 up to 2.4 times less qubits than Chimera. On average
Advantage is 1.96 times more efficient than 2000Q, or it means 51% less expensive in
terms of qubits; this will be reflected on the quality of results. There are only two results
slightly diverging from our expectations, that are the columns regarding the class 6−100,
we can see that they are shorter than they are supposed to be, this is due to the extreme
complexity of the expressions, therefore since only the easiest expressions can be solved,
the average is biased towards a lower value.

5.6 Search Strategies Comparisons

A short remark should be made on the way these algorithms run. Since the execution of
the quantum annealers and simulated annealing are repeated many times in the attempt
of finding the best solution, also the probabilistic and greedy techniques try to do the
same.
Random search divides the solution space in N parallel processes and as long as it does
not run out of time, it executes and records the maximal value found, up to that moment.
In a similar way, grid search is completely exploring the solution space determined by
the torsionals picked at random, with N parallel processes. According to [7] we expect
grid search to perform poorly compared to random search even if they run with the same
amount of resources allocated, when the size of the problem is still moderate. Since grid
search will have to do a repeated execution, it will continue picking out random rotatable
bonds of the molecule and it will solve the related problems as long as the time limit
permits; in this case the single instance will be an intermediate solution on the total ex-
ecution time span. Grid search creates instances with a number of at most 5 torsionals,
since the exhaustive solution of problems with 6 rotatable bonds could exceed the total
available time; the algorithm will be used for tackling only molecules of 10 rotatable
bonds in order to highlight the limits of this method on moderately large spaces.
The Geodock-inspired search is trying an incremental approach, which consists in per-
forming the rotation of an incremental number of bonds at a time, for example, if it
is dealing with a problem on 4 rotatable bonds, it will search for the optimal value by
rotating at first one bond at a time, until it has rotated each of the bond, for N times
1, then when it is done, it will record the solution found. It will start again looking for
the best solution but this time by rotating two bonds at a time, or also said "in a batch
of two" rotatables at a time, then again, but three plus one, and in the end all of the
four bonds at the same time. The last iteration will be the most expensive since it is an

1parameter of the experiment
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exhaustive search. In the first annex it is possible to see in the plot for 2 rotatable bonds
the incremental improvement given by this strategy, with the distance simplification.

The plots in the Figures 5.6 are the average trends for all the molecules solved by
each of the algorithms discussed so far, for 8 and 10 rotatable bonds on a window of 100
seconds, that is the X-axis.
For this type of plots on the Y-axis it is possible to find values from 0 to 1, as they
are the percentages of the maximum volume reached by each algorithm, at each second.
The values are the absolute values reached by an algorithm, averaged and normalized
by the maximal average reached by any of the algorithms during a total available exe-
cution time cap of 1 hour. The plots demonstrate the algorithmic behaviour up until
100 seconds, since the greatest changes are in the first two minutes of the total time
cap; it is not shown for the sake of clarity, but it is good to be aware that the maximum
value is reached by the random search algorithm in all cases, this may be due to the
large amount of resources used for a very long time. This is not the most efficient way
of solving this type of problems, since in this work the key factor for the goodness of an
algorithm is achieving high throughput for a low price, but we can consider it our "best
benchmark", because past 5 rotatable bonds exhaustive solutions are almost impossible
to achieve. We must point out that the probabilistic algorithms are running on the
expression of the contributions made just from sines and cosines, while the annealing
algorithms are running the QUBOs derived from them. The greedy algorithm is not
using any expression, although all of them are working starting from the same modelling
of the same problem.
For a better visual inspection, one can visit the first annex where it is possible to see that
the increasing trends, by augmenting the number of degrees of freedom, are worsening
in terms of the maximum value reached and scaling.

5.6.1 Runtime parameters

For the random search the only parameter is the time allocated; since the problem grows
exponentially we could not assign exponential time for each rotatable bond added, af-
ter a tuning phase we decided to add 100 seconds for every bond considered, which
is a good trade-off between quality of search and runtime, since even if for 10 bonds
the theoretical maximum runtime is 1000 seconds, we had to take into account all the
overheads of the python libraries. The Geodock-inspired algorithm has one parameter
only, the number of times it should reiterate, or refine, his search on an instance with
a certain batch of rotatables, which is three times; the angles’ assignments are the sum
of the discrete angles returned from each each iteration of the algorithm, the value of
volume recorded is the best found over the three iterations. Grid search does not have
any explicit parameter, it only has to pick an increasing number of bonds from 1 to 5,
out of the 10 availables, and solve the related expression.
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Regarding the set-ups of Advantage and 2000Q: since the QUBO has the constant
A_const that must be tuned; we performed 10 runs for each value assigned to the con-
stant. A_const is evaluated as the maximum coefficient in the optimization contribution
multiplied by 5, then 10 and 20 for a total of 30 runs. Each run is performing ten thou-
sands forward anneals with a linear schedule of one microsecond. Simulated annealing
performs the same type of procedure on the QUBOs, but the anneals are controlled by
the number of steps the algorithm can perform on the landscape, and there is the possi-
bility of chosing the function with which to decrease the temperature of the simulation.
In our case we used 500 steps and a geometrical decrease function.

5.6.2 Comparison between Advantage, Random Search and Grid Search

After just a graphical inspection, we can observe that Advantage is the best between the
two DWAVE devices; if we scroll through the images in the annex I, for an increasing
number of rotatable bonds, the level of volume achieved by 2000Q quickly dies off, while
the results of Advantage remain competitive for a good number of torsionals.

A side note on the comparison between Advantage and the other algorithms concerns
the results on the instances with 10 degrees of freedom. Since the creation of the HU-
BOs with maximum number of bonds rarely terminated and when it was possible, the
embedding failed. In order to make up for the loss, and since the objective is improving
molecules up to 10 torsionals, for the algorithms SA, Advantage and 2000Q we projected
the results for the same molecules considered with only the 8 most internal bonds, to-
gether with the results of the other classical algorithms that solved the molecules with
actually 10 bonds.

In all the instances random search, given the amount of resources allocated, per-
formed with the best results, for both the versions with and without distance simplifica-
tions; Advantage and random search have the same null results at 0.1 seconds, which is
null, but the parallel algorithm presents a disruptive improvement which comes always
with a delay. It is mainly due to the overheads in the memory access to the expressions.
On average at 1 second it doesn’t provide any results, which leads Advantage to present
volumes 28% closer to the benchmark of the instance, than those of the classical routine.
At 10 seconds, the two get to a point where their difference is reduced to just 10.3%
from the optimum; this amount of time gives to the QPU the time to start converging
to its optimum. At 50 seconds, the random search beats Advantage for a 17% volume
closer to the optimum. It is noticeable that 50 seconds is the time of activation for this
algorithm. At a 100 seconds, we can consider the two of them in regime, and we can
see that the random algorithm is beating the quantum annealer on average over all the
problems with a volume on average, 16% closer to the maximum. With a simple average
we could say that the volumes generated by the random search are just 0.96 times those
of Advantage, but it is true only for the first 100 seconds, in fact if we treat the first 50
seconds as outliers, the volume of random search turns out to be 1.46 times the volume
of Advantage.
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At the bottom of Figure 5.6, you can see reported the trends of simulated annealing,
Advantage and 2000Q for 8 rotatable bonds, normalized by the maximum achievable at
10. The peculiarity of grid search is the fast convergence to a stable value, which we
can’t tell immediately if it is the maximal value it can find. Although it is sampling
from a totality of 10 bonds, the algorithm ends up with a very much similar scaling
to Advantage, the value reached at 100 seconds is also similar, in fact grid search is
on average only 1% better than Advantage. The fact that for both the algorithms the
maximum value stops at around 30% at 50 seconds, makes us wonder if for certain classes
of difficulty these two algorithms are computationally equivalent. It is to exclude the
possibility that the last two bonds don’t have an influence, since the volume of random
search is on average actually 1.403 times greater than the one of grid.
The scalings for Advantage and grid search are slightly different, since grid search starts
improving its results pretty early in the total execution, his growth is smoother, while
Advantage ramps up in a later stage.

Table 5.1: Comparison on % volume gained for Grid and Advantage, with ratio and scaling.

seconds GRID ADV GRID/ADV ADV SCALE GRID SCALE

0.1 0.0 0.0 - - -
1 0.01 0.0 - - -
10 0.16 0.09 1.77 - 16
50 0.31 0.27 1.14 3 1.93
100 0.31 0.3 1.03 1.11 1

5.6.3 Comparison between Advantage and GeoDock

In the plots in Figure 5.7 it is possible to start drawing some conclusions on the limits
of the greedy algorithm.
On top we can see the black dotted line of the greedy algorithm, that has improvement
of the percentage of volume logarithmic with time; this is due to the fact that first we
always try to execute the greedy algorithm by considering the subproblems related to
only one bond at a time, then two at a time, then three at a time and then 4, so as the
time passes the solution of the general problem is attempted by solving subproblems of
increasing complexity, which require more time for a volume gain that is not growing
linearly with it. Small plateaus appear more often and in a longer measure than the
volume improvements reported by the steps. Instead of having a linear scaling as we
would wish from the dynamic programming method, we can see a curve usually starting
between 20 and 30 seconds of execution. While for 2 torsionals the problem looks an easy
task, with 4 torsionals we can foresee a deviation of the trends, the yellow line of 2000Q
gets quickly closer to our greedy routine, until when dealing with 8 rotatable bonds,
where Advantage takes the place of GeoDock-inspired and 2000Q becomes very similar
in performance to this classical algorithm. The GeoDock-inspired algorithm is more than
halving its maximal value while the number of rotable bonds is increasing. On average,
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Figure 5.6: Comparison on a time window on 100 seconds, with distance simplification, for 8 and 10
rotatable bonds considered.

every time we increase the complexity of the problem, GeoDock loses 62% of its efficacy,
its capability of reaching the maximum, in simple words of achieving volume 100% of
the benchmark at the end of the time window. It is curious to point out the affinity
between 2000Q and our version of the GeoDock expansion which, for an instance of 6
bonds, with and without simplification, they have close values of volume, although at 8
torsionals 2000Q completely fails the expansion, when the result retrieved with distance
simplification is compared in the context of the solutions without this approximation.

Let us analyze the usage of the distance simplification.

Since many of the calculations have been done with the assumption that the solution
with distance simplification could work also as a surrogate for the solutions without
distance simplification, we need to verify how much in percentage are the trend losing
when trying to reach the maximum value for a problem with and without this approxi-
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Figure 5.7: Comparison on a time window on 100 seconds, for 2 and 4 rotatable bonds considered,
with and without the distance simplification for the second type.
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mation. Therefore, we evaluated the solution of the problem simplified into the original
problem and we traced the trends for all the annealing algorithms at 0.1, 1, 10 and 100
seconds, for all the problems of increasing difficulty. The average degradation of the
distance from the 100% is of the 4% on average for Advantage while for SA it’s of the
12%, this is a positive result in relation to the strong assumptions made when applying
the simplification.
Meanwhile for algorithms like GeoDock and grid search the approximation was a wors-
ening factor, it is possible to see that when their computation is driven by a more precise
model the improvement in the maximum level of volume achieved happens to be 3.27
times better on average over all the instances, while for the grid search the final volume
is 2,47 times greater.

5.6.4 Comparison between SA, Advantage and 2000Q

Figure 5.8: A comparison between Simulated Annealing, Advantage and 2000Q on TTSs, for in-
creasing number of torsionals.

Comparing classical algorithms with quantum annealers in terms of absolute time
isn’t fair, since the quantum devices have runtimes, that are comprising of a program-
ming time, a readout time and a delay time, besides the time spent in actually performing
the annealing, all of this is called total access time; we need more suitable metrics for
comparing the quantum annealers with at least other annealing implementations, which
we will do with comparisons based on the TTS, the time to solution, which was described
in the background section. The TTS is very high for 2000Q, then the second in order
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is Advantage, while the best TTS is of simulated annealing. Simulated annealing has a
TTS several times smaller than Advantage, and it means its convergence to the optimum
is much faster than the quantum annealing method. Since the annealing schedules im-
posed to the three algorithms are almost identical, even if expressed in different terms,
we can consider the numerator in the ratio of the TTS constant. The trend on the top
of plot has the significance of being the one with the least number of appearances for
the maximum value of the optimization problem, hence the most ineffective. The lowest
trend is the most effective.

Table 5.2: Comparison on the TTS, for increasing number of torsionals.

torsionals sa adv two

2 0.007171 0.165081 0.868552
4 4.138503 12.818871 65.482955
5 5.502274 34.508321 62.996198
6 10.384806 50.430784 204.457250
8 12.942243 43.363135 503.938826

Figure 5.9: A comparison between Simulated Annealing, Advantage and 2000Q on volumes.

Regarding the volumes achieved, plots in Figure 5.9 represents the degradation of
the final volume as the problem complexity arises. The volumes are the three decreasing
trends that may seem normalized, but they have a common starting point since all the
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Figure 5.10: A comparison between Simulated Annealing, Advantage and 2000Q on the decreasing
quality of the volumes, per time to solution.

three algorithm actually reach the maximum steadily and completely for problems on 2
rotatable bonds. SA has an inflection on 4 bonds but then recovers and finishes as the
best in absolute terms; it has a volume which is 4.65 times better than the one of 2000Q
at 8 bonds, and 1.4 times better than the result of Advantage.

Table 5.3: Comparison on the Volumes, for increasing number of torsionals.

torsionals sa two adv

2 1.00 1.00 1.00
4 0.92 0.86 0.97
5 0.99 0.84 0.95
6 0.98 0.62 0.88
8 0.93 0.20 0.66

The last concept worth mentioning is what we would call velocity of the algorithm.
It is the measure that tells us how much volume in percentage we can gain per one unit
of time to solution; practically, it is computed as the ratio between the trends of the
volumes and of the TTS of each algorithm at each number of variables considered.

The plot is composed of the segments that connect the values of velocity for each
number of torsionals. Encountering a segment with a negative slope can be interpreted
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as the diminishing amount of percentage of volume reachable by a certain algorithm
when increasing the number of torsionals, or as the increasing time-to-solution required
for achieving the same percentage of volume from scaling up to a more difficult problem.
A higher negative slope means a faster worsening of the algorithm with the increasing
difficulty, while a smaller slope is a synonym of stability.

It is clear that the trends that are running towards the bottom of the plot are
belonging to the algorithms which are defective in one of the two measures, or more
likely in both of them compared to the others.

In order to highlight the change in behaviour of the phenomenon when adding one
torsional at a time, we normalized the y-axis by the range of each trend. What we end
up with are some progressions which start from the same point, again not because of
the normalizing factor, but because of the simplicity of problems with 2 rotatables.

The trend of SA falls down very fast, from 2 to 4 torsionals, and then starts be-
coming stable again. The same happens to Advantage which slows down this negative
acceleration before. 2000Q never stops decreasing its quality, if not for a special case
between 4 and 5 torsionals.

If we check the ratio on the slopes when increasing the number of torsionals, we
can understand by how many factors the algorithms are worsening for each degree of
freedom. The smaller the ratios, the higher is the probability for the algorithm to be in
the upper part of the plot, hence being the best choice. On average the smallest growth
in scaling of the slopes belongs to Advantage, with 1.36, whereas SA presents a higher
1.609, meanwhile 2000Q has an average of 6.01.

Although the absolute values of the results of Advantage may not be the winners,
the fact that its velocity is much better than the one of SA, is a very promising result
that reflects how much QA is immature, but also how much the improvements in the
next hardware generations in the QPU access time would lower the time-to-solution,
or it could tell us how much an improvement in the sampling factor of the QPU could
improve the levels of volume achieved. The margin of growth for QA is very much far
from saturation.

Table 5.4: Average normalized velocity’s slopes scaling for the three annealing algorithms.

sa two adv

1.609948 6.0189816 1.36206524
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Table 5.5: Normalized Velocity for each algorithm, at different number of rotatable bonds.

sa two adv torsionals

2.001031 2.000690 2.005038 2
0.003190 0.022822 0.025046 4
0.002582 0.023171 0.009112 5
0.001354 0.005269 0.005776 6
0.001031 0.000690 0.005038 8

72



Chapter 6

Conclusions

In this thesis, we explored the possibility to use a quantum annealer to support the drug
discovery process within the in-silico virtual screening phase. In particular, we studied
a new method regarding the process of molecular unfolding, which is the first step in
geometric molecular docking techniques. This phase aims at finding the molecule’s
configuration that maximizes its volume, or equivalently, that maximizes the internal
distances of the atoms that compose the molecule. We proposed our Quantum Molecular
Unfolding model with the aim of executing it on DWAVE’s latest hardware, Advantage
and 2000Q. The usage of the quantum annealers has the objective of understanding
the capabilities of these quantum annealing devices and discovering if it is possible
to improve the quality and the throughput of the ligand expansion in the state-of-art
molecular docking methods.

The model is constructed starting from the identification of the rotatable bonds
which are the parameters of the problem, and once their discrete rotations are rewritten
with a one-hot encoding thanks to the introduction of binary variables, the total sum
of the internal interatomic distances expressed in function of these variables will be the
starting HUBO. The HUBO is then transformed into a QUBO, thanks to these three
approximations: (i) coarse-grained rotations, (ii) landscape alternations by coefficients
chopping, and (iii) fragments contraction, also called the distances simplification. The
three approximations gave us the opportunity of reducing the complexity of the model
to embed and run all our problems’ instances on the two QPUs (Quantum Processing
Units). The possibility of tuning the threshold for chopping and applying it multiple
times, in different moments of the implementation, led us to the exploration of the
capabilities of this method. We compared the performances of Advantage and 2000Q,
with four other optimization methods, which are parallel random optimization, parallel
grid search, simulated annealing, and a new greedy version of the original algorithm
used in GeoDock.

The outcomes of the experiments show how classical techniques are still better than
the quantum version, however provided an interesting inside on the evolution of the
quantum annealer. Interestingly, the results obtained by the quantum annealer, both
while running on Advantage and 2000Q, are better than the GeoDock-inspired algo-
rithm, that is the currently adopted method. In terms of the evolution of the quantum
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annealers, embedding our problems on Advantage, compared to 2000Q, was on average
51% less expensive in terms of qubits and with chains 52% shorter. Advantage signifi-
cantly outperforms 2000Q in terms of time-to-solution and volume gain when increasing
the number of torsionals. Advantage also presents the best scaling of the normalized ve-
locity of the quality (volume gain over time-to-solution) when compared to both 2000Q
and simulated annealing; this last result is one of the most promising as DWAVE devices
are only bound to get better.

Completely unexpected results are related to the usage of the fragments contractions,
or distance simplifications, thanks to which the average degradation of the distance
from the 100% is of the 4% on average for Advantage while for SA it’s of the 12%
when we use the solutions retrieved with the approximation evaluated on the original
problem. Meanwhile, for algorithms like GeoDock and grid search the approximation
was a worsening factor, in fact, the maximum level of volume achieved happens to be
3.27 times better on average overall instances for the greedy routine, while for the grid
search the final volumes are 2,47 times greater than the simplified problems.

Future work can be the introduction of new dynamic thresholds of chop, which may
lead to smaller embeddings but still of high quality, and then the introduction of greedy
approaches as a chance for testing the capabilities of the new frontier of hybrid quantum
algorithms. A more difficult but also feasible and interesting task could be the study
made of an extension of the model to the whole docking process, as other works have
shown. We are confident that this study already sheds further light on the applications
of quantum computing, thus enriching knowledge on topics that stand becoming central
to the computational sciences.
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Appendix A

Additional Results

A.I Additional Plots

In the next pages are shown the plots that represent the performance of the algorithms
in a time window of 100 seconds.

Figure A.1: Maximal Volume Gain in Time, with distance simplification. R:2
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Figure A.2: Maximal Volume Gain in Time, with distance simplification, R:4

Figure A.3: Maximal Volume Gain in Time, with distance simplification, R:5
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Figure A.4: Maximal Volume Gain in Time, with distance simplification, R:6

Figure A.5: Maximal Volume Gain in Time, with distance simplification, R:8
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Figure A.6: Maximal Volume Gain in Time, with distance simplification, R:10

Figure A.7: Maximal Volume Gain in Time, no distance simplification, R:2
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Figure A.8: Maximal Volume Gain in Time, no distance simplification, R:4

Figure A.9: Maximal Volume Gain in Time, no distance simplification, R:5
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Figure A.10: Maximal Volume Gain in Time, no distance simplification, R:6

Figure A.11: Maximal Volume Gain in Time, no distance simplification, R:8
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Figure A.12: Maximal Volume Gain in Time, no distance simplification, R:10
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A.II Additional Tables

The tables in this second annex are additional data that represent the measured vol-
ume gained in percentage achieved by each algorithm, at defined time checkpoints, for
problems with a certain number of torsionals. For each number of rotatable bonds we
reported the same information regarding the runs made with, and without the distances
simplification, with the objective of giving a deeper insight on the results.

Table A.1: % volume gained, no distances simplification, for 2 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.88 0.00 0.0 0.0 0.00 0.1
0.85 0.90 0.00 0.0 0.0 0.00 1.0
0.96 0.91 0.69 0.0 1.0 0.95 10.0
0.98 0.91 0.86 0.0 1.0 0.98 50.0
0.98 0.91 0.98 0.0 1.0 0.99 100.0

Table A.2: % volume gained, with distances simplification, for 2 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.0 1.0 0.00 0.0 0.0 0.00 0.1
0.9 1.0 0.00 0.0 0.0 0.00 1.0
1.0 1.0 0.42 0.0 1.0 0.97 10.0
1.0 1.0 0.90 0.0 1.0 1.00 50.0
1.0 1.0 0.99 0.0 1.0 1.00 100.0

Table A.3: % volume gained, no distances simplification, for 4 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.43 0.00 0.0 0.0 0.00 0.1
0.35 0.65 0.00 0.0 0.0 0.00 1.0
0.60 0.73 0.41 0.0 1.0 0.39 10.0
0.82 0.73 0.63 0.0 1.0 0.76 50.0
0.82 0.73 0.74 0.0 1.0 0.79 100.0
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Table A.4: % volume gained, with distances simplification, for 4 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.62 0.00 0.0 0.00 0.00 0.1
0.41 0.82 0.00 0.0 0.00 0.00 1.0
0.78 0.90 0.14 0.0 0.96 0.56 10.0
0.98 0.90 0.42 0.0 0.96 0.91 50.0
0.98 0.90 0.50 0.0 0.96 0.94 100.0

Table A.5: % volume gained, no distances simplification, for 5 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.00 0.00 0.0 0.00 0.00 0.1
0.00 0.88 0.00 0.0 0.00 0.00 1.0
0.82 0.93 0.20 0.0 0.99 0.20 10.0
0.92 0.93 0.42 0.0 1.00 0.47 50.0
0.93 0.93 0.42 0.0 1.00 0.61 100.0

Table A.6: % volume gained, with distances simplification, for 5 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.31 0.00 0.0 0.00 0.00 0.1
0.28 0.97 0.00 0.0 0.00 0.00 1.0
0.88 0.99 0.09 0.0 0.97 0.67 10.0
0.94 0.99 0.34 0.0 0.98 0.81 50.0
0.95 0.99 0.35 0.0 0.98 0.84 100.0

Table A.7: % volume gained, no distances simplification, for 6 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.31 0.00 0.0 0.00 0.00 0.1
0.36 0.89 0.00 0.0 0.00 0.00 1.0
0.81 0.92 0.00 0.0 0.00 0.00 10.0
0.91 0.92 0.51 0.0 0.96 0.34 50.0
0.94 0.92 0.66 0.0 0.96 0.58 100.0
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Table A.8: % volume gained, with distances simplification, for 6 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.29 0.00 0.0 0.00 0.00 0.1
0.11 0.91 0.00 0.0 0.00 0.00 1.0
0.64 0.97 0.00 0.0 0.00 0.38 10.0
0.85 0.97 0.13 0.0 0.94 0.58 50.0
0.87 0.97 0.14 0.0 0.94 0.61 100.0

Table A.9: % volume gained, no distances simplification, for 8 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.00 0.00 0.0 0.0 0.0 0.1
0.00 0.65 0.00 0.0 0.0 0.0 1.0
0.00 0.80 0.00 0.0 0.0 0.0 10.0
0.61 0.81 0.58 0.0 0.9 0.0 50.0
0.66 0.81 0.62 0.0 0.9 0.0 100.0

Table A.10: % volume gained, with distances simplification, for 8 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.00 0.00 0.0 0.0 0.00 0.1
0.00 0.82 0.00 0.0 0.0 0.00 1.0
0.16 0.90 0.01 0.0 0.0 0.00 10.0
0.53 0.93 0.12 0.0 0.9 0.09 50.0
0.60 0.93 0.14 0.0 0.9 0.23 100.0

Table A.11: % volume gained, no distances simplification, for 10 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.00 0.00 0.26 0.00 0.0 0.1
0.00 0.52 0.00 0.46 0.00 0.0 1.0
0.00 0.63 0.23 0.71 0.00 0.0 10.0
0.49 0.63 0.41 0.77 0.88 0.0 50.0
0.52 0.63 0.48 0.77 0.88 0.0 100.0
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Table A.12: % volume gained, with distances simplification, for 10 rotatables.

ADV SA GEO GRID RAN TWO seconds

0.00 0.00 0.00 0.00 0.00 0.00 0.1
0.00 0.43 0.00 0.01 0.00 0.00 1.0
0.09 0.46 0.00 0.16 0.00 0.00 10.0
0.27 0.48 0.05 0.31 0.86 0.06 50.0
0.30 0.48 0.07 0.31 0.88 0.16 100.0
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