
An architecture to implement em-
phatic dialogue generation in a
robot interacting with a human in
improvisational settings

Tesi di Laurea Magistrale in
Computer Science Engineering - Ingegneria Infor-
matica

Author: Simone Cattaneo

Student ID: 970296
Advisor: Prof. Andrea Bonarini
Academic Year: 2022-23

i

Abstract

The goal of social robotics is to build robots able to interact with humans by selecting
proper reactions coherent with the context and with the emotional state manifested by
the human agent. Improvisational theatre is the perfect environment where the social
behaviors can be tested in an unconstrained setting since the stage is a space outside the
rules of time and space, customizable and in which any kind of situation can be created.

The goal of this project is to implement on a robot the ability to recognize the verbal
stimuli from a interlocutor, extract the emotions inherently contained in the detected
sentences, generate a suitable response, and reproduce it through speakers, in order to
create a turn-taking conversation. Since the humans perceive in a more positive way the
relationships with interlocutors that are able to properly perceive and manifest emotions,
the model with the purpose of generating the robot verbal responses is trained to show
empathy and awareness of the emotional state of the current situation. Finally, the only
strict constraint is to keep everything locally on the disk of the used embedded system
to be completely independent from the possible breaks that the use of online APIs would
introduce.

Keywords: Autonomous Robot, Improvisation, Language, Empathy, Human-Robot in-
teraction, Language model, ROS

Abstract in lingua italiana

Lo scopo della robotica sociale è di costruire robot in grado di interagire con esseri umani
scegliendo le migliori reazioni coerenti con il contesto e con lo stato emozionale man-
ifestato dall’agente umano. Il teatro di improvvisazione è il contesto perfetto in cui i
comportamenti sociali possono essere testati in un ambiente non vincolato in quanto il
palco è uno spazio al di fuori dello spazio e del tempo, personalizzabile e in cui può essere
ricreata qualsiasi situazione.

L’obiettivo di questo progetto è quello di implementare su un robot la capacità di ri-
conoscere gli stimoli verbali provenienti da un interlocutore, di estrarre le emozioni in-
trinsecamente contenute nelle frasi identificate, di generare una risposta adeguata e di
riprodurla attraverso gli altoparlanti, in modo tale da creare una conversazione a turni.
Siccome gli esseri umani percepiscono in modo più positivo le relazioni con interlocutori
che sono in grado di percepire e manifestare adeguatamente emozioni, il modello con lo
scopo di generare le risposte verbali è allenato per mostrare empatia e consapevolezza
dello stato emotivo della situazione corrente. Infine, l’unico vincolo è quello di mantenere
tutto in locale sul disco del dispositivo utilizzato, in modo da essere completamente in-
dipendente dai possibili guasti che l’uso di API in rete potrebbero introdurre.

Parole chiave: Robot autonomo, Improvvisazione, Linguaggio, Empatia, Interazione
uomo-robot, Modello di linguaggio, ROS

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Description of the work . 2
1.2 Structure of the thesis . 3

2 Theoretical background 5
2.1 Theatre and improvisation . 5
2.2 Language . 6

2.2.1 Language and evolution . 7
2.2.2 Language complexity . 8
2.2.3 Language and social interaction . 9

2.3 Emotions . 10
2.3.1 What is an emotion? . 10
2.3.2 Emotions and social interactions . 10
2.3.3 Emotion model . 12

2.4 Empathy . 14
2.4.1 What is empathy? . 15
2.4.2 Importance of empathy in social interactions 16

2.5 State of the art . 16
2.5.1 THEaiTRE . 17
2.5.2 Language model as narrator in improvisational theatre 18
2.5.3 Ena . 19
2.5.4 Carl: an empathetic chat-bot . 19
2.5.5 CAiRE: An Empathetic Neural Chatbot 21

vi | Contents

3 Technological solutions 25
3.1 Language models . 25

3.1.1 N-gram . 26
3.1.2 Recurrent neural networks . 27
3.1.3 LSTM . 30
3.1.4 Other networks . 31
3.1.5 Seq2Seq model architecture . 31
3.1.6 Attention mechanism . 33
3.1.7 What’s next? . 34
3.1.8 Transformers . 35

3.2 Dialogue generation . 39
3.2.1 GPT-2 . 39
3.2.2 DialoGPT . 42
3.2.3 ED Dataset . 43
3.2.4 Training phase . 44
3.2.5 Inference hyper-parameters . 48

3.3 Emotion recognition . 51
3.3.1 Bert . 51
3.3.2 Bert training . 53

3.4 Speech To Text . 55
3.4.1 Vosk . 56
3.4.2 Nvidia Riva . 56
3.4.3 ASR models . 57
3.4.4 Model selection . 61

3.5 Text To Speech . 62
3.6 Hardware architecture . 63

4 Software Architecture 65
4.1 ROS . 65

4.1.1 ROS main concepts . 65
4.1.2 ROS2 . 66

4.2 General architecture . 67
4.3 STT Node . 67

4.3.1 Basic operations . 68
4.3.2 Solutions . 69

4.4 Response Interface Node . 70
4.4.1 Basic operations . 70

4.4.2 Conversion of scenic actions to strings 72
4.5 Response generation . 74

4.5.1 Basic operations . 74
4.5.2 Language model Services . 75

4.6 TTS Node . 76
4.7 Scenic action generator . 77

5 Results 79
5.1 Quantitative results . 79
5.2 Generated dialogues . 82
5.3 Decoding methods comparisons . 87

6 Conclusions and future developments 91
6.1 Future developments . 92

6.1.1 Test other models and datasets . 92
6.1.2 Improve the coordination of the modules 93
6.1.3 Create custom dataset . 93

Bibliography 95

List of Figures 103

List of Tables 105

Acknowledgements 107

1

1| Introduction

Imagine to go back in time about 70 years. In 1946 was born Eniac, the very first fully
electronic computer built by the americans J.Mauchy and J.Eckbert: it weighed around
30 tons, it needed a 150 square metres room to be placed and used thousands of valves [6].
In the first years of the 50s the first commercial computer called UNIVAC was created,
and its value was around 1 million dollars [80]. Now imagine that in the 1950 a paper
begins with a question: “Can a machine think?”, proposing the vision of a computer able
to act like a human being. In this famous paper by Alan Turing the author introduced the
“Imitation game” (also known nowadays as “Turing test”) to determine the intelligence of
a machine. Very briefly, a computer pass it if is able to act so similarly to a human being
to “fool” a human interlocutor, making him believe that is not interacting with a machine
[77].

Obviously, in the world in which the paper was published this vision maybe seemed an
utopia, but several decades after it my be not. In the last years the growing of machine
learning and deep learning research is incredible, and has led to the deployment of models
that can perform with great accuracy various tasks. Now we have models able to perform
visual recognition, models that make it possible to have self-driving cars, models that
can be applied in healthcare saving lives, models that can create an image from scratch
starting from a description, and almost everything we can just imagine. And finally
models that deal with natural language. This kind of models are in the spotlight in these
last months thanks to Chat-GPT: the ability of this model to answer all our questions in
almost any natural language is impressive, and maybe for some people unsettling.

But, forgetting for a moment the infinite possible applications of Chat-GPT, our doubt
is now if these models can interact with us in a “human” way, making us forget that we
are dealing with a machine. The perfect context in which the conversational abilities
can be tested is the improvisational theatre [55]. The stage becomes an isolated space in
which the actors can collaborate in order to create stories, situations and dialogues, often
strange and funny due to the lack of a written and prepared script. And if one of the
actors is replaced by a machine, maybe equipped with a robotic body that allows it to

2 1| Introduction

act both physically and verbally, its flexibility, adaptability and ability to interact with a
human can effectively be tested.

1.1. Description of the work

This thesis work is part of a larger project whose aim is to develop a robot able to interact
with a human person in the specific context of improvisational theatre. The desired goal
would be to make the robot able to detect the emotion expressed by the human actor
through its movements and words, and react in the proper way expressing, both physically
and verbally, an adequate emotion.

Several studies and previous thesis have brought the designed robot to the actual situation.
In particular, dr. Julian Fernandez and prof. Andrea Bonarini studied how emotional
states can be represented exploiting particular features such as the movements and how
human perceive them. They concluded that emotions of a non-anthropomorphic robot can
be recognized by a human observer, thank to modulation of linear and angular velocities
and to the placement in a context [29–31].

This work was then expanded in the graduation thesis of L. Bonetti under the supervision
of prof A. Bonarini. He implemented on an already existing robot the ability of acting
a pre-defined script, written in a particular language that specifies the actions it has to
perform. The robot is then programmed in order to follow the indications of the “script”,
locating itself on the stage and understanding the right moment to perform the actions.
We can say the robot was able to synchronize itself to the human actor in order to perform
brief “scenes”, but it wasn’t able to react to his/her actions [33].

Then, with the thesis works of L. Farinelli and C. Chiroli, always supervised by prof. A.
Bonarini, the ability to act in an improvisational context was implemented. In particular,
the action of the human actor is classified in a discrete set of 16 scenic actions basing
on [46]:

• the emotion, expressed by both the face and the body pose;

• the proxemic zone, which is the zone occupied by the actor with respect to the robot
and determine the intimacy he has with it;

• the proxemic movement, determined by the direction and speed of the movement of
the actor.

The robot is then able to select the proper reaction basing on a Finite State Automaton
that accounts for the personality of the robot (defined in advance), the last scenic action

1| Introduction 3

of the human actor and the current emotional state of the robot [36].

It is clear at this point that the robot is able to interact with a human but it completely
lacks the verbal dimension; this is the contribution of my research. The goal I wanted
to achieve was to implement the chance to have a conversation with the robot in an
improvisational context. To be more specific:

• the robot should be able to be an empathetic interlocutor in a dialogue, giving
coherent answers and expressing emotions adequate for the context;

• the robot should be able to pronounce sentences coherent with the scenic action
performed by the human actor, as detected by the already existing module;

• the robot should be able to synchronize with the human interlocutor, waiting that
he/she finishes to pronounce his/her sentence and/or perform his/her action before
generating an answer, possibly introducing the smallest possible latency.

It was clear from the beginning that the proper technology to generate answers in a
conversational context was a generative language model, but since it was a very new topic
in this line of research inside the laboratory the main issue I had to face was to identify
the most appropriate model and dataset to train it. The only big constraint was to keep
any computation local without using any API to connect to online services, in order to be
independent from the internet connection and avoid latency introduced by breakdowns
and slowdowns.

The final result is quite satisfying: I developed a module able to verbally interact in
a conversational context with a human agent by detecting his speech, generating an
emphatic response (which is most of the time coherent), extracting the emotion inherently
contained in the interlocutor sentence and producing the audio of the response. The main
critical point that should be improved in a future work is the synchronization and the
integration of the two big modules (language and movement).

1.2. Structure of the thesis

The structure of the document is the following:

• Chapter 1 (this chapter) contains an introduction of the thesis work, specifying the
context, the starting point, the desired and reached goal;

• Chapter 2 define the theoretical background needed to understand the content of
the work;

4 1| Introduction

• Chapter 3 describes the approach I have followed to reach the goal, mainly focusing
on the technologies I have used;

• Chapter 4 contains a precise description of the software architecture I have devel-
oped;

• Chapter 5 describes both the quantitative and qualitative results obtained;

• Chapter 6 summarizes the conclusions reached and introduces some possible future
developments.

5

2| Theoretical background

In this chapter, several theoretical concepts, fundamental to fully understand the topics
and the context around them, are presented and explained. In particular the following
presentation will be divided into two main parts:

• first of all it has to be clarified what is the context in which the final system will be
tested, which is the improvisational theatre, as well as several notions such as what
is meant with language, emotion, empathy and why are they important also from a
social perspective for the inter-personal interactions (and more specifically during a
dialogue);

• then few examples of results reached by the research that are relevant to better
understand why the above concepts are important in the field of human-robot in-
teraction will be exposed.

2.1. Theatre and improvisation

Theatre is one of the oldest form of art, used far from the ancient Greeks to entertain
an audience creating a representation of real or invented events through the collaborative
performance of the actors. It can be defined as the art of “mimesis” or of "make believe",
since it is not important that the represented act is realistic, but it is fundamental that the
actors involved in the scene make audience “believe” in what they are doing and what they
are feeling, through their gestures, their speech, their facial expressions [26, 35]. We can
say that what happens on the stage, which is the designed space of the performance[79],
should not be real in the general meaning of the word, but it should be inside the specific
context of the stage itself.

While traditional theatre is generally characterized by the presence of a written script
followed by the actors, the improvisation is a form of live theatre in which everything
is created at the moment without a predefined line: the plot, the characters and the
dialogues [83]. It follows that there will never be an improvisational performance equal
to another one [27]. There are two main kinds of improvisation [14]:

6 2| Theoretical background

• Short-form improv: short and self-contained scenes. This is the type we are most
interested in.

• Long-form improv: series of interlocked scenes, with callbacks, recurring characters
and overarching plot. This is obviously much more complex than the short one and
requires building a plot in real time.

We can say that the main features of the improvisation are the spontaneity and the ability
of the actors to quickly come up with the next activity in order to move the plot forward.

From now on I will consider only short-form improvisation with two actors, since it is the
framework used in this work. Maybe now it is clearer why this is the perfect environment
in which the research outlined in the introduction can be developed and tested:

• The stage is a physical area but outside the space and time rules of the external
world. Here, anything can happen, there are no strict constraints, everything is fake
but the relationships and the emotions of the characters created by the actors.

• In an improvisation there are not rigorous rules and evident errors, since every action
performed by an actor, strange as it may be, can be an opportunity for the other
actor to introduce new plot elements or to react in a fancy and funny way. This
process of integrating new emerging subjects in the previous circumstances is called
justification [34];

• By simplifying, we can reduce the improvisation to a sequence of couples action-
reaction. The most relevant thing is that the second one is coherent from a concep-
tual and emotional point of view to the first one and that the latency between them
is not too consistent.

• Finally, theatre is basically a matters of humans. It is made of human beings that
by expressing emotions through their voices and gestures try to make other human
beings (the audience) perceive their feelings. It is apparently so distant from the
cold and inexpressive material of the machines that can be the perfect field to test
the social interactions between robots and humans.

2.2. Language

Following a top-down approach, after having presented the environment in which the
system should be developed, we have now reached the real protagonist of this work:
language. First of all, language is a structured system of communication composed by a
vocabulary, which is a set of familiar words, and by a syntax, which can be defined as a set

2| Theoretical background 7

of constraints on how the elements of the vocabulary can be used in order to create more
complex structures (such as clauses and sentences). The other core concept of language
is semantics, which is the meaning that is bounded to a single word, an expression or an
entire sentence [44].

2.2.1. Language and evolution

Since the goal of this thesis is to create a system able to replicate as closely as possible the
human ability to speech, it may be interesting to analyze the origin of human language and
how it evolved through time. It is from an evolutionary point of view an open problem:
even if lots of animal species have developed some kinds of communication processes only
few of them can be considered to have an effective language system, and no one as complex
and sophisticated as humans. There are several hypothesis to explain the reasons of the
human language evolution. For example, a reason could be to facilitate the exchange of
factual information, or for "idle chit-chat", or, maybe, for some more useful purpose.

Figure 2.1: Mean social group size plotted against neocortex ratio for individual primate
genera. Humanoids (solid circles) are distinguished from monkeys.

A very interesting theory from [41] says that language evolved because a better system
than social grooming was needed in primates as bonding mechanism. As we can see in
figure 2.1, hand in hand with the evolution of the species an increase in the size of the
brain is observed together with the dimension of the social groups (this is the social brain
hypothesis, according to which primates evolved larger brain to manage their complex
social system [42]): this led to the need of having a more efficient social mechanism, such

8 2| Theoretical background

as the language.

2.2.2. Language complexity

What is clear is that this is not an easy ground to move on. It is interesting to think how
easily we manage this complex matter in the everyday life, forgetting that it is not trivial
at all.

Language relies on social conventions. For a baby a very simple word like "pen" is just
a sound that can be imitated, but without any meaning associated. It is through the
experience that a meaning is bounded to the sound, and the word "pen" can be used to
design a concrete object in the word. This is a very simple example, but when a sound
can’t be directly mapped to a concrete object that can be touched in the reality (such
as abstract concepts like "fantasy" or "fear") the processes to associate a meaning to a
sound are much more complex [51]).

Language is ambiguous and vague. Linguistic vagueness means that it could be difficult to
assign a meaning to an expression or a sentence. On the other hand, linguistic ambiguity
is a feature of language that means that a sentence or an expression can be interpreted
in multiple ways, with the consequence that the interpretation for another human being
(and obviously also for an AI system) is difficult or even impossible. There are two kinds
of ambiguity:

• lexical ambiguity: a word or sentence can have multiple meanings;

• structural ambiguity: arises when there could be different interpretations according
to the different order of words or phrases;

Another element that may lead to ambiguity is the presence of figurative languages, that
include figures of speech such as metaphor, use of irony, idioms, puns, images and sound-
based devices. The use of these can lead to problems of comprehension for non-native
speakers and NLP (natural language processing) systems [18].

Language is variegated. The number of existing languages in the world is estimated to
be more than 5000 [44]. Some of them can be spoken, other signed or both, and for each
of them differences can exist depending on geographic location and social reasons. This
implies that even if people share the same mother language, a difference in the geographical
region where they leave can bring to a difference in their accent and linguistic inflection
and even terms, generating difficulties in the mutual comprehension.

2| Theoretical background 9

2.2.3. Language and social interaction

Since we will to develop and test a system to be able to interact with a human, it is
interesting to briefly clarify what is meant with social interaction and the role of language
in the inter-personal relationships, as exposed in [47]. First of all, something is defined as
"social" when it is done with or in relation to other people, so it is clear that at least two
persons should be involved. Generally, an interaction is "intrinsically socially structured",
which means that what is done or more specifically said by person A towards person B,
influences the response that can be given by person B.

Figure 2.2: Example of interactions between 2 people.

In every example of 2.2 there is a link between the two utterances: the actions of the
people involved are tied, because as Francis and Hester [47] stated

an action project the kind of thing that can or should be done next.

While the sociability and the tendency to aggregate in groups is what characterize humans
and has elevated us above primates (as explained in section ??), language is the main
mean by which the social activity is realized. It lets us frivolously chit-chat with other
people, make questions, answer, argument, debate, argue, describe situations, but also it
makes possible the existence of institutional structures. Communication is the necessary
condition of social life, as well as it is, probably, what makes us humans.

10 2| Theoretical background

2.3. Emotions

2.3.1. What is an emotion?

Before understanding why emotions are fundamental in human interaction a general de-
scription of what are them should be given. The problem is that there is no consensus on
a unique and precise definition. This is because, first of all, it is a very complex subject
also related to the concepts of consciousness and mind which have challenged the best
scientists and philosophers since the ancient times, but it is also due to the cultural differ-
ence in their conception and interpretation, as well as to the ambiguity of the term itself.
Indeed, there are constructs that are often used as synonyms such as feelings, affects and
mood, that have different shades of meaning [56].

Anyway, just to give a very high level overview, few interesting definitions extracted from
the huge pile of the existing ones will be enough to give a general idea of what we are
talking about. Starting from the most ancient one from Aristotle

Emotions are all those feelings that so change men as to affect their judge-
ments, and that are also attended by pain or pleasure. Such are anger, pity,
fear and the like, with their opposites.

Or without going so far in time, an emotion " is a complex behavioral phenomenon
involving many levels of neural and chemical integration" that involves nervous and hor-
mone mechanisms [62], or even a "complex experience of consciousness, bodily sensation,
and behaviour that reflects the personal significance of a thing, an event, or a state of
affairs." [5].

Emotion is a complex behavioral phenomenon involving many levels of neural and chemical
integration. In this review the author deals with a variety of physiological changes and
discusses the nervous and hormone mechanisms involved in emotional integration

2.3.2. Emotions and social interactions

What is clear is that this a very abstract and complex subject, hard to fix with words but
that influences our everyday behavior and our relationships with other people.

An emotion can be decomposed into 3 main components [4]:

• Subjective component: how a person perceives an emotion;

• Physiological component: how the body reacts to an emotion;

2| Theoretical background 11

• Expressive component: how the person behaves feeling that emotion.

These components are very personal since the way a person perceives, processes and
manifests an emotion is sensitive to subjectivity, and it can influence the emotion and
consequently the possible reactions of other people. This is also related to the so-called
emotional intelligence [65], which is the ability to control the own emotions to choose
the best behavior in a given situation, also considering the emotional states of the in-
terlocutors. More precisely, four branches, that define four areas of skills, of emotional
intelligence can be identified [65].

• Perceiving emotion. It involves the reception of non-verbal expression of emotion,
that come from facial expressions and body language. The ability of identifying in
an accurate way the emotions from the face or voice is a crucial skill for emotional
intelligence.

• Using emotions to facilitate thoughts. This is the ability to use emotions in order to
"think better": when something is considered important and grabs the attention it
generates an emotional reaction, then emotions can be used to direct the thinking
effort towards really important matters.

• Understanding emotions. Each emotion brings important information, for example
the thoughts of the person who manifest it or the possible actions that could follow.
Understanding these implicit messages means also to understand and reason about
the meaning of the emotions themselves, and this is an important skill for emotional
intelligence;

• Managing emotions. This is the most important skill, since involves the ability to
regulate and manage the own and most of all the others’ emotions in order to achieve
a social goal.

Indeed, an interesting research in this field is about the power of emotion regulation,
which means that a person may be able through the way he behaves to regulate and
even modify the emotional response of other people. In this case, we speak about social
regulation, contrasted to the self-regulation (see figure 2.3) necessary to maintain a mental
and physical wellness. It obviously has important consequences in the ways feelings and
emotions, that can be expressed more or less explicitly through the spoken language
but even more through gestures, body movements and face expressions, can affect social
interactions [70].

12 2| Theoretical background

Figure 2.3: Self regulation and social regulation.

2.3.3. Emotion model

As mentioned above, emotions are complex, subjective and non-deterministic, since the
same event (or in general external stimulus) can generate different emotional states in
different individuals. In order to better study emotions and their consequences is necessary
to introduce a computational model to define a classification. The computational model
used for this project was chosen in a previous contribution by L. Farinelli [46], but it is
useful to briefly expose some of the existing models as well as the selected one, since this
choice had some consequences in the development of the present work.

• Circumplex model of affect. It was introduced by James Russel in [72]; the emotions
are mapped in a Cartesian reference system as a linear combination of the concepts
of arousal and valence.

• Plutchik’s model. It was presented by Robert Plutchik in [67] and considers the
existence of eight primary emotions from which all the others can be derived. The
emotions can be then organized in concentric circles where the inner ones are more
basics and the outer are more complex, generating a "wheel" structure.

• Tomkin nine affects theory. It was developed by Silvan Tomkin [75, 76] and considers
the existence of nine primary affects classified in positive, negative and neutral.
Affects are defined as innate and evolutionary processes that amplify triggering
information and are different from emotions, which are complex combinations of
affect and personal memories.

• Ekman model. This was introduced by Paul Ekman [43] and it is also known as

2| Theoretical background 13

"discrete model" since it theorizes the existence of six basic emotions that are shared
among all the humans regardless their culture and geographical position, that are:
anger, disgust, fear, joy sadness and surprise. The word "discrete" is referred both
to the classification of the basic emotions and to the facial patterns from which the
emotions themselves can be deduced.

The model finally selected was the Ekman one. The main reason was that, since the goal
was to build a system able to identify the emotional state of a human interlocutor from
his non-verbal behavior and compute a suitable reaction, a discrete model with limited
number of possible outcome emotions was much easier to manage. Tis same reason
is making the Ekman’s model also the most used in robotics and affective computing
systems. This choice influenced my work since I had to adapt the sentiment analysis
module, which extracts an emotion from the interlocutor’s sentence, to map the result in
one of the six Ekman emotions, as will be explained later.

14 2| Theoretical background

(a) (b)

(c)

Figure 2.4: (a) Circumplex model of affect. (b) Plutchik’s model. (c) Tomkin’s model

2.4. Empathy

The origin of the word empathy comes from the German term “einfuhlung” which literally
means "in-feeling" and was used by the psychologist Theodore Lipps in 1880s to describe
the appreciation from a emotional point of view of another’s feelings [54]. Later on the
notion of empathy was expanded and became a complex and ambiguous subject often
confused with other associated concepts such as compathy (share someone feelings due
to shared situations), mimpathy (imitation of someone emotion without experiencing it),

2| Theoretical background 15

sympathy (an immediate and uncontrolled emotional reaction that arises when someone
imagines himself in the situation of someone else), transpathy ("emotional contagion",
which means being influenced and "infected" by someone else’s emotional state) and
unipathy (intense form of transpathy).

2.4.1. What is empathy?

But then, what really is empathy? The concept can be trivialized as the ability to feel
what an interlocutor is feeling assuming his perspective with respect to a situation [?],
and it is also related to the notion of emotional intelligence introduced in 2.3.2. Anyway,
it is not so easy to fix empathy in a single definition (and the proof of this are the tens
of different related statements that can be found) since some conceptual problems that
make the matter quite ambiguous should be clarified. These arguments from [37] are
summarized below.

• Empathy includes both cognitive and affective dimensions: the first is the ability to
understand the others’ emotional state, the second is about effectively experiencing
an emotion in response to emotional stimuli.

• Congruency problem: emotion perceived by the observer can be very similar to the
one felt by the observed, but not necessarily identical.

• Empathy can be fired in response to external stimuli even if the emotion is not
directly perceived. For example a person who minimizes an accident or a third
party that verbally elicits empathy towards an absent person.

• Empathy is a "trait" because it can be defined as an "ability" and considered a
personal inclination, but it also depends on the context, since there are situations
in which it could be more easily elicited.

• Empathy has not necessarily a behavioral outcome, even if it is often present. Con-
sider for example competitive situations in which someone has personal interests.

• Empathy is naturally and automatically fired, but can be controlled in several ways
(for example not thinking or avoiding a situation).

The paper finally summarizes the empathy concept fixing it in precise and concise state-
ments that I will reuse, defining it as

an emotional response (affective), dependent upon the interaction between trait
capacities and state influences. Empathic processes are automatically elicited
but are also shaped by top-down control processes. The resulting emotion

16 2| Theoretical background

is similar to one’s perception (directly experienced or imagined) and under-
standing (cognitive empathy) of the stimulus emotion, with recognition that
the source of the emotion is not one’s own. [37]

2.4.2. Importance of empathy in social interactions

It is inherently part of the human being to use empathy, often even without being aware,
as a social mechanism to be used during interactions with other people to build effec-
tively working relationships and networking. It is also often considered the basis and the
mediation for social cooperation and prosocial behavior, which is any action finalized to
the improvements of the welfare of another being [38]. Briefly, it can be considered a
necessary condition for sociability since it allows to lead pleasant social interactions by
choosing proper responses to the other’s actions, and maintaining positive relationships
with the interlocutors.

It is obvious at this point that in order to develop a robotic system able to interact with a
human agent emotional intelligence and empathy (or at least the appearance of them) are
features to be implemented. An interesting study in this field is [58], where an autonomous
robot is used in order to comment the performances of two humans playing chess. The
robot was programmed to show emphatic reactions through facial expressions and verbal
comments (these last ones particularly interesting for this thesis) to the moves of one
player and neutral reactions to the moves of the other one. Figure 2.5 shows examples of
utterances and can be noticed that neutral reactions are limited to comments about the
quality of the move (that can be "good" or "bad"), whereas the emphatic reactions contain
references to the feelings of the player and try to motivate him. The final results showed
that the player toward which the robot behaved emphatically perceived it as "friendlier",
underlying the key role of empathy in human-robot interactions.

2.5. State of the art

As described in 1.1 the goal of this thesis work was to implement on an already existing
robot able to interact with a human agent through body movements the ability to interact
also on the verbal dimension, creating dialogues conceptually and structurally coherent.
I didn’t find in the literature meaningful researches with the same context and objective,
but there are still several works that are really interesting and that inspird my work. In
particular, I found particularly useful projects where generative language models such as
GPT-2 and GPT-3 (that will be introduced and explained in detail in next chapters) have

2| Theoretical background 17

Figure 2.5: Verbal comments of the robot, both emphatic and neutral, for different situ-
ations. The utterances were expanded with name of the players at the beginning r at the
end.

been used in innovative ways in artistic fields from literature to theatre, as well as the
development of chatbots able to emphatically interact with an interlocutor.

2.5.1. THEaiTRE

The aim of the project described in [71] was to use deep learning models to generate a
theatre script. The selected language model was GPT-2, which is a 1.5 billion parameters
transformer model developed by openAI trained on a dataset containing 8 million web
pages. It was used a hierarchical setup, which means to use a language model in order to
generate a title, then a synopsis from that title which should include the list of characters

18 2| Theoretical background

involved in the story and finally generate the script. Even if the dataset with which
GPT-2 was pre-trained must contains some theatre plays, the output generated by the
model when prompted with an input was not satisfying for a drama: it lacked of a plot,
there weren’t scenes moving towards a conclusion, characters appeared randomly. The
ideas to improve the quality of the result were: define a set of predefined characters
(contained in the generated synopsis), define the order with which they had to speak,
fine-tune a language model for each character in order to make it specialized for the
specific personality of its character, add the name of the current character and use the
designed language model corresponding to it to generate only his part.

Complementary activities were:

• Data summarization: the used dataset lacked of some information needed for the hi-
erarchical approach, since data generally contains only title and script. The synopsis
were generated by exploiting data summarization task on the available scripts.

• Machine translation: it was used to generate outputs both in English and Czech
languages.

• Human in the loop: collaboration of machine with human to obtain better results.

2.5.2. Language model as narrator in improvisational theatre

In this project introduced in [34] the improvisational theatre context was used as a test
environment for the generative power of language models. The selected model was GPT-
3, a huge 175B parameters model developed from openAI that represent the present state
of the art (even if chat-GPT that is also called GPT-3.5 has been recently released).
In this case, the aim was not to create the part of each character in the script, but to
support the human narrator in creating the story of the improvisation and, particularly
interesting, everything was done during a live performance. The human operator typed
a sentence that was concatenated to the previous context and given as input to GPT-3
to generate three different outputs up to 100 characters length. The operator could then
select a number of those suggestions (even none or all) and add them to the context. The
result was a combination of the unpredictable generations of the language model and the
conscious collaboration of the human operator in 1order to create new but even fancy and
funny stories on which actors could improvise, as can be seen in 2.6.

The outcome was satisfying both from the audience that appreciated the contribution of
the AI that introduced a level of craziness and randomness and from the actors, since
the model generating the plot removed from them the task of moving the plot forward

2| Theoretical background 19

allowing to focus only on the relationships on the stage and on the engagement of the
audience.

Figure 2.6: Transcription of the story generated by GPT-3 and human operator with
initial suggestion from audience "Pizza Hut". The bold lines are generated by the model.

2.5.3. Ena

As can be read in [49] during the first COVID lockdown on 15 May 2020 Roger Bernat
together with the artist duo Varvara and Mar created an online theatre play through a
chatbot called Ena (see figure 2.7). The show was live on the website of the theatre LLiure
and lasted one entire month, by letting only one person at a time to interact with the
chat-bot with a conversation while all the other participants could follow the dialogue in
real time. Ena was based on DialoGPT, which is a variant of GPT-2 obtained by fine-
tuning it on a dialogue dataset (see next chapters). Even if it was, obviously, a language
model without a soul, not able to prove emotions and without a memory, it was trained
on a dataset containing millions of dialogues so that it could learn how to maintain a
conversation in a human-like fashion: the result was so good that lots of participants
believed to be chatting with another human being on the other side of the screen. The
real interesting novelty is that differently from usual chat-bots trained in order to operate
in specific fields, Ena didn’t have any specific purpose other than simply talk.

2.5.4. Carl: an empathetic chat-bot

One of the sources that mostly inspired me was the research of Grant Sheen from the Stan-
ford University Department of Computer Science [74], since it was partially overlapped on

20 2| Theoretical background

Figure 2.7: Screenshot of Ena interface on Lliure theatre website.

my work. He used DialoGPT but, since it is pre-trained on a dataset containing Reddt
conversations that are not grounded in an emotional context, he fine-tuned the model
on Empathetic Dialogues (ED) dataset (see more on next chapters) in order to develop a
chat-bot able to interact with a human being (from a textual interface) through a dialogue
and manifesting empathy. As widely debated in ?? empathy is a very complex matter,
inherently present in human nature and often automatically manifested, and for these rea-
sons it is a hard feature to be implemented in an artificial intelligence system. After some
trials he found out that the best performances on an evaluation dataset were obtained
using SGD with momentum as optimizer with learning rate 0.001, weight decay 0.05 and
early stopping set to 5 epochs. The results were extremely positive since the model had
great performances on the Emphatetic Dialogue dataset with which was trained as it was
expected, but it had also good performances on other test datasets such as the Counsel
Chat (CC) Dataset. This fine-tuned model was called Carl and turned out to be able
to mirror the emotional states of the interlocutor showing an empathetic behavior much
better than the default DialoGPT model. An example can be seen in figures 2.8 and 2.9,
where Carl seems to be more emphatic and coherent than the original model.

2| Theoretical background 21

Figure 2.8: Carl (on the left) responding to negative emotions compared to DialoGPT
(on the right).

Figure 2.9: Carl (on the left) responding to positive emotions compared to DialoGPT (on
the right).

2.5.5. CAiRE: An Empathetic Neural Chatbot

This project described in [61] is very similar to the research outlined above ?? but also adds
other interesting features. The goal, once again, was to create a chat-bot, called Caire,
able to interact with a human interlocutor in a socially positive way showing empathy
and giving the impression to perceive, understand and respond to the emotional state of
the counterpart.

The model selected was GPT-2 and first of all it was pre-trained with the PersonaChat
dataset [86], which contains dialogues between two people as well as few sentences intro-
ducing some personality traits of the interlocutor, i.e., the model, such as "i like to party",
"I go to a local college" or "i have a cat named Leela". The use of this dataset wants to
solve some well known chit-chat issues.

22 2| Theoretical background

• The response generated by the model doesn’t show a consistent personality.

• Lack of a long-term memory.

• Production of lots of non-specific answers.

The goal is then to introduce through few textual sentences a persona that is coherent,
consistent and constant during the whole conversation.

Then, Caire was fine-tuned using the Empathetic dialogue dataset in order to create an
agent, at least apparently, emotional aware. The persona was defined appending at the
beginning of the input sequence few sentences describing the desired personality of the
chat-bot. This was concatenated with an history of the dialogue and with a distractor
(which is the final response), separating each section of the sequence with special tokens.
The minimized loss function was a combination of three losses:

• A cross-entropy classification loss Ls computed between the true response and a
distractor randomly taken from other conversations.

• A language model loss for the next token prediction Ll.

• A cross-entropy loss Le for emotional classification.

The resulting model, that had great performances in terms of perplexity and BLEU score
(which is a metric to evaluate the quality of a machine textual output in terms of its
closeness with the output that would be produced by a human) , was made publicly
available through an online interface (see 2.10), collecting feed-backs from users in order
to improve quality and limit the strange behaviors of the chat-bot.

2| Theoretical background 23

Figure 2.10: Caire user interface.

25

3| Technological solutions

In this chapter I will describe the procedures and the technologies I exploited in order to
reach the goal of this thesis. The work can be divided in four parts that can be mapped
to four different problems I had to face.

• STT: the "speech-to-text" module has to convert the human speech into text, delet-
ing or at least limiting, the noise from the environment.

• Emotion recognition: this module’s aim is to detect the emotional state of the
interlocutor from the sentence elaborated by the STT module.

• Text generation: this is the core of the project. The goal is to find out the most
suitable model and train it in order to generate the answers of the robot.

• TTS: the "text-to-speech" module has to convert a text in speech, in order to imitate
the human voice and reproduce it through the speakers.

I will present the selected and analyzed technologies for each of the above modules, as
well as the theoretical aspects in order to fully understand both the problems and the
solutions. For this reason it is necessary to explain what is a language model and the
evolution through time, in order to better understand the choices I made and the overall
context of this thesis.

3.1. Language models

Language modeling is the task of predicting the next word (or character) in a document
using probabilistic approaches, by assigning a probability P(w1, w2,...,wm) to a general
sequence composed by m words [84]. A language model, i.e., a system that does language
modeling, can be trained in order to solve several natural language tasks such as text
classification, sentiment analysis, and text generation [16].

It is useful to have an overview of the evolution of language models through time to select
the most suitable ones for this research. I will follow a chronological order to present
them, that also corresponds to a rank from the less to the most complex.

26 3| Technological solutions

3.1.1. N-gram

Description

This is one of the simplest language models; it predicts the next item in a sequence
basing on the assumption that the probability of a word depends only on the context of
the previous previous n-1 words of the sequence [7]. It means that considering a sequence
of size n, the probability of the kth word is

P (sk) =
k∏
i

P (wi|w1, ..., wi−1) (3.1)

The basic idea is to count the frequency of the n-grams in the document, and use this
statistic to compute the next words. For example, consider the sentence:

"as the proctor started the clock, the student opened their..." ;

in the document the context student opened their occurs 100 times and the 4-gram stu-
dent opened their books appears 40 times whereas the 4-gram student opened their exams
appears 10 times. It follow that:

P (books|students_opened_their) = 0.4 (3.2)

P (exams|students_opened_their) = 0.1 (3.3)

Since the probability of 3.2 is greater than 3.3, the word books will be more likely selected
as next word of the sequence [17].

N-gram models can be useful in different applications, for example in speech recognition
can be used to correct the errors due to the environmental noise that brings to low
confidence speech-to-text conversion by exploiting the knowledge of probabilities. Or
again, NLP applications can use N-gram models for several tasks such as word similarity,
sentiment extraction, and natural language generation [21].

Problems and limitations

The first big problem is related to the data sparsity, since there may be sequences of words
that are not represented in the training data, which brings the probability of the sequence
to be 0. There are several methods to mitigate this issue such as smoothing or backoff,

3| Technological solutions 27

which approximates the probability of a N-gram that is not represented in the data, with
the (N-i)-gram probability (i between 1 and N-1): for example a 3-gram that never occurs
in a text is approximated with the 2-gram and if also this latter is not possible with the
1-gram.

Another problem is related to the curse of dimensionality. Since the probability of every
possible N-gram should be computed, the size of the model gets dramatically bigger with
the increase of N or of the dictionary (the set of possible words) size. Considering a N-
gram and a dictionary of size D the space in which the model is trained is a ND hypercube
with D slots for each dimension, and DN probabilities should be assigned.

Finally, a last problem is related to the word representation: N-gram models use a one-hot
vector for each item of the dictionary, which brings words with similar meaning to be very
far in the input space. This led to a lack of generalization capacity [28].

3.1.2. Recurrent neural networks

What is a neural network

First of all, an artificial neural network (ANN) is a machine learning model. The network
is composed by an input layer, one or more hidden layers and an output layer; each layer
contains a variable number of nodes or neurons. Each artificial neuron is connected to
neurons of the next layer and can send signals to them: it receives in input a value (which
is a number), it processes it through a non-linear function and sends the result (a number
itself) on all the output connections. These connections called edges are associated to
weights that modulate the strength of the signals that pass through them and that are
the trainable parameters of the model. Each neuron can also have a threshold value to
reject the signals that are too weak in output. The network is trained with an iterative
approach called gradient descent that updates the weights at each step:

wk+1 = wk − γ ∗ ∂E(wk)

∂wk

(3.4)

where γ is the learning rate and ∂E(wk)
∂wk

the gradient of the loss function with respect to the
weights, and this has to be applied to all the weights. The gradient is computed through
a technique called backpropagation, that, without going into details, can be divided in two
steps: a forward pass that provides an input to the network and computes the outputs
and the partial derivatives of each layer, and a backward pass that computes the gradient
of the error using a chain rule and updates the weights proceeding from the output to the
input layer [81]

28 3| Technological solutions

From this description it is clear the will to imitate the biological structure of the human
brain, where the neurons are connected and communicate sending electric signals through
the synapses.

Figure 3.1: Structure of a recurrent neural network.

Recurrent connections

A recurrent neural network (RNN) is a type of neural network that is able to deal with
sequential or time series data of, potentially, infinite length, thanks to the presence of a
"memory" implemented through recurrent connections. The main feature of these net-
works is the presence of the so called feedback loops (see figure 3.1), which are backward
connections that allow the outputs of some nodes to go back affecting the inputs of the
same nodes, and that make the output of the network in each moment dependent on the
previous history of the sequence.

The training of these networks is performed in the same way as a l neural network applying
the backpropagation algorithm, but in order to do so, at every time step t the network
must be unfolded for k time steps in the past to update the weights of the links considering
also the previous inputs of the sequence.

Figure 3.2 shows a simplified representation of this unrolling process supposing an input
of dimension 1 and m neurons that constitutes the state, where:

• xt ∈ R is the input at time step t;

• yt ∈ R is the overall output of the network at time step t;

3| Technological solutions 29

Figure 3.2: Unfolded recurrent neural network.

• ht ∈ Rm represents the current context, that is the vector containing the state at
time step t;

• wx ∈ Rm are the weights associated with the input in the recurring layer;

• wh ∈ Rmxm are the weights associated with the hidden neurons in the recurring
layer;

• bh ∈ R and bt ∈ R are the biases.

The output state at time step t+1 can be computed as

ht+1 = f(xt, ht, wx, wh, bh) = f(wx ∗ xt + wh ∗ ht + bh) (3.5)

and the output of the network at time t as

yt = f(ht, wy) = f(wy ∗ ht + by) (3.6)

After this short description it can be said that the main advantage of RNN with respect
to N-grams in the management of sequential text data is that the complexity of the model
doesn’t increase with the dimension of the input, as well as the ability to maintain a sort
of memory of historical information. However, there are still critical issues [22, 28]

Problems of RNN

The main problem of a RNN is that is not able to go enough “back in time” and to learn
dependencies inside a long sequence, since the backpropagation procedure suffers of:

• vanishing gradient: the gradient used to update the weights become smaller and
smaller over long distances, preventing the parameters to effectively be updated;

• exploding gradient: the opposite problem, a huge gradient is accumulated and causes

30 3| Technological solutions

too big updates of the parameters.

3.1.3. LSTM

Long Short Term Memory networks (LSTM) are a special kind of RNN introduced in [52]
able to overcome the vanishing and exploding gradient problem learning long-term depen-
dencies. The classic RNN has a single tanh (it is an often used activation function) layer
that combines the current input and the previous state as can be seen in the simplified
representation reported in Figure 3.3, since the output of each neuron at a given time
step t is computed as follows:

ath =
I∑

i=1

wih ∗ xt
i +

H∑
h′=1

wh′h ∗ b′t−1
h (3.7)

bth = θh(a
t
h) (3.8)

where bth is the output of the h-th neuron at time step t obtained by applying the activation
function θ to the linear combination of the weighted inputs to the neuron itself.

Figure 3.3: Repeating structure of a RNN.

Figure 3.4: Structure of nn LSTM network.

On the other hand LSTM has a more complex structure composed by different neural
network layers that interact in particular ways (see figure 3.4). On each time step t there
is an hidden state h(t) and a cell state c(t) since the main idea is to have a separate

3| Technological solutions 31

memory. Indeed, the power of these networks derives from particular structures called
gates that allows to manage the information in the cell state by adding or removing data.

• Forget gate: decides to delete the content of the cell state or not.

• Input gate: creates the information to be added to the cell state.

• Memory gate: updates the state by using the values computed by the previous gates.

• Output gate: generates the output.

Thanks to their structure LSTMs perform extremely well in a large number of tasks and
are widely used, but some later techniques allowed to reach even better results [19].

3.1.4. Other networks

Before to reach the most advanced techniques and architectures it is interesting to briefly
cite other networks that introduced interesting features.

• Gated Recurrent Units (GRU) is a simplified version of LSTM with only an hidden
state h(t)(without the cell state). It uses two gates called update gate and reset
gate in order to generate the output data and modify the internal state. The first
one determine the amount of past information to be passed in the future whereas
the second one determine the amount of the past information to be forgotten. The
main advantage of these networks is that are less complex and have less parameters
than LSTMs, but no one of them is universally better of the other. [8]

• Bidirectional RNNs are networks that, in a given time step t, have information about
both the left context (the backward) and the right context (the forward). This is
possible only when the entire sequence is available from the beginning for tasks such
as text classification.

• Multi-layer RNNs are networks that can be unrolled in more than one dimension in
order to compute more complex representations and reach higher performances [17].

3.1.5. Seq2Seq model architecture

A Seq2Seq model takes as input a sequence of data of fixed length and generates in output
a sequence of data of fixed length, where the dimension of input and output may even
differ. The solution of lots of nlp tasks relies on them, such as:

• language translation: takes as input a sequence of words of language A and generates
as output a sequence of words of language B with A different from B.

32 3| Technological solutions

• speech recognition: the input is a sequence of bytes, the output a sequence of words
that represents the conversion of the human speech;

• video captioning: the input is a sequence of frames, the output their textual de-
scription.

These models follow the classical encoder-decoder architecture, which can be summarized
with the structure

input -> [Encoder] -> internal state vector -> [Decoder] -> output

also displayed in a simplified version in figure 3.5

Both encoder and decoder are stacks of recurrent units that can be RNNs, LSTMs, GRU
or any other of the structures described in this chapter. The encoder at each time step t
takes an input, updates the internal state computed as

ht = f(W hh ∗ ht−1 +W hx ∗ xt) (3.9)

and passes the information forward. When the input stream ends, a synthetic vector
representation of the sequence is obtained into the internal state of the model and it is
passed to the decoder. It takes at each time step t the previous hidden state ht−1 and
computes the current hidden state

ht = f(W hh ∗ ht−1) (3.10)

until the last step where the final probability distribution over a dictionary is obtained
through a softmax function applied to the weighted final state

yt = softmax(W S ∗ ht) (3.11)

In order to properly manage the input and output sequence there are special characters
that can have different names according to the different models:

• <PAD>: it is used to pad the batches at training time in order to have fixed-length
sequences;

• <EOS>: the End-Of-Sequence communicates when a sequence ends;

• <UNK>: to replace the unknown words;

• <SOS>/<GO>: the Start-Of-Sequence is given as input to the first decoder module

3| Technological solutions 33

to let it start generate the output.

This kind of architecture on its own can have good results on simple sequences but the per-
formance decreases with the increase of the task complexity. For this reason optimizations
can be introduced, for example the attention mechanism. [2][25]

Figure 3.5: Encoder-Decoder architecture.

3.1.6. Attention mechanism

In the simplest implementation of seq2seq models the first state of the decoder is initial-
ized with the last state of the encoder: this works pretty well with short, simple, input
sequences, but becomes a problem with longer and more complex ones, since the decoder
tends to lose data about the first part of the input. A solution for this problem is called
attention mechanism [32]: a score is computed for each encoder state in order to learn
where to focus attention and which parts of the input has to be weighted more to generate
the output at a certain time step.

The general attention mechanism is based on three main components: the queries Q,
the keys K and the values V. The attention vector at a time step t, which is basically
a representation of the input aware of the most "important" parts of it, is computed as
a linear combination of the values where the weights are computed applying a function
that compares the current query with all the keys. In the attention mechanism of [32] the
values coincide with the keys and are the hidden states of the encoder, whereas the query
is the previous decoder state h′

t = ht−1.

This mechanism can be divided in four parts [1]:

1. computes the attention scores comparing h′
t with each one of the encoder states hs

through a function a

et,s = a(h′
t, hs) (3.12)

34 3| Technological solutions

2. compute the attention weights applying a softmax function to the attention scores

αt,s = softmax(et,i) =
exp et,s∑S

s′=1 exp et,s′
(3.13)

3. compute the context vector as a linear combination of the encoder states

ct =
∑
s

αt,s ∗ hs (3.14)

4. compute the attention vector combining the context vector with the target decoder
state

at = f(ct, h
′
t) (3.15)

Figure 3.6: Attention mechanism representation for text translation.

3.1.7. What’s next?

Applying attention mechanism to a seq2sec model may enable to reach good results, but
there is still an issue: with the previous models, data should be processed sequentially,
and this constraint brings problems with very long sequences due to space and time
complexity.

3| Technological solutions 35

A solution comes with the transformers. These model are the state of the art mainly
thanks to two innovations:

• parallelization of sequence processing allowing batching during training;

• use of only attention without recurrent connections and convolution.

3.1.8. Transformers

Transformers [78] represent the actual state-of-the-art for several nlp tasks, and Di-
aloGPT, which is the model I selected for this work (see Section 3.2.2), belongs to this
family. The main features of this new architecture are:

• parallelization of the computation in order to overcome the limits due to the se-
quential nature of the recurrent models;

• erase of any kind of recurrency and convolution and use only attention mechanism
(this is the core idea from which the title of the paper "Attention is all you need"
comes.

The main objective is to compute with greater efficiency and accuracy the dependence
between different and even distant parts of the input sequence, and for this reason a
particular kind of attention mechanism called self-attention is used (see Section 3.1.8).

Model architecture

Transformers use the encoder-decoder architecture described in Section 3.1.5, with the first
that converts the input sequence (x1, ..., xn) into a synthetic continuous representation
(z1, ..., zn) and the second that uses this vector to generate an output (y1, ..., ym) in
an auto-regressive way, which means that each output at any time step is added to the
previous context to create the new input to feed the network. They have a very similar
structure and are stacks of transformer blocks.

The encoder is composed by 6 encoder blocks, each one containing 2 sub-layers which are
a multi-head self-attention mechanism and a feed-forward neural network. The decoder
stack is identical, but each block has an additional sub-layer that performs self-attention
on the output of the encoder stack.

36 3| Technological solutions

Figure 3.7: Transformer architecture.

Self-attention

The self-attention (which by itself is simply a kind of attention mechanism that relates
different positions of the same sequence) implemented in [78] is called scaled dot product
attention and the main advantage is that it involves the presence of three matrices of
parameters that can be learnt during a training process.

Scaled dot product attention

Let’s suppose to have a sequence of embeddings (x1, ..., xn) with xi ∈ Rde and call the
matrices of parameters W q ∈ Rdexdq , W k ∈ Rdexdk , W v ∈ Rdexdv . Now for each input
xi are computed the query, key and value representation multiplying it by the weight
matrices:

3| Technological solutions 37

• qi = xi ∗W q is the query for item i,

• ki = xi ∗W k is the key for item i,

• vi = xi ∗W v is the value for item i.

At this point the attention vector for item i is given by the linear combination of the
values each one weighted with a score obtained comparing the query qi with all the keys
and normalized with a softmax. More formally, the attention score between item i and
each item j:

ai,j = qi ∗ vj, 1 ≤ j ≤ n (3.16)

is computed through the dot product of the query of i and the key of j. Then the attention
vector for item i is:

Ai =
n∑

t=1

exp ai,t∑
j exp ai,j

∗ vt (3.17)

with Ai ∈ Rd
v.

One of the main advantages of this architecture is that the attention vectors for all the
sequence embeddings can be computed in parallel drastically increasing the efficiency, and
they are finally concatenated in the attention matrix A = [A1, ..., An] ∈ Rn∗dv

All the above procedure can be written with a matrix notation, considering:

• X ∈ Rnxde the input matrix,

• Q ∈ Rnxdq the query matrix,

• K ∈ Rnxdk the key matrix,

• V ∈ Rnxdv the value matrix.

The attention matrix is simply:

A(Q,K, V) = softmax(
Q ∗KT

√
dk

) ∗ V (3.18)

where dk is a scaling factor to prevent the softmax distribution to get too sharp.

Multi-head attention

Another innovative idea of the transformer architecture is to have h different heads that
perform the attention process described above with h different versions of the weight
matrices Q, K and V. Finally, h attention matrices are obtained and are projected onto

38 3| Technological solutions

Figure 3.8: Scaled dot-product attention.

the final values:

MultiHead(Q,K, V) = Concat(head1, ..., headh) ∗WO (3.19)

where WO ∈ Rhxdvxde is an additional weight matrix.

Figure 3.9: Multi-head attention with h parallel attention layers.

Self-attention conclusions

Exploiting the self-attention mechanism instead of convolution layers and recurrent con-
nections, the transformer’s structure guarantees greater efficiency and better results in
most of the applications [78], as it is summarized in figure 3.10. The dimensions along
which the performance is evaluated are:

3| Technological solutions 39

• the computational complexity for each layer,

• the minimum number of sequential operations required,

• the length of the path the signals have to cross to learn the dependencies: the
shortest the path, the easier is to learn dependencies.

Figure 3.10: Performance of self attention with respect to recurrent connections and
convolution. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r is the size of the neighborhood in restricted self-attention.

3.2. Dialogue generation

After having defined what language models are, having followed their evolution, having
analyzed the different alternatives and having outlined the features of each of them, in
this section is described my implementation choices about the generation of text in a
conversational context. In particular, the model I selected and the strategy I followed to
train it are presented.

3.2.1. GPT-2

The model I finally selected to generate text in a conversational context is called DialoGPT
(as discussed in Section 3.2.2), which is nothing more than the transformer-based model
GPT-2 fine-tuned on a dataset containing dialogues. For this reason I will describe GPT-2
in detail in order to support my choice.

An Unsupervised Multitask Learner

Before describing the structure of the model it is interesting to cite the research of [68],
whose main goal was to train a model able to generalize the execution of many different
tasks in a zero-shot setting (which means on data not seen during training). In order
to realize this kind of model using a supervised approach, from a meta-learning point of
view, hundreds or even thousands of couples (dataset, objective) would be needed, but it

40 3| Technological solutions

was clear it was not feasible from a concrete perspective.

The main idea to overcome this problem was to exploit the flexibility of the language
that allows to specify a task in a simple textual format: for example a training sample for
the translation from Italian to English task could be formalized as "translate to English,
[Italian text], [English text]". In this way it was not necessary to explicitly specify the
expected output and the hypothesis was that a model sufficiently complex and powerful
may be able to learn multiple tasks in an unsupervised setting.

The necessary condition was to create a training dataset containing a large quantity of
textual information with different tasks represented. The final choice was WebText, which
contained 45 million links and was created scraping the outbound links from Reddit which
were judged positively by the users (this last condition was taken as heuristic to ensure
the quality of data).

The selected language model to carry out the experiment was the transformer-based
GPT-2 (it was the state-of-the-art in this field) which was released in 4 configurations
different from each other for the size, i.e., the number of parameters. They were trained
and finally evaluated on several datasets and the result was that the performance in a
zero-shot setting for some tasks such as reading comprehension was good and even better
than the ones of models trained in a supervised manner, but for other tasks such as
summarization was not satisfying and no better than random.

The conclusion was that a model sufficiently complex such as GPT-2 trained on a suffi-
ciently large set of data such as WebText was able to perform well on lots of datasets.
Anyway, I found out that the results and the quality of the output generated by the
language models with a size comparable to the one of GPT-2 were not satisfactory in
a conversational context in which empathy was required, and I needed to perform fine-
tuning to achieve my goal.

Model features and versions

Generative Pre-trained Transformer 2 (GPT-2) is an open-source transformer based model
released by OpenAI in February 2019 [82]. Unlike the standard architecture of transformer
that is composed by an encoder and a decoder part, GPT-2 is made up by a stack of
only decoder blocks. The model was deployed in 4 versions that differ from each other
for the size, which means for the number of stacked blocks, the number of layers and
parameters; it turns out that the dimension was one of the main factors that influenced
the performance. As can be seen in figure 3.11 proceeding from the smallest version that
occupies 500MB of disk space to the largest one that takes 6.5GB:

3| Technological solutions 41

• GPT-2 small is made up of 12 decoder blocks and contains 117 millions parameters,

• GPT-2 medium is made up of 24 decoder blocks and contains 345 millions parame-
ters,

• GPT-2 large is made up of 36 decoder blocks and contains 762 millions parameters,

• GPT-2 extra large is made up of 48 decoder blocks and contains 1542 millions
parameters [13].

Figure 3.11: GPT-2 models from the smallest to the largest.

The decoder only architecture

In [63] was described for the first time an architecture made up by a stack of 6 decoder
blocks containing a masked self-attention layer and a feed forward neural network layer.
As already outlined in section 3.2.1, GPT-2 has an architecture made up by a stack
of these decoder only blocks. The only difference between the self-attention described
in section 3.1.8 and the masked self-attention is that the first one considers the entire
input sequence, whereas the second one masks future tokens (which are the items of
the vocabulary), which means that considers only tokens that appear before the current
position to compute the final attention representation, as can be seen in figure 3.12.

To conclude the overview of the architecture, it is useful to give a quick look at how
the general generation workflow is structured, summarized in figure 3.13. First of all,
GPT-2 is an auto-regressive model which means that processes one token at a time.
When the first one is received the model checks two matrices which are the embedding

42 3| Technological solutions

Figure 3.12: Self-attention vs masked self-attention.

matrix to convert the token into a continuous vector representation and the positional
encoding matrix that allows to inject into the word representation information about its
position in the sequence (this is necessary since one of the main transformer features is
the parallelization of the input process). Finally the vector is fed into the decoder-only
stack: each block is structurally equal to the others but each one has its own parameters
that have to be tuned in the training process [13].

Figure 3.13: Journey up the stack of a token.

3.2.2. DialoGPT

The model I have used in order to generate text is DialoGPT. It was released in 2019
and it is basically an extension of GPT-2, since it has exactly the same architecture, but
it is also trained on a corpus of 147 millions of conversation-like exchanges from Reddit,
to “address the challenges of conversational neural response generation” [87]. Like GPT-2

3| Technological solutions 43

it is available in 4 versions different for their size, but I finally selected the medium one
(with 345 million parameters) for a simple reason: the only strict constraint I had to
satisfy was to keep everything local and it was the biggest version that fitted into the disk
(the hardware setup is described in 3.6). I also made some tests with the small version
of GPT-2 but as I will describe in 5 the results from both a quantitative and qualitative
point of view were much different.

On the other hand, the reasons why I preferred DialoGPT over other models of similar
dimension were mainly two:

• I wanted to exploit the conversational information inherently present in it thanks
to the pre-training on a dialogue corpus;

• Dialo-GPTand GPT-2 are the models most used in the literature to create conver-
sational chatbots, and the existing examples online were a good starting point to
understand more deeply the argument and to develop my research.

Even if DialoGPT represented a good base for my work, the conversations from Reddit,
from which the dialogues to train the model were taken, are not generally grounded in an
emphatic context. Since my goal was to create an agent able to interact coherently with
the emotional states of the interlocutor, I decided to fine-tune the model using a proper
set of data.

3.2.3. ED Dataset

The set of data I selected in order to fine-tune the dialoGPT model was the Emphatetic
Dialogue Dataset (ED Dataset) [69]. It was collected with the purpose to develop and test
artificial systems able to interact with people in emphatic ways, since humans, as widely
debated in section 2, perceive in a more positive and friendly way the interlocutors that
manifest awareness of their own and of the other’s feelings and emotional states. This
dataset contains around 25k open-domain one-to-one conversations, with a given initial
context for each one that defines the situation in which the dialogue is grounded. Each
conversation is related to a particular feeling specified through one of a discrete set of 32
emotional labels evenly distributed, that specifies the emotional state of the interlocutors
(or of one of them). The first person who is the speaker starts to talk about the given
situation manifesting an emotion, the second person who is the listener, and that should
be impersonated by the model, answers in a coherent and emphatic way.

The creators, to test the quality of data, fine-tuned a pre-trained model with the ED
dataset and compared it with the performance of pre-trained models fine-tuned on other

44 3| Technological solutions

conversational dataset: it turned out that it had good results both in terms of automatics
and human metrics.

Figure 3.14: Examples of dialogues in the ED dataset.

3.2.4. Training phase

In order to fine-tune dialoGPT with the ED dataset I decided to use the Huggingface
transformer library [12], which allows to easily download and fine-tune pre-trained mod-
els exploiting APIs, saving lots of time and resources. In particular, for what concerns
the fine-tuning, I decided to use the Transformer Trainer, a class that exposes APIs to
automate the training process with few lines of code, just setting some parameters. The
necessary condition for it to work was to create a dataset with the proper structure to be
passed to the Trainer instance.

Model and Tokenizer instantiation

First of all I had to create the instances of the model and of the tokenizer, which is in
charge of preparing the input for the model mapping the space of strings to the space of
tokens (each token is the id of a string inside a dictionary).

For what concerns the model, at the beginning I tried to use the medium version of the
standard GPT-2 with a double head on top: one was the standard language model head
to predict the next token of a sequence, the other was a classification head. The main
idea was to follow an approach similar to the one presented in section 2.5.5, which was to
train the model using as loss the weighted sum of two losses:

• the language model loss,

• the binary classification loss between the golden response and a distractor randomly
sampled from the other conversations in the dataset.

After some trials I decided to give up with the double head, mainly for two reasons [20]:

3| Technological solutions 45

• since each training sample had to include also the distractor response the batch size
was much larger, with the consequences that the training time was increased and,
most of all, the process didn’t meaningfulfit on the available hardware, since the
GPU capacity was not enough;

• lots of times the randomly selected distractor was conceptually incoherent with the
context, resulting in a not meaningful classification training.

At the end I decided to use the medium version of dialoGPT which is based on the same
size GPT-2 with a single language model head, for the reasons stated in section 3.2.2. For
the tokenizer instantiation I exploited the Huggingface’s libraries and I introduced some
special tokens:

• <eos> as end-of-text token,

• <pad> as pad token,

• <user> as special token to specify the beginning of the human interlocutor utter-
ance,

• <model> as special token to specify the beginning of the model generated utterance.

Dataset creation

First of all I loaded the training split of the ED dataset using the Datasets library of
Huggingface and converted it into a Python dataframe for reasons of convenience. Then I
iterated on the rows of the table in order to create a Python dictionary with an increasing
identifier representing the current conversation as key and a list containing the utterances
of that conversation as value, properly formatting the data to bring them in a uniform
standard:

• each utterance had to begin with its interlocutor, which could be <user> or <model>;

• each utterance had to end with the end-of-sequence token, which was <eos>;

• a capital letter had to be used at the beginning of each utterance and after a dot,
a comma had to be followed by a blank space as well as a semicolon.

I decided to use only conversations containing exactly 4 utterances, so I discarded the
shorter and truncated the longer ones. The main motivation was that I wanted to give an
input to the model bigger than only the very last utterance of the human actor in order
to generate a response coherent with a wider context, but at the same time it didn’t have
be too large since the model may have difficulties to find very long dependencies, falling

46 3| Technological solutions

in contradictory or meaningless responses with respect to the situation. A length of 4 (3
utterances as context plus the model answer) seemed to me reasonable considering also
that the conversations of the ED dataset contains on average 4.36 utterances.

These are few examples of the created conversations:

PROUD context:
<user>My daughter scored the winning goal at her last soccer game. I was so happy that
all her hard work paid off!<eos><model>That’s great. Does she practice a lot?<eos><user>Yes,
she practices almost every day after school with her friends and also with her team. She
says she will be a professional player one day!<eos><model>You must be very proud. I
hope she’s successful.<eos>

JOYFUL context:
<user>I was over the moon when I passed my classes last semester.<eos><model>Happy
for you. Which course are you taking?<eos><user>Physics, calc, and other normal filler
courses or engineering classes<eos><model>Wow! you nailed it. Sound like a tough
course to study<eos>

SAD context:
<user>My holiday trip has cancelled. I was feeling low for it. <eos><model>That
is bad news and hard to deal with.<eos>’, ’<user>yeah. Waiting for the next holi-
day.<eos><model>I sure hope you have a wonderful next Holiday trip very soon.<eos>

Finally, I created a dataset object by defining and instantiating a super-class of the torch
Dataset class and overriding its methods in order to properly manage the conversation
dictionary described above. More specifically, for each conversation it was defined a set
of tensors of equal size n, where n was a parameter specifying the maximum length of the
tokenized version of the conversation itself [9]:

• input ids : a tensor of tokens that represents the tokenized version of an item (i.e.,
of a 4 utterances long conversation);

• attention mask : it is a binary tensor that indicates if a token in a given position
should be attended or if it is a padding token (that should not be attended);

• labels : a tensor that specifies the expected prediction of the model. It is composed
by a sequence of special symbols to mask the tokens to be ignored for the prediction
(the first 3 utterances) concatenated with the tokenized version of the last utterance
(the model response);

• token type ids : a tensor that specifies the interlocutor to which each token belongs

3| Technological solutions 47

to. In this case, it contains the tokenized version of <user> if it belongs to an
utterance of the human interlocutor, i.e., the 1st or the 3rd, or the tokenized version
of <model> if it belongs to an utterance of the model, i.e., the 2nd or the 4th.

Using this approach, the input embeddings that are fed into the stack of decoder blocks
are the sum of 3 different embeddings which are the word embeddings (obtained through
the embedding matrix that maps the tokens to a vectorial continuous representation), the
positional embeddings, which give information about the position inside the sequence,
and the dialog state embeddings, which specify whether a token is part of a <user> or a
<model> utterance.

Figure 3.15: Representation of the embeddings as combiantion of 3 different embeddings.
In the dialog state representation the green segments represent the embeddings of the user
sentences while the yellow ones the embeddings of the model sentences. In the positional
representation the color gets darker proportionally with the depth of the token in the
sequence.

Hyperparameter selection and training

Finally I fine-tuned the model using the built dataset and exploiting the Huggingface
Trainer class, which provides APIs for training in PyTorch for most standard use cases [11].
After several trials and empirical evaluations I decided to adopt the following configura-
tion:

• learning rate of 5 ∗ 10−5;

• weigh decay of 0.05: it is an hyperparameter that can be tuned in order to penal-
ize complex solutions which would overfit but without resulting in too simple and
underfitting models;

• batch size of 32;

48 3| Technological solutions

• AdamW as optimizer, which very briefly is an optimization algorithm that uses
weight decay;

• linear learning rate scheduler with warmup: it means that for a given number of
warmup steps (in my case I set it to the 10% of the total training steps) the learning
rate linearly increases from 0 to the maximum learning rate (which I set to 5∗10−5),
then it linearly decreases at each step. The main reasons to use a scheduler and
reduce the learning rate with the increasing of the epochs are to avoid being stuck
in false minima (with a too small learning rate) or not being able to find a local
minima (because of a too large learning rate).

To evaluate the performances of the trained models in order to select the best one, I
have used as metric the perplexity [10], which expresses the confidence of the model in the
prediction of the text and can be defined as the exponential average negative log-likelihood
of a sequence:

PPL(X) = e−1/t∗
∑t

i log p(xi|x<i) (3.20)

This metric has some positive but also negative properties, such as the fact that even if
a model is confident in its predictions it does not mean that the predictions are correct.
On the other hand it is not easy to state the goodness of a text generation and, more
specifically for what concerns my project, it is hard, because it is also subjective and
dependent on the observer to determine how well a model is able to imitate the human
ability to communicate in an emphatic way. For these reasons I gave lots of relevance
to the qualitative impressions that the final models generations produced in me and in
other people, but I also observed that the perplexity score was a quite accurate indicator
of how well the models were able to maintain a dialogue with a human being.

The obtained results are described in Section 5.

3.2.5. Inference hyper-parameters

Despite the fine-tuning process is fundamental to increase the output quality in a given
context, an equally important role is played by the choice of the proper decoding method,
which means the strategy to select the next token of a sequence given the distribution
probability on a dictionary outputted by the language model. The main problem is that
there is not a unique and rigorous way to select the best decoding method different from
trying and choosing basing on the own sensations: for this reason I will explain the main
features of some strategies [3].

3| Technological solutions 49

Greedy search

Greedy search strategy simply selects at each time step the token associated to the highest
probability

wt = argmaxw(w|w(1:t−1)) (3.21)

The main issue of this approach is that, as can be seen in Section 3.16, the finally selected
sequence "The nice woman" has a total probability of 0.5 ∗ 0.4, that is smaller than the
probability associated to "The dog has" 0.4 ∗ 0.9. There is the concrete possibility of
discarding promising sentences because this method is not able to detect hidden high
probability sequences since it is focused on the very next token only.

Figure 3.16: Representation of a sketch of greedy search.

Beam search

To solve the problem outlined above, Beam search strategy keeps track at each time step
of the num_beams (it is a parameter) sequences associated to the highest probability. As
represented in figure 3.17, considering num_beams=2, which means that at each time

50 3| Technological solutions

step the 2 most likely sequences are considered, it is able to detect that "The dog has" is
associated to an higher total probability than "The nice woman".

The problem of this approach is that it is not suitable for the dialogue generation task,
since tends to produce boring and predictable sentences with lots of repetitions and this
is in contrast with what a human generally wants from a good interlocutor, which is to
be surprised and do not receive only high probability responses [53].

Figure 3.17: Representation of a sketch of beam search with num_beams=2.

Sampling

In order to introduce some kind of randomness to generate less predictable sentences the
sampling is probably the best way; this basically means to extract the next token from a
probability distribution

wt ∼ P (w|w(1:t−1)). (3.22)

To improve the quality of the sentences generated through sampling, several hyper-
parameters can be useful:

3| Technological solutions 51

• temperature: it is a parameter used to modulate the confidence of the model in
its most likely responses, which means that a high temperature will result in more
strange and surprising output sequences;

• top_k sampling : only the k most likely tokens are considered and used at each time
step to produce the output sequence, whereas the probability of the other words are
put to 0 [45];

• top_p sampling, also called nucleus sampling, is conceptually similar to the top_k
sampling, but this time are considered only the tokens associated to a probability
≥ p.

3.3. Emotion recognition

In this section I will talk about emotion recognition [66]: it is another task I had to perform
in this project. Its goal is to identify the emotions more or less inherently expressed by
a text. It can be considered a sub-category of sentiment analysis, which is the process of
extracting information from a text that expresses the speaker (or the writer) attitude that
can be positive, neutral or negative. Moreover, sentiment analysis is by itself an example
of text classification that consists of assigning a label from a discrete set of possibilities
to a text. As I did in Section 3.2 I will start by presenting the model I chose to execute
the task and the strategy I followed to train it.

3.3.1. Bert

Bidirectional Encoder Representations from Transformers (Bert) was presented published
by a group of Google researchers [40]. The main features that differentiate it from the
previously described GPT-2 (see Section 3.2.1) is that this second one uses only decoder
blocks, reads the input sequentially processing one token at a time and considers as context
for the prediction only the part on the left of the current state; on the other side Bert uses
only encoder blocks, it evaluates the whole input sequence at once and is bidirectional,
which means that uses as context both the tokens on the left and on the right of the
current one. The main problem of GPT-2, and in general of all the similar models, in the
execution of several NLP tasks (such as text classification) is that it inherently limits the
learning of the context by processing the tokens sequentially. To overcome this issue Bert
uses two strategies, namely masked language model and Next Sentence Prediction.

52 3| Technological solutions

Masked LM

The main reason why standard language models can not be trained in a bidirectional way
is that if the context coincides with the whole input sequence it would contain the next
token that would be predicted in a trivial and meaningless way.

To overcome this limitation, Bert randomly masks some input tokens (generally the 15%
of the sequence) and then predicts only this masked items. In particular, if the ith token
is selected to be masked it is replaced by:

• the [MASK] token 80% of the times,

• a random token 10% of the times,

• the ith token itself 10% of the times.

Next sentence prediction

The next sentence prediction task training allows Bert to be aware of the relationship
between two sentences, which is fundamental for several NLP tasks such as question
answering. The operation is quite simple: the model is trained with couples of sentences
namely A and B where 50% of the times B is the actual sentence that follows A, whereas
50% of the times B is a randomly selected sentence. The goal is to train a model to be
able to understand if B is the sentence that follows A in the original document.

Bert architecture and input/output representation

As already mentioned above, Bert architecture is composed by a stack of transformer
encoder blocks, and it was deployed with two possible configurations different for their
size:

• Bert Base: 12 encoder blocks, 12 self-attention heads, 110M total parameters;

• Bert Large: 24 encoder blocks, 16 self-attention heads, 340M total parameters,

where self-attention mechanism is a bidirectional self-attention, different from the masked
self-attention of GPT-2.

For what concerns the input sequence, it can contain a single or a couple of sentences
depending on the task that should be solved, and in both the situations it starts with a
special token [CLS]. In the case a sequence made up by two different sequences, they are
separated in mainly two ways: through a special token [SEP] between them or through
an additional special embedding (segment embedding) associated to each token that rep-

3| Technological solutions 53

resents if it belongs to the first or the second sentence. Each token representation is at
the end the sum of a token embedding, a positional embedding and a segment embedding,
as can be seen in figure 3.18.

In conclusion, the reason why Bert is preferred in this situation over other language models
is because is able thanks to the bidirectional connections to understand the context of a
sentence and then to classify it with greater efficiency with an emotional label.

Figure 3.18: Representation of Bert input as sum of 3 embeddings.

3.3.2. Bert training

Now that the structure and the choice motivations for Bert have been exposed, I can
explain how I trained the model in order to perform emotion recognition, i.e., associate
an emotional label to a sentence. As explained in Section 2.3.3 the emotional model I
selected was the Ekman one, that considers the existence of a discrete system of 6 basic
emotions which are: anger, disgust, fear, joy sadness and surprise. The consequence is
that I had to fine-tune Bert to make it able to recognize these 6 sentiments plus the
neutral one, which is associated to the sentences that do not express any emotion (these
are the most of the sentences we pronounce in everyday life).

Dataset creation

First of all I noticed that a dataset to train models on the emotion recognition task with
the structure I needed didn’t exist, since all the ones I have analyzed contained a fewer
or a greater number of emotional labels than the required for my purpose [39, 73]. The
consequence was that I had to build from scratch a set of data with an even distribution
of the necessary emotion labels.

54 3| Technological solutions

My starting point was the dataset from [73] mainly because it has a structure fairly close to
the one I needed, since it contains couples sentence-label, where the label can take a value
in the discrete set of 6 emotions anger, fear, joy, love, sadness, and surprise distributed
as shown in Figure 3.19.

In order to obtain the desired structure, first of all I discarded the rows of the dataset as-
sociated to the love emotion. Then I downloaded the well known goEmotions dataset [39],
which can be used to fine-tune a model to classify a sentence in a discrete set of 27 emo-
tions. I extracted from it the rows associated to the label disgust and an adequate number
of rows (with respect to the current distribution represented in Figure 3.19) associated
to the label neutral, and I appended them to the dataset described above, obtaining the
resulting label distribution that can be seen in Figure 3.20. Finally, I created the Dataset
object from the Huggingface Transformers library already described in Section 3.2.4, defin-
ing for each item in the dataset a input ids vector, an attention mask tensor and a label
tensor that, in this case, specified the emotional label associated to the item.

Figure 3.19: Distribution of emotions in starting dataset.

3| Technological solutions 55

Figure 3.20: Distribution of emotions in final dataset.

Fine tuning

Once built the dataset, I instantiated the model, that was the base version of Bert with
140M parameters, and the tokenizer specifying the number of labels, in this case 7 (6
emotions plus the neutral one). The fine-tuning procedure I used was quite the same
than the one described in Sec tion 3.2.4. In particular I used the Huggingface Trainer
class with the following configuration:

• learning rate of 5 ∗ 10−5,

• weight decay of 0.05,

• batch size of 16,

• Adamw as optimizer,

• linear learning rate scheduler.

Also in this case, the results are described in Section 5.

3.4. Speech To Text

Speech To Text (STT), also known as Automatic Speech Recognition (ASR), is the task to
convert a human-like speech in textual form. It is a very important and delicate part of
this project, since a bad quality transcription of the human interlocutor sentence would
lead to bad response generation from the language model and to a confuse and meaningless
dialogue. There were three necessary conditions to consider successfully accomplished this

56 3| Technological solutions

task:

• choose a model able to perform the STT task with high accuracy in order to pass
as input to dialoGPT a context identical (or at least as close as possible) to what
the human interlocutor said;

• perform the task in real time: in order to introduce as less latency as possible, the
conversion of speech to text had to be performed live to be able to send the resulting
sentence to the dialogue generation module as soon as the human ended to speak;

• remain offline: one of the constraints of the project was to be independent from any
online API. For this reason, it was necessary to find a service that operates locally
without using any external service.

I considered two different alternatives namely Vosk and Nvidia Riva.

3.4.1. Vosk

The first alternative I considered was Vosk, which is an offline open source speech recog-
nition toolkit that supports more than 20 languages and dialects. It is available, for each
language, both in a small version (around 40MB) that suits into lightweight devices (such
as Raspberrys and smartphones) and a large version (around 2GB) for more accurate
predictions.

It had mainly two problems:

• it didn’t have a high accuracy with non-native English speakers, resulting in inac-
curate results;

• it didn’t detect autonomously punctuation, and in order to perform punctuation
restoration task an additional model had to be loaded and used increasing dramat-
ically the disk usage and the latency introduced.

3.4.2. Nvidia Riva

Nvidia Riva is a GPU-accelerated SDK for building speech AI application allowing to
easily download, customize and fine-tune state-of-art models that deal with language as
well as access their functionality through APIs. For what concern this section I was
interested in the ASR service offered by Riva, but also on the TTS service that I will
describe in details in Section 3.5.

Riva supports both data center and embedded architectures (this last one was my case,

3| Technological solutions 57

see Section 3.6) and since I didn’t have particular requirements to satisfy and it wasn’t
the core of my project, I chose to exploit the already existing pre-trained models that I
deployed, through the platform, locally. In particular, I used ngc, a hub that provides
containers, models, scripts and in general solutions to facilitate the research in deep-
learning field, to download a "starting kit" and to easily and quickly deploy locally the
services. More specifically the files contained in the package were:

• config.sh configuration file: it allowed to set, among other parameters, which kind
of models should be deployed locally. In my case, I selected the ones for STT and
TTS tasks;

• riva_init.sh script: it can be used to initialize the service by downloading and
deploying locally the models chosen through the configuration file;

• riva_start.sh script: it can be used to start the service, which means to run a server
in a docker container on a port specified in the configuration file. It exposes APIs
that can be called from a client;

• riva_stop.sh script: it can be used to stop the docker container on which the server
runs.

3.4.3. ASR models

Conventional ASR systems are made by three main components:

• an acoustic model to predict the relationship between sub-phonemes, which are
speech units, and an audio signal;

• a language model to assign probabilities to sequences of words;

• a pronunciation model to map phonemes to words.

These elements are used to determine the most likely hypothesis to decode the detected
sounds [85]. Riva allows to easily and quickly deploy more advanced models: I will briefly
describe the main features of few of them and I will finally report the one I selected as
well as the main motivations of my choice.

58 3| Technological solutions

Figure 3.21: Conventional ASR systems structure.

Jasper

Jasper [59] is a family of ASR models which main feature is to replace the acoustic
and pronunciation models with convolutional neural networks. Its architecture is made
by blocks: Jasper BxR has B blocks each one with R sub-blocks, each one applying a
sequence of operations (1-D convolution, batch normalization, ReLU and dropout) and
uses residual connections to directly connect each block with the last sub-block. It is a
CTC model since is trained using Connectionist Temporal Classification loss (CTC loss),
which is, without going into details, a loss used for sequence modeling problems, such as
speech recognition, where the input and the outputs have different size and the sequences
should be aligned in some ways. This architecture was designed to facilitate and speed-up
GPU inference.

QuartzNet and Citrinet

QuartzNet [57] architecture is based on the Jasper one but replacing the 1D convolutions
with 1D time-channel separable convolutions and using larger kernels. The consequence
is that the performances are similar to the ones of Jasper but with a fewer number of
parameters. A QuartzNet BxR is made by B blocks each one containing R sub-blocks each
one composed by a 1D separable convolution, batch normalization, ReLU and dropout.

3| Technological solutions 59

Figure 3.22: Jasper architecture.

Citrinet [64] is a CTC model that adds to the QuartzNet architecture with 1D separa-
ble convolution the squeeze-and-excite-mechanism, which is a unit able to improve the
representational power of a network.

Conformer-CTC

Conformer-CTC is based on the Conformer architecture [48] which has the goal to com-
bine convolution and self-attention to exploit the best of both the systems, since con-
volution is better to detect local correlations, while self-attention to understand global
interactions. The Conformer audio encoder processes the input with a convolution layer
and then with a sequence of conformer blocks that replace the transformer blocks. Each
conformer block is composed by a feed-forward module, a multi-head self-attention mod-
ule, a convolution module and another feed-forward module. The model has three different
dimensions (small, medium, large) with different number of parameters and obtained with
different depth of the network and different number of attention heads.

Conformer-CTC encoder [50] has the same structure described above with the only dif-

60 3| Technological solutions

(a) (b)

Figure 3.23: (a) QuartzNet architecture. (b) Citrinet architecture.

ference that is trained with a CTC loss.

3| Technological solutions 61

Figure 3.24: Conformer decoder architecture.

3.4.4. Model selection

To summarize, I had several possibilities to perform speech-to-text offline: at the end I
chose to use the Conformer-CTC model through Nvidia Riva. The reasons were quite
simple:

• first of all the Riva SDK is optimized for embedded systems and in particular for
the Nvidia GPU I have used (see 3.6);

• I empirically tested both Vosk and Conformer-CTC models and the outcome from
a qualitative point of view was extremely different, showing a greater ability of the
second one to correctly convert to text the speech of non-native speakers (Vosk most
of the times confused some words with others having a similar pronounce);

• I found in the literature comparisons between several ASR models and it turned
out that Conformer-CTC out-performed on most of the evaluation datasets used.
A summary of this can be seen in figure 3.25

62 3| Technological solutions

Figure 3.25: Comparison of the performances of some ASR models on different datasets.

3.5. Text To Speech

Text To Speech (TTS) can be considered the opposite of STT and is the conversion of
text into phonemes. I implemented this module in my project to produce the speech
of the robot as soon as dialoGPT generate the response to the sentence of the human
interlocutor, in order to simulate a real spoken conversation between two people. For this
purpose I used two elements:

• a language model locally deployed through Nvidia Riva 3.4.2 to perform speech
synthesis, which allows to append to the text necessary information to produce the
sound, such as the spoken language, the sex of the speaker, the pronunciation...

• the python library sounddevice that allows to play Numpy arrays containing audio
signals.

This module was a marginal part of my project and for this reason I decided to spend not
much time in the choice of the model (Riva generally uses by default state-of-art models)
and in the optimization and customization of the sound.

3| Technological solutions 63

3.6. Hardware architecture

Since my project has to be integrated inside a wider research as an embedded system, it
was necessary to have an hardware with mainly 2 features:

• it had to be compact enough to be mounted inside the robot structure in a com-
fortable way, and possibly not too heavy;

• it had to be enough powerful to be able to manage big and complex deep learning
models in an effective way.

The choice was the 32 GB version NVIDIA Jetson AGX Orin module 3.26 which is
compact, has lots of connectors, and is designed to be integrated on robots and powerful
machines. The main features can be summarized as follows [15]:

• NVIDIA Ampere architecture GPU with 1792 NVIDIA CUDA cores and 56 Tensor
cores;

• 8-core Arm Cortex-A78AE v8.2 64-bit CPU 2MB L2 + 4MB L3;

• deep-learning and vision accelerators;

• 32 GB 256-bit LPDDR5;

• 64GB storage (extensible with SD);

• 3 possible power settings (15W, 20W, 50W).

64 3| Technological solutions

Figure 3.26: Jetson AGX Orin module.

65

4| Software Architecture

In this chapter I will describe the software architecture of my project starting from a brief
description of the main features of ROS which is the framework used to develop my mod-
ules and proceeding with a detailed description of how I implemented every functionality
following the natural flow of information inside the system.

4.1. ROS

In this section I will briefly describe what is ROS and its newer version ROS2, which is
the framework used in this project.

4.1.1. ROS main concepts

Robot Operating System [24] is an open-source middleware, which can be considered a
bridge between the application and the low-level details, used to develop robots and pre-
sented in 2009. The provided services are for example the abstraction of the hardware level
and the management of the very low-level processes, package management, implementa-
tion of commonly-used functionalities and message passing between different processes.
The main features and advantages of ROS are:

• it is a distributed framework,

• it is language independent,

• testing is fast and easy,

• it facilitates the reuse of code,

• it is scalable,

• it has a huge community.

Since my purpose is just to give a very high level overview of the environment in which I
developed my system I will not enter deeply in the details of ROS, but I will just outline
the main arguments to introduce (only) the concepts and the terminology that I will use

66 4| Software Architecture

in this chapter:

• nodes : executable units, each one represents an independent process that can ex-
change data with other nodes;

• topics : channels of communication between nodes associated to a specific message
type and implementing the publisher/subscriber paradigm. One or more nodes can
publish messages (of the proper type) on a topic and each node subscribed to that
topic will receive the message;

• messages : structured pieces of information that can be sent over topics in order to
exchange data between nodes. Lots of predefined and standard messages already
exist in ROS, but new ones with custom structures can be easily defined;

• services : remote functions called following the client/server paradigm. A node
can synchronously call a service, which receives a request with a specific structure,
performs a computation and gives back a response with a specific structure;

• master : it is the entity, unique in a system, that is responsible for the registration
and the naming of nodes and services allowing the nodes to find and contact each
others.

4.1.2. ROS2

In this project I have used ROS2 which is the newer ROS version published in 2020. There
are lots of differences between the two versions, including low-level aspects such as the
building system, but I will just outline few high-level but relevant changes [23]:

• ROS2 has standardized the way to write nodes with the OOP paradigm, by in-
troducing the convention of creating a class that inherits from the Node class all
the necessary methods to manage its lifecycle (such as the creation of publishers,
subscribers, services...);

• the centralized system with a master is suppressed, since all the nodes are au-
tonomously able to discover the others;

• the services are not necessarily synchronous, that means that the caller doesn’t have
to wait for the response.

4| Software Architecture 67

4.2. General architecture

Before describing the implementation details of each node inside the system it is useful
to have a general overview of its structure to understand at a high level how the different
modules communicate and are related to each others. The architecture can be visualized
in figure 4.1, and proceeding from left to right can be seen:

• SST module to convert human speech to text;

• an interface that connects my system (that manages the verbal interaction) to the
one already present (controlling the physical interaction);

• a module in charge of generating the response of the robot in a conversational setting
and of extracting the emotional state of the interlocutor exploiting a dedicated
service;

• TTS module to convert the robot textual response to speech.

Figure 4.1: System architecture.

4.3. STT Node

This node is responsible for performing the Speech-To-Text task by exploiting the services
exposed by the Riva server (see 3.4.2) through the library riva.client.

68 4| Software Architecture

4.3.1. Basic operations

This node is subscribed to the topics:

• start_mic: on this topic are received ping messages to communicate to this node
that can start to listen and to wait for a sentence from the human interlocutor;

• stop_mic: on this topic are received ping messages to communicate to this node to
stop the microphone and to ignore any audio signal from the external;

and publishes on the topics:

• interlocutor_sentence: on this topic are published the sentences converted from
speech to textual strings;

• mic_is_listening : on this topic are published ping messages to communicate to
other nodes that the microphone is active and is currently listening to a speech,
which means that the human agent has started to verbally interact with the robot.

The main activity of this node is just to loop waiting for the human interlocutor for
starting speak, and then to use the Riva Client library, after having set few parameters
such as the language (which is English) and the sample rate (16KHZ), to convert the
English speech into text with punctuation. When the final string is detected it is returned
a python dictionary with the structure:

{

transcript: String,

confidence: Float

}

, where the transcript is the string containing the detected sentence from the interlocutor
through the microphone, whereas confidence is the logarithm of the confidence, which is
an estimate of how confident the system is that the recognition is correct. Since generally
the confidence score is between 0.0 and 1.0, in this case after the logarithm is applied is
between -inf and 0.0, which means that the closer is to 0.0, the more is confident of the
correctness.

At this point the main problems I had to face were three:

• the sound produced by the speakers generated a return in the microphone producing
a loop, since the robot kept answering to itself;

• the environmental noise was sometimes detected by the microphone producing un-
expected responses of the robot;

4| Software Architecture 69

• every short pause of the interlocutor speech was interpreted by the Riva system as
the end of its sentence and the result was immediately published to be processed by
next nodes, generating strange responses.

4.3.2. Solutions

For what concern the return in the microphone, I decided to make a simple assumption:
after the human interlocutor ends his sentence the microphone has to ignore any external
audio stimulus from the environment until the robot finishes to produce the response.
I just created a class inheriting from the Riva class MicrophoneStream (that has the
task to manage the buffer of bytes detected through the microphone) adding methods
to start and stop the listening from the microphone. Then, I simply used them to stop
the microphone to prevent it to listen after the node published a detected sentence, and
to start the microphone when a message on the topic start_listening, that is sent from
another node after the robot response is produced through the speakers, is received.

To reduce the environmental noise I opted for a more "concrete" solution: I used a
directional headset microphone and I exploited its closeness to the interlocutor mouth
modulating two parameters:

• the volume of the microphone that I could keep very low to isolate it from external
sounds;

• the value of the minimum confidence to accept the resulting detected sentence:
every string with a lower confidence was rejected and considered noise from the
environment.

The third problem was the most complex to be managed. The basic idea was to create
a temporal window of n seconds (where n is a parameters that can be configured) to
allow the interlocutor to keep speaking after the end of a sentence was detected due to a
physiological and natural break. For this purpose I implemented a kind of custom timer
that periodically checks its state and when reaches its end it triggers the final sentence
publication process. In particular, when a string, that is considered as final, is detected by
Riva, a new parallel thread handling the timer is run, and then there are two possibilities:

• the interlocutor doesn’t speak again inside the configured temporal window: in this
case the string is published as it is at the end of the timer;

• the interlocutor says something else: in this case the new detected string is appended
inside a buffer, the timer is reset and when it finally ends a sentence obtained
concatenating the strings in the buffer is published.

70 4| Software Architecture

4.4. Response Interface Node

The aim of this node is basically to create a bridge between my project and the already
existing system, by exchanging information and synchronizing the verbal reactions of the
robots with the body ones. This integration process represent the weak point of the work
also due to the difficulties met on a parallel research involving the body of the robot that
made the coordination complex. For these reasons I made two assumptions:

• the data received from the existing system are correct and well structured,

• the physical reactions of the robot and the emotions expressed through the move-
ments are always coherent with the context of the dialogue.

In particular, the desired goal was to develop a robot able to generate responses coherent
both with the last sentence pronounced by the interlocutor (and generally with the context
of the conversation) and with the emotions expressed through his gestures and expressions.
Since a language model can obviously take as input textual data I decided to map any
scenic action to a string that represents it (e.g., the action sharing fear can become "I am
frightened"). It also represented a challenging and interesting field to test the flexibility
and the generative power of the language models.

4.4.1. Basic operations

The node is subscribed to the topics:

• scenic_action: on this topic the modules developed in previous works by the col-
league L.Farinelli [46] publish the scenic action of the human agent detected ana-
lyzing his facial expressions and body gestures;

• interlocutor_sentence: the messages in this topic are published by the STT node
(3.4) and contain the last sentence of the human interlocutor converted in a string;

• mic_is_listening : the messages on this topics are ping sent by the STT node to
communicate that the human interlocutor is speaking into the microphone;

• start_mic: the messages on this topics are ping sent to communicate that the model
response has been generated through the speakers, so that the global state of this
node is reset;

and publishes on the topics:

• interlocutor_sentence_def : on this topics are published the final strings that will
be processed by the GPT-2 language model to generate the robot responses;

4| Software Architecture 71

• stop_mic: the messages on this topic are ping sent to the STT node to force the
stop of the microphone.

The objective of this node is to receive and synchronize the data coming from the STT
node and from the already present system, in order to merge the information and create
a string that well represents the stimuli coming from both the verbal and the movement
dimension of the interlocutor.

The messages containing the detected scenic action of the human agent are received with
a high rate (about 1 message every 0.5 seconds) and have the structure:

{

action: Int,

label: String

}

, where action is an Integer between 1 and 14 and represents the index of the scenic
action (the order and the consequent indexes had been chosen a priori) and label is a
textual representation of the action (mainly useful for debug purposes). Since most of the
messages contain the none action, which means that nothing is detected, and since it can
happen that isolated scenic actions are received due to both the high rate of sending and
noisy detections, I adopted the following strategy.

Every time a message containing the scenic action A is received the node updates a buffer,
which is a FIFO queue, of dimension N and checks if it contains at least X instances of
A, where both N and X are parameters that can be configured. If the answer is true it
is assumed that the scenic action A is effectively happening and it is not related to a
mistake of the detection system, and there are two possible scenarios:

• the microphone is not active which means that the interlocutor is not speaking: the
node sends a signal to stop the microphone, converts A into a string and publishes
it;

• the microphone is active, which means that the human agent is speaking and per-
forming a scenic action at the same time: the action A is saved inside the node
waiting for the sentence S converted by the STT node; when it is received the
action A is converted into a string, concatenated with S and published.

72 4| Software Architecture

4.4.2. Conversion of scenic actions to strings

The mapping between scenic actions and strings is managed through a json file with the
following structure:

{

"attack": {

"verbal_reaction": true,

"sentence": "aaa",

"response_time": 3

},

"intimidate": {

"verbal_reaction": false,

"sentence": "",

"response_time": 3

},

"disappointment": {

"verbal_reaction": true,

"sentence": "I am disappointed.",

"response_time": 3

},

"grudge": {

"verbal_reaction": false,

"sentence": "",

"response_time": 3

},

"scolding": {

"verbal_reaction": false,

"sentence": "",

"response_time": 3

},

"sharing sadness": {

"verbal_reaction": true,

"sentence": "I am sad.",

"response_time": 3

},

"sharing fear": {

"verbal_reaction": true,

4| Software Architecture 73

"sentence": "I am frightened.",

"response_time": 3

},

"surprise": {

"verbal_reaction": true,

"sentence": "I am surprised.",

"response_time": 3

},

"sharing happiness": {

"verbal_reaction": true,

"sentence": "I am happy!",

"response_time": 3

},

"happy person": {

"verbal_reaction": true,

"sentence": "I am happy!",

"response_time": 3

},

"satisfaction": {

"verbal_reaction": true,

"sentence": "I am satisfied.",

"response_time": 3

},

"disbelief": {

"verbal_reaction": true,

"sentence": "I can’t believe to it.",

"response_time": 3

},

"astonishment": {

"verbal_reaction": true,

"sentence": "I am astonished.",

"response_time": 3

},

"running away": {

"verbal_reaction": false,

"sentence": "",

"response_time": 3

74 4| Software Architecture

},

"none": {

"verbal_reaction": false,

"sentence": "",

"response_time": -1

}

}

Each element stands for a scenic action and contains three information:

• verbal_reaction: it is a boolean and communicates if a verbal reaction is necessary,
since for some scenic actions a purely physical reaction could be enough without the
need of speaking;

• sentence: it is the textual representation of the scenic action;

• reaction_time: it is an integer that represents the number of received messages of
a specific scenic action to consider it happening and trigger the response generation
process.

4.5. Response generation

This node receives the final sentence created by the interface 4.4 and mainly performs two
actions:

• compute the response using the fine-tuned dialoGPT model described in 3.2.4;

• extract the emotion expressed from the sentence using the emotion recognition Bert
model described in 3.3.2.

Both these operations are executed calling the remote functions exposed by ROS services
(the node behaves as a client). The reason of this choice was that I wanted to make the
system more scalable than possible, allowing other nodes that could be eventually added
in future (for any reason) to perform the tasks of text generation and emotion recognition
just calling the services.

4.5.1. Basic operations

The node is subscribed to the topic:

• interlocutor_sentence_def : on this topic the node receives the final strings from
which compute the robot response;

4| Software Architecture 75

publishes on the topics:

• model_response: on this topic are published the responses generated through the
GPT-2 model;

• emotion_sent_analysis : on this topic are published the emotions extracted from
the interlocutor sentences through the Bert emotion recognition model;

and behaves as client for the services:

• compute_response: the input is the interlocutor sentence and the output is the
response from GPT-2;

• sentiment_analysis : the input is the interlocutor sentence and the output is the
emotion extracted from it.

The operations executed by this node are quite simple and can be summarized as follows:
it receives the interlocutor sentence, it creates two requests containing it and invokes the
two services to compute the robot response and to extract the emotion, it publishes the
results on two topics.

4.5.2. Language model Services

The service that performs emotion recognition has a very simple structure: it just down-
loads the proper tokenizer and loads from the disk the fine-tuned Bert model that classifies
a sentence in 1 of the 6 Ekman emotions plus the neutral one, and uses it to extract an
emotion from the string. The response contains an integer between 0 and 6 that represents
an emotion with the following mapping:

{

0: ’anger’,

1: ’fear’,

2: ’joy’,

3: ’love’,

4: ’sadness’,

5: ’surprise’,

6: ’neutral’

}

For what concerns the service that manages the text generation, it downloads the tokenizer
and loads from the disk the dialoGPT model fine-tuned on the ED Dataset. It keeps locally
a buffer of length 3 that represents the context given to the model as input: every time

76 4| Software Architecture

the service is called the queue is updated inserting the new sentence passed in the request
and the input context is created by concatenating the strings in the buffer. The response
is produced passing to the generate method of the model the following parameters:

• context_tokenized : a tensor containing the tokens representing the input context;

• max_new_tokens = 56: it means that at most 56 new tokens are generated;

• top_p = 0.9: it means that only the tokens associated to a probability ≥ than 90%
are considered;

• top_k = 50: it means that only the most likely 50 tokens are considered;

• do_sample = true: it means that the next token is extracted from a probability
distribution.

The reason of these choices is that the combination of top_p and top_k with sampling
discards very low ranked tokens adding at the same time some dynamicity to the selection;
moreover, after a lot of trials and errors the output generated with this configuration
seemed more coherent and better from a qualitative point of view than others. Obviously,
these considerations are completely subjective but some comparisons with the results
obtained with other hyper-parameter values and with other decoding methods (such as
greedy-search) are reported and analyzed in 5.

After the generation the response is decoded and returned to the client.

4.6. TTS Node

This is probably the simpler node of the architecture since its role is limited to convert the
textual response generated by the dialoGPT model to speech and reproduce it through
the speakers.

It is subscribed to the topic:

• model_response: on this topic the response generation node 4.5 publishes the sen-
tences that represent the robot responses;

and publishes on the topic:

• start_mic: on this topic this node publishes the pings to communicate to the STT
node that the robot response has been converted to speech and then the microphone
can be activated to listen to the human interlocutor.

When a string is received the node makes a request to the Riva server to synthesize it

4| Software Architecture 77

specifying also other parameters such as the used language, the encoding type (in this
case linear pcm), the sample rate and the kind of voice that should be used (male or
female). Then, the response from the server is wrapped in a numpy array and the voice
is reproduced through the python library sounddevice.

When this procedure is completed a ping to let the STT node open the microphone is
sent.

4.7. Scenic action generator

Since it was impossible to properly test the integration of my system with the already
existing architecture because of some problems encountered during a parallel thesis project
on the robot body and movement, I implemented a simple node that acts like a console to
simulate the sending of scenic action messages. It just loops waiting the insertion by the
user of an integer between 1 and 14: when a command is received the number is mapped
to a scenic action and a sequence of ROS messages of the proper type are sent over the
topic scenic_action. This mapping between the integer inserted and the scenic action
published is specified through a json file with the following structure:

{

"0": "attack",

"1": "intimidate",

"2": "disappointment",

"3": "grudge",

"4": "scolding",

"5": "sharing sadness",

"6": "sharing fear",

"7": "surprise",

"8": "sharing happiness",

"9": "happy person",

"10": "satisfaction",

"11": "disbelief",

"12": "astonishment",

"13": "running away",

"14": "none"

}

The scenic actions are then received and processed by the interface node 4.4 which is
subscribed to the topic.

79

5| Results

In this chapter, the main results of this project are reported along two different dimensions:

• quantitative dimension: the performance of the trained models (dialoGPT for dia-
logue generation and Bert for emotion recognition) is presented in terms of metrics
in order to justify the reasons why I selected them;

• qualitative dimension: some examples of conversations between a human interlocu-
tor and the robot are presented, focusing on its ability to interact in a positive way
manifesting empathy in different situations (happy, sad, chit-chat context...) and on
the coherence of the generated responses. In my opinion these results are the most
relevant because, even if the judgment is very personal and subjective, it is also true
that there not exists a metric that is able to measure in a proper way the ability of
a model to act adequately in an emotional and emphatic context, and it is better
to let a human listener (or in this case reader) to evaluate the quality according to
his sensitivity.

Finally, the outputs obtained by using different decoding methods and tuning the hyper-
parameters at inference time are presented.

5.1. Quantitative results

The core of this project was to find out which was the most suitable language model
able to perform in a conversational context with satisfying qualitative results according
to the constraint of keeping everything saved locally. I have analyzed the features of
several models and the designed choice finally was the medium version of dialoGPT for
the reasons widely debated in Section 3.2. In order to choose the best configuration for
the project settings, I have made lots of trials varying several parameters:

• learning rate: in the range [5 ∗ 10−6, 0.1];

• batch size: 16 and 32 (I chose to not try larger batch sizes because of the limited
available disk space);

80 5| Results

• weight decay: in the range [0.1, 0.9];

• I have trained the model using different optimizers, namely AdamW and SGD with
momentum;

• I have trained the model using different learning rate schedulers, namely linear and
exponential.

Finally to select the best model I evaluated them on the test sets of three different datasets:

• ED dataset [69]the one used to fine-tune the model presented in Section 3.2.3),

• Daily Dialogue Dataset [60] which contains conversations grounded in everyday life
situations,

• Personachat Dataset [86] which contains dialogues as well as information about the
profiles of the interlocutors.

The table below summarizes these tests, reporting the performance of three models on the
datasets mentioned above: the final dialoGPT medium (trained with AdamW optimizer,
learning rate 5 ∗ 10−5 and weight decay 0.05), dialoGPT small (trained with AdamW
optimizer, learning rate 5∗10−5 and weight decay 0.05) which is interesting to outline the
differences introduced just varying the model complexity and the number of parameters
and dialoGPT medium trained using SGD+Momentum as optimizer with learning rate
0.01 and momentum 0.9.

DialoGPT M DialoGPT S DialoGPT M (SGD+Momentum)
ED 7.7069 8.9093 8.6915

Daily 22.7876 27.6765 23.1663
Persona 13.3124 16.9814 13.3094

Table 5.1: Performances of three different models on three different datasets using per-
plexity as metric. The models are: dialoGPT medium trained with AdamW, dialoGPT
medium trained with SGD + momentum and dialoGPT small trained with AdamWdaily.
The datasets are: ED Dataset, Daily Dialog Dataset and Personachat Dataset.

I report here only few examples of models I have tested in my trials, the ones that I
considered particularly interesting, but the main observation that can be done is that the
final selected model performs well on the same dataset it was trained on, but has good
results also on different datasets, manifesting its flexibility and its ability to generalize.
The training details of this model are showed below: Figure 5.1 shows the decreasing
trend of the training error while Figure 5.2 represents the evaluation process using the

5| Results 81

perplexity metric, that reaches the minimum value around the training step 1000 (after
2 epochs) and then starts to increase.

For what concerns the emotion recognition task, since it didn’t represent the core func-
tionality of this project I just looked for a model with reasonably high performances: the
Bert fine-tuned 3.3.2 accuracy on the test dataset was around 85%, and it was considered
enough for the purpose.

Figure 5.1: Training error plot.

Figure 5.2: Evaluation perplexity plot.

82 5| Results

5.2. Generated dialogues

Probably the best way to evaluate the ability of the robot to interact with a human
showing empathy and awareness of the emotional context is to try to speak with it. For
this reason, below are reported some examples of real short dialogues I had, in which
its conversational ability are tested in several situations (the sentences in uppercase are
the scenic action converted to strings as mentioned in Section 4.4): the results are quite
satisfying since the responses are generally coherent with both the context and with the
emotional state suggested by the input sequence even if sometimes it happens that it
generates strange and unexpected sentences. Anyway, in the improvisational field in
which this research is grounded a good actor could take advantage of this fact to create
funny situations.

Example 1

User: Oh, my God, this is one of the best days of my life.
Model: I know right. What happened?
User: I got a promotion at work this morning.
Model: Congratulations! What did you get?
User: A better position and the higher salary
Model: That’s good to hear! What’s the next step of your career?
User: I don’t know. I ought to become a manager, but the limit is the sky.
Model: Wow, I’ve never heard of someone doing that, that’s so interesting!
User: I AM SATISFIED.
Model: I’m happy you are satisfied, I would be too!
User: Anyway, what is your job?
Model: I work in a grocery store

Example 2

User: I am reading the Harry Potter books, and I love them.
Model: I used to love them, but they are getting boring now.
User: Really? Why do you think that?
Model: I am a fan of books but the series was disappointing for me
User: Oh, I’m so sorry. What is your favorite series, then?

5| Results 83

Model: Oh! I really liked Death Note and School Days.
User: I like that note (asr module error, it should have been: "I like death note"). Who
is your favorite character of it?
Model: The main one was Koyotee.
User: That’s cool, you see. That’s cool. You seem an expert to me.
Model: I am, he is my favorite character.
User: Anyway, do you have any other hobbies?
Model: No, i don’t really.
User: you don’t like doing sports, for instance?,
Model: I do not like sports either, but it is fun to do and I do like to make myself some
food, so I don’t feel sad.
User: Do you like to cook, then?
Model: Yes, I do, the cook is really nice.
User: What is your favorite dish to cook?
Model: Anything really, but my favorite meal is chicken

Example 3

User: I feel so sad today. I’m so depressed.
Model: What’s making you depressed?
User: I AM SAD.I feel like I don’t have any friends.
Model: Have you considered joining a sports club?
User: I don’t know, I’m so shy.
Model: Have you tried joining an athletic club?
User: Why?
Model: That is usually a good way to feel more social and fit.
User: I AM FRIGHTENED.I think other people will not like me.
Model: Why?
User: I don’t know, I’m just not so confident about myself.
Model: That is understandable. I’m sure if you put yourself out there, you will find your
way out.
User: Thank you, you are a nice friend.
Model: You’re welcome. I hope it works out for you too.

84 5| Results

Example 4

User: Oh, my God, there is a spider in the living room.
Model: I hate spiders. They always try to get in my house.
User: I AM FRIGHTENED.I don’t know what to do now.
Model: Oh my god, you need to exterminate it!
User: How can I do it?
Model: You are probably the only one who can.
User: I AM DISAPPOINTED. Why you can’t help me?
Model: Have you tried praying, reading the books, and meditating.
User: I can’t believe to it.Oh, I can’t believe you are joking right now.
Model: I don’t believe in angels either. You should try not to be so pessimistic.
User: Okay, okay, maybe I’m exaggerating. I will try to get rid of the spider now.
Model: You are brave, good luck with that!
User: Anyway, what is your biggest fear?
Model: The dark, but mostly the cold.
User: Why are you afraid of the cold?
Model: I think there’s a lot of negative feedback there.

Example 5

User: Hello, what’s up?
Model: what are you doing today?
User: I’m just relaxing and reading a book.
Model: i love relaxing, what book are you reading?
User: It’s the 2nd one of Game of Thrones.
Model: thats what i am reading too! i have read all the books, are you going to watch all
the tv shows?
User: Yes, sure. Have you already watched them?
Model: yup, i read the books like last year. i finished book 3 and finished the series
User: Oh, that’s cool. And what is your favorite part of it?
Model: i really like the ending, so good.
User: That’s amazing. I can’t stand to see it.
Model: i really hope the ending is good for you!

5| Results 85

Example 6

User: This is an amazing day. I have won the lottery.
Model: Woohoo! I’ve been gambling a lot too. What’s your favorite lottery ticket?
User: I don’t know, I just bought a random one.
Model: Nice! You should probably check the lottery numbers and win!
User: Yes, I already did it. am so proud of myself.
Model: Well that’s a good start.
User: I AM HAPPY! What. should I do now with the money?
Model: Just keep working.
User: But what?
Model: How about you spend some on something you love.
User: That’s a good advice. I would love to go to Japan for a journey.
Model: That sounds like an exciting time
User: Do you like Japan?
Model: No but I like sushi.
User: Haha. Great answer. I love sushi, too.
Model: I love seafood, love sushi, love anything with seaweed in it.
User: You should come to Japan with me, then.

Example 7

User: Hello.
Model: Hi. How are you doing?
User: I’m fine. I’m just working on my thesis.
Model: Are you in school?
User: University. I will get my master degree soon. I hope so.
Model: How exciting! You should be proud.
User: I am. What about you? Do you attend university?
Model: I went to school but transferred to a new job.
User: I AM SURPRISED. What kind of job?
Model: I have been doing retail for about 7 years now.
User: Wow, it seems you have a lot of experience in that field.
Model: I do too.
User: What do you like about your job?

86 5| Results

Model: I like helping people.
User: That’s cool. I would like to have a job like that.
Model: Are you looking for a job?
User: Yes, I am.
Model: What type of job are you looking for?
User: I will get a degree in computer science. Saw something related to it.
Model: Oh, wow! Congratulations! Is it something you are passionate about?
User: Yes, sure I love it.

Example 8

User: Hi. how are you?
Model: I’m great. How are you?
User: I think you are a little bit low.
Model: What are you going to do?
User: I’m trying to talk with you.
Model: Maybe you could have a coffee or something to calm down.
User: Yeah, you’re right. I will take my coffee soon.
Model: Awesome. Coffee’s the best. What are you going to do?
User: I’m expecting to. Play a little bit with the robot.
Model: Sounds like fun! Good luck. You’ll be fine if you use good timing.
User: Would you like to play with a robot?
Model: That would be fun!
User: Are you able to talk with a robot?
Model: I guess you could. I’m afraid of talking though.
User: Why are you afraid of a robot? You shouldn’t be afraid of a robot.
Model: I guess I just don’t like talking too much.
User: So the problem is not that the robot is talking.
Model: It’s just you and me.
User: Yes, but I was wondering about talking. Talking with the robot.
Model: We can’t talk with people if they don’t have hands.
User: What do you mean?
Model: What happens if you talk to someone whose hands are full, but it is not a person?
User: It may respond. If it is a robot, it may respond.

5| Results 87

Example 9

User: I’m reading the Game of Thrones books, and I am loving them.
Model: I’ve never read them! I do love books though.
User: Yes, I love fantasy books.
Model: Me too! I can’t read any non fantasy at the moment.
User: Haha, same. What is your favorite fantasy book?
Model: I love Night Lords.
User: What is it about?
Model: It’s about a guy who is the night lord and the people who live in the night lord’s
castle are his prisoners.
User: Wow, Sounds school. Do you recommend it to me?
Model: It’s like a classic teenage fantasy book with lots of action and lots of wacky hu-
mour.
User: I don’t know. I think it’s not for me. What about Lord of the rings? Have you
read it?
Model: No, I haven’t. I know it’s in the library though!
User: You should try to give it a chance. It is a very classic fantasy.
Model: I’ll check it out then!

5.3. Decoding methods comparisons

In order to choose the most proper decoding method and tune the hyper-parameters I once
again tried lots of different combinations to find out which one was the most appropriate
to generate dialogues with a human interlocutor. A useful experiment was to give the
same input to the same model configured with different parameters at inference time to
be able to evaluate the main differences.

Greedy search:

User: What are you doing today?
Model: I’m going to go to the beach.
User: Wow sounds funny! Are you with some friends?
Model: I am with a few friends.
User: Can I come?

88 5| Results

Model: Sure! I’ll bring the beer.

Sampling with top_k and top_p:

User: What are you doing today?
Model: I am in a hotel room doing a bunch of laundry, what about you?
User: that sounds boring, why are you doing it in an hotel room?
Model: For the warm feelings of the warm air!
User: don’t you have warm air at home?
Model: No, it’s too dry, my friend!

Beam search with 4 beams:

User: What are you doing today?
Model: I’m doing a lot of reading.
User: Sounds funny! What are you reading?
Model: I’m reading a lot of books.
User: what is your favourite?
Model: I like to read a lot.

Beam search with 4 beams and sampling:

User: What are you doing today?
Model: I’m going to the gym.
User: Wow sounds funny! I love working out.
Model: I’m glad you’re enjoying it!
User: Can I come with you?
Model: I’m sure you can!

The finally selected decoded strategy was sampling with top_k and top_p (3.2.5) and
the reason is quite simple: one of the main features that a good interlocutor should have
in order to maintain a positive conversation is the ability to surprise and engage the other
person, even if sometimes strange and not completely coherent sentences can be created.
On the other hand, greedy methods just select the next token associated to the highest

5| Results 89

probability given a sequence and the result is that for the same input always the same
output is generated, while beam search strategies have the problem to tend to predict
boring and predictable sentences.

91

6| Conclusions and future

developments

This thesis work was inserted in a broader research aimed at building a robot able to
interact with a human actor manifesting and processing emotions both from a verbal and
non-verbal point of view in an improvisational context. For what concern my project, the
goal was to implement the ability of having a conversation with a human agent generating
responses that manifested empathy, coherence with the overall context and that were able
to surprise and entertain the interlocutor creating a positive relationship with him.

The results that I reached are:

• the robot is able to detect when the interlocutor begins to speak and to coordinate
and synchronize the activities of generating the responses and reproducing them
through the speakers;

• the robot is able to dialogue with a human interlocutor in an improvisational context
generating responses that show a general knowledge of the situation;

• the robot is able to manifest empathy generating responses that are adequate from
an emotional point of view with the state and the mood of the interlocutor;

• the verbal dimension is synchronized and connected with the non-verbal one: the
emotions are extracted from the interlocutor sentences in order to generate proper
movement reactions and at the same way the scenic actions detected from the human
actor movements are used by the language modules to generate adequate verbal
responses.

At the same time, there are some weak points:

• the responses generated by the robot sometimes appear strange, not perfectly co-
herent with the last interlocutor sentence or even fall in contradictions. For sure
small improvements could stil be done, but these problems are mainly due to the
limited power of the model used and not to the way I trained it: dialoGPT medium

92 6| Conclusions and future developments

has indeed interesting features, but the performance can not be compared to the
ones of larger and more complex models. The reason of this choice was that the
constraint I had to satisfy was to keep everything locally and then I had to select a
model that could fit into the embedded system.

• the speech recognition system is not able to analyze the semantic of the detected
content and interprets every small pause as the end of the interlocutor speech with
the consequence that the robot generates responses to not-complete sentences. I
have tried to introduce a delay in the robot response generation but the result is
that the conversation sometimes appears "non-natural" and a bit fragmented.

• the synchronization of the two parts (the dialogue manager that I have developed
and the general robot management, which considers gestures) is not fully optimized.

6.1. Future developments

6.1.1. Test other models and datasets

In order to try to improve the performance and the quality of the outputs the first simple
idea could be to try other language models to generate the robot responses. The reasons
why I selected the dialoGPT model was that it reached good results and was widely used
in the existing literature about emphatic chat-bots, but, at the same time, the research
on language models is growing exponentially in these last years and new solutions can be
found. An example of interesting trial could be the T5-base model which was published
by Google in 2019: it has a total of 220M parameters and a dimension that could be
compared to the one of the medium version of GPT-2, but differently from it has an
encoder-decoder architecture and does not use only decoder transformer blocks.

For what concerns the dataset, I used the Emphatetic Dialogue dataset because the main
goal was to implement on the robot the ability to apparently understand the emotional
state of the interlocutor and properly react to it, but several other solutions can be useful
for the improvisational theatre context in which this project is grounded. Few examples
are:

• Cornell Movie Dialogs Corpus : it contains over 200K conversations from over 600
films;

• Personachat dataset : it contains over 160K conversations from couple of people with
information about their persona to create more customized dialogues and maintain
a state of their personality during the whole interaction;

6| Conclusions and future developments 93

• SPOLIN corpus : it contains yes-and exchanges extracted from improv podcasts.

These are only examples (lots of others useful sets of data can be found) that could be
used to pre-train and/or fine-tune the selected language model in order to improve the
performances.

6.1.2. Improve the coordination of the modules

The main problem about the integration of my project inside the already existing archi-
tecture was that a parallel thesis work with the purpose of improving the selection of the
next scenic action performed by the robot through machine learning techniques encoun-
tered some issues that made impossible to coordinate and synchronize the modules in the
best way. For this reason the two parts have been implemented in a modular and inde-
pendent way and coordinated only at the end: a future necessary development should be
the integration of them in a coherent and homogeneous way, by keeping in consideration
the overall design and concept of the project.

6.1.3. Create custom dataset

Probably the best way to try to integrate in an homogeneous and coherent way the mod-
ules that manage the physical movements and the modules that control the verbal reaction
to the human agent would be to create a custom dataset in order to fine-tune the selected
language model. Since the hypothetical testing environment is the improvisational the-
atre the best scenario would be to create a corpus of data taken from real improvisational
exchanges and, in order to fulfill the complete integration of the parts, the sentences could
be commented with information about the scenic actions performed by the actors. An
example could be for example:

A: [scenic action performed by A] sentence1
B: [scenic action performed by B] sentence2
ecc...

where each scenic action label could be declared as a token of the model.

The only problem of this approach is that the creation of this custom dataset from scratch
would be very time consuming since thousands of conversations would be needed in order
to train properly the model.

95

Bibliography

[1] The Attention Mechanism from Scratch. https://machinelearningmastery.com/

the-attention-mechanism-from-scratch/.

[2] Beyond Seq2Seq Architectures. http://chrome.ws.dei.polimi.it/images/d/d7/

AN2DL_06_2223_BeyondSeq2Seq.pdf.

[3] How to generate text: using different decoding methods for language generation with
Transformers. https://huggingface.co/blog/how-to-generate.

[4] 5 Reasons Emotions Are Important. https://www.verywellmind.com/

the-purpose-of-emotions-2795181, .

[5] Emotion. https://www.britannica.com/science/emotion, .

[6] ENIAC Display: Computer Science Engineering at Michigan. https://www.

britannica.com/art/theatre-art/Theatre-as-expression/.

[7] Evolution of Language Models. https://ai.plainenglish.io/

evolution-of-language-models-cce8f6bf19a0.

[8] Understanding GRU Networks. https://towardsdatascience.com/

understanding-gru-networks-2ef37df6c9be.

[9] Glossary. https://huggingface.co/transformers/v2.11.0/glossary.html#

token-type-ids, .

[10] Perplexity of fixed-length models. https://huggingface.co/docs/transformers/
perplexity, .

[11] Trainer. https://huggingface.co/docs/transformers/main_classes/trainer, .

[12] Transformers. https://huggingface.co/docs/transformers/index, .

[13] The Illustrated GPT-2 (Visualizing Transformer Language Models). http://

jalammar.github.io/illustrated-gpt2/.

https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
http://chrome.ws.dei.polimi.it/images/d/d7/AN2DL_06_2223_BeyondSeq2Seq.pdf
http://chrome.ws.dei.polimi.it/images/d/d7/AN2DL_06_2223_BeyondSeq2Seq.pdf
https://huggingface.co/blog/how-to-generate
https://www.verywellmind.com/the-purpose-of-emotions-2795181
https://www.verywellmind.com/the-purpose-of-emotions-2795181
https://www.britannica.com/science/emotion
https://www.britannica.com/art/theatre-art/Theatre-as-expression/
https://www.britannica.com/art/theatre-art/Theatre-as-expression/
https://ai.plainenglish.io/evolution-of-language-models-cce8f6bf19a0
https://ai.plainenglish.io/evolution-of-language-models-cce8f6bf19a0
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://huggingface.co/transformers/v2.11.0/glossary.html#token-type-ids
https://huggingface.co/transformers/v2.11.0/glossary.html#token-type-ids
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/index
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/

96 | Bibliography

[14] Improv Comedy Explained: 5 Tips for Doing Improv Comedy. https://www.

masterclass.com/articles/improv-comedy-explained/.

[15] NVIDIA Jetson AGX Orin Series. https://www.nvidia.com/content/dam/en-zz/
Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.

pdf.

[16] Language Modelling. https://paperswithcode.com/task/language-modelling, .

[17] Language models and RNN. https://medium.com/@rachel_95942/

language-models-and-rnn-c516fab9545b, .

[18] linguistic ambiguity. https://www.techtarget.com/whatis/definition/

linguistic-ambiguity/.

[19] Understanding LSTM Networks. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[20] Multi-turn chatbot project (3): GPT-2 chatbot with multi-turn generation settings.
https://songstudio.info/tech/tech-35/#2.

[21] N-Gram Model. https://devopedia.org/n-gram-model#

Jurafsky-and-Martin-2009.

[22] An Introduction to Recurrent Neural Networks and the Math
That Powers Them. https://machinelearningmastery.com/

an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/.

[23] ROS1 vs ROS2, Practical Overview For ROS Developers. https:

//roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_

and_not_keep_ROS1, .

[24] ROS. http://wiki.ros.org/ROS/Introduction, .

[25] Understanding Encoder-Decoder Sequence to Se-
quence Model. https://towardsdatascience.com/

understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346.

[26] Theatre as expression. https://cse.engin.umich.edu/about/beyster-building/
eniac-display/.

[27] What is Improv? https://www.hideouttheatre.com/about/what-is-improv/.

[28] Word Embedding. http://chrome.ws.dei.polimi.it/images/2/2d/AN2DL_05_

2223_WordEmbedding.pdf.

https://www.masterclass.com/articles/improv-comedy-explained/
https://www.masterclass.com/articles/improv-comedy-explained/
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://paperswithcode.com/task/language-modelling
https://medium.com/@rachel_95942/language-models-and-rnn-c516fab9545b
https://medium.com/@rachel_95942/language-models-and-rnn-c516fab9545b
https://www.techtarget.com/whatis/definition/linguistic-ambiguity/
https://www.techtarget.com/whatis/definition/linguistic-ambiguity/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://songstudio.info/tech/tech-35/#2
https://devopedia.org/n-gram-model#Jurafsky-and-Martin-2009
https://devopedia.org/n-gram-model#Jurafsky-and-Martin-2009
https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/
https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
https://roboticsbackend.com/ros1-vs-ros2-practical-overview/#Why_ROS2_and_not_keep_ROS1
http://wiki.ros.org/ROS/Introduction
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://cse.engin.umich.edu/about/beyster-building/eniac-display/
https://cse.engin.umich.edu/about/beyster-building/eniac-display/
https://www.hideouttheatre.com/about/what-is-improv/
http://chrome.ws.dei.polimi.it/images/2/2d/AN2DL_05_2223_WordEmbedding.pdf
http://chrome.ws.dei.polimi.it/images/2/2d/AN2DL_05_2223_WordEmbedding.pdf

| Bibliography 97

[29] J. ANGEL FERNANDEZ. Theatrebot: Studying emotion projection and emotion
enrichment system for autonomous theatrical robot. 2016.

[30] J. M. Angel-Fernandez and A. Bonarini. Robots showing emotions: Emotion repre-
sentation with no bio-inspired body. Interaction Studies, 17(3):408–437, 2016.

[31] J. M. Angel-Fernandez and A. Bonarini. Enriching robot’s actions with affective
movements. In 2017 26th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 424–429. IEEE, 2017.

[32] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[33] L. Bonetti. Design and implementation of an actor robot for a theatrical play. 2021.

[34] B. Branch, P. Mirowski, and K. W. Mathewson. Collaborative storytelling with
human actors and ai narrators. arXiv preprint arXiv:2109.14728, 2021.

[35] M. Carlson. Psychic polyphony. Journal of Dramatic Theory and Criticism, pages
35–48, 1986.

[36] C. Chiroli. Simulation of emotional behaviour in a robot. 2022.

[37] B. M. Cuff, S. J. Brown, L. Taylor, and D. J. Howat. Empathy: A review of the
concept. Emotion review, 8(2):144–153, 2016.

[38] J. Decety, I. B.-A. Bartal, F. Uzefovsky, and A. Knafo-Noam. Empathy as a driver of
prosocial behaviour: highly conserved neurobehavioural mechanisms across species.
Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686):
20150077, 2016.

[39] D. Demszky, D. Movshovitz-Attias, J. Ko, A. Cowen, G. Nemade, and S. Ravi.
Goemotions: A dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547,
2020.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[41] R. Dunbar. Why only humans have language. 2009.

[42] R. I. Dunbar. The social brain hypothesis. Evolutionary Anthropology: Issues, News,
and Reviews: Issues, News, and Reviews, 6(5):178–190, 1998.

98 | Bibliography

[43] P. Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200,
1992.

[44] N. Evans and S. C. Levinson. The myth of language universals: Language diversity
and its importance for cognitive science. Behavioral and brain sciences, 32(5):429–
448, 2009.

[45] A. Fan, M. Lewis, and Y. Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

[46] L. Farinelli. Design and implementation of a multi-modal framework for scenic actions
classification in autonomous actor-robot theatre improvisations. 2022.

[47] D. Francis and S. Hester. An invitation to ethnomethodology: Language, society and
interaction. chapter 1, pages 1–13. Sage, 2004.

[48] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, et al. Conformer: Convolution-augmented transformer for speech
recognition. arXiv preprint arXiv:2005.08100, 2020.

[49] V. Guljajeva. Synthetic books. In 10th International Conference on Digital and
Interactive Arts, pages 1–7, 2021.

[50] P. Guo, X. Chang, S. Watanabe, and L. Xie. Multi-speaker asr combining
non-autoregressive conformer ctc and conditional speaker chain. arXiv preprint
arXiv:2106.08595, 2021.

[51] S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenom-
ena, 42(1):335–346, 1990. ISSN 0167-2789. doi: https://doi.org/10.1016/
0167-2789(90)90087-6. URL https://www.sciencedirect.com/science/article/

pii/0167278990900876.

[52] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[53] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[54] F. Ioannidou and V. Konstantikaki. Empathy and emotional intelligence: What is it
really about? International Journal of caring sciences, 1(3):118, 2008.

[55] K. Johnstone. Impro: Improvisation and the theatre. Routledge, 2012.

[56] R. Ketai. Affect, mood, emotion, and feeling: Semantic considerations. The American
journal of psychiatry, 1975.

https://www.sciencedirect.com/science/article/pii/0167278990900876
https://www.sciencedirect.com/science/article/pii/0167278990900876

| Bibliography 99

[57] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin, R. Leary,
J. Li, and Y. Zhang. Quartznet: Deep automatic speech recognition with 1d time-
channel separable convolutions. In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 6124–6128. IEEE,
2020.

[58] I. Leite, A. Pereira, S. Mascarenhas, C. Martinho, R. Prada, and A. Paiva. The
influence of empathy in human–robot relations. International journal of human-
computer studies, 71(3):250–260, 2013.

[59] J. Li, V. Lavrukhin, B. Ginsburg, R. Leary, O. Kuchaiev, J. M. Cohen, H. Nguyen,
and R. T. Gadde. Jasper: An end-to-end convolutional neural acoustic model. arXiv
preprint arXiv:1904.03288, 2019.

[60] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu. Dailydialog: A manually labelled
multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

[61] Z. Lin, P. Xu, G. I. Winata, F. B. Siddique, Z. Liu, J. Shin, and P. Fung. Caire: An
empathetic neural chatbot. arXiv preprint arXiv:1907.12108, 2019.

[62] D. B. Lindsley. Emotion. 1951.

[63] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Gen-
erating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

[64] S. Majumdar, J. Balam, O. Hrinchuk, V. Lavrukhin, V. Noroozi, and B. Ginsburg.
Citrinet: Closing the gap between non-autoregressive and autoregressive end-to-end
models for automatic speech recognition. arXiv preprint arXiv:2104.01721, 2021.

[65] J. D. Mayer. What is emotional intelligence? 2004.

[66] P. Nandwani and R. Verma. A review on sentiment analysis and emotion detection
from text. Social Network Analysis and Mining, 11(1):81, 2021.

[67] R. Plutchik and H. Kellerman. Theories of emotion, volume 1. Academic Press,
2013.

[68] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[69] H. Rashkin, E. M. Smith, M. Li, and Y.-L. Boureau. Towards empathetic open-
domain conversation models: A new benchmark and dataset. arXiv preprint
arXiv:1811.00207, 2018.

100 | Bibliography

[70] C. Reeck, D. R. Ames, and K. N. Ochsner. The social regulation of emotion: An
integrative, cross-disciplinary model. Trends in cognitive sciences, 20(1):47–63, 2016.

[71] R. Rosa, O. Dušek, T. Kocmi, D. Mareček, T. Musil, P. Schmidtová, D. Jurko,
O. Bojar, D. Hrbek, D. Košt’ák, et al. Theaitre: Artificial intelligence to write a
theatre play. arXiv preprint arXiv:2006.14668, 2020.

[72] J. A. Russell. A circumplex model of affect. Journal of personality and social psy-
chology, 39(6):1161, 1980.

[73] E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S. Chen. Carer: Contextualized
affect representations for emotion recognition. In Proceedings of the 2018 conference
on empirical methods in natural language processing, pages 3687–3697, 2018.

[74] G. Sheen. Carl: An empathetic chatbot.

[75] S. Tomkins. Affect imagery consciousness: Volume I: The positive affects. Springer
publishing company, 1962.

[76] S. Tomkins. Affect imagery consciousness: Volume II: The negative affects. Springer
publishing company, 1963.

[77] A. M. TURING. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind,
LIX(236):433–460, 10 1950. ISSN 0026-4423. doi: 10.1093/mind/LIX.236.433. URL
https://doi.org/10.1093/mind/LIX.236.433.

[78] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information pro-
cessing systems, 30, 2017.

[79] Wikipedia contributors. Stage — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/w/index.php?title=Stage&oldid=1121210196, 2022. [Online; ac-
cessed 19-February-2023].

[80] Wikipedia contributors. Univac i — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=UNIVAC_I&oldid=1119595474, 2022. [Online;
accessed 19-February-2023].

[81] Wikipedia contributors. Neural network — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Neural_network&oldid=

1134823540, 2023. [Online; accessed 28-February-2023].

[82] Wikipedia contributors. Gpt-2 — Wikipedia, the free encyclopedia. https://en.

https://doi.org/10.1093/mind/LIX.236.433
https://en.wikipedia.org/w/index.php?title=Stage&oldid=1121210196
https://en.wikipedia.org/w/index.php?title=Stage&oldid=1121210196
https://en.wikipedia.org/w/index.php?title=UNIVAC_I&oldid=1119595474
https://en.wikipedia.org/w/index.php?title=UNIVAC_I&oldid=1119595474
https://en.wikipedia.org/w/index.php?title=Neural_network&oldid=1134823540
https://en.wikipedia.org/w/index.php?title=Neural_network&oldid=1134823540
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473

6| BIBLIOGRAPHY 101

wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473, 2023. [Online; ac-
cessed 2-March-2023].

[83] Wikipedia contributors. Improvisational theatre — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Improvisational_

theatre&oldid=1139314428, 2023. [Online; accessed 19-February-2023].

[84] Wikipedia contributors. Language model — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Language_model&oldid=

1141710774, 2023. [Online; accessed 27-February-2023].

[85] J. Wu, E. Yılmaz, M. Zhang, H. Li, and K. C. Tan. Deep spiking neural networks
for large vocabulary automatic speech recognition. Frontiers in neuroscience, 14:199,
2020.

[86] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston. Personalizing di-
alogue agents: I have a dog, do you have pets too? arXiv preprint arXiv:1801.07243,
2018.

[87] Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and
B. Dolan. Dialogpt: Large-scale generative pre-training for conversational response
generation. arXiv preprint arXiv:1911.00536, 2019.

https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=GPT-2&oldid=1142023473
https://en.wikipedia.org/w/index.php?title=Improvisational_theatre&oldid=1139314428
https://en.wikipedia.org/w/index.php?title=Improvisational_theatre&oldid=1139314428
https://en.wikipedia.org/w/index.php?title=Language_model&oldid=1141710774
https://en.wikipedia.org/w/index.php?title=Language_model&oldid=1141710774

103

List of Figures

2.1 Mean social group size plotted against neocortex ratio for individual pri-
mate genera. Humanoids (solid circles) are distinguished from monkeys. . . 7

2.2 Example of interactions between 2 people. 9
2.3 Self regulation and social regulation. 12
2.4 (a) Circumplex model of affect. (b) Plutchik’s model. (c) Tomkin’s model . 14
2.5 Verbal comments of the robot, both emphatic and neutral, for different

situations. The utterances were expanded with name of the players at the
beginning r at the end. 17

2.6 Transcription of the story generated by GPT-3 and human operator with
initial suggestion from audience "Pizza Hut". The bold lines are generated
by the model. 19

2.7 Screenshot of Ena interface on Lliure theatre website. 20
2.8 Carl (on the left) responding to negative emotions compared to DialoGPT

(on the right). 21
2.9 Carl (on the left) responding to positive emotions compared to DialoGPT

(on the right). 21
2.10 Caire user interface. 23

3.1 Structure of a recurrent neural network. 28
3.2 Unfolded recurrent neural network. 29
3.3 Repeating structure of a RNN. 30
3.4 Structure of nn LSTM network. 30
3.5 Encoder-Decoder architecture. 33
3.6 Attention mechanism representation for text translation. 34
3.7 Transformer architecture. 36
3.8 Scaled dot-product attention. 38
3.9 Multi-head attention with h parallel attention layers. 38

104 | List of Figures

3.10 Performance of self attention with respect to recurrent connections and
convolution. n is the sequence length, d is the representation dimension, k
is the kernel size of convolutions and r is the size of the neighborhood in
restricted self-attention. 39

3.11 GPT-2 models from the smallest to the largest. 41
3.12 Self-attention vs masked self-attention. 42
3.13 Journey up the stack of a token. 42
3.14 Examples of dialogues in the ED dataset. 44
3.15 Representation of the embeddings as combiantion of 3 different embed-

dings. In the dialog state representation the green segments represent the
embeddings of the user sentences while the yellow ones the embeddings of
the model sentences. In the positional representation the color gets darker
proportionally with the depth of the token in the sequence. 47

3.16 Representation of a sketch of greedy search. 49
3.17 Representation of a sketch of beam search with num_beams=2. 50
3.18 Representation of Bert input as sum of 3 embeddings. 53
3.19 Distribution of emotions in starting dataset. 54
3.20 Distribution of emotions in final dataset. 55
3.21 Conventional ASR systems structure. 58
3.22 Jasper architecture. 59
3.23 (a) QuartzNet architecture. (b) Citrinet architecture. 60
3.24 Conformer decoder architecture. 61
3.25 Comparison of the performances of some ASR models on different datasets. 62
3.26 Jetson AGX Orin module. 64

4.1 System architecture. 67

5.1 Training error plot. 81
5.2 Evaluation perplexity plot. 81

105

List of Tables

5.1 Performances of three different models on three different datasets using
perplexity as metric. The models are: dialoGPT medium trained with
AdamW, dialoGPT medium trained with SGD + momentum and dialoGPT
small trained with AdamWdaily. The datasets are: ED Dataset, Daily
Dialog Dataset and Personachat Dataset. 80

107

Acknowledgements

Here you might want to acknowledge someone.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Description of the work
	Structure of the thesis

	Theoretical background
	Theatre and improvisation
	Language
	Language and evolution
	Language complexity
	Language and social interaction

	Emotions
	What is an emotion?
	Emotions and social interactions
	Emotion model

	Empathy
	What is empathy?
	Importance of empathy in social interactions

	State of the art
	THEaiTRE
	Language model as narrator in improvisational theatre
	Ena
	Carl: an empathetic chat-bot
	CAiRE: An Empathetic Neural Chatbot

	Technological solutions
	Language models
	N-gram
	Recurrent neural networks
	LSTM
	Other networks
	Seq2Seq model architecture
	Attention mechanism
	What's next?
	Transformers

	Dialogue generation
	GPT-2
	DialoGPT
	ED Dataset
	Training phase
	Inference hyper-parameters

	Emotion recognition
	Bert
	Bert training

	Speech To Text
	Vosk
	Nvidia Riva
	ASR models
	Model selection

	Text To Speech
	Hardware architecture

	Software Architecture
	ROS
	ROS main concepts
	ROS2

	General architecture
	STT Node
	Basic operations
	Solutions

	Response Interface Node
	Basic operations
	Conversion of scenic actions to strings

	Response generation
	Basic operations
	Language model Services

	TTS Node
	Scenic action generator

	Results
	Quantitative results
	Generated dialogues
	Decoding methods comparisons

	Conclusions and future developments
	Future developments
	Test other models and datasets
	Improve the coordination of the modules
	Create custom dataset

	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

