
 
 
 
 
 
 
 
 
 
 
 
EXECUTIVE SUMMARY OF THE THESIS 

SDN implementation of zero-knowledge intrusion prevention 
system 

TESI MAGISTRALE IN TELECOMMUNICATION ENGINEERING – INGEGNERIA DELLE 
TELECOMUNICAZIONI 

AUTHOR: Giulio Siano 

ADVISOR: Giacomo Verticale 

ACADEMIC YEAR: 2022-2023 
 

 
 
 

1. Introduction 

In the scenario of network security, firewalls are 
basic component to demarcate the boundary 
between a network and external environment, 
such as the Internet, and foster integrity, 
confidentiality and availability of data and 
services. 

Several solutions with diverse features and 
functionalities are available to meet security 
objectives. Choosing a firewall solution is a critical 
decision as it affects traffic flows and end-to-end 
performance. 

The very first generation of firewalls were built 
upon the principle of applying sets of rules to 
incoming data, denying traffic with certain 
characteristics and potentially dangerous. Acting 
as filters, the criteria adopted to state whether 
incoming traffic is legit includes IP header values, 
protocol types, port numbers and others [1]. A 
HTTPS firewall product implementing this 
solution would accept connection on default port 
(443) to allow such protocol, resulting in a simple 

firewall configuration and easy maintenance. 
Moreover, since criteria consider few header fields 
and thus non-personal information, the cost in 
terms of time required to process the packet is low 
and non-privacy affecting. However, two main 
concerns influence this solution: HTTPS traffic is 
not allowed in non-standard ports and non-HTTPS 
traffic is allowed on the opened port (443). 

Other solutions add the additional feature of 
inspecting TLS packet content: data is decrypted, 
and content analyzed in search for threats [2]. 
Some intrusion prevention systems use this option 
to apply further inspection [3]. While more 
accurate analysis can be performed, this solution is 
the most intrusive one raising critical concern on 
users’ privacy. 

These two products highlight how choosing a 
network security appliance involves deciding the 
right trade-off between system effectiveness and 
users’ privacy, even though both properties are 
critical to achieve. 

However, with the introduction of Zero 
Knowledge proofs, an advanced cryptographic 
notion, a party can convince a second of their 
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possession of specific information while 
preserving the confidentiality of said information. 
Thus, a system using such tool makes unnecessary 
the exchanging of sensitive information (or their 
disclosure by decrypting) to demonstrate they 
comply with specific requirements. This 
technology can be implemented in security 
appliances to remove the limitation dictated by the 
trade-off decision between system effectiveness 
and users’ privacy and instead allows to achieve 
both [4]. In this scenario the first party is the prover 
(a client that provide the proof along with data 
packet) and the second party is the verifier (the 
middlebox that check the validity of the received 
proof), while server is kept free from such process. 
A third party, the key generator, computes needed 
data to make this process work. The entire 
mechanism is transparent to the final server. The 
resulting topology is following: 

 
Figure 1: Network topology in [4] 

A middlebox is placed at the perimeter of the 
network, and its role is to intercept incoming 
proofs and their related packet (the packet on 
which proof is computed). If the verification 
process is successful, data packet can be forwarded 
to the final server.  

Nevertheless, beyond the concept of middlebox as 
security appliance able to support ZK proofs, no 
practical implementation has been provided. Its 
structure has not been further developed opening 
the opportunity to investigate its internal 
processes. Moreover, the key generator, prover 
and verifier has been programmed as a single 
entity embedded in the middlebox, without 
reflecting a real-case scenario where the three are 
distributed across the network. Finally, the 
advantage that a ZK proof does not reveal any 
sensitive information neither they can be somehow 
extracted, could be a risk for security: when the 
verification process is performed and the prover 
detains both data packet and proof, no method is 
provided to check whether the proof has been 
actually computed on the received data packet 
since the code provided foresees the ciphertext as 

the private input. In fact, a malicious client can 
compute a proof on a legit data packet and send it 
instead along with a non-valid one. 

This thesis addresses these problems providing a 
SDN ZK-based intrusion prevention system 
implementation focusing on the HTTP-over-TLS 
traffic.  

2. HTTPS ZK-based IPS in SDN 

Implementing a ZK system is intrinsically 
pervasive due to the computation effort required 
by this cryptographic tool. It has impact on the 
client side, which must be equipped with a specific 
program and ZK-related data, and on the node that 
previously was a firewall and that now must act as 
a verifier. Thus, the overall system architecture 
must be carefully designed to support customized 
computational tasks. In fact, the processing steps 
required to verify a ZK proof influences network 
traffic as the action to be performed on the data 
packet, that is whether it is allowed to pass or 
dropped, depends on the verification process 
result. 
This requires effective management of traffic and 
the ability to perform more complicated or 
customized computations, as the check of binding 
between proof and data packet. The middlebox 
must have the capability of supporting such tasks. 

These requirements can be met by structuring the 
middlebox as an SDN environment, where a 
centralized controller is the single node handling 
the control plane. To handle traffic passing 
through the data plane and to execute proof 
verification process, the controller can be precisely 
programmed to accomplish such objectives. 
Furthermore, this solution provides the additional 
advantage that the system can be further enhanced 
with supplementary features, due to flexibility and 
versatility that such architecture offers. This is the 
reason why the security appliance proposed by 
this thesis is an intrusion prevention system: the 
inherited modularity of such middlebox, provides 
the opportunity to support additional 
computations that are also performed by common 
IPS, such as inspecting traffic patterns, traffic 
monitoring, search for intrusion attempts and so 
on. 

Thus, the topology that addresses these challenges 
is the following: 



Executive summary Giulio Siano 
 

3 

 
Figure 2: HTTPS ZK-based IPS architecture (in 

blue the elements introduced) 

As depicted in the figure above, the middlebox 
consists of a switch in the data plane and of both 
controller and a processing module in the control 
plane. The need for the second module in the 
control plane lies in the fact that the controller is in 
charge of handling data plane device and traffic 
flowing through it, thus the computation it 
performs must be as lightweight as possible. For 
more complex tasks, such as proof verification or 
other IPS monitoring and controlling activities, 
SDN controller should outsource them to this 
second module.  

The client is equipped with a program able to 
initiate TLS communication and generate ZK 
proof. Thus, according to the particular stage of its 
lifecycle, it acts as both HTTPS requester and as a 
prover. Its functions are initiating handshake with 
server, encrypting HTTP requests, generating 
proofs, storing TLS information, resuming 
previous TLS sessions. 

The second block, the middlebox, comprises 
multiple components belonging to both data and 
control plane. As the data packet and proof arrives, 
they are forwarded to the second module for 
verification and, according to the result, the 
underlying switch is instructed to let pass or drop 
the HTTPS request. Therefore, the middlebox 
functions allow TLS handshake, verifying proofs 
and whether they have been computed on the 
received data packet, and packet control (that is 
instructing the switch). 

Finally, the server is a minimalist component that 
runs an HTTPS server accepting incoming TLS 
connection request and does not participate in any 
way to ZK processes. It only completes TLS 
handshake and participates in HTTPS exchange.  

3. Network lifecycle 

The network and its elements are designed to pass 
through stages based on HTTP-over-TLS and ZK 
protocols. These stages form the network’s 
lifecycle, involving data and control plane 
interactions for packet and connection handling. 
 

 
Figure 3: Network lifecycle 

Identifying macro-stages creates a structured 
framework for understanding network operations 
in various phases and makes easier handling TLS 
and ZK proofs communication complexities. 
The advantage this lifecycle offers is the only one 
setup phase execution, which is also the one with 
the higher cost in terms of computation. Once the 
initial parameters are generated, they can be 
reused for future interactions, so its cost is 
amortized. 
Following, each step of network lifecycle is 
described. 

3.1. Setup, preparation processes 
and TLS handshake 

Since different technologies and protocols are used 
in this architecture, the setup phase needs a 
distinction for each of them.  

 

 
Figure 4: setup steps 
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1) SDN startup: this step involves the 
middlebox only. Both switch and 
controller are booted up and, using the 
Openflow protocol, they exchange network 
traffic information. Moreover, the module 
running the verifier is started too. The 
connection between switch and controller 
is essential for the controller to orchestrate 
network behavior. In fact, controller issues 
specific instructions to the underlying 
switch, instructing to handle certain 
packet. The main rules applied are the 
following: a) the default behavior is let 
traffic flows without interruption; b) when 
a HTTP-over-TLS packet is detected, 
specifically when one contains a http 
request destined for the server, the 
controller retains such packet for further 
process; c) UDP packet with specific 
destination port are forwarded to 
controller. They are ZK proofs sent by the 
client. 
The two will be sent to the verifier for 
verification process. 

2) Zero-Knowledge preparation: the key 
elements to implement the ZK solution are 
a) circuit, which is the program that runs 
the firewall (i.e., check that the packet 
content complies with network policy 
rules), b) circuit input file, that contains 
public input, private input for the circuit 
and circuit-related data (i.e., gates, wires 
and their connection), c) proving key and 
verification key. So, when it comes to 
distributing such elements, the client 
receives the circuit, proving key, and input 
file, while the verifier receives the 
verification key and input file only. 
Indeed, verification process consists in 
checking whether a certain equality is 
verified [5], therefore no circuit is needed. 
In this phase, input file detained by both 
prover and verifier contains circuit data 
only. 

3) TLS handshake: this step requires the boot 
up of both HTTPS client and server. While 
the server listens for incoming TLS 
connections, the client starts TLS 
handshake. Connection related 
parameters are stored to be later used for 
proof computation or to reuse that TLS 
session. 

Eventually, information detained by all parties 
are shown in the following figure: 

 
Figure 5: files detained by each party at the end of 

the setup phase 

The policy metadata file contains the rules applied 
in the network. When the circuit runs, it decrypts 
HTTPS packet using TLS session information and 
checks its content against the rules. If it complies, 
the proof can be computed. 

3.2. Execution of ZK proof 
computation 

The second step of the lifecycle (Figure 3) involves 
the prover (client) only. First, as stated in the 
previous section, the input file contains circuit-
related data only, consequently it must be filled 
with private and public inputs. This file is 
structured as follows: 

 
Figure 6: input file structure 

The analysis performed on such file is what 
allowed the separation, from a programming point 
of view, of the three ZK entities (key generator, 
prover, and verifier). Its interpretation and its 
filling with public and private input is performed 
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manually (by a custom function, outside the used 
libraries), and by splitting and converting them 
into the appropriate representation. 
As a second step, circuit and input are loaded and 
ready to be executed.  Proof is then computed, and 
the circuit output is a binary file. 

3.3. Sending of HTTP request over 
TLS and ZK proof verification 

Now that proof is ready, the client encapsulates it 
in a UDP packet with specific destination port that 
controller uses to intercept proofs. Then, using the 
previous TLS session, send HTTP request over the 
channel. The switch forwards both UDP and 
HTTPS request to the controller which in turn 
sends them to the verifier module (the HTTPS 
packet is encapsulated into a UDP packet). 
Here, the input file is filled with public input only, 
such as TLS public session data, policy rules and 
others. Then both input and verification key files 
are loaded, and proof received verified. If the result 
is PASS, the controller instructs the underlying 
switch to forward the HTTPS packet to server, 
otherwise to drop it. Finally, the server receives the 
request and replies with ack, and the resources 
content requested.  
Together with proof verification, the check about 
HTTPS request and proof binding is performed. 
Because verifier does not fill input file with private 
input (since they are the secrets), public input can 
be exploited. A proof verification is successful if 
the proof is valid and if the public content used is 
the same for both prover and verifier (for example, 
network rules). Thus, configuring the circuit at 
client side to include HTTPS request as public 
input, and at middlebox side to include in the input 
file the HTTPS request received, the prover is 
forced to send out the same HTTPS request used to 
compute the proof.  
Indeed, the circuit has been programmed to use the 
HTTPS request in public input to compute the 
proof and if it is invalid the proof computation 
fails. Instead, if a valid proof is sent out along with 
another HTTPS request, the verifier would insert 
the received HTTPS in the public input but since it 
is different from what used by the prover to 
compute the proof, the verification process fails. 
Summarizing, public inputs used by the prover 
must be the same as those used by the verifier. By 
requiring the HTTPS request as a public data, 
prover must provide to the verifier the same 

HTTPS packet used to compute the proof. 
Moreover, such modification does not affect client 
privacy because the packet content is encrypted 
and, since the scenario can be the Internet, 
everyone can sniff such (encrypted) content. 

4. Testbed 

The overall network has been implemented on a 
machine with quad-core processor (AMD FX-8350, 
4 GHz) and 20 Gb of DDR3 memory. Each block 
(client, middlebox, server) has been deployed in a 
separate virtual box and interfaces appropriately 
set to let them communicate as happens in the real 
case scenario.  
Client is equipped with two main programs: the 
first contains the steps described for the prover (a 
C++ program using the libsnark library), the second 
is a Python script that runs the prover program, 
initiates TLS handshake, and sends out HTTPS 
request and proof. Server is simply equipped with 
a Python script that opens for incoming TLS 
connection and replies to HTTPS request. 
Finally, the middlebox is made of an OpenVSwitch 
(OVS) switch that, through the Openflow protocol, 
communicates with the controller. This last has 
been implemented with the ONOS controller due 
to its ability to house new customized applications 
using the language Java. Due to this flexibility, it 
has been possible to implement the controller 
behavior as described in the section HTTPS ZK-
based IPS in SDN.  
 

 
Figure 7: network implementation 

Instead, following the IP and MAC addresses 
planning: 
 

 
Figure 8: IP network planning 
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Figure 9: MAC network planning 

Therefore, according to such plannings the rules 
applied to OVS switch are the following: 
 

Table 1: OVS rules 

ID Condition Action 

1 ICMP, ip_dst = 
192.169.2.18 

Set mac_dst = 
08:00:27:22:22:22, out 

port=eth2 

2 ICMP, ip_dst = 
192.168.2.15 

Set mac_dst = 

08:00:27:11:11:11, out 
port=eth1 

3 TCP, ip_dst =192.169.2.18, 
port = 443 

Set mac_dst = 
08:00:27:22:22:22, out 

port=eth2 

4 TCP, ip_dst =192.168.2.15, 
port = 443 

Set mac_dst = 

08:00:27:11:11:11 out 
port=eth1 

5 UDP, ip_dst =192.169.2.18, 
port = 49152 

Do not forward. Send 
to Controller 

6 TCP, ip_dst =192.169.2.18, 
port = 443, HTTPS request 

Do not forward. Send 
to Controller 

Finally, the practical ZK implementation used is 
Groth16. 

5. Results 

The experiment conducted consists of 5 testbed 
runs to test both scenario consistency and 
resiliency, and proof computation/verification 
times. SRS (proving and verification keys) and 
circuit size have been considered as well.   
Running the entire testbed means: 

1. Set up the environment as described in the 
previous sections. 

2. Keeping the middlebox running with its 
controller, switch, and verification unit. 

3. Run the server script which listens for 
incoming HTTPS requests. 

4. Run the client script which starts TLS 
connection, proof computation and sends 
out both proof and HTTPS request. 

The testbed has used the following ZK-related data 
which size is: 

• Circuit file size: 327,5 MB 
• Circuit input file size for prover 

(partial_info.in): 186 KB 
• Circuit input file size for verifier (input.in): 

2 KB 
• Proving key size: 655 MB 
• Verification key size: 17 KB 
• Proof size: 1019 bits 

The testbed results in terms of time spent for each 
ZK step are the following: 

Table 2: time required by each ZK step. 

Step Time (s) 
Circuit parsing and 

evaluation 
126.9799 

Key generator 21.1368 
Proof computation 14.2502 
Proof verification 0.0221 

 
Note that to achieve this result the libsnark library 
has been compiled by setting the flag 
DMULTICORE=ON, thus the computation uses all 
processing units available.  
However, the key generator and prover runs more 
than one step to achieve their goals. Following, the 
overall time each party spend: 

1. The overall time the generator spends is 
given by the sum between “Circuit passing 
and evaluation” and “key generator” 
(approximately 154,689s) 

2. The overall time the prover spends is given 
by the sum between “Circuit passing and 
evaluation” and “Proof computation” 
(approximately 141.2301s).  

3. The overall time the verifier spends is 
given “Proof verification” only 
(approximately 22ms).  

Therefore, according to Table 2 and the times 
reported above, it comes out that the verification 
process is the lightest one. Key generation is run 
only once, and its cost is amortized over time. 
Instead, proof generation process is the heavy and 
costly one and must be run each time a HTTPS 
request is emitted. 
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Moving the focus from ZK proof system to TLS 
performance, the scenario considered are two: in 
the first the switch only forwards packets from one 
side to the other, thus no proof verification or other 
systems are applied; in the second the scenario 
proposed so far with proof verification is applied. 
The logic behind this choice is to gather statistics 
about the impact of ZK proofs. 

Table 3: comparing overall performance. 

 No ZK proof ZK proof 
Handshake 

time (s) 
~ 0.170 ~ 0.170 

E2E time 
(s) 

~ 0.006 ~ 0.050 

In the table above, the handshake time does not 
vary whether one solution is used or the other. This 
fits with the fact that in the second scenario no TLS 
handshake packet is sent to the controller, so the 
behaviour in the two cases is the same.  
E2E time means the time passed from the HTTPS 
request sending to the server response receiving, 
thus this time has been measured at client side. As 
reported in the Table 3, the E2E time if ZK proof is 
used is 8.3x times higher than the first case. Further 
consideration can be done: knowing that the proof 
verification time is 22ms, considering the Figure 7 
the time required for the step 1, 2, 3, 4, 5 and 6, is 
28ms. Moreover, from the first case where the 
controller does not take over during HTTPS traffic, 
is known that step 1 and 6 of the Figure 7 requires 
on average 6ms (see Table 3), thus it comes that for 
steps 2, 3, 4, 5 of the Figure 7 the time spent is 22ms.  

Therefore, using the proposed solution in the 
testbed described, the additional time (once the 
proof is computed) spent is: 

1. 22ms to verify the proof. 
2. 22ms for the steps 2, 3, 4, 5 of the Figure 7 

For a total of 44ms more with respect to the first 
case (no firewall). 

In general, the time this architecture requires 
intended as the time passed from when the proof 
and HTTPS request are sent to when a response 
from server is received, is 8.3x more the case where 
no firewall, ISP or other security applications are 
used.  

6. Conclusion 

Using zk-SNARK proofs in a communication 
network means providing additional privacy 
preserving option with respect to current ones due 
to their intrinsic theoretical structure. This work 
proposes a network design strictly compliant with 
theoretical results and starting from the elements 
and actors foreseen by the adopted solution (i.e., 
Prover, Verifier, Middlebox in Groth16). Step by 
step, this framework has been implemented and 
extended with additional tools (such as ONOS 
controller) to let theoretical solutions meet 
technical implementation and make it practical. 
To show that such a solution can be adopted, an 
example of computation has been designed and 
implemented. This consists in an intrusion 
prevention system accepting HTTPS messages if 
related proof verification process is successful. 
Clients can generate proof based on the message 
they are willing to send if they respect policy rules 
provided by the destination network, where 
allowed methods and paths are specified. 
All this is orchestrated by an ONOS controller in 
which a custom application is installed. 
The results analysis confirms how the major effort 
in terms of resource consumption such as storage 
and computation, is up to provers (or clients). The 
effort the generator makes is amortized over time 
and over message exchanges, and thus not 
considered. While verifier (middlebox) needs 20 
KB of storage and spends 22ms to verify a proof, 
the prover (client) needs ~ 980MB of storage and 
spends 142 seconds to compute a proof. 
Finally, the E2E time intended as the time passed 
from when the proof and HTTPS request have been 
sent to when the server response have been 
received, is of 0.050ms in the proposed testbed 
which is 8.3x higher to the case where middlebox 
is deployed. However, this approach provides 
both firewall effectiveness without affecting users’ 
privacy, with the possibility to further extend the 
controller capabilities in an easy way (i.e., 
implement ONOS application such as malware 
detection using Java).  
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