

EXECUTIVE SUMMARY OF THE THESIS

SDN implementation of zero-knowledge intrusion prevention
system

TESI MAGISTRALE IN TELECOMMUNICATION ENGINEERING – INGEGNERIA DELLE
TELECOMUNICAZIONI

AUTHOR: Giulio Siano

ADVISOR: Giacomo Verticale

ACADEMIC YEAR: 2022-2023

1. Introduction

In the scenario of network security, firewalls are
basic component to demarcate the boundary
between a network and external environment,
such as the Internet, and foster integrity,
confidentiality and availability of data and
services.

Several solutions with diverse features and
functionalities are available to meet security
objectives. Choosing a firewall solution is a critical
decision as it affects traffic flows and end-to-end
performance.

The very first generation of firewalls were built
upon the principle of applying sets of rules to
incoming data, denying traffic with certain
characteristics and potentially dangerous. Acting
as filters, the criteria adopted to state whether
incoming traffic is legit includes IP header values,
protocol types, port numbers and others [1]. A
HTTPS firewall product implementing this
solution would accept connection on default port
(443) to allow such protocol, resulting in a simple

firewall configuration and easy maintenance.
Moreover, since criteria consider few header fields
and thus non-personal information, the cost in
terms of time required to process the packet is low
and non-privacy affecting. However, two main
concerns influence this solution: HTTPS traffic is
not allowed in non-standard ports and non-HTTPS
traffic is allowed on the opened port (443).

Other solutions add the additional feature of
inspecting TLS packet content: data is decrypted,
and content analyzed in search for threats [2].
Some intrusion prevention systems use this option
to apply further inspection [3]. While more
accurate analysis can be performed, this solution is
the most intrusive one raising critical concern on
users’ privacy.

These two products highlight how choosing a
network security appliance involves deciding the
right trade-off between system effectiveness and
users’ privacy, even though both properties are
critical to achieve.

However, with the introduction of Zero
Knowledge proofs, an advanced cryptographic
notion, a party can convince a second of their

Executive summary Giulio Siano

2

possession of specific information while
preserving the confidentiality of said information.
Thus, a system using such tool makes unnecessary
the exchanging of sensitive information (or their
disclosure by decrypting) to demonstrate they
comply with specific requirements. This
technology can be implemented in security
appliances to remove the limitation dictated by the
trade-off decision between system effectiveness
and users’ privacy and instead allows to achieve
both [4]. In this scenario the first party is the prover
(a client that provide the proof along with data
packet) and the second party is the verifier (the
middlebox that check the validity of the received
proof), while server is kept free from such process.
A third party, the key generator, computes needed
data to make this process work. The entire
mechanism is transparent to the final server. The
resulting topology is following:

Figure 1: Network topology in [4]

A middlebox is placed at the perimeter of the
network, and its role is to intercept incoming
proofs and their related packet (the packet on
which proof is computed). If the verification
process is successful, data packet can be forwarded
to the final server.

Nevertheless, beyond the concept of middlebox as
security appliance able to support ZK proofs, no
practical implementation has been provided. Its
structure has not been further developed opening
the opportunity to investigate its internal
processes. Moreover, the key generator, prover
and verifier has been programmed as a single
entity embedded in the middlebox, without
reflecting a real-case scenario where the three are
distributed across the network. Finally, the
advantage that a ZK proof does not reveal any
sensitive information neither they can be somehow
extracted, could be a risk for security: when the
verification process is performed and the prover
detains both data packet and proof, no method is
provided to check whether the proof has been
actually computed on the received data packet
since the code provided foresees the ciphertext as

the private input. In fact, a malicious client can
compute a proof on a legit data packet and send it
instead along with a non-valid one.

This thesis addresses these problems providing a
SDN ZK-based intrusion prevention system
implementation focusing on the HTTP-over-TLS
traffic.

2. HTTPS ZK-based IPS in SDN

Implementing a ZK system is intrinsically
pervasive due to the computation effort required
by this cryptographic tool. It has impact on the
client side, which must be equipped with a specific
program and ZK-related data, and on the node that
previously was a firewall and that now must act as
a verifier. Thus, the overall system architecture
must be carefully designed to support customized
computational tasks. In fact, the processing steps
required to verify a ZK proof influences network
traffic as the action to be performed on the data
packet, that is whether it is allowed to pass or
dropped, depends on the verification process
result.
This requires effective management of traffic and
the ability to perform more complicated or
customized computations, as the check of binding
between proof and data packet. The middlebox
must have the capability of supporting such tasks.

These requirements can be met by structuring the
middlebox as an SDN environment, where a
centralized controller is the single node handling
the control plane. To handle traffic passing
through the data plane and to execute proof
verification process, the controller can be precisely
programmed to accomplish such objectives.
Furthermore, this solution provides the additional
advantage that the system can be further enhanced
with supplementary features, due to flexibility and
versatility that such architecture offers. This is the
reason why the security appliance proposed by
this thesis is an intrusion prevention system: the
inherited modularity of such middlebox, provides
the opportunity to support additional
computations that are also performed by common
IPS, such as inspecting traffic patterns, traffic
monitoring, search for intrusion attempts and so
on.

Thus, the topology that addresses these challenges
is the following:

Executive summary Giulio Siano

3

Figure 2: HTTPS ZK-based IPS architecture (in

blue the elements introduced)

As depicted in the figure above, the middlebox
consists of a switch in the data plane and of both
controller and a processing module in the control
plane. The need for the second module in the
control plane lies in the fact that the controller is in
charge of handling data plane device and traffic
flowing through it, thus the computation it
performs must be as lightweight as possible. For
more complex tasks, such as proof verification or
other IPS monitoring and controlling activities,
SDN controller should outsource them to this
second module.

The client is equipped with a program able to
initiate TLS communication and generate ZK
proof. Thus, according to the particular stage of its
lifecycle, it acts as both HTTPS requester and as a
prover. Its functions are initiating handshake with
server, encrypting HTTP requests, generating
proofs, storing TLS information, resuming
previous TLS sessions.

The second block, the middlebox, comprises
multiple components belonging to both data and
control plane. As the data packet and proof arrives,
they are forwarded to the second module for
verification and, according to the result, the
underlying switch is instructed to let pass or drop
the HTTPS request. Therefore, the middlebox
functions allow TLS handshake, verifying proofs
and whether they have been computed on the
received data packet, and packet control (that is
instructing the switch).

Finally, the server is a minimalist component that
runs an HTTPS server accepting incoming TLS
connection request and does not participate in any
way to ZK processes. It only completes TLS
handshake and participates in HTTPS exchange.

3. Network lifecycle

The network and its elements are designed to pass
through stages based on HTTP-over-TLS and ZK
protocols. These stages form the network’s
lifecycle, involving data and control plane
interactions for packet and connection handling.

Figure 3: Network lifecycle

Identifying macro-stages creates a structured
framework for understanding network operations
in various phases and makes easier handling TLS
and ZK proofs communication complexities.
The advantage this lifecycle offers is the only one
setup phase execution, which is also the one with
the higher cost in terms of computation. Once the
initial parameters are generated, they can be
reused for future interactions, so its cost is
amortized.
Following, each step of network lifecycle is
described.

3.1. Setup, preparation processes
and TLS handshake

Since different technologies and protocols are used
in this architecture, the setup phase needs a
distinction for each of them.

Figure 4: setup steps

Executive summary Giulio Siano

4

1) SDN startup: this step involves the
middlebox only. Both switch and
controller are booted up and, using the
Openflow protocol, they exchange network
traffic information. Moreover, the module
running the verifier is started too. The
connection between switch and controller
is essential for the controller to orchestrate
network behavior. In fact, controller issues
specific instructions to the underlying
switch, instructing to handle certain
packet. The main rules applied are the
following: a) the default behavior is let
traffic flows without interruption; b) when
a HTTP-over-TLS packet is detected,
specifically when one contains a http
request destined for the server, the
controller retains such packet for further
process; c) UDP packet with specific
destination port are forwarded to
controller. They are ZK proofs sent by the
client.
The two will be sent to the verifier for
verification process.

2) Zero-Knowledge preparation: the key
elements to implement the ZK solution are
a) circuit, which is the program that runs
the firewall (i.e., check that the packet
content complies with network policy
rules), b) circuit input file, that contains
public input, private input for the circuit
and circuit-related data (i.e., gates, wires
and their connection), c) proving key and
verification key. So, when it comes to
distributing such elements, the client
receives the circuit, proving key, and input
file, while the verifier receives the
verification key and input file only.
Indeed, verification process consists in
checking whether a certain equality is
verified [5], therefore no circuit is needed.
In this phase, input file detained by both
prover and verifier contains circuit data
only.

3) TLS handshake: this step requires the boot
up of both HTTPS client and server. While
the server listens for incoming TLS
connections, the client starts TLS
handshake. Connection related
parameters are stored to be later used for
proof computation or to reuse that TLS
session.

Eventually, information detained by all parties
are shown in the following figure:

Figure 5: files detained by each party at the end of

the setup phase

The policy metadata file contains the rules applied
in the network. When the circuit runs, it decrypts
HTTPS packet using TLS session information and
checks its content against the rules. If it complies,
the proof can be computed.

3.2. Execution of ZK proof
computation

The second step of the lifecycle (Figure 3) involves
the prover (client) only. First, as stated in the
previous section, the input file contains circuit-
related data only, consequently it must be filled
with private and public inputs. This file is
structured as follows:

Figure 6: input file structure

The analysis performed on such file is what
allowed the separation, from a programming point
of view, of the three ZK entities (key generator,
prover, and verifier). Its interpretation and its
filling with public and private input is performed

Executive summary Giulio Siano

5

manually (by a custom function, outside the used
libraries), and by splitting and converting them
into the appropriate representation.
As a second step, circuit and input are loaded and
ready to be executed. Proof is then computed, and
the circuit output is a binary file.

3.3. Sending of HTTP request over
TLS and ZK proof verification

Now that proof is ready, the client encapsulates it
in a UDP packet with specific destination port that
controller uses to intercept proofs. Then, using the
previous TLS session, send HTTP request over the
channel. The switch forwards both UDP and
HTTPS request to the controller which in turn
sends them to the verifier module (the HTTPS
packet is encapsulated into a UDP packet).
Here, the input file is filled with public input only,
such as TLS public session data, policy rules and
others. Then both input and verification key files
are loaded, and proof received verified. If the result
is PASS, the controller instructs the underlying
switch to forward the HTTPS packet to server,
otherwise to drop it. Finally, the server receives the
request and replies with ack, and the resources
content requested.
Together with proof verification, the check about
HTTPS request and proof binding is performed.
Because verifier does not fill input file with private
input (since they are the secrets), public input can
be exploited. A proof verification is successful if
the proof is valid and if the public content used is
the same for both prover and verifier (for example,
network rules). Thus, configuring the circuit at
client side to include HTTPS request as public
input, and at middlebox side to include in the input
file the HTTPS request received, the prover is
forced to send out the same HTTPS request used to
compute the proof.
Indeed, the circuit has been programmed to use the
HTTPS request in public input to compute the
proof and if it is invalid the proof computation
fails. Instead, if a valid proof is sent out along with
another HTTPS request, the verifier would insert
the received HTTPS in the public input but since it
is different from what used by the prover to
compute the proof, the verification process fails.
Summarizing, public inputs used by the prover
must be the same as those used by the verifier. By
requiring the HTTPS request as a public data,
prover must provide to the verifier the same

HTTPS packet used to compute the proof.
Moreover, such modification does not affect client
privacy because the packet content is encrypted
and, since the scenario can be the Internet,
everyone can sniff such (encrypted) content.

4. Testbed

The overall network has been implemented on a
machine with quad-core processor (AMD FX-8350,
4 GHz) and 20 Gb of DDR3 memory. Each block
(client, middlebox, server) has been deployed in a
separate virtual box and interfaces appropriately
set to let them communicate as happens in the real
case scenario.
Client is equipped with two main programs: the
first contains the steps described for the prover (a
C++ program using the libsnark library), the second
is a Python script that runs the prover program,
initiates TLS handshake, and sends out HTTPS
request and proof. Server is simply equipped with
a Python script that opens for incoming TLS
connection and replies to HTTPS request.
Finally, the middlebox is made of an OpenVSwitch
(OVS) switch that, through the Openflow protocol,
communicates with the controller. This last has
been implemented with the ONOS controller due
to its ability to house new customized applications
using the language Java. Due to this flexibility, it
has been possible to implement the controller
behavior as described in the section HTTPS ZK-
based IPS in SDN.

Figure 7: network implementation

Instead, following the IP and MAC addresses
planning:

Figure 8: IP network planning

Executive summary Giulio Siano

6

Figure 9: MAC network planning

Therefore, according to such plannings the rules
applied to OVS switch are the following:

Table 1: OVS rules

ID Condition Action

1 ICMP, ip_dst =
192.169.2.18

Set mac_dst =
08:00:27:22:22:22, out

port=eth2

2 ICMP, ip_dst =
192.168.2.15

Set mac_dst =

08:00:27:11:11:11, out
port=eth1

3 TCP, ip_dst =192.169.2.18,
port = 443

Set mac_dst =
08:00:27:22:22:22, out

port=eth2

4 TCP, ip_dst =192.168.2.15,
port = 443

Set mac_dst =

08:00:27:11:11:11 out
port=eth1

5 UDP, ip_dst =192.169.2.18,
port = 49152

Do not forward. Send
to Controller

6 TCP, ip_dst =192.169.2.18,
port = 443, HTTPS request

Do not forward. Send
to Controller

Finally, the practical ZK implementation used is
Groth16.

5. Results

The experiment conducted consists of 5 testbed
runs to test both scenario consistency and
resiliency, and proof computation/verification
times. SRS (proving and verification keys) and
circuit size have been considered as well.
Running the entire testbed means:

1. Set up the environment as described in the
previous sections.

2. Keeping the middlebox running with its
controller, switch, and verification unit.

3. Run the server script which listens for
incoming HTTPS requests.

4. Run the client script which starts TLS
connection, proof computation and sends
out both proof and HTTPS request.

The testbed has used the following ZK-related data
which size is:

• Circuit file size: 327,5 MB
• Circuit input file size for prover

(partial_info.in): 186 KB
• Circuit input file size for verifier (input.in):

2 KB
• Proving key size: 655 MB
• Verification key size: 17 KB
• Proof size: 1019 bits

The testbed results in terms of time spent for each
ZK step are the following:

Table 2: time required by each ZK step.

Step Time (s)
Circuit parsing and

evaluation
126.9799

Key generator 21.1368
Proof computation 14.2502
Proof verification 0.0221

Note that to achieve this result the libsnark library
has been compiled by setting the flag
DMULTICORE=ON, thus the computation uses all
processing units available.
However, the key generator and prover runs more
than one step to achieve their goals. Following, the
overall time each party spend:

1. The overall time the generator spends is
given by the sum between “Circuit passing
and evaluation” and “key generator”
(approximately 154,689s)

2. The overall time the prover spends is given
by the sum between “Circuit passing and
evaluation” and “Proof computation”
(approximately 141.2301s).

3. The overall time the verifier spends is
given “Proof verification” only
(approximately 22ms).

Therefore, according to Table 2 and the times
reported above, it comes out that the verification
process is the lightest one. Key generation is run
only once, and its cost is amortized over time.
Instead, proof generation process is the heavy and
costly one and must be run each time a HTTPS
request is emitted.

Executive summary Giulio Siano

7

Moving the focus from ZK proof system to TLS
performance, the scenario considered are two: in
the first the switch only forwards packets from one
side to the other, thus no proof verification or other
systems are applied; in the second the scenario
proposed so far with proof verification is applied.
The logic behind this choice is to gather statistics
about the impact of ZK proofs.

Table 3: comparing overall performance.

 No ZK proof ZK proof
Handshake

time (s)
~ 0.170 ~ 0.170

E2E time
(s)

~ 0.006 ~ 0.050

In the table above, the handshake time does not
vary whether one solution is used or the other. This
fits with the fact that in the second scenario no TLS
handshake packet is sent to the controller, so the
behaviour in the two cases is the same.
E2E time means the time passed from the HTTPS
request sending to the server response receiving,
thus this time has been measured at client side. As
reported in the Table 3, the E2E time if ZK proof is
used is 8.3x times higher than the first case. Further
consideration can be done: knowing that the proof
verification time is 22ms, considering the Figure 7
the time required for the step 1, 2, 3, 4, 5 and 6, is
28ms. Moreover, from the first case where the
controller does not take over during HTTPS traffic,
is known that step 1 and 6 of the Figure 7 requires
on average 6ms (see Table 3), thus it comes that for
steps 2, 3, 4, 5 of the Figure 7 the time spent is 22ms.

Therefore, using the proposed solution in the
testbed described, the additional time (once the
proof is computed) spent is:

1. 22ms to verify the proof.
2. 22ms for the steps 2, 3, 4, 5 of the Figure 7

For a total of 44ms more with respect to the first
case (no firewall).

In general, the time this architecture requires
intended as the time passed from when the proof
and HTTPS request are sent to when a response
from server is received, is 8.3x more the case where
no firewall, ISP or other security applications are
used.

6. Conclusion

Using zk-SNARK proofs in a communication
network means providing additional privacy
preserving option with respect to current ones due
to their intrinsic theoretical structure. This work
proposes a network design strictly compliant with
theoretical results and starting from the elements
and actors foreseen by the adopted solution (i.e.,
Prover, Verifier, Middlebox in Groth16). Step by
step, this framework has been implemented and
extended with additional tools (such as ONOS
controller) to let theoretical solutions meet
technical implementation and make it practical.
To show that such a solution can be adopted, an
example of computation has been designed and
implemented. This consists in an intrusion
prevention system accepting HTTPS messages if
related proof verification process is successful.
Clients can generate proof based on the message
they are willing to send if they respect policy rules
provided by the destination network, where
allowed methods and paths are specified.
All this is orchestrated by an ONOS controller in
which a custom application is installed.
The results analysis confirms how the major effort
in terms of resource consumption such as storage
and computation, is up to provers (or clients). The
effort the generator makes is amortized over time
and over message exchanges, and thus not
considered. While verifier (middlebox) needs 20
KB of storage and spends 22ms to verify a proof,
the prover (client) needs ~ 980MB of storage and
spends 142 seconds to compute a proof.
Finally, the E2E time intended as the time passed
from when the proof and HTTPS request have been
sent to when the server response have been
received, is of 0.050ms in the proposed testbed
which is 8.3x higher to the case where middlebox
is deployed. However, this approach provides
both firewall effectiveness without affecting users’
privacy, with the possibility to further extend the
controller capabilities in an easy way (i.e.,
implement ONOS application such as malware
detection using Java).

7. Bibliography

[1] Cisco, “The Future of the Firewall White
Paper,” 2019, [Online]. Available:
https://www.cisco.com/c/en/us/products/c

Executive summary Giulio Siano

8

ollateral/security/firewalls/ngfw-
futureoffirewalling-wp.html

[2] Cisco, “SSL Inspection (SSLi) Bundles for
Scalable Inspection of SSL/TLS Encrypted
Traffic.” 2022. [Online]. Available:
https://www.cisco.com/c/en/us/products/c
ollateral/security/ssli-bundles-wp.html

[3] T. Radivilova, L. Kirichenko, D. Ageyev, M.
Tawalbeh, and V. Bulakh, “Decrypting
SSL/TLS traffic for hidden threats
detection,” in 2018 IEEE 9th International
Conference on Dependable Systems, Services
and Technologies (DESSERT), 2018, pp. 143–
146.

[4] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau,
and M. Walfish, “Zero-Knowledge
Middleboxes,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp.
4255–4272.

[5] J. Groth, “On the Size of Pairing-Based
Non-interactive Arguments,” M. Fischlin
and J.-S. Coron, Eds., in Lecture Notes in
Computer Science, vol. 9666. Berlin,
Heidelberg: Springer Berlin Heidelberg,
2016. doi: 10.1007/978-3-662-49896-5.

	1. Introduction
	2. HTTPS ZK-based IPS in SDN
	3. Network lifecycle
	3.1. Setup, preparation processes and TLS handshake
	3.2. Execution of ZK proof computation
	3.3. Sending of HTTP request over TLS and ZK proof verification

	4. Testbed
	5. Results
	6. Conclusion
	7. Bibliography

