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Abstract  
The pacing adoption of Artificial Intelligence (AI) technologies has encouraged researchers 

to work on the potential change the collaboration between human intelligence and machine 

intelligence could make to various disciplines. The main goal of this thesis revolves around 

providing a systematic analysis of the scientific literature referring to the application of 

artificial collaborative intelligence (CI) in the Manufacturing sector. Aiming to provide a 

clear mapping of the concept CI, this work reviews the paradigm shift from Industry 4.0 to 

Industry 5.0, taking us from system-centric manufacturing towards human-centric 

manufacturing. With a deep focus on AI and Machine Learning, this works reviews the 

enabling technologies of the new paradigm. Also, this work reviews the recent research 

efforts towards developing frameworks supporting a bi-directional collaboration between 

humans and intelligent machines. Additionally, a detailed review on the past literature on 

Artificial CI empirical studies between 1999-2022 was carried out to highlight the 

evolution of the topic before and after both Industry 4.0 (I4.0) and Industry 5.0 (I5.0) 

introduction. Furthermore, this work provides a qualitative analysis of the readiness of 

manufacturing SMEs (MSMEs) to adopt the recent CI technological advancements. The 

parameters used for the analysis are the proposed system’s usability in addition to both 

affordability and maturity of utilized technologies. The qualitative analysis indicated that 

compared to large enterprises, MSMEs are not yet ready to invest in the majority of recently 

introduced CI technologies, as it encounters difficulties finding finances, labor skills, and 

knowledge to be early adopters. This result paves the way for the second research question 

trying to study the potential impact of artificial CI on MSMEs from a different angle. A 

literature review on artificial CI a in MSMEs was carried out between 1999-2022 to highlight 

the popularity of the topic in the entrepreneurial sphere before and after both I4.0 and I5.0 

introduction. Later on, adopting a 4-stage lifecycle, this work investigates the potential 

impact of the recent CI technologies upon the different lifecycle challenges of a MSME 

including new product development, labor skill gap filling and scaling up operations. 

Nevertheless, similar to the first research question, this work provides a qualitative analysis 

of the readiness of manufacturing SMEs to adopt the recent CI technological advancements 

according to the new perspective. Finally, this work summarizes the main challenges 

hindering the adoption of CI technologies. 

Keywords: Collaborative Intelligence (CI), Artificial Intelligence (AI), Human-AI 

Collaboration, Machine Learning (ML), Manufacturing Small and Medium Enterprises 

(MSMEs), Industry 4.0, Industry 5.0, Human-Centric AI-based Manufacturing 
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1. Introduction to the Research   
Manufacturing is regarded as one of the key driving forces of the global economy as it  

“represents a cornerstone of many national economies, a crucial sector to the generation of 

structural change, productive jobs and sustainable economic growth” (Herman, 2016). 

According to (HitHorizons, 2021), the European manufacturing sector yielded around € 

12,647 billion in 2021, which represents 16.13% of turnover of all companies available in the 

database. Also, according to (Statista, 2021), the manufacturing sector has provided about 

17% of the European jobs opportunities in 2021. Considering the various rising trends such 

as globalisation, resource scarcity and digitalisation, European manufacturing sectors should 

necessitate facilitating innovation-driven transformations to achieve more competitive, 

sustainable and modern production. Therefore, as emphasized by (EuropeanCommision, 

2016), industrial “modernisation” has therefore been proved of crucial importance for both 

“economic dynamism” and “the lasting creation of growth and jobs”. Following the 

integration of the Internet, communications, computers and other information-based 

technologies and digitalised management methods, the traditional manufacturing industry has 

“gradually evolved from large-scale production line to personalized, customized, and digital” 

(Tingting, et al., 2021). 

Undoubtedly, AI is currently one of the standout technological trends that are currently 

attracting a huge interest from researchers and entrepreneurs. Today's manufacturing systems 

are becoming increasingly complex, dynamic and connected. The factory operation 

encounters challenges of “highly nonlinear and stochastic activity due to the countless 

uncertainties and interdependencies that exist” (Arinez, et al., 2020). Recent advancements in 

AI, especially Machine Learning (ML) have shown a promising potential to revolutionize the 

manufacturing domain through incorporating advanced analytics tools for mining and 

processing the endless amounts of manufacturing data collected, known as Big Data (BD). 

 

 

 

 

 

 

 

 

Figure 1 Forecasted Adoption of AI Technologies in the Manufacturing Market (Khandelwal, 2018) 
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1.1 Manufacturing Small and Medium Enterprises (MSMEs) 

The digitalization of manufacturing is the core of Industry 4.0 initiative. AI and ML are 

popular topics of Industry 4.0. Many publications regarding these topics have been published, 

but they are primarily focused on larger enterprises (Hansen & Bogh, 2021). For small and 

medium-sized enterprises (SMEs) and start-ups, “the issue is often a lack of internal research 

and development capabilities, expertise, and funding to support such assessments” (Spoehr, et 

al., 2021). However, according to (EuropeanCommision, 2016), SMEs are considered the 

economic backbone of many countries, as they represent over 99% of all businesses and 

“contribute on average with more than 50% of the value to the economy in the European 

Union and with almost 100 million employees, represent approximately 70% of the European 

workforce” (Powell, et al., 2021). This makes the adoption of Industry 4.0 and the 

digitalization of manufacturing a fundamental challenge for most SMEs, many of which 

already struggle to remain competitive in a rapidly evolving business climate. Thus, it is 

increasingly important that these kinds of companies also have easy access to these 

technologies and can make them operational. In other words, smaller enterprises will have to 

gradually deal with topics such as AI and ML. 

 

 

 

 

 

 

 
 

Accordingly, in the medium term, SMEs should turn their attention to harnessing the 

potential of advanced manufacturing technologies. Fortunately, technologies such as “high 

speed and high precision computer numerical control (CNC) machines, collaborative robots 

(cobots), or 3D printers are currently economically more feasible for SMEs” (Rauch, et al., 

2019). Although the widespread deployment of these technologies in industrial environment 

will expectedly continue for some years to come, this shift will also be mastered by those 

who adapt to it at an early stage. 

Figure 2 Comparison between AI adoption in SMEs and Large enterprises (Bettoni, et al., 2021) 
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1.2 Manufacturing Start-ups 
 

Start-ups, which are a critical subsegment of SMEs, have become important sources of 

innovation. In most cases, “startups tend to be a lot riskier than their small business 

counterparts as they are often starting something very new and run the risk of over-inflating 

too soon due to their fast growth” (Amery, 2018).  

The innovative manufacturing start-ups represent one of the main sources of innovation that 

stimulate the growth of the western economies. Following years of offshoring manufacturing 

activities in an attempt to cut costs, science and engineering-based manufacturing firms have 

opened the gate to achieve a sustainable, competitive manufacturing base. "We are always 

looking to grow businesses that sell products outside the community and therefore bring 

money in. Manufacturing is one of the strongest industries in terms of improving your local 

economy," says Chris Reddin, executive director of the Georgia Center of Innovation for 

Manufacturing center. In Italy, for example, (Statista, 2021) revealed that 75 percent of all 

startups operated in the sector of business services as of March 2021. This was by far the 

most common sector in the country. The industry of manufacturing, energy, and mining 

followed, with 17 percent of the total. 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the integral role manufacturing start-ups play in the economy, research relating to the 

manufacturing strategy development process of start-ups is surprisingly not matching the 

pacing digitalisation advancements. As a result, this paper overviews the potential impact of 

augmenting the human capabilities with artificial intelligence technologies on the different 

stages of the small and medium enterprises’ lifecycle. However, a start-up life-cycle would 

Figure 3 Distribution of innovative startups in Italy in 2021 
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be applied to the research to account for the uncertainty and dynamicity of the initial and final 

stages. 

The paper is organized as follows: 

Section 1 presents a brief introduction to the research. Section 2 provides the proposed 

methodology of literature research.  Section 3 presents the results of the analysis of Research 

Question 1 and section 4 provides the detailed literature research revolving around the 

different angles of the research question mentioned above. Section 5 presents the results of 

the analysis of Research Question 2 and Section 6 provides the detailed literature research 

revolving around the different angles of the associated research question. Finally, in Section 

7, the main challenges of CI are summarized.  

 

RQ1: What is the potential impact of collaborative intelligence (CI) upon the Manufacturing 

Sector? 

RQ2: What is the potential impact of CI upon MSMEs ? 
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1.3 A Recap of the Recent Waves of the Industrial Revolution   
 

Over the past years, the global economic recession has been pushing for a big change within 

the industrial sector. Offshoring activities aiming for lower cost labor has not become the 

fittest strategy to foster competitiveness. Instead, companies should be committed to the “real 

value-added” it offers to the market (Alcácer & Cruz-Machado, 2019).  

Industry 4.0 (I4.0) is an initiative introduced in 2011 to make the German manufacturing 

industry more competitive (‘Industrie 4.0’). Later, this initiative has been rapidly adopted in a 

global manner. According to (Lu, 2017), I4.0 can be portrayed as Cyber-Physical Systems 

(CPS) production relying upon heterogenous BD, knowledge integration, and interoperable 

service-oriented manufacturing process alongside the deployment of high technologies such 

as the Internet of Things (IoT), Internet of Services (IoS), Radio-Frequency Identification  

technologies (RFID),  cognitive computing, Cybersecurity (CS), Cloud Computing (CC), and 

advanced Robotics. In a production context, (Leyh, et al., 2017) refer to I4.0 as the intelligent 

flow of the workpieces machine-by-machine in a factory, on a real-time communication 

between machines. Thus, I4.0 aims to amplify the smartness of the manufacturing industry, 

improve the mass productivity by interconnecting machines and devices that can intelligently 

communicate and interact throughout the product’s lifecycle, and elevate the manufacturing 

system’s adaptability by developing flexible and collaborative systems to solve problems and 

make the best decisions (Peruzzini, et al., 2017). The goal is to enable autonomous decision-

making processes, tracking assets and processing sensory data in real-time, and facilitate 

equally real-time connected value creation networks through early involvement of 

stakeholders, and vertical and horizontal integration (Leyh, et al., 2017).  

 

 

 

 

 

 

 

 

 

  
Figure 4 Industry 4.0 Technological Pillars (Puskas & Bohács, 2019) 
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1.3.1 Reference Model of I4.0 

Different German institutions worked together to develop a reference model for I4.0. The 3D 

model shown in Figure 5 represents the development of a shared language and a structured 

framework that introduces the core bases of I4.0, incorporates existing standards, and fill the 

gaps by guiding the implementation of the enabling technologies (ZVEI, 2015) .  

 

Figure 5 I4.0 Reference Model (RAMI4.0) (ZVEI, 2015) 
 
Briefly, the horizontal right axis is labelled by “Hierarchy level”, as it represents the 

hierarchy levels adopted from the IEC 62264 standard, including the entire functionalities in 

the industry. The hierarchy levels range from the “product” to the last stage of the I4.0 

development enterprise environment, which is labelled by “connect world”. The last stage of 

the IEC 62264 standard deploys IoT and IoS to connect enterprise, customers, and suppliers 

(Pauker, et al., 2016). The horizontal left axis, labelled by Life Cycle & Value Stream, 

represents the life cycle of facilities and products according to the IEC 62890 standard. The 

structured layers on the vertical axis represent the decomposition of a machine into its 

properties, guiding a “step-by-step migration from the actual to the future manufacturing 

environments” (Pauker, et al., 2016). The layers structured on the vertical axis are 

summarized below:  

- Asset Layer: It resembles real components including both physical (i.e Conveyor, 

pallets, robots,…etc) and non-physical (i.e Software) elements. As well, this layer 

resembles the human factor, which is a part of the transformation to the virtual 

domain achieved by the “Integration Layer” via Human-Machine Interface (HMI) 

(Zezulka, et al., 2016).  

 



17 
 

- Integration Layer: It provides information for the digitization of the assets in a 

processable form to be managed by computer aided controls . This layer collects 

information through the various technologies connected to Information Technologies, 

including sensors, RFID readers, and HMI (Marcon, et al., 2017). 

 
- Communication Layer: It manages standardization of communication by directing  

uniform data format and predefined protocols to the “Information Layer” (Zezulka, et 

al., 2016). As well, this layer provides services for control of the “Integration Layer”  

(Marcon, et al., 2017). 

 
- Information Layer: It regularly processes and integrates the data gathered from 

different sources alongside receiving and transforming events to match the data which 

are available for the “Functional Layer” (Zezulka, et al., 2016). 

 
- Functional Layer: It supports formal descriptions of functions, develops a horizontal 

integration platform of different functions, and generates rules and decision-making 

logic. Remote access is restricted to the Functional layer due to the importance of data 

integrity (Zezulka, et al., 2016).  

 
- Business Layer: It ensures the integrity of functions in the value stream, facilitates 

mapping of the business model and links between different business models (Zezulka, 

et al., 2016).  

 

1.3.2 The Key Technologies of I4.0 

In a manufacturing context, as pointed earlier, I4.0 aims to develop “intelligent and 

communicative systems including machine-to-machine communication and human-machine 

interaction. Now and in the future, companies have to deal with the establishment of effective 

data flow management that is relied on the acquisition and assessment of data extracted from 

the intelligent and distributed systems interaction. The main idea of data acquisition and 

processing is the installation of self-control systems that enable taking the precautions before 

system operation suffered” (Salkin, et al., 2017). As well, I4.0 fosters interoperability, agility, 

flexibility, decision-making, and efficiency (Havard, et al., 2020). 
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This subsection presents the nine building blocks of the I4.0 frameworks as detailed by 

(Salkin, et al., 2017):  

1.3.2.1 The Industrial Internet of Things (IIoT) 

Following the continuous advancements with respect to mobile devices such as RFID 

readers, Wireless sensor Networks (WSN), CC, and different communication networks, IoT 

has witnessed a noticeable maturity within various fields (Sadiku, et al., 2017). As implied by 

its name, IoT can be branched into a couple of terms: “internet” and “things”. Firstly, 

“Internet” refers to a “A global system serving users worldwide with interconnected 

computer networks using Standard Internet Protocol suit (TCP/IP)” (Alcácer & Cruz-

Machado, 2019). On the other side, the “things” refers to anything like an object, service or a 

human (Madakam, et al., 2015). Thing-to-Thing, Thing-to-Human and Human-to-Human 

establish a network inside IoT and exchange data through the internet (Sadiku, et al., 2017). 

According to (Bortolini, et al., 2017), IoT refers to the “ubiquitous presence, even in the 

industrial environment, of several things or objects able to co-operate and interact with each 

other for a common purpose”. Thus, IoT promotes the digitalization and virtualization of the 

entire physical “things” (Peruzzini, et al., 2017). Hence, the digitalized information collected 

from heterogenous sources (i.e. virtual copy of the physical world or sensors) can be 

incorporated to enhance production parameters (Peruzzini, et al., 2017).  

Among the efforts to define an IoT design architecture, and adopted from the works of (Li, et 

al., 2015) and (Hammoudi, et al., 2018), (Alcácer & Cruz-Machado, 2019) presented a 4-

layered IoT Framework as briefed below and elaborated in Figure 6: 

- Sensing Layer: It senses the conditions associated with the connected “things” in a 

unique and integrable manner. The “things” include actuators, sensors, RFID tags, 

wearable devices, …etc.  

 

- Network Layer: It provides the infrastructure required for transferring the processed 

data via the communication networks from the sensing layer to the service layer 

alongside supporting the exchange of data by triangulating an automatic mapping of 

the connected “things” within the network.  
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- Service Layer: It deploys middleware technology to improve the services requested 

by users and applications on a regular basis. Also, this layer maintains the 

interoperability of the heterogenous devices via an adequate management of data and 

a well-structured ontology database.  

 

- Interface Layer: It facilitates the interconnection and management of the networked 

“things” beside ensuring a user-friendly, understandable, and clear interaction 

between the user and the system. deploys middleware technology to improve the 

services requested by users and applications on a regular basis. Also, this layer 

maintains the interoperability of the heterogenous devices via an adequate 

management of data and a well-structured ontology database.  

 

In a manufacturing context, the IIoT refers to the networking of industrial devices via the 

internet to satisfy industry’s need for real-time data availability and high reliability by 

harnessing the advancements of several technologies such as sensory devices and BD 

analytics (Andulkar, et al., 2018). A typical IIoT framework is described in detail in section 

4.8.1. 

On the other hand, as an extension of IoT, the IoS can be viewed as the connectivity and 

interaction of the “things” forming valuable services (Alcácer & Cruz-Machado, 2019).  

1.3.2.2 Cloud Computing (CC) 

CC provides an option for firms who prefer to invest in IT outsourcing resources.  (Shetty & 

Panda, 2021) characterized CC for  SMEs as a “disruptive innovation, possessing the 

required elements such as on-demand, low cost, and low infrastructure that threaten the 

Figure 6 Generic Service-oriented Architecture of IoT (Li, et al., 2015) 
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existing premise-based IT market”. According to (Yandong & Yongsheng, 2012), the cloud 

can be deployed in four different models: public (usually on a data center location, managed 

by vendors and available for all public), private (usually on a private, secure, and centralized 

data center and available only for internal), hybrid (combination of public and private clouds) 

and community (shared by multi organizations and supported by a specific sharing of 

interests and concerns community). Among the efforts to highlight the available types of 

cloud service models, (Alcácer & Cruz-Machado, 2019) established a 3-layered system of the 

available types of service models along with the associated management overview as briefed 

below and portrayed in Figure 7: 

- Infrastructure as a Service (IaaS) supplies clients with required computing resources, 

virtual infrastructures, networks or storage to deploy and run arbitrary software.  

 

- Platform as a Service (PaaS) enables users to develop and run their own applications 

using programming languages on the remote cloud infrastructures without worrying 

about capacity, server reliability, resource’s availability, and maintenance.  

 
- Software as a Service (SaaS) is a cloud infrastructure where complete applications are 

hosted at the backend rather than being hosted in the end users’ terminal or in a local 

data center (Hammoudi, et al., 2018). The hosted applications (i.e. Computer-Aided-

Design software) are accessible from heterogenous users’ devices via an interface (i.e. 

web browser), which reduces the total cost of the service.  

 
-  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Management Overview of the Service Models of Cloud Computing (Alqaryouti & Siyam, 2018) 
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In a manufacturing context, aiming to enhance the current manufacturing systems, cloud 

Manufacturing (CMfg) concept was introduced to harness the CC technology. Further details 

about the CMfg concept will be presented in section 4. 

1.3.2.3 Big Data (BD) 

As highlighted earlier, massive amount of different types of generated data (i.e. structured, 

semi-structured, or unstructured data). can be gathered via interconnected heterogeneous 

devices/machines (Bortolini, et al., 2017). According to (Cemernek, et al., 2017), BD refers 

to a “term describing large volumes of high velocity, complex and variable data requiring 

advanced techniques and techniques to enable the capture, storage, distribution, management 

and analysis of the information” Data gathering or storage are fundamental aspects of BD, 

but the core feature of BD is the value-adding information obtained by cost-effective data 

analysis, which could guide the managers’ way towards cost efficiency and effective 

decision-making over a product’s entire lifecycle (Yin & Kaynak, 2015) 

Building on the 4 V’s defined by (IBM, 2012) and the 5 V’s adjusted by (Yin & Kaynak, 

2015), (Alcácer & Cruz-Machado, 2019) has added further dimensions to better characterize 

and process vast amounts of unstructured heterogenous data gathered in various formats 

including video, audio, text, or others. Provided below the proposed a 10 V’s model of BD to 

describe the various dimensions:  

Volume Large data volume size consuming large storage (i.e. multi terabytes) 

Variety Different types of data, generated from a wide range of sources in different formats 

Velocity Refers to the rate of generating, processing, analyzing, and accordingly taking actions 

Veracity Resembles the possible unreliability of some data sources 

Vision Data generation occurs according to a visionary purposeful process 

Volatility The expiry of data’s validity should be monitored along the data lifecycle 

Verification Data generated must be verified with respect to the pre-set engineering measurements 

Validation Refers to ensuring the transparency of assumptions made during the vision process 

Variability Data flow rates measured by its variation 

Value The defining value of BD reflects the insightful information resulted from the process 
Table 1 The 10 V's of Big Data (Alcácer & Cruz-Machado, 2019) 
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Advanced data analysis is fundamental to explore large volumes of off-line/real-time data 

(i.e. ML algorithms). The knowledge extracted from the explored data guides the 

manufacturers to a better understanding, comprehension, and decision-making throughout the 

different stages of a product’s lifecycle, which would elevate the manufacturing 

competitiveness in the global market (Tao, et al., 2018). As shown in Figure 8, the data 

gathered from the lower levels of the manufacturing cycle (i.e. Shop Floor) can guide the 

management upper level’s decision-making concerning market forecasting, demand analysis, 

and operation monitoring. 

 

Figure 8 A Complete Data Life-cycle in a Manufacturing Context (Tao, et al., 2018) 

Besides being a key to digital manufacturing, BD analytics is the foundation of meeting the 

scope of mass customization (Mourtzis, et al., 2016). Needless to mention, IoT and CC are 

vital enablers of BD analytics as they provide the data and required infrastructure 

respectively. 
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1.3.2.4 Simulation 

Simulation refers to “an operation imitation, over time, of a system or a real-world process 

[as] it uses a system's artificial history and its observation, drawing inferences over the 

operational features of the representation of the real system” (Alcácer & Cruz-Machado, 

2019). Before the application of a new business system, computer simulation could be 

incorporated to better understand the dynamics of the new paradigm and determine the 

complexity of the potential uncertainties prior to the accompanied investments and 

implementation efforts (RODIČ, 2017). As well, to improve an existing product or a 

production system, discrete event and 3D motion simulation could be deployed to enhance 

both the product and the production process development, which could promote a customized 

product manufacturing environment (Kuhn, 2006). Additionally, in accordance with the 

overall system’s robustness, simulation technologies have been effectively employed in 

making long-term decisions on the system capacity configurations and material handling 

systems via its off-line analysis of what-if scenarios (Negahban & S. Smith, 2014). On the 

other side, the real-time simulation has proved its effectiveness when it comes to short-term 

decision-making concerning manufacturing operations planning and scheduling, real-time 

control, operation policies and maintenance operations (Negahban & S. Smith, 2014). 

According to (Cedeño, et al., 2018), a real-time simulation refers to an efficient 

computational system running at the same rate as the physical system, which necessitates the 

presence of ample real-time data provided by IoT.  

The new simulation modeling paradigm revolves around the concept of Digital Twin (DT), 

which stretches simulation to entire product life-cycle stages, integrating real-time data with 

simulation models for better performances in productivity and maintenance based on realistic 

data (RODIČ, 2017) . Further details on DT concepts will be provided in section 4. 

1.3.2.5 Augmented Reality 

Augmented reality (AR) refers to “the integration of additional computer generated 

information into a real-world environment. Most current AR applications integrate computer 

graphics into the user's view of his current surroundings” (Paelke, 2014). Such technologies 

necessitate the availability of various electronic devices including cameras, hand-held optical 

devices, head-worn optical devices, Projectors, holograms, processing unit, sensors, QR 

markers,..etc (Syberfeldt, et al., 2016).  Unlike Virtual Reality (VR), AR does not entirely 

fake conditions to imitate the real situation with a virtual one (Lavingia & Tanwar, 2019). AR 
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aims to enhance the user’s experience and performance by providing him the information that 

has a direct upon the task in hand by deploying electronic devices to provide either direct or 

indirect view of a real-world integration with virtual entities (Palmarini, et al., 2017). 

Additionally, this technology has the potential to improve users’ experiences in various 

sectors including entertainment, marketing, health care, and most importantly, the 

manufacturing industry. In a manufacturing context, AR has shown promising effects in 

various points of the production process’s lifecycle. To illustrate, AR can be used to provide 

a live reflection of the on-going status of a warehouse or a production line, thus facilitating 

monitoring, communication, and planning (Pintzos, et al., 2014). Also, AR and VR have 

gained popularity in prototyping and collaborative design, as they promote a fast 

development of visual prototypes that can be edited by multiple users, thus making it easier to 

meet the customers’ demands of customized products (de Sá & Churchill, 2012).  As well, 

integrated with AI/ML technologies, AR has been deployed to develop an interactive Human-

Machine-Interface as a mean of personalized up-skilling of operators in performing different 

manufacturing tasks (Karamalegos, 2018). By the way, further details on the systems 

designed to train and upskill workers would be provided in section 6. Furthermore, 

maintenance is one of the most promising fields of AR, as it fosters the operator’s 

performances by supporting both his technical maintenance activities and decision-making  

(Palmarini, et al., 2017). As shown in Figure 9, AR can also help filling the “gaps” between 

product development, manufacturing cycles, and sales as it enables reproducing digital 

information and knowledge of the different phases at the same instant (Alcácer & Cruz-

Machado, 2019). 

Figure 9 Value of Industrial AR across I4.0 (Alcácer & Cruz-Machado, 2019) 
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1.3.2.6 Additive Manufacturing (AM) 

Although the innovative technologies associated with I4.0 has provided various solutions to 

develop products and services, but still the manufacturing costs and time-to-market are 

attracting a huge interest of different stakeholders, as both parameters are integral 

determinants of competitiveness. Hence, the research efforts towards additive manufacturing 

(AM)/3D printing/rapid prototyping has evolved over the past decades from a rapid 

prototyping technology to advanced manufacturing (Korner, et al., 2020). The AM paradigm 

has attracted interest because it provides various applications that could potentially replace 

many conventional manufacturing processes (Jiang, et al., 2017). According to (Forster, 

2015) , AM refers to “a collection of technologies able to join materials to make objects from 

3D model data, usually layer upon layer, as opposed to the subtractive manufacturing 

methodologies”. According to (Tofail, et al., 2018), AM facilitates handling greater 

customization without extra tooling or manufacturing cost, manufacturing of complex 

geometries, producing lattice structures, and minimizing the material wastes. (Alcácer & 

Cruz-Machado, 2019) added that AM promotes the creation of prototypes to support the 

independence of value chain elements, thus diminishing the time allocated to design and 

manufacturing. Additionally, (Shin, 2016) highlighted that AM supports manufacturing of 

various scales including nanoscale (bio-fabrication), micro-scale (electronics), macro-scale 

(personal products, automotive), and large-scale (architecture and construction).  

The integration of AM, AI/ML technologies, BD analytics, and IoT has played an integral 

role in the emergence of the smart additive manufacturing (SAM) feature. To note, further 

details about SAM will be provided in section 4. 

1.3.2.7 Horizontal and Vertical Systems Integration 
 
Taking the information flow and different levels of automation into consideration, I4.0 

promotes a “collaborative scenario” of “systems integration” between engineering, 

production, supply chain operations, and others (Saucedo-Martínez, et al., 2018). In general, 

real-time data exchange is supported in I4.0 via three types of systems integration as briefed 

below: 

- Horizontal integration: represents a vital key behind “high-level collaboration” 

between different companies, incorporating information systems to “enrich product 

lifecycle” (Salkin, et al., 2017), paving the way for an “interoperable” and “inter-

connected ecosystem within the same value creation network” (Tupa, et al., 2017).   
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- Vertical integration: represents a vital key behind sharing data and information 

between different layers of the same company’s organizational hierarchy to enrich 

planning, scheduling, and production (Foidl & Felderer, 2016). Additionally, this 

integration approach is a vital enabler of producing customized products in small lot 

sizes, as it “digitizes” the entire processes within the organizational hierarchy after 

taking the real-time data collected from the manufacturing processes. In other words, 

vertical integration could be cornerstone of achieving the concept of the smart factory 

(SF) (Salkin, et al., 2017). 

 
- End-to-End integration: According to (Salkin, et al., 2017), based on the former 

integration approaches, End-to-End integration aims to bring product design, 

manufacturing, and the end customer altogether on the same line over the product’s 

entire lifecycle (Alcácer & Cruz-Machado, 2019). To further explain the three 

integration types, Figure 10 portrays the relationship between the three integration 

approaches in a manufacturing context. 

 

 

1.3.2.8 Autonomous Robots 

Manufacturing paradigm is shifting rapidly from mass production towards customized 

production, which urges elevating the manufacturing businesses’ adaptability, flexibility, and 

reconfigurability (Pedersen, et al., 2016). Seen as one of the forms of AI by (Wu, et al., 2018) 

, robots have the potential to flexibly facilitate manufacturing a wide variety of products, thus 

reducing the overall production costs (Salkin, et al., 2017). Undoubtedly, continuous 

advancements and integration of computing capabilities, communication technologies, and 

AI/ML algorithms, have contributed to nurturing the smartness of machines, processes, and 

Figure 10 Relationship between the Three Integration Types in a Manufacturing Context (Wang, et al., 2016) 
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products. To illustrate, adaptive robots have found fertile ground in various stages of a 

product’s lifecycle, ranging from product development to assembly tasks (Salkin, et al., 

2017).  

Additionally, I4.0 has promoted the full autonomy of robots by developing them to mimic a 

human operator’s decision-making process under dynamic, unstable working environments, 

thus diminishing the human’s role in the manufacturing cycle (Ben-Ari & Mondada, 2017). 

Also, researchers have directed their attention to the potential of setting up a collaborative 

environment of autonomous industrial robots. To be specific, researchers focus on two 

typologies of collaborative environments: Human-Robot-Collaboration (HRC) and multiple 

autonomous robot’s collaboration. To illustrate, as shown in Figure 11,  (Hassan & Liu, 

2017)  proposed   a multiple autonomous robot’s collaboration approach relying upon robots 

with complementing capabilities performing spray painting tasks. The author emphasizes that 

teaming up multiple autonomous industrial robots would offer a wider range of 

manufacturing applications. On the other side, collaborative robots refer also to the 

possibility of bringing cobots and humans to work together in close proximity, which would 

offer affordably flexible solutions in the manufacturing industry (El Makrini, et al., 2018). 

Further details on HRC will be provided in section 4.8.8 and section 4. 

 

Figure 11 Autonomous Industrial Robots Performing Paint Spraying (Hassan & Liu, 2017) 
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1.3.2.9 Cybersecurity (CS) 

The expanding need for networking devices globally over the internet alongside the valuable 

information generated by I4.0 have raised various concerns over the past years. In particular, 

the IoT frameworks, virtual environments, and remote access to cloud technologies have 

introduced new risks associated with the security of data exchange within “vanishing 

enterprise boundaries” (He, et al., 24-29). In some cases, manufacturing operations can be 

shut down by a cyber-attack, leading to operational losses and occasional threat to the 

operators’ safety (Tsuchiya, et al., 2018). Such concerns bring the term “Cybersecurity” (CS) 

to the surface. According to (Kannus & Ilvonen, 2018), CS refers to “a new term on a high 

level of information security, and through the word “cyber” it spreads to apply also on 

industrial environments and IoT”. In other words, CS is a technology developed to protect, 

detect, and react to internal/external attacks launched against industrial control systems (ICS) 

including Supervisory Control and Data acquisition (SCADA) for example (Ani, et al., 2017). 

According to (Benias & Markopoulos, 2017), the main reasons behind successful cyber 

attacks against ICS networks include irregular updating of anti-virus soft wares embedded in 

devices, misalignment of security protocols over the different points of the supply chain, and 

deployment of outdated industrial devices. Restricting access to data to authorized users is a 

priority to protect against external cyber-attacks (Alcácer & Cruz-Machado, 2019). As well, 

the deployment of cost-effective private-cloud architectures could be a reliable solution to 

foster CS and maintain safety of ICS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Potential Cyber-attack routes in an Industrial Context 
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1.4 Overview of Human-machine Relationships  
 
The First and Second Industrial Revolutions have introduced machines to be simply used by 

human workers in an independent, co-existent manner. During the Third Industrial 

Revolution, reconfigurable machines and production lines were introduced to support a 

cooperative relationship between humans and machines, as they likely share physical and 

informational resources without working simultaneously on the same task. Later on, I4.0 

introduced intelligent machine to collaborate with humans in an interactive way under a 

unified team identity.  However, I4.0 diminished the role of the human factor in the 

manufacturing cycle, which raised concerns over the past years, leading to the emergence of 

I5.0. In this direction and triggered by the recent introduction of I5.0 projects, (Lu, et al., 

2022) has portrayed the evolving human-machine relationships over the different industrial 

revolutions in a 5C journey: Coexistence, Cooperation, Collaboration, Compassion and 

Coevolution. 

 

 
 

 

Figure 13 The evolution of Human-machine Collaboration towards industry 5.0 (Lu, et al., 2022) 
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1.5 Overview of Collaborative Intelligence 
 
The emergence of the I4.0 has necessitated deepening the concepts of CI. Viewing CI only as 

a framework incorporated to enable the knowledge sharing and collaboration between experts 

has become obsolete. The continuous advancements of AI technologies have urged increasing 

the research efforts towards harnessing the benefits of the collaboration between the human 

factor and intelligent machines. Needless to mention, machines alone are not enough; human 

factor is the focal point of the company's growth. To illustrate, according to (Wilson & 

Daugherty, 2018) ,companies aiming to replace the human factor with the new technologies 

won’t achieve the long-term benefits of the industrial digitalisation. However, companies 

would benefit more through incorporating AI technologies to complement and augment 

human capabilities. Thus, the concept of human–machine collaboration is developing. To 

illustrate, Humans are responsible for executing three crucial roles: training machines to 

perform certain tasks, explaining the ‘counterintuitive or controversial’ outcomes of the 

executed tasks and maintaining the ‘responsible’ use of machines (i.e ensuring a safe and 

ergonomic ecosystem of humans and robots). 

 

1.5.1 Humans Assisting Machines 

1.5.1.1 Training 

In fact, programmable technological applications have been present in our lives for ages. 

Differently, thanks to the recent advancement with respect to both the availability of huge 

data sets and software developments (i.e computing power and open-source code libraries), 

AI-powered systems acquire their ‘knowledge’ through learning large amounts of data. For 

example, a ML algorithm runs on a training dataset and develops an AI-based model. To a 

great extent, ML systems are self-programmable. However, the human factor is still crucial to 

the guidance of the learning process.  To elaborate, Humans are responsible for picking the 

convenient algorithms, formatting data, defining learning parameters, and troubleshooting 

problems. In other words, AI-powered applications are taught the know-how of performing 

their jobs by humans.  Despite being at early stages, but organisations are expected to deepen 

their hierarchies by adding experienced staffs to fill the AI-powered systems training roles.  

Cortana, developed by Microsoft, is one of the most popular AI powered assistants. In fact, 

the bot “required extensive training to develop just the right personality: confident, caring, 

and helpful but not bossy. Instilling those qualities took countless hours of attention by a 
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team that included a poet, a novelist, and a playwright” (Wilson & Daugherty, 2018). On the 

same line, Apple’s Siri and Amazon’s Alexa were trained by humans to develop the 

personalities to ensure that they accurately reflected their companies’ brands.  

Following the big players’ lead, AI-training start-ups have entered the tech-market aiming to 

provide AI assistants capable of displaying more sophisticated human capabilities. To 

demonstrate, the start-up Koko, which is based on a technology developed at the MIT Media 

Lab, provides a “peer-to-peer network for users to deal with symptoms related to stress, 

anxiety and depression” (Mack, 2016) through asking the user further relevant questions to 

provide better advice instead of the routine replies. 

1.5.1.2 Explaining 

Lack of trust and acceptance has been a major concern that slowed down the investments 

towards collaborative AI-powered systems. Being allowed only to oversee the input and 

output of a system with no exposure to the structure of the algorithmic process leading to the 

output conclusion has intensified the fears and misconceptions between humans and their AI 

assistants. Such dilemma necessitates the presence of ‘explainers’ to eliminate the blur 

between the out-of-sight algorithm and the non-expert end user. Also, such role necessitates 

an expertise of the working context (i.e Law, Manufacturing, Health Services, ..etc). As AIs 

increasingly reach conclusions through processes that are opaque (the so-called black-box 

problem), they require human experts in the field to explain their behavior to figure out how 

an AI agent weighed inputs into, for example, a sentencing or medical advice.  

1.5.1.3 Sustaining 

Undoubtedly, the incorporation of AI systems in our day-to-day activities would necessitate 

the creation of various job opportunities. To illustrate, apart from training or explaining the 

output of the models, qualified employees should be thrown to the mix to “ensure that AI 

systems are functioning properly, safely, and responsibly” (Wilson & Daugherty, 2018). For 

example, in an industrial context, a safety engineer should put a framework in place to predict 

and prevent harm by collaborative AI systems.  

1.5.2 Machines Assisting Humans 

The importance of the human factor to the development and sustainability of AI systems 

across its lifecycle is undeniable. However, as mentioned before, the relationship between a 

human being and an AI-powered assistant is bi-directional. In fact, smart machines are 
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helping humans expand their abilities in three ways. They can ‘amplify’ our cognitive 

strengths; ‘interact’ with customers and employees to free us for higher-level tasks; 

and ‘embody’ human skills to magnify our physical capabilities. 

1.5.2.1 Amplifying 

Beside the apparent results of AI-powered systems on the side of analysts in terms of data-

driven decision-making abilities, smart machines have proved big impact upon creative 

product development. An illustrative example of AI’s power to revolutionize product 

development is Renault. Following a shift in consumer demand, the French automaker is 

equipping a growing number of new vehicle models with an automated manual transmission 

(AMT)—a system that behaves like an automatic transmission but allows drivers to shift 

gears electronically using a push-button command. AMTs are widely known among 

consumers, but, due to technical complexity, designing them could be challenging and time-

consuming. Aiming to streamline its AMT development process, Renault decided to acquire 

Simcenter Amesim software from Siemens Digital Industries. The simulation technology 

depends on artificial neural networks (ANNs), which are simply AI ‘learning’ systems 

loosely modeled on the human brain. Simply, engineers drag, drop, and connect icons to 

create a graphical model of the product. When displayed on a screen as a sketch, the model 

illustrates the relationship between all the various elements of an AMT system. Accordingly, 

engineers can anticipate the behavior and performance of the AMT and suggest any 

necessary refinements early in the development cycle, avoiding undesirable problems and 

delays. In fact, According to MIT Technology Review Insights, “by using a virtual engine 

and transmissions as stand-ins while developing hardware, Renault has managed to cut its 

AMT development time almost in half” (Siemens, 2021). 

1.5.2.2 Interacting 

Unlike traditional channels, Human-machine collaboration opens the door for companies to 

maintain a relatively more effective interaction with employees and customers. Interactive AI 

systems have been proved of promising effects over the different stages of the value chain. AI 

agents like Cortana, for example, can ease communications between people or on behalf of 

people, such as by “transcribing a meeting and distributing a voice-searchable version to 

those who couldn’t attend” (Wilson & Daugherty, 2018). Simply, the AI agent incorporates 

advanced interfaces such as voice-driven natural-language processing to drive interactions 

between or on behalf of people. In a manufacturing context, such systems could be used as a 
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personal assistance providing a step-by-step workflow. Also, the system could be supported 

by a real-time adaptation to be compatible with real-life situational context (i.e adapted to 

workers skill levels) Thus, standard operating procedures (SOP) become Adaptive operating 

procedures (ADOP). 

1.5.2.3 Embodying 

As pointed above, some AI agents are present in the form of digital entities like Cortana, 

Alexa and Siri. However, in other applications, the intelligence is embodied in a robot that 

augments a human worker. Lightweight robots equipped with sensors, motors and actuators 

engage in physical tasks, as they are now capable of recognizing people and objects, thus 

ensuring a safe collaborative work   alongside humans in factories, warehouses, and 

laboratories. 

In manufacturing, for example, robots are transforming from being potentially viewed as 

‘dangerous’ and ‘dumb’ industrial machines into smart, context-aware ‘cobots’. A cobot arm 

might, for example, handle repetitive actions that require heavy lifting, while a person 

performs complementary tasks that require ‘dexterity’ and ‘human judgment’, such as 

assembling a gear motor. Also, autonomous guided vehicles are considered one of the most 

effective cobots in the industrial sector as they collaborate with human operators to provide 

the right material at the right time. On the same line, Hyundai is further developing the cobot 

concept with exoskeletons. In short, “these wearable robotic devices, which adapt to the user 

and location in real time, will enable industrial workers to perform their jobs with 

superhuman endurance and strength” (Wilson & Daugherty, 2018). 

To sum up, CI will automate processes and machines, empowering humans to act efficiently 

in case of unexpected situations. Important to note, most critical situations will still 

necessitate the human’s decisive skills. The AI will digest all historical machine and process 

data and suggest actions. Humans, on the other side, will be able to make smart decisions 

relying upon the proposals of the AI. As a result, human workers and AI work alongside and 

bring various benefits to functions such as assembly, maintenance, quality, and logistics. 
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1.6 Human-AI collaboration in industry 5.0: a human-centric AI-based approach 

Human-centric AI-based manufacturing has been emerging as a necessity for future 

industries to be prepared to encounter the dynamic market challenges. Human-centric AI-

based manufacturing would foster the factories’ flexibility, agility and competitiveness 

(Maderna, et al., 2022). As previously indicated, although the interactive collaboration 

between humans and intelligent machines has been introduced in I4.0, but still the majority of 

past and current research is system-centric, aiming to optimize system performance, limit 

humans to a subservient role and ensure a safe working environment for all actors (Lu, et al., 

2021). However, taking the main goal of industry 5.0 (I5.0) into consideration, Human-

centric AI-based manufacturing aims to reignite the human’s pivotal role in the 

manufacturing cycle, while maintaining their cognitive and psychological wellbeing beside 

better opportunities for personal growth. According to (MAY, et al., 2015), human-centric 

manufacturing “aims to define new social sustainable workplaces where the human 

dimension is a key cornerstone, highlighting the requirements for shifting from a traditional 

task-centric production to a worker-centric production”. Thus, this thesis aims to review the 

recent research efforts directed towards understanding the collaboration framework between 

the human operator and AI-powered machines. 

Relevantly, (Lu, et al., 2021) proposed an anthropocentric human–machine symbiosis 

framework that augments human capabilities and well-being in an industrial working 

environment. Briefly, the proposed framework presents a reference model of human-centric 

manufacturing, focusing on the simplest form of human-centric manufacturing systems, 

where humans work with empathic machines in a symbiosis relationship. Simply, “human 

and machine agents form intelligent teams to collectively sense, reason and respond to 

incoming manufacturing tasks to ensure productivity and workforce well-being” (Lu, et al., 

2022). According to (Lu, et al., 2021), this reference model prioritizes: (a) human centrality –

 the ability to focus on human desire and judgment; (b) social wellness – the ability to detect 

and respond to human physical and mental performance to maximize human wellness; and 

(c) adaptability – the ability to learn from the environment and change behavior based on that 

learning. 

Additionally, this reference model represents the interactions between humans and machines 

by three fundamental blocks as follows:  
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1.6.1 Human-machine understanding – empathy skills 
 
Human centricity necessitates an accurate evaluation of human physical state, cognitive 

workload, and the psychological reactions to elevate operator’s performance via human–

machine collaborations. Thus, this work will review the recent technologies incorporated to 

enable the machines to understand its human partner’s state.  

1.6.1.1 Understand human states 

So far, different tools and techniques have shown a promising potential in understanding the 

three human states, as reviewed by (Mark, et al., 2021).  This work reviews the most relevant 

topics in this direction.  

In the first place, physical and mental state can have a significant impact upon operator’s 

work performance (M. Marcora, et al., 2009), as they could cause difficulties in completing 

manufacturing tasks, higher stress levels, lower satisfaction and ultimately diminishing 

productivity (Peruzzini, et al., 2020). In a human–machine collaboration framework, dynamic 

human physical, cognitive, and psychological states can be indirectly inferenced from signals, 

such as emotional prosody, facial expressions, body poses, eye gaze, and pupil dilation (Lu, 

et al., 2021). In the future, machines would have to develop the skills to “observe a human 

counterpart’s physical and mental state, establish a human-centric world model, and generate 

empathic behaviors that would be perceived as compassionate interactions in human 

environments” (Lu, et al., 2021). In this direction, (Romero, et al., 2016) proposed a vision 

for the “Operator 4.0” in the context of human cyber-physical systems (H-CPS), adaptive 

automation (AA), and intelligent multi-agent systems towards human-automation symbiosis 

work systems for a socially sustainable manufacturing workforce. Briefly, the authors define 

H-CPS as systems engineered to both “improve human abilities to dynamically interact with 

machines in the cyber and physical worlds by means of ‘intelligent’ human-machine 

interfaces, using human-computer interaction techniques designed to fit the operators’ 

cognitive and physical needs” and “improve human physical, sensing and cognitive 

capabilities, by means of various enriched and enhanced technologies (i.e. wearable 

devices)”. Importantly, both H-CPS goals would be accomplished through computational and 

communication techniques, thus enabling adaptive control systems while maintaining the 

human-in-the-loop (HITL) feature. On the same line, AA refers to “the idea of having 

machines adapt to the cognitive and physical demands of users in a momentary and dynamic 

manner” (A. Hancock, et al., 2013), thus allowing a “dynamic and seamless transition of 
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functions (tasks) allocation between humans and machines that optimally leverages human 

skills to provide inclusiveness and job satisfaction while also achieving production 

objectives” (Romero, et al., 2016). Finally, an intelligent agent is an entity (human, artificial 

or hybrid) capable of observing information about the surroundings, developing situational 

awareness, making decisions, modifying its plan of action and negotiating with other agents 

for various purposes (Kasabov & Kozma, 1998). 

 

Figure 14 Evolution of Operator X.0 Generations (Romero, et al., 2016) 

Through the utilization of the mentioned conceptual tripod, the “operator 4.0” vision 

proposed three automated frameworks dedicated to aiding workers for enhancing their 

capabilities: Sensorial Assistance Systems, Physical Assistance Systems, and Cognitive 

Assistance Systems. In brief, A sensorial capability is defined as the ability of the worker to 

acquire information from the surrounding environment, which provides the base for creating 

the fundamental knowledge for decision-making and adequate orientation during a workflow 

(Attwood, et al., 2004). To illustrate, according to (Mark, et al., 2019), sensorial assistance 

systems are already being utilized in many factories to support disabled workers’ sensorial 

awareness. For example, warning lights mounted on top of doors or equipment are 

incorporated to indicate the manufacturing plants’ status and aid persons with hearing 

problems to boost risk awareness early enough and react appropriately. Also, to follow-up the 

operators’ health in real time, smart watches (integrated with sensors) can be utilized in 

industrial eco-systems (Lughofer & Sayed-Mouchaweh, 2019). In the future, new algorithms 

should be developed for “cooperative and collaborative learning of situations for collective 

sense-making and decision-making by sensor agents (including agent networks)” (Romero, et 
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al., 2016), thus facilitating the utilization of the situational knowledge base of participating 

agents to filter irrelevant data, strengthen weak but relevant signals, and negotiate signal 

bandwidth for priority communication. Ideally, ML technologies could be incorporated to 

develop situational awareness. To illustrate, Advanced Trained Classifiers (ATCs) is a ML 

technique that can be embedded in an intelligent sensor agent to support human-automation 

symbiosis, learn about the operator’s behaviour in action, proactively intervenes when an 

operator needs assistance, and accordingly pick the adequate type and level of sensing (aided) 

capabilities to facilitate optimal sensing performance by the operator (Woźniak, et al., 2014) . 

On the other side, a physical activity refers to any movement exerted by the human body’s 

skeletal muscles that require expenditure of energy. In an industrial context, it resembles “the 

operator’s ability and capacity to perform physical activities required for daily work and can 

be characterized by physical functions such as the ability to assemble, manipulate, and lift—

together with their non-functional properties, e.g., precision, dexterity, speed, and strength” 

(Romero, et al., 2016) . The vision of Operator 4.0 highlights the fact that human’s 

capabilities are dynamic, as they change over time and according to the surrounding context 

(i.e. the operator may get exhausted over the working day). Therefore, developing a physical 

assistance system would necessitate a dynamic, real-time assessment of the operator’s 

physical state. Again, relying upon a group of ML techniques, ATCs could provide a real-

time assessment of the worker’s physical performance and adequately decide the timing to 

intervene without obstructing the workflow’s rhythm, thus reducing accidents, injuries and 

production’s scrap rate. As well, to involve persons with disabilities in the industrial 

environment, various physical assistance systems have been made available on the market. 

To illustrate, (Mark, et al., 2019) stated that “collaborative robots can be used to compensate 

physical disabilities of workers, as they can be integrated in a standard manual workstation as 

an additional and individual aid component to give lifting support or to hold parts while the 

operator is executing”.  

Finally, a cognitive capability is the “operator’s capacity and ability to undertake the mental 

tasks (e.g. perception, memory, reasoning, decision, motor response, etc.) needed for the job 

and under certain operational settings” (B. Carroll, 1993). Due to the expected dynamicity of 

the future factories’ working environment, cognitive assistance systems that both models and 

monitors an operator’s mental workload has emerged as a “central topic in optimizing 

industrial worker’s cognitive state and increasing manufacturing performance” (Lu, et al., 

2022). Integrated with AR technologies and intelligent HMI, such systems would level up the 
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operator’s mental performance in terms of a boosted cognitive workload (i.e. diagnosis, 

situational awareness, decision-making, planning, etc.), thus improving the worker’s well-

being and the production system’s overall performance (Romero, et al., 2016). As well, 

research efforts have been directed towards utilizing the objective cognitive measures (i.e. 

blood pressure, eye movement, and breath rate) together with ML technologies and data 

analysis methods to better estimate a human’s cognitive state. For example, (F. Wilson & A. 

Russell, 2003) proposed using statistical machine learning to fit a model which enables 

prediction of mental workload from the physiological signals, and then use that model to 

make mental workload estimates from newly-gathered physiological signals. Furthermore, 

similar to the previously mentioned assistance systems, relying upon a group of ML 

techniques, ATCs could provide a real-time assessment of the worker’s cognitive 

performance and adequately decide the timing to intervene without obstructing the 

workflow’s rhythm., thus reducing accidents, injuries and production’s scrap rate (Woźniak, 

et al., 2014). 

To sum up, the main goal behind developing empathy skills in smart machines revolves 

around laying the foundations for a trust-based relationship, which have been seen as a 

fundamental component of interactions and productive collaborations between humans and 

machines (Lee & Moray, 1992). On the other side, it is also essential for humans to 

understand and keep an eye on the health of smart machines, leading to a better human–

machine relationships. Followingly, dynamic task allocation and adjustment based on human 

and machine states of health can help maximize human–machine team performance. 

1.6.2 Human-machine collaborative intelligence 

Developing empathic understanding between humans and machines opens the door for 

collaborative intelligence. System-centred manufacturing control strategies, such as man-on-

the loop (MOTL) control systems, support a paradigm shift from a direct human intervention 

to indirect human supervision (Cimini, et al., 2020). Such strategies proved to be insufficient 

to meet the expectations of the future factory (Lu, et al., 2021). As well, AI advancements are 

stirring people’s concerns of being displaced on the shop floors (Frank, et al., 2017). 

However, research suggested that better system performance is achieved when humans and 

AI systems join forces to form CI (Wilson & Daugherty, 2018). Interactive collaboration 

strategies between humans and empathic machines necessitates the development of the best-

fit collaboration mechanisms and action plans in a dynamic setting. Hence, manufacturing 

control needs to adapt in learning, reasoning, and control (Lu, et al., 2022). 
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1.6.2.1 Learning and reasoning 

In a human-centric manufacturing paradigm, both machines and humans need to learn and 

update their knowledge on a regular basis (Li, et al., 2021). The Co-evolution direction 

suggests that “humans and machines need to fully take their respective advantages to learn 

their own knowledge and learn from each other” (Lu, et al., 2022). This sub-section spots the 

light on the learning content and sources, the methods of learning and reasoning, and 

knowledge update and transfer within agents. 

1.6.2.2 Learning content and source 

In essence, the learning material is knowledge. Knowledge can be branched into conceptual 

knowledge (CK), which resembles the rules and relationships that establish a domain , 

and procedural knowledge (PK), which resembles the know-how of performing a specific 

task (Canobi, 2009). 

In a manufacturing context, the sources of knowledge are various and not easy to classify. 

However, the data format of learning sources can be collected in the form of either structured 

or unstructured data. Structured data are “organized data which have a known structure, size, 

and format,making it suitable for indexing and automated metadata creation allowing for 

thecreation of searchable, indexable, and retrievable data management systems” (Merritt, et 

al., 2019) , while unstructured data is simply the opposite. Although the management of 

different data formats is relatively more critical to the learning process of machines, humans 

still learn through unstructured data in the form of visual, auditory, textual, and tactile 

information. To this purpose, based on the learning sources, data format, and knowledge type, 

(Lu, et al., 2022) briefed a comparison between the different manufacturing stages including 

product design, manufacturing plan, manufacturing process and maintenance. To illustrate, 

the conceptual knowledge required for the product design stage can be acquired from design 

manual, engineering drawing, or defect report in both structured and unstructured data (text, 

image, audio and video). Regarding a manufacturing plan, both conceptual and procedural 

knowledge need to be acquired from an ERP system or a production schedule in both 

structured and unstructured data (text and image). To learn the core manufacturing processes 

and accompanied maintenance tasks, both conceptual and procedural knowledge need to be 

acquired from G-code, inspection data, or operation logs in both structured and unstructured 

data (text, image, audio, video, and sensor data). 
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1.6.2.3 Learning methods 

The construction of cognitive schemas is the pivotal component of human learning (N. 

Pirnay-Dummer & M. Seel, 2017). Briefly, Cognitive-behavior therapists define schemas as 

“cognitive structures that organize thought and perception. Schemas are also viewed as 

having an integral influence on emotion and behavior” (Dattilio, 2007). To a certain degree, 

machine’s learning of knowledge is similar to constructing cognitive schemas in human 

learning. However, instead of constructing a cognitive schema, “an important tool in database 

theory and technology is the notion of the database schema” (Burgin & Mikkilineni, 2021).  

Humans learn conceptual knowledge via different methodologies including: inductive 

learning and elaboration learning. Inductive learning is “a learning method which applies 

inductive consequence. Inductive consequence applies inductive methods to summarize 

general knowledge from sufficient specific examples, and to distill general law of things” 

(Wang, et al., 2009). Inductive learning is applied for understanding and distinguishing 

general concepts, similar to the pattern recognition task for machines (Paolanti & Frontoni, 

2020). On the other side, elaboration learning integrates new information with existing 

cognitive schemas in memory (Willoughby, et al., 1997). In other words, elaboration 

learning is applied for understanding new information based on established general 

knowledge, similar to meta learning tasks for machines (Vanschoren, 2019). To note, Meta-

learning refers to “the science of systematically observing how different machine learning 

approaches perform on a wide range of learning tasks, and then learning from this experience, 

or meta-data, to learn new tasks much faster than otherwise possible” (Vanschoren, 2019). 

Alternatively, humans learn procedural knowledge via different methodologies including 

knowledge compiling and Knowledge strengthening. Knowledge compiling refers to 

“figuring out the workflow from procedural information” (R. Anderson, 1993). In other 

words, knowledge compiling revolves around simplifying general knowledge into more 

fundamental knowledge, so it can be reusable in other situations (Corney, et al., 2010). To 

some extent, Knowledge compiling works in a similar manner to partial tasks of machine 

reasoning (Lu, et al., 2022). Simply, machine reasoning refers to “the ability to dynamically 

react to change and by doing this, reusing existing knowledge for new and unknown 

problems. With machine reasoning, problems are solved in ambiguous and changing 

environments” (Buest, 2017). On the other side, knowledge strengthening refers to enhancing 

skills from repetitive practice (Palmeri & J., 1999). In fact, knowledge strengthening is 
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similar to reinforcement learning to a great extent , which improves skills through continuous 

trial and error. In other words, reinforcement learning is the problem faced by an agent that 

must learn behavior through trial-and-error interactions with a Dynamic environment 

(Kaelbling, et al., 1996).  

1.6.2.4 Reasoning 

In an industrial environment, the ultimate purpose of learning is not limited to obtaining 

knowledge, but stretches towards utilizing it to make decisions via reasoning (Leighton, 

2004). This sub-section reviews reasoning tasks separately to emphasize the process and 

decision-making method in manufacturing processes. 

In fact, there are several ways to start with information and arrive at an inference; hence, 

there are several theories to explain the process of human reasoning. Surely, each theory has 

its own strengths, weaknesses, and applicability to the real world. Human reasoning 

methodologies can be branched into three types: inductive reasoning, deductive reasoning 

and abductive reasoning (Ratajczyk, 2017). Similar to human reasoning, machine reasoning 

systems are based on a couple of pillars: knowledge base and inference engine. Briefly, 

knowledge base refers to “different ways of representing knowledge, including logical rules, 

knowledge graphs, common sense, text evidence, etc.” (Lu, et al., 2022). On the other side, 

inference engine refers to a “system component that applies logical rules to the knowledge 

base for translating information into a new idea” (McNally, 2022). In other words, an 

inference engine is responsible for delivering a solution to a particular problem (Duan, et al., 

2020). Widely known reasoning methods can be branched into: symbolic reasoning, 

probabilistic reasoning, neural-symbolic reasoning, and neural-evidence reasoning (Lu, et al., 

2022). In the manufacturing process, the majority of machine decision-making processes 

involve machine reasoning. 

1.6.2.5 Knowledge update and transfer 

Knowledge is an integral factor behind up-skilling human and machine agents in a SF. The 

knowledge update of each entity and the knowledge transfer between different entities 

deepens human-machine teaming towards “Co-evolution” (Lu, et al., 2021). Commonly, 

Knowledge update and transfer take place in different directions: human-to-human 

(HTH), human-to-machine (HTM), machine-to-human (MTH), and machine-to-machine 

(MTM). 
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In the HTH direction , operators regularly acquire new knowledge together via different 

learning sources to match the ever-changing requirements of factory technological upgrades. 

In the HTM direction, machines use the vast amounts of data to learn human knowledge and 

mimic his physical tasks. Thus, a machine could better collaborate with humans, ensure his 

safety, reduce his work stress, and understand both of his short-term and long-term.  

In the MTH direction, humans acquire new knowledge discovered by intelligent machines. 

To illustrate, Hanson Robotics is building humanoid robots with AI-based generative design 

solutions and this knowledge can be transferred to human designers (Daley, 2021). However, 

knowledge transfer is not simple due to the complicated interpretability of deep learning  

(DL) algorithms. So, it would be of great benefit to develop interpretable and explainable AI 

accompanied with user-friendly HMI to facilitate transfering new knowledge from machines 

to humans and make the human operator reach the top of his needs’ pyramid (Personal 

growth). 

In the MTM direction, machines regularly update their knowledge base from different 

learning sources and share it with other machines to achieve swarm intelligence (Lu, et al., 

2022). Simply, Swarm intelligence refers to “a swarm of agents (biological or artificial) 

which, without central control, collectively (and only collectively) carry out (unknowingly, 

and in a somewhat-random way) tasks normally requiring some form of intelligence” (Beni, 

2020). Transferring knowledge between the same type of machines for performing the same 

task is quite simple. However, transferring knowledge between machines of different types 

for performing different tasks is still challenging (Lu, et al., 2022). Therefore, deeper studies 

of transfer learning and swarm learning might provide solutions to the mentioned challenges. 

1.6.3 Human-machine communication 
 
The third component of human-centric manufacturing is “natural bidirectional 

communication” (Lu, et al., 2022) between humans and machine agents. Human operators 

depend on a set of natural language and non-verbal gestures to work as a team, transfer 

knowledge and accomplish tasks cooperatively. Therefore, to develop a productive 

collaboration between humans and machines, empathic machines that are adaptive to 

individual users’ communicative input should be built. Despite working in a dynamic 

environment with continuously varying contexts, such machines could “fluidly collaborate 

and interact with humans and learn from or teach humans in a natural way” (Lu, et al., 2022), 

thus paving the way for a healthy and collaborative communication between both agents, 
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opening the gate for satisfying the human’s needs, and achieving compassion and co- 

evolution. According to (Lu, et al., 2021), voice commands, physical interactions, text, 

image, video, AR, and VR can be utilized for bidirectional communications between humans 

and machines and are generally simple to use if developed properly. Gesture, body pose, and 

brainwave recognition are applicable to HTM communication. Efficient communication in 

human-centric manufacturing necessitates the advancement of the traditional communication 

strategies to intelligently decide the content to be exchanged (i.e Suggestion, Warning, 

Feedback, Encouragement,..etc), timing of exchange and channel through which data should 

be exchanged. 

 
  

Figure 15 Human-centric manufacturing framework (Lu, et al., 2022) 
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1.7 A Practical Typology of the Operator 4.0 Vision 
 
This section aims to review how the I4.0 technologies can practically support a collaborative 

environment between human intelligence and machine intelligence by providing an  accurate 

evaluation and a boost to the human physical state, cognitive workload, and the psychological 

reactions to elevate the operator’s performance. In this direction, building on the work of (Lu, 

et al., 2022), (Romero, et al., 2016)   presented an Operator 4.0 typology that depicts how the 

I4.0 technologies can assist operators to become ‘smarter operators’ in their future factory 

workplaces.  

 

1.7.1 Super-Strength Operator  

This type of operator 4.0 revolves around augmenting a human operator’s physical 

performance with a powered industrial exoskeleton. Powered Industrial Exoskeletons refer to 

“wearable lightweight, flexible and mobile, representing a type of biomechanical system 

where the human-robotic exoskeleton powered by a system of motors, pneumatics, levers or 

hydraulics works cooperatively with the operator to allow for limb movement, increased 

strength and endurance” (Romero, et al., 2016). Powered exoskeletons could help operators 

find the right balance between manual and automated operations in production systems, 

which would help them avoiding compromising efficiency for flexibility. To illustrate, in 

assembly areas, where workers likely approach manual tasks (i.e. Lifting heavy objects), 

powered exoskeletons may promote the collaboration between humans and technology to 

simplify the workflow and reduce the physical stress, thus boosting the human operator’s 

stamina, saving the human’s cognitive and creative efforts for more complicated activities, 

and improving the overall system’s performance (Romero, et al., 2016). Additionally, such 

technology would be a determinant factor behind extending the careers of aging workers and 

taking advantage of their experiences, as it optimizes their physical performance and 

diminish the chances of work-related injuries. Needless to mention, integrating powered 

exoskeletons with AI/ML technologies could open up bigger opportunities. According to 

(Zaroug, et al., 2018), “a major challenge in current exoskeleton designs is the need to 

synchronise user intention with exoskeleton function to achieve smooth interaction between 

the user and device. The fusion of intelligent ML algorithms into the exoskeletons controller 

has potential to improve the human machine interface and user experience”. For example, 

Hidden Markov Model (HMM) and Support Vector Machines (SVM) have shown promising 

performances in performance in motions classification (Zaroug, et al., 2018).  
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1.7.2 Augmented Operator  

As highlighted in section 1.3, AR technology may help optimize the human operator’s 

cognitive workload by offering him a real-time digital assistance system for completing 

manual activities without exhausting his memory into paper-based instructions and computer 

screens, thus diminishing the chances of human errors. Moreover, through the deployment of 

IoT and SCADA systems, AR technology can introduce a new HMI to manufacturing IT 

applications and assets, providing real-time status of processes and machines to the operator 

to further support his decision-making (Palmarini, et al., 2017).  

Additionally, AR can re-shape the maintenance of assets via “diagnostic intelligence” based 

on data collected from mounted sensors to provide workers with a live “intra-factory 

overview” of production lines for monitoring, identifying, analyzing, diagnosing and 

resolving problems in the right moment, thus optimizing the operational efficiency (Romero, 

et al., 2016). To note, further details about the integration of AR with AI/ML technologies, 

VR, RFID readers, and QR codes were provided earlier in a separate subsection.  

1.7.3 Virtual Operator  
 

In general, VR refers to “the re-creation (partially or entirely) of a scene/object/event so as to 

give a perception of physically being there” (Toshniwal & Dastidar, 2014). In a 

manufacturing context, VR can “digitally replicate a design, assembly or manufacturing 

environment and allow the smart operator to interact with any presence (i.e. a hand tool) with 

reduced risk and real-time feedback” (Romero, et al., 2016). Thus, VR technology can 

integrate interactive virtual reality, accurate simulations of real-life scenarios, and other 

innovative technologies to develop the operator’s cognitive workload, optimize the operator’s 

decision-making, and facilitate up-skilling the operators via personalized training programs 

(Palmarini, et al., 2017). Similar to AR, manufacturing companies can utilize VR to 

“digitalize, analyze and simulate all the aspects of a product, as its geometric structure, 

physical behavior, etc., including the simulation of all the processes related to the product 

lifecycle” (Schina, et al., 2016). At the product manufacturing phase, VR introduces the 

concept “virtual factory” as “an integrated simulation model of the major sub-systems of a 

factory in order to evaluate different factory layouts, production line configurations, 

production balance (i.e. automation vs. mechanization) and production schedules in order to 

optimize the production master plan by means of what-if analyses, decision support systems 

and estimation methods” (Romero, et al., 2016). To foster the SF concept, (ZHU, et al., 2020) 
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developed a cost-effective 3D-printed glove HMI with triboelectric finger bending sensors, 

palm sensors for sliding detection, and piezoelectric stimulators for feedback. The author 

integrated AI algorithms with AR/VR technologies to achieve a glove-based system capable 

of performing advanced object recognition.  

1.7.4 Healthy Operator  

This type of operator 4.0 revolves around augmenting a human operator’s physical 

performance and cognitive workload with wearable trackers (i.e. Smart watch). Simply, 

wearable trackers are “devices designed to measure exercise activity, stress, heart rate and 

other health-related metrics as well as GPS location and other personal data” (Romero, et al., 

2016). Such technologies have offered big opportunities to various fields. For example, 

military applications integrate wearable devices with data analytics to early anticipate 

potentially problematic situations (Sharma, et al., 2017) . In a manufacturing context, 

integrating wearable trackers with data analytics and AI technologies could help operators 

avoid undesirable dilemmas. To illustrate, utilizing “workforce analytics” keeps operators 

and upper level of management attentive to health-related metrics, which helps avoiding 

unexpected threats to operators’ sanity in case of rising stress levels (Romero, et al., 2016). 

Also, such technologies could enable operators to plan and schedule their working times 

based on health-related metrics. According to (Naughton, 2020) , “wearable devices and AI-

powered vision systems provide the capability to monitor workers safety, including the 

adherence of hygiene and social-distancing guidelines”. Thus, taking data privacy concerns 

into consideration, utilizing such technologies could play an integral role in reducing the 

human errors, enhancing the overall system’s productivity, and maintaining proactive safety 

frameworks for the operators under unexpected events.  

1.7.5 Smarter Operator  
 
This type of operator 4.0 revolves around augmenting the human worker with an Intelligent 

Personal Assistant (IPA) to boost his cognitive workload. Simply, IPA is a software agent 

that incorporates “a significant body of sophisticated AI technologies for knowledge 

representation, reasoning, planning, plan execution, agent coordination, adjustable autonomy, 

explanation, and learning” to facilitate “dynamic procedure learning, integrated task and 

calendar management, and real-	 time execution monitoring and prediction” (Myers, et al., 

2007). Using NLP and NLU, IPAs could offer a voice-interaction technology to the human 

operator, which promotes productivity and operational efficiency by “allowing the operator to 
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go hands-free to complete certain tasks” (Romero, et al., 2016). Among the tasks the IPAs 

assist the human workers to complete are: searching and retrieving from a digital library 

according to a natural voice input (i.e. Amazon’s alexa), scheduling, pinpointing reminders, 

and planning for critical events in operations, managing inventory based on automatic stock-

checks, and performing preventive maintenance based on predictive models developed to 

track a machine’s degradation pattern to alert for proactive intervention.  

1.7.6 Collaborative Operator  
 
This type of operator 4.0 relies upon augmenting the human worker’s physical performance 

with a Cobot. Cobots “mark a departure from traditional industrial robots which functions 

separated from their human co-workers. Cobots, on the other hand, are designed for direct 

interaction with human workers, to handle shared payload, and to function safely without 

conventional safety cages or similar protective measures” (Knudsen & Kaivo-Oja, 2020). Co-

bots are capable of “performing a variety of repetitive and non-ergonomic tasks and that have 

been specially designed to work in direct cooperation with the smart operator by means of 

safety (i.e. force sensing and collision) and intuitive interaction technologies, including easy 

shop-floor programming” (Romero, et al., 2016) . The availability of such technologies 

would help nurturing the human worker’s productivity and job satisfaction, as it frees him 

from doing routine/repetitive tasks to boost his self-esteem by completing creative tasks 

instead. Needless to mention, “intelligent robotics perception system is very important for a 

collaborative robot to make decisions, plan, and operate in real-world environments, by 

means of numerous functionalities and operations from occupancy grid mapping to object 

detection” (Galin & Meshcheryakov, 2020). In fact, such robotic perception systems deploy 

AI/ML algorithms, ranging from classical to deep learning techniques including supervised 

classifiers and ANN (Galin & Meshcheryakov, 2020). Further details on Cobots will be 

presented in section 4. 

1.7.7 Analytical Operator  

This type of operator 4.0 revolves around supporting the human operator’s cognitive 

workload with BD analytics. BD Analytics is “the process of collecting, organizing and 

analyzing large sets of data (big data) to discover useful information and predict relevant 

events” (Romero, et al., 2016). Clearly, BD analytics may assist human workers completing 

more accurate forecasts, achieving greater transparency of operational KPIs, and keeping 

track of real-time status of assets, thus taking corrective actions prior to problematic 

situations and elevating the overall system’s operational efficiency  
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The integration between data analytics and AI/ML technologies have attracted a significant 

interest over the past years, as it led to the emergence of Intelligent BD analytics as shown in 

Figure 16. In this direction, (Bashar, 2019) proposed an intelligent BD analytics framework 

that integrates text analytics, ML processes, and data mining NLP to predict the hidden 

knowledge in the data available through cheap sensors and the Industrial IoT. The proposed 

system proved its success with respect to improvising the process of manufacturing, by 

retaining the product consistency, optimal throughput and increasing the productivity.  

The analytical operator is relevant to different other applications as many of them hugely 

depend on advanced data analytics. This applies to the collaborative operator, who often 

deploys image recognition to facilitate working near CoBots. Also, the healthy operator 

depends on the analytics of the health-related data gathered.   

 

Figure 16 Intelligent Big Data Analytics in a Manufacturing Context (Bashar, 2019) 
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2. Research Schema 
 
In accordance with the above considerations, this thesis provides a systematic literature 

review of research about CI and its potential impact upon the manufacturing industry and the 

MSMEs within a time frame between 1999 and 2022. By the end of a preliminary research, it 

has been clear that the frequency of the term “Collaborative Intelligence” in the different 

forms of resources (Academic Papers, Conferences Proceedings and Blogs) has experienced a 

rising trend over the past years. To illustrate, using Web of Science search engine, the year 

2015 has seen the start of an upward trend of publishments referring to the two key words: 

“Collaborative Intelligence” and “Artificial Intelligence” as shown in Figure 17. 

 
Figure 17 A Time Series of Collaborative Artificial Intelligence Publishments 

 

Additionally, a different combination of keywords in different search engines has always 

resulted in different results, which necessitated the development of a classification system 

that facilitates analysing both the research trend and gaps with respect to the topic of interest. 

Furthermore, a classification system would highly help identifying the links between the 

topic of interest and the different sectors, thus orchestrate highlighting the potential impacts 

of CI on the manufacturing sector. Nevertheless, this work would open the door for the 

inclusion of various kinds of resources including Academic Publishments, Conferences 

Proceedings, Journals, Consultants’ Blogs and Companies’ Brochures, which would better 

portray the potential futuristic impacts of the topic under analysis upon the new 

manufacturing businesses. So, this paper aims to provide a detailed, up-to-date overview of 

the research conducted on the topic. However, this research does not solely revolve around 

providing a complete systematic analysis of the past literature on AI and CI. Instead, it 

focuses on setting a starting point for integrating the knowledge gathered from various 
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research resources concerning this topic in order to suggest a schema for future research, 

open up a set of questions for further mining and draw a portrayal of the expected 

transformation of the topic under analysis in the coming years. 

2.1 Methodology  

The methodological approach incorporated a mixed bibliometric and content analysis 

techniques. In this paper, a mapping review was initially conducted through the SCOPUS 

database, Google and Google Scholar search engines. Regarding the publication time span, 

the time from 1999 to 2022 was considered in an attempt to measure the change of the level 

of attention towards Collaborative Intelligence before and after the introduction of I4.0. The 

research methodology employed throughout this study was a systematic literature review.  

The main phases of the study were as follows:  

1. Phase 1: Research and Classification. The present phase was broken into three steps:  

• Step 1: Generalized Identification of Resources 

• Step 2: Classification of Resources 

• Step 3: Selection of Relevant Resources   

In phase 1, bibliometric data was collected (step 1). Then, a classification of resources 

according to the different research questions was performed to outline the research in an 

organized manner (step 2). At the end of this phase, a selection process of resources in 

accordance with the prioritized research areas was conducted to spot the light on the 

documents to be analysed in detail (step 3). 

         2. Phase 2: Analysis. Once phase 1 was concluded, the next phase emphasized the 

analysis of the results. The approach used for the bibliometric analysis included:  

• The use of an indicators for the parameter studied 

The indicator chosen to perform the analysis was total papers (TPs), which is the total 

number of publications.  

3. Phase 3: Discussion. By the conclusion of the second phase, a third one that 

provides a discussion of the results and a summary of the conclusions would be 

introduced.  
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Important Note: The same methodology was applied for each research question (RQ1 AND 

RQ2)  

 In Figure 18, the main phases and steps followed for the analysis are shown. 

 

 

                                                 
 
 

Figure 18 A summary of the Research Methodology 
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3. Results of the Bibliometric Analysis of Research Question 1 

3.1 Phase 1: Research and Classification  

The first phase consisted of the search for documents, which included the activities of 

collecting material belonging to the academic universe. This first phase was divided into 

three steps as follows.  

3.1.1 Identification (Step 1)  

For a comprehensive research of the research question, phenomenon, an investigation on the 

Scopus (SCP) and Google Scholar databases was carried out using Boolean operators. The 

research began by making a search query with the general key words "Collaborative 

Intelligence" OR  "Human-AI" AND "Manufacturing" OR "Industry 4.0" as shown in Table 

2. 

Keywords Time Period 

Collaborative Intelligence  

1999-2022 
Human-AI  

Manufacturing 

Industry 4.0 

Table 2 Research Combination of Keywords 

The search returned in total 3058 documents.  

The results extracted by Google Scholar are numerically superior to Scopus (SCP): 3030 for 

the first and only 28 for the latter (Table 3).  

Research Carried out in 2021 

Source of Research Google Scholar Scopus 

Results 3030 28 

Table 3 Research Results 

In fact, the scarcity of sources on Scopus has directed the attention to the possibility of 

relaxing the search criteria. For example, the term “Artificial” could be used to replace the 

term “Collaborative”. In this case, Google Scholar yields about 17,000 search results 

compared to only 30 results in Scopus in the period between 2013-2022. Clearly, this 

indicates the low popularity of the term “Collaborative Intelligence” between researchers. 
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Anyway, the analysis will study the results before the relaxation of research keywords, 

because this thesis aims to analyse the research behaviour after the term “Collaborative 

Intelligence” was first coined by (Epstein, 2015). Important to mention, this time, the author 

was referring to the Artificial CI. 

Important to note, the clear difference between the amount of search results of the two 

databases lies behind the unmatching effectiveness of Google Scholar and Scopus when it 

comes to locating recent gray literature sources (Gray literature is defined as “Information 

produced on all levels of government, academia, business and industry in electronic and print 

formats not controlled by commercial publishing”). To demonstrate, Google scholar is known 

for its relatively vast amount of search results as it “aims to summarize all electronic 

references on a subject” to “reach the widest audience available” (Falagas, et al., 2007). In 

other words, Google scholar is often recommended as a source of grey literature, which 

perfectly fits this paper’s systematic review of an under-researched topic. However, despite 

the availability of an ‘advanced’ search engine in Google Scholar, but it still does not enable 

the researcher to gain any information regarding the number of conference papers included in 

the academic search engine as provided by Scopus. On the same line, Google Scholar does 

not provide the ‘abstract and information on free full text availability’, which puts Scopus 

ahead with respect to this feature as it enables the researcher to be ahead of time in the 

inclusion phase.  

The term “Collaborative Intelligence” was first introduced in 1999 to portray the potential 

behavior of an intelligent business "ecosystem" where CI represents "the ability to build, 

contribute to and manage power found in networks of people." (Gill, 2012). The introduced 

term has viewed social networks as “the foundation for next generation problem-solving 

ecosystems, modeled on evolutionary adaptation in nature's ecosystems” (Gill, 2012). 

Apparently, before the outbreak of I4.0 trend, CI research was only limited to conceptual 

efforts. 

Despite being introduced by the end of the last century, but the attractiveness towards 

artificial CI research has just gained momentum in the last decade following the pacing 

developments of AI technologies. Consequently, some evolutionary terms started to float to 

the research community’s surface, including ‘SME 4.0’ and ‘Manufacturing 4.0’, in an 

attempt to prepare the entrepreneurial community to be capable of transforming their current 

paradigm and reaping the benefits of the upcoming wave of digitalization. 
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This analysis aims to highlight the link between the trends of research regarding CI, I4.0, and 

I5.0. Through a time-indexed time series of research documents pointing to the associated 

research question (RQ1), the link between the three trends has been emphasized. To 

demonstrate, provided below a graph (Figure 19) that provides a proof that the literature has 

been enriched with publishments following the attention directed to I4.0 and relevant topics. 

Growth is evident after 2011 when new technologies began to be researched and put into 

action more frequently. In fact, the I4.0 was first coined at Hannover Messe in 2011 by the 

Director and CEO of the German Research Center for Artificial Intelligence, Professor 

Wolfgang Wahlster, as a part of his ceremonial speech (Lydon, 2011). Since then, research 

attention has been directed towards the potential advancements in different sectors, especially 

the Manufacturing industry. As well, the deep analysis of the research efforts has revealed the 

‘significant trimming of the time needed to go from one [industrial] revolution to next one” 

(Rada, 2017). To elaborate, the development time for the first three industrial revolutions was 

around a century. However, it took only 40 years between the development of Industry 3.0 

and I4.0, and only 4 years has seen the introduction of I5.0.  

 

 

 

 

 

 

 

 

In fact, this research indicates that over the time period considered (1999–2022), the number 

of published documents remained almost negligible until 2011, from which it undergoes a 

slight increase. We can relate this increase to the introduction of I4.0 initiative. Clearly, the 

published documents associated with RQ1 showed a noticeable increase by the end of 2015, 

which aligns with the introduction of Artificial CI and I5.0 in the scientific community as 

Figure 19 A Time-Series of Research Publications 
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highlighted before. Another important note lies behind the clear overlapping of the “TP” and 

“Google Scholar” curves, which highlights the low share of research results provided by 

“Scopus” in this research question. 

3.1.2 Screening (Step 2)  

Following the completion of the identification phase, the thesis presents an overview of the 

topics and areas interface through a screening process. The screening phase revolves around 

an analysis of the accessible published documents. In other words, this phase required 

narrowing down the number of documents to be the focus of the study. So, an analysis of 

‘free access’ documents was provided. In addition, the ‘access through your institution’ 

option provided by Direct Science, Research Gate, El-Sevier, and others, has enriched the list 

of accessible documents. Luckily, the inaccessible documents (due to hyperlink failures or 

un-authorized sign in) has shown a negligible effect upon our analysis, as less than 30 out of 

3058 documents were excluded. Furthermore, in our study, we didn’t believe we have to 

restrict our research to a specific subject area (Provided by Scopus only), as our research 

keywords are already restricted to the manufacturing sector. 

To cut it short, the screening phase hasn’t excluded a noticeable number of documents and 

almost all research results will enter the next phase.   

3.1.3 Inclusion (Step 3)  

By the completion of the screening process, the inclusion step was kick-started. This step 

prioritizes the selection of a portion of the documents extracted from the last step to be 

included in the sample on which bibliometric analysis was performed. In fact, according to 

earlier plans, this phase was supposed to rely upon a keywords analysis in addition to an 

abstract analysis. However, due to the unavailability of ‘abstract preview’ option in Google 

Scholar, we examined the full text of each document one at a time to ensure its eligibility to 

go through the analysis phase. For each article, we examined whether the document refers to 

the Human-AI collaboration theme in an entrepreneurial context or not. Also, this phase aims 

to check if any of the documents included case studies or real applications, suggestions for 

new AI and CI algorithms and architectures, or possible future scenarios. 

Therefore, the final sample to be analyzed consisted of 102 documents for Google Scholar 

and 8 for Scopus.  
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3.2 Phase 2: Analysis  

This section presents and discusses the findings of this review.  

First, an overview of the selected studies is presented. Second, the review findings according 

to the research criteria, one by one in the separate subsections, are reported.  

3.2.1 Top Highly Influential Analysis  

This section spots the light on the most highly cited documents in Google Scholar and 

Scopus. In fact, in this case, a few research databases haven’t provided a count of the 

citations. Also, the majority of documents had been recently published (between 2020-2022), 

which resulted in relatively lower accesses compared to earlier ones. Additionally, we need to 

point out that some researchers do not tend to cite the document through its publisher’s 

database, which could sometimes lead to a misleading image. In consequence, in specific 

cases, we though it could be of relevance to mine the count of views and downloads to 

provide a clearer image. Anyway, (Spoehr, et al., 2021) has the highest citation count of 74. 

Briefly, this paper seeks to identify the contributions of AI to supply chain management 

(SCM) in various fields including production and logistics. Interestingly, the document 

publication year is 2021, about a year after Covid-19 outburst. To clarify, a study by PWC 

has claimed that “Fifty-Two percent of companies accelerated their AI adoption plans 

because of the Covid crisis”, which correlates the huge shift of the research efforts. As well, 

despite being published less than a year ago, the document has been cited by many other 

researchers, which further stresses the viewpoint regarding the topic’s research progressing 

maturity in the past couple of years. On the same line, the study reveals that research efforts 

associated with RQ1 have jumped 5 times between 2019-2021, which emphasizes the 

market’s shift towards the adoption of Artificial CI technologies and justifies the 

recognizable interest of the scientific community in the topic.  

The citation analysis has also revealed that the first book that we can identify among the most 

downloaded in the I4.0 period dates to 2021. (Helo & Hao, 2021) spots the light on several 

areas of value creation for the application of Artificial CI technologies in the supply chain. It 

also proposes an approach to designing business models for AI SCM applications. This book 

has seen 11724 downloads. Moreover, although it has been published a couple of months 

ago, (Lu, et al., 2022) caught much attention among the scientific community. To elaborate, 

416 users have accessed and viewed the document. It contributes by presenting “arguments 

on the concept, needs, reference model, enabling technologies and system frameworks of 
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human-centric manufacturing, providing a relatable vision and research agenda for future 

work in human-centric manufacturing systems” (Lu, et al., 2022). 

3.2.2 Publications by Years  

Consistent with the analysis in Section 3.1.1., the study points out that the number of 

documents included in the analysis is apparently negligible for the entire period before the 

introduction of  the terms Artificial CI and Industry 5.0 in 2015. However, as expected, the 

relevant research shows a slight increase, starting in 2016. The data shown in Figure 20 also 

shows a relatively fewer documents in the period between 2015-2018, compared to the 

apparent boom in research afterwards.  

 

 
 
 
 
 
 
 
 
 
 
       
 
  
 
 
 

 
 
 

Figure 20 A Time Series of the Inclusion Results 
 

In addition to the highlighted effects of Covid-19 on the research behaviour, certain 

technologies have taken significant steps. Autonomous driving, NLP, and quantum 

computing are example of the technological leaps that matured between 2020 and 2021.  

With reference to 2022, the figure refers to the first four months of the year, so it is expected 

that during the year, there will be a further increase in the documents in the literature.  

3.2.3 Country Analysis  

This section’s main focus is determining the countries contributing the most to the research 

relevant to RQ1. To note, prior to conducting this specific analysis, we had to exclude all 
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documents in Chinese and Japanese languages. In other words, this section might be slightly 

biased towards Europe, United States and United Kingdom.  

In brief, the countries that give the most contribution are: The United Kingdom (16.1%), 

Sweden (15.2%) and the United States (13.4%). Following its 10-year plan to make the 

country a global ‘artificial intelligence superpower’, The United Kingdom has retained its 

leading position among the field’s big players during the past couple of years. Interestingly, 

when it comes to Europe, Sweden comes on top of the list of contribution. To demonstrate, 

although I4.0 was first introduced in Germany, but Sweden “is at the global forefront of I4.0. 

With clean energy, advanced technologies and a thriving culture of collaboration, there is no 

better place to lay the groundwork for sustainable and digitally powered operations” 

(BusinessSweden, 2021).  

In addition, it is worth mentioning that Europe has contributed with 54.5% of the available 

resources. This high contribution could be related to the fact that “since 2017, France, 

Germany, and Italy relations have intensified their trilateral cooperation to promote digitizing 

the manufacturing industry” (Yang & Gu, 2021), which arguably brought the I4.0 research 

and corresponding topics to lead the line. Following this trend, we anticipate a recognizable 

evolution of smart production and entrepreneurial initiatives and therefore a further 

maturation of scientific research.  

3.2.4 Key Take-aways of Analysis 

This section highlights the main outcomes of the second phase: 

• Google Scholar is superior to Scopus in terms of the availability of resources 

corresponding to the input combination of keywords 

• The research efforts associated with the research question have seen a slight increase 

starting from 2011 (Introduction of I4.0) 

• A standout increase in research efforts have been noticed starting from 2021 

• Research efforts associated with RQ1 have jumped 5 times between 2019-2021 

following the outburst of Covid-19 pandemic 

• Countries that give the most contribution to research are: The United Kingdom 

(16.1%), Sweden (15.2%) and The United States (13.4%) 

• Europe has contributed with 54.5% of the available resources 

• Asia has contributed with 20.54% of the available resources 
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• One of the trending keywords that emerged during the research is “Industry 5.0” 

• The research was adjusted to make a search query with the general key words 

"Collaborative Intelligence" OR "Human-AI" AND "Manufacturing" AND “Industry 

5.0” as shown in Table 4. 

Keywords Time Period 

Collaborative Intelligence  

1999-2022 
Human-AI  

Manufacturing 

Industry 5.0  
Table 4 The adjusted Research Combination of Keywords 

The search returned in total 61 documents.  

The results extracted by Google Scholar are numerically superior to Scopus (SCP): 60 for the 

first and only 1 for the latter (Table 5).  

Research Carried out in 2021 

Source of Research Google Scholar Scopus 

Results 60 1 

Table 5 Research Results of Adjusted Combination of Keywords 

• The research efforts have then enjoyed a relatively larger increase after the 

introduction of the terms ‘Industry 5.0’ and ‘Artificial Collaborative Intelligence’ 

(ACI) were first introduced in 2015 
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4. Literature Survey of Research Question 1 

4.1 Industry 5.0: A New Evolution of the Fourth Industrial Revolution 
 

I5.0 refers to the conceptual leverage of the collaboration between the cognitive creativity of 

the human factor and the increasingly powerful, smart, and accurate machines. The term I5.0 

has been introduced for the first time by Michael Rada (Known as the father of I5.0) by the 

end of 2015 (Rada, 2017). Despite being still far away from implementing I5.0 due to 

industry leaders’ on-going belief in I4.0 ideology, but different research studies believe that 

I5.0 will reignite the necessary ‘human touch’ in the manufacturing industry (Nahavandi, 

2019). Expectedly, I5.0 would further facilitate mass personalization, which could be a 

differential competitive advantage in the near future. To elaborate, following the rapid, 

consecutive technological advancements, customers are expected to demand customized 

products in accordance with their personal needs as indicated in Figure 21.  

 
Figure 21 Manufacturing Paradigm Shift Towards Mass Personalization (Lu, et al., 2020)  

 

Additionally, I5.0 would hugely enhance manufacturing efficiency and create a transparent 

channel between humans and machines, applying a shared responsibility for interaction and 

regular activities tracking. Nevertheless, the collaboration between humans and machines 

would expectedly increase the production capacity at a rapid pace. By the means of assigning 

routine/repetitive tasks to machines and freeing the human factor to be responsible for 

executing the non-routine/creative tasks, I5.0 would supposedly leave a huge, positive impact 

upon the quality of products and production processes.  

Normally, I5.0 necessitates the availability of more skilled jobs compared to I4.0 as a result 

of the transformation in the way of doing things in businesses. I5.0 spots the light on mass 

customization, where humans will be guiding robots. Alternatively, in I4.0, robots are 

coordinated to facilitate large scale production, whereas I5.0 focuses mainly on a 
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personalized customer satisfaction. I4.0 focuses on CPS connectivity, while I5.0 links to I4.0 

applications and establishes a relationship between cobots. I5.0 incorporates predictive 

analytics and operating intelligence to develop models that help making better decisions in 

unstable conditions. In I5.0, most of the production process will be automated, as real-time 

data will be gathered from machines/devices in collaboration with highly skilled specialists. 

4.1.1 Core Values of Industry 5.0 
 
I5.0 is based upon a tripod of interconnected core elements provided below: 

Human-centricity: shifting from the I4.0’s technology-driven approach, the human-centric 

paradigm re-locates the human needs at the core of the productions cycles and makes sure the 

technologies incorporated intersect with those needs (i.e autonomy, safety and well-being). 

Thus, human operators would be considered as “investment” instead of being viewed as 

“cost” (Jafari, et al., 2022). In return, operators would need to keep upskilling and re-skilling 

themselves to better fit the job requirements of I5.0 (Breque, et al., 2021).  

Sustainability: I5.0 necessitates the development of “circular processes” needs to develop 

circular processes that re-use, re-purpose and recycle natural resources, reduce waste and 

environmental impact, and ultimately lead to a circular economy with better resource 

efficiency and effectiveness” (Breque, et al., 2021). 

Resilience: I5.0 supports the development of a more robust industrial ecosystem in order to 

be capable of managing unexpected situations and crisis. To demonstrate, “Geopolitical shifts 

and natural crises, such as the Covid-19 pandemic, highlight the fragility of our current 

approach to globalised production. It should be balanced by developing sufficiently resilient 

strategic value chains, adaptable production capacity and flexible business processes” 

(Breque, et al., 2021) 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 22 Core elements of Industry 5.0 (Xu, et al., 2021) 
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4.1.2 Features of Industry 5.0: 

4.1.2.1 Smart Additive Manufacturing (SAM) 

Additive manufacturing (AM) is “the sustainable approach adopted for industrial production, 

which builds the product part layer by layer instead of a solid block, thereby developing 

lighter but more robust parts one layer by layer” (Maddikunta, et al., 2022) . AM is 

considered one of the essential components of I4.0, as it could be an answer to the uprising 

mass customization. To elaborate, by including benefits in products with a focus on the 

customer satisfaction, AM might become a “key technology for fabricating customized 

products due to its ability to create sophisticated objects with advanced attributes” 

(Dilberoglua, et al., 2017). In accordance with I4.0 values, AM “facilitates transparency, 

interoperability, automation and practicable insights” (Haleem & Javaid, 2019). The recent 

technological advancements with respect to AI, IoT, CC, BD, CPS, 5G, DT and EC have 

significantly supported the development of smart manufacturing, thus achieving higher 

degrees of sustainability, profitability and productivity. As an additional feature that 

differentiates I5.0, SAM incorporates AI technologies and computer vision to provide better 

graphical representation and more accurate product design in 3D printing. SAM is defined as 

“a fully integrated, collaborative additive manufacturing system that responds in real time to 

support ubiquitous and intelligent design, manufacturing, and services of 3D printed 

products” (Wang, et al., 2020). Simply, SAM defines the different processes to manufacture a 

product by adding materials in various layers, thus helping the reduction of material 

consumption, and saving of energy resources. To harness the full potential of I5.0, SAM is 

“merged with integrated automation capability to streamline the processes involved in supply 

chain management and reduces the delivery time of the products” (Maddikunta, et al., 2022). 

According to (Montazeri, 2019), the fundamental research aspects necessary to promote such 

a SAM paradigm are as follows:  

-  Pragmatic Experimentation: Repeat experiments trying to initiate a particular type of part 

defects (i.e., porosity) and determine the quality of the parts using offline measurement 

techniques (i.e., X-ray).  

-   In-Process Heterogeneous Sensing: Mount multiple types of sensory devices inside the 

AM system and collect sensor data during the process.  

- BD Analytics and AI: Advanced analytical algorithms to extract and correlate features and 

patterns from the vast amount of heterogeneous sensory data to specific defect types.  
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- Process Knowledge (Modeling): Develop theoretical models to emphasize the reasons 

behind the defect occurrence.  

- Process Innovation: Recommend manufacturing strategies to avoid defects in future parts 

with minimal experimentation. For example, “devise closed-loop controls” could be 

developed to “ensure that the defect in a layer is corrected before the next layer is deposited” 

(Montazeri, 2019).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23 Fundamental aspects of Smart Additive Manufacturing (Montazeri, 2019) 
 

 

4.1.2.2 Predictive maintenance (PdM) 

Considering the steady steps towards the economic globalization, the industries would likely 

need to be prepared to encounter different challenges. Such challenges urge the 

manufacturing industry to utilize the recent technological transformation trends. Predictive 

maintenance (PdM) is considered one of the most promising technologies in I4.0. To foster 

both productivity and efficiency, the manufacturers directed their attention to adopting the 

evolving technologies, such as CPS approaches and advanced analytical methods (Zonta, et 

al., 2020). In I4.0, PdM facilitates performing maintenance cycles prior to a 

component/machine’s failure, thus avoiding unexpected downtimes and negating the need for 

costive scheduled maintenance (Compare, et al., 2019). Clearly, instead of the vague 

assumption of a machine’s continuous availability, PdM promotes a transparent 

manufacturing sphere in terms of a fair estimate of the production system’s state after 

uncovering and evaluating the uncertainties.  This feature necessitates the deployment of 
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“state-of-the-art prediction tools” to transform the data collected from smart sensor networks 

into insightful information of uncertainties to support the human operators with taking smart 

decisions. On the other side, I5.0 aims to re-locate the human operator in the center of 

predictive maintenance framework. Briefly, to maximise the potential of PdM, it “should be 

integrated into the Digital Twin of the asset, [so] any number of views can be configured to 

display valuable information required for different tasks” (Ash, 2019). To illustrate, through 

visualizing a DT, an automotive engineer could quickly identify the close-to-failure 

component and assess the option of replacing it during the scheduled service instead of 

risking the waste of time due to its failure between services.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 Digital-Twin Supported Predictive Maintenance in Industry 5.0 (Ash, 2019) 

4.1.2.3 Hyper customization 

I4.0 has shown success when it comes to networking autonomous machines, promoting 

intelligent supply chains and diminishing the role of the human factor in the industrial 

ecosystem. Although customization of products is an aspect of the I4.0 paradigm, but “the 

effort is not adequate to satisfy the personalization demands for different verticals” (Dev, et 

al., 2021). On the other side, relying upon the human-machine interaction and hyper 

customization, I5.0 aims to enhance the personalization capabilities integrated in the 

industrial ecosystem where the customized prerequisite of clients could be satisfied with 

minimum cost and highest efficiency (Dev, et al., 2021). Simply, Hyper customization is “a 

personalized marketing strategy which applies cutting-edge technologies such as AI, ML, 

cognitive systems and computer vision to real-time data in order to provide more specific 

product, service and content to every customer” (Maddikunta, et al., 2022). The collaboration 
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between human intelligence, AI and cognitive systems aids manufacturers to respond to 

market changes and mass customize the products as “many variants of the functional material 

is shared with other personnel with the motive of customizing the product with different 

variants for customers choice” (Maddikunta, et al., 2022). Needless to mention, hyper-

customization necessitates the transition to an agile manufacturing system that can manage 

both human intervention and dynamic customer preferences. Also, the feasibility of hyper 

customization hugely relies upon the cost effectiveness of the developed products (Yetış & 

Karaköse, 2020). 

4.1.2.4 Cyber physical cognitive systems (CPCS) 

The advanced connectivity of smart devices provided by IoT has paved the way for I4.0 to 

transform the manufacturing cycles from complete manual systems into advanced CPS-based 

industrial applications (Lu, 2017). Needless to mention, cloud technologies are deployed to 

provide an efficient, safe and private storage and exchange of data (De Oliveira, et al., 2019). 

Additionally, cognitive methods are utilized in various applications such as surveillance, 

industrial automation, and environment monitoring to foster the performance of the system 

and thus referred to as cyber physical cognitive system (C-PCS) (Alp Topal, et al., 2020). 

Briefly, C-CPS “contain nodes with cognitive capabilities that are able to sense, analyze the 

environment, and act based on their analysis results” (De Oliveira, et al., 2019). Additionally, 

it encompasses a cyber physical element which supports interconnection of all process 

elements (Tang, et al., 2018). In C-CPS, knowledge and learning are integral elements of the 

decision making process (De Oliveira, et al., 2019). As previously mentioned, unlike I4.0, the 

fifth industrial revolution aims to bring back the human factor to the production loop through 

facilitating the collaboration between AI-based technologies and skilled operators, thus 

promotes the manufacturing sector’s readiness to satisfy a customer’s personalization 

demands. Accordingly, the C-PCS has been modeled and utilized in HRC manufacturing to 

execute the assembly of components in real-time (Maddikunta, et al., 2022). To further 

emphasize the human’s role, “decision making can only be improved by human interference” 

(De Oliveira, et al., 2019), which highlights the importance of operators’ past experiences to 

both improving and running the CI-based systems in I5.0.   
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4.1.3 Key Enabling Technologies of Industry 5.0: 

4.1.3.1 Edge computing (EC) 

Edge computing (EC) opened the door for data processing at the network edge and this has 

been developed as a result of the intense and increased development of the IoT as well as the 

myriad of emerging different cloud services. A worth noting fact is that EC is beneficial in 

multiple ways. To explain more, it can help in the transition phase to I4.0 as well as I5.0. EC 

gives the advantage of meeting expectations of different attributes like the data protection, 

latency costs and response time (Deng, et al., 2020). In addition to the mentioned benefits, 

EC diminishes communication overhead and ensures the productivity of applications in 

remote areas. From the security perspective, EC excludes the public cloud from the process 

of data processing and this cuts down the security risks regarding the I5.0 significant events. 

In order to capitalize on the beneficial operations done by EC data processing, cache 

coherency, computing offloading, transferring and delivering requests (Deng, et al., 2020), 

the design of the edge must be done precisely to make it private, reliable and secure. From 

the perspective of real life applications, EC offers real-time communications for next-

generation I5.0 applications such as un-manned aerial vehicles (UAVs), autonomous vehicles 

(Abdirad, et al., 2020), and remote patient monitoring. Additionally, with the help of EC,  

I5.0 are capable of capitalizing on more feasible resources for both hardware and software 

resources which supports this industry in the process of exchanging information linked to 

their field. On another side, EC filters the data needed by the servers to solve the problem of 

lack of efficient analysis of data due to its tremendous large amounts. It also takes part in 

efficient decision making by the allowance of preventive analytics which pinpoints machine 

failure and help in avoiding it. 

4.1.3.2 Digital twins (DT) 

A DT is a digital replication of an object or physical system and there are many examples for 

such representations like wind farms, jet engines and smart cities (Lu, et al., 2020). Similar to 

the EC, the development of IoT helped in capitalizing on the functionality of DT by mapping 

physical objects to their digital alternatives in order to have a simulation. This resulted in 

resolving many problems before happening because the digital version projected the 

inevitable problems and eliminated them. Also, “The rapid advancement of AI, ML, and big 

data analytics has enabled DT to reduce maintenance costs and improve performance of 

system” (Tao, et al., 2018). According to (Lu, et al., 2020), DT can be used for different 

manufacturing actors summarized below: 
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- DT for manufacturing assets: A manufacturing asset can be “connected” and 

“abstracted” to the cyberspace via its DT, thus operators can take advantage of near 

real-time data gathered from the asset to monitor its operating conditions and make 

“proactive optimal” operational decisions. This is considered a big step towards mass 

personalization as it supports the manufacturing system’s “flexibility” and 

“resilience” along with providing a more robust operator’s “situational awareness”.  

 

- DT for people: DT can also keep operators linked at the shop floor through 

abstracting their physical characteristics (i.e. weight, health) and real-time status (i.e. 

activity data, emotional status) to develop models understanding “personal wellbeing” 

and “working conditions” of operators in a factory. The developed models can 

facilitate designing “human-centered human-machine collaboration strategies” to 

boost the physical and psychological states of operators, thus leading to a better 

overall productivity. Such technology would also encourage operators to up-skill 

themselves using personalized training programs replicating “physical factory setups” 

with varying “virtual what-if scenarios”, thus supporting “resource optimization” and 

“operational efficiency”. 

 

- DT for factories: DT can also replicate a real-time environment of a factory. By 

supporting it with smart sensing devices and BD analytics, a manufacturing firm can 

possess a “self-organizing” factory with a transparent “operational visibility”, thus 

facilitate an early identification of faults’ reasons, production bottlenecks, and 

materials’ requirements.  

 

- DT for production networks: By networking manufacturing assets, people and 

factories via DT, the entire manufacturing ecosystem can be virtually represented. 

Furthermore, networking “distributed Digital Twins” between manufacturing firms 

will open the door for the integration between “virtually connected production 

networks” and BD capabilities to offer chance of anticipating future needs in a 

network of DTs.  

 

What DT can offer is enabling I5.0 to overcome technical issues by pinpointing these issues 

in an earlier phase and this helps in eliminating defects and increasing the accuracy, precision 
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of the decision making process. Hence, this will increase profitability and lessen losses. This 

advantage of early error detection also enhances the customization attribute in order to 

improve the user experience because it offers updating physical objects based on the detected 

errors through the virtual simulation.  

4.1.3.3 Collaborative Robots (Cobots) 

Apart from the traditional work of robots, the collaboration between humans and machines in 

work has become crucial to fulfill the potential of the emerging trends in automation and 

robotics. This resulted in producing a new type of robots widely known as cobots. These 

cobots are programmed to work hand in hand with people which will increase the pace of 

many businesses operations and tasks. In 1996 professor Edward Colgate and Michael 

Peshkin of Northwestern University developed the primary version of cobots (Van, 1996). 

Nowadays, the cobots are tremendously different from the primary cobots. The newest 

version of the cobots are reliable because they are designed with sensors that open the door 

for the human workers to detect any misplaced object in their path. The reason behind this is 

that sensors make the cobots stop when humans interfere to remove any unneeded objects. 

This is opposite to the first wave of cobots where there were no motors in addition to the 

presence of brakes and this crippled the working process (Simões, et al., 2020).  

A major challenge for robots and their lack of critical thinking is the Customization or 

personalization of products. Here comes the functionality of the collaboration between robots 

or cobots and humans. With cobots' ability to accelerate the pace of multiple operations as 

well as increasing the mass production, businesses can benefit from the mix between humans 

and cobots to maintain a mass amount of personalized, accurate and precise products in a 

faster way than ever. A case of utilizing cobots to personalize products is smart applications 

that summarize the profile of patients as well as creating an efficient health routine based on 

data and information (Simões, et al., 2020). In addition to the real life examples of assistant 

robots to  doctors in surgeries, there is a perfect example of what is called “The Davinci 

surgical system”. This system is used in urology and gynecology surgeries, as well as in other 

surgeries as surgeons capitalize on its technical benefits to have better surgeries and more 

successful and efficient ones. Hence, I5.0 capitalizes on cobots to redefine the relationship 

between robots and humans to cut down labor costs and increase productivity, pace, 

efficiency and reliability. 
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4.1.3.4 Internet of everything (IoE) 

The interconnection between data, information processes and how people can use it can open 

the door for a new wave of better personalized and customized experiences for business and 

nations on a wider scale. The Internet of Everything (IoE) can enhance the user experience 

based on the data provided and what is called IoE-generated data. This also can happen in an 

efficient way through wireless sharing of information between the consumer and the second 

party which can be the patient and the doctor in case we are talking about a medical use of 

the IoE. In addition to the fact that I5.0 capitalizes on IoE to have better customization of 

experiences in general, it can also enjoy the privilege of IoE to get better optimization criteria 

in attributes of latency and operating costs by overcoming bottlenecks on communication 

channels. Another edge IoE gives to the I5.0 is cutting down the supply chain waste as well 

as getting an efficient and optimized production process.  

4.1.3.5 Big data analytics (BD analytics) 

A major trending and important thing that provides a tremendous help to I5.0 is the BD 

analytics. BD analytics is mainly collecting a huge amount of varying data analyzing it. There 

are a variety of techniques used to analyze this BD. For example, BD technologies such as 

ML, AI, social networking, data mining, and data fusion are commonly utilized to analyze 

BD (Hämäläinen & Inkinen, 2019). One of the major benefits of using BD analytics is 

utilizing the collected data to discover and understand the pattern and behavior of customers, 

which leads to more customized customer buying criteria including pricing of the product. 

Additionally, BD analytics will help cutting down overhead costs by optimizing production 

(Fukuda, 2020). This model takes us to a very important role BD analytics play, which is the 

detection of user reactions and social behaviors based on analyzing his/her reactions. 

Consequently, companies like Facebook, Twitter utilize this benefit to model personalized 

products and initiatives to maintain user satisfaction and hence profits.  BD analytics provide 

multiple benefits from different perspectives. It can provide a competitive advantage by 

simulating real time decisions in addition to predicting inevitable events in the industry and 

then act accordingly. Another crucial key benefit of BD Analytics is the mass customization 

process without any chance of failure to happen during product development via handling 

huge amounts and volumes of data. This takes us to the next use of BD Analytics, which is 

enhancing the continuous process improvement by analyzing large amounts of data regarding 

the whole cycle of manufacturing (Majeed, et al., 2021).  
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4.1.3.6 Blockchain 

Blockchain technology provides I5.0 with varying and multiple advantages. To overcome the 

challenge of handling a huge amount of different devices connected to each other in a 

centralized management style, Blockchain can offer help by designing decentralized and 

distributed management platforms via supporting distributed trust (Viriyasitavat & 

Hoonsopon, 2019). In addition, Blockchain can provide I5.0 with a safe way of interaction 

between peers to keep records in an unchangeable block that applies transparency and this is 

crucial to the ecosystem of I5.0 (He, et al., 2020). To apply security enforcement, smart 

contracts are used in addition to the possibility of enabling data receiving and gathering 

through using blockchains. Another important additional value blockchains provide is digital 

identities. These identities can be assigned to its owner whoever it's a person or an entity. 

This is done in order to have efficient subscriber management and a safe authentication 

process of different stakeholders. This benefit is not limited to better authentication processes 

but it can be improved to manage services as well as properties. Furthermore, “Blockchain 

technology can also be used to register IP rights and to catalog and store original work” 

(Mushtaq & Ul Haq, 2018). In collaboration with smart contracts, Blockchains can make the 

contract and agreement phase between stakeholders more feasible and faster by the use of 

automation.  

4.1.3.7 6G and beyond 

It is clear that the growing demand and growth in the technology fields must cast our 

attention to the inevitable problem of required bandwidth and here comes the importance of 

6G. 6G can help I5.0 applications in maintaining perfect optimization criteria. For example, it 

will provide low latency and high reliability. To overcome the challenges of mobility and 

handover management in I5.0 when 6G is used, several “AI techniques can be used to obtain 

optimal mobility predictions and optimal handover solutions to ensure efficient connectivity” 

(Yang, et al., 2020). 6G provides solutions to multiple challenges by using Quantum 

communication and complex strategies of energy consumption to overcome the challenges of 

the demand of high data rate for the use of multiple applications as well as energy waste 

respectively. 
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4.1.4 Applications of Industry 5.0 

4.1.4.1 Cloud Manufacturing (CMfg) 

Cloud manufacturing (CMfg) represents a further shift of the current traditional paradigm. By 

integrating the recently advanced technologies such as cloud platforms, EC, IoT, semantic 

web, virtualization, and service-oriented technologies, CMfg has the potential to 

revolutionize the traditional manufacturing paradigm into an advanced manufacturing 

process. To elaborate, the incorporated technologies facilitate inserting a manufacturing 

company’s resources (i.e. software tools, knowledge, equipment, … etc) into a cloud, thus 

enabling different actors to access it from anywhere (Adamson, et al., 2017). In other words, 

in a CMfg process, “multinational stakeholders will collaborate together to operate efficient 

and low cost manufacturing process” (Maddikunta, et al., 2022). According to (Mutlu, et al., 

2017), designers would be able to further protect their intellectual properties (i.e 

manufacturing design documents) through exploiting the cloud’s storage capacity and robust 

access control. Beside the levitated levels of reliability, multi-tasking, high quality, cost 

effectiveness, and on-demand capabilities provided by CMfg, it could have a positive impact 

upon the environment as it could enable “an 83% reduction in transportation emissions by 

shifting production from a single central location to distributed micro-factories around the 

world”  (Fast Radius, 2021). Additionally, manufacturers would find it easier to localize their 

manufacturing plants closer to both the suppliers of raw materials and cheaper workforce. 

Throughout the past years, research efforts have been directed towards the possibilities of 

controlling both the machines and processes in the manufacturing life cycle by a CMfg 

platform. Relevantly, in an attempt to distinguish CMfg from the previous networked 

manufacturing models, (Liu, et al., 2016) proposed a model for multitask-oriented service 

composition and scheduling, in which key factures of CMfg such as service orientation, 

involvement of logistics, and dynamical change of service availability are taken into account. 

Also, (Tao, et al., 2014) proposed a five-layered structure to collect the working condition 

information of manufacturing processes via IoT sensors and support a resource intelligent 

perception and access system. Simply, the proposed framework can form a massive 

intelligent information interaction network to achieve intelligent identification, monitoring, 

and management of manufacturing resources. Concurrently, among manufacturing ventures, 

the effective deployment of IoT can aggregate all types of inside and outside resources. The 

proposed system architecture is briefed as follows: 
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- Resource Layer: It integrates all manufacturing resources included in the entire life 

cycle of manufacturing. Manufacturing resources include hardware manufacturing 

resources, computational resources, intellectual resources and other resources.  

- Perception Layer: It provides intelligent perception and identification of the entire 

manufacturing resources via various sensing devices and adapters in product life 

cycle, thereby providing robust support for manufacturing service platform to 

intelligently identify and manage manufacturing resources. Sensing devices include 

two-dimensional barcode, RFID readers, sensors, video capture and GPS, and others. 

The adapters include software interface adapter, sensor adapters, model adapters, 

knowledge adapters, network adapters, storage adapters, technical resource adapters, 

and others. 

- Network Layer: It provides the reliable, high-speed, and secure communication 

protocols to access various resources in a product’ s entire life cycle, including 2G 

networks, 3G networks, 4G networks, satellite networks, cable networks, corporate 

internal wireless networks, and others.  

- Service Layer: Supported by the network layer, it provides two categories of services: 

the CMfg service and the CMfg platform operational service. CMfg service represents 

the “results of service encapsulation of manufacturing resources and capacities, which 

can be invoked by end users” (Tao, et al., 2014). The latter represents the main 

services provided by the CMfg platform to realize the different operators to CMfg 

services, which includes knowledge management, transaction management, 

information assessment, billing management, resource calendar management, network 

management, virtual machine management, directory management, registration 

services, and others.  

- Application Layer: It refers to the on-demand deployment of different CMfg services 

throughout the entire manufacturing life cycle, including design, manufacturing, 

experimentation, simulation, management, maintainance, and recycling.  

On another note, (Xu, 2012) proposed the potential business models in CMfg, including pay-

as-you-go business model. Following the emergence of I5.0, the next generation of CMfg 

systems have the potential to cover various and complex requirements of engineering, 

production, and logistics. The technological advancement of AI/ML technologies, EC, and 

5G communication networks paves the way for an exponential expansion of future CMfg 

systems’ capabilities.   
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Figure 25 Architecture of IoT-Based Intelligent Perception and Access of Manufacturing Resources Toward Cloud 

Manufacturing (Tao, et al., 2014) 

4.1.4.2 Supply chain management (SCM) 

The alignment between the I5.0 innovative technology enablers (i.e DT, cobots, 5G 

Networks, 6G Networks, ML, IoT, EC, and others) and human’s intelligence could facilitate 

both satisfying the customers’ demand for personalized and customized products and 

reducing the associated lead time (Li, 2020). Expectedly, such paradigm shift would be the 

key for Supply chain management (SCM) to integrate mass customization into their 

production facilities. 

Bearing in mind that this technology “is still on diapers” (Suarez-Valdes, et al., 2019), DT 

can be incorporated to develop a virtual replica of the SCM including warehouses, inventory 

status, assets, and logistics. To illustrate, the DT “encapsulates factories, suppliers, contract 

manufacturers, factories, transportation lanes, distribution facilities, and customer locations” 

(Maddikunta, et al., 2022). DT replicates the entire life-cycle of the SCM, ranging from the 

design phase, to the manufacturing, operations, and delivery contexts (Suarez-Valdes, et al., 

2019). Through a real-time simulation of SCM systems, DT has the ability to sense and 

gather the real-world data via IoT smart sensors. AI technologies, ML algorithms, and big 

data analytics can then be deployed to anticipate the potential obstacles to be encountered 

during different stages of SCM. DT could also help businesses optimize complex, interlinked, 

and constrained trade-offs including quality, capacity, cost, and inventory, thus help 

improving the adopting companies’ profits and diminishing the operational expenses. 



74 
 

Accordingly, management personnel can take pre-emptive corrective procedures to diminish 

the losses and faults during different phases of SCM, which supports the manufacturing 

ventures to “create as soon as possible globally competitive products of the new generation” 

(Simchenko, et al., 2019). In this direction, inspired by the six-layer DT architecture 

presented by (Kruger, et al., 2019), (Marmolejo, 2020) proposed a DT for a pharmaceutical 

company to enhance the robustness of the SCM process using solvers, simulators and analytic 

tools. The proposed system architecture is briefed as follows: 

- The physical Twin: This layer revolves around incorporating inventory measurement 

devices under RFID technology environments encapsulating labels that can be 

mounted to any product. RFID technology working principle is mainly based on the 

interaction of 2 fundamental elements: the TAG and a reader. The tag consists of an 

antenna that enables the device to connect to the system and a microchip that collects 

information. In case the RFID tag receives energy obtained by the reading antennas, 

the chip deploys this energy as a power source and activates all its internal circuits 

(Want, 2006).  

- The Local Data Source: The data gathered from the physical twin is uploaded by 

professionals in the form of compatible databases. Aiming to reduce dependency on 

external actors, the authors highlighted their preference of implementing an internal 

database to join the information of the cyber-devices.  

- Local Data Repositories: For simplicity and costs minimization, the system relies 

upon local databases (simple spreadsheets hosted in each area or department involved 

in the digital twin). Despite not being able to take advantage of the features provided 

by cloud storage (i.e. Reliability, data-exchange-safety, everywhere-data-

accessibility), but the authors preferred using local storage to negate the necessity of a 

backup, high-speed connection, and maintenance of all hardware.  

- The IoT Gateway Interface: This layer plays an integral role in enabling electronic 

devices to communicate and exchange data, to be later analyzed and transformed into 

insightful information that facilitates the optimization SCM operating processes.  

- The Cloud-based Information Repositories: A private cloud is incorporated to provide 

a secure platform to execute the simulation models using the data stored in the local 

repository.  

- The Emulation and Simulation Platform: A “powerful and flexible simulation tool is 

the key to developing a digital twin in the supply chain” (Marmolejo, 2020). Needless 

to mention, using modeling tools that are “multi-method in nature” could be the key 
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for an efficient and robust DT, as it would require the deployment of relatively fewer 

software packages during its development. 

The application phase focused on modelling and analyzing different operating scenarios of 

the inventory, supply, manufacturing, and product distribution process for a pharmaceutical 

company.  

 
Figure 26 A six-layered Architecture of Digital Twins (Kruger, et al., 2019) 

 
On another note, Co-bots can play an integral role in SCM through replacing the human 

factor when it comes to handling routine/repetitive tasks including packaging, routine quality 

checks, material handling, assembly of the materials, delivery/picking of the products/returns 

to/from the customers, thus freeing the human’s intelligence to meet the complexity of jobs 

within the SCM lifecycle and reducing the overall labor costs  (Simões, et al., 2020). 

Accordingly, cobots streamline all the processes in SCM, such as systematic inventory 

management, tracking of stocks, order fulfillment and return of the products (Kopacek & 

Kent, 2020). 

4.1.4.3 Manufacturing/production 

The gradual introduction of robotics and automations over the past industrial revolutions has 

catalyzed changes regarding the paradigm of the global manufacturing industry. Over time, 

robots have been successfully replacing humans completing risky, monotonous, or physically 

demanding industrial tasks including welding and painting in car factories and 

loading/unloading heavy objects in warehouses (Yli-Ojanperä, et al., 2019). As mentioned 

earlier, I5.0 aims to augment the human intelligence with the ever-evolving cognitive 
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computing skills to perform collaborative operations as machines grow smarter and more 

connected, which could stimulate a radical change of the industrial ecosystem. As a 

consequence, research efforts have been directed towards investigating the implications of 

I5.0 in a manufacturing context.   

Relevantly, (Nahavandi, 2019) presented different practical developments achieved by 

researchers for use in I5.0 applications and environments. Also, the study further emphasizes 

the necessary technological advancements to further support I5.0 such as networked 

sensor data interoperability, multiscale simulation and dynamic modeling, production 

tracking, virtual training, autonomous systems, and machine cognition. As well, the author 

portrayed the impact of I5.0 on the manufacturing sector and overall economy from societal 

and economic angles. To illustrate, contrary to the cultural concerns, the author agreed with 

the argument of (Millier, 2017) claiming that I5.0 will generate more job opportunities in the 

era of human-machine collaboration rather than displacing human workers.  On another note, 

(Sherburne, 2020) envisioned the potential incorporation of I5.0 in textile industry. Their 

qualitative presents the development of functional fiber computing for the textile industry in 

the context of I5.0.   

4.1.4.4 Disaster Management 

As implied by its name, disasters refer to instant, catastrophic accidents that threatens lives or 

assets. On the other hand, disaster management refers to “the body of policy and 

administrative decisions, the operational activities, the actors and technologies that pertain to 

the various stages of a disaster at all levels” (Lettieri, et al., 2009). In other words, 

natural/industrial disaster management/prevention strategies are necessary to help 

diminish/control the aftermath of a disaster. In this direction, (Sukmono & Junaedi, 2020) 

proposed harnessing I5.0 in the context of disaster management of natural earthquakes. On 

another note, integrating human’s intelligence with IoT, and AI opens big opportunities 

regarding the disaster management field. To illustrate, (Chen, et al., 2016) proposed a system 

that fosters collaboration between human workers, IIoT, and AI technologies to improve the 

capability of detecting the leakage of toxic gases in an industrial context. Further details of 

the proposed systems will be covered in the following sections. As well, further applications 

of I5.0 core values with a focus on collaborative intelligence would be covered in detail in the 

next sections. 
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4.1.5 The main differences between Industry 4.0 and Industry 5.0 
 
Although the European Union “sees Industry 5.0 as a complement to Industry 4.0” (i-

SCOOP, 2022), but still the blurry line between both initiatives should be kept clear. As 

mentioned before, the main goal of I4.0 lies behind achieving complete process automation 

using smarter and connected machines. On the other side, I5.0 prioritizes balancing the 

machine-human interaction. Also, technology has been always the pivot of I4.0, while 

optimizing the collaboration between human intelligence and AI has been always earmarked 

as the future driver of growth by I5.0 (Wilson & Daugherty, 2018). Thus, I4.0 aims for a 

complete virtual environment, but I5.0 is pushing for the transition back to real environment. 

Accordingly, contrary to I4.0, I5.0 would open up more job opportunities for skilled workers 

to cooperate with machines. Finally, I5.0 would make the industry prepared for the upcoming 

trend of customers demanding personalized products, which is unfortunately not the case for 

I4.0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 A comparison between Industry 4.0 and Industry 5.0 (Zutshi, 2019) 
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4.2 The Main Pillar of Collaborative Intelligence: Artificial Intelligence (AI) 
 
Recently, the term “Artificial Intelligence (AI)” has registered its position among the hottest 

topics in the scientific community. Despite its recent popularity, AI has been primarily 

introduced in the middle of the last century. However, today’s technological advancements in 

terms of digital memory capacities, computing processing power and network bandwidths 

have paved the way to start reaping its benefits.  

Generally, AI is “a sub-discipline of computer science that involves computers that apply 

human-like reasoning abilities. Accurate and sophisticated patterns within big datasets are 

better and more easily recognised by specific AI techniques such as machine learning (ML)” 

(Kaur & Kaur, 2021). From a technical point of view, AI technologies are employed aiming 

to enhance the efficiency and effectiveness of industrial processes. The primary goals of AI 

are to reduce costs, save time, improve quality, and improve the robustness of industrial 

processes. Furthermore, AI facilitates the “revamping of production processes and their 

adjoining processes from the ground up, the enriching of one’s own products or services 

through or with AI, and the implementing of novel business models” (Ahlborn, et al., 2019). 

Clearly, these targets should be easier to hit once the industrial operations are equipped with 

adaptation and problem-solving abilities. In other words, in addition to the currently 

employed if/then algorithms and the classic automation and control procedures, AI is 

expected to add a whole new level of “mastering of complex situations in industrial 

processes” (Ahlborn, et al., 2019).  

The AI technologies employed nowadays are generally divided into rational or behaviour- 

oriented models. In case of a work environment that involves an interaction between humans 

and machines, behaviour-oriented AI technologies are used. To demonstrate, NLP for 

machine translation is one of the widely used behaviour-oriented models. Otherwise, 

specifically in industrial processes where either sophisticated planning processes or behaviour 

recognition are necessary, developing rational AI technologies would be more relatively 

convenient. For example, computer vision, action planning and optimisation are among the 

most widely known rational AI technologies (Ahlborn, et al., 2019). By the way, apart from 

the above classification, various sources have provided different ways of classifying AI-based 

systems.  
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This research provides the two widely known methodologies of classifying AI technologies  

4.2.1 Artificial Intelligence Classification Type I 

4.2.1.1 Narrow Artificial Intelligence 

The systems with narrow AI are employed solely to execute selective tasks without being 

able to take decisions on behalf of humans. “It is used for single task only and is also known 

as weak AI” (Patel, et al., 2020). In fact, narrow AI systems play an important role in our 

daily lives. To demonstrate, apple’s Siri is one of the technologies that integrate narrow AI 

systems in our daily routines.  

4.2.1.2 General Artificial Intelligence 

Having the ability of imitating human beings in terms of reading and analysing data is 

referred to as “Artificial General Intelligence (AGI) and is strong AI” (Patel, et al., 2020). 

However, such systems have not yet come to light because scientists find it highly 

complicated to define the human intelligence regarding their ability to see things, 

differentiate them and control their imagination. In other words, AGI has not been achieved 

so far, and hopefully through the researchers’ continuous work, it could be achieved before 

2040.  

4.2.1.3 Super AI 

Obviously, this type “surpasses the human intelligence it can perform all the activities better 

than humans using cognitive properties” (Patel, et al., 2020). However, it is still seen as a 

‘hypothetical concept of AI’, which represents the ability of AI systems to completely replace 

humans by being capable of thinking and making judgements.  

4.2.2 Artificial Intelligence Classification type II 

4.2.2.1 Reactive Machines 

Being the first AI-based system machines, such machines have been only capable of 

“automatically responding to a limited set or combination of inputs” as “they do not involve 

memory-based operations” (Hassani, et al., 2020), and therefore they cannot learn patterns. In 

other words, reactive machines cannot predict or forecast future events. IBM’s Deep Blue is 

an example of reactive machines, which was widely known in 1997 for beating the Russian 

chess Grandmaster Kasparov (Kovacs, et al., 2016).  
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4.2.2.2 Limited Memory 

Unlike the Reactive Machines, such machines have developed the capability of learning from 

historical data to react to future events. To demonstrate, most of the currently employed AI-

based applications in our lives are considered as sub-categories of Limited Memory machines 

including: chatbots, virtual assistants and autonomous vehicles (Hassani, et al., 2020). 

4.2.2.3 Theory of Mind 

These AI-based machines are considered a hypothetical upgrade to the previously mentioned 

systems, as they are supposed to develop an ability to “better understand entities with which 

they interact by discerning their needs, emotions, beliefs, and thought processes” (Joshi, 

2019). However, such systems are still thought of as a conceptual framework. A famous, 

under-developed robot based on this technology is Sophia, which was developed by Hanson 

Robotics to go on press tours as an exhibition to help people imagining what robots are 

capable of doing. To demonstrate, despite not being able to understand human emotions, but 

still Sophia can “hold basic conversation and has image recognition and an ability to respond 

to interactions with humans with the appropriate facial expression, as well as an incredibly 

human-like appearance” (Hassani, et al., 2020).  

4.2.2.4 Self-aware AI 

Self-aware systems are a further development that represent the future of AI. These machines 

will have a “human-level consciousness” (Hassani, et al., 2020) along with the “ability to 

understand thoughts and feelings of humans and act accordingly” (Joshi, 2019). However, 

this is still considered as a hypothetical concept that might take years to come to light due to 

its utter complexity that make some see it as the ‘ultimate goal of AI’ that would lead to AI 

breakthrough that “could turn society on its head, enhance how we live in the day to day 

exponentially and even save lives” (Hassani, et al., 2020) 

From an industrial point of view and taking the complexity of developing AI-based systems 

that can imitate the human’s consciousness into consideration, much of the research has been 

directed to developing the machines to be capable of learning data to improve the entire 

industrial life cycle. On the same line, it is widely known that in order to consider something 

as intelligent, it must first have “the capacity to learn and solve problems independently” 

(Ahlborn, et al., 2019) Clearly, beside other technologies, ML is considered as one of the 

main sub-areas of AI that targets enabling machines to “perform their jobs skillfully by using 
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intelligent software” (Mohammed, et al., 2017) through the employment of statistical learning 

algorithms., which, in fact, necessitate the availability of vast quantities of data. ML is 

branched into 3 sub-categories as shown in Figure 25: supervised learning, unsupervised 

learning, and reinforced learning.  

 

Figure 28 Mapping of Machine Learning Technologies (Mohammed, et al., 2017) 

Alternatively, the “learning of hierarchical structures of characteristics in successively higher, 

hidden network layers” is commonly known as deep learning (Ahlborn, et al., 2019). Relying 

upon the quality of the provided streams of data, the AI systems can either perform ‘one- 

time analytical purposes’ or ‘repetitive re-learning purposes’ that facilitates an autonomous 

elimination of complexities and detection of events or patterns, which could be further used 

to “explain events, make predictions, or enable actions to be taken” (Ahlborn, et al., 2019) 

without the need for a human’s input.  

4.2.3 A glimpse of the AI-based methodologies applied in the Industrial sector 
 
Figure 26 summarizes the seven main AI-based methodologies which are currently applied in 

industry. The main three methodologies which are commonly applied in industry are ML, 

NLP, and vision technology. In this section, we will explain the three methodologies in more 

detail as well as briefly discuss a few others that have potential to grow and play an important 

role in Entrepreneurial sector in the nearby future. We will also dive deeper into the most 

common algorithms used in ML and their main applications in the industrial sector.  
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Figure 29 A doughnut plot showing the seven technologies of Artificial Intelligence with machine learning, natural 

language processing and vision technologies are the leading contributors (Rohm, 2022) 

4.2.3.1 Knowledge based systems (Expert Systems)  

Expert systems are considered one of the early developed AI programs that gather knowledge 

from experts’ input “in a very specific, limited domain of human expertise” (Laudon & 

Laudon, 2014), in order to automatically respond to similar situations through applying a set 

of If-then-False rules provided by knowledge engineers. An example of knowledge-based 

systems was developed in the early 1970s at Stanford University by Ted Shortliffe for 

medical diagnosis and therapy to prescribe antibiotics to patients according to their health 

state (Shortliffe, 1977).  

4.2.3.2 Machine Learning (ML) 
 
Machine learning (ML) is the most prominent branch of AI and is one of the most 

widespread. The main goal of machine learning is to use data and algorithms to imitate the 

learning ability of humans and to gradually improve any predictions that they make. ML 

algorithms can be classified into supervised learning and un-supervised learning. Supervised 

learning are ML algorithms that can only operate on labelled datasets. The labelled datasets 

are used to train the algorithms into classifying unlabelled data or making predictions. 

Unsupervised learning on the other hand uses ML algorithms to cluster unlabelled data. 

These algorithms can detect hidden patterns in unlabelled data without any human inputs 

(IBM Cloud Education, 2020) .  
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We will discuss a few of these algorithms in the following section: 

4.2.3.2.1 Logistic Regression 
 
Logistic Regression is a powerful supervised ML algorithm which is used for the 

classification problems. it is a predictive analysis algorithm and based on the concept of 

maximum likelihood and is used when the output is categorial. In ML, a classification 

problem is defined as an attempt into classifying the data into predefined distinct groups. 

Logistic regression can be applied on both structured and unstructured data. Structured data 

involves a dataset where the target is already defined while unstructured or unlabeled data 

involves having a dataset where the target needs to be identified (Swaminathan, 2018).  

 

There are three main types of logistic regression. The first type being the most familiar one 

and the one explained here in further detail is binary logistic regression and is basically a 

response function which has only two 2 possible output values such as pass or fail. The 

second type is multinomial logistic regression which involves three or more outcomes that 

have no order. Vegan, vegetarian, and non-vegetarian can be thought as three outcomes for 

multinominal logistic regression. The third is that of ordinal logistic regression whose output 

has three or more categories with ordering such as TV rating on a scale from 1 to 5 (Seth, 

2020). 

 

Binary logistic regression regression essentially uses a logistic function defined below to 

model a binary output variable. Logistic regression differs form linear regression by that the 

logistic regression's output range has to bounded between 0 and 1. In addition, another 

difference ascertained by the name of linear regression is that logistic regression does not 

require a linear relationship between inputs and output variables. This is due to applying a 

nonlinear log transformation using a sigmoid curve. A sigmoid curve is used to define the 

relationship between the logit of the odds ratio (defined as the ratio of probability of success 

to probability of failure) and the input parameters. Figure 27 shows a plot of the sigmoid 

function with the output value ranging from 0 to 1 as most probabilities. Sigmoid function 

(!) is defined as follows where # is the input parameter.  

!(#) =
1

1 + (!" 
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Figure 30 A Plot of the sigmoid function (Seth, 2020) 

 
For logistic regression with multiple inputs: 
 

) = *# + *$+$ + *$+$ +⋯+ *%+% 
 
 

-()) =
1

1 + (!& 
 

4.2.3.2.2 Bayesian Inference (Naive Bias) 
 
A very common statistical tool used as a building block both supervised and unsupervised 

ML algorithms is Bayesian inference. Bayesian inference is simply a statistical inference 

method in which the probability for a hypothesis is updated using recently available data 

through applying Bayes’ theorem. It is mainly used to deduce properties about a population 

or a probability distribution as more evidence or information about this population starts to 

become available (Brooks-Barlett, 2018).  

 

Bayes’ theorem is based on the principle of conditional probability. Conditional probability is 

the likelihood of an event, given the knowledge of the occurrence of a previous event 

(Wikipedia, n.d.). Conditional probability is calculated by the quotient of the probability at 

which A and B both take place, although not necessarily at the same time and the probability 

of B as defined below where A and B are considered here as independent events: 

 

.(/|1) =
.(1|/) ∗ .(/)

.(1)  
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It is worth noting that the easiest implementation of Bayesian inference usually involves 

using Gaussian distributions. Gaussian distribution has a unique characteristic which is that it 

is conjugate to itself with respect to a Gaussian likelihood function. This in principle means 

that if I multiply two Gaussian distributions with each another, I’ll get another Gaussian 

function. The gaussian distribution is defined as where 3 is the mean and - is the standard 

deviation: 

 

4(#: 3, -) =
1

-√29
	(!#.()

"!*
+ ,

!
 

 
Figure 28 shows the workflow of applying Bayesian updating to solve a problem.  The very 

beginning of this workflow is defined in dotted box of Figure 13 a) which describes the 

general framework of Bayesian statistics and introduces a Bayesian research cycle. In the 

Bayesian research cycle, an overview of the literature is used to implement a Bayesian model 

on real data and includes selecting appropriate prior distributions as well as carrying out prior 

predictive checking and determining the likelihood 

distribution through data collection (van de Schoot, et 

al., 2021). The rest of Figure 28 shows all the 

subsequent steps in the Bayesian workflow that 

follows the Bayesian research cycle. The subsequent 

step to the Bayesian research, as highlighted in the 

Bayesian updating workflow, is determining the Prior 

distributions. The selection of priors is often regarded 

as one of the most delicate steps when implementing a 

Bayesian model as it has significant impact on the 

results (the posterior distribution). Selecting the 

appropriate prior distribution is ascertained using the 

prior predictive checking process. The likelihood 

function is then determined and is then multiplied 

with the prior to reach the final posterior distribution 

which can be used for inference. This process is 

explained further by diving deeper into the equations 

used in the Bayesian updating scheme. 

 

 

 

Figure 31 Standard Bayesian workflow (van de 
Schoot, et al., 2021) 
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A typical Bayesian updating scheme involves three main steps. The first is finding or 

estimating a given parameter in a statistical model using, available knowledge. This is called 

the prior distribution, which is typically determined before data collection. The second step is 

determining the likelihood function using deductions made about the parameters from the 

collected observed data. The last step is multiplying the prior distribution and the likelihood 

function using Bayes’ theorem to get a well-defined posterior distribution as highlighted in 

the equation below where .(;<=<|>) is the likelihood function, .(>) is the prior distribution 

and .(>|;<=<) is the posterior distribution. Figure 29 shows an example of Bayesian 

updating where the newly collected observations of aircraft masses affected the mean and 

standard deviation of the prior distribution forming an posterior distribution with a an 

updated mean and standard deviation that betters fits the newly available data. A real-life 

application of Bayesian inference is the Kalman filter. The Kalman filter uses an analytical 

implementation of Bayesian recursions through which a robot to infer its position and 

orientation. Kalman filters rely on linear Gaussian state space models to calculate the 

probabilities of multiple beliefs. 

 

.(>|;<=<) =
.(;<=<|>) ∗ .(>)

.(;<=<)  

 
 

 
Figure 32 Bayesian inference updating example where aircraft initial mass observations are collected (van de Schoot, 

et al., 2021) 
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4.2.3.2.3 Deep Learning (DL) 
 
Deep learning (DL) is a “scalable machine learning” algorithm which focus on using deep 

neural networks (DNN) to process large amounts of data and analyse it. Due to its inherent 

ability to process BD, DL made a substantial impact across various industries such as fraud 

detection, predictive maintenance and spam detection (IBM Watson Studio, 2021). The 

difference between DL and ML is that the latter is relatively more dependent on human 

intervention to learn. Humans need to choose the set of features the model uses to learn. DL 

algorithms on the other hand can ingest unstructured raw data and automatically determine 

the features which distinguish different categories of data from one another. DL perform a 

task repeatedly and works on improving the accuracy of its prediction through deep layers 

that allow for progressive learning. The main algorithms adopted in ML methods are based 

on neural networks. 

4.2.3.2.4 Neural networks  

Artificial Neural Networks (ANNs) are “computational modeling tools that have recently 

emerged and found extensive acceptance in many disciplines for modeling complex real-

world problems” (Basheer & Hajmeer, 2000). In general, neural networks are an artificial 

abstract of the way a human’s brain functions as they are conceptually built of “structures 

comprised of densely inter-connected adaptive simple processing elements (called artificial 

neurons or nodes) that are capable of performing massively parallel computations for 

dataprocessing and knowledge representation” (Basheer & Hajmeer, 2000). To demonstrate, 

such systems are formed of Input stimuli which are connected through a network of nodes to 

output nodes (The output conclusion). However, ANNs are not expected to mimic the 

operation of the human’s biological systems, as they are just inspired from the functionality 

of the biological networks that could facilitate solving complex problems after learning the 

historical data. On the same line, ANNs have proven their functionality when it comes to 

“classification and optimisation situations” (Meziane, et al., 2000). Furthermore, ANNs have 

been widely accepted by the scientific community due to its “remarkable information 

processing characteristics of the biological system such as nonlinearity, high parallelism, 

robustness, fault and failure tolerance, learning, ability to handle imprecise and fuzzy 

information, and their capability to generalize” (Basheer & Hajmeer, 2000). Figure 20 shows 

a simple neural network model consisting of two hidden layers (?-, ?.) and an input layer 

(?/) which takes in four inputs (@/, @-, @., @0) and producing an output layer (?-) which 

has two outputs (A/, A-). The first hidden layer (?-) has five neurons while the second 
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hidden layer	(?1)  has three neurons. The network here is called a fully connected network, 

also known as Feedforward Neural Network (FNN). There are usually three steps involved in 

setting up a neural network. The first is writing the output as a linear combination of the 

inputs after assigning each individual input a corresponding weight and each output equation 

a bias element. We then assign random values to the inputs to calculate the output. 

Calculating the output is usually referred to as forward propagation. The second step is 

calculating the loss term which is the error between the predicted output values and the actual 

values. The third step is trying to minimize the loss or error term as much as possible by 

adjusting the corresponding weights to have a neural network that is an accurate 

representation of the problem solved. This step can be referred to as backward propagation. It 

is worth mentioning that to model any non-linearity, a transformation equation is applied to 

our linear equations and is called an activation or a squashing function. There are various 

types of activation equations and an example of an activation equation is the sigmoid function 

which can bring nonlinearity to model a binary classification problem (Neha, 2021). 

Generalized equation of a neural network: 

B$ = 	1C<D	 +	E$+$ 	+ 	E2+2 	+ 	…+	E%+% 
 

Generalized a neural node before and after applying a squashing function which here is a 
simple sigmoid transformation:  

	
G$ = 	1C<D$ 	+ 	E$$+$ 	+ 	E2$+2 	+ 	E1$+1 ++	E3$+3 

 
ℎ$ = 	DCIJKC;	(G$) 

 
 
 
 
 
 
 
 
 

 

 

 
Figure 33 A neural network of 4 inputs (i_1,i_2,i_3,i_4)  and 2 outputs (Q_1 Q_2) consisting of  

two hidden layers (L_1, L_2) (Neha, 2021) 
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4.2.3.2.5 Natural Language Processing (NLP) 
 
Natural language processing (NLP) is a field of AI, which adopts algorithms that make 

human language intelligible to machines (IBM Cloud Education, 2020). NLP can be used to 

carry our various tasks such as speech recognition, automatic summarization, translation, 

named entity recognition. NLP combines linguistics and computer algorithms to learn the 

rules and structure of language and create intelligent systems capable of understanding, 

analyzing, and extracting meaning from text. One of the basic elements of NLP is 

Tokenization used to break up a string of words into semantically meaningful units 

called tokens. Another component is speech tagging which adds to a speech category to each 

token within a text. Dependency grammar is another component which focuses on the way 

words in a sentence are connected while Constituency Parsing has a main goal of visualizing 

the entire syntactic structure of a sentence by identifying phrase structure grammar. 

Lemmatization and stemming are techniques used by NLP to find the root form of words. 

Finally, Named entity recognition is one of the most popular tasks in NLP and is associated 

with extracting entities such as names, location, etc from within a text. Text classification is 

another crucial task where text is understood by organizing it into predefined categories 

(tags). One of the most powerful marketing tools related to text classification is sentiment 

analysis, which categorizes unstructured data by sentiment and that can help marketeers 

identify how their target audience feel about their product. 

4.2.3.2.6 Computer Vision  

Computer vision algorithms are a ML or DL model that are used to identify and label images 

(IBM Resrach, 2020). They analyze images by breaking them down into pixels which are 

then labelled. A mathematical operation called convolution using a convolutional neural 

network (CNN) are applied to these labels to makes predictions about the input image. A 

convolutional neural network identifies hard edges and simple shapes, then fills in 

information as it runs iterations of its predictions. The ML algorithms adopted in computer 

vision help enable a computer to teach itself about the context of visual data. If the computer 

is fed enough labelled images or patterns, the computer will go through the data and teach 

itself to distinguish one shape from another. Algorithms enable the machine to learn by itself, 

rather than someone programming it to recognize an image. It worth noting that a CNN is 

used to understand single images while a recurrent neural network (RNN) can be used for 

analyzing videos. An ample of RNNs is Long Short-Term Memory (LSTM) Network which 
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is a sequential network which allows for information to persist and can be used for video 

classification. 

4.2.3.2.7 Ensemble learning 
 
Ensemble learning is multiple ML models combined altogether which collectively can solve a 

problem better than any of its individual components (Rocca, 2019). In ensemble learning 

theory, base models or as we call them weak models are combined and are considered the 

building blocks of the ensemble as shown in Figure 31. These weak models are usually 

overfitted i.e., characterized by low variance or underfit i.e., characterized by high bias and so 

do not perform so well by themselves. Therefore, the goal of an ensemble of weak models is 

to reduce the limiting characteristic of its building blocks component by reducing bias and/or 

variance. The ensemble leads to a strong learner that achieves better bias/variance 

characteristics as shown in Figure 31. 

 

 
Figure 34 Combining weak learners with low bias but high variance generating an ensemble model with lower 

variance than its components (Rocca, 2019) 

4.2.3.2.8 Fuzzy logic  

Fuzzy logic is considered as one of the interesting techniques under the umbrella of AI 

technologies. According to literature, fuzzy logic principles were introduced by Lotfi Zadeh 

in 1965 (Hellmann, 2001). Since then, this technique has proved its success in dealing with 

complex situations as it enables the “representation and processing of uncertain or vague 

information” (Meziane, et al., 2000) including linguistic statements and ill-defined system 

models. In other words, engineers and scientists have exploited this technique to “model 

human common-sense reasoning and decision making” (Ansari, 1998).  
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4.2.3.2.9 Genetic algorithms (GA) 

Genetic Algorithms (GA) are advanced AI algorithms based on the ‘population genetics’ for 

finding solutions for complex search and global optimisation problems. To elaborate, in case 

of being conveniently encoded, GAs could provide solutions to real world problems through 

replicating the principles of “natural selection and survival of the fittest” (Busetti, 2001). 

4.2.3.2.10 Case-based reasoning (CBR)  

Case-based reasoning is one of the recently emerged knowledge-based problem solving and 

decision support techniques. However, unlike traditional knowledge-based systems, CBR 

system “solves a problem by remembering a previous similar situation and by reusing 

information and knowledge of that situation” (Aamodt & Plaza, 2001) instead of depending 

only on input knowledge of a certain domain. To demonstrate, CBR systems could be of 

great use in the medical sector. For example, this system can replace a physician in case of 

examining a patient of similar symptoms to a former one through reasoning by recalling past 

cases  

4.2.4 Artificial Intelligence Rewarding Impact upon the Manufacturing Sector 

The industrial sector is responsible for one third of the world’s GDP and half of the world’s 

energy consumption. Through the integration of recent information technologies (social, 

mobile and analytics) with emerging operational technologies ranging from sensors to 

robotics, the manufacturing sector could find itself in front of a huge opportunity to reduce 

waste, improve margin and move towards a sustainable future (Buchmeister, et al., 2019). In 

the following section, a selection of applications is briefed to highlight the potential change 

that could positively affect the manufacturing sector:  

4.2.4.1 Product Design  

Instead of the traditional, human-dependant design operations, AI technologies are currently 

leading an encouraging development as they provide the process with “real-time data coming 

from customer interactions or from the ecosystem in which the firm lies” (Verganti, et al., 

2020). For example, real-time data could include “data describing restrictions and various 

parameters such as material types, available production methods, budget limitations and time 

constraints. The algorithm explores every possible configuration, until an optimal design 

solution is reached” (Buchmeister, et al., 2019). As a consequence, such data streams can 
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enrich AI engines to develop its problem-solving capabilities, which would directly lead to 

the possibility of cancelling out the human role in the design process. 

4.2.4.2 Digital Twin (DT) 

Leveraging on the continuous advancements within the data analytics and IoT field, a digital 

twin (DT) has emerged as one of the hottest scientific topics in the industrial field, as it could 

potentially revolutionize the manufacturing sector through enabling a remote interaction 

between managers, manufacturers and machines along with providing a real-time analysis 

and accurate decisions. Briefly, a DT is “an integrated multiphysics, multiscale, probabilistic 

simulation of an as-built vehicle or system that uses the best available physical models, 

sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin” 

(Glaessgen & Stargel, 2012). Undoubtedly, IoT has skyrocketed the amounts of usable data 

from the different fields including healthcare, smart city environments and manufacturing. 

Additionally, data analytics field is considered as a valuable resource for predictive 

maintenance and fault detection and the future health of manufacturing processes. However, 

DT still necessitate the effective presence of both ML and AI skills.  

4.2.4.3 Virtual Manufacturing (VM) 

Virtual Manufacturing (VM) is another interesting topic that has been the centre of the 

scientific community’s attention for a long time, as it has the potential to break through the 

traditional operational strategies and assumptions by integrating manufacturing with 

information technology. To illustrate, such simulation systems provide the opportunity to 

“prove out” the production processes, resulting in “pre-production hardened systems” 

(Radharamanan, 2002) that helps avoiding the risk of going through actual production 

processes, thus would consequently help increasing production flexibility, eliminating the 

fixed costs and reducing wastes in terms of both time and materials. Additionally, VM could 

effectively revolutionize the decision-making process of acquisition managers through 

offering reliable, accurate schedules, risks and expenses.  

4.2.4.4 Manufacturing Automation  

Manufacturing automation is considered as an integral enabler of the transformation of 

manufacturing processes. Through its integration with the various advanced technologies 

including BD, IoT, VR, and AI, automation has the ability to stimulate the evolution of “the 

manufacturing value stream” as “software and machinery are increasingly more capable” 
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(Bradford, 2020). Undoubtedly, automation can be implemented in different levels according 

to the needs and resources of the industry introducing it. To illustrate, various industries have 

incorporated automation technologies in different aspects including “CNC machining, 

maintenance, material movement, scheduling, management and administration” (Bradford, 

2020). According to research, new levels of automation are expected to drive the industrial 

sector to see unprecedented levels of accuracy and productivity through increasing capacity, 

improving quality, eliminating costs and diminishing lead time. Furthermore, Automation 

and Robotics would facilitate working in less human-friendly environments therefore reduce 

the accompanied health risks. To demonstrate, robotics would expectedly develop voice and 

image recognitions, which would pave the way to “re-create complex human tasks” 

(Buchmeister, et al., 2019). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.2.4.5 Quality  

Needless to mention, quality has a substantial impact upon the sustainability and 

competitiveness of manufacturing entities. As mentioned above, AI algorithms are employed 

to eliminate scrap and enhance quality as “Machine learning and deep learning algorithms 

today contribute to the growing automation of quality control in production chains, helping 

considerably reduce the number of faulty parts, and the high costs resulting from them” 

Figure 35 Hierarchical Representation of Manufacturing Automation (Bradford, 2020) 
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(Kang, et al., 2020) through early alerting manufacturing operators in case of detecting a 

progressive production faults that would in return invoke product quality defaults. 

Nevertheless, unlike human operators, advanced Machine-vision tools are capable of locating 

microscopic defects during the operations and autonomously responding through “using a 

machine-learning algorithm trained on remarkably small volumes of sample images” 

(Buchmeister, et al., 2019) 

4.2.4.6 Smart Maintenance  

In the manufacturing sector, unexpected machinery downtime is considered one of the most 

worrying dilemmas and cost-incurring events. In this regard, predictive maintenance has 

emerged to take its place among the top priorities in the industrial environment. To elaborate, 

“Predictive maintenance uses advanced AI algorithms in the form of machine learning and 

artificial neural networks to formulate predictions regarding asset malfunction” (Buchmeister, 

et al., 2019). As a consequence, such systems open the door for apparent reductions in 

maintenance expenses and extension of Remaining Useful Life (RUL) of equipment. Finally, 

Predictive maintenance algorithms enable saving time, resources, and labour costs to 

optimize the manufacturing value chain.  

4.3 The Futuristic Picture: Collaborative Intelligence 

Despite being viewed in the media as a threat towards human’s jobs, AI is in real a promising 

field of research that mainly revolves around providing workers the space to nurture their 

effectivity fulfilling their roles. AI and ML algorithms will mostly show their worth when 

they are incorporated alongside human skills to complement and augment capabilities 

without replacing them as “Machines are not taking away human skills; they’re amplifying 

and assisting our skills, while giving us room for creativity” (Damer, 2018). This will 

introduce an entire field of collaboration in which the “speed, scalability and quantitative 

capabilities of AI work are in harmony with the strengths that set humans apart: leadership, 

teamwork, creativity and emotional intelligence” (Damer, 2018).  

Through the exploitation of the continuous technological advancements (internet in 

particular), collaboration has become possible through “sharing information, resources, and 

responsibilities by distributed agents to jointly plan, implement, and analyze the activities 

required to achieve individual and common goals” (Zhong, et al., 2015), as we have become 

capable of communicating and interacting with others remotely. So, despite being a recent 

research field, but CI has already been a part of our lives in various daily business activities. 
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For example, humans regularly exploit various developed web applications for remote 

communication and knowledge sharing. Also, entities within the same organisational 

hierarchy have established knowledge supply networks through internet-based technological 

advancements.  

Collaboration can also be implemented in different ways. To illustrate, collaboration can 

come into action either blindly or in an intelligent way. Undoubtedly, being applied blindly 

does not guarantee the target achievement (ex: efficiency). So, apparently, the difference is 

made through the combination of the two words: Collaboration + Intelligence.  

So, errors and failures in any collaboration-based system emerge due to the lack of effective 

knowledge exchange. In this manner, CI can be more effectively pointed to as a quantitative 

measure to “calculate the collab-orability (collaboration-ability) of agents in addressing the 

following challenges: How to define and identify the best collaborators? When and why to 

collaborate with other agent(s)? What resources to share? What collaborative network 

structure to use? How to handle and prevent potential failures?” (Zhong, et al., 2015).  

Settling on a single definition for Collaboration Intelligence (CI) has been a highly 

sophisticated task. Consequently, it was a simpler task to find a definition for the two words 

(collaboration+ intelligence) in a separate way.  

4.3.1 Collaboration  

“Collaboration”, in a raw meaning, is “the action of working with someone to produce or 

create something” (Zhong, et al., 2015). To put it into a technological context, we can portray 

it as any work that is done between a human being and a machine (ex: driver-car) to achieve 

targets that are/may not be achievable in an individual manner. Generally, collaboration can 

be implemented in two different contexts: Mandatory collaboration and Optional 

collaboration. To elaborate, some cases necessitate collaboration between entities to achieve 

a target, while in other cases, a collaboration would be considered as an option to improve a 

target.  

On the same line, researching the term collaboration has seen much overlapping between it 

and other terms including coordination and cooperation. Consequently, it was essential to 

provide a map of those 3 keywords to highlight their similarities, inter-relationships and 

differences.  
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• Coordination: Refers to exploiting communication and knowledgen sharing to reach 

common goals among entities through working harmoniously. 

• Cooperation: In addition to the attributes of coordination, it maintains a resource-sharing 

dimension to support goal achievement.  

• Collaboration: In addition to the attributes of both coordination and cooperation, 

collaboration refers to “the sharing of information, resources, and responsibilities among 

entities to jointly plan, execute, and analyze the activities required to achieve individual and 

common goals” (Zhong, et al., 2015) .  

4.3.2 Intelligence  

Unlike the clear definition of collaboration, ‘Intelligence’ has different definitions as it linked 

to a range of contexts and mechanisms starting from communication mechanisms, 

cooperation to integration and collaboration. So, in general, intelligence refers to a system’s 

ability to satisfy the collaboration’s objectives regardless of its complexity.  

4.3.3 Collaborative Intelligence  

Back in time, people have intended to design machines because they wanted assistance. 

Accordingly, in order to put complete trust in an AI-based model, users would be eager to be 

fully aware of the machine’s source of knowledge and the pattern of its reasoning. As 

mentioned before, a CI model is designed to partner a person to accomplish a target. So, 

some tasks are expected to be assigned to the machine and others are more reasonably 

assigned to the human users. To demonstrate, a Cobot vacuum cleaner could be incorporated 

alongside the user’s efforts in order to collect tiny dirt particles that are beyond a human’s 

sight ability. CI is viewed as a two-sided relationship between the user and the machine as 

both sides would request assistance in light of particular situations. With respect to the 

vacuum cleaner Cobot, despite adding to the process’s efficiency, but it is still not expected 

to completely substitute its user’s role as their skills are complementary. For example, an 

interesting angle of the system is represented by the vacuum cleaner’s ability to identify 

situations where the user could help (e.g: switch off in case of an incompatible working 

situation) and accordingly request assistance (Epstein, 2015). Apparently, such system could 

shape the basis of an interesting CI. So, a CI must develop the ability to ‘model the human 

view of the world’ in order to collaborate effectively with human users. In other words, a CI 

should be aware of the unsymmetric relations that represent an integral part of the human 

perceptions that differentiate him to machines. For example, in a psychology experiment, 
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people regularly reported that Cuba was similar to Russia, but Russia was not similar to 

Cuba. In fact, “most AI research treats object similarity as a symmetric relation” (Epstein, 

2015). Furthermore, a CI should be capable of conducting reasonable and productive 

dialogues with his human partner after being equipped with ‘extensive knowledge’ and ‘self-

awareness’. CI models should also be capable of learning from its partner and changing its 

strategy in the middle of a process. Needless to mention, human users interact with multiple 

agents, deal with different data sources, and go after multiple goals. To do so, they normally 

employ “multiple reasoning methods and multiple heuristics” (Epstein, 2015).   

Important to mention, the term “collaborative intelligence” has been interpreted differently 

over the years, in correspondence to the technological advancements at the time. To 

demonstrate, three different definitions of CI are provided below: 

4.3.3.1 Internet Crowd-based Collaborative Intelligence 
 
Internet Crowd-based Collaborative intelligence technologies have been developing since the 

breakthrough of collaborative social media platforms by the end of the past decade. Based on 

real life cases, “Large-scale crowds exhibit extraordinarily intelligent capabilities through the 

participation and interaction of individuals on the Internet, which constitutes a new type of 

intelligent system” (YunhePan, 2016). Such CI systems have been incorporated to the benefit 

of various fields including the medical and academic fields. For example, the EyeWire 

game developed by the Connectome Project at Princeton University is capable of determining 

single cell and neural connections using a similar methodology, with a total of 165 000 

citizen scientists from 145 countries collaborating in the game to “describe with colors how 

nervous tissue in mammalian retinas detects structure-function relationships involving 

motion” (YunhePan, 2016). Other examples include Wikipedia, Baidu Q&A, and Zhihu 

Q&A. Internet Crowd-based Collaborative intelligence computing can revolutionize the 

knowledge base available to human society as it could be an integral factor in critical 

applications. The related theory and technology has surpassed the preliminary stages 

throughout the recent past years towards unprecedented maturity of CI.  

4.3.3.2 Human-centric Collaborative Intelligence 

Since the introduction of AI, the main question that hit people’s minds revolves around the 

ability of machine intelligence to surpass human intelligence in the future. Undoubtedly, such 

questions arise due to fears of the possibility of AI replacing human’s jobs. However, studies 

clarified that “Human intelligence constitutes a form of natural biological intelligence that is 
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different from that of AI” (YunhePan, 2016). Therefore, a human-centric CI systems would 

be built on a cooperation between computer and humans, that could surpass their individual 

intelligence. In fact, such systems were explained thoroughly by (Wilson & Daugherty, 

2018). Based on their research involving 1,500 companies, which focuses on real-life 

implementations of human-centric CI systems, they concluded that corporates “achieve the 

most significant performance improvements when humans and machines work together” 

(Wilson & Daugherty, 2018). According to the research, such systems have undeniable 

positive impacts upon flexibility, speed, scale and decision making. For example, they stated 

that SEB, a major Swedish bank, now incorporates a virtual assistant called Aida to interact 

with millions of customers. Aside from being able to handle natural-language conversations, 

“Aida has access to vast stores of data and can answer many frequently asked questions, such 

as how to open an account or make cross-border payments” (Wilson & Daugherty, 2018). 

In addition, wearable devices, intelligent-driving vehicles, exoskeleton devices, and human-

machine collaborative surgeries have been put into action, indicating that the human-centric 

CI system has its door wide open for future development. 

4.3.3.3 Autonomous Collaborative Intelligence Systems 
 
Since the birth of AI, autonomous robotics development has been the centre of attraction for 

researchers. However, this direction was hindered by many technological obstacles. To 

demonstrate, even after the development of robots capable of walking using four legs, the US 

military turned its attention to the engineering of unmanned combat vehicles. Needless to 

mention, such research iterations have led to the introduction of autonomous aircrafts and 

vehicles.  

Successful steps in developing automated intelligent mechanical equipment have promised 

higher degrees of effectiveness, easiness and economic benefits. Therefore, autonomous-

Collaborative intelligence systems will be an important developmental direction for future 

generations of AI, as it has the potential to revolutionize the decision taking systems 

incorporated within the life cycle of start-ups, small and medium enterprises and larger 

corporates. 

To sum up, the vast computing developments are leading us to an “open, dynamic and 

ubiquitous environments in which devices, services, and software agents are all expected to 

seamlessly integrate and cooperate in support of human objectives, anticipating needs, 

negotiation for services, acting on users’ behalf and delivering services in any where, and any 
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time” (Epstein, 2015). Apparently, there are huge gaps between collaborative intelligence 

components (human and machine) as they view the world differently, they process 

differently, and they communicate differently. Therefore, for a successful collaboration 

between a machine and a human user, different key issues should be carefully analysed.  

4.3.4 Pillars of Collaborative Intelligence  

The collaborative intelligence is the resultant of 

the seamless connection and interaction 

between the three pillars: collaboration 

technology environment, rally the area of 

knowledge and intellectual cooperation (Lee & 

Lan, 2007) 

4.3.4.1 Collaboration Technology Environment  

Collaboration technologies include software, hardware and networks that facilitate the 

communication, collaboration and problem solving of a group of users within a collaborative 

environment. The collaborative environment technologies include:  

• Synchronous technologies: Advancements that enable group of people to work together 

with being necessarily active at the same place/time including chat, video/chat conferencing 

and shared white boards. 

• Asynchronous technologies: Advancements that  enable group of people to work together 

without being necessarily active at the same place/time including e- mail, Weblog and 

discussion forums.  

4.3.4.2 Rally the Area of Knowledge  

The emergence of web 2.0 and big companies (e.g Google and Amazon) has revolutionized 

the cyber space, as it enables users to create new webpages, share information and “dynamics 

links using open source technologies” (Lee & Lan, 2007) following Google’s development of 

“scaleable architecture for servers” (Lee & Lan, 2007) in a successful attempt to connect PCs 

in a faster manner compared to the former offerings by Yahoo! and MSN that focused solely 

on the development of massive servers to handle vast amounts of data streams.  

Figure 36 Pillars of Collaborative Intelligence (Lee & 
Lan, 2007) 
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Figure 37 The Revolutionized Cyber Space 
                                                
 

4.3.4.3 Intellectual Cooperation  

As a matter of fact, through its “core philosophy” of “openly service”, Web 2.0 has opened 

the door for users to “cooperate to create a new world of dynamic knowledge” (Lee & Lan, 

2007), which represents an integral block of the CI chain.  

The intellectual cooperation spots the light on the collaborative advantages resulting from 

both “inter-personal” and “inter-organizational” interactions that took advantage of the 

recently extended social networks, which results in “network value and effect”. Value 

networks are “complex sets of social and technical resources to generate economic value. 

This value takes the form of knowledge, intelligence, a product (business), services or social 

good” (Lee & Lan, 2007).  

4.3.5 A General Approach For Collaborative Agents Modeling  

Step 1: Problem Determination and Assessment  

This primary step identifies and describes the problem under analysis through modelling the 

conceptual framework of the desired system from a user’s perspective along with determining 

the services and functionalities that the model should be capable satisfying.  

Step 2: System Architecture:  

This step revolves around determining the system components and connectors. This step is an 

advanced-level portrayal of the system that makes the system more “understandable, 

intellectually manageable, guide development implementation and evolution of the system 

for future modification” (Houari & Far, 2005).  
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Step 3: Capturing the Targets  

The targets of the system are specified according to the requirements. In this stage, 

collaboration, activity and sequence diagrams are employed to provide a precise 

representation of the system from the user’s eyes. To elaborate, this step prioritizes 

identifying the services the system should provide to its partner.  

Step 4: Extracting the plans  

From the user’s point of view, internal diagrams that highlight the functionalities of the 

system’s internal entities in order. Undoubtedly, this step helps unveiling more details that 

are not clear to extract only through the external perspective. A collaborative agent’s plans 

refer to groups of activities hierarchised under sets of roles, which are responsible for 

specifying the model’s ability to achieve a target.  

Step 5: Identifying the (Knowledge)  

Knowledge is the missing piece of puzzle, which is responsible for complementing the plans 

to successfully fulfil the target. In fact, knowledge is stored in the form of either “a set of 

assertions which comprise standards propositional operators” (Houari & Far, 2005) including 

conjunctions, disjunctions and negations or “a set of quantifiers”. It can also be stored in the 

form of “other devices for quantifying assertions with a level of uncertainty, as well as 

ontological assertion” (Houari & Far, 2005).  

Step 6: Specifying the Interaction  

Collaborative agents should be developed to interact with partners, other agents and external 

environment in order to fulfil their assigned duties. For such requirements, a unique kind of 

messaging protocol should be developed to stimulate the agent to trigger a certain sequence 

of actions. The hypothesized protocol should emphasize a set of rules that orchestrate the 

relation between “an agent with other agents to achieve a desired final outcome in sharing the 

knowledge and performing actions that satisfy the desired goals to fulfill some utility 

functions” (Houari & Far, 2005). Messages can be coded in XML (eXtensible Markup 

Language) format and transmitted using the Simple Object Access Protocol (SOAP). 
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Figure 38 A conceptual Framework of Agents Adaptation (Houari & Far, 2005) 

Step 7: Agents Adaptation  

The ability to learn is considered one of the attributes of an intelligent autonomous agent that 

could be developed through the incorporation of different machine learning techniques built 

in an algorithmic form. For example, a trained neural network learning algorithm can be 

created by the generation of knowledge for the agent in the form of if-then rules, which are 

used for training the model.  
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4.4 Discussion 

4.4.1 Latest Research Findings on Collaborative Intelligence in an Industrial Context 

In light of the continuously changing demands of the industrial production field in terms of 

safety, efficiency, and environmental friendliness, various sensors and wireless devices have 

been widely employed in the industrial environments, which paved the way for a gradual 

nurture of the Industrial Internet of Things (IIoT) related research. Simply, IIoT is based upon 

the daily collection of vast amounts of data by different devices at different times, to be later 

collaboratively analysed facilitating the generation of “effective solutions to achieve safe, 

highly efficient and eco-friendly industrial production/service” (Chen, et al., 2016). 

According to research, some proposals related to taking advantage of the cooperativity of big 

data analytics have already come to light.  

4.4.1.1 Collaborative Sensing Intelligence Framework (CSI) 

Building on the availability of “massive spatio-temporal data from different devices and 

different time points”, (Chen, et al., 2016) has extended the research to the collaborative 

sensing intelligence (CSI) framework, which is expected to enhance the efficiency of 

monitoring and controlling, leading to a favourable elimination of costs and energy 

consumption in the industrial 

production sector. Also, such 

proposed systems can play a vital 

role in improving the mechanical 

productivity of assets. To 

demonstrate, thanks to the different 

sensors and wireless devices 

incorporated, we can extend our 

expectations to reach a fully 

automatically controlled maintenance 

system of machines even in “remote 

and hard-to-reach areas” (Chen, et 

al., 2016).  

4.4.1.1.1 Key Components of CSI  

The CSI framework is composed of three main components: Sensing data collection, 

Integrated analytics, Information mining and Knowledge discovery.  

Figure 39 A Graphical Representation of an Industrial Intelligent 
Ecosystem (Chen, et al., 2016) 
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4.4.1.1.1.1 Sensing data collection 

In a data-driven industrial environment, vast amounts of data have been expected to be 

gathered by the sensors and wireless devices, which are mounted everywhere. Additionally, 

this component is the primary block of integrated analytics, which makes collecting enough 

spatio-temporal data highly essential.  

4.4.1.1.1.2 Integrated analytics 

This is the core component of CSI. An effective, collaboration-based integration of unsimilar 

data from various sources is undoubtedly an integral factor behind a successful data 

mining/discovery, which would result in useful information/knowledge. In fact, the 

collaboration of different objects has been a clear obstacle that hindered the practical 

development of this component. Industrial production is formed of a “series of processes and 

actions, and these processes and actions are location- and time-related. A spatio-temporal 

Markov chain can be used to process the relationships between these processes and actions” 

(Chen, et al., 2016). According to previous work, based on such processing, the collaboration 

between different objects could come to reality.  

4.4.1.1.1.3 Information mining and knowledge discovery 

Based on a successful Integrated Analytics, the industrial processes rules and workflow can 

be learned, which could lead to the formation of actionable knowledge organised in terms of 

a particular logical sequence. According to literature, “Based on the mined information and 

the discovered knowledge, various intelligent algorithms can be designed to solve the 

problems and to meet the requirements of industry” (Chen, et al., 2016).  

4.4.1.1.2 An Industrial Application of CSI: Dynamic Detection of Toxic Gases 

Leakage of toxic gases in large-scale petrochemical plants has always been one of the most 

concerning dilemmas to both humans and the surrounding environment (Wang, et al., 2014), 

which earmarked CI as a potential solution to develop an intelligent leakage detection system 

for timely crisis management and control.  

Currently, in the majority of large-scale petrochemical plants, only static wireless sensor 

nodes are independently deployed to alert workers to a potential leakage of toxic gases 

(Chen, et al., 2016) .Briefly, a static node triggers an alarm only in case of sensing a reading 

for a particular toxic gas that exceeds a pre-set threshold in a certain location, which limits 

such detecting systems’ functionality. To elaborate, such systems find it difficult to locate the 
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exact coordinates of leakage source as it cannot track the concentration variations of toxic 

gases (i.e. concentration varies by time and location), which necessitates a collaboration 

between the different sensor agents. Also, such systems find difficulties triangulating the real-

time geographical locations of operators, which complicates the efficient monitoring of the 

workers’ health. Thus, a collaboration between operators and sensor agents is essential to 

facilitate predicting the impact of the potential leakage upon the workers’ health. On another 

note, due to the fact that each sensor is designed to detect a particular toxic gas, a costive 

system of different sensor types must be deployed in various positions to detect different 

gases. However, such systems are still not applicable to all possible scenarios. To illustrate, in 

such dynamic environments, different toxic gases might react together forming new 

combinations of different characteristics, which might not be detected by the mounted 

sensors.  Accordingly, as shown in figure 37, (Chen, et al., 2016) proposed a CSI framework 

to provide a solution to the mentioned problems after collecting and analyzing massive 

spatio-temporal data from various devices in IIoT environments. 

 

Figure 40 An Application of CSI Framework to Improve the Detectability of Toxic Gases in Large-scale 
Petrochemical Plants (Chen, et al., 2016) 

Simply, this framework is composed of four elements: sensor-embedded wearable wireless 

devices, static wireless sensor nodes, WiFi-enabled wireless base stations, and a remote 

monitoring centre. The wearable wireless devices are worn by operators and collaborate with 

static wireless sensor nodes to sense the ambient environment and gather spatio-temporal 
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data. The data are re-directed to the remote monitoring centre via WiFi-enabled wireless base 

stations. According to the collected data, the monitoring center occasionally initiate a 

dynamic collaborative networking among several wireless devices to provide a problem-

solving network to detect the potential leakage of toxic gases.  

4.4.1.2 Collaborative robots and complex robotic cells 
 
As pointed earlier, industry 4.0 could be an answer to a couple of the main challenges 

encountering the manufacturing enterprises: shorter product life-cycles and increasing 

demand of highly customized products. Needless to mention, demand patterns change 

frequently in particular industries including furniture, footwear, and others. Expectedly, a 

change of demand patterns would be painful to the start-ups and SMEs, as they cannot afford 

the huge flexible production lines acquired by the bigger incumbents. Fortunately, ample 

research efforts have been directed towards the potential impact of CI upon the traditional 

manufacturing paradigm. The new manufacturing paradigm is based on modular factory 

structures composed of smart devices within a networked IoT environment (Román-Ibáñez, 

et al., 2018). In traditional manufacturing industries, robots are employed mainly for 

assembly tasks. The research paper (Morenilla, et al., 2021) presents a literature review of 

“Systems for the autonomous or collaborative assembly of furniture sets and sewing of 

garments using robots, robotic monitoring systems in footwear industry as well as unfolding 

of garments”. Scalability, safety and security concerns are covered in the development of 

these systems. 

A planning and assembly system for furniture pieces is introduced, where KUKA robots are 

responsible for geometric and symbolic planning, re-assignment of roles, and coordination of  

workflow to accomplish a successful assembly of a table. Interestingly, for heavy objects that 

cannot be managed by a single robot, a “set of robots is coordinated to complete the task” 

(Knepper, et al., 2013). Additionally, AI-powered systems for the autonomous assembly of 

furniture sets (e.g., tables, chairs) employing a set of robots are presented in (Huang, et al., 

2018) and (Knepper, et al., 2013). Briefly, such systems mimic basic operation skills in 

mechanical assembly using ML, Learning from Demonstration (LfD) in particular. So, 

KUKA could be comfortably assigned the cutting process, while humans guide the assembly 

of the final product assisted by an AI interactive interface. Clearly, such systems necessitate 

the development of a “a library of 3D models taking into account the modularity and 

scalability of components of furniture sets” (Morenilla, et al., 2021). On the same line, 

“human multimodal cues for furniture assembly were analyzed” to extract information in an 
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attempt to improve the communicational and social skills of cobots (Kontogiorgos, et al., 

2018). 

 

To sum up, research efforts towards cobots have intensified throughout the past decade. 

Clearly, cobots could be an answer to different challenges hindering the growth of MSMEs. 

To elaborate, new, affordable cobots with advanced levels of cognitive and communicational 

skills could facilitate the set-up of flexible manufacturing systems, which could withstand 

shorter product life cycles and frequently varying demand for highly customized products.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4.1.3 AI-based human-centric decision support framework 
 
Adaptability to variations under unstable business environments has recently emerged as a 

competitive differential for manufacturing enterprises. This goal highlights the necessity of 

developing adaptivity to eliminate uncertainties. One of the main uncertainties within the 

manufacturing sector lies behind the reliability of its assets. As a matter of fact, assets likely 

degrade over time due to wear of mechanical components, bad weather conditions and 

accidents. As a result, research efforts have been directed towards harnessing artificial 

intelligence technologies to develop a decision support framework for predictive 

maintenance. (Chen, et al., 2021) proposes an AI-based human-centric decision support 

framework for predictive maintenance in asset management, which can facilitate prompt and 

data-driven decision-making under unstable environments. In addition to its adaptivity, 

developers should ensure “that such decision support framework establishes a strong human–

machine teaming component to ensure user acceptance within real-world environments; 

allowing business actions and informed decision to be made promptly” (Chen, et al., 2021) 

Figure 41 A Work-space of Human-AI Collaboration Invalid source specified. 
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Figure 42 AI-based human-centric decision support framework (Chen, et al., 2021) 

The proposed framework is divided into the following key interconnected components:  

- Assets: Primarily, an asset under real-time monitoring “needs to be an IoT-enabled 

entity with sensory data extraction capabilities, and from which data samples are 

collected from” (Chen, et al., 2021) 

 

- Asset Knowkedge: embedded within this decision support framework a component 

responsible for gathering and adopting tacit knowledge from technical experts. This 

component must be regularly updated to ensure the delivery of the latest knowledge 

and guidelines to the experts/non-experts users to adapt to situational changes in the 

right time. The main mission of this component revolves around transforming the 

gathered knowledge into well-structured business rules. Furthermore, deploying AI 

models facilitates extracting meaningful patterns from huge data sets to complement 

the prepared business rules, thus “leading to a knowledge base that aims to bridge 

human–machine trust in using the decision support framework” (Chen, et al., 2021). 

Supposedly, the knowledge base consists of statistical features that indicate whether 

the collected sensory data samples captured from the asset under analysis is normal or 

abnormal. Normally, “bridging human–machine trust enables business actions to be 

undertaken” (Chen, et al., 2021). Nevertheless, this component includes a precaution 
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directory to deal with highly unpredictable fault diagnostics which can be double 

checked by business rules, ML inference, and technical experts. 

 

- Machine Learning for imbalanced data: In particular cases, the AI-powered 

maintenance systems might output biased and misleading decisions. This 

phenomenon goes back to feeding the system with imbalanced data during the 

training stage. In brief, the developed Ensemble model exhibits better learning and 

representation of the majority class. For example, the collected data from a machine’s 

sensors are commonly biased towards being referring to a non-failure state. A human-

feedback loop of this framework is proposed to facilitate the re-assessment of ML 

predictions in case of a misalignment between machine predictions and the operator’s 

intuition of the asset under his watch. 

 

- Predictive Maintenance: A critical feature of this AI-powered decision support 

framework is taking the feedback from technical operators into account within the 

working cycle of the algorithm. In case of a misalignment between the set business 

rules and ML predictions, technical operators are involved to re-assess the outcome 

and accordingly update the ML models. To illustrate, assuming the presence of class 

imbalance, the proposed framework is capable of outputting results and re-accept a 

double-checked input from the co-operator, thus strengthening the collaborative trust 

between humans and machines, which could stand out as a differential in highly 

unpredictable scenarios (i.e Pandemic). 

 

To further stress the point, the human factor has been an integral component of the proposed 

framework throughout starting from structuring the business rules to the validation and 

update of the system’s outcomes. Thus, developing such systems should not be considered as 

a threat to the human’s role. On the contrary, such systems promote a “human–machine 

teaming” (Van Diggelen, et al., 2019) loop to strengthen the trust-based partnership between 

human operators and AI models.  
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4.4.1.4 Shop Floors with Virtual Intelligent-Assistant (ChatBot) 

The term  “Internet of things” was first coined by British entrepreneur Kevin Ashton in 1999. 

Since then, we have been witnessing the outburst of devices connectivity in various fields. 

However, the industrial applications barely harnessed IoT before the global maturity of I4.0 

in 2013. In 2015, another term, “Internet of People” (IoP) floated to the surface to 

complement the IoT concept. Simply, IoP “connects the workforce to the internet using 

interfaces” (Mantravadi, et al., 2020). Conceptually, IoT “promotes people-centric design 

enhancements with the principles of being social, personal and proactive” (Miranda, et al., 

2015). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 43 Internet of Everything (Da Silva, et al., 2020) 

After a detailed identification of the specific requirements for a user-friendly Manufacturing 

Execution System (MES), (Mantravadi, et al., 2020) provided a validated prototype of an 

interactive chatbot supported with a prediction system to foster human-AI collaboration 

concepts and promote collaborative technical assistance. The author incorporates techniques 

such as NLP and ANN, which are key parts in making a chatbot ‘intelligent’ to collaborate 

with the MES user. The chatbot’s main target is enhancing production coordination by 

“assisting the shop floor workforce and learning from their inputs, thus acting as an 

intelligent assistant” (Mantravadi, et al., 2020). This source presented a programmable 

chatbot as a proof of concept, where the new interface layer provided live updates related to 

production in natural language and complemented MES with predictive capability.  
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Figure 44 Chatbot Interaction Algorithm (Mantravadi, et al., 2020) 

In a factory’s dynamic environment, a chatbot can be linked either to the sensors mounted to 

the physical assets on the shop floor or to external data sources to provide responses relevant 

to procurement planning, inventory management and shipping upon request. According to 

(Sankar & Balakrishnan, 2016), a chatbot with a prediction system can also be linked to a 

‘database supported knowledge base’. Expectedly, implementing such systems necessitate the 

availability of both interoperable devices and a unified IT infrastructure.  

 

 
 
 
 
 
 
 
 
 
 
 

4.4.1.5 Pi-Mind Technology 
 
Smart factories have become one of the hottest research topics in the past years. SF is a 

futuristic view of the industrial sector in which “the products, resources and processes are 

decided and controlled by CPS” (D. Evjemo, et al., 2020). (Terziyan, et al., 2018) depicts its 

own vision of a smart factory as an “ecosystem, which embeds cognitive aspects and biased 

decision-making into existing automated schemes of the operation”. Needless to mention, this 

futuristic vision urges the development of convenient communication and collaboration 

infrastructure to connect providers and consumers of successful industrial decisions. 

Figure 45 MES based Technical Assistance System (Sankar & Balakrishnan, 2016) 
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In brief, Patented-Intelligence-Mind technology is a “compromise between completely 

human-expert-driven decision-making and AI-driven decision-making [as it] enables 

capturing, cloning and patenting essential parameters of the decision models from a particular 

human expert making these models transparent, proactive and capable of autonomic and fast 

decision-making simultaneously in many places” (Terziyan, et al., 2018). The proposed 

technology deepens the human impact in smart manufacturing processes and supports 

human-AI ‘shared responsibility’ for the consequences of the decisions articulated. 

Additionally, the technology takes advantage of ‘capturing’ and ‘utilization’ of the 

“traditionally human creative cognitive, intuitive and emotional capabilities” (Terziyan, et al., 

2018), which in many exhibits a better performance compared to rational decision-making. In 

other words, Pi-Mind technology refers to a group of models, methodologies, and tools based 

on principles of value-based biased decision-making and creative cognitive computing to 

complement the axioms of decision rationality in industry. 

 

Figure 46 Pillars of Pi-Mind Powered System (Terziyan, et al., 2018) 

The technology of Pi-Mind simulates a DT of a human decision-making schemes in different 

situations, which offers its user a variety of actions according to his personal preferences. 

The proposed technology enables a shift from human employees functioning approach to the 

service-oriented one in the majority of decision points of industrial ecosystems. Thus, Pi-

Mind technology can be employed as an answer to the real-time need of outsourcing a 

technical expert as it adds a new dimension on top of Collective Intelligence emergent from 

the collaboration of artificial agents and human individuals. To elaborate, although most 

industrial contexts limit human operators to technological parameters, predefined processes 

or series of actions and the rules for their execution, yet each human operator embraces a 

unique degree of freedom in making decisions after earning his own skills and abilities. 
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The degree of freedom displayed in an operator’s decision-making process is the core 

principle behind the application of Pi-Mind technology. Beside his own situational cognitive 

assessment, an employee could find it more convenient to outsource consultation from 

colleagues, experts and domain specialists. Luckily, thanks to Pi-Mind robots, flexible 

problem-solving can be executed instantly without involving real human individuals.  

Despite the expected diminishing of the demand for domain specialists, but Pi-Mind would 

supposedly make their “ubiquitous presence” instantly available and increasingly impactful 

within the smart manufacturing ecosystem. To clarify, the Pi-Mind technology’s main target 

doesn’t lie behind replacing human factor in industrial processes; it is about globalizing every 

individual’s impact within I4.0 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

According to the author, Pi-Mind technology could be an answer to unexpected events during 

assembly and testing tasks. Briefly, Pi-Mind robot can assist a worker with creative decision-

making in the scenarios where improvisation is needed or even encouraged. In addition to his 

personal Pi-Mind robot, the recommendations received from the artificial clones of different 

external experts can be taken into consideration to stimulate the convergence towards an 

Figure 47 Industrial Applications of Pi-Mind (Terziyan, et al., 2018) 
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integrated, compromised and possibly unique decision for a certain problem. Thus, the 

worker takes advantage of the diversity of opinions before reaching to an optimal decision.  

 

4.4.1.6 Augmented Manufacturing Analytics Framework for Human-AI Collaboration in Quality Control 
 
Augmented analytics is becoming one of the hot research topics, which focuses on the 

improvement of analytics through the development of “conversational interfaces” and the 

employment of digital intelligent assistants (DIA) representing the human knowledge, thus 

facilitating the interaction with gathered data and extracted information.  

(Bousdekis, et al., 2021) outlines a framework for implementing quality analytics for decision 

augmentation through optimized human-AI interaction. The framework embraces the entire 

data analytics lifecycle (descriptive, predictive, and prescriptive analytics) targeting the 

extraction of an “increased value from quality data and prescribing appropriate mitigating 

actions through a voice-enabled DIA” (Bousdekis, et al., 2021). Although the descriptive 

analytics analyzes historic events and predictive analytics anticipates future events, but both 

could not further bolster the decision-making process (Chen, et al., 2012). On the other hand, 

prescriptive analytics, a relatively less mature field, has been increasingly gathering research 

interest as it facilitates data-driven optimization for decision support and planning (Lepenioti, 

et al., 2020). According to (Frazzetto, et al., 2019) , prescriptive analytics could potentially 

have the biggest positive impact upon businesses by supporting it with insights about 

proactive corrective actions for the anticipated undesired events. However, this field 

necessitates the presence of highly skilled workers with respect to data science and ML, 

which slows down the pace of adoption. To address this issue, (Bousdekis, et al., 2021) 

suggested that combining prescription with augmented analytics could enable users with 

average data science and ML skills to identify and communicate the most important insights 

or changes in the business by interacting through spoken and written language through the 

incorporation of NLP and conversational interfaces. 

To develop a reliable voice-enabled DIA system, the author integrated four core components 

presented by (Deriu, et al., 2021) and (Maedche, et al., 2019): Speech-to-Text (STT) to 

transcribe voice inputs, Natural Language Understanding (NLU) to extract intents and 

entities, Dialog Management (DM) to track dialog states and decide the next actions, and 

Text-to-Speech (TTS) to generate a computer voice output. The proposed system is capable 

of augmenting tasks associated with product and process quality control. To demonstrate, this 

framework supports the detection of abnormal behaviors and root causes of defects, 

forecasting their impact on both the product and process quality and prescribing appropriate 
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actions in the form of voice-first advice. Specifically, the framework foresees stream 

processing to perform real-time data processing for: (i) identifying potential reasons behind 

defects and highlighting correlations between products and defect rates; (ii) anticipating 

future quality defects and their potential impact; and (iii) prescribing mitigating actions to 

optimize relevant manufacturing performance indicators, such as Overall Equipment 

Effectiveness (OEE), uptime and scrap rate. 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

The system employs DIAs to spot the operator’s plans, queries and instructions within the 

industrial ecosystem. Normally, DIAs should be backed to deal with trivial interaction 

obstacles in the manufacturing industry. To demonstrate, DIAs should be capable of fulfilling 

its job even in the presence of noise, different languages, and workers wearing voice-

hindering masks or safety googles. Its STT component has to be reliable under these 

conditions, which is a technical challenge. To this purpose, a reliable STT model is 

embedded within the framework. However, important to note, the application of reliable STT 

trained models is quite challenging and expensive.  

 
Furthermore, DIAs would be interoperable on different mobile devices to be usable 

regardless of the location of the user.  Bearing in mind the time-pressing nature of 

manufacturing tasks, the DIA’s outcome is developed to be fast, unambiguous and user-

friendly. Since time pressure is a typical work condition, the DIA’s dialogs must be fast, 

unambiguous, and easy to use to avoid the need for time-consuming graphical interfaces.  

  

Figure 48 Augmented Manufacturing Analytics Framework 
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4.4.1.7 Artificial Intelligence-Driven Customized Manufacturing Factory  

Although the industrial sector has witnessed promising technological leaps, but yet the 

manufacturing industry encounters various challenges to effectively respond to the rapid 

customization of personalized products. Thus, a shift of the current manufacturing paradigm 

has become a necessity. In relevance to the highlighted concerns, (Wan, et al., 2020) focuses 

on the implementation of a customized manufacturing (CM) factory. Briefly, a CM factory 

takes advantage of technological advancements with regards to learning capacity of AI 

technologies, smart interconnectivity and inter-operability of Cyber-physical objects, 

dynamic re-configurability of manufacturing execution systems, vast amounts of data and the 

deep integration between physical and informational systems. To cut it short, the deployment 

of AI and industrial IoT facilitates smart manufacturing as AI-powered tools enhance 

manufacturing efficiency and improves the chances of proactively introducing higher value-

added products/services to the customer. However, adopting AI technologies still draws some 

concerns and challenges. To illustrate, AI and ML technologies necessitate the availability of 

high computer servers to facilitate the real-time processing of the massive amounts of 

gathered data (Sze, et al., 2017). On the manufacturing businesses’ side, fulfilling such 

requirements might stand as a financial liability. Also, in such a hyper-competitive market, 

manufacturing firms fear outsourcing their data to external partners (Cloud computing 

services) to avoid leaking data.  

 

Figure 49 Incorporation of AI technologies in Customized Manufacturing (Wan, et al., 2020) 
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4.4.1.7.1 AI-driven customized manufacturing  

As shown in Figure 46, the deployment of AI technologies could add value to the 

manufacturing industry across different parts of the value chain, ranging from customized 

product design to customized product logistics. Thus, complementing the human intelligence 

with AI technologies could benefit the manufacturing industry’s flexibility, scalability, 

efficiency and sustainability.  

Followingly, as named by (Wan, et al., 2020), “AI-driven CM” augments the human 

capabilities through learning and analysing order quantities, lead time and production 

anomalies. As well, ML technologies could learn data collected from the production assets to 

analyse it and learn when to alert the human operator to intervene, thus reducing downtime, 

anomalies and scrap rate.  As well, ML algorithms can be employed to streamline the 

variability and uncertainty of supply chains through analysing data collected from the market 

and anticipating the sudden variations of customer preferences. 

4.4.1.7.1.1 AI-Assisted Customized Manufacturing Factory  

As depicted by (Wan, et al., 2020) in Figure 47, an AI-assisted CM framework includes smart 

devices, smart interaction, AI layer, and smart services. Provided below a brief description of 

the 4 building blocks of the system:  

- Smart Devices: this block represents the “the physical layer” of the system (i.e robots, 

conveyors, ..etc). Being a part of automatic control systems, smart devices must be 

ready to meet a real-time request. There, ML algorithms can be employed in low 

power devices. For, example, supporting Field Programmable Gate Array (FPGA) 

“has shown a great improvement in both power consumption and performance in 

Deep Neural Networks (DNNs) applications, which offer high accuracies for 

important image classification tasks and are therefore becoming widely adopted” 

(Fallahlalehzari, 2020) 

 

- Smart Interaction: this block links the device layer, AI layer, and services layer. 

Briefly, this layer consists of basic network devices (i.e routers) and communication 

protocols to connect different manufacturing processes. AI is incorporated in this 

block to predict, optimize, and control both mobile network reliability and congestion. 
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- The AI Layer: this block consists of AI algorithms operating at various computing 

platforms such as edge or cloud servers (Lu & Xu, 2018). To demonstrate, training a 

DL model for image processing can be executed in the cloud. Then, edge computing 

servers run the trained DL model and execute simple algorithms for assigned 

manufacturing processes. 

 
- Smart Manufacturing Services: this block resembles data visualization, predictive 

maintenance, predictions, and market analysis. For example, a “recommender system 

can provide customers with details of CM products, and the information including the 

performance of a production line, market trends, and efficiency of the supply chain”. 

 

Figure 50 AI-assisted CM Architecture (Wan, et al., 2020) 

4.4.1.7.1.2 Cooperative multiple agents  

Multi-Agent Systems (MAS) “consist of autonomous entities known as agents” that 

“collaboratively solve tasks” and “offer more flexibility due to inherent ability to learn and 

make autonomous decisions” (Dorri, et al., 2018). According to (Wan, et al., 2020), “the 

multiple agents are deficient in processing massive data”. However, the recent advancements 

in edge computing has opened the door for integrating multiple agents with AI to 
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collaboratively execute complex tasks such as image-based product recognition (Park & 

Jeong, 2019) .  

(Wan, et al., 2020) portrayed a working scenario of the cooperative AI-powered multi agents. 

First, the recommender system sends the product orders to the manufacturing system in 

accordance with the customers’ preferences (Order Submission). Secondly, inside a remote 

CC service, the AI-assisted task decomposition algorithm receives the product orders to 

generate both the operations sequence and the estimated manufacturing time. Similar to a 

real-life scenario, a product preparation can be sub-divided into different tasks, which are 

forwarded to the agents via the industrial network. After a negotiation phase, agents 

communicate their roles to the edge server, which supervises the agreed plan according to 

corresponding conditions and constraints. Thirdly, the AI-assisted cost-evaluation algorithm 

computes the production cost according to provided historical data. Only then, the edge 

agents intelligently assign the tasks to the main cooperative group of agents to complete the 

product order by sending them the selection results. Throughout the production phase, the 

assigned device agents forward their status data to edge servers to provide a real-time 

monitoring of the assets. By the way, an AI-based algorithm picks free agents to form a 

cooperative subgroup to intervene in case the main cooperative group fail in some tasks (i.e 

Carrying Materials). So, the AI-assisted MAS almost provides a self-organisable smart 

factory. 

 

Figure 51 An AI-assisted Cooperative Multi Agents Framework (Wan, et al., 2020) 

However, (Wan, et al., 2020) insisted that AI-driven CM does not intend to exclude the 

human factor from the entire production sphere. However, AI-driven methods augment the 

operators’ capabilities to free their cognitive capacities on planning and optimizing the 

overall production system instead sparing time in repetitive tasks.   
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4.4.1.8 Human-centric AI-based Smart Manufacturing System 

Re-locating the human factor in the heart of the industrial loop has been the main motivation 

behind the new vision of the manufacturing systems provided by  (Lu, et al., 2022), as the 

authors simply proposed a framework for a human-centric manufacturing system in an 

unstructured and de-centralized manufacturing environment to support an “ultra-flexible 

manufacturing automation of personalized products”. By building on the authentic vision of 

smart manufacturing presented by (Lu, et al., 2020) , the proposed framework contextualizes 

human-centric manufacturing system towards mass-production of highly personalized 

products by feeding a collaborative human-machine team a dynamic and unique list of 

manufacturing tasks. In brief, the authors create a library of elementary manufacturing 

activities (i.e. Threading, finishing, machining,  ..etc). Then, the authors develop two models 

for every elementary task. The first model is responsible for identifying the necessary 

manufacturing skills and determining the corresponding manufacturing resources (including 

human operators). By the deployment of the technologies reviewed earlier in section 1.6, the 

second model simply creates a “human wellbeing impact profile that quantifies the physical, 

cognitive and psychological load of a task placed onto humans if it were feasible to be carried 

out by industrial workers. The physical load will be assessed at the level of individual human 

body joints and muscle groups” (Lu, et al., 2022).  

 

 

 

 

 

 

 

 

 
 

Figure 52 A Human-centric AI-based Smart Manufacturing System Framework (Lu, et al., 2022) 
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In addition, by adopting the conceptual reference model provided by (Lu, et al., 2020) a 

human DT will be developed to “model the capabilities, behavior pattern and wellness index 

of a worker” (Lu, et al., 2022). The “capability information” will provide machines the 

required data to decide on the possibility of delegating a manufacturing task to a specific 

operator from a skill-oriented point of view. Additionally, the wellness index resembles the 

operator’s physical, cognitive, and psychological stamina. As well, the behavior pattern 

focuses on the human’s adequate work-rest schedule, teamwork attitude and cognitive 

decision-making model. As pointed in section 1.6, modelling this tripod will support 

machines with a better, full-round understanding of human state variations in real-time, thus 

building a human-machine relationship based on “bi-directional empathy” and “proactive 

communication” (Lu, et al., 2022).  

 

This human-centric AI-based smart manufacturing system's efficient control and optimization 

concern directs the attention to the “distributed cooperative multi-agent (both humans and 

machines) task allocation problem”, which should be handled in a totally different manner to 

the way researchers handle traditional manufacturing systems (Lu, et al., 2022). To clarify, in 

the “self-organize” proposed system, the operator’s wellness and working autonomy should 

be optimized while attaining an acceptable overall system productivity. Hence, the commonly 

used “centralized production scheduling algorithms” would not work well with the 

randomness accompanied with the operators’ freedom and contingencies. Instead, distributed 

learning-based algorithms, such as multi-agent reinforcement learning, could possibly equip 

the model with the necessary schema to respond appropriately to the dynamicity of human-

machine collaboration.  

4.4.1.8.1 Human-centric human-robot collaboration 

Considered as an integral element of human-centric AI-based Smart manufacturing 

interactions at the machine level, (Lu, et al., 2022) proposed a human-centric human-robot 

collaboration (HC-HRC) framework to further upgrade the standard human-robot 

collaborative practices and consequently satisfy both human-centricity and production 

efficiency. Successful HC-HRC necessitates the maturity of three pillars including dynamic 

human understanding, empathic robot control, and dynamic task scheduling.  
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The three pillars are briefly summarized below:  

4.4.1.8.1.1 Dynamic human understanding 

Dynamic human understanding revolves around the design of a personalized DT for each 

operator to model his change of states and scenario-based intent (Lu, et al., 2020). The DT 

assesses human states by learning and classifying multimodal human body external signs to 

accurately estimate the impact of the assigned work upon the operator’s physical, cognitive, 

and psychological state (Busch, et al., 2017). Concurrently, the DT regularly scans the 

operator’s external body movements to predict both the short-term human intent and the 

manufacturing job’s final objective according to learned sequences of actions by CNNs as 

proposed by (Zhang, et al., 2021).  Accurate and continuous modeling of the human states 

and intent will lead to complete dynamic human understanding, fueling empathic skills which 

drive human-robot compassionate collaboration. 

 

Figure 53 An example for dynamic human understanding by robots (Zhang, et al., 2021) 
 

4.4.1.8.1.2 Empathic robot control 

Empathic robot control relies upon “leveraging empathic skills for task-level action 

generation and subsequent mixed-imitative robot control” (Lu, et al., 2022). These empathic 

skills stimulate the maturity of a shared shopfloor model as it harmonizes human-machine 

shared actions following a successful definition of the self-organizing robot behavior based 

on understanding the operator’s states and short/long term goals. In other words, the 

operator’s autonomy alongside overall system’s smooth performance is provided by empathic 

robots, which learns to self-adjust according to the human’s changing states and intents, thus 
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guaranteeing a “proactive robot assistance to satisfy human needs beyond safety” (Lu, et al., 

2022). 

4.4.1.8.1.3 Dynamic task scheduling and planning 

On the job floor, dynamic task scheduling refers to “proactive task allocation/reallocation 

between humans and robots using human-robot collaborative intelligence for optimizing 

human wellness and handling contingencies” (Lu, et al., 2022). Task assignment algorithm 

and schedule optimize the operator’s wellbeing alongside the system’s productivity according 

to the fed data concerning both the agent’s information (i.e. human’s physical state, 

human/machine availability, human/machine capability) and the task’s accompanied 

constraints (Nikolakis, et al., 2018). The task allocation is dynamically scheduled using self-

organizing shared autonomy between humans and machines. Unlike the available HRC 

research, the required “self-organizing shared autonomy” and “self-healing” task allocation 

strategy would generate  “wellbeing-sensitive” task schedules according to human 

understanding to both collaboratively complete “on-demand” manufacturing jobs and 

intelligently adapt to unexpected contingencies (Lu, et al., 2022). Thus, the dynamic task 

scheduling is a clear example of harnessing CI to satisfy the human operator’s needs 

regarding esteem and self-actualization.  

 

Figure 54 Human Centric AI-based Human Robot Collaboration (Lu, et al., 2022)
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Table 6 An Analysis of the Technological Requirements of the Potential CI Applications in Manufacturing (According to the author’s Findings) 

    Applications 

 
 
Technologies  
Involved 

Collaborative 
Sensing 

Technologies 

Collaborative robots 
and complex robotic 

cells 

 

AI-based human-centric 
decision support 

framework 

 

Shop Floors with 
Virtual Intelligent-
Assistant (ChatBot) 

 

Pi-Mind 
Technology 

Artificial Intelligence-
Driven Customized 

Manufacturing Factory 

 

Human-Centric AI-based 
Smart Manufacturing 

System 

Smart IoT Devices  
Wearable Devices        

Smart Sensors        
      AI/ML Algorithms  

Spatio-temporal Markov 
Chains 

       
Learning from 

Demonstration (LfD) 
       

Ensemble model 
/Reinforcement learning 

       
Image/Pattern Recognition        

ANN/Classifiers/CNN/ 
DNN/ Bayesian 

       
NLP/NLU        
STT/TTS        

                DBPS  
In-house Computing        

Cloud Computing        
Edge Computing        

Communication 
Networks 

 

4G        
5G        

WiFi/Bluetooth        
DT/AR/VR        
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Table 7 A Qualitative Analysis of the Affordability and Maturity of Technologies Involved 
in the Researched Applications (From the author’s Perspective) 

 
 
Note: The maturity and affordability of these technologies is the authors’ subjective assessment of their current 
technological readiness and availability in the Market. No solid quantitative comparison between these technologies 
in the context of human-machine communication is available yet. Usability will then be ranked according to the 
author’s subjective assessment of the technology’s effectiveness, easiness of use, and usefulness to the case. 

  

    Attributes 

 
 
Technologies  
Involved 

Affordability Maturity 

 

Smart IoT Devices 

Wearable Devices LOW MEDIUM 
Smart Sensors HIGH HIGH 

AI/ML Algorithms 
Spatio-temporal Markov 

Chains 
 HIGH 

Learning from 
Demonstration (LfD) 

 MEDIUM 

Ensemble model 
/Reinforcement learning 

 HIGH 
Image/Pattern Recognition  HIGH 

ANN/Classifiers/CNN/ 
DNN/ Bayesian 

 HIGH 
NLP/NLU  HIGH 
STT/TTS  MEDIUM 
DBPS 

In-house Computing HIGH HIGH 
Cloud Computing HIGH HIGH 
Edge Computing LOW MEDIUM 

Communication 
Networks 

4G HIGH HIGH 
5G LOW MEDIUM 

WiFi/Bluetooth HIGH HIGH 
DT/AR/VR LOW MEDIUM 
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4.4.2 A Qualitative Analysis of the Usability and Maturity of the Researched CI Technologies in Manufacturing  

 

 

 

 

 
 

Application Usability Maturity 

Collaborative Sensing Intelligence HIGH HIGH 

Collaborative robots and complex 
robotic cells 

HIGH HIGH 

AI-based human-centric decision 
support framework 

HIGH MEDIUM 

Shop Floors with Virtual 
Intelligent-Assistant (ChatBot) 

HIGH MEDIUM 

Pi-Mind Technology 
(PIM-T) 

MEDIUM MEDIUM 

Augmented Manufacturing 
Analytics Framework for Human-

AI Collaboration in Quality 
Control 

HIGH MEDIUM 

Artificial Intelligence-Driven 
Customized Manufacturing 

Factory 

HIGH MEDIUM 

Human-Centric AI-based Smart 
Manufacturing System 

HIGH LOW 

Table 8 An analysis of the applicability, usability and maturity of the different technologies in a manufacturing 
context (From the author's perspective) 
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4.4.3 A Qualitative Analysis of the Human Intelligence and Artificial Intelligence Contribution 
 
 

Table 9 A Qualitative Analysis of the Share between the Contribution of Human Intelligence and Artificial 
Intelligence Towards Collaborative Intelligence Towards (From the Author’s Perspective) 

Application Human 

Intelligence 

Artificial 

Intelligence 

Collaborative  

Intelligence 

Collaborative Sensing 
Intelligence 

     LOW HIGH HIGH 

Collaborative robots and 
complex robotic cells 

MEDIUM MEDIUM HIGH 

AI-based human-centric decision 
support framework 

MEDIUM MEDIUM HIGH 

Shop Floors with Virtual 
Intelligent-Assistant (ChatBot) 

MEDIUM MEDIUM HIGH 

Pi-Mind Technology MEDIUM MEDIUM HIGH 

Augmented Manufacturing 
Analytics Framework for 

Human-AI Collaboration in 
Quality Control 

 

MEDIUM 

 

MEDIUM 

 

HIGH 

Artificial Intelligence-Driven 
Customized Manufacturing 

Factory 

 

MEDIUM 

 

MEDIUM 

 

HIGH 

Human-Centric AI-based Smart 
Manufacturing System 

MEDIUM HIGH HIGH 
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5.  Results of the Bibliometric Analysis of Research Question 2 

5.1 Phase 1: Research and Classification  

The analysis of the first research question has concluded that the recently researched CI-

based technologies could offer a game-changing edge to the manufacturing industry with 

respect to quality control, product design, productivity,  scalability, and decision-making. 

However, apart from small-scale cobots and chatbots, according to the conducted qualitative 

analysis, large enterprises are relatively more well-positioned to invest in the majority of the 

researched questions, which further justifies the importance of posing RQ2. The first phase 

consisted of the search for documents, which included the activities of collecting material 

belonging to the academic universe. This first phase was divided into three steps as follows.  

5.1.1 Identification (Step 1)  

For a comprehensive research of the research question, phenomenon, an investigation on the 

Scopus (SCP) and Google Scholar databases was carried out using Boolean operators. The 

began by making a search query with the general key words "Collaborative Intelligence" OR  

"Human-AI collaboration" OR "Artificial Intelligence" AND “Manufacturing SMEs” as 

shown in Table 10.  

Keywords Time Period 

Collaborative Intelligence  

1999-2022 
Human-AI Collaboration 

Artificial Intelligence 

Manufacturing SMEs 
Table 10 Research Combination of Keywords 

The search returned in total 2184 documents.  

The results extracted by Google Scholar are numerically superior to Scopus (SCP): 2170 for 

the first and only 14 for the second one (Table 11).  

Research Carried out in 2021 

Source of Research Google Scholar Scopus 

Results 2170 14 
Table 11 Research Results 



130 
 

Despite the arguable scarcity of resources with respect to the associated research question, 

but still, we could gather a fair amount of information and insights.  

Important to note, the clear difference between the amount of search results of the two 

databases lies behind the unmatching effectiveness of Google Scholar and Scopus when it 

comes to locating recent gray literature sources (Gray literature is defined as “Information 

produced on all levels of government, academia, business and industry in electronic and print 

formats not controlled by commercial publishing” (LibGuides, 2022)). To demonstrate, 

Google scholar is known for its relatively vast amount of search results as it “aims to 

summarize all electronic references on a subject” to “reach the widest audience available” 

(Falagas, et al., 2007). In other words, Google scholar is often recommended as a source of 

grey literature, which perfectly fits this paper’s systematic review of an under-researched 

topic. However, despite the availability of an “advanced” search engine in Google Scholar, 

but it still does not enable the researcher to gain any information regarding the number of 

conference papers included in the academic search engine as provided by Scopus. On the 

same line, Google Scholar does not provide the “abstract and information on free full text 

availability”, which puts Scopus ahead with respect to this feature as it enables the researcher 

to be ahead of time in the inclusion phase.  

This analysis aims to highlight the link between the trends of research regarding 

Collaborative intelligence, Industry 4.0, Industry 5.0 and manufacturing SMEs. Through a 

time-indexed time series of research documents pointing to the associated research question, 

the link between the four trends has been emphasized. To demonstrate, provided below a 

graph (Figure 52) that provides a proof that the literature has been enriched with 

publishments following the attention directed to I4.0 and relevant topics. Growth is evident 

after 2011 when new technologies began to be researched and put into action more 

frequently. Clearly, the published documents associated with RQ2 showed a noticeable 

increase by the end of 2015, which aligns with the introduction of I5.0 in the scientific 

community as highlighted before. On the same line, the term “SME 4.0” was introduced by 

(Rauch, et al., 2018) to create an international and interdisciplinary research network to 

transfer the concepts of Industry 4.0 concepts and technologies to SMEs. On the other side, 

the term “Start-up 4.0” was recently introduced by (Kaczam, et al., 2021). Interestingly, the 

recent introduction of the term “start-up 4.0” justifies the severe shortage of research towards 

the applications of CI in start-ups before 2022. Thus, a focus has been directed towards 

filtering the research efforts restricted to the key word “manufacturing start-ups”, which 
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surprisingly returned zero results. Hence, the coming sections will draw the attention to the 

potential impact of CI technologies upon manufacturing SMEs. 

 

Figure 55 A Time-Series of Research Publications 

In fact, this research indicates that over the time period considered (1999–2022), the number 

of published documents remained almost constant until 2011, from which it undergoes an 

increase. This turning point has emerged by the introduction of I4.0 technologies and pacing 

growth of relevant research activities, which signalled the necessity of directing the research 

efforts towards the potential impact of CI upon the entrepreneurial community, which saw the 

emergence of the trend “SME 4.0” by the beginning of 2018. As well, the figure highlights 

the apparent maturity of research towards the applications of CI in SMEs between 2018 and 

2022, which signifies the presence of a lag between manufacturing SMEs and Large 

enterprises’ adoption of CI technologies, and concurrently highlights the effect of the core 

values of I5.0 upon the industry’s directions. Another important note lies behind the clear 

overlapping of the “TP” and “Google Scholar” curves, which highlights the low share of 

research results provided by “Scopus” in this research question. 

5.1.2 Screening (Step 2)  

Following the completion of the identification phase, the paper presents an overview of the 

topics and areas interface through a screening process. The screening phase revolves around 

an analysis of the accessible published documents. In other words, this phase required 
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narrowing down the number of documents to be the focus of the study. So, an analysis of 

“free access” documents was provided. In addition, the “access through your institution” 

option provided by Direct Science, Research Gate, El-Sevier, and others, has enriched the list 

of accessible documents. Luckily, the inaccessible documents (due to hyperlink failures or 

un-authorized sign in) has shown a negligible effect upon our analysis, as less than 20 out of 

2184 documents were excluded. Furthermore, in our study, we didn’t believe we have to 

restrict our research to a specific subject area (Provided by Scopus only), as our research 

keywords already restrict the results to the manufacturing sector.  

To cut it short, the screening phase hasn’t excluded a noticeable number of document and 

almost all research results will enter the next phase.   

5.1.3 Inclusion (Step 3)  

By the completion of the screening process, the inclusion step was kick-started. This step 

prioritizes the selection of a portion of the documents extracted from the last step to be 

included in the sample on which bibliometric analysis was performed. In fact, according to 

earlier plans, this phase was supposed to rely upon a keywords analysis in addition to an 

abstract analysis. However, due to the unavailability of “abstract preview” option in Google 

Scholar, we examined the full text of each document one at a time to ensure its eligibility to 

go through the analysis phase. For each article, we examined whether the document refers to 

the Human-AI collaboration theme in a manufacturing context or not. Also, this phase aims 

to check if any of the documents included case studies or real applications, suggestions for 

new AI and CI algorithms and architectures in MSMEs, or possible future scenarios. 

Therefore, the final sample to be analyzed consisted of 54 documents for Google Scholar and 

8 for Scopus.  

5.2 Phase 2: Analysis  

This section presents and discusses the findings of this review.  

First, an overview of the selected studies is presented. Second, the review findings according 

to the research criteria, one by one in the separate subsections, are reported.  
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5.2.1 Top Highly Influential Analysis  

This section spots the light on the most highly cited documents in Google Scholar and 

Scopus. In fact, in this case, some research databases haven’t provided a count of the 

citations. Also, a noticeable number of documents had been recently published, which 

resulted in arguably lower citations compared to earlier ones. Additionally, we need to point 

out that some researchers do not tend to cite the document through its publisher’s database, 

which could sometimes lead to a misleading image. In consequence, in specific cases, we 

though it could be of relevance to mine the count of views and downloads to provide a clearer 

image. Anyway, (Michalos, et al., 2014) has the highest citation count of 162. This document 

presents the vision and architectures, proposed by the EU project ROBO-PARTNER. Briefly, 

this project promotes “a hybrid solution, involving the safe cooperation of human operators 

with autonomous and self-learning/adapting robotic systems, through a user-friendly 

interaction” (Michalos, et al., 2014), to help increase the collaborative robots’ adoption rate 

by SMEs. 

Interestingly, the document publication year is 2014, about two years following I4.0 was 

introduced, which further proves that the count of citations is proportional to the length of 

time a document has been out to light.  

 

 
 
 
 
 
 
 
 
 
 
 
                     
 

Figure 56 Human-Robot Collaborative Assembly 

Obviously, most documents before I4.0 generally have more citations than the most recent 

documents. However, it is significant to note that a noticeable share of  recent documents 

have a very high number of citations bearing in mind the year of publication. This reflects the 

interest in the topic from the scientific community.  

The citation analysis has also revealed that the first book that we can identify among the most 

accessed (1067 accesses) in the I4.0 period dates to 2021. Briefly, (Iftikhar, 2021) elaborates 
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on machine learning project development life cycle for manufacturing SMEs. Also, the paper 

presents new insights and suggestions for SMEs to facilitate a successful adoption of ML 

technologies. On another note, (Mohamed & Weber, 2020) received much attention among 

the scientific community. Simply, based on a case study of 53 British manufacturing SMEs, it 

presents several perspectives including digital technology trends, challenges facing the UK 

SMEs, and the state of their adoption in AI technologies, data analytics and big data. 

 

5.2.2 Publications by Years  

Consistent with the analysis in Section 3, the study points out that the number of documents 

included in the analysis is apparently low for the entire period before the introduction of  I4.0 

in 2011. However, as expected, the relevant research shows sudden increase, starting in 2013. 

The data shown in Figure 54 also shows a scarcity of documents in the period between 2012-

2018, compared to the apparent boom in research afterwards.  

 

Figure 57 A Time Series of the Inclusion Results 

The undeniable maturity of research could go down to the introduction of 5G technological 

services in 2019. Thanks to its increased bandwidth, 5G is expected to pave the way for new 

applications in IoT and MTM areas, thus making it more affordable for SMEs to catch up 

with the Larger enterprises’ investments in the new technologies. 

With reference to 2022, the figure refers to the first quarter of the year, so it is expected that 

during the year, there will be a further increase in the documents in the literature.  
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5.2.3 Country Analysis  

This section’s main focus is determining the countries contributing the most to the relevant 

research effort. To note, prior to conducting this specific analysis, we had to exclude all 

documents in Chinese and Japanese languages. In other words, this section could be slightly 

biased towards Europe, United States and United Kingdom.  

In brief, the countries that give the most contribution are: The United Kingdom (11.3%), 

China (9.7%) and Germany (9.7%). Unsurprisingly, when it comes to Europe, Germany 

comes on top of the list of contributors. To demonstrate, I4.0 was first introduced in 

Germany, which justifies the correlation between both trends. 

In addition, it is worth mentioning that Europe has contributed with 43.5% of the available 

resources. This high contribution could be related to the fact that “the EU’s manufacturing 

base presents an excellent opportunity for broad AI adoption to get ahead in digitalization and 

the Internet of Things” (Brattberg, et al., 2020), which arguably helps closing the gap 

between Europe, China and the United States in terms of research. Following this trend, we 

anticipate a recognizable evolution of smart production and entrepreneurial initiatives and 

therefore a further maturation of scientific research.  

5.2.4 Key Take-aways of Analysis 

This section highlights the main outcomes of the second phase: 

• The research efforts associated with the research question have seen a slight increase 

starting from 2011 (Introduction of I4.0) 

• The research efforts have then enjoyed a relatively larger increase after the emergence 

of the term SME 4.0 in 2018 

• The term Start-up 4.0 was first introduced in 2021, which justified the scarcity of 

research resources associated with manufacturing start-ups 

• Most documents before I4.0 generally have more citations than the most recent 

documents 

• Countries that give the most contribution to research are: The United Kingdom 

(11.3%), China (9.7 %) and Germany (9.7 %) 

• Europe has contributed with 43.5% of the available resources, while Asia contributed 

with 22.6%  
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6. Literature Survey of Research Question 2 

6.1 Vulnerable MSMEs: Collaborative Intelligence to the Rescue? 
 
Unlike SMEs, a startup’ main goal is designing a product that offers customers a differential 

value proposition. Scholars have indicated that “Start-up companies are relatively new to 

the market with the intent to explore a new idea or a product, usually leveraging 

technology” while “SMEs, on the other hand, establish operations involving known 

products and services mainly for local markets” (Raghu, 2017). The literature consistently 

insists that startups are “priority channels for social and economic development, industrial 

change, and renewal” (Passaro, et al., 2020). Such newly established companies are widely 

known as “temporary organizations” as they are highly prone to failure (above 60% of start-

ups around the world fail during the first stage of operations) (Passaro, et al., 2016). In brief, 

despite the successful exploitation of “innovation-oriented” market opportunities and the 

establishment of a repeatable and a scalable business model (fast growth rate of revenues, 

operations, and employees), but still most of them fail to expand and they probably encounter 

the fate of being taken over by larger corporates due to the severe competition, their operation 

in changeable and unpredictable environments in addition to the scarcity of resources. So, 

unlike large corporates, even in case of possessing a brilliant business idea, MSMEs 

encounter various challenges of different intensities and complexities throughout their several 

life cycles stages. The main challenges include the limited financial resources, technological 

misalignment, and inability to compete large corporates for skilled labor. Specifically, to 

MSMEs, few other challenges might complicate the way towards a sustainable growth. 

Manufacturing businesses offer services in a highly competitive context as they are likely 

pressurized by global competition in terms of new offerings, novel production technologies, 

enhanced materials and organizational innovations. In return, manufacturing ventures rely 

upon innovation to either cope with the competition at least or create a competitive advantage 

through improving productivity (or cost reduction) and enhancing flexibility. According to 

(Sarkar, 2020), a recent review of the data of 27 years of US Manufacturing businesses’ 

failure rates has revealed that “80% of US manufacturing companies have failed within 25 

years of starting up. A fact that is not as widely publicized and hence less spoken about is that 

the option of failure continues beyond the first five-year period. It continues even beyond the 

first 10-year period. The US Bureau of Labor Statistics data shows that about another 30% of 

companies fail between year five and year fifteen. And, only about 20% of companies make 

it into their 25th year of existence”. On the same line, (D. Vaisman & S. Nikiforova, 2018) 
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estimated that new manufacturing businesses are subjected to the hypercompetition threat, as 

it reduces the life cycle of competitive advantage, leading to regular changes across the 

positioning of market players. 

 

 

 
Figure 58 New Manufacturing Businesses Survival Rate (Sarkar, 2020) 

 

Similar to other sectors’ new businesses, new manufacturing ventures go through different 

stages of their life cycle. To illustrate, almost all new ventures encounter financial challenges 

and varying market demands. However, each new business is relatively more affected by 

particular factors than others of different sectors and different sizes. Assuming that “there are 

three major business sizes: small, mid-market, and large enterprise” (Novak, 2019), this work 

primarily aims to focus on MSMEs and start-ups. However, as pointed before, supported by 

the fact that SMEs are far superior to start-ups with respect to the economic impact, the 

scarcity of research efforts directed towards the impact of CI upon manufacturing start-ups 

has furtherly guided the work to re-direct the attention to MSMEs instead. 

In consequence, this work spots the light on the common reasons behind the failure of 

MSMEs over the different stages of its life cycle and the potential impact of augmenting the 

human capabilities with AI technologies upon the efforts towards solving them. To this 

purpose, a life cycle analysis approach has been provided based on a systematic literature 

review. 
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Briefly, the mentioned approach views a start-up’s life cycle as “a sequence of stages from 

the ideation up to the consolidation/expansion stage, which can favor the analysis, planning, 

and management of flourishing startups’ sustainability” (Passaro, et al., 2020). However, the 

author inspired it from the past literature about the SMEs lifecycle and adjusted it to 

accommodate the higher risk associated with start-ups’ early and late stages (i.e. New product 

development and expansion), which . With no doubt, this interpretative approach facilitates 

the identification of a new business ecosystem actors, which would improve the chances of 

acquiring the essential resources and completing the key milestones necessary to experience a 

successful transition from a life cycle stage to another. Specifically, in an industrial context, 

this approach helps highlighting the main obstacles that might hinder the growth and maturity 

of a manufacturing SME.  

 

The model was derived by adopting a four-stage life cycle approach (adjusted to a 

manufacturing context) discussed in the following subsection. 

6.1.1 Ideation 
 
Manufacturing is no longer solely revolving around offering physical products. The “changes 

in consumer demand, the nature of products, the economics of production, and the economics 

of the supply chain have led to a fundamental shift in the way companies do business. 

Customers demand personalization and customization as the line between consumer and 

creator continues to blur” (Deloitte, 2022). Undoubtedly, the market volatility has worrying 

effects on MSMEs, which necessitates directing ample attention to the potential 

advancements of the new product development (NPD) process. In brief, NPD is the schema a 

business follows to employ its resources and competences to create a new product or add 

value to an existing one (Ozer, 1999). NPD is arguably one of the most critical processes as it 

should be present during multiple stages of SMEs’ lifecycle, which agrees with (Ali, et al., 

Figure 59 A 4-stage Start-up Life Cycle Approach (Passaro, et al., 2020) 
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2004), as it branched the NPD process into two stages including Pre-development stages and 

NPD Execution stages as elaborated below in Figure 57. 

 
Figure 60 NPD Process (Ali, et al., 2004) 

 

According to (Patel, 2015), “around the globe, small and medium scale product 

manufacturers are struggling to cope up with the digital transformation. Fueling innovation in 

product development and manufacturing processes is critical today for any manufacturer, 

irrespective of size and capacity. New companies, even with small scale facilities are 

increasingly bringing new competitive products to disrupt the conventional market through 

innovation”. Thus, a surviving MSME should continually release a valuable stream of new 

products, which would guarantee a sustainable growth and market share. Usually, NPD is 

seen as enhancing existing products, and trying to catch up with competitors. However, NPD 

should be seen as “breaking the clutter and differentiating your product from others. Today 

customer demands keep evolving continuously, compressing product lifecycles. Product 

development is not an easy process. The success rate ranges between 45 and 62%” 

(Dhargalkar, et al., 2016). Hence, unsuccessful development of a product capable of 

attracting new customers and retaining past customers can endanger the survival of 

manufacturing businesses in general, knowing that “SMEs in manufacturing are faced with 

numerous constraints in order to achieve high performance in the pre-development process 

due to limitation on finance, workforce, skill, knowledge, and raw materials ” (March-

Chordà, et al., 2002). Therefore, a robust, speedy, and reliable NPD process is the 

“bloodline” of companies of small and medium sizes (Abu, et al., 2014).  

Creativity and innovation have been “diagnosed” as remedies for sustained growth in an 

increasingly competitive and globalized market. Industrial design is a field that may facilitate 

and guide creative processes ranging from idea generation to the materialization of new 

products to enhance competitiveness. Indeed, “the application of creativity in the product 

development context is what in industry usually is agreed upon as the origin of innovation – 

by large the determining factor for the survival of companies in the today’s highly 

competitive environment” (Brockhus, et al., 2014). Meeting the continuously changing 
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customer demands has become a major obstacle with respect to MSMEs. According to 

(Kumar, et al., 2016), “Manufacturers are finding themselves stuck in ‘better–faster–cheaper’ 

triangle with the ever-growing prevalence of ‘we can have it all’ mindset of customers”. 

According to (Yan, et al., 2006), “In developing a new product, for time- and cost-efficiency, 

it is imperative to place more effort on product conceptualization so as to reduce the number 

of design iterations. Compared with the later stages of NPD, it is well-known that product 

conceptualization commits more than 70% of total cost incurred during the product life 

cycle”. On the same line, (Backman, et al., 2007) agreed that success or failure of the NPD 

process heavy relies upon the performance in the pre-development process.  

 (Muller & Ulrich, 2013) directed the attention to a fact that “In today’s hypercompetitive 

environment in which markets change rapidly and competitive advantages are difficult to 

sustain, companies are forced to innovate and identify new business opportunities. However, 

innovation requires ingenuity and creativity. Product and service development depends on the 

creativity of employees, but harvesting and bringing novel ideas to fruition is often a chaotic 

process”, which presents a gap that goes beyond the “systematicness” of the process, as 

“Small- and medium-sized enterprises (SMEs) largely depend on proficient idea generation 

activities to improve their front-end innovation performance, yet the liabilities of newness 

and smallness often hamper SMEs' ability to benefit from systematic idea generation” (Gama, 

et al., 2019). Moreover, the digital era has added additional power to the consumer’s side, 

including more choice and on-demand access to information. Supported by social networks 

and their digital devices, consumers are increasingly requesting a more personalized 

experience to be capable of shaping the products and services they pay for.  So, this stage 

does not solely revolve around the discovery of a winning business idea that could take 

advantage of an existent market opportunity. However, the ideation teams should be capable 

of developing various ideas in a relatively shorter length of time. Also, the ideation process 

should be supported by convenient data and technologies to predict the success or lifetime of 

its product.  For example, according to (Chen, 2020), “a company that manufactures a 

product related to urban life might want to envision what cities around the world will look 

like in 2030. A manufacturer of products for children might want to construct a vision of 

what play will consist of in 2025”. Ideally, to avoid waste of materials, a team should ensure 

that the proposed idea could satisfy both the current and future customer’s meaningful 

requirements through its innovative solutions. Only then, the potential entrepreneur should 

initiate the identification of the key resources and their availability. Nevertheless, the 

business owners need technical resources, that could adequately analyse and identify the idea 
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viability in light of uncertain conditions. The key actors in this stage include “higher 

education systems, startup competitions, and local governmental agencies as principal 

providers of knowledge and supports” (Passaro, et al., 2020). In fact, there are various 

traditional human-centered methods for collaborative intelligence brainstorming and 

generating creative ideas, which are provided in brief below:  

 

Free-flowing ideas  
 

A traditional strategy to stimulate CI is to assign to participants different tasks to deviate their 

minds away from the meeting’s objective to inspire their creative brainstorming relying upon 

their own experiences and hobbies instead of their daily routine (Dhull & Beniwal, 2018). 

Later on, the meeting facilitator should converge the participants back to the product in hand 

and the relevant features that could apply, but this time they are expected to come back with 

ideas out of the box.  

The Mastermind 

Another strategy is based on asking each participant to spend some time being the focal point 

of the meeting by explaining their goals, struggles, methodology and progress. In return, 

other participants share ideas to help each other change their approach solving their problems 

through a different angle and a new perspective (MYCTOfriend,2020).   

Invite the client 

Another way to stimulate innovation is based on inviting clients to a session to make them 

share their ideas and express their opinions, thus ensure the alignment of both the business 

and clients’ path and vision in real-time (Tomlinson, 1992).  

Classic session 

Another commonly used strategy is the preparation of a classic session. Such sessions usually 

kick start with a short norming period between participants to get everyone on board. Then 

comes the collaborative task as each participant is provided with a sticky note to write down 

his thoughts and collect as much ideas as possible. After collecting the sticky notes and 

hinging them to the wall to be seen by everyone, participants start categorizing their ideas 

with respect to business, client, accompanied challenges, etc. Finally, the group should start 

prioritizing ideas, assessing them regarding implementation time and estimated investment to 

formulate a road map and settle on a strategy to move forward (Mcguinness, 2009).   
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Clearly, as mentioned earlier, humanity has always believed in the productivity of CI in the 

creative tasks. However, it has always been about human brainstormers collaborating to 

complete a task. As it stands, the deployment of Artificial CI would support the human being 

towards a more efficient collaborative definition of the value proposition and analysis of the 

surrounding conditions based on real-time data incoming from different smart entities 

alongside insightful analytics offered by intelligent agents, which would skyrocket the 

chances of identifying a winning business idea and maintaining a sustainable growth of the 

project.  

Recently, research efforts have been directed towards the development of AI-powered virtual 

assistants capable of augmenting the humans’ abilities of generating ideas. 

6.1.1.1 brAInstorm: Intelligent Assistance in Group Idea Generation 
 

Computer technologies that enable on-line, real-time collaboration can revolutionize the 

process of idea generation (Gera, 2013), as team members have become capable of working 

together remotely with no constraints regarding their location (Gumienny, et al., 2012). In 

addition to the techniques provided above, brainstorming is widely used as a creativity 

technique that stimulates the generation of many ideas within a working group (Byron, 2012). 

In face-to-face brainstorming sessions, a moderator is responsible for encouraging 

participation, catalysing the generation of innovative ideas, and ensuring the session’s 

abidance by the set rules (J. Kramer, et al., 2001). So, a moderator should possess specific 

skills and knowledge, which stands out as an obstacle hindering the effectiveness of the 

‘Electronic Brainstorming’ (EBS). To address this issue, (Strohmann, et al., 2017) proposes 

an AI-powered moderator, who can resiliently “facilitate an EBS session by both, organizing 

a session and providing creativity stimulating content”. By the way, an agent-based 

brainstorming support system was previously introduced by (Wang, et al., 2011). However, 

(Strohmann, et al., 2017) witnesses the introduction of AI technologies to augment human’s 

ideas generation capabilities for the first time. Inspired by the Design Science Research 

Methodology introduced by (R. Hevner, et al., 2004) and (Gregor & Hevner, 2013), 

(Strohmann, et al., 2017) designed and implemented a “novel artifact” in order to 

innovatively fill the gap highlighted earlier. In fact, (A. Boden, 1998) is considered one of the 

earliest scientific resources that spotted the light on a potential link between AI and 

creativity, which paved the way for the introduction of “computational creativity” by (Colton 

& Wiggings, 2012). According to (R. Besold, et al., 2015), “the target of computational 
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creativity is to model, simulate or replicate creativity to achieve one of the following ends: 

(1) create a program or computer capable of human-level creativity, (2) help to understand 

human creativity or (3) construct a program enhancing human creativity without necessarily 

being creative itself”.  

 

Accordingly, (Strohmann, et al., 2017) developed an AI-powered virtual assistant to stimulate 

human creativity without necessarily possessing the human’s intelligence and creativeness. 

“brAInstorm” is a web-based tool for collaborative EBS, augmented with an AI-based 

Moderator (IMO), who intelligently completes different tasks on behalf of a Brainstorming 

human moderator and provides solutions for a number of current issues in EBS. A virtual AI 

moderator simultaneously provides individual team members real-time feedback and 

stimulates their input content, thus enabling the conduction of different brainstorming 

sessions at the same instant regardless of the ability of different human facilitators.  

The design of ‘brAInstorm’ necessitated the incorporation of different AI-powered user 

interface applications based on NLP, ML, and reasoning.  For example, to facilitate the 

communication of ideas between team members, (Strohmann, et al., 2017) employed the 

open-source chat platform Rocket.Chat. For the core Brainstorming activities like the 

individual idea generation and the collaborative idea assessment, the author equips the IMO 

with an open-source chatbot (Hubot) to help it facilitate and organize the session. 

Additionally, in an attempt to enhance the IMO’s artificial emotional intelligence and 

enhance the session’s efficiency, the authors equipped the IMO’s Hubot with wit.ai Bot 

Engine to occasionally intervene in case of noticing the participants’ deviation from the 

assigned task. Although Hubot has hearing and responding capabilities (text/voice input and 

output), it cannot deal with context understanding. Consequently, as pointed above, Hubot is 

supported with wit.ai’s Bot Engine, which is simply an open-source and extensible natural 

language platform, providing different functionalities for developing applications to which a 

user can text or talk. Simply, wit.ai transforms team members’ unstructured input text/voice 

into structured data. Then, a bot engine performs ML to react according to a set rule-based 

behaviour. In other words, relying upon wit.ai’s predictions, Hubot can execute an action at 

the needed points in the session. Figure 58 summarizes the adopted AI-augmented 

Brainstorming process within the proposed model and the underlying technology behind each 

function. 
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6.1.1.2 An Intelligent Evaluation Approach For NPD Projects 
 

As pointed earlier, efficient and effective NPD necessitates a proactive management of all 

uncertainty causes. Over the past years, different tools have been coming to light aiming to 

improve the decision-making processes. The developed technologies include: probabilistic 

models, options pricing theory, scoring models and checklists, behavioral approaches, 

analytical hierarchy process, sensitivity analysis, scenario analysis and intelligent techniques.  

Among the various technologies developed over the past years, AI technologies could 

provide a valuable assistance to decision makers under dynamic market environments.  

 

Relevantly, aiming to analyse the new product evaluation project, (Feyzioğlu & Büyüközkan, 

2007) proposed an AI-powered decision-making system based on ANNs, fuzzy logic and 

Choquet integral. This system is especially applicable to the cases involving numerous new 

ideas generating sources, which complicates the decision maker’s mission to rate the related 

products in terms of time and precision. In other words, it enables decision makers to 

‘roughly’ and ‘quickly’ filter ‘good’ and ‘bad’ product ideas by making use of previous 

experiences, and then to analyze in detail a more shortened list. This thesis focuses on the 

former step (The Rough Evaluation Phase) as it highlights the use of AI technologies, while 

the latter step (The Exact Evaluation Phase) relies upon an optimization algorithm (Choque 

Integral) to determine the most appropriate NPD project implementation. 

Figure 61 brAInstorm: Intelligent Assistance in Group Idea Generation (Strohmann, et al., 2017) 
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Figure 62 Intellligent Decision-making Framework (Feyzioğlu & Büyüközkan, 2007) 

6.1.1.2.1The Rough Evaluation Phase  

This phase represents an approach that merges neural networks and fuzzy logic. ANN imitate 

the way that the human brain learns and works, as it simply “possess the ability to learn from 

examples, have the ability to manage systems from their observed behavior, have the capacity 

to treat large amount of data and capturing complex interactions among the input variables” 

(Lin & Lee, 1996). On the other side, fuzzy logic is employed to manage unclear linguistic 

concepts or fuzzy terms, which facilitates reliable decision making in an unstable 

environment without missing the human’s verbal judgment. Thus, NPD project selection 

could see significant advancements by integrating ANNs and fuzzy set theory.  

First, the mentioned approach collects new product ideas generated by company designers, 

product managers, employees and customers via a formal web-based system. Then, an 

intelligent neuro-fuzzy inference system pre-processes the gathered ideas. Regarding the 

screening phase, good ideas are decided according to a scoring system with a pre-set 

evaluation criteria. Therefore, an input data base is built through converting these scores to 

‘eligibility percentages’. Accordingly, the incorporated fuzzy inference system (FIS) “maps 

the input space consisting of the information provided by past evaluations to the output space 

formed by the status of the ideas” (Feyzioğlu & Büyüközkan, 2007). The system is supported 

with a built-in AI technology that can depict the perspective of the company upper 

management towards products by learning the rules extracted from the companies’ business 

plan. It also collaboratively eliminates the human’s decision-making effort when the number 

of ideas/projects is large.  

ANN algoritms support the fuzzy modeling framework to learn provided historical 

information and compute the membership function parameters that best enable the associated 

FIS to track the fed input/output data. ANFIS (adaptive network-based fuzzy inference 

system) is simply “a class of adaptive networks that are functionally equivalent to FIS” (Jang, 

1993). Using a given input/output data set, ANFIS constructs a FIS whose membership 
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function parameters are adjusted using either a back propagation algorithm or a hybrid-

learning algorithm. Hence, using ANFIS, fuzzy systems can learn from the modeling data.  

As pointed above, the main goal is classifying ideas as “good” or “bad”. Thus, two ANFIS 

models (referred to as many ANFIS or MANFIS) are developed to figure out the 

corresponding idea status. One ANFIS model was trained to yield a value close to 1 if the 

idea is good, meanwhile the other model will perform the same for a bad idea. The 

classification procedure is performed by feeding the features of the idea to be classified to 

each of the two ANFIS models. The output is in the form of two non equivalent responses 

and a voting scheme is applied to decide the class to which the idea belongs. Obviously, only 

good ideas are saved for further analysis after the discrimination of bad ideas. 

 

Figure 63 Discrimination of Ideas using MANFIS (Jang, 1993) 

6.1.2 Intention 
 
This stage focuses mainly on the possibility of transforming the idea resulted from the prior 

stage into a business that could both attract the interest of customers and seize a market 

opportunity. The major milestone of this phase revolves around completing the NPD process 

by developing a prototype. In brief, prototyping is an “iterative process in which prototypes 

are developed and tested in order to get fast feedback” (Kelley, 2001). Additionally, 

prototyping is an integral block of product development in ventures, and yet it is one of the 

least explored areas of design practice (Lauff, et al., 2018). In fact, completing a prototype is 

considered of utter importance to a successful future of MSMEs. To demonstrate, according 

to (Chou & Austin-Breneman, 2018), “prototyping is integral to the design process for all 

projects, but particularly for small and medium-sized enterprises (SMEs), [as] in resource-

constrained contexts, designers must operate under unique constraints and opportunities”. 
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Completing a prototype is also critical to avoid rushing to mass production without including 

customer’s feedback early in the product development phase. To illustrate, according to 

(Brown, 2018), “prototyping is a vital part of the design and implementation process for all 

successful businesses in manufacturing. The days of blindly producing large batches of an 

unproven, untested product are long gone”.  

Hopefully, advancements in AI technologies could open up new opportunities with respect to 

augmenting the human’s capabilities throughout the prototyping procedures. Thus, this work 

reviews the recent research efforts directed towards the deployment of human-AI 

collaboration to facilitate the final steps of NPD.   

6.1.2.1 Generative Design  (GD) Applications in Manufacturing 
 
Generative Design (GD) is a technology that promotes automatic generation of “a large 

number of designs via an iterative algorithmic framework while respecting user-defined 

criteria and limitations” (A.Kallioras & Lagaros, 2020). It is mainly employed to assist 

designers throughout the development of prototypes in various sectors including: furniture 

manufacturing, aerospace industry and apparel industry.  In the 1960s, the pioneering 

Hungarian computer artist Vera Molnár worked in the early programming language Fortran to 

“generate images examining theme, variation, automated generation, and display of options in 

her work” (Follett, 2020). Also, NASA incorporated an AI-driven generative design to 

examine “millions of potential antenna designs before settling on a final one. We told the 

computer program what performance the antenna should have, and the computer simulated 

evolution, keeping the best antenna designs that approached what we asked for. Eventually, it 

zeroed in on something that met the desired specifications for the mission” (Bluck, 2006).  

Autodesk is considered among the leading companies when it comes to directing investments 

towards the integration of GD tools with AI technologies and CAD packages through the 

development of the program, Dreamcatcher (Buonamici, et al., 2020). 
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Figure 64 An application of Dreamcatcher Software (Hyunjin, 2020) 

Using Dreamcatcher’s software program limits the human’s role to inputting basic forms and 

variables. On the other side, AI outputs a product that accounts for different factors including 

functionality, economy, structure, and appearance. Thus, further developments of AI 

technologies would significantly complement the human’s role in the creative processes. In 

particular, a “generative design system will bring about great variation in the manufacturing 

process” (Hyunjin, 2020).  

In essence, GD has recently “gained much attention due to its integration with artificial 

intelligence (AI) technologies” (Jang & Kang, 2020). Thus, this thesis spots the light on the 

researched changes in manufacturing due to the development of a generative design system. 

In particular, this technology is considered an opportunity to save a lot in time and effort, 

which can benefit many businesses, particularly MSMEs. 

 

Relevantly, (Bentley & Wakefield, 1995) proposed a prototype design system which 

incorporates a genetic algorithm (GA) to generate new conceptual designs without being fed 

preliminary designs. In brief, the generative design system provides new designs and 

iteratively settles on the best option using a GA. GAs are built upon “the principles of 

evolution found in nature” (Ejigu & Lacquet, 2010) to first generate a population of solutions, 

and then “reproduce” the “fittest”’ solutions. To enable the GA to pick 'fit' solutions from the 

reproduced solutions of every iteration, an assessment of designs is performed by an 

evaluation software. Hence, the proposed system saves the human developer a lot of time by 

avoiding the judgement of dozens of generated potential designs. By using software to 

evaluate designs, a human designer is saved the task of laboriously judging thousands of 

evolving candidate designs. Although the developed system was deployed to create designs 

for deceptive problems and complex shapes (prisms), the results were all satisfactory. 
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Also, (Hyunjin, 2020) provided a theoretical basis for the application of the GD system to 

portray the potential future changes in the manufacturing design process in the age of AI. 

Briefly, the traditional product manufacturing process is composed of five milestones: 

Propose, Plan, Design, Development, Evaluate, and Production.  

First, Propose is the process of identifying the requirements of a project to develop a product. 

The next process is the Plan. Planning simply revolves around investigating and analysing 

differently-sourced data to prepare for the design phase. Following the prepared plan, the 

designer starts product design. Product Design is branched into conceptual design, basic 

design, detailed design, and production design. The Product Design phase ends whenever the 

designer settles on both the structure and shape of the product. The next step is to Develop, 

which takes the Product Design block’s output as an input to refine it using 3D programs 

such as sketch-ups and 3D MAX. Then, the product is modelled, tested and assessed to 

validate its functionality and conformance to specifications. Finally, based on a successful 

evaluation step, a company approves the production and release of products on a large scale.  

According to (Hyunjin, 2020), introducing a GD system will lead to a ‘big change’ in the 

manufacturing cycle. First, the designer feeds the system an approximate conceptual design. 

In return, the GD System provides a group of generated basic designs. Accordingly, designers 

pick the convenient design from the provided options to enable AI computing an ‘optimal 

material proposal’ taking functional and economical aspects into account. Important to 

mention, the system supports iterative reviewing of the proposal to receive the designer’s 

approval before providing its final proposal. And the designer reviews this alternative. After 

the designer's review, the computer comes up with a final proposal.  

Figure 65  A manufacturing process using a Generative Design System (Hyunjin, 2020) 

As mentioned before, most of the generated designs are performed by collaboration between 

AI technologies and the human factor in what is called “hybrid design” (Young, 2018). 

Expectedly, a digital platform will be available via the Internet to take advantage of the 

advancing computing power and AI technologies to utilize accumulated data to make new 

forms of design (Young, 2018).  
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Figure 66 A Hybrid Design (Young, 2018) 

6.1.2.2 Data-Driven Design 

The concept development is the phase revolving around identifying the customer’s needs, 

setting target markets, generating and evaluating different product ideas and taking decisions 

to pick one or more concepts for further development (T. Ulrich & D. Eppinger, 1995). The 

recent availability of vast amounts of data has encouraged researchers to direct their efforts 

towards studying its potential impact upon product design. Nowadays, insightful data could 

be collected by an enterprise both internally through customer relationship management 

systems (CRMs) and externally via the internet. Also, the deployment of “advanced 

information technologies such as the Internet of Things and edge computing in manufacturing 

industry” has accumulated a vast amount of “valuable data” (Georgakopoulos, et al., 2016). 

Additionally, throughout the “interaction between the product and the outside world (such as 

users and environment), a large amount of data can be produced, which represent the 

characteristics of the product’s connection with the outside world” (Chang, et al., 2006). 

Thus, “the logical starting point of data-driven product design is to connect the virtual digital 

world and the real physical world” (Tao, et al., 2018).  

The product design process refers to  "the activity in which ideas and needs are given 

physical form, initially as solution concepts and then as a specific configuration or 

arrangement of elements, materials and components" (Walsh, et al., 1992). According to 

(Murray, 2005), product design represents “the creative process in researching markets, 

innovations and needs, then transforming ideas into products for particular markets”. Thus, 

with the availability of ample product data, a designer should be capable of making reliable 

decisions to transform ‘a set of functional requirements’ into ‘a specific implementation 
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structure’. Additionally, data-driven design serves the entire product life cycle, which “covers 

the entire process including product requirement analysis, design, manufacturing, sales, after-

sales service, and recycle” (Ryan & E. Riggs, 1996). Thus, (Feng, et al., 2020) aims to review 

the available research of data-driven design method applied in customer requirement analysis, 

conceptual design, and detailed design. However, the latter is considered out of this thesis 

scope due to the absence of AI technologies in its framework. 

Requirement analysis: According to (Feng, et al., 2020), the recent technological 

advancements of BD technology facilitate an efficient collection and analysis of both the key 

preferences of customers and market data, which could be reliably transformed into market-

fit product specifications in an intelligent and time-saving manner. Thus, this stage revolves 

around an effective ‘capturing’ and ‘screening’ of customer preference data to be capable of 

‘identifying’ and ‘forecasting’ product features. (Chong & Chen, 2010) incorporated an 

artificial immune system (AIS) supported with an ANN to develop a customer requirements 

analysis and forecast (CRAF) system. The proposed system aims to analyze and predict the 

dynamic customer requirement data to diminish the risks of developing products for rapidly 

varying markets. 

 

Figure 67 CRAF system framework in a manufacturing context (Chong & Chen, 2010) 

On the same line, (Jin, et al., 2016) proposed a framework to manage consumer BD for 

customer requirements (CRs) understanding. Briefly, the authors identified product features 

and emotional polarity from big consumer opinion data using supervised learning approach 

and then employed a Kalman filter method to predict the trends of customer requirements and 

provide market-driven product designs.  



152 
 

Conceptual design: Product conceptual design is commonly known as a “series of iterative 

and complex engineering processes oriented to design requirements” (Feng, et al., 2020). 

Expectedly, “the design and decision made at the conceptual design stage have a significant 

influence on the success of the product development” (Cao, et al., 2013). As well, according 

to (Wynne & Mey-yen, 1998), “decisions made at the conceptual design stage have 

significant influence on factors such as costs, performance, reliability, safety and 

environmental impact of a product”. Unfortunately, because of operating in a volatile market, 

knowledge of all the design requirements and constraints during such an early phase of a 

product's life cycle is usually either inaccurate or ambiguous. At the same time, companies 

should constantly introduce new products that satisfy the customer’s demand for 

personalization and customization without inflating either the production expenses or the 

product development time frame.    

In light of the BD era, “the requirements of most consumer groups can be determined from a 

large number of product data, thus reducing the ambiguity of conceptual design as product 

data contain rich design knowledge that can improve the efficiency of conceptual design and 

the innovation of design solutions” (Feng, et al., 2020). Relevantly, (Huang, et al., 2006) 

developed a computational intelligence approach for a better management of product 

conceptual generation and evaluation. Briefly, a set of satisfactory concepts (most-likely-to-

succeed concepts) was generated by using GAs following the incorporation of information 

from a knowledge data. Then, a fuzzy neural network was then employed to implement 

concept evaluation and decision-making to achieve the optimal concept.  

 
 

 
  

 

 

 
 
 
 
 
 
 Figure 68 GA-NN-based evaluation process (Huang, et al., 2006) 
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6.1.2.3 Evaluation of New Product Development Projects using Artificial Intelligence and Machine Learning  

NPD has attracted researchers’ interest given that markets are generally seen to be demanding 

higher quality and higher performing products, in shorter and more predictable development 

cycle-times and at lower cost (Maffin, 2001). Also, NPD decisions might be negatively 

affected by uncertainty causing events, which deviate the decision-maker from achieving the 

set target. The uncertainty arises from various sources including technical, management and 

commercial issues, both internal and external to the project. New product idea selection and 

evaluation are integral blocks of the new product management that companies need to avoid 

pursuing an unsuccessful project launch and encountering financial burdens. According to 

(Teel, 2021), “Many entrepreneurs think if only I had more money I could quickly and easily 

launch my product. There’s no doubt about it, money is a huge obstacle for most new 

businesses, especially those developing new hardware products. Most reasons for failure 

eventually lead to running out of money. Perhaps you develop the wrong product that no one 

wants, and you don’t have enough money to create the product people actually want”. 

Unsuccessful NPD could lead to both “investment losses” and “missed investment 

opportunities” (Lestari, 2014). In the presence of a successful human-centred management 

system augmented with AI-powered tools, a MSME “will be able to determine right products 

or features to be developed, the right time to develop and launch and the right amount of 

investments” (Feyzioğlu & Büyüközkan, 2007).  

An AI-powered evaluation of ideas/products necessitates the collection of ample data. In the 

era of BD and IoT, insightful information can be affordably extracted from data concerning 

the product’s lifetime, customer’s demands, suppliers’ networks and logistics (Papadopoulos, 

et al., 2016). Analyzing this data may provide various benefits. However, a human-based 

analysis of data is both time consuming and prone to errors. Thus, few researchers have 

applied AI and ML technologies to augment the human’s skills to analyze data collected in 

general about product development. 

Briefly, Industrial design is “the process of designing products that are mass-produced in 

factories such as smartphones, computers, cars and bags” (Tjalve, 2015). The process of 

industrial design is critical to both the profitability of products and business sustainability 

as it plays an important role towards the avoidance of negative customers’ reviews, 

insufficient sales and costive product recalls. Thus, (Viger, et al., 2022) provides a detailed 

survey of recent studies related to the incorporation of ML in industrial design. In fact, 

applying AI technologies in industrial design could cover a wide range of functions ranging 
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from the design of a product to its mass manufacturing. In this lifecycle stage, we focus on 

the recent publications regarding the application of AI technologies to product acceptability 

estimation and product development failure prediction, as illustrated by (Viger, et al., 

2022). 

Product acceptability estimation refers to the estimation of the probability of success of 

products ideas. Assuming the presence of a preliminary prototype of the proposed 

idea/product, (Garces, et al., 2016) developed a ML model to forecast a product’s success 

within customers during the early stages of the product development. To collect the 

required data for training the model, the authors prepared a questionnaire including all the 

product-related criteria identified in relevance to both the user (i.e ease of use) and the 

usage context (i.e social influence). Then, participants are requested to fill the questionnaire 

by evaluating the proposed product with respect to each factor according to a numerical 

scale (-5 to +7). Followingly, the data collected was used to build a Bayesian network.   

Based on the success applying the approach on a real design case of a communicating pen 

as elaborated in Figure 69, the built model can forecast the acceptability of the proposed 

product based on its features and characteristics. However, (Garces, et al., 2016) lacks a 

formal evaluation to determine the helpfulness of the model to designers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1.2.4 Product Development Failure Prediction  

Understanding and modelling product design and development processes have attracted 

research interest over the past years. However, due to “the inherent intangibility and 

uncertainty of product design and development, there have been many limitations and 

Figure 69 Acceptability Model for a Communicating Pen (Garces, et al., 2016) 
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difficulties in representing product development processes” (Duffy & J. O'donnell, 2005). 

Thus, in an attempt to efficiently understand and assess product development processes, 

few research efforts have developed an AI-assisted data analysis technique that evaluates 

and analyses product data. Briefly, (Do, et al., 2015) incorporates On-line Analytical 

Mining (OLAM) as the main tool for a convenient data analysis approach to enable analysts 

to understand and assess intangible and unstructured product development processes. 

Simply, OLAM is an integration between On-line Analytical Processing (OLAP) and data 

mining.  OLAP is widely accepted as a “revolutionary technology that provides adequate 

analytic solutions for decision support” (Boutkhoum & Hanine, 2014). In earlier research, 

(Do, 2014) developed an architecture and prototype that can implement OLAP to evaluate 

product development performance. On the other side, data mining necessitates the 

deployment of ML to develop knowledge models capable of detecting hidden patterns from 

vast amounts of operational data. To sum up, OLAM facilitates viewing “product data from 

different angles using flexible and interactive OLAP queries and operations, and also 

prepare input data required for various data mining models” (Do, et al., 2015). 

Additionally, this approach also employs a Product Data Management (PDM) database as 

its major operational database. PDM database is mostly used by manufacturers to manage 

product data and development processes consistently, as (Kropsu-Vehkapera, et al., 2009) 

states “Product data management (PDM) has become one of the most important 

considerations for companies, especially in engineering and manufacturing industries”. 

To gather data logs required for analysis, (Do, et al., 2015) requested 20 students to deliver 

their work on product development over three months via a website. Students had to upload 

different documents related to product development including: product configurations (3D 

models in CAD format), assembly structures, engineering changes made to prototypes and 

product views. Then, the collected data was used to train a Naive Bayes Classifier model to 

determine the most significant reasons behind failures. The study’s results proved that “the 

identified pattern can be used to proactively manage in-progress projects to prevent failure. 

For example, if managers identify a pattern where CAD creation time is taking longer than 

the average time for similar previous product development projects, they may start an 

investigation and manage them to avoid the coming failure”. (Do, et al., 2015) 

Recently, ML has also been incorporated to predict product defects through social media 

unstructured data and online reviews, respectively. Briefly, (Liu, et al., 2018) incorporates 

the features derived from replies and employs a multi-view ensemble learning method 
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specifically tailored to the problem on hand as elaborated in Figure 70. Beside the benefits 

the NPD process would see, (Zhang, et al., 2016) states that applying ML techniques to 

develop automated product defect identification models could help manufacturers see an 

impactful reduction of labor costs.  

 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 70 Multi-view Ensemble Learning Method for Product Defect Identification (Liu, et al., 2018) 

6.1.3 Start-up 

Reaching to this stage signifies the maturity of the newly launched business in terms of NPD. 

The startup phase necessitates the presence of “technological and commercial development 

and formal business planning, as well as the searching for additional and more considerable 

funding resources” (Passaro, et al., 2020). Accordingly, SMEs can request financial help 

from traditional sources (financial institutions, capital ventures) and crowdfunding platforms. 

This was verified by the study conducted on 50 MSMEs in Sri Lanka, as “The findings 

revealed that when the SMEs are identifying their business opportunities, they closely link 

with their families and friends. In the start up phase, SME owners gain encouragement, 

influence and initial capital through the social networks” (Thrikawala, 2011). Most 

importantly, the phase’s major milestone is ‘industrialization’. According to (Strautmane & 

Satrevics, 2015), industrialisation is “the totality of relations involving workers, employers 

and society as they develop to make use of the new machines, processes and services that 

modern technology has made possible”. Hence, in this stage, great attention should be 

directed to maintaining relationships with other SMEs to gain access to further managerial, 

technical, and physical resources., which directs a MSME’s attention towards acquiring the 

required skills to deal properly with the various operations associated with the 

industrialization phase. However, “manufacturing industry as a whole is struggling to recruit 

and maintain skilled laborers. Manufacturing SMEs may feel this reality even more acutely, 

as large companies often have more resources to attract the best candidates” (Hoffmeister, 

2021). Referred to as the manufacturing skills gap, this dilemma “revolves around the labor 
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market being unable to find workers who have the manual, operational, and highly technical 

skills, knowledge, or expertise to take the open positions. The manufacturing skills gap is not 

simply a buzzword within the industry. Instead, it's the reality that many manufacturers are 

facing right now. There are more open job positions than there are workers ready to fill them” 

(Zini, 2021). Thus, this work reviews the potential applications of augmenting the new 

manufacturing businesses with AI technologies to fill the so-called ‘skill gap’. 

6.1.3.1 AI-Enabled Training in Manufacturing Workforce Development  
 
The rapid technological advancements indicate that “the future of work, especially in 

manufacturing, will require a different skills profile than what we have today” (Nguyen, 

2020). Explaining further, as soon as technical skills will vary in response to the constant 

emergence of new technologies, employees need the ability to regularly upskill. For instance, 

in the near future, the computer interfaces used to control and monitor machines and devices 

in the IoT ecosystem are leading to an apparent skills gaps between the current workforce and 

requirements of future jobs. Workforce upskilling is also hindered due to “the aging and 

gradual retirement of baby boomers” (P. Dowell, 2020). According to (Sinha, 2021), “There 

is a much greater need today for the human-machine collaboration, even though automation 

has happened”. Accordingly, the manufacturing sector should see an increase in demand for 

behavioural, and cognitive skills such as crisis management, resilience, quick decision 

making, critical thinking, basic computer interface skills and the ability to collaborate with 

AI-powered systems. According to (Deloitte, 2018), “a skill gap will result in an estimated 

2.4 million jobs left unfilled between 2018 and 2028”. Hence, workforce upskilling has 

become of crucial importance to the manufacturing society. 

Relevantly, (Woolf, et al., 2020) proposed an AI-powered tutoring system to address the skill 

gap concerns in a manufacturing context. The proposed approach is divided into three steps: 

Identifying workers’ needs, providing continuous skill development, and recommending a 

career path according to possessed competences. Briefly, the first step revolves around 

conducting one-on-one interviews with various stakeholders, operators, and unemployed 

personnel to determine the industry’s requirements, pain points, and opinions. Interestingly, 

all the interviewees were adamant that the new waves of manufacturing automation are of 

great importance and that the currently provided training levels are not up to the level.   

By the completion of the first step, (Woolf, et al., 2020) developed a software (DIRECT) to 

provide continuous assessment of skills and provide adequate training for upskilling the 
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manufacturing workers. Additionally, through the analysis of data collected from online job 

postings, the developed software tool will intelligently facilitate the job selection process and 

skills development throughout the manufacturers’ entire career path.  

The developed software consists of three interlinked components: (i) a skill level diagnosis 

and assessment component that incorporates cognitive models to evaluate worker skill levels 

from on-job data, (ii) a training experience development component that employs intelligent 

tutoring concepts to assist workers develop new skills and (iii) a skill gap identification 

component that uses labor market analysis to identify high-demand jobs and the skill gaps 

between a worker and their desirable job. 

 

Figure 71 AI-enabled Skill Evaluation and Training Program (Woolf, et al., 2020) 

The third component of DIRECT software employs predictive AI algorithms to connect 

manufacturers to potential jobs and choose training programs to develop the required skills. 

To illustrate, the system uses a fully connected neural network as a “career move prediction 

model”, which processes the worker’s skill levels and job title to predict the likelihood of 

success of the corresponding career move. By the way, the software is developed to enable 

interactive collaboration with the workers. To elaborate, in case of a user ignores the system’s 

training recommendations and takes his own path, DIRECT will select training programs to 

efficiently complete the rest of the pathway. As well, the system uses a long short-term 

memory network (LSTM) developed by (Hochreiter & Schmidhuber, 1997) as a state 

transition model to update the skill levels of each worker over time as they engage with the 

training recommendations. From the employer’s perspective, the proposed system predicts 

the probability that the applicant will successfully fit the job after being fed the worker’s 

current skill levels as an input. Also, the system provides personalized pathways embodying a 

series of training programs for applicants to develop the necessary skills along with the 

estimated upskilling effort for each training program. Furthermore, to avoid defecting both 
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the worker’s productivity and work-life balance, the authors suggested the development of 

smart intelligent tutors to track the worker’s learning during on-job training and provide 

manageable upskilling experiences. 

6.1.3.2 AI-Assisted Smart Training Platform for Future Manufacturing Workforce  

The pacing deployment of I4.0 has arguably changed the way operators interact with 

machines on the shop floor. For example, different manufacturing ventures have been 

developing AR based systems to augment human operators and enhance their efficiency in 

locating objects and repairing production faults (Karamalegos, 2018).  

Despite the apparent extensive research towards the deployment of smart manufacturing 

techniques, the design of convenient training platforms is still comparably insufficient. The 

noticed imbalance was confirmed by (Deloitte, 2018), as it stated that “despite manufacturers 

focus on internal training programs, the pace of change still exceeds the extent and capacity 

of the training programs”.  

In response to the highlighted gap, (Wang, et al., 2020) proposed an AI-assisted training 

platform for manufacturing workforce to harness the potential of collaboration between 

human’s intelligence and AI. Unlike the previous research dedicated to deploying AR to train 

assembling tasks, the proposed platform evaluates the performance of a worker during all 

phases of a manufacturing task. 

Briefly, the developed platform will employ various types of non-intrusive sensing devices to 

facilitate gathering and analysing rich data (both macro and micro movement) regarding the 

interactions between operator-machine, operator-product, and operator-operator. In return, 

without interrupting his job, the AI learning algorithm provides the operator with the possible 

training procedures through mixed reality equipment. Similar to DIRECT software, the 

developed platform accepts being fed with an operator’s input to support a collaborative 

improvement of the learning algorithm’s intelligence.   
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As shown in the figure above, the proposed platform is composed of multiple blocks. 

Anyway, this thesis spots the light on the role that AI can play in the different components of 

the system. 

6.1.3.2.1 Artificial Intelligence and Machine Learning for Manufacturing  

The future manufacturing paradigm urges demanding different applications of AI than those 

applied in smart manufacturing ventures. To illustrate, the autonomously guided vehicles 

(AGVs) on shop floors rely upon image processing to scan its path and avoid collision. 

Instead, the system proposed by (Wang, et al., 2020) supports CI between operators and 

AGVs instead of enhancing their guidance algorithms. As well, the developed system would 

enable the operators to upskill their programming capabilities (ex: 3D printer). In brief, an AI 

algorithm is developed to analyse previously compiled programs by different operators. 

Through the deployment of ML, the system could identify the operator’s programming faults 

and suggest amendments. 

6.1.3.2.2 AI for Human/Machine Interaction  

This part focuses on the training activities for an operator’s handling of a machine/product. 

Through the deployment of non-intrusive sensors, the system could gather data of both the 

operator’s motion/actions and the machine’s various parameters such as vibration and power 

consumption to feed the trained AI and ML algorithms that can derive out deviations from 

the expected operations. Briefly, assuming a machine’s parameter follow a non-linear time 

series, the platform utilizes ANNs and RNNs with a Gated Recurrent Unit (GRU) to model 

the machine’s state. Taking the variety of manufacturing tasks performed by a machine, the 

platform breaks a task into a combination of basic operations. In other words, the learning 

algorithm is trained to model the basic operations of a machine. The human operator is then 

responsible for dealing with a manufacturing task as a combination of the modelled basic 

operations.  

Figure 72 An AI-assisted Training Platform for Manufacturing Workforce (Wang, et al., 2020)  
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On the other side, the classification and modelling of human actions is more challenging due 

to the variance between a human and another. Even a single operator may execute the same 

movement slightly different each time. Thus, the developed platform utilizes a CNN to model 

different human behaviours after learning from the data collected by sensors. Once the 

actions are identified, the platform points out any recommendations in case of meeting any 

deviations from the actions executed by an experienced operator.  

6.1.3.2.3 AI for Human/Robot Interaction  

The authors tried to address the challenge of modelling interactions between a human and a 

robot. The challenge emerges due to the need to model the interaction between two sides who 

are moving and possess intelligence. Consequently, similar to the communicative 

collaboration between two human beings, a human trainee should be capable of adapting to 

the ‘intellectual level’ and ‘behaviour’ of the robot and vice versa. Thus, instead of solely 

working on improving a robotic arm’s smartness, the AI algorithms built in this component 

focuses on the design and improvement to the training programs for the engineers. In brief, 

the AI algorithm assesses and enhances communication between human operator and robot. 

To do so, the authors adopted the the teaching-learning-prediction (TLP) model with extreme 

learning machine developed by (Wang, et al., 2018) to enable the robot to predict a user’s 

intention.  

 

Figure 73 TLP Framework (Wang, et al., 2018) 

The proposed platform builds on the efficiency of the TLP model through the adoption of AR 

and VR, as it provides a more effective technology to communicate the intent of a robot to 

the operator. As well, the robot is developed to track the operator’s gaze to accurately predict 

his intention.  
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Additionally, the AI algorithms will help improving the human/robot collaboration by 

recommending the convenient training activities. Throughout the collaboration procedures, 

the developed platform will track and analyze both the successful and failing jobs to make 

recommendations. Briefly, the CNN algorithm merges feature learning and defect diagnosis 

to derive out the different types of collaboration mistakes from the correction efforts and 

provide a model that identifies the common factors of failure. By the way, an auto encoder 

can be incorporated for unsupervised feature learning, and the learned features will be input 

to the platform for model training and classification.  

6.1.4 Expansion 
 
According to the adopted model, by putting a foot into this stage, a MSME has to look up to 

upscaling its operations and handling a higher turnover. According to the British 

Manufacturer’s organisation, “the scale-up challenge for UK manufacturers [SMEs] is 

different from the average business due to the cost of heavy-duty equipment and industrial 

real estate”. Thus, this thesis reviews the potential application of CI to help optimize a 

manufacturing SME’s assets.  

 

6.1.4.1 Predictive Manufacturing  
 
The globalization of the world’s economies is a huge concern to local industry and it is 

pushing the manufacturing sector to improve its competitiveness. Also, some MSMEs have 

“lost its place in manufacturing industry because of globalization and fast change in global 

market” (Han & Chi, 2016). Despite the tendency to apply continuous improvement 

methodologies (ex: Lean Manufacturing), the manufacturing companies still encounter both 

internal and external uncertainties. Most interestingly, the internal uncertainties include 

unexpected failure events due to the degradation of machines and processes. Leveraging the 

emerging technologies, such as IoT, advanced analytics and AI has opened a door for further 

improvement of efficiency and productivity. Hence, “in order to achieve transparency, the 

manufacturing industry has to transform itself into predictive manufacturing” (Lee, et al., 

2013) to “early-predict equipment condition and make optimized recommendations for 

adjustments and maintenance to ensure normal operations (Stojanovic, 2019). 

Thus, over the past years, noticeable interest of researchers has been directed towards the 

deployment of AI technologies and BD analytics to “create manufacturing environment that 

enables the implementation of all new technologies based on capabilities such as “self-
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awareness”, “self-predicting”, “self-maintaining” and “self-learning”” (Nikolic, et al., 2017).  

Relevantly, (Ademujimi, et al., 2017) reviewed the literature on how ML techniques were 

used in manufacturing predictive fault diagnosis with a focus on ANN algorithm. To 

demonstrate, (Zhang, et al., 2013) developed an AI-based classification method to predict the 

degradation (Remaining Useful Life) and anticipate the failure of the components and 

machines. Briefly, the developed system is based on collecting vibration signals from the 

sensors mounted on the machines for critical components monitoring. Followingly, the 

gathered data and features extracted are employed to train the ANN as shown in Figure 74.  

 

 

 

 

 

 

 

 

 

 

On the same line, (Han & Chi, 2016) developed an AI-based system to predict a CNC tool 

wear compensation offset value (to maintain product quality) by employing the support 

vector regression (SVR) alongwith various combinations of data pre-processing methods.  

Furthermore, (Khan, et al., 2022) recently proposed a manufacturing analytics model to 

predict failures in the production process in heterogeneous streams of data. The comparison 

with other classification methods, such as SVM, KNN, ANN, on real data showed that the 

proposed approach can predict product failure with reasonable accuracy. 

Figure 74 AI-based Diagnosis and Prognosis Framework (Zhang, et al., 2013) 
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Figure 75 Predictive Manufacturing Analytics Framework (Lee, et al., 2013) 

 

Another aspect that might benefit from the human-AI collaboration is inventory management. 

Likely, “small and medium scale manufacturing industries are in most cases faced with the 

problems of inadequate inventory of raw materials and spare parts.  These  shortages  often  

lead  to  breaks  in  production  schedule,  machine  breakdown  and  low  capacity utilisation 

and thus constituted a barrier to their effective growth” (Monisola, 2013) . Also, “Inventory is 

the life-blood of every organization and mandates efficient management, especially for 

startups which have significant cash constraints” (Murthy, 2016). Thus, this thesis focuses on 

the potential applications of CI in effective inventory management. 

6.1.4.2 A Decision Support System (DSS) for Inventory Management and Supplier Selection 
 

Unlike LEs, manufacturing SMEs lack the tools and knowledge to utilize data to support their 

decision-making process. To elaborate, SMEs have a common problem of effectively taking 

advantage of the availability of data due to the deficiency of resources, and consequently the 

absence of data analytics (Coleman, et al., 2016). As a result, the majority of SMEs’ decision-

making processes “have relied on intuition combined with entrepreneurial experience and 

knowledge” (Musso & Francioni, 2012). The application of DSSs in the areas of inventory 

management has been proposed in several studies.  This thesis focuses on the development of 
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a DSS for sourcing and inventory management in MSMEs that have limited resources and 

knowledge in utilizing data to support their decision-making.  

Inventory management revolves around inventory replenishment, inventory optimization, and 

inventory control (Jalali & Van Nieuwenhuyse, 2015). In an attempt to encounter the uprising 

market dynamism, researchers have been proposing various models taking into account the 

various sources of uncertainties. To illustrate, (Nakandala, et al., 2018) proposed an Integer 

Programming optimization model for inventories to determine both the optimum size and 

cost of orders from reliable suppliers. Despite being easily adopted by MSMEs, but this 

model might not be reliable enough as it restricts its input to data associated with reliable 

suppliers, which might not be the case for many firms. In response, researchers have started 

employing AI technologies to meet the businesses’ needs. For example, through the 

integration of ANN and FIS, (Deb, et al., 2017) proposed an adaptive neuro-fuzzy inference 

system (ANFIS) to work as DSS for uncertain inventory management. Briefly, the system is 

fed demand as input and outputs optimized procurement, ordering and holding cost to control 

production and supply. The system relies upon learning the changes in demand of certain 

goods and establishing their association with the related costs observed in the data set used 

for training the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, (Teerasoponpong & Sopadang, 2022) proposed a DSS to “minimize the total 

purchased cost of raw materials based on the company's behavioral preferences in supply and 

inventory management”. Therefore, through the integration of ANN (for learning unusual 

patterns) and GA (for exploring many parameters in each iteration),  the proposed DSS 

Figure 76 ANFIS DSS Framework (Deb, et al., 2017) 
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utilizes a simulation-optimization approach to augment the human’s intelligence through the 

inventory management process. Technically, the DSS receives uncertain raw data from both 

the internal operations and the volatile external business sphere.  

In the proposed system, the human’s role follows the completion of data processing, system 

training, and parameter optimization, as he verifies and validates the generated optimization 

to be used for augmenting his decision-making process. The optimized iterations generated 

by the system consists of five key parameters: total cost of purchased raw materials, optimal 

order quantity, order quantity from each supplier, safety stock, and reorder point. In case of 

generating a non-feasible solution, the system enables the human supervisor to re-adjust the 

input data. Followingly, the GA would take the re-adjusted parameters and re-iterate the 

optimization process to propose a feasible solution.  

 
 

Figure 77 ANN-GN Simulation-Optimization DSS Framework (Teerasoponpong & Sopadang, 2022) 
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    Applications 

 
 
Technologies  
Involved 

brAInstorm: Intelligent 
Assistance in Group Idea 

Generation 

An Intelligent Evaluation 
Approach For NPD Projects 

 

Product Development 
Failure Prediction  

Evaluation of New Product 
Development Projects using 

Artificial Intelligence and Machine 
Learning 

Generative 
Design 

Smart IoT Devices  
Wearable Devices      

Smart Sensors      
      AI/ML Algorithms  

Spatio-temporal Markov 
Chains/Hidden Markov Models 

     
Learning from Demonstration 

(LfD) 
     

Ensemble model /Reinforcement 
learning/ Continual Learning 

     
Image/Pattern Recognition      

ANN/Classifiers/CNN/ DNN/ 
Bayesian/GA/Kalman Filter/FIS 

     
NLP/NLU      
STT/TTS      

                DBPS  
In-house Computing      

Cloud Computing      
Edge Computing      

Communication Networks  
4G      
5G      

WiFi/Bluetooth      
DT/AR/VR/MR      

Table 12 An Analysis of the Technological Requirements of the Potential CI Applications in Manufacturing SMEs  (1/2) (According to the author’s Findings) 
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Table 13 An Analysis of the Technological Requirements of the Potential CI Applications in Manufacturing SMEs (2/2) (According to the author’s Findings) 

    Applications 

 
 
Technologies  
Involved 

Data-Driven 
Design 

AI-Enabled Training in 
Manufacturing Workforce 

Development  

AI-Assisted Smart 
Training Platform for 
Future Manufacturing 

Workforce 

Predictive 
Manufacturing 

A Decision Support System (DSS) for Inventory 
Management and Supplier Selection 

Smart IoT Devices  
Wearable Devices      

Smart Sensors      
      AI/ML Algorithms  

Spatio-temporal Markov 
Chains/Hidden Markov Models 

     
Learning from Demonstration 

(LfD) 
     

Ensemble model /Reinforcement 
learning/ Continual Learning 

     
Image/Pattern Recognition      

ANN/Classifiers/CNN/ DNN/ 
Bayesian/GA/Kalman Filter/FIS 

     
NLP/NLU      
STT/TTS      

                DBPS  
In-house Computing      

Cloud Computing      
Edge Computing      

Communication Networks  
4G      
5G      

WiFi/Bluetooth      
DT/AR/VR/MR      
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6.2 A Qualitative Analysis of the Usability and Maturity of the Researched CI Technologies in MSMEs 
  

Table 14 An Analysis of the Applicability, Usability and Maturity of the Different Technologies in  Manufacturing 
Small and Medium Enterprises (From the author's perspective) 
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6.3 A Qualitative Analysis of the Human Intelligence and Artificial Intelligence Contribution 
 

Table 15 Analysis of the Contribution of Human Intelligence and Artificial Intelligence in the Different Technologies 
In Small and Medium Enterprises (From the author's perspective) 
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7. Collaborative Intelligence Challenges  
 

7.1 Social challenges 
 

7.1.1 Technology acceptance and trust  
 
The adoption degree of intelligent human-centric manufacturing systems hugely depends on 

the human’s trust in intelligent technologies. Technologies must be reliable, intelligent, 

entertainable, and value privacy of data. This alarms a challenging objective of developing 

empathic machines to build a trust-based collaborative relationship between the two entities, 

which necessitate significant advances in “cognitive science” and “unbiased intelligence” in 

intelligent machine agents (Lu, et al., 2022) .  

7.1.2 Change of team dynamics  
 
Undoubtedly, collaborative work set-ups embracing intelligent machines will force changes 

to the team dynamics in a work environment. Human operators need to adjust the way they 

deal with intelligent machines, as such entities would expectedly be heavily involved in a 

human operator’s physical, cognitive, and decision-making performance (Lu, et al., 2020) 

7.1.3 Continuous learning  
 
The development of technologies to understand humans must be met with effective training 

of human operators to enrich the necessary skills for an adequate utilization of the developed 

technologies and support a productive human-machine teamwork, which would reflect on a 

better overall system’s performance. 

7.2 Technical challenges 
 

7.2.1 Data integration 

Differently sourced data is the core of an efficient collaborative intelligence framework, 

which remarks data integration as a critical research topic. Simply, data integration 

architecture aims to “combine the data residing at different sources and to tie these different 

sources controlled by different owners under a common schema”. Undoubtedly, taking the 

IIoT-oriented environment into consideration, the biggest dilemma in the way of an efficient 

data integration is developing an automatic scheme that provides a “correct logical sequence” 

with respect to the real processes on the industrial production ground (Chen, et al., 2016).  
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7.2.2 Personalized Human-centric AI  
 
To foster the human-centricity in the future factories, empathic machines would essentially 

be collaborative, understanding, proactive, and personalized. Such harmonized relationship 

would be the key to harness the potential of CI instead of threatening human’s jobs for 

compromised productivity.  

7.2.3 Transparency and Explain-ability  
 
For a trust based and bi-directional HRC, human operators should be aware of the way AI 

technologies arrive to its conclusions and decisions (Lu, et al., 2022). Unfortunately, the 

current DL-based systems are not up to the required level referring to this issue (Hagras, 

2018). Therefore, tangible advancements are necessary to make AI explainable.  

7.2.4 Manufacturing systems research  
 
The shift from system-centric manufacturing to human-centric manufacturing complicates the 

current manufacturing strategies research. To elaborate, the higher degree of freedom granted 

to human workers urges amendments to the current manufacturing strategies research in order 

to be prepared to make for the human factor’s contingencies before defecting the overall 

system’s productivity.  

7.2.5 Trusted and privacy-protected model design 
 
The privacy of data and knowledge is an utter necessity for both data owners and consumers 

in a CI architecture. Regarding a collaborative intelligence mode, it is unnegotiable to study 

and design a privacy-secured data model for data processing, data analysis, knowledge 

discovery and knowledge exploitation. Although data privacy concept is regarded with a high 

importance within the CI value chain, but yet there is no available unified standard model that 

satisfies such necessity due to the unlike requirement of data owners and consumers. 

Normally, developing empathic machines would urge the researchers to develop a reinforced 

“universally accepted ethical system” to keep the “disruptive” potentials of new AI 

technologies under societal control (Hagendorff, 2020). For example, assuming being aware 

of the consequences, workers should be granted the authority to control the flow of their 

personal data to smart devices. 



174 
 

8. Future Research Opportunities 
 
The evolution from the Operator 4.0 vision towards Operator 5.0 prioritizes establishing 

trusting relationships between humans and machines, paving the way for “smart resilient 

manufacturing systems to capitalize not only on smart machines’ strengths and capabilities, 

but also to empower their smart operators with new skills and gadgets for the new working 

paradigm” (MOURTZIS, et al., 2022). Expectedly, alongside the evolution of the new 

generation of operators, operator 5.0, Industry 5.0 will stimulate the creation of new job roles. 

For example, the CI-based work environment will necessitate the presence of a Chief 

Robotics Officer (CRO), who possesses the knowledge about robots and the human-machine 

relationships (MOURTZIS, et al., 2022). This role could be integral to the manufacturing 

system’s efficiency, as the CRO would lead the decision-making concerning the 

addition/removal of particular robots from the working environment. Therefore, bearing the 

operator 4.0 vision in mind, the time has clearly come to direct the focus to determining the 

required skills to be present in the operator 5.0. Also, we should start identifying the possible 

new job roles and the necessary skills to support a smooth shift from I4.0 to I5.0. 

 

 
Figure 78 Preliminary Skills and Attributes of the Industrial Operator 5.0 (MOURTZIS, et al., 2022) 
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9. Conclusion 
 

The rapid, continuous technological advancements have encouraged researchers to 

direct their attention to the potential impact of the collaboration between human intelligence 

and machine intelligence upon the various fields. In fact, the term “Collaborative 

Intelligence” has been attracting the research attention since 1999, which resulted in the 

development of various crowd-based collaborative platforms such as Wikipedia. However, 

artificial intelligence has not been called to action until 2015, a few years after the emergence 

of the industry 4.0 initiative. Actually, the terms “collaborative intelligence” and “artificial 

intelligence” have started showing an increasing trend of being mentioned together by the 

introduction of Industry 5.0 in 2015. Industry 5.0 aims to harness the potential of augmenting 

the human factor with artificial intelligence technologies to bring back the human’s touch to 

prepare the manufacturing sector for the future’s competitive differential, mass 

personalization. According to a qualitative analysis, in the short term, the manufacturing 

sector would benefit from the Human-Centric Collaborative Intelligence in terms of 

collaborative sensing technologies, AI-powered decision-making system, Pi-mind 

technology, augmented analytics in quality control, shared workplaces between humans and 

collaborative robots and intelligent virtual technical assistants (Chatbots). However, such 

technologies necessitate the presence of other technologies including Edge computing, cloud 

technologies, AR/VR, and Digital twins, which makes it difficult to be adopted by 

manufacturing SMEs compared to Large Enterprises (except small-scale Cobots and 

chatbots).  

 

Manufacturing SMEs are relatively more prone to failure than other sectors for 

various reasons including lack of labour skills, higher initial investments, changing 

customer demands, difficulties of prototype/product development and lack of real-time data-

driven decision support systems. According to literature, augmenting the human’s capabilities 

with affordable artificial intelligence and other enabling technologies would offer many 

solutions to the problems highlighted above, which would facilitate the manufacturing SME’s 

way to  ramp-up processes and help diminishing the failure rate. According to a qualitative 

analysis, manufacturing SMEs are comfortably ready to apply CI technologies to new 

product development, prototyping, up-skilling workforce and inventory management. 
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