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Abstract

The online advertising market is experiencing the most flourishing period ever observed
so far. The profit recorded in 2021 was 189 billion dollars, corresponding to an increase of
35.4% over the previous year. In order to win the best advertising slots, made available
by search engines and social networks, advertisers must compete in an auction. Often,
choosing the optimal bid is not trivial; consequently, more and more advertising agencies
resort to the help of automated tools for managing the advertising campaigns of their cus-
tomers. However, such systems suffer from a problem known as Cold-Start that occurs
when they have to operate in situations where a minimum amount of historical data is
available. The aim of the work is to develop a methodology that can mitigate this problem
when an advertiser decides to launch a new advertising campaign for which no observa-
tions have yet been recorded. In particular, the proposed heuristic uses the information
collected from the other sub-campaigns related to the advertiser to extract a characteristic
average behaviour to be used as a starting point for the new sub-campaigns. Finally, the
approach developed has been validated on real data provided by the advertising agency
’AdsHotel’, highlighting a statistically significant improvement in performance compared
to the scenario in which no Cold-Start management technique is used.

Keywords: Online Advertising, Cold-Start, Multi-Armed Bandit





Sommario

Il mercato pubblicitario online sta vivendo il periodo più florido mai registrato. Il profitto
ottenuto nel 2021 è stato pari a 189 miliardi di dollari, corrispondente ad un aumento del
35.4% rispetto all’anno precedente. Per potersi aggiudicare i migliori spazi pubblicitari
messi a disposizione da motori di ricerca e social network, gli inserzionisti devono concor-
rere in un’ asta, per la quale, è necessario scegliere la puntata ottimale; di conseguenza,
sempre più agenzie pubblicitarie ricorrono all’ausilio di strumenti di apprendimento au-
tomatizzato per la gestione delle campagne pubblicitarie dei propri clienti. Tali sistemi
soffrono, però, di un problema noto come Cold-Start: quest’ultimo si verifica quando
si ha a disposizione un quantitativo minimo di dati storici, e quindi, nelle fasi inziali
dell’apprendimento, si tende ad avere una performance non soddisfacente. L’obiettivo
di questo lavoro è quello di sviluppare una metodologia in grado di mitigare tale prob-
lematica, qualora un inserzionista decida di avviare una nuova campagna pubblicitaria
per la quale nessuna osservazione è stata registrata. In particolare, l’euristica proposta
sfrutta informazioni raccolte da altre sotto-campagne pubblicitarie, estraendo da esse un
comportamento medio caratteristico da impiegare per le nuove sotto-campagne.
Infine, l’approccio sviluppato è stato validato su dati reali forniti dall’agenzia pubblic-
itaria ’AdsHotel’, evidenziando un miglioramento statisticamente rilevante della perfor-
mance rispetto allo scenario in cui non viene adoperata nessuna tecnica di gestione del
Cold-Start.

Parole chiave: Pubblicità Online, Cold-Start, Multi-Armed Bandit
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1| Introduction

The use of the Internet has grown tremendously over the last two decades, and online
advertising has become the most effective way to sponsor a product or an event. Internet
advertising revenue in 2021 was 189 billion USD, a 35.4% increase over the previous year,
and consequentially, the largest growth since 2006 [12]. The Internet channels’ ability
to reach a broad audience fast and efficiently while also targeting specific kinds of users
with personalized sponsored announcements contributes to the success of this advertising
approach. The key actors in this industry are the advertisers, who have a product or an
event to market, the media agencies, whose job is to handle advertisement campaigns for
the advertisers, and the Web publishers, whose responsibility is to supply slots in Web-
pages dedicated for advertising purposes. Ad spots are typically provided by publishers
through auctions, in which each advertiser must indicate the bid, i.e., how much he is
willing to pay every time a consumer clicks on his ads, and the budget, i.e., the maximum
amount of money he is ready to spend every day for his advertising campaign. The
ability to target adverts to consumers very precisely, thanks to a massive amount of data
on user activity available to advertisement platforms, is critical to the success of Internet
advertising. However, such a large volume of data makes the challenge of identifying
the optimal targeting unaffordable for humans, and, as a result, the use of automated
approaches has become essential.

1.1. Motivation

Online advertisers face a critical challenge called the Cold-Start Problem. De facto, identi-
fying the appropriate bid and budget combinations to utilize during the publisher-induced
auction to clinch the best slots is one of the most essential aspects of the process of adver-
tising a product or service online. In order to address this optimization problem, media
agencies frequently employ automated tools based on machine learning techniques, which
require a vast quantity of historical data to function properly.
The Cold-Start problem comes when these tools are tasked with optimizing fresh adver-
tising campaigns launched by advertisers for whom no data or a minimum amount are
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available. In the early days of a campaign, this frequently results in erroneous suggestions
from automated systems until a significant number of observations are collected. As a
result, the advertiser may suffer considerable economic losses, which may lead to a loss of
confidence in the media agency and in the employment of new automated techniques.

1.2. Original Contribution

The contribution of this work consists of the development of a heuristic capable of miti-
gating the Cold-Start Problem for the advertiser in the internet advertising scenario. In
particular, the approach we propose exploits the available information from the adver-
tiser’s open sub-campaigns, which are part of the same advertising campaign, to extrap-
olate an average behaviour to be used as a starting point for the new sub-campaigns that
he could decide to open in future. More specifically, our goal was to extrapolate a way
to produce an estimate of the click function, which is critical for the resolution of the
advertiser optimization problem, that is more informative than the simple zero-centred
prior function utilized in modern automated systems.
Using data provided by the media agency AdsHotel, we were able to test the effectiveness
of the technique we proposed by simulating a real-world online scenario.

1.3. Document Outline

The document is structured as follows. Chapter 2 introduces the fundamental knowledge
required to comprehend what follows, such as the Multi-Armed Bandit problem structure,
the use of Gaussian Processes for regression tasks, and the dynamics that characterize
the Online Advertising scenario from both the advertiser and the publisher’s perspectives.
Chapter 3 presents a literature review of the related works that have focused on the devel-
opment of problem-solving techniques for the advertiser optimization problem. Chapter 4
gives a broad introduction to the Cold-Start problem for automated recommendation sys-
tems and then delves into how it manifests itself in the context of internet advertising.
Chapter 5 discusses in detail the heuristic we designed, with a special emphasis on how
it could be implemented with Gaussian Processes. Chapter 6 reports the results of the
experiments we conducted to validate our technique, first on a synthetic environment and
subsequently on real data provided by AdsHotel. Finally, Chapter 7 draws conclusions
on this work and opens new directions for further projects.
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This chapter presents the basic theoretical concepts required for the reader to understand
the work presented in this document. Specifically, Section 2.1 illustrates the Multi-Armed
Bandit (MAB) problem and the main algorithms used to solve it. Section 2.2 explores
Gaussian Processes (GP) and their use in Combinatorial Bandits to set a correlation
between arms’ expected rewards. Finally, Section 2.3 provides an overview of the Online
Advertising scenario and its internal dynamics both from the point of view of the publisher
and the advertiser.

2.1. Multi-Armed Bandit

Multi-Armed Bandits also referred to as the K-armed bandit problem, consider a scenario
in which an agent faces K independent actions or bandit’s arms. In each time step, the
agent must select one of these arms based on its current information receiving in return
a reward sampled from an unknown distribution.
Furthermore, being MAB an online decision-making problem, it is mandatory to address
the exploration-exploitation dilemma. Every time the agent needs to make a decision he
can choose between two possible behavioural strategies:

• Exploration: gather more information choosing less explored actions

• Exploitation: select the action we consider to be the best one so far

Choosing the right balance between these two strategies is fundamental to achieve suitable
performance.

2.1.1. Problem Formalization

A Multi-Armed Bandit problem can be seen as a tuple (A,R) where

• A is a set of K possible arms

• R is a set of real distributions, each associated with the rewards delivered by one
of the arms
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At every time t the agent selects a single arm ai,t, then the environment generates a reward
ri,t drawn from the distribution R(ai,t). Finally, the agent updates his information on
pulled arms and the received rewards.
The final objective of the agent is to maximize the cumulative reward v over a given time
horizon T :

v =
T∑
i=1

ri,t

If we call a∗ the optimal arm and

R∗ = R(a∗) = max
ai∈A

E [R(ai)]

the expected reward associated with the optimal arm, we can reformulate the objective
function in terms of regret, i.e. the average loss we incur at time t by playing the action
ai,t instead of the optimal one a∗:

E [R(a∗)−R(ai,t)] = R∗ −R(ai,t)

Our goal is now to minimize the expected cumulative regret LT suffered over a finite time
horizon T :

LT = TR∗ − E

[
T∑
t=1

R(ai,t)

]
Note that the maximization of the cumulative reward is equivalent to the minimization
of the cumulative regret.
It is possible to express the lower bound of the regret [8] as

lim
T→∞

LT ≥ log(T )
∑

ai|∆i>0

∆i

KL (R(ai), R(a∗))
(2.1)

where KL (R(ai), R(a∗)) is the Kullback-Leibler divergence between the two reward dis-
tributions R(ai) and R(a∗), and ∆i is the average difference in reward between a generic
arm ai and the optimal one a∗.

∆i := R∗ −R(ai)

This result states that regret grows at least logarithmically concerning the time horizon T ,
or more formally, LT = Ω(log T ). Thus, an algorithm is said to solve the MAB problem
if it can match this lower bound, i.e. LT = O(log T ).
In the next Subsections, we present two solving algorithms which try to approach this
lower bound. In particular, in Subsection 2.1.2 we explore the Upper Confidence Bound
1 (UCB1) algorithm [1], and in Subsection 2.1.3 we go into the Thompson Sampling (TS)
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algorithm [14].

2.1.2. UCB 1

The UCB1 algorithm, whose pseudo-code is provided in Algorithm 2.1, works by comput-
ing the upper confidence bounds for every arm ai and selecting, at every time step t, the
arm with the highest bound.

Algorithm 2.1 UCB1
1: Input: the number of arms K
2: Initialization:
3: Q(ai)← 0 for all actions ai
4: N(ai)← 0 for all actions ai
5: t← K + 1
6: Play each of the K arms once, and update Q(ai) accordingly
7: while true do
8: Play the arm ai that maximizes (where t is the current time step):

Q(ai) +

√
2 log t

N(ai)

9: Receive a reward R and update Q(ai)
10: N(ai)← N(ai) + 1
11: t← t+ 1
12: end while

The upper confidence bound used by the algorithm

Q(ai) +

√
2 log t

N(ai)

derives from Hoffding’s inequality [5].
The first term of the bound, Q(ai), represents the mean reward obtained by playing the
arm ai so far and it is the pure exploitation part of the formula. Instead, the second term,√

2 log t
N(ai)

, is inversely proportional to N(ai), the number of times we played the arm ai so
far, and considers the exploration part of the algorithm. In fact, if two arms have a more
or less similar average reward, but the first arm has been chosen more times than the
second one, then the second term of the formula, being inversely proportional to N(ai),
will propel us to the second arm.
We can estimate the performance of UCB1 by extrapolating an upper bound for the total
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regret we get if we apply it to a stochastic MAB [1]:

LT ≤ 8 log(T )
∑

i|∆i>0

1

∆i

+

(
1 +

π2

3

) ∑
i|∆i>0

∆i

This is a pretty good result because we obtain a bound of the same asymptotic order,
log(T ), of Equation 2.1.

2.1.3. Thompson Sampling

The Thompson Sampling algorithm is structured as a classical Bayesian methodology for
online learning. For each arm ai we have a prior fi ∼ Beta(α, β) as a starting point. At
each round t we sample from each one of the prior distributions a reward ri and we play
the arm âi with the highest sampled value. Then, we update the prior incorporating the
reward gathered by choosing arm âi.
The update is based on the following rules:

• In case of success: fi(t+ 1) = Beta(αt + 1, βt)

• In case of failure: fi(t+ 1) = Beta(αt, βt + 1)

We report the TS pseudo-code in Algorithm 2.2.

Algorithm 2.2 Thompson Sampling
1: Input: the number of arms K
2: Initialization:
3: Set S(ai) = 1, F (ai) = 1 for all arms ai
4: t← 1
5: while true do
6: For each arm, sample Bi(t) ∼ Beta(S(ai), F (ai))
7: Play the arm ai that maximizes Bi(t)
8: Receive a reward R ∈ [0, 1]
9: With probability R, S(ai) = S(ai) + 1 else F (ai) = F (ai) + 1

10: t← t+ 1
11: end while

As for UCB1 also for TS, we can evaluate its performance by identifying its upper bound
on the regret. [6]

LT ≤ O

 ∑
i|∆i>0

∆i

KL(R(ai), R(a∗))
(log(T ) + log(log(T )))


Note that the identified bound matches the asymptotic rate lower bound for the cumula-
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tive regret given in Equation 2.1.

2.1.4. Combinatorial Bandits

The novelty of Combinatorial Bandits (CB) problems is the introduction of constraints
on playable arms. In classical bandit problems, we can choose only one arm, while in CB
we can pull a subset of arms under customary combinatorial constraints.
Formally the elements of a CB problem are:

• Super-arm: a collection of arms

• Feasible Super-arm: a Super-arm satisfying the combinatorial constraints

• Super-arm reward: the sum of the reward of the arms that constitute it

• Goal: maximize the cumulative expected reward

One of the most common combinatorial constraints is the Knapsack Constraint in which
every arm has a known cost and a Super-arm can not have a cost larger than a given
budget.
We can simply extend the Thompson Sampling approach, as reported in Algorithm 2.3,
to take into account the combinatorial constraints.

Algorithm 2.3 Combinatorial Thompson Sampling
1: Input: the number of arms K
2: Initialization:
3: Set S(ai) = 1, F (ai) = 1 for all arms ai
4: t← 1
5: while true do
6: For each arm, sample Bi(t) ∼ Beta(S(ai), F (ai))
7: Play the Super-arm âi that maximizes

∑
ai∈âi Bi(t), âi ∈ S

8: Receive a reward R ∈ [0, 1]
9: With probability R, S(ai) = S(ai) + 1 else F (ai) = F (ai) + 1 for ai ∈ âi

10: t← t+ 1
11: end while

The regret of the Combinatorial Thompson Sampling

LT = O

(
|A| log(T )

∆min

)
is essentially the same as the basic version of the TS, i.e. logarithmic dependence on time
T and linear dependence on the number of arms A.
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2.2. Gaussian Processes

The Gaussian Processes model is a probabilistic supervised machine learning framework
that has been widely used for regression and classification tasks. A Gaussian Processes
Regression (GPR) model can make predictions incorporating prior knowledge and provide
uncertainty measures over predictions [15].

2.2.1. Multivariate Normal Distribution

A random variable X is normally distributed, with mean µ and variance σ2, if its proba-
bility density function (PDF) can be expressed as

pX(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
This behaviour of the random variable X is represented by the notation X ∼ N (µ, σ2).
We report the plot of the PDF of a univariate Gaussian distribution in Fig. 2.1.

0 5 10 15

0

5 · 10−2

0.1

0.15

0.2

Figure 2.1: PDF of a random variable with a mean of 7.4 and a variance of 0.25.

In machine learning, more than one feature variable is commonly used to describe the
samples inside a dataset and moreover, these variables are often correlated to each other.
In order to model this scenario as one Gaussian model, we need to use a multivariate
Gaussian (MVN) distribution.
The PDF of an MVN is defined as

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
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where D is the number of features variables, µ = E[x] ∈ RD is the mean vector and
Σ = cov[x] is the D×D covariance matrix. The Σ is a symmetric matrix that stores the
pairwise covariance of all jointly modelled random variables with Σij = cov(xi, xj) as its
(i, j) element.
For visualization purposes, we focus on bivariate Gaussian (BVN) distributions in which
we consider only two correlated feature variables (x1, x2). A BVN distribution can be
visualized, as shown in Fig. 2.2a, as a three-dimensional (3-d) bell curve with heights
representing the probability density.

0

0.2
0.4

0.6
0.8

1

1.2
1.4

1.6
1.8

2 0
0.2

0.4
0.6

0.8

1
1.2

1.4
1.6

1.8

2
0

0.5

1

x1 x2

P

0

0.5

1

P (x1, x2)

(a) 3-d bell curve

x1

x 2

(b) 2-d ellipse contours

Figure 2.2: The PDF of a BVN visualization: (a) a 3-d bell curve with height represents
the probability density, (b) ellipse contour projections showing the co-relationship between
x1 and x2 points.

The ellipsoid shape of the 3-d bell level surfaces, shown in Fig. 2.2b, indicates the intensity
of the correlation between the two variables x1 and x2. They show how sample points
are arranged in the space, i.e. equally distributed within the ellipse, with decreasing
probability from the central to the outermost ellipses.
Therefore, we can express the BVN in a compact way as[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
σ11 σ11

σ21 σ22

])
∼ N (µ,Σ)

For regression problems, it is often more important conditional probability rather than
joint probability. We can easily notice that if we fix a value for x1 (or x2) we still get for
P (x2|x1) (or P (x1|x2)) a Gaussian distribution, as shown in Fig. 2.3.
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Figure 2.3: The conditional probability distribution P (x1|x2) by cutting a slice on the
PDF 3-d bell curve of a BVN.

2.2.2. Kernels

A kernel k, also called covariance function, is a positive-definite function that allows us
to introduce our prior knowledge in the model:

Cov [f(x), f(x′)] = k(x, x′)

Informally, we can say that kernels specify the similarity between two values of a function,
usually a mapping into a higher-dimensional features space, evaluated on each object. The
most widely used kernel in Gaussian Processes is the radial basis function (RBF) kernel,
also known as the squared exponential kernel, which is defined as

k(x, x′) = exp

(
−(x− x′)2

2

)
This is because it can be integrated against a wide range of functions due to its universal
property.
If we consider two bivariate random variables X1 and X2 and we sample from X1 a certain
value, we can not sample from X2 any random value with the same probability, because
the two variables are correlated and which value pairs are more likely to sample is heavily
influenced by the assigned kernel.
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2.2.3. Gaussian Processes Regression

Gaussian processes address the regression task by defining a multivariate gaussian distri-
bution over possible functions f that fit a set of points.
We initialize the model with the zero mean GP prior on the function variables:

p(f) = N (f |0,K) (2.2)

where

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

... . . . ...
k(xN , x1) k(xN , x2) . . . k(xN , xN)


Our assumption is that the observed data are generated with Gaussian white noise around
the underlying function f :

y = f +N (0, σ2)

Under this assumption and that noise is independent for each data point we can state
that

p(y|f) = N (y|f , σ2IN)

Now we can compute the marginal distribution as

p(y) =

∫
p(y|f)p(f)df = N (y|0,C)

where N is the number of data point and C = K + σ2IN .
In order to make a prediction yN+1 for a new data point xN+1 we evaluate the predictive
distribution

p(yN+1|y(N), x1, ..., xN+1) = N (yN+1|kTC−1y(N), c− kTC−1k)

where k = [k(x1, xN+1) ... k(xN , xN+1)]
T and c = k(xN+1, xN+1).

The mean value kTC−1y(N) of the prediction gives us our best estimate for yN+1, and it is
also known as the matrix of regression coefficients. The variance c− kTC−1k is, instead,
an indication of the uncertainty of our estimation.
We can state from these results that the mean prediction is a linear combination of the
observations y(N), while the variance does not depend on the observed outputs y(N), but
only on the inputs x(N+1).
In Fig. 2.4a we report how the prior distribution, defined in Equation 2.2, looks like, and
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in Fig. 2.4b how its mean and variance are updated after adding four sample points to
the training set.

(a) GP prior

(b) GP posterior

Figure 2.4: Process of inference in GPR a) Initial prior distribution over functions b)
Posterior distribution over functions after observing four data points.

2.2.4. GP-Bandits

In a basic bandit problem, the reward of every arm is assumed to be independent of the
reward of other arms. In GP-Bandit, instead, arms are correlated, and, moreover, the
reward of an arm provides information on the reward of the arms close to it.
Gaussian processes can be used to express the correlation between arms due to their abil-
ity to represent a multivariate distribution over the possible reward functions.
In order to solve the GP-Bandit problem we can appeal to the natural evolution of UCB
in the contextual bandit scenario. The GP-UCB [13] pseudocode is reported in Algo-
rithm 2.4.

2.3. Online Advertising

Due to Internet’s popularity and its spread in everyday usage, Online advertising (OA)
is now a primary solution for companies wishing to sponsor a good or service. Web
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Algorithm 2.4 GP-UCB
1: Input: Input space D; GP Prior µ0 = 0, σ0, k
2: for t = 1, 2, ... do
3: Choose xt = argmax

x∈D
µt−1(x) +

√
βtσt−1(x)

4: Sample yt = f(xt) + ϵt
5: Perform Bayesian update to obtain µt and σt

6: end for

technologies also make it possible for advertisers to produce ads that are specifically
targeted at certain user demographics and to more effectively control expenses.
The main roles involved in the OA scenario are:

• Advertisers: those that are interested in advertising their goods or services online.
They frequently create sub-campaigns to target various niche demographics and
have well-defined objectives like boosting the quantity of goods or services sold and
maximizing the income relative to costs

• Customers: ordinary people who run into advertisements while surfing the Internet
and consequently can become potential buyers

• Publishers: act as middlemen between marketers and consumers, displaying their
adverts. They hold auctions where advertisers compete for the slots with the best
visibility in order to achieve their goal of maximizing earnings

• Media Agencies: companies that, as experts, are in charge of managing the tasks of
the advertisers during the publisher auctions

Advertisers can choose between different online advertising formats among which are:

• Search: when conducting a search on a search engine, customers are displayed adver-
tising. To improve the likelihood of a conversion, the displayed web page combines
organic content with tailored advertising depending on the user’s search query’s
keywords

• Social: advertising that is displayed to the consumer on a social network’s website
through ad-hoc posts, photographs, or videos based on the user’s personal informa-
tion and activity

• Display: adverts that are displayed to customers as banners, photos, and videos on
common web pages with the goal of raising awareness of the goods or services they
are advertising

The different formats differ for the customers’ information they exploit and for the layer
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of the AIDA model [4] they target.

2.3.1. Compensation Methods

The performance metrics and payment methods the publisher uses to determine how much
the advertiser should pay him are frequently influenced by the format that is chosen.
The main performance indices used in the Online Advertising field are:

1. Impressions: indicates how many times an advertisement has been viewed by a
customer

2. Clicks: indicates how many times a customer has clicked on an advertisement to
learn more about the product or service on the advertiser’s website

3. Leads: indicates the number of potential sales (i.e., registration form filled by the
user)

4. Conversions: indicates the number of actual sales of the product or service obtained
thanks to that specific advertisement

Based on the reported performance indices we can identify the three most used payment
schemes:

• Pay-per-impression: the advertiser pays every time the advertisement receives an
impression. It is the most used method for social and display advertising

• Pay-per-click: the advertiser pays every time the customer clicks on the advertise-
ment. This is a very common method for social and search advertising

• Pay-per-conversion: the advertiser pays every time a customer actually buys the
product or service offered by advertising. This scheme is very suitable for search
advertising

In the rest of this document, we assume that the used format is search advertising and
the payment scheme is pay-per-click.

2.3.2. Publisher’s Optimization Problem

The publisher’s objective is to maximize its revenue by selecting the most effective allo-
cation of advertising among the available slots.
We can formally say that the objective function to be optimized is:∑

a

ΛS(a)qava
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where ΛS(a) is the probability that the customer observes the slot in which the adver-
tisement a is allocated (i.e., slot prominence), qa is the probability that the customer
clicks on the advertisement a given that he has observed it (i.e., ad quality) and va is the
value-per-click assign by the advertiser to the advertisement a (i.e., ad value).
The ratio behind this formula is that customers follow a cascade model, which means they
first observe slot number one, then with a given probability move to slot number two, and
so on.
The probability to observe slot Si+1, given that slot Si is observed is given by:

ΛSi+1

ΛSi

where i ∈ {1, . . . , k} and k is the number of available slots.
The solution to the defined optimization problem:

argmax
a

∑
a

ΛS(a)qava (2.3)

is straightforward. We first sort the advertisements in decreasing order based on the value
of qava, and then we assign them to the slots according to that order.
The computational complexity of this solution is linear with respect to the number of
advertisements n and logarithmic with respect to the number of slots k, i.e., O(n logk).
It is important to note that the publisher frequently does not have the precise values of the
parameters defining the optimization problem and he must estimate them. In particular,
∆s and qa are estimated using data from all allocated advertisements, whereas va is the
advertiser’s confidential information sent to the publisher in the form of a bid.

2.3.3. Advertiser’s Optimization Problem

The advertiser’s goal is to obtain the most relevant slots in order to increase his chances
of selling his products or services while staying within certain financial constraints.
To begin, the advertiser must define an advertising campaign and all of its sub-campaigns.
Each sub-campaign is characterized by:

1. the intended audience, i.e., the geographic area, age, interests, and so on of the
customers

2. the bid, which is the maximum amount of money that the advertiser is willing to
pay for each impression, click, or conversion based on the selected payment scheme

3. the daily budget, which is the amount of money that the advertiser is willing to
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spend on a single sub-campaign

Frequently, the campaign specifies also a total budget, which is simply the sum of the
daily budgets of the sub-campaigns that comprise it.
We can formalize the advertiser’s optimization problem as an extended version of the
Knapsack Problem as follows [10]:

max
xj,t,yj,t

N∑
j=1

vjnj(xj,t, yj,t) (2.4a)

s.t
N∑
j=1

yj,t ≤ yt (2.4b)

xj,t ≤ xj,t ≤ xj,t ∀j (2.4c)

y
j,t
≤ yj,t ≤ yj,t ∀j (2.4d)

where:

• j denotes the index of a sub-campaign

• N is the total number of sub-campaigns in the campaign

• xj,t is the bid of sub-campaign j at time t

• yj,t is the daily budget of sub-campaign j at time t

• vj is the estimated value per click for sub-campaign j

• nj is a function returning the expected number of clicks for sub-campaign j given a
chosen bid and a daily budget

• yt is the daily budget for the entire campaign at time t

• xj,t and xj,t are the minimum value and the maximum value that the bid of sub-
campaign j can assume at time t

• y
j,t

and yj,t are the minimum value and the maximum value that the daily budget
of sub-campaign j can assume at time t

The objective function reported in Equation 2.4a represents the sum of each sub-campaign’s
expected revenue. The constraint in Equation 2.4b is a budget constraint, requiring that
the sum of sub-campaign daily budgets not exceed the total campaign daily budget. Fi-
nally, constraints in Equation 2.4c and Equation 2.4d simply force the bid and daily
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budget of sub-campaign j to fall within the specified value range at time t.
Obviously, the advertiser does not know the click function a priori, and he must estimate
it by collecting observations by applying a bid and a daily budget and observing the
effective number of clicks returned by the environment.

2.4. Hotel Advertising’s Setting

The end consumer is inextricably linked to the modern hotel industry’s core business
concept and philosophy. As a result, marketing plays a key role in the hotel’s development
plans for its own market [2].
The hotel industry inherits everything we’ve already discussed about the general setting of
Online Advertising, but it also has some unique characteristics. Advertisers are specifically
performance advertisers, which means they are primarily concerned with short-term yields
in order to keep their rooms fully booked.

2.4.1. Publishers

Google Hotel Ads and Tripadvisor are the two most well-known publishers in the Hotel
Online Advertising sector.
In the case of Google Hotel Ads, the advertisement is displayed to the user when he
searches for a hotel similar to the one advertised on Google Search or Google Maps.
A campaign for this publisher is defined by the following fields:

− The start and the end date

− The total budget

− The payment scheme

− The countries that the campaign must target

− The user devices that the campaign must target (i.e. desktop, mobile, and tablet)

The following payment methods are available to the advertiser:

• Manual cost-per-click (CPC): each time a consumer clicks on the advertisement, the
advertiser receives a set amount of money

• Percentage CPC: each time a customer clicks on the advertisement, the advertiser
pays a portion of the hotel’s room booking price

• Optimized CPC: the bid is automatically changed to optimize conversions
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• Pay-per-conversion: each time a consumer makes a reservation, the advertiser pays
a fixed proportion of the hotel’s room booking price

• Pay-per-stay: after a consumer has stayed in the hotel the advertiser pays a specified
proportion of the booking price of the hotel’s room

Google Hotel Ads allows you to fine-tune your advertising campaign even further by
specifying the three additional criteria listed below:

− Length of Stay (los): the number of days the client wants to hire the accommodation

− Check-In Day: the day the consumer checks into the hotel

− Booking Window Days: the number of days between the day of booking and the
day of check-in

The tuple (hotel, user-country, device, los, check-in day, booking window days) identifies
Google sub-campaigns, and the advertiser can set a separate bid value for each combina-
tion of these features.
When a user searches on Tripadvisor’s website for a certain destination or the name of
a hotel, advertising is displayed to him. Campaigns are established in the same way as
Google Hotel Ads, except the advertiser cannot specify some of the booking parameters
in this case.
Therefore, a Tripadvisor sub-campaign is identified by the tuple (hotel, user-country,
device), and a different bid can be set for each combination of those parameters.

2.4.2. Advertising Campaigns Definition

In this subsection, we present the concept of sub-campaign that we use in our setting
due to the fact that we use a slightly different structure from those presented in Subsec-
tion 2.4.1.
In our scenario, a campaign is identified by the tuple (hotel, metasearch), where the
metasearch represents the advertising channel (i.e., Google Hotel Ads or Tripadvisor).
We do not take into account more complex factors in the definition of sub-campaigns to
simplify the treatment of the problem, such as Length of Stay, Check-In Day, and Book-
ing Window Days, so that the sub-campaign is defined by the tuple (hotel, metasearch,
user-country, device).
In Figure 2.5, we display a tree depiction of the campaign structure. Each campaign is
represented in this tree by a sub-tree anchored at the metasearch layer. Furthermore,
each sub-root-to-leaf tree’s path indicates a sub-campaign. Thus, in the case depicted,
the hotel has two campaigns, one for Google Hotel Ads and one for Tripadvisor, each with
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HOTEL ID
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Figure 2.5: Tree representation of the campaign’s structure for a specific hotel.

six sub-campaigns.
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In this chapter, we present a literature review on the bid optimization problem that the
advertiser must deal with. In Section 3.1 we focus on the work done by Castiglioni et al. [3],
in which a safe approach to the problem is presented, with Return-on-Investment (ROI)
Constraints and Budget Constraints subject to uncertainty. In Section 3.2, instead, we
introduce the work done by Nuara et al. [11], where are presented techniques, characterized
by theoretical guarantees, for the automation of the bid/daily budget optimization of pay-
per-click advertising campaigns over multiple channels.

3.1. Safe Online Bid Optimization

The work’s key contribution is the introduction of the safety concept for algorithms that
choose the bid allocation each day. In particular, the offer should meet, with a high
probability, some daily ROI and budget constraints imposed by company business units.
Because the constraints’ parameters are not known a priori, they are prone to uncertainty.
As a result, the goal is to maximize the revenue by satisfying the uncertain constraints.
This particular condition is called safety.

3.1.1. ROI and Budget Constraints

Advertisers’ goal in online marketing is usually a trade-off between maximizing sales and
achieving high profitability. Because the parameter values are uncertain and must be
estimated during the sequential arrival of data, this trade-off can be naturally modelled
as a combinatorial optimization problem subject to ROI and budget constraints that must
be solved online.
Given an advertising campaign C = {C1, . . . , CN} with N ∈ N, and a finite time-horizon
T ∈ N, we can formalize the scenario as follows:

max
xj,t∈Xj

N∑
j=1

vjnj(xj,t) (3.1a)
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s.t
∑N

j=1 vjnj(xj,t)∑N
j=1 cj(xj,t)

≥ λ∗ (3.1b)

N∑
j=1

cj(xj,t) ≤ yt (3.1c)

where nj(xj,t) and cj(xj,t) are the expected number of clicks and the expected cost given
the bid xj,t for sub-campaign Cj, respectively, and vj is the value per click for sub-campaign
Cj. Constraint 3.1b is the ROI constraint, forcing the revenue to be at least λ∗ times the
incurred costs, while Constraint 3.1c is the budget constraint ensuring the daily expense
to be under a predefined overall budget yt.
We concentrate on the typical case in which nj(·) and cj(·) are unknown functions whose
values must be estimated online. This problem can be naturally modelled as a multi-
armed bandit, with the available arms being the various bid xj,t ∈ Xj values that satisfy
the optimization problem’s combinatorial constraints. A super-arm is an arm profile that
specifies a single bid for each sub-campaign. A learning policy U for such a problem is
an algorithm that returns a set of bids {x̂j,t}Nj=1 for each round t. Because policy U can
only use estimates of the unknown number-of-click and cost functions created during the
learning process, the solutions returned may be suboptimal and/or violate Constraints
(3.1b) and (3.1c) when compared to the true values.

3.1.2. Gaussian Combinatorial multi-armed Bandit

In this section, we describe Castiglioni et al. [3] proposed algorithm, Gaussian Combinato-
rial Multi-armed Bandit (GCB), whose pseudocode is given in Algorithm 3.1, for solving
the problem in Equations (3.1a-3.1c) online.
This solution is composed of three parts: Gaussian Processes (GPs) to model the un-
known parameters, an estimation subroutine to generate estimates of the parameters
from the GPs, and an optimization subroutine, as described in Algorithm 3.2, to solve
the optimization problem once the estimates are known.

The noisy realization of the actual number of clicks ñj,h(x̃j,h) collected from each sub-
campaign Cj for each previous round h ∈ {1, . . . , t − 1} is used by GPs to generate
estimates for the expected value n̂j,t1(x) and the standard deviation of the number of
clicks σ̂n

j,t−1(x) for each bid x ∈ Xj. Similarly, using the noisy realizations of the actual
cost c̃j,h(x̃j,h), with h ∈ {1, . . . , t − 1}, GPs generate estimates for the expected value
c̃j,t1(x) and the cost standard deviation σ̃C

j,t1(x) for each bid x ∈ Xj.
The estimation subroutine returns the vector µ, which is made up of the GP estimates.
The vector µ is then passed as input to the optimization subroutine, which solves the
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Algorithm 3.1 GCB
1: Input: sets of bid values X1, . . . , XN , ROI threshold λ, daily budget β
2: Initialize the GPs for the number of clicks and costs
3: for t ∈ {1, . . . , T} do
4: for j ∈ {1, . . . , N} do
5: for x ∈ Xj do
6: estimate n̂j,t−1(x) and σ̂n

j,t−1(x) using the GP on the number of clicks
7: estimate ĉj,t−1(x) and σ̂c

j,t−1(x) using the GP on the costs
8: end for
9: end for

10: Compute µ using the GPs estimates
11: Call the optimization subroutine Opt(µ, λ) to get a solution {x̂j,t}Nj=1

12: Set the prescribed allocation during round t
13: Get revenue

∑N
j=1 vjñj(x̂j,t)

14: Update the GPs using the new information ñj(x̂j,t) and c̃j(x̂j,t)
15: end for

problem posed by Equations (3.1a - 3.1c) and returns the bid strategy for the next round
t. Finally, after implementing the strategy, the revenue

∑N
j=1 vjñj(x̂j,t) is obtained, and

the stochastic realization of the number of clicks ñj,t(x̂j,t) and costs c̃j,t(x̂j,t) is observed
and provided to the GPs in order to update the models that will be used at round t+1.
The GCB algorithm is based on the idea of building the µ vector so that the parameters
corresponding to the reward are statistical upper bounds to the expected values of the
random variables, and those corresponding to the costs are statistical lower bounds. The
reasoning is that this option fulfils the optimism vs. uncertainty principle.
Formally, we have:

wj(x) = wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
cj(x) := ĉj,t−1(x)−

√
bt−1σ̂c

j,t−1(x)

where bt := 2 log
(

π2NQTt2

3δ

)
is an uncertainty term used to guarantee the confidence level

required by GCB.
Thus, Castiglioni et al. [3] formally demonstrate that the GCB algorithm suffers from a
sub-linear pseudo-regret, and it may violate the constraints a linear number of times.

3.1.3. GCB-Safe

To ensure safety, a variant of GCB, called GCBsafe, is proposed, which relies on different
values of µ. Specifically, optimistic estimates for the objective function’s parameters and
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Algorithm 3.2 Optimization subroutine
1: Input: sets of bid values X1, . . . , XN , set of cumulative cost values Y , set of revenue

values R, vector µ, ROI threshold λ
2: Initialize M empty matrix with dimension |Y | × |R|
3: Initialize xy,r = xy,r

next = [ ], ∀y ∈ Y, r ∈ R
4: S(y,r) = ∪{x ∈ X1|c1(x) ≤ y ∧ w1(x) ≥ r} ∀y ∈ Y, r ∈ R
5: xy,r = argmaxx∈S w1(x) ∀y ∈ Y, r ∈ R
6: M(y, r) = maxx∈S w1(x) ∀y ∈ Y, r ∈ R
7: for j ∈ {2, . . . , N} do
8: for y ∈ Y do
9: for r ∈ R do

10: Update S(y, r)
11: xy,r

next = argmaxs∈S(y,r)
∑j

i=1wi(si)

12: M(y, r) = maxs∈S(y,r)
∑j

i=1wi(si)
13: end for
14: end for
15: xy,r = xy,r

next

16: end for
17: Choose (y∗, r∗)
18: Output: xy∗,r∗

pessimistic estimates for the constraints’ parameters are used.
In formal terms, we have:

wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
wj(x) := vj

[
n̂j,t−1(x)−

√
bt−1σ̂

n
j,t−1(x)

]
cj(x) := ĉj,t−1(x)−

√
bt−1σ̂c

j,t−1(x)

Furthermore, GCBsafe requires a default set of bids, that is known to be feasible with the
actual values of the parameters. The pseudocode of GCBsafe is the same as Algorithm 3.1
with the parameters vector µ defined above.
At the cost of a linear pseudo-regret, this new version of the algorithm guarantees a
constant upper bound on the number of constraint violations.

3.2. Online Joint Bid/Daily Budget Optimization

In their work, Nuara et al. investigate the automation of the joint bid/daily budget opti-
mization of advertising campaigns in online fashion. They propose AdComB, an algorithm
that uses Gaussian Processes to estimate the campaigns’ performance, and combinatorial
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bandit techniques to address the exploration/exploitation dilemma in bid/daily budget
selection. Furthermore, it uses dynamic programming techniques to solve the allocation
optimization problem. Ultimately, they give theoretical guarantees for the algorithm by
providing high probability bounds on the regret of O(

√
T ), where T is the learning pro-

cess’s time horizon.

3.2.1. Learning Problem Formulation

In real-world scenarios, the functions nj in the optimization problem described in Equa-
tions (2.4a-2.4d) are not known a priori and must be estimated online. Thus, an algorithm
must gather as much information about these functions as possible during the system’s
operating life without losing too much revenue in investigating inefficient bid/daily bud-
get allocations. As a result, Nuara et Al. formulate the learning problem in a sequential
decision fashion as a Combinatorial Semi Bandit problem (CSB).
In the stated problem, each arm corresponds to a pair of bid/daily budget, each superarm
corresponds to a pair for each campaign, and the constraints consist of the maximum
value for the daily budget and the feasible range of values for the bid and the daily bud-
get. The revenue generated by setting a bid/daily budget pair is the payout for each arm.
Everyday t, an advertiser chooses a feasible superarm and obtains the revenue expressed
in terms of clicks and value per click.

3.2.2. AdComB Algorithm

The proposed algorithm, named Advertising Combinatorial Bandit (AdComB), takes as
input the discrete set of bid values X, the discrete set of daily budget values Y , the models
M(0)

j that, for each campaign Cj, capture the prior knowledge of the learner about the
function nj(·, ·), a cumulative daily budget y, and a time horizon T .
The pseudocode of AdComB is reported in Algorithm 3.3.
In the initial phase of the algorithm, theMj models are updated according to the observa-
tions of the previous days {1, . . . , T}, with the exception of the first day where the models
are set to the prior models M0

j provided as input (Lines 4-8). In the second phase, the
algorithm uses the updated models Mj to infer an estimate of the functions nj(·, ·), for
every value of the bid and the daily budget in X and Y, and of the parameters vj. These
estimates are denoted, respectively, with n̂j(·, ·) and v̂j (Line 9). As is well known in the
bandit literature, the naive choice of using the expected value obtained fromMj may not
provide any guarantee of minimizing the regret. In order to ensure that the algorithm
minimizes the cumulative expected regret, Nuara et Al. compute an estimation based
on the uncertainty information provided by modelMj. In particular, the click functions
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Algorithm 3.3 AdComB

1: Input: set X of bid values, set Y of daily budget values, prior models M(0)
j , cumu-

lative daily budget y, time horizon T
2: for t ∈ {1, . . . , T} do
3: for j ∈ {1, . . . , N} do
4: if t = 1 then
5: Mj =M(0)

j

6: else
7: Update(Mj)
8: end if
9: (n̂j(·, ·), v̂j) = Exploration(Mj, X, Y )

10: end for
11: {(x̂j,t, ŷj,t)}Nj=1 = Optimize({n̂j(·, ·), v̂j, X, Y }Nj=1, y)
12: Pull(x̂1,t, ŷ1,t, . . . , x̂N,t, ŷN,t)
13: end for

nj(·) are replaced in the optimization problem, stated in Equations (2.4a-2.4d), by:

uj,t := µ̂j,t(x) +
√

bj,tσ̂j,t(x)

where µ̂j,t(x) and σ̂j,t(x) are the mean and the variance provided by the GP modelling
nj(·) and bj,t is a non-negative sequence of values necessary for the convergence of the
algorithm to the optimal solution.
In the third phase, the algorithm solves the optimization problem, by exploiting the
estimates n̂j(·, ·) and v̂j, through a modified version of the algorithm by Kellerer et al.[7]
for the knapsack problem, and returns the bid/daily budget allocation for the next day t

(Lines 11-12).

3.2.3. Regret Analysis

Nuara et Al. provide, furthermore, a theoretical finite-time analysis of the regret of the
proposed algorithm.
For the AdComB algorithm with bt = 2 log

(
π2N |X|t2

2δ

)
and b′t = 2 log

(
π2Nt2

2δ

)
, for every

δ ∈ (0, 1), applied to an advertisement bid/daily budget allocation problem over T rounds,
holds that:

LT ≤

{
TN

[
c1bT

N∑
j=1

γT (nj) + c2bT

N∑
j=1

γT (ej)

+ c3b
′
T (2symax

√
bT + 2σ

√
bT + nsat

max)
2

N∑
j=1

log

(
ξ

Ψ2
j

+ T

)]} 1
2
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where the functions nsat
j (x) and esatj (x) model, respectively, the maximum number of clicks

and the number of clicks per unit of daily budget.
The coefficients c1, c2 and c3 are defined as:

c1 :=
12v2max

log
(
1 + 1

λ

) , c2 :=
12v2maxy

2
max

log
(
1 + 1

λ′

) , c3 := 12ξ

Moreover, ξ, λ and λ′ are, respectively, the variance of the value per click, of the mea-
surement noise on the maximum number of clicks, and of the number of clicks per unit of
daily budget.
Thanks to the reported result, it can be stated that AdComB suffers from a sub-linear
pseudo-regret since the terms γT (nj) and γT (ej) are bounded by O((log T )2) and, conse-
quently, the bound for LT is O(N(log T )2

√
T ).
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In this chapter, we outline the Cold-Start problem that we encountered and attempted to
mitigate in our work. In particular, in Section 4.1 we describe the problem in the context
of a generic recommendation system, whereas in Section 4.2 we delve into the specific case
of the online advertising setting on which our experiments have been focused.

4.1. Cold-Start Recommendation

Recommender systems are Machine Learning applications that aim to recommend items/actions
to users based on the information available. The Cold-Start problem occurs when the sys-
tem is unable to establish any relationship between users and items/actions due to a lack
of data [16].
There are two types of Cold-Start problems:

• User Cold-Start problem: when almost no information about the user is available

• Item Cold-Start problem: when almost no information about the item/action is
available

There are three main reasons why the system fails to provide recommendations, as shown
in Figure 4.1:

1. Systematic Bootstrapping: refers to the start of the system when the recommender
has almost no information on which to rely. Because all of the items and users are
new, this case is a hybrid of the Low Interaction and New Users cases

2. Low Interaction: when new catalogue items are added, they have no or very few
interactions. This could be a problem because the algorithm recommends items
based on their interactions. It can recommend even if only a few interactions are
available, but the quality of those recommendations will be poor

3. New Users Entry: when a new user joins the system and the recommender is required
to offer recommendations without relying on the user’s previous interactions because
none have yet been recorded. This is a critical issue because a user who receives
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poor-quality recommendations may opt to the left of the system before allowing the
recommender to understand his or her interests

New User Low Interaction

Systematic
Bootstrapping

Weak/No 
Reccomendation 

Low/No 
Reputation 

Low/No 
Trust 

Figure 4.1: Main causes of Cold-Start in modern Recommender Systems.

4.2. Cold-Start in Online Advertising

The Cold-Start problem can arise for both the publisher and the advertiser in the context
of online advertising. We present the problem from the perspective of the publisher in
Subsection 4.2.1, and from the perspective of the advertiser in Subsection 4.2.2, which is
the setting on which we focused in our work.

4.2.1. Publisher’s Scenario

According to Subsection 2.3.2 the publisher must estimate both the probability that a
slot can be observed ΛS(a) and the probability that a customer clicks on a specific adver-
tisement qa in order to solve its optimization problem, as stated in Equation 2.3. These
two quantities can be combined into one called Click Through Rate (CTR), defined as:

CTR = ΛS(a)qa

As a result, instead of estimating the two individual quantities, the estimation problem
can be reduced to CTR estimation.
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To accomplish this, cutting-edge prediction algorithms rely heavily on historical data, and
as a result, they perform poorly on an increasing number of new ads with no historical
data [9]. This is an excellent example of the Item Cold-Start problem, in which the item
for which we have no previous observations is the new ads, and thus we cannot make a
precise estimate of its CTR.
Because of the importance of new ads, this creates a huge problem for the online adver-
tising industry. Users quickly tire of old ads in fast-changing markets, so sellers must
frequently update them. As a result, most advertisements have a limited lifespan. Fur-
thermore, an increasing number of new sellers are hoping that their ads will be shown
through ad networks. In this case, new ads account for a sizable portion of all ads. If the
click prediction system does not pay enough attention to new ads, it will not be able to
collect new user feedback on them, and the system may eventually enter a self-destructive
cycle.

4.2.2. Advertiser’s Scenario

The Cold-Start problem may occur at various levels in the advertiser’s configuration. The
advertiser, like the publisher, must estimate some parameters to solve the optimization
problem in Equations (2.4a - 2.4d). The clicks function, which returns the expected
number of clicks for a sub-campaign given a bid and a daily budget, necessitates a large
amount of data for its estimation.
This means that when the advertiser decides to open new sub-campaigns to target a new
audience, as shown in Figure 4.3, it must contend with the fact that the new sub-campaign
lacks initial data. As a result, he finds himself in the Item Cold-Start problem, where the
item about which he knows nothing due to low interaction is the new sub-campaign itself.
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Figure 4.2: Cold-Start problem due to the opening of a new sub-campaign.

Solving the optimization problem with an inaccurate and identical clicks function for all
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new sub-campaigns for which we have not yet collected enough data online may result
in proposing bids that are far from optimal, resulting in huge economic losses for the
advertiser and a loss of trust in the automation tools used.
User Cold-Start may occur in media agencies that manage multiple advertiser campaigns.
In fact, these agencies frequently receive requests from new customers who decide to
entrust them with the management of their online advertising campaigns. As a result,
they are forced to solve the optimization problem for all new customers’ sub-campaigns
without any historical data on any of them, as shown in Figure 4.3.
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Figure 4.3: Media agencies’ Cold-Start Problem due to the acquisition of a new customer.

Due to a lack of initial observations for each sub-campaign, completely different click
functions may be used to solve optimization problems. As a result, the first solutions
used by media agencies for new customers may be extremely far from the optimal real
ones, risking losing the new customer who is scared of the initial economic loss.
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In this chapter, we present the methodology developed to address the Cold-Start Problem
in the context of Online Advertising. Particularly, Section 6.1 focuses on the offline phase
of the proposed approach, in which we build the starting GP to be used in Cold-Start
situations. Section 5.2 concentrates on the online phase, and specifically on how we
solve the optimization problem for the advertiser. Finally, Section 5.3 shows the overall
structure of our algorithm.

5.1. Combining Gaussian Processes

Our strategy for solving the Cold-Start Problem involves combining the GPs of selected
sub-campaigns to produce a starting GP that is more insightful than the conventional
zero-centred prior. In-depth, when a hotel wants to initiate a new sub-campaign in a new
country on a specific device, we combine the GPs of the N sub-campaigns opened in other
countries on the same device to determine the starting GP of the new sub-campaign.
In particular, fixed the bid’s vector x = (x1 . . . xn), we have that the number of clicks of
the i-th sub-campaign is distributed according to a multivariate normal distribution:

ni(x) ∼ N (µi,Σi)

The convex combination nα of the ni is still a multi-variate normal distribution of the
type:

nα(x) =
N∑
i=1

αini(x) ∼ N (µα,Σα)

where

µα =
N∑
i=1

αiµi (5.1a)

Σα =
N∑
i=1

α2
iΣi (5.1b)
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The αi ∈ [0, 1] coefficient is the weight of the convex combination associated with the i-th
GP for which applies that:

N∑
i=1

αi = 1 , αi ≥ 0 ∀i

The fundamental purpose of combining GPs is to identify the typical behaviour that a
specific hotel can exhibit on a given user device. In other words, it is legitimate to suppose
that each hotel has its own distinctive trend that expresses itself and assumes different
subtleties in each country. The idea is that starting with a GP that includes the hotel’s
intrinsic behaviour instead of the zero-centred prior may help the optimization routine
in the exploration phase leading to more appropriate bid suggestions even from the early
stages of the optimization.
It is important to underline that each engineering implementation works in a discrete
space, while the mean function and the kernel of the Gaussian Process are operators
defined in a continuous one. Accordingly, the mean vector µα and the covariance matrix
Σα returned by Equation 5.1a and Equation 5.1b have to be exploited to estimate the
GP’s characteristic parameters.
The mean function can simply be obtained by interpolation of the points contained in the
vector µα. Instead, to estimate the length scale parameter l defining the kernel function
we observe that:

k(xi, xj) = exp

(
−d(xi, xj)

2

2l2

)
= Σα

i,j ∀xi, xj

taking the log on both sides of the equation we obtain:

− 1

2l2
d(xi, xj)

2 = log
(
Σα

i,j

)
∀xi, xj

then, due to the fact that the two matrices are symmetric and positive-definite, we can
rearrange the elements situated in the main diagonal and above it in two vectors, respec-
tively D and Σα:

− 1

2l2
D = log (Σα)

solving the resulting system with the Least Squares method and making explicit l̂ from
the equation, we finally get:

l̂ =

√
− 1

2(DTD)−1DT log (Σα)
(5.2)
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In Algorithm 5.1, we present the pseudocode of the described heuristic, which builds the
resulting gaussian process nα using the GPs fitted on the data gathered up to time t0 for
the N sub-campaigns.

Algorithm 5.1 Combine GPs
1: Input: set of gaussian processes GPS, vector of bids x, vector of weights α
2: for i = 1, . . . , N do
3: µ,Σ =GPS[i].predict(x)
4: µα += α[i] ∗ µ
5: Σα += α[i]2 ∗Σ
6: end for
7: for i = 1, . . . ,x do
8: for j = i+ 1, . . . ,x do
9: D[i] = (x[i]− x[j])2

10: Σα[i] = Σα[i, j]
11: end for
12: end for
13: Compute l̂ as

l̂ =

√
− 1

2(DTD)−1DT log(Σα)

14: K = RBF (l̂)
15: f = interpolate(µα)
16: return GP(f,K)

Given the set GPS of the gaussian processes of the N sub-campaigns, the vector x repre-
senting the discretized bid space and the vector α containing in i-th position the weight
associated with the i-th GP, the algorithm returns the gaussian process nα obtained as a
convex combination of the N GPs in GPS.
In the beginning, we compute the mean vector and the covariance matrix of the resulting
GP, according to Equations (5.1a - 5.1b), by extracting the mean vector and the covari-
ance matrix for the i-th GP on the discretized bid space x (Lines 2-6). Then, we build
the distances vector D and the covariance vector Σα that allow us to move to the matrix
representation of the problem (Lines 7-11). Subsequently, we compute the length scale
parameter l̂ according to Equation 5.2 (Line 13), we initialize the radial basis kernel with
the computed length scale (Line 14) and we estimate the mean function f by interpolation
of the points in µα (Line 15). Finally, we instantiate and return the resulting Gaussian
Process according to the calculated parameters (f,K) (Line 16).
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5.2. Optimization Problem Resolution

In this section, we describe the algorithm we employ in the online phase to solve the
advertiser’s optimization problem stated in Equations (2.4a - 2.4d).
It is necessary to make the following two assumptions in order to reduce the complexity
of the problem and make it more tractable:

1. The performance of every sub-campaign is independent of other sub-campaigns per-
formance

2. The values of the bid and daily budget are finite

These are not true in general, given that the sub-campaigns can target users at different
levels of the AIDA model and advertisers could choose any bid and budget value in real
space, but they are satisfactory approximations in most real-world situations.
Once we fix a discrete set of values x1, x2, . . . , xn, and y1, y2, . . . , ym respectively for the
bid and for the budget, then we can summarize the values for a sub-campaign in a table
in which the cell in position (i, j) contains the product v · n(xi, yj), where v is the value
per click of the considered sub-campaign and n(xi, yj) is the value returned by its click
function for the bid xi and the budget yj. Table 5.1 shows an example for a sub-campaign
with n = m = 8.

v · n(x, y) x1 x2 x3 x4 x5 x6 x7 x8

y1 100 110 115 108 100 95 90 90
y2 120 130 140 132 125 120 115 115
y3 135 140 143 145 138 130 125 120
y4 148 153 156 160 152 145 137 130
y5 152 155 158 163 165 157 140 135
y6 158 160 163 165 168 165 150 145
y7 164 168 170 174 178 170 163 158
y8 166 170 174 178 181 184 171 160

Table 5.1: Representation of the values assumed by v · n(x, y) for a given sub-campaign
for all possible combinations of bid and budget in their discretized and finite spaces.

In order to solve the optimization problem, the first step of the algorithm is to remove the
dependency on the bid. The easiest way to achieve this is to take, for each daily budget,
the maximum among all the possible values of the bid. In other words, for each row of
Table 5.1 we take the cell with the highest value, as reported in Table 5.2.
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v · n(x, y) x1 x2 x3 x4 x5 x6 x7 x8 max

y1 100 110 115 108 100 95 90 90 115
y2 120 130 140 132 125 120 115 115 140
y3 135 140 143 145 138 130 125 120 145
y4 148 153 156 160 152 145 137 130 160
y5 152 155 158 163 165 157 140 135 165
y6 158 160 163 165 168 165 150 145 168
y7 164 168 170 174 178 170 163 158 178
y8 166 170 174 178 181 184 171 160 184

Table 5.2: Removal of the dependency on the bid value by the addition of the max column
that takes into account the maximum value associated with each budget.

Once we remove the dependency on the values of the bid we can visualize the problem
with a table, where in the rows we have all the sub-campaigns of the given campaign, in
the columns we have the values of the daily budget and in the cell (i, j) the j-th element
of the max column of the i-th sub-campaign. Moreover, in this new representation, we use
minus infinity for the non-feasible cases, i.e. values of the daily budget which are smaller
than its lower bound or larger than its upper bound. Table 5.3 shows an example for a
Campaign C with five sub-campaigns C1, . . . ,C5 and a discretized budget space from 0

to 70 with a step size of 10.

0 10 20 30 40 50 60 70
C1 −∞ 90 100 105 110 −∞ −∞ −∞
C2 0 82 90 92 −∞ −∞ −∞ −∞
C3 0 80 83 85 86 −∞ −∞ −∞
C4 −∞ 90 110 115 118 120 −∞ −∞
C5 −∞ 111 130 138 142 148 155 −∞

Table 5.3: Representation of the considered campaign’s sub-campaigns deprived of the
dependence on the bid values and with the exclusion of non-feasible cases.

The next step of the algorithm is basically an extension of the dynamic programming
algorithm used to solve the Knapsack Problem. We build a new table where the first
row r0 is initialized with all zeros and every other row ri corresponds to the adding of
the i-th sub-campaign Ci to the problem. The value of the cell (i, j) is given by taking
the maximum value between the sums of the values provided by the best solution of the
problem solve in the previous row and the new considered sub-campaign Ci such that the
daily budget sums to the j-th value of the discretized budget space. Table 5.4 reports the
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0 10 20 30 40 50 60 70

0 0 0 0 0 0 0 0 0
+C1 −∞ 90 100 105 110 110 110 110
+C2 −∞ 90 172 182 190 195 200 202
+C3 −∞ 90 172 252 262 270 275 280
+C4 −∞ −∞ 180 262 342 362 372 380
+C5 −∞ −∞ −∞ 291 373 453 473 492

Table 5.4: Algorithm’s final table containing the optimal solution of the optimization
problem as the maximum value of its last row.

results computed by the algorithm for the campaign presented in Table 5.3.

Algorithm 5.2 Optimize Campaign
1: Input: set of sub-campaigns C1, . . . ,Ck

2: Initialization:
matrix Mi of type n×m for each sub-campaign Ci

matrix A of type k ×m
matrix U of type (k + 1)×m

3: for i = 1, . . . , k do
4: for j = 1, . . . ,m do
5: for l = 1, . . . , n do
6: Ci[j, l] = vini(xl, yj)
7: end for
8: end for
9: end for

10: for i = 1, . . . , k do
11: for j = 1, . . . ,m do
12: if yj ≤ yj ≤ yj then
13: A[i, j] = max(Mi[j, :])
14: else
15: A[i, j] = −∞
16: end if
17: end for
18: end for
19: for i = 1, . . . , k do
20: for j = 1, . . . ,m do
21: U [i, j] set to the max of U [i− 1, p] + A[i, q] ∀ p, q : yp + yq = yj
22: end for
23: end for
24: return max(U [k + 1, :])

The maximum value associated with the last row of this table, the one which takes into
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account all the sub-campaigns, is the solution to the optimization problem of the adver-
tiser for the campaign C.
The pseudo-code of the presented approach is reported in Algorithm 5.2.
First, we initialize three empty matrices used to store the results of each procedure step
(Line 2). In particular, the matrix Mi is used to store for the i-th sub-campaign the
structure presented in Table 5.1, the matrix A is used to store the campaign’s new rep-
resentation with sub-campaigns deprived of the dependence on the bid values, Table 5.3,
and ultimately matrix U is the final table computed by the algorithm containing the op-
timal solution of the optimization problem, as shown in Table 5.4.
Then, for each of the k sub-campaigns, we fill the respective Mi matrix according to its
value-per-click and click function (Lines 3-9). Hence, we supply the values for the A ma-
trix by taking, for each sub-campaign Ci, the maximum of each row of the relative matrix
Mi where the row is associated with a feasible budget and −∞ for the row associated
with a non-feasible budget (Lines 10-18).
Finally, we compute iteratively the row ui of the U matrix associated with the dynamic
program by taking the maximum of all the feasible cross-sums between the row ui−1 of
the U matrix itself and the i-th row of the A matrix (Lines 19-23).
In the end, the algorithm returns the optimal solution by taking the maximum value
contained in the last row of the U matrix (Line 24).

5.3. Proposed Algorithm

The algorithm we propose, whose pseudocode is reported in Algorithm 5.3, can be broken
down into two main phases. The first phase consists of the initialization of the GPs
associated with each sub-campaign of the campaign to be optimized.
In particular, the sub-campaigns for which observations are available are associated with
the GPs fitted on that data, while the new sub-campaign is associated with a starting GP
generated through the convex combination of the GPs of other correlated sub-campaigns,
as explained in Algorithm 5.1 (Lines 2-8).
The second phase, instead, is the actual online part of the algorithm and consists of
three steps that are repeated each day t ∈ {1, . . . , T}. The first step is to obtain the
optimal bids x̃1, . . . , x̃N for each sub-campaign, according to the algorithm presented in
Algorithm 3.2, based on the GPs assigned in the previous phase.
Then, the second step is to use the optimal bids and collect the real number of clicks
o1, . . . , oN for each sub-campaign from the environment. Finally, the third step is the
updating of the GPs according to the collected observations and their use as starting
estimations for the following day (Lines 9-13).
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Algorithm 5.3 Proposed Algorithm
1: Input: Campaign C, new sub-campaign index j

2: for i = 1, 2, . . . , N do
3: if i ̸= j then
4: ni = fit(Ci)
5: else
6: ni = combine(C, j)
7: end if
8: end for
9: for t = 1, 2, . . . , T do

10: x̃1, . . . , x̃N = optimize(n1, . . . , nN)
11: o1, . . . , oN = play(x̃1, . . . , x̃N)
12: update(n1, . . . , nN , o1, . . . , oN)
13: end for

In the optimization phase of the algorithm we use as click function ni,t(·) for the i-th
sub-campaign at time t:

ni,t(x) = µi,t(x) +
√

bi,tσi,t(x)

where µi,t(x) and σi,t(x) are the mean and the variance provided by the GP associated
with the sub-campaign. The coefficient bi,t ∈ R+ is a non-negative value required to set
optimistic bounds necessary for the convergence of the algorithm to the optimal solution.
We refer to the work by Nuara et al. [11], reported in Section 3.2, for its definition and
properties.

GPs
Initialization

Optimization
Advertising
Platform

GPs
Update

Figure 5.1: The information flow in the proposed algorithm along with its main phases.

Figure 5.1 reports the scheme of the presented algorithm, highlighting its main phases
and the information flow among them. The optimization phase is fed by the starting
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estimations n1, . . . , nN generated by the initialization phase. Then, the loop is entered
and repeated T times. The advertising platform receives the optimal bids x̃1, . . . , x̃N

computed by the optimization phase and produces the observations o1, . . . , oN on the real
number of clicks collected. Finally, the last phase exploits the observations to update the
estimations and provides them to the optimization phase of the next iteration.
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6| Experiments

In this chapter, we outline the experiments conducted to validate the proposed approach.
In particular, in Section 6.1 we describe the methodology used to create the online en-
vironment simulation in which to evaluate the performance of our heuristics. Then, in
Section 6.2 we focus on the preliminary experiments done in the synthetic environment
to verify whether a more informed prior can positively influence the solution of the opti-
mization problem. Finally, in Section 6.3 we move to the experiments performed in the
real-world scenario through the data provided by the advertising company AdsHotel.

6.1. Online Environment Simulation

The impossibility to connect with a live online scenario is the first issue we ran into when
we had to evaluate our approach. Indeed, media agencies are frequently hesitant to test
new techniques on their customers for economic and reliability reasons.
In order to overcome this limitation we simulate the online environment with the data
at our disposal. In detail, we pretend not to have the observations Oh of a given sub-
campaign Ch, which we assume to be the one where the advertiser wants to make the new
opening. Hence we exploit the gaussian process GPh, trained on the observations Oh and
estimating the click function nh,t of Ch, to simulate the values that the advertiser would
get day by day.
More formally, at any time t, for the newly opened sub-campaign Ch, we state that, fixed
the bids vector, the real number of clicks nh,t obtained by playing the bid xi,t is given by:

nh,t ∼ N (µGPh
(xi,t), σGPh

(xi,t))

where µGPh
(xi,t) is the value of GPh’s mean function for the bid xi,t, and σGPh

(xi,t) is the
GPh’s estimated uncertainty for the number of clicks associated to the bid xi,t.
Assuming GPh is the process that generates real data for the sub-campaign Ch allows
us to build a framework in which to evaluate our approach without interfacing directly
with a real online environment and having to wait days to collect an adequate number of
observations.
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6.2. Synthetic Data Setting

In order to understand the influence that an informed prior can have on solving the
optimization problem, we performed preliminary tests in a synthetic environment. In
particular, we chose n arbitrary functions that we pretended to be the click functions
associated with n sub-campaigns. Figure 6.1 shows an example with four sub-campaigns.
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Figure 6.1: Synthetic clicks functions associated with the four sub-campaigns character-
izing the fictitious advertising campaign to be optimized online.

The first step of our approach is to run the optimization routine, reported in Algorithm 5.2
on the n sub-campaigns each with its assigned real click function. In this way, we obtain
the optimal solution to the problem identified by the optimal bid and the optimal budget
for each of the campaign’s sub-campaigns.
After that, we simulate not having the click function associated with the (n− 1)-th sub-
campaign and pretend that it corresponds to the new opening desired by the advertiser.
Then, we put aside the GP associated with that click function and we use it to simulate
the online scenario as explained in Section 6.1.
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The next step is to run in parallel the campaign optimization for a time horizon T using
as the starting GP of the sub-campaign to open in one case the zero-centred prior and in
the other case, an informed prior characterized by a GP similar to the true click function
of the sub-campaign.
For each day t ∈ T we collect observations related to bids and budgets suggested by the
optimization program and re-fit the GPs associated with each sub-campaign according to
these newly collected data. The new GPs obtained in this way are then used to solve the
optimization problem in the following day t+ 1.
In Figure 6.2 we report the four starting GPs used for the campaign illustrated in Fig-
ure 6.1 in case we pretend that the advertiser has three open sub-campaigns, respectively
those associated with the first three GPs, and wants to open a new sub-campaign, the
fourth, for which the zero-centred prior is used as the initial GP.
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Figure 6.2: The four starting GPs used in the optimization process for the four sub-
campaigns in case the zero-centred prior is used for the new sub-campaign to be opened.

In Figure 6.3, instead, we report the four starting GPs in the same scenario described
above, but when a GP similar to the actual click function is used for the new sub-campaign
to be opened.
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Figure 6.3: The four starting GPs used in the optimization process for the four sub-
campaigns in case a GP similar to the real click function is used for the new sub-campaign
to be opened.

At the end of the chosen time horizon T , we evaluate the performance of the two ap-
proaches by comparing the respective cumulative regret and cumulative rewards collected.
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Figure 6.4: The average cumulative regret (left) and the average cumulative reward (right)
for the synthetic campaign with a time horizon T=100 and a number of repetitions of the
experiment equal to one hundred. The curves in blue correspond to the results for the
uninformed approach, while those in red correspond to the informed approach.
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In detail, given the stochasticity of the experiment, we repeat it several times for the
same campaign and take into account as the final result the average values of regret and
reward with their relative confidence interval. Figure 6.4 shows the results collected for
the approaches defined in Figure 6.2 and Figure 6.3 respectively.
The results we have collected in the synthetic environment, presented in this section,
indicate that the cumulative regret of the informed approach is always lower than that of
the uninformed approach. Similarly, the cumulative reward of the informed approach is
increasingly greater than the uninformed approach.
In light of this, we can conclude that using a starting GP that has additional information
inside it results in better performance in the online optimization problem than using the
same uninformed GP for all new sub-campaigns.

6.3. Real Data Setting

The next step is to test whether the heuristic proposed by us actually generates an initial
GP that captures the average behaviour of the advertiser and that is similar to the true
click function associated with that sub-campaign. In order to do this we exploited the
data provided by AdsHotel.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

desktop

US
Mean function
Observations

0.4 0.6 0.8 1.0
0

1

2

3

4

5
IT

Mean function
Observations

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1.0

1.5

2.0

2.5

3.0

3.5

FR
Mean function
Observations

0.4 0.5 0.6 0.7 0.8

1.0

1.5

2.0

2.5

3.0

3.5

IE
Mean function
Observations

0.350 0.375 0.400 0.425 0.450 0.475
0.8

1.0

1.2

1.4

1.6

1.8

2.0

mobile

Mean function
Observations

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8 Mean function
Observations

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Mean function
Observations

0.30 0.35 0.40 0.45 0.50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25 Mean function
Observations

0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tablet

Mean function
Observations

0.2 0.4 0.6 0.8
0.5

1.0

1.5

2.0

2.5

3.0 Mean function
Observations

0.40 0.45 0.50 0.55 0.60 0.65
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Mean function
Observations

0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

2.0

2.5

3.0 Mean function
Observations

Hotel number: 3514004 
         Metasearch: Google Hotel Ads

Figure 6.5: The estimated click functions for the sub-campaigns opened by hotel 3514004
for the Google Hotel Ads metasearch in the United States, Italy, France, and Ireland on
desktop, mobile, and tablet devices.
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In particular, for each hotel’s campaign open on a given metasearch we consider the
observations of its sub-campaigns and we fit a GP on them to estimate their respective
click functions. Figure 6.5 shows the estimated GPs for the twelve sub-campaigns of hotel
3514004 on the metasearch Google Hotel Ads.
Then, we fix the user device and we take into account only the sub-campaign opened in
different countries on that device. In other words, we focus on one row of the campaign’s
matrix representation reported in Figure 6.5.
We choose, among the selected sub-campaigns, one that we pretend to be the new one that
the advertiser wants to open and for which we do not yet have any observation. Figure 6.6
shows the case in which the chosen device is desktop and the new sub-campaign to open
is in Ireland (IE).
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Figure 6.6: Advertising campaign characterized by three already opened sub-campaigns
for which observations are available, respectively in the United States (US), Italy (IT)
and France (FR), and a new sub-campaign, without observations, to open in Ireland (IE).

We associate as starting GP to this sub-campaign the one generated by our heuristics,
reported in Algorithm 5.1, combining the GP of the other campaign’s sub-campaigns on
the selected device, as shown in Figure 6.7.
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Figure 6.7: Initialization of the new sub-campaign in Ireland (IE) on desktop devices
through a GP generated by the combination of GPs related to other sub-campaigns opened
on the same device, respectively in the United States (US), Italy (IT) and France (FR).

Finally, we run the optimization of the campaign using as the initial GP for the new
sub-campaign in one case the zero-centred prior and in another, the GP proposed by our
heuristic.
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As for the experiments in the synthetic scenario, also in this case we use the cumulative
regret and the cumulative reward to evaluate and compare the performance of the two
approaches. Figure 6.8 reports the cumulative reward and the cumulative regret for the
campaign shown in Figure 6.7, in the not informed case (in blue) and in the informed
case (in red).
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Figure 6.8: Comparison between the cumulative regrets (left) and the cumulative reward
(right) when the zero-centred prior (in blue) and the GP generated by our heuristic (in
red) are used as starting GPs for the new sub-campaigns.

The results collected on the advertising campaigns of the hotels contained in the AdsHotel
database have shown a significant improvement in performance in case the GP, produced
by our heuristic, is used as the starting GP for the new sub-campaigns. In particular,
we can observe that the informed GP aids the optimization algorithm more during the
exploration phase leading to a lower average cumulative regret and a higher average
cumulative reward than the uninformed case.
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7| Conclusions and future

developments

In this chapter, we draw some conclusions about our work, and we suggest some potential
future projects that we believe would be a good starting point for improving the proposed
approach.

7.1. Final Considerations

In this document, we presented and outlined one of the major issues affecting Machine
Learning algorithms, known as the Cold-Start Problem. We specifically concentrated on
the Online Advertising scenario from the advertiser’s perspective with an emphasis on ho-
tel advertising. In order to establish a specific initial informed GP to employ when a new
sub-campaign is created, we, therefore, developed a methodology based on the combina-
tion of Gaussian Processes relevant to other related sub-campaigns. Finally, we validated
our methodology using real data given by the marketing agency AdsHotel, which allowed
us to simulate the online environment.
We compared the results by optimizing the same campaigns, first using a zero-centred
prior GP for the new sub-campaigns for which we had no data, and then the GP gener-
ated by our heuristic. The experiments then demonstrated that using an informed GP
with some hotel-specific behaviour as the initial GP for the new sub-campaigns is in all
cases more effective and results in significantly lower regret than the uninformed case.
Our work has thus highlighted how the use of techniques capable of generating initial
GP tailored for each hotel, as the heuristic we presented, can effectively lead media
agencies, that use automated tools, to make fewer mistakes in the early stages of new
sub-campaigns, limiting their customers’ economic losses and increasing their future con-
fidence.
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7.2. Future Works

The first obvious extension of what has been presented is to test the proposed approach
in a real-world online environment without the use of a simulator. This will allow more
accurate data on the effectiveness of the developed methodology to be collected. However,
it should be noted that finding an advertising company willing to test new techniques by
making them available to its customers is not trivial, because potential economic losses
experienced by the customers during the test could cause the latter to lose confidence in
the use of automated tools as well as in the media agency itself.
Another extension of what was done, which could lead to further refinement of the initial
informed GP, could be to estimate similarity metrics between different hotels using phys-
ical information such as geographical coordinates, the number of stars, and so on. When
a hotel wants to open a new sub-campaign in a given country, we can exploit and com-
bine the sub-campaigns’ GPs in that country of the more similar hotels, weighed by the
magnitude of the similarity. The premise behind this technique is that generally similar
hotels will behave similarly in the same countries and this correlation will become even
more intense as hotels have more analogous traits.
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