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1. Introduction
Fluid Structure Interaction (FSI) problems are
present in many fields (e.g. aeroelasticty, indus-
try, living systems) and many kind of algorithms
have been designed to solve such problems: from
Monolithic schemes to explicit and implicit par-
titioned ones. The most attractive schemes are
for sure the explicit ones; indeed, they are mod-
ular, i.e. different already existing solvers can
be employed. One of the most challenging fields
where FSI is thriving surely is hemodynamics,
where the employment of explicit algorithms is
tempting but difficult to implement due to their
instability caused by the added-mass effect that
occurs when comparable densities are at stake.
However recent studies have been carried on a
particular kind of explicit scheme: the Robin-
Neumann scheme [2, 3]. In these just cited works
also a theoretical investigation on a simplified
problem to find the optimal Robin parameter
has been carried out, leading to encouraging re-
sults in terms of accuracy and stability, also in
realistic cases. We want to apply for the first
time such theory to a more complex problem:
the cardiac Electro Fluid Structure Interaction
(EFSI) Problem arising from the modeling of the
ventricular functions. The main difference with

respect to other FSI problems is the fact that
the myocardium (i.e. the muscular tissue of the
ventricle) is not only passive, but it has also an
active component driven by electrophysiology,
that allows it to actively contract [4]. Finally,
the main purpose of this work is to present a new
Loosely-Coupled Scheme for the EFSI Problem,
aiming to achieve a good level of accuracy, sta-
bility and computational cost.

2. Mathematical Models
The human ventricle is schematized in figure 1
and composed by a fluid domain Ω̂f covered by
the structure domain Ω̂s, except for the base (di-
vided in Γs,b for the structure base and Γf,b for
the fluid base), where two idealized overlapping
valve orifices are present: the aortic one (ΓAV )
and the mitral one (ΓMV ). The fluid and struc-
ture domain are separated by the Fluid Struc-
ture Interface Σ̂. We define the two unit vectors
normal to the boundaries: n̂s and n̂f such that
n̂ = n̂f = −n̂s on Σ̂. Finally, we define the epi-
cardial surface Γs,epi, corresponding to the ex-
ternal portion of the structure domain.
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Figure 1: The computational domain [1].

We need to model the different physics defining
the following variables and problems. For the
sake of simplicity we will make use of an ab-
stract notation to identify the underlying PDEs
and ODEs highlighting the different dependen-
cies. The initial and boundary conditions are
condensed in the above cited abstract opera-
tors, but for the coupling conditions on the Fluid
Structure Interface Σ:

• for the Electrophysiologcal Problem we de-
fine the transmembrane potential v mod-
eled with the PDE Monodomain equation.
For t ∈ (0, T ] find v such that:

v = M(v,d,w) in Ω̂s. (1)

Then we define the gating variables and
ionic concentrations condensed in a vector
w, modeled with the ODEs Ionic model
equations. For t ∈ (0, T ] find w such that:

w = I(v,w) in Ω̂s. (2)

• For the structure problem we define the
structure displacement d modeled with the
PDE Structure equation. For t ∈ (0, T ] find
d such that:


d = S(d,w) in Ω̂s,

∂d

∂t
= u on Σ̂,

σs(d)n = σf (u, p)n on Σ,

(3a)

(3b)

(3c)

where u is the fluid velocity, p is the fluid
pressure, σf and σs are the fluid and struc-
ture Cauchy Stress tensors respectively.
(3b) is the kinematic condition to ensure
the continuity of velocity at the interface,
and (3c) is the dynamic condition to ensure
the continuity of forces at the interface, i.e.

the Third Newton’s Law. Moreover, the so-
lution for the displacement d depends on
w because the First Piola-Kirchhoff Stress
Tensor of the Structure problem has also an
active part depending on the Calcium con-
centration, i.e. one of the component of w.

• For the fluid problem we define the fluid
velocity u and the fluid pressure p modeled
with the Navier Stokes Equation for incom-
pressible fluids in Arbitrary Lagrangian Eu-
lerian (ALE) Formulation. Moreover, we
define the fluid displacement dALE neces-
sary to compute the new fluid domain at
each time step; this leads to the following
geometric problem equipped with the geo-
metric condition on the Fluid Structure in-
terface Σ. For t ∈ (0, T ] find dALE such
that:

{
−∆dALE = 0 in Ω̂f ,

dALE = d on Σ̂.

(4a)

(4b)

Now we can compute the current fluid do-
main:
Ωf =

{
x ∈ R3 : x = x̂+ dALE , x̂ ∈ Ω̂f

}
,

so that we can state the Navier Stokes equa-
tions in ALE formulation. For t ∈ (0, T ]
find (u, p) such that:


(u, p) = F(u,dALE ,d) in Ωf

∂d

∂t
= u on Σ,

σs(d)n = σf (u, p)n on Σ,

(5a)

(5b)

(5c)

where (5b) and (5c) are again the kinematic
and dynamic conditions.

We can summarize the complete Electro Fluid
Structure Interaction Problem.
Given v0,w0,d0,u0, p0 find for t ∈ (0, T ]
v,w,d,u, p such that:
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

v = M(v,w,d) in Ω̂s,

w = I(v,w) in Ω̂s,

−∆dALE = 0 in Ω̂f ,

d = S(d,w) in Ω̂s,

(u, p) = F(u,dALE ,d) in Ωf ,

dALE = d on Σ̂,

u =
∂d

∂t
on Σ,

σf (u, p)n = σs(d)n on Σ.

(6)

3. Algorithms
To carry out the simulations we use three dif-
ferent schemes: Scheme 1, Scheme 2 and our
new Loosely-Coupled EFSI Scheme 3 ; they dif-
fer only on the treatment of the Fluid Structure
Interaction problem. Indeed, Scheme 1 solves
the FSI Problem in a Monolithic fashion; on the
other hand Scheme 2 and Scheme 3 make use of
the partitioned Robin-Neumann Scheme, based
on the splitting of the FSI problem in two prob-
lems:
(i) the fluid problem equipped with a Robin

condition in place of the kinematic condi-
tion on the interface Σ:

αfu+ σf (u, p)n = αf
∂d

∂t
+ σs(d)n; (7)

(ii) the structure problem equipped with a Neu-
mann condition, i.e. the dynamic condition
(3c) on Σ.

The first common steps of the schemes are the
following:

1. Solve the linearized ionic model equations
to find wn+1:

wn+1 = I(vn,wn) in Ω̂s. (8)

2. Solve the linearized monodomain equations
to find vn+1:

vn+1 = M(vn,dn,wn+1) in Ω̂s. (9)

3. Solve the geometric problem to find
dALE,n+1:{

−∆dALE,n+1 = 0 in Ω̂f ,

dALE,n+1 = dn on Σ̂.
(10)

4. Compute the current domain Ωf,n+1 and
uALE,n+1:

Ωf,n+1 ={
x ∈ R3 : x = x̂+ dALE,n+1(x̂), x̂ ∈ Ω̂f

}
,

uALE,n+1 =
dALE,n+1 − dALE,n

∆t
.

Then the last step is done in the following ways,
according to the considered scheme:

S1 5. Solve the non linear FSI problem in a
Monolithic fashion to find un+1, pn+1 and
dn+1:

dn+1 = S(dn+1,wn+1,dn) in Ω̂s,

un+1 =
dn+1 − dn

∆t
on Σn+1,

σf (un+1, pn+1)n = σs(dn+1)n on Σn+1,

(un+1, pn+1) =

F(un,dALE,n+1,dn; Ωf,n+1) in Ωf,n+1.

(11)

S2 5. Solve in a loop until convergence the FSI
problem using the implicit Robin-Neumann
algorithm, defining the apex (k), that indi-
cates the k-th iteration of the loop.
For (k > 0 && Stopping criterion) do:

-5a. solve the linearized fluid problem
equipped with a Robin condition on the in-
terface:



(u
(k)
n+1, p

(k)
n+1) =

= F(un,dALE,n+1,dn; Ωf,n+1) in Ωf,n+1,

αfu
(k)
n+1 + σf (u

(k)
n+1, p

(k)
n+1)n =

= αf

d
(k−1)
n+1 − dn

∆t
+ σs(d

(k−1)
n+1 )n on Σn+1.

(12)
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-5b. solve the non linear Structure problem
equipped with a Neumann condition on the
interface:


d
(k)
n+1 = S(d(k)

n+1,wn+1,dn) in Ω̂s,

σs(d
(k)
n+1)n = σf (u

(k)
n+1, p

(k)
n+1)n on Σn+1.

(13)

S3 5. solve the linearized Fluid Problem
equipped with a Robin condition on the in-
terface:



(un+1, pn+1) =

= F(un,dALE,n+1,dn; Ωf,n+1) in Ωf,n+1,

αfun+1 + σf (un+1, pn+1)n =

= αf
dn − dn−1

∆t
+ σs(dn)n on Σn+1;

(14)

6. solve the non-linear Structure Problem
equipped with a Neumann condition on the
interface:


dn+1 = S(dn+1,wn+1,dn) in Ω̂s,

σs(dn+1)n = σf (un+1, pn+1)n on Σn+1.

(15)

4. Choice of simulation param-
eters

To assess the physiological behavior of the nu-
merical results of our simulations we have de-
fined physiological indicators that have to satisfy
precise requirements. Therefore, we have cali-
brated the simulation parameters using Scheme
1 and trying to reproduce a behavior closer as

possible to the physiological one. For what con-
cerns the choice of the Robin interface parame-
ter αf (see (7)) we have carried on a theoretical
analysis on a simplified problem; this analysis
gave us a range that is not expected to be opti-
mal for our EFSI Problem due to the strong sim-
plification of the simplified theoretical problem.
However, it is important to have an initial guess
sufficiently close to the effective range. In this
sense the theoretical analysis is useful. The the-
oretical optimal range for the simplified problem
was computed by professor Giacomo Gigante:

αf ∈ [1906.4, 2415.1][
kg

m2 · s
]. (16)

5. Numerical Results
In what follows, the unit [ kg

m2·s ] for the parame-
ter αf will be understood. This abuse of nota-
tion is done for the sake of simplicity in nota-
tion, tables and figures. We will call the results
obtained using Scheme j : G-j. We have simu-
lated our EFSI Problem using our new Loosely-
coupled EFSI Scheme 3 with different values of
αf , comparing the results with the one obtained
using Scheme 1. In figure 2 and figure 3 we
have reported a comparison of the results ob-
tained using Scheme 1 and Scheme 3 with dif-
ferent values of αf in terms of the time evolution
of the ventricular chamber volume and pressure.
Moreover in figure 4 and 5 some numerical re-
sults are shown.

Figure 2: Comparison of the time evolution of
the ventricular chamber volume obtained using
Scheme 1 and Scheme 3 with different values of
αf .
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Figure 3: Comparison of the time evolution of
the ventricular chamber average pressure ob-
tained using Scheme 1 and Scheme 3 with dif-
ferent values of αf .

(a) G-1. (b) G-3 αf = 2225 (c) G-3 αf =
5000.

Figure 4: Comparison of the numerical solutions
for the blood velocity magnitude obtained with
G-1 and G-3 with different values of αf . A time
instant during the ejection phase is shown: t =
0.17s.

(a) G-1. (b) G-3 αf = 2225. (c) G-3 αf =
5000.

Figure 5: Comparison of the numerical solutions
for the ventricular average chamber pressure ob-
tained with G-1 and G-3 with different values of
alphaf . The time instant at which the maximum
pressure pmax is reached is shown, i.e. t = 0.17s.

We can observe from figure 2 that using Scheme
3 we have an inaccuracy in reproducing the iso-
volumic phases; this issue influences the time
evolution of pressure and velocity, leading to
lower values of average maximum pressure and
velocity as one can observe in figure 3 and 5.
However using Scheme 3 we have obtained sta-
ble and physiologically reasonable results ∀αf

such that 1500 ≤ αf ≤ 6750, but we suggest to
use the range 1500 ≤ αf ≤ 5000 due to the fact
that the values 5000 < αf ≤ 6750 turns out to
be a zone of transition towards non converging
simulations. Notice that the theoretical range
(16) is completely included in the just defined
one; indeed, using values picked from the theo-
retical range we obtained stability and a certain
level of accuracy in reproducing physiological re-
sults (error ∼ 10%). Anyway if we want to ob-
tain more accurate results, we need to perform
a manual calibration of the Robin interface pa-
rameter, e.g. with αf = 5000 we obtain an error
of ∼ 4% in reproducing physiological results.
For what regards the computational cost, we
have experienced that Scheme 3 using the cal-
ibrated optimal parameter (i.e. αf = 5000) is
∼ 35% faster than Scheme 1, as one can see from
table 1, where a comparison between Scheme
1,2 and 3 is done in terms of computational
cost and accuracy in reproducing the isovolu-
mic phases (we report an indicator ILI: Isovolu-
mic Loss Indicator that quantifies the percent-
age amount of volume loss/gain during the iso-
volumic phases), that is the most reliable indica-
tor to discriminate the accuracy of the obtained
results; indeed, the isovolumic phases influence
all the other physiological indicators.

G-1 G-2 (22250) G-3 (5000)
CPUTime [s] 7070 30000 4724

ILI [s] 0.01% 0.01% < 4%

Table 1: Comparison of the computational costs
and Isovolumic Volume Indicators obtained in
G-1 and in G-2, G-3 with the optimal calibrated
parameters. We have simulated 0.5s with ∆t =
2 · 10−4.

Moreover, we have also investigated Scheme 2
with different choices for αf . We have experi-
enced that it gives at convergence the same iden-
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tical results of Scheme 1 for a wide range of pa-
rameters. However, Scheme 2 is computation-
ally inefficient; indeed, even with the calibrated
empirical optimal Robin interface parameter αf

is four times slower than Scheme 1.
Finally, we have explored two possibilities to re-
duce the issue of Scheme 3 in capturing the iso-
volumic phases: use Scheme 3 halving the time
step or perform 2 iterations instead of 1 in the
FSI Robin-Neumann loop. These two choices
lead to better results in reproducing the physio-
logical behavior but also to an increase in com-
putational costs.

6. Conclusions
We have obtained encouraging results with our
proposed new Loosely-coupled Scheme for car-
diac EFSI Problem. The range of theoretical
values of αf for the Robin interface parame-
ter gave stability and accuracy with an error of
∼ 10% in reproducing a physiological behavior.
However, to obtain a higher level of accuracy a
manual calibration of the Robin parameter αf

is needed; with the calibrated empirical opti-
mal Robin interface parameter αf we obtained
an error of ∼ 3/4% in reproducing a physiolog-
ical behavior. We have established an empirical
range for the choice of the Robin parameters to
obtain stable, accurate and computationally ef-
ficient simulations; we have ascertained that the
theoretical range is completely contained inside
it. Comparing this new Loosely-coupled EFSI
Scheme 3 with the Staggered E-Monolithic FSI
Scheme 1, we have noticed that:

• Scheme 1 perfectly captures the isovolumic
phases, while with Scheme 3 we commit an
error in reproducing such phases due to the
spurious numerical fluxes given by the ex-
plicit treatment of the FSI coupling condi-
tions. However, with the optimal empirical
value αf this error is less than 4%, whilst
using values in the theoretical range (16) we
commit an error of ∼ 8%.

• Scheme 3 is ∼ 35% faster than Scheme 1
and has also the advantage of being modu-
lar, i.e. we can use different already existing
solvers.
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