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Realism has nothing to do with the Real.
On the contrary, the Real is what realism has continually to suppress.

Mark Fisher



Abstract

In predictive modeling, the assumption of static relationships between input
and output data often fails. The phenomenon can be addressed as concept drift,
signifying shifts in data patterns over time. In high-dimensional multivariate
data streams, common in fields like IoT and text analysis, the curse of dimen-
sionality complicates the identification of meaningful changes. Feature reduction
techniques, such as Principal Component Analysis (PCA), offer a solution but
come with computational costs.

This study addresses the performance of the QuantTree (QT) algorithm
in high-dimensional dataframes, extending its exploration to the generalized
Kernel-QT (KQT) and its online variant, QT-EWMA. A novel addition to
this landscape is proposed—Kernel-QuantTree Exponentially Weighted Mov-
ing Average (KQT-EWMA). In evaluating and building a monitoring system,
we consider the balance between True Positive Rate (TPR) and False Positive
Rate (FPR) to be crucial. We also consider other quantitative criteria such as
execution time.

The problem formulation revolves around a change detection algorithm’s
three main components: a model of the initial distribution, a statistic derived
from it, and a decision rule. We assume both the initial distribution and the
changing distribution to be unknown. The study employs a QuantTree-like
histogram fitted on the distribution to estimate the model. Two modes of
drift detection - batch-wise and online - are explored. The study investigates
the limitations and advantages of different dimensionality reduction techniques,
including PCA and Random Projections. The study uncovers the impact of
dimensionality together with the availability of training data on QT’s perfor-
mance. We extend the analysis to incorporate lp norms as alternative kernel
functions for KQT, considering quasi-norms with p ≤ 1 that might be suitable
in high dimensional dataframes.

Introducing KQT-EWMA, an online nonparametric change-detection algo-
rithm, we extend some previous theoretical results and compare its performance
against existing methods; KQT-EWMA stands out as comparable or superior
with respect to the state of the art. The complexities addressed in this dy-
namic environment underscore the ongoing challenges and the need for simple
solutions in the ever-evolving landscape of data analysis.

Keywords: Concept Drift Detection, QuantTree Algorithm, Kernel Quant-
Tree (KQT), High-Dimensional Data, False Positive Rate (FPR) Control, Prin-
cipal Component Analysis (PCA), Distance Metrics in High-Dimensional Space,
Online Change Detection, Multivariate Data Streams
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Compendio

Nel realizzare modelli di classificazione, analisi predittiva, etc., l’assunzione
di relazioni statiche tra i dati di input e output - cioè che le relazioni tipo
y = f(x) rimangano vere nel tempo - spesso fallisce. Il fenomeno si può chiama-
re “concept drift”, o deriva del concetto, indicando cambiamenti fra le quantità
e relazioni statistiche. Considerando flussi di dati multivariati, comuni in set-
tori come l’IoT e l’analisi testuale, l’identificazione di cambiamenti significativi
è estremamente complicata. Tecniche di riduzione della dimensionalità come
l’Analisi delle Componenti Principali (PCA) offrono - a volte - una soluzione
ma comportano anche altri problemi e costi computazionali.

Questo studio osserva le analisi dell’algoritmo QuantTree (QT) di datafra-
me ad alta dimensionalità, estende l’osservazione alla sua versione generalizza-
ta Kernel-QT (KQT) e alla sua variante online, QT-EWMA. Viene proposto
l’algoritmo Kernel-QuantTree Exponentially Weighted Moving Average (KQT-
EWMA). Nel costruire sistemi di monitoraggio, consideriamo l’equilibrio tra il
tasso di veri positivi (TPR) e il tasso di falsi positivi (FPR), con particolari at-
tenzioni per quest’ultimo, e altri criteri quantitativi come il tempo di esecuzione,
che abbiamo sempre registrato lungo questi esperimenti.

La formulazione del problema si fonda sui tre elementi principali di un algo-
ritmo per concept drift detection: un modello della distribuzione iniziale, una
statistica derivata da questo e una regola decisionale che valuti un cambiamento
come tale. Assumiamo sconosciute sia la distribuzione iniziale che le derive che
questa subisce nel tempo. Esploriamo le due modalità batch-wise (offline) e
online, indagando limiti e vantaggi delle diverse tecniche di riduzione della di-
mensionalità d, incluse PCA e Random Projections, proiezioni randomiche. Lo
studio mostra l’impatto di d sulle prestazioni di diversi algoritmi insieme alla
disponibilità (in generale scarsa) di dati di training.

Continuiamo l’analisi di KQT considerando quasi-norme lp come funzioni
kernel alternative, noto che valori di p ≤ 1 possono essere adatti in spazi ad
alta dimensionalità. Con l’introduzione di KQT-EWMA, un algoritmo online e
non parametrico, estiendiamo alcuni risultati teorici precedenti; ne confrontia-
mo le prestazioni con metodi esistenti. KQT-EWMA è comparabile allo stato
dell’arte, superiore in ambienti controllati (con un sufficiente numero di punti
di training).

Le complessità affrontate in questo ambiente dinamico portano senz’altro la
necessità di soluzioni semplici.
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Chapter 1

Introduction

In predictive modeling we approximate a function f to predict, given some
input data x, the output y = f(x). The function f is often assumed to
be static, meaning the relationship between input and output data does not
change. In practice, patterns in real-world databases change over time, and
predictive models become obsolete. Concept Drift Detection is the task of
detecting when these changes, or concept drifts, occur, in order to keep the
patterns up-to-date, possibly without inducing them each time from scratch.
We call concept, or “hidden context”, the unknown relationship between inputs
and output variables. When the data that is used for inference differs from the
data used during model training (data drift), the model likely perform worse
than expected.

A concept drift is neither a gradual
change over time nor a recurring
cyclical change, nor is it a sudden
or abrupt change; it means that the
statistical properties of the target
variable, which the model is trying to
predict, change in unforseen ways, and
it’s important to continuously monitor
the inference data and compare it to
the data used during training, since
in a variety of cases the underlying
distribution of incoming data will unpredictably drift. We could consider as
example the dynamic nature of language. Natural Language Processing is
applied in a wide range of use cases, from chatbots and machine translation
to speech recognition; individuals tend to change their speech patterns over
time, across different geographical location, social contexts, etc. As spam e-
mails content and design change, users themselves change their idea of what
“spam” is, and spam detectors should be able to decide how to respond.

Early approaches to the problem were initially parametric and univariate,
with control charts introduced by Shewhart in 1926-1927 being among the first
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methods. These are statistical tools used in quality control to monitor and
control processes over time; they consist in plotting data points on a graph with
upper and lower control limits, and when observations fall outside these limits,
a potential issue or change in the process is flagged. However, a limitation
was that this method operated on a single sample basis, making it susceptible
to change with just one out-of-range value. To address this limitation, Page
introduced the Cumulative Sum (CUSUM) method in 1954, a parametric drift
detection method that computes the cumulative sum of ln(p(xt|θ1)), given θ1 the
parameter of the post-change distribution, and reports a change when the sum
exceeds a certain threshold. Since this method is parametric and supervised,
pre- and post-change distributions ϕ0, ϕ1 are assumed to be known. Hotelling
proposed a multivariate approach in 1947, extending Shewhart’s control charts.
Using Hotelling’s T 2 test statistic, it assumed known mean mu and covariance
matrix Σ for each variable. However, like Shewhart’s univariate version, it
considers only a single sample.

Most existing multivariate methods are parametric and assume a known
stationary distribution ϕ0. Some recent methods monitor similarity with respect
to models trained on data drawn from ϕ0, like Gaussian processes or Kernel
Density Estimators. Non-parametric methods for detecting any change are
scarce; one of them is QuantTree (QT), an histogram based method presented
in Boracchi et al. [6]; we will write about it in chapter 2 and use its variants in
every experiment.

In our framework, we will deal with high dimensional dataframes, describing
the curse of dimensionality and studying the behavior of concept drift detection
algorithms when dimensionality scales; we also will discuss how data points
occupy the some space around them, and what is a ”good” or ”dense” coverage
of the space, studying algorithms behavior when a small number of training
points is provided. We will start with studying the performances of QT and
its advanced version Kernel-QuantTree [25] (KQT), comparing them with other
state-of-the-art methods in the same framework. We will introduce new kernel
functions derived from lk norms with k ≤ 1 trying to adapt KQT to the
curse of dimensionality. Finally, we will discuss the performances of the online
version of QuantTree [10], QT-Exponentially Weighted Moving Average (QT-
EWMA), which tests each new point of a datastream real-time, and implement
and introduce a novel streaming algorithm, the online adaptation of KQT, and
compare it with QT-EWMA and other baseline methods. Our main contributions
are:

• We set an experimental benchmark for studying concept drift detection
algorithm performances in high dimensional spaces when a few training
points are given.

• We extend Kernel-QuantTree using distances derived from lk (quasi-)norms,
with k ≤ 1 to adapt it to the curse of dimensionality.

• We extend Kernel-QuantTree to an online algorithm, KQT-EWMA, while
addressing its theoretical properties.
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1.1 Problem Formulation

We need to address concept drift to ensure accurate and reliable predictions
and decisions, and despite the ever-changing nature of this topic, it is essential
to try to state an understanding of the problem formulation in a formal and
hopefully concise manner. For a more detailed and comprehensive description,
one can refer to “Learning under Concept Drift: A Review” by J.Liu, A.Liu,
F.Dong, F.Gu, J.Gama and G.Zhang [20].

A change detection algorithm has usually three main ingredients: a model
ϕ̂0 of the initial distribution, a statistic based on it, and a decision rule to report
changes. After estimating ϕ0, an online algorithm is employed to assess whether
each new sequence {x1, . . . , xt} contains a change point. Typically, a statistic

T based on ϕ̂0 is computed for each incoming xt or over an entire batch W of
test points. The decision rule usually involves checking whether T > h, where
h is a certain threshold. In the streaming case, the decision time t∗ is defined
as the first time instant when there is enough statistical evidence to claim that
the data stream {x1, . . . , xt∗} contains a change point, i.e.:

t∗ = min{t : Tt > ht}

Online and batch-wise are two modes for drift detection. In batch-wise drift
detection (also referred to as two-sample test), the idea idea is to infer whether
two sample sets have been selected from the same population. A batch represent
a discrete chunk of data collected over a specific time interval or event. In
contrast, online drift detection continuously monitors data - sometimes, real-
time - and some model is updated as each data point arrives. The choices
between these approaches depends on the nature of the data and the specific
requirements of the application.

1.1.1 Batch-wise monitoring

Our goal is to detect changes, namely those data points for which the distribution
of the data-generating process changes. We process the incoming data in batches
W = x1, ..., xν , where ν represents the number of samples in each batch.
We consider batches of fixed size, each containing independent and identically
distributed (i.i.d.) samples drawn from a unique stationary distribution ϕ, which
support is X ⊆ Rd. We detect changes ϕ0 → ϕ1 ̸= ϕ0 using a hypothesis test
(HT) that assesses whether the data in W aligns with the reference stationary

distribution ϕ̂0 learned from a training set TR.

TR = {xi ∈ X , i = 1, . . . , N}, where xi ∼ ϕ0

Indeed, we assume that both ϕ0 and ϕ1 are unknown, and only the training
set is provided to estimate ϕ0. In particular, we focus on situations where no
analytic distribution seems to properly match the training data. We formulate
the hypothesis test HT as:

H0 :W ∼ ϕ0 vs H1 :W ∼ ϕ1 ̸= ϕ0 (1.1)
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where H0 represents the null hypothesis where W follows the distribution ϕ0,
andH1 is the alternative hypothesis stating thatW follows a different distribution
ϕ1. These test are based on a test statistic T defined over the learn distribution
ϕ̂0 that fits the training set. We detect a change in the incoming W when:

T (W ) = T (x1, ..., xν) > τ (1.2)

where τ is the threshold that controls the false positive rate, namely the proportion
of type I errors. For each given test statistic T and reference FPR value α, we
define a threshold τ such that:

Pϕ0
(T (W ) > τ) ≤ α (1.3)

where α is the reference FPR value, when Pϕ0
denotes the probability under H0

that W contains samples generated from ϕ0.

1.1.2 Online monitoring

A data-stream is an ‘ùnbounded sequence of multidimensional, sporadic and
transient observations made available along time” [4], meaning that observations
do not happen in a pattern - sporadic, i.e. they are not continuous or regular
- and that they only last for a short time. We consider a virtually unlimited
multivariate datastream x1, x2, . . . in Rd. We assume that, in the absence of
changes, all the data samples are i.i.d. realizations of a random variable with an
unknown distribution ϕ0, which support is X ⊆ Rd. We define the changepoint
τ as the unknown time instant when a change ϕ0 → ϕ1 takes place. The data
xt follows the distribution:

xt ∼
{
ϕ0, if t < τ
ϕ1, if t ≥ τ

Here, xt represents the random variable that follows the distribution ϕ0 before
the changepoint τ (in the so called in control state), and then follows the
distribution ϕ1 for t greater than or equal to τ (out of control state). We
make the assumption that both ϕ0 and ϕ1 ̸= ϕ0 are unknown. To estimate
ϕ0, a training set TR, which consists of N stationary realizations from ϕ0,
is provided. Online change detection algorithms assess, for each new incoming
sample xt, whether the sequence {x1, . . . , xt} contains a change point. Typically,
a statistic Tt is computed at each incoming xt, then a decision rule is applied.
Usually, this consists in controlling whether Tt > ht for an appropriate threshold
ht, and the detection time t∗ is defined as the first time index when this happens:

t∗ = min{t : Tt > ht}

The detection time t∗ is the first instant when there is enough statistical evidence
to claim that the datastream {x1, . . . , xt} contains a change point.

A fundamental issue in change detection is to define a sequence of thresholds
{ht}t to control false alarms. We measure false alarms by the Average Run
Length, define as:

ARL0 = Eϕ0
[t∗] (1.4)
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where the expectation is taken assuming that the whole datastream is drawn
from ϕ0. Thus, the ARL0 is the average time before a false alarm. Ideally,
the target ARL0 is set a priori, similar to the type I error probability in
hypothesis testing. The goal is to detect a distribution change as soon as
possible, minimizing the detection delay t∗ − τ , while controlling ARL0. This
means aiming for an empiricalARL0 that approaches the targetARL0 established
before monitoring. It is worth noting that controlling ARL0 also provides an
upper bound on the expected detection delay.

1.2 Specific challenges

1.2.1 Multivariate Datastreams and High Dimensionality

In the era of Internet-of-Things (IoT) data streams have seen an explosion
of information generated from heterogeneous data sources. Streaming data
in certain scenarios can exhibit high dimensionality. Laboratory instruments
become more and more complex, reporting hundreds or thousands of measurements
for a single experiment: in a functional genomics, usually we have much more
variables than observations! But we don’t have to look at bioinformatics:
automatic text analysis in a simple internet search, image processing, etc. need
massive high dimensional data as input. Change detection has been widely
investigated on scalar (univariate) data, but not in the multivariate case; a
straightforward extension would be to independently inspect each component of
the datastream, but this does not clearly provide a truly multivariate solution,
e.g., it is unable to detect changes affecting the correlation among the data
components. Apart from issues in terms of time and memory due to the
increased computational complexity, not a lot of theoretical or experimental
studies investigate how the data dimension d impacts on the change detectability.
Change detection is an ill-posed problem especially in high dimensional spaces.
The concept of change is highly context-dependent. How much of a difference,
and in what feature space, do constitute a change? For example, in comparing
X-ray images, a hair-line discrepancy in a relevant segment of the image may be
an important sign of a broken bone, a tumor, etc. In these cases where distances
between instances grow exponentially due to the curse of dimensionality, algorithm’s
performance drops not only in terms of time and memory. In [3] it is shown
that the detectability of the changes having a given magnitude progressively
reduce when d increases: they refer to this phenomenon as detectability loss,
and analytically demonstrate that, in case of Gaussian random variables, the
change visibility is upperbounded by a function decaying as 1/d. It is also shown
that detectability loss is not a consequence of density-estimation problems, as
it holds either when data distribution is estimated from training samples or
known.
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The change magnitude of ϕ0 → ϕ1 can be naturally measured by the symmetric
Kullback-Leibler divergence between ϕ0 and ϕ1:

sKL(ϕ0, ϕ1) := KL(ϕ0, ϕ1) +KL(ϕ1, ϕ0) (1.5)

where

KL(ϕ0, ϕ1) =

∫
Rd

log

(
ϕ0(x)

ϕ1(x)

)
ϕ0(x) dx (1.6)

The choice is supported by the Stein’s Lemma which states that KL(ϕ0, ϕ1)
yields an upper-bound for the power of parametric hypothesis tests that determine
whether a given sample population is generated from ϕ0 (null hypothesis) or
ϕ1 [18].

Dimensionality reduction, i.e. mapping high-dimensional instances onto
a lower-dimensional representation while conserving the distances between instances,
is a well known preprocessing method to handle high dimensional data that may
increase the cost of any mining algorithm. In [22] it is proposed a framework
that uses Principal Component Analysis (PCA) to project the original data
and it is showed that different changes in the original data variables (changes
in mean, variance and correlation between features) can be observed on one or
several principal components (PCs), which are orthogonal by their construction.
PCA, which was first presented in 1901 by K. Pearson [21], is a remarkable and
versatile technique that brings a touch of elegance in data analysis, capturing
somehow the essence of variability within the datasets, unveiling latent connections
between variables. However, it can be computationally expensive for large
datasets, and in any case requires additional processing steps. We will describe
this technique in details. In general, there exists many dimensionality reduction
solutions; they could be divided into data-dependent (learned, such as PCA) and
data-independent (such as random projections). Data-independent techniques
might seem appropriate for evolving datastreams since they generate the projection
matrices and transform data into a lower dimensional space independently from
the input data, they do not suffer from the scalability problem, they are faster
and less sensitive to unseen instances. However, in some domains those could
be outperformed by learned feature extraction. Some techniques are meant to
preserve the global relationships between data points (e.g. PCA selects the
orthogonal directions explaining the variance of the whole dataset), some other
preserve local relationships (e.g. hashing techniques transform the original data
into a lower dimensional feature space where similar data points are likely to
be mapped to nearby hash codes). We will discuss several techniques, their
accuracy, processing time and memory usage, focusing on our concept drift
detection task.

Curse of dimensionality: what happens if we go through higher and
higher dimensional spaces? The complexity magnifies, and our ability to perceive
structured clusters is lost or at least intricate. In machine learning and statistics,
when referring to various phenomena that arise when working in high-dimensional
spaces, we talk about the curse of dimensionality. When the dimensionalty
d increases, the volume of the space increases so fast that the available data

6



become sparse: volume size grows exponentially with d, we need 100 cm to fill a
meter, 10.000 cm2 to fill a square of 1 cm2, and 1 million cm3 to fill a cube with
edges 1 m. Thus, in order to keep a constant “amount of knowledge” of the
space, we need more data points when adding dimensions. Another interesting
phenomenon arising with increasing dimensionality is that points are further
from the center. As Yann Dubois write in his Github page the volume of a
high dimensional orange is mostly in its skin and not in the pulp, which means
expensive high dimensional juice. As he explains, considering a d-dimensional
unit orange (r = 1) with skin of width ϵ = 0.05, and knowing that the volume
of a hypersphere is proportional to rd (Vd(r) = krd), we have that:

Vskin
Vorange

=
Vorange − Vpulp

Vorange
=
krd − k(1− ϵ)d

krd
= 1− (1− ϵ)d

which implies that the skin will take, approximately, 10% of an orange 2D slice,
15% of a 3D orange, 40% of a 10D hyper-orange... an easier way to think about
that is a [−1, 1]d hypercube: the distance from the origin to the center of each
face equals 1, while the distance from the origin to each corner equals

√
d.

We must consider the point of view of the distance metrics, which are used
to measure the similarity between objects, thus are of fundamental importance
in this discussion. In On the Surprising Behavior of Distance Metrics in High
Dimensional Space [1] it is examined the behavior of lp norms and shown that
the problem of meaningfulness in high dimensionality is sensitive to the value
of p. It is explained that, under some assumptions on the data distribution, the
ratio of the distances of the nearest and farthest neighbors to a given target in
high dimensional space is almost 1 for a wide variety of data distributions and
distance functions: the nearest neighbor problem here is ill defined. Specifically,
it is shown that the l1 distance metric (Manhattan Distance metric) is the most
preferable for high dimensional applications, followed by the euclidean distance
(l2 metric), the l3 metric, ... knowing this, the authors studied fractional
distance metrics (where p < 1) and showed that indeed these are even more
effective at preserving the meaningfulness of proximity measures.

1.2.2 Few datapoints available

The other face of having to keep a constant “amount of knowledge” is working
with a limited number of datapoints. A small training set (TR) impacts the
robustness and generalizability of models: in our case, when attempting to fit the
stationary distribution ϕ0 from which the data are sampled, a small |TR| = N

may result in an inadequate coverage of the feature space; the estimation ϕ̂0
relies on the assumption that the samples available are representative of the
true underlying distribution.

The scarcity of training points becomes more pronounced when in conjunction
with the challenges posed by the curse of dimensionality. To better quantify our
results we will consider the N/d ratio, where d is the dimension of the feature
space. A lower ratio is associated with sparse training data, impeding models’
ability to capture patterns effectively.
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1.2.3 Real-Time Processing

The unbound nature of evolving data streams poses technical and practical
limitations that traditional stream algorithms often fail to address, often due
to the high resource usage, such as time and memory, required to process this
dynamic ever-growing size data incoming at high speed. Online algorithms must
process incoming observations rapidly to keep up with the pace of data streams.
Unlike processing static datasets, analyzing data from data streams cannot rely
on multiple passes since the stream is unbounded. Algorithms must process
each instance from the stream only once and use it to incrementally update
the model or statistical information about the data. In some cases, batch-
incremental algorithms process a batch or chunk of instances at once instead of
processing them individually. Moreover, due to the massive amount of data in
streams, it is impractical, if not impossible, to store the entire stream in memory.
Stream algorithms must be able to operate under restricted memory constraints
by storing only a few synopses of the processed data and the current model(s).
A scalable algorithm for data streams can effectively process and analyze large
volumes of incoming workload in real-time or near real-time, regardless of the
data stream’s size or arrival rate. It can adapt to the changing characteristics
of the data stream without significant degradation in performance.

1.2.4 False Alarms control

The False Positive Rate (FPR) is a pivotal metric in statistical hypothesis
testing. It represents the probability of rejecting a true null hypothesis, erroneously
indicating the presence of a change or effect when there is none. In the context
of change detection algorithms, a controlled FPR is crucial to prevent spurious
alerts. It is worth noting that the ”false positives” are alarms raised by data
points sampled from the stationary distribution, the same from which the training
points are take: FPR computation does not involve the post-change distribution
ϕ1, as seen in Eq. 1.8.

TPR =
# post-change batches triggering an alarm

# post-change batches
∗ 100 (1.7)

FPR =
# pre-change batches triggering an alarm

# pre-change batches
∗ 100 (1.8)

We remind that an analogous discussion is valid in the online streaming
case when talking about the Average Run Length (ARL0) defined in Eq. 1.4.
These metrics are critical in evaluating monitoring systems. They are, indeed,
synonyms of the trustworthiness of an alert, measuring the proportion of instances
where the system incorrectly raises an alert, or signals an anomaly, when there
is none. An uncontrolled FPR can results in unnecessary allocation of resources
to investigate the alarms, leading to increasing cost. Imagine a manufacturing
plant where some machine is producing high-quality silicon wafers. The machine’s
performance is monitored using sensors measuring parameters such as temperature,
pressure, vibrations. A concept drift detection system may be implemented
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to identify deviations from the normal process and trigger alarms to prevent
potential defects in the silicon wafers. With an effective concept drift detection
system maintaining a low FPR, alarms are only triggered when there is some real
deviation, indicating a potential issue with the wafer production process. This
ensures that maintainance actions are taken only when necessary, optimizing the
allocation of resources. A high FPR instead would result in alarms triggered
when the machine is operating within acceptable parameters. Given that each
false alarm prompts manual inspections or interventions, this would lead to
unnecessary production stops and increased operational costs. A way more
powerful example is given from healthcare: a false positive diagnosis (indicating
a medical condition that the patient does not have) will lead to the unnecessary
prescription of pharmaceuticals, which not only means additional healthcare
costs, but also exposing patients to the risks and side effects of unnecessary
medications. People would generally prefer not to know they have cancer, if
there were high chances of an incorrect diagnosis: to start treatment unnecessarily,
as the psychological and physical toll of undergoing treatment for a non-existent
condition can be imagined, would be worse. And the prescription of an unnecessary
antibiotic entails all the risks of side effects and the hundreds of millions of euros
needlessly spent by healthcare systems; above all, each unnecessarily prescribed
antibiotic contributes to the emergence of multi-resistant bacteria. In this kind
of situations, FPR can be more critical than the True Positive Rate (TPR).
For the patient’s safety, for the resource utilization, etc., we built a diagnostic
system which works when can actually identify medical conditions (high TPR)
and can be trusted (FPR is controlled). Again, achieving a balance between
these two metric is crucial for the overall effectiveness of a diagnostic system.

1.3 Related Work

Most change-detection algorithms in the literature are designed to monitor
univariate datastreams. The vast majority of these methdos cannot be extendend
to monitor multivariate frames, especially those leveraging nonparametric statistics.
Change detection in multivariate datastreams has often been addressed in multi-
stream settings, i.e., by separately analyzing each input component([6],[10],[25]).
However, the hypotheses underpinning the multi-stream monitoring are fundamentally
different: in particular, they often assume the components of the data points
are generated by separate random variables rather than a single multivariate
random vector. In multi-stream settings changes typically affect the distribution
of a subset of these random variables, while in multivariate settings more general
kinds of distribution changes are admissible; changes affecting the correlation
between components or subtle changes involving the whole vector can be hard
to detect by separately analyzing the components. A popular semiparametric
approach consists of reducing the data dimensionality by monitoring the log-
likelihood of the observations with respect to a density model fitted on a training
set. The most common models for the initial distribution ϕ0 are Gaussian, and
Gaussian Mixture Models (GMMs). In [15], the Semiparametric Log-Likelihood
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(SPLL) algorithm fits a GMM to the training set (TR) and compares incoming
batches with batches from TR by a likelihood test. The main limitation of these
solutions are that:

• The implicit assumption that ϕ0 can be approximated well by a probability
distribution from a known family, which is not guaranteed in general.

• None of the commonly proposed methods can be configured before deployment
to operate at a target False Positive Rate (FPR) or Average Run Length
(ARL0).

Indeed, in SPLL, the adoption of a GMM to approximate ϕ0 might not always
fit real-world data; moreover, it is not possible to set a priori the detection
threshold to control FPR, as the distribution of the test statistic depends on
ϕ0.

There are only a few recent multivariate methods that perform non-parametric
change detection, namely, that assume ϕ0 and ϕ1 to be unknown. Among
these, we focus on histogram-based algorithms, since these are non-parametric
by design; the extension to high-dimensional multivariate datastreams is usually
infeasible since number of bins scales exponentially with data dimension, but this
is not always the case. Equal Intensity K-means (EIKM) [19] divides the input
space using K-means clustering, resulting in bins that yield an equal probability
under ϕ0. EIKM is designed to handle multimodal distributions, e.g., Gaussian
Mixtures, and the detection thresholds are given by asymptotic approximations
of the Pearson test statistic. QuantTree [6] defines a partitioning S of the
input space in a fixed number K of bins by axis-aligned cuts. The theoretical
properties of QT guarantee that the distribution of test statistics defined over
bin probabilities does not depend on ϕ0, which allows to set detection thresholds
a priori, with synthetically generated data through a very efficient scheme. Since
the data splits are limited to the axis directions, the bins in QT require a
preprocessing stage whose outcome, in terms of detection power, is uncertain,
as demonstrated in our experiments. KQT [25] preserves the properties of
QT in terms of setting detection thresholds and FPR control, and overcomes
QT limitation by constructing compact bins that are not affected by roto-
translations, thus better approximate the probability measure of each bin under
ϕ0. However, KQT based on Mahalanobis and Weighted Mahalanobis distances,
which rely on the sample covariance matrix estimated from the training set, lose
control over false positives when the ratioN/d between the numberN of training
points and the dimensionality of the dataset d decrease.

Histograms are commonly used not only in the offline fashion, where multiple
passes over data are allowed; in 2002 were proposed [11] several incremental
techniques to handle data streams, which failed in some cases where data
distribution is not uniform. QT was extendend to QT-EWMA proving that it is
possible to use a very efficient Monte Carlo scheme to compute thresholds [10];
its implementation comes together with theoretically procedures to extend a
generic one-shot detector to monitor datastreams controlling the ARL0.
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Chapter 2

QuantTree

2.1 QuantTree algorithm

The QuantTree algorithm was first proposed in 2018 [6] to handle concept drift
detection in multivariate dataframes. This paper begins stating that histograms
are very general and flexible models, which have been relatively ignored in the
change-detection literature as they often require a number of bins that grows
unfeasibly with the data dimension. QuantTree is a recursive binary splitting
scheme designed to dynamically adapt histogram bins for effective change detection.
The greatest advantage with QT is that the distribution of any statistic defined
over the resulting histogram does not depend on ϕ0, i.e. that decision rules
to be used do not depend on the data and can be numerically computed from
synthetically generated univariate sequences, even in multivariate change detection
problems. The fact that QT can have a pre-assigned number of bins and can
be represented as a tree, enabling a very efficient computation of test statistics.

QuantTree iteratively divides the input space by employing binary splits on
a single covariate, with cutting points defined by the quantiles of the marginal
distributions. This strategy shares similarities with kd-trees [5], where splits are
based on the median value of the marginal. The simplicity of this construction
scheme enables analytical handling, e.g. it is proven that the distribution of
each bin probability does not depend on ϕ0. Experimental results show QT’s
capability to deliver robust detection performance in high-dimensional streams.
Notably, when confronted with limited training samples, QT ensures superior
false positive rate control compared to established methods like the Pearson
goodness-of-fit test and tests relying on empirical thresholds computed e.g.
through bootstrap techniques.
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Algorithm 1: QuantTree
Input: Training set TR containing N stationary points in X ; number of bins K; target probabilities {πk}k.
Output: The histogram h = {(Sk, π̂k)}k.
1: Set N0 = N,L0 = 0.
2: For k = 1, . . . ,K do
3: Set Nk = Nk−1 − Lk−1,Xk = X\

⋃
j<k Sj , and Lk = round(πkN).

4: Choose a random component i ∈ {1, . . . , d}.
5: Define zn = [xn]i for each xn ∈ Xk.
6: Sort {zn} : z(1) ≤ z(2) ≤ . . . z(Nk).
7: Draw γ ∈ {0, 1} from a Bernoulli(0.5).
8: If γ = 0 then:
9: Define Sk = {x ∈ Xk [x]i ≤ z(Lk)}.
10: Else:
11: Define Sk = {x ∈ Xk [x]i ≥ z(Nk−Lk+1)}.
12: End if
13: Set π̂k = Lk/N .
14: End for

Table 2.1: The algorithm is built to define histograms h through a recursive
binary splitting of the input space X . It takes as input a training set TR
containing N stationary points, the number of bins K in the histogram, and
the target probabilities on each bin {πk}k=1,...,K , and returns a histogram h =
{(Sk, π̂k)}k=1,...,K , where each π̂k represents an estimate of the probability for
a sample drawn from ϕ0 to fall in Sk.

The algorithm presents in detail the iterative formulation of QuantTree,
which constructs a new bin of the histogram h at each step k. We denote by
Xk ⊆ X the subset of the input space that still has to be partitioned (i.e.,
Xk = X\

⋃
j<k Sk) and by Nk the number of points of TR belonging to Xk.

We compute (line 3) the number of training points that has to fall inside Sk

as Lk = round (πkN). The subset Sk is then defined by splitting Xk along a
component i ∈ {1, . . . , d} that is randomly chosen with uniform probability (line
4). The splitting point is defined by sorting zn = [xn]i, i.e., the values of the i-th
component for each xn ∈ Xk (lines 5). We thus obtain z(1) ≤ z(2) ≤ · · · ≤ z(Nk)

(line 6) and we define Sk by splitting Xk w.r.t. z(Lk) or z(Nk−Lk+1) (lines 7-11).
In both cases Sk contains Lk points among the N in X , thus the estimated
probability of Sk is π̂k = Lk/N (line 13). This procedure is iterated until K
subsets are extracted. QuantTree divides X in a given number of subsets, where
each Sk has an estimated probability π̂k ≈ πk, and the equality holds when πkN
is integer. Since the probabilities πk are set a priori, in what follows we use πk
in place of π̂k. Indexes i (the choice of the component) and parameter γ (the
choice of the quantile) are randomly chosen at each iteration to add variability
to the histogram construction.

A key feature of a histogram computed by QuantTree is that any statistic
Th built over it has a distribution that is independent from ϕ0. This results
come from the following theorem, which is proved in [6].

Theorem 1. Let Th be defined over the histogram h computed by QuantTree
such that it uniquely depends on {yk}k=1,...,K , where yk denotes the number of
samples in W falling in Sk. When W ϕ, the distribution of Th(W ) depends only
on ν, N and {πk}k.
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Figure 2.1: (a) A histogram {Sk}k=1,...,4 computed by QuantTree to yield

uniform density on the bins. (b)-(d) Examples of values assumed by L̃k, i.e.
the position of the splitting point, in three different configurations, when N = 9
and L1 = L2 = L3 = 3. In these cases L̃1 = L1, while in (b) L̃2 = 3, in (c)
L̃2 = 5, and in (d) L̃2 = 6. Note that when QuantTree chooses always the same
component, we have that L̃2 = L1 + L2, as in (d).

Theorem 1 implies that we can numerically compute the thresholds for any
statistic Th defined on histograms, provided ν,N and {πk}, thus disregarding ϕ0
and the data dimension d. To this end, we synthetically generate data from a
conveniently chosen distribution ψ0, and we follow the procedure outlined in [6]
and reported here as algorithm 2 to estimate the threshold τ for the hypothesis
test 1.1, yielding a desired FPR α.

Algorithm 2: Numerical procedure to compute thresholds
Input: Test statistic Th; arbitrarily chosen ψ0; the number B of datasets and
batches to compute the threshold; the number of points ν in each batch;
N,K, and π̂k as in Algorithm 1; the desired FPR α.
Output: The value τ of the threshold
1: for b = 1, . . . , B do
2: Draw from ψ0 a training set TRb of N samples.
3: Use QuantTree to compute the histogram hb with
K bins and target probabilities {πk}k over TR.

4: Draw a batch Wb containing ν points from ϕ0.
5: Compute the value tb = Th(W ).
6: end for
7: Compute the threshold τ as in (5).

At first we generate B training sets {TRb}b=1,...,B , sampling N points from ψ0

and, for each training set, we build a histogram hb using QuantTree. Then, for
each hb we generate a batch Wb of ν points drawn from ψ0, and compute the
value of the statistic tb = Th (Wb) (lines 4-5). Finally, we estimate τ (line 7)
from the set TB = {t1, . . . , tB} as the 1−α quantile of the empirical distribution
of Th over the generated batches, i.e.

τ = min {t ∈ TB : # {v ∈ TB : v > t} ≤ αB} ,

where #A denotes the cardinality of a set A. To take full advantage of the
distribution-free nature of the procedure, we set ψ0 to a univariate uniform
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distribution U(0, 1). This allows to obtain high accuracy on the estimation of the
thresholds, since we can use very large values of B with limited computational
cost. In this work, we employed the Pearson statistic:

T P
h (W ) =

K∑
k=1

(yk − νπk)2

νπk
(2.1)

It is well known that, when {πk}k are the true probabilities of the bins {Sk}k,
the statistic T P

h (W ) is asymptotically distributed as a χ2
K−1 under the null

hypothesis. However, when the πk are estimated, the threshold obtained from
the χ2

K−1 distribution does not allow to properly control the False Positive Rate
(FPR); this effect is even more evident when yk is small. In contrast, thresholds
defined by Algorithm 2 hold also in case of limited sample size, since they are
not based on an asymptotic result.

2.2 Kernel-QuantTree

Kernel QuantTree (KQT) was first presented in the 2021-22 thesis work of
Paolo Rizzo, then in [25]. It is a histogram based change detection method
that extends QT. A fundamental limitation of QT is that splits are defined
along the axis, resulting in a partitioning that does not always adhere to the
input distribution. The cuts are oriented along axis, leading to bins with
hyper-rectangular shapes; bins also contains large empty holes where there
are no points, leading to blind spaces where changes are not detected. To
mitigate this problem, a preprocessing stage is typically introduced to align
the split directions to the principal components of the training set. While this
procedure is often beneficial, it was observed that it can worsen the detection
performance in some unpredictable cases [25]. We will show and discuss how
PCA is incompatible with FPR control in high dimensional spaces when a few
training points are provided. Moreover, many bins in a QT histogram have
non-finite volumes, which can lead to poor estimation of bin probabilities.

In [25] is thus described Kernel QuantTree (KQT), a non-parametric and
multivariate CD algorithm that constructs histogram bins via measurable kernel
functions, resulting in a powerful concept drift detection test. In contrast with
the QT algorithm, which constructs bins by axis-aligned splits that can be
unlimited along some dimensions, KQT partitions the space in K − 1 compact
bins defined by kernel functions evaluated on the training data. An additional
bin, denoted as the residual bin, is non-compact and gathers all the points
that do not fall in any other bin. Figure 2.2 shows that the KQT bins are
compact subsets of the domain. Among various approaches, the method that
seemed most suitable was the one based on centroids: the idea is to follow QT’s
approach, building a completely unbalanced binary tree by slicing the data to
obtain a histogram with target probabilities {πk}k. For each node, we choose a
centroid from the residual training data Xk, and compute the distances between
the centroid and the data. This allows to select the closest points with respect
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Figure 2.2: QuantTree generates bins as intersection of hyperplanes, performing
cuts along the axis (a). After a preprocessing through PCA, the cuts are oriented
along the principal directions (b). Kernel QuantTree generates bins that are
subsets of d-dimensional spheres according to the underlying kernel functions,
namely the Euclidean (c), Mahalanobis (d) and Weighted Mahalanobis (e)
distances.

to the centroid using a quantile that is based on how many points we want far
from that bin. Iteratively, we remove the selected points and continue until we
have all K bins.

Again, the distribution of the test statistic Th computed from a KQT histogram
h does not depend on the stationary distribution ϕ0. Consequently, detection
thresholds τ can be set a priori via Monte Carlo simulations as in QT, without
knowing ϕ0. Moreover, the monitoring performed by KQT using specific kernel
functions is not influenced by preprocessing based on roto-translations, including
alignment to principal components. Thanks to these properties, KQT outperforms
state-of-the-art alternatives on a broad experimental testbed illustrated in the
paper. In particular, KQT achieves better detection performance than the
alternatives independently of preprocessing steps based on roto-translations.
However, we’ll see that if the kernel function used is based on the training set
(e.g. with Mahalanobis or Weighted Mahalanobis distances), an inconvenient
ratioN/d between its cardinality and the dimensionality might ruin FPR control.

Algorithm 3: Construction of the GQT histogram

1: Input: training set TR = {xi}Ni=1 ⊂ Rd, target probabilities {πk}Kk=1

2: Output: GQT histogram h = {(Sk, π̂k)}Kk=1

3: Set X0 = TR
4: for k = 1, . . . ,K − 1 do

5: Compute π̃k = πk

(
1−

∑
j<k πj

)−1

6: Compute {fk (xi)} for xi ∈ Xk−1

7: Set qk as the π̃k-quantile of {fk (xi)}
8: Sk =

{
x ∈

⋂
j<k S̄j | fk(x) ≤ qk

}
9: Xk = {x ∈ Xk−1 | fk(x) > qk}
10: end for
11: SK = Rd\

⋃
j<K Sj
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The KQT histogram is constructed by iteratively splitting the input space Rd

into K bins {Sk} such that the probability of a stationary sample x ∼ ϕ0 to fall
in Sk is close to a target probability πk, which are provided as input parameters.
The peculiarity of KQT is that each bin Sk for k < K is defined by a measurable
kernel function fk : Rd → R and a split value qk ∈ R, and corresponds to a
compact set in Rd. We denote as Generalized QuantTree (GQT) partitioning

the resulting histogram h = {(Sk, π̂k)}Kk=1, which yields a partition of the
input space Rd, where π̂k is the empirical probability of x ∼ ϕ0 to fall in Sk.

Figure 2.3: The Generalized QuantTree
histogram is a binary splitting tree where
splits isolate leaves, i.e. bins of the
histogram.

As illustrated in Figure 2.3, a
GQT partitioning corresponds to
an extremely imbalanced binary
tree, where each split isolates
a leaf, corresponding to a bin
Sk. In [25] it is proven
that the distribution of any test
statistic Th defined over a GQT
partitioning does not depend on
ϕ0, extending the theoretical
results from QT. This property
enables setting the detection
threshold τ a priori by Monte
Carlo simulations. It is also
proved that under some mild
assumption on the kernel function
fk, this monitoring scheme becomes
independent of any roto-translation

applied to the data, including the PCA preprocessing. The scheme by KQT
operates as follows: given an input batch W containing ν test samples, we
compute the test statistic Th(W ) and detect changes when this exceeds the
threshold τ . While the theoretical properties of KQT hold for all the statistics
that only depend on {yk}, the numbers of samples in W falling in bins {Sk},
we consider the Pearson χ2 statistic:

Th(W ) = Th (y1, y2, . . . , yK) =

K∑
k=1

(yk − νπk)2

νπk

where {πk} are the target bin probabilities. The GQT extends the partitioning
scheme underpinning QT, which corresponds to using linear split functions:

fk(x) = ±1 · Pjx,

where Pj is the projection over a randomly selected component j and ±1
randomly introduces a sign flip for the projection.

The criteria to select the centroids {ck} from TR is key in KQT, as this
determines both the spatial location of the bin Sk and the split value qk associated
with the kernel function fk. For the experiments that will follow, the selection
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strategy adopted is maximizing the information gain associated with the split;
measuring the decrease in the overall entropy H after a split in the data, it
is typically used to assess the split quality. In particular, we will discuss the
problem arising from the computation of the entropy H(B) of a set of points B
using the Gaussian approximation:

H(B) =
1

2
log((2πe)d det(cov[B]) (2.2)

Here, cov[B] represents the sample covariance matrix computed over B. It is
worth noting that this determinant computation could cause issues when dealing
with points in high dimensional spaces. For a deeper comprehension of the
importance of centroid selection criteria and an explanation of the theoretical
guarantees, one should refer to the paper [25].

In the next section, we present specific measurable functions fk that we
employ in KQT.

2.2.1 Employed Kernel Functions

We define the kernel functions fk : Rd → R as distances from a centroid ck ∈
TR, selected from the training set:

fk(x) = (x− ck)
T
A (x− ck) ,

where A ∈ Rd×d is the kernel matrix, which induces a distance measure in Rd.
In particular, the bins {Sk} are subsets of d-dimensional spheres centered in
{ck} and having radii {qk}, where the distances are measured with respect to
the metric induced by A. Since spheres in Rd are compact sets, all the bins Sk

of a KQT, but the residual SK , are compact and have a finite volume.
In [25], KQT is computed using the Euclidean, the Mahalanobis, and the

Weighted Mahalanobis [26] distances; different distances result in bins with
distinct shapes, as illustrated in Figure 2.2. We obtain the Euclidean distance
by setting A = Id, namely, the d-dimensional identity matrix, resulting in
isotropic bins. Figure 2.2 (c) shows that these bins poorly fit the data distribution,
e.g. covering different modes of the distribution. We obtain the Mahalanobis
distance by setting A = Σ−1, where Σ ∈ Rd×d is the sample covariance matrix of
TR, and in this case, the bins are anisotropic. Figure 2.2 (d) also shows that bins
are elongated towards the directions with larger variance, resulting in a better
fit to the data. However, these bins poorly approximate TR when this exhibits
multiple clusters, since again multiple bins might span different clusters. To
promote bins containing samples from a single cluster, theWeighted Mahalanobis
distance is adopted: a Gaussian Mixture of M components is fit to TR, then a
larger distance is assigned to points that belong to different components of the
GMM. The Weighted Mahalanobis kernel matrix is then defined as:

A(x) =

∑M
m=1 ρm · im(x, c) · C−1

m∑M
m=1 ρm · im(x, c)

,
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where µm, Cm, and ρm denote the mean, covariance matrix, and mixing probability
of the m-th Gaussian, respectively. The matrix A represents a weighted average
of the inverse covariance matrices of the GMM components. As in [26] the
weights are proportional to the mixing probabilities ρm and im(x, c), which is
a computationally tractable approximation of the distance between the point x
and the bin centroid c.

Distances derived from lp norms

As we will show in the following chapters, Mahalanobis andWeighted Mahalanobis
distances, which are based on the sample covariance matrix, ruin the FPR
control in frames where too few training points fill an high dimensional space.
Also the Euclidean distance (lp norm with p = 2) might not be the best choice
when dealing with high-dimensional data because of the curse of dimensionality.
We propose to derive distances from lp quasi-norms, with p ≤ 1 e.g., the
Manhattan distance (norm with p = 1) and fractional distance metrics with
p < 1. This choice was suggested in [1]: the authors study the behavior of
lp norms and show that the problem of meaningfulness in high dimensionality
is sensitive to the value of p. Specifically, it is shown that the l1 distance
metric (Manhattan Distance metric) is the most preferable for high dimensional
applications, followed by the euclidean distance (l2 metric), the l3 metric, ...
finally, it is shown that fractional distances are even more effective at preserving
the meaningfulness of proximity measures. However, we must notice that only
the Euclidean distance (l2 norm) is invariant under roto-translations, and KQT
loses its invariance properties in general with these metrics.

2.3 QT-EWMA

QT-EWMA algorithm was first introduced in [10] together with the procedure
to define its thresholds controlling the ARL0. The algorithm leverages a novel
online statistic Tt defined over a QuantTree histogram, which is constructed
given the training set TR and K target probabilities {πj}Kj=1; it returns an

histogram defined by K bins {Sj}Kj=1, where each Sj ⊂ Rd is set to contain
πjN training samples. The statistic Tt monitors the proportion of samples in
the datastream that fall in each bin Sj . In particular, for each xt we define K
binary statistics {yj,t}j as the indicator functions of each bin Sj , namely:

yj,t = 1(xt ∈ Sj), j ∈ {1, ...,K} (2.3)

to track in which bin the input sample xt falls. It is possible to show that, when
xt ∼ ϕ0 and TR ∼ ϕ0 then:

E [yj,t] ≈ π̂j :=
Nπj
N + 1

, j < K and E [yK,t] ≈ π̂K :=
NπK + 1

N + 1
(2.4)

The statistics yj,t are evaluated for each incoming sample xt and then the
EWMA statistic Zj,t, j ∈ {1, ...,K} is computed to monitor the proportion
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of data that falls in each bin Sj :

Zj,t = (1− λ)Zj,t−1 + λyj,t where Zj,0 = π̂j (2.5)

Since, under ϕ0, the expected value E[Zj,t] ≈ π̂j for j = 1, ...,K, the QT-EWMA
change-detection statistic is defined as follows:

Tt =

K∑
j=1

(Zj,t − π̂j)2

π̂j
(2.6)

Similarly to the Pearson statistic, Tt measures the overall difference between the
proportion of points in each bin Sj , represented by Zj,t, and their approximated
expected values π̂j under ϕ0. This difference naturally increases as a consequence
of a change ϕ0 → ϕ1 that modifies the probability of some bin Sj . The
statistic is computed at each incoming sample and then compared against the
corresponding threshold ht to detect changes. The overall procedure is shown
in Algorithm 4.

Algorithm 4: QT-EWMA
Input: datastream x1, x2, ..., target {πj}Kj=1, threshold {ht}t, TR
Output: detection flag ChangeDetected, detection time t∗

1: ChangeDetected ← False, t∗ ←∞;
2: estimate QT histogram {Sj , πj}Kj=1 from TR and define {π̂j}Kj=1 as in 2.4;
3: Zj,0 ← π̂j∀j = 1, . . . ,K;
4: for t = 1, . . . do:
5: yj,t ← 1 (xt ∈ Sj)
6: Zj,t ← (1− λ)Zj,t−1 + λyj,t, j = 1 . . . ,K;

7: Tt ←
∑K

j=1 (Zj,t − π̂j)2 /π̂j ;
8: if Tt > ht then
9: ChangeDetected ← True, t∗ ← t;
10: break
11: end
12: end
13: return ChangeDetected, t∗

Table 2.2: QT is constructed from the training set TR and K target probabilities
(line 2); defined statistics yj,t are evaluated for each incoming sample xt (line
5), and then EWMA statistic Zj,t is computed (line 6) and compared against
the corresponding threshold ht to detect changes (line 9).

QT-EWMA algorithm inherits from QuantTree the fundamental property
that the distribution of the statistics 2.5 and 2.6 - like any other statistic entirely
defined over QuantTree bins - does not depend on ϕ0, so the thresholds {ht}t
can be defined a priori to guarantee the ARL0 on any datastream. The sequence
of thresholds has to be properly defined to guarantee the given ARL0 = E[t∗],
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where the expected value is computed assuming that the whole datastream is
drawn from ϕ0. We set the thresholds to guarantee a constant false alarm
probability α at each time instant t. When this is satisfied, the detection time
t∗ is a Geometric random variable with parameter α and expected value given
by:

ARL0 = Eϕ0
[t∗] =

1

α
(2.7)

To guarantee the constant false alarm probability, the thresholds must satisfy
the following equation:

P(Tt > ht|Tk ≤ hk∀k < t) = α ∀t ≥ 1 (2.8)

Since it is infeasible to exactly compute the conditional probabilities in 2.8,
we resort to Monte Carlo simulations. Since thresholds do not depend on ϕ0,
we can conveniently generate 1-dimensional Gaussian streams and perform MC
simulations to compute {ht}t efficiently. In particular, we generate 1, 000, 000
training sets of N = 4096 normal realizations xt ∼ N (0, 1). For each TR we
construct a QuantTree histogram and then generate 5000 samples from N (0, 1)

that we use to compute the statistics {Tt}5000t=1 . Then, we define the threshold h1
yielding the target ARL0 as the empirical (1−α)-quantile of T1 values, bearing
in mind that α = 1/ARL0. Similarly, all the thresholds ht are computed as the
(1 − α)-quantiles of the values Tt, but when t > 1 we compute the empirical
quantiles only considering those sequences whose statistic has never exceeded
any of the previous thresholds h1, . . . , ht−1, namely having Tk ≤ hk,∀k < t.
Thresholds {ht}t computed in this way guarantee 2.8 to hold, so the target

ARL0 is preserved. We compute all the thresholds {ht}5000t=1 and then fit a
polynomial to these values. This allows both to estimate ht for t > 5000 and
to improve the estimates {ht}5000t=1 by leveraging correlation among thresholds.
In particular, we estimate a polynomial in powers of 1/t that returns ht for a
given t. In our experiments we employ the following target ARL0 values: 500,
1000, 2000, 5000. An important consequence of setting a constant false alarm
probability in 2.8 is that, being t∗ a Geometric random variable with parameter
α, the probability of having a false alarm before t by the geometric sum:

P (t∗ ≤ t) =
t∑

k=1

α(1− α)k−1 = α · 1− (1− α)t

α
= 1− (1− α)t (2.9)

where the probability P is computed under ϕ0.

2.4 KQT-EWMA

We propose Kernel-QuantTree Exponentially Weighted Moving Average (KQT-
EWMA), a novel online nonparametric change-detection algorithm for multivariate
datastreams. It combines a generalized QT histogram [25], used as a model

ϕ̂0, and a novel statistic Tt based on Exponentially Weighted Moving Average.
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The theoretical properties of Kernel-QuantTree guarantee that KQT-EWMA
is completely nonparametric since the distribution of our statistic does not
depend on ϕ0, hence its thresholds {ht}t controlling the ARL0 can be set a
priori. Moreover, these thresholds guarantee by design a constant false alarm
probability over time and, consequently, a fixed false alarm rate at any time
instant during monitoring. Thus, kQT-EWMA controls both ARL0 and false
alarm (FA) rate. The distribution of the test statistic computed over stationary
data is independent of ϕ0, and this can be exploited to compute detection
thresholds by Monte Carlo simulations such that the empirical ARL0 matches
any target value. Additional material, with theoretical properties and proofs,
can be found in [25] and in Chapter 3. The algorithm leverages a novel
online statistic Tt defined over a Generalized QuantTree histogram, which is
constructed given the training set TR and K target probabilities {πj}Kj=1. The
procedure for the construction of the GQT was shown in Algorithm 3. The
statistic Tt monitors the proportion of samples in the datastream that fall in
each bin Sj . In particular, for each xt we define K binary statistics {yj,t}j as the
indicator functions of each bin Sj . We evaluate the statistics as in Equations 2.3,
2.4, and 2.5; also in this case, we evaluate the statistics yj,t for each incoming
sample xt and then we compute the EWMA statistic Zj,t, j ∈ {1, ...,K}, to
monitor the proportion of data that falls in each bin Sj . Since, under ϕ0, the
expected value E[Zj,t] ≈ π̂j for j = 1, ...,K, we define the kQT-EWMA change-
detection statistic as before (Eq. 2.6):

Tt =

K∑
j=1

(Zj,t − π̂j)2

π̂j
(2.10)

Similarly to the Pearson statistic, Tt measures the overall difference between the
proportion of points in each bin Sj , represented by Zj,t, and their approximated
expected values π̂j under ϕ0. This difference naturally increases as a consequence
of a change ϕ0 → ϕ1 that modifies the probability of some bin Sj . The
statistic is computed at each incoming sample and then compared against the
corresponding threshold ht to detect changes. The overall procedure is shown
in Algorithm 5.

GQT-EWMA algorithm inherits from Generalized QuantTree the fundamental
property that the distribution of the statistics 2.10 does not depend on ϕ0, so
the thresholds {ht}t can be defined a priori to guarantee the ARL0 on any
datastream. The sequence of thresholds has to be properly defined to guarantee
the given ARL0 = E[t∗], where the expected value is computed assuming that
the whole datastream is drawn from ϕ0. We set the thresholds to guarantee
a constant false alarm probability α at each time instant t. When this is
satisfied, the detection time t∗ is a Geometric random variable with parameter
α and expected value given by Eq.2.7: To guarantee the constant false alarm
probability, the thresholds must satisfy Equation 2.8.

As described for QT-EWMA thresholds computation we resort to Monte
Carlo simulations. Since thresholds do not depend on ϕ0, we can conveniently
generate 1-dimensional Gaussian streams and performMC simulations to compute
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Algorithm 5: GQT-EWMA
Input: datastream x1, x2, ..., target {πj}Kj=1, threshold {ht}t, TR
Output: detection flag ChangeDetected, detection time t∗

1: ChangeDetected ← False, t∗ ←∞;
2: estimate GQT histogram {Sj , πj}Kj=1 from TR and define {π̂j}Kj=1 as in 2.4;
3: Zj,0 ← π̂j∀j = 1, . . . ,K;
4: for t = 1, . . . do:
5: yj,t ← 1 (xt ∈ Sj)
6: Zj,t ← (1− λ)Zj,t−1 + λyj,t, j = 1 . . . ,K;

7: Tt ←
∑K

j=1 (Zj,t − π̂j)2 /π̂j ;
8: if Tt > ht then
9: ChangeDetected ← True, t∗ ← t;
10: break
11: end
12: end
13: return ChangeDetected, t∗

Table 2.3: GQT is constructed as in Algorithm 3 from the training set TR
and K target probabilities (line 2); defined statistics yj,t are evaluated for each
incoming sample xt (line 5), and then EWMA statistic Zj,t is computed (line
6) and compared against the corresponding threshold ht to detect changes (line
9).

{ht}t efficiently. Moreover, the generated threshold estimated for QT-EWMA
can be applied in this generalized case effectively.

2.5 Computational remarks

QuantTree

It is important to note that since the histogram h computed by QuantTree
is exclusively defined on the marginal probabilities of single components, the
dimensionality of the input data d does not impact the overall computational
cost. In fact, the cost of building a QT is dominated by sorting the covariates
(Algorithm 1 line 6), which is performed K times on a progressively smaller
number of samples at each iteration. Therefore, the overall complexity of
constructing a QuantTree is O(KNlogN). Since any histogram h computed
by QT can be represented as a tree structure, it is very efficient to identify the
bin where any testing point belongs to. In fact, during monitoring, at most K
if-then operations have to be performed for each input sample x. Moreover, in
contrast with histograms based on regular grids, the number of bins K is here
a priori defined, and does not need to grow exponentially with d.
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Kernel-QT

The trianing of a kQT comprises i) the projection of TR by fk, whose cost
depends on the specific kernel function, ii) the computation of the split value,
which costs O(N), and iii) the centroid selection. The cost of computing
the Euclidean distance - or other distances based on lp norms such as the
Manhattan and the fractional l0.1 - is O(d), while the Mahalanobis costs O(d2)
and the Weighted Mahalanobis costs O(Md2), where M is the number of
Gaussian components fitted to TR. The cost of computing the information gain
is dominated by the computation of the determinant (see Eq. 2.2), which costs
O(d3), while computing the Gini index only requires the distances between the
training samples and the centroids, already computed to define Sk. Overall, the
cost of the index computation is multiplied by the number of centroids T tested
during the selection procedure; therefore, an upper bound for the cost of KQT
construction is O(KT (N+MNd2+d3)) when using the Weighted Mahalanobis
distance and the information gain. During monitoring, the only operation
performed is the projection by fk of the samples of a batch W , resulting in
a cost of O(νKMd2) in case of the Weighted Mahalanobis distance.

QT-EWMA and KQT-EWMA

As QuantTree, QT-EWMA is extremely efficient from both computational and
memory points of view. Both place the incoming sample xt in the corresponding
bin of the histogram, resulting in O(K) operations, where K is the number of
bins. Then, QT-EWMA computes the test statistics and these operations have
a constant cost that falls within O(K). QT computes the Pearson statistic at
the end of each batch, and this does not increase the order of computational
complexity either. In terms of memory requirements, QT-EWMA update the
statistics Zj,t at each new sample xt, which requires storing only the K values
Zj,t−1, j = 1, ...,K. The same can be stated for KQT-EWMA: still, placing
the incoming sample in the right bin, and computing the test statistic, have the
costant complexity of order O(K).
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Chapter 3

Theoretical Results

3.1 KQT with p-norms

Let p ≥ 1 be a real number. The p-norm of a vector x = (x1, . . . , xn) is:

∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

(3.1)

For p = 2 we get the Euclidean norm, for p = 1 we get the Manhattan norm.
The definition is still of some interest for 0 < p < 1, but the resulting function
does not define a norm, because it violates the triangle inequality. In linear
algebra and functional analysis, this is called a quasi-norm; it is similar to a
norm since it satisfies the norm axioms, except that the triangle inequality is
replaced by:

∥x+ y∥ ≤ K(∥x∥+ ∥y∥)

for some K > 1. A quasi-norm on a vector space (such as Rd) is a real-valued
map. In this framework, a p-quasinorm with 0 < p < 1 is still a real-valued
function from Rd to R.

Here, we report some theoretical results from the paper introducing KQT [25]
to extend the validity of the FPR control to these quasi-norms derived distances
to be used as kernel functions. The proofs are in the supplementary material
of the paper. The Generalized QuantTree (GQT) histogram h = {(Sk, π̂k)}
partitions the input space Rd such that the probability π̂k of a stationary sample
x ∼ ϕ0 to fall in bin Sk is close to a target probability πk provided as an
input parameter. During testing, GQT monitors batches W of ν samples by
computing a test statistic Th whose value only depends on the number of samples
ofW falling in each bin. Then, the test statistic is compared against a detection
threshold τ ∈ R, and a change is detected when Th(W ) > τ . A peculiarity of
GQT is that each bin Sk is defined as a subset of the sublevel set of a measurable
kernel function fk : Rd → R.
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Proposition 1. Let (X,Σ) and (Y, T ) be measurable spaces, meaning that X
and Y are sets equipped with respective σ-algebras Σ and T . A function f :
X → Y is said to be measurable if for every E ∈ T the pre-image of E under f
is in Σ; that is, for all E ∈ T

f−1(E) := {x ∈ X|f(x) ∈ E} ∈ Σ

Proposition 2. In the case f : X → R, continuous functions are all measurable.

This follows from the fact that, for every t ∈ R, the set E = {x ∈ X : f(x) >
t} is open and therefore measurable.

Theorem 2. Let h = {(Sk, π̂k)}kk=1 be a Generalized QuantTree histogram
constructed using measurable functions fk : Rd → R∀k. Let Th be a statistic
defined over batches W such that Th(W ) only depends on the number of samples
y1, . . . , yK of W falling in the bins of h. Then, the distribution of Th over
stationary batches W ∼ ϕ0 depends only on the batch size ν, the number of
training points N and target probabilities {πk}k

Theorem 2 implies that the distribution Th computed over stationary batches
by a GQT is independent of ϕ0, d or {fk}, thus allowing us to empirically
estimate its distribution and compute a threshold τ such that the FPR achieved
by GQT is controlled. It is a generalization of Theorem 1, reported from [6],
which is still valid when adopting distances derived from lp norms and quasi-
norms (when p ≤ 1) since these are measurable functions given Prop. 2. Indeed,
as long as fk is measurable for the considered space and X is a continuous
random variable (r.v.) in Rd, by the properties of continuous r.v., we have that
Z = fk(X) is also a continuous r.v. in R. The proof in [25] is thus unchanged.

3.2 Online implementation of KQT

We report some definitions used to define the EWMA statistic Tt in [10].
Tt monitors the proportion of samples falling in each bin of the histogram
constructed over TR. In particular, when a new sample xt is acquired, we
define K binary statistics from the indicator functions of each bin Sj , namely

yj,t = I(xt ∈ Sj), j = 1, . . . ,K (3.2)

to track in which bin xt falls. Denoting the true bin probabilities pj = Pϕ0
(Sj),

i.e. the set of probabilities of a point sampled from ϕ0 to belong to Sj , we have
that:

Eϕ0
[yj,t] = pj , j = 1, . . . ,K (3.3)

where the expected value Eϕ0 is computed under the assumption that xt ∼ ϕ0.
Since ϕ0 is unknown, so are the bin probabilities (p1, . . . , pK), which are a
realization of a random vector and can be approximated by π̃j ≈ pj , where
π̃1, . . . , π̃K are defined as:

π̂j :=
Nπj
N + 1

, j < K and π̂K :=
N + 1πK
N + 1

(3.4)
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The distribution of any statistic defined over a GQT histogram does not depend
on ϕ0 nor on d, thus KQT-EWMA is a nonparametric change detection algorithm.
We report Proposition 1 from the paper [10] and show that the proof is also
valid in our framework adopting Generalized QT.

Proposition 3. Let {Sj}Kj=1 be a partitioning built by the (Generalized) QuantTree

algorithm with target probabilities {πj}Kj=1 on a training set TR ∼ ϕ0 of size
N . Then, the bin probability vector (p1, . . . , pK) is drawn from the Dirichlet
distribution:

(p1, . . . , pK) ∼ D(π1N, π2N, . . . , πKN + 1) (3.5)

Proof. We leverage the results in [9], linking the Dirichlet distribution to the
stick-breaking process. In particular, the process generates a sequence of K
random variables q1, . . . , qK as:

qj =

j−1∏
k=1

(1− q̃k) · q̃j , j < K, qK = 1−
K−1∑
j=1

qj (3.6)

where q̃j for j = 1, . . . ,K − 1 are defined as:

q̃j ∼ Beta(γj ,

K∑
k=j+1

γj) (3.7)

and γ1, . . . , γK are the parameters that define the stick-breaking process. In [9]
it has been shown that:

(q1, . . . , qk) ∼ D(γ1, . . . , γK) (3.8)

To prove the proposition it is enough to show that there exists a specific configuration
of γj that the bin probabilities pj of a (Generalized) QT histogram can be
expressed as qj in 3.6. To this purpose, we recall three Propositions from [25].

Proposition 4. Let x1,x2, . . . ,xM be i.i.d. realizations of a continuous random
vector X defined over D ⊂ Rd. Let f : Rd → R be a measurable function, and
let Z = f(X). We denote with z(1) ≤ z(2) ≤ · · · ≤ z(M) the sorted images of
{xj} through f . For any L ∈ {1, 2, . . . ,M}, we define the sublevel sets:

Qf,L := {x ∈ D : f(x) ≤ z(L)} (3.9)

Then the random variable p = Px(Qf,L) is distributed as Beta(L,M − L+ 1)

Proposition 5.

pk = p̃k ·

1−
∑
j<k

pj

 = p̃k
∏
j<k

(1− p̃j) (3.10)

Proposition 6. For a Generalized QuantTree histogram, the random variables
{p̃k} are independent.
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These results from [25] show that pj can be written as in 3.10, where p̃j
are independent and follow Beta distributions:

p̃j ∼ Beta(πjN, (1−
j∑

k=1

πk)N + 1), j = 1, . . . ,K − 1 (3.11)

Now, we only need to find a suitable choice of γ1, . . . , γK to express the p̃j as
the q̃j in 3.6. If we define γj = πjN for j < K as in 3.11 and γK = πKN + 1,
we obtain that:

K∑
k=j+1

γk =

K∑
k=j+1

πkN + 1 = (1−
j∑

k=1

πk)N + 1 (3.12)

where the last equality follows from
∑K

j=1 πj = 1. Equation 3.12 ensures the
correspondence between p̃j in 3.11 and q̃j in 3.7, which implies the thesis.
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Chapter 4

Methods

4.1 Other Drift Detection strategies

In the field of concept drift detection, various methods are employed: some are
based on the data distribution, using distance functions or metrics to measure
the dissimilarity between the distribution of historical data and new data.
Parametric methods assume a known probability distribution, tend to be quite
fast and also require significantly less data compared to non-parametric methods.
Additionally, since they tend to be less flexible and suitable for less complex
problems, they are more interpretable. However, these methods are not suitable
for real-world data streams, where ϕ0 is unknown; as non-parametric methods
make fewer assumptions, their applicability is much more general. Also, due
to the reliance on fewer assumptions, non-parametric methods are more robust.
Histograms provide a simple and flexible non-parametric modeling approach for
describing the underlying distribution ϕ0.

4.1.1 EI-kMeans

Equal Intensity k-means (EIKM) Space Partitioning is a cluster-based histogram
proposed in 2019 [A.Liu, J. Lu, G. Zhang, Concept Drift Detection via Equal
Intensity k-means Space Partitioning [19]] “to address the problems caused by
irregular partitions”. EIKM builds a histogram that dynamically partitions
the data into an appropriate number of small clusters, searching for the best
centroids to create partitions; it then applies Pearson’s chi-square test (χ2

test) to conduct the null hypothesis test. Pearson’s test ensures that the test
statistics remain independent of the sample distribution and the sample size;
moreover, the drift threshold can be calculated directly according to Chi-square
distribution and it can be implemented in an offline manner. The overall EIKM
complexity is O(nK).
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The algorithm can be summarized into 3 steps:

1. Initialize the greedy equal-intensity cluster centroids.

2. Segment the feature space as small clusters. This step is based on k-means
clustering, which divides the datasets into a set of individual clusters. This
ensures no partition will step across clusters. The number of partitions is
continuously reduced if the number of samples in each partition does not
satisfy the desired values.

3. Detect drifts with Pearson’s chi-square test

4.1.2 SPLL

Semiparametric log-likelihood detector (SPLL) was proposed in L. I. Kuncheva,
“Change Detection in Streaming Multivariate Data Using Likelihood Detectors”
(2013) [15]. It models the stationary distribution Φ0 as a Gaussian Mixture
Model (GMM) (semiparametric approximation), and number of components in
the mixture can be small as C = 2. During inference, the test statistic associated
with a batch W is computed by an upper bound of the log-likelihood of its
samples, which is proportional to the sum of the negative squared Mahalanobis
distances between each observation and its closest mean. The expression proposed
is:

SPLL = −LL
ν
∝ 1

ν2

∑
x∈W

(x− µi∗)
T
Σ−1 (x− µi∗) .

where ν is the cardinality of the batch W and LL is the scaled upper bound.
The adaptation of the one-shot change detection algorithm SPLL [15] also

comes from [10], which present an adaptation scheme for both batch-wise and

element-wise algorithm to the streaming case. SPLL fits a Gaussian Mixture ϕ̂0
to approximate the stationary distribution. Upon this, a test statistic computed
batch-wise T ν is defined. The algorithm detects a change as soon as T ν(Wt) >
hν , where the threshold hν is set to control the probability of false alarm over
each individual batch. The very same monitoring scheme can be adopted to
monitor datastreams at a controlled ARL0, as long as the threshold hν is
accordingly modified. Let the threshold hν be such that:

P(T ν(W ) > hν) = α (4.1)

where W is a batch of ν samples drawn from ϕ0. Then, the monitoring scheme
T ν(W ) > hν yields ARL0 ≥ ν/α. This implies that, when we set α = ν/ARL0,
our online change detection algorithm is conservative, since its ARL0 can be
greater than the target. In some cases, however, we can provide guarantees
that α = ν/ARL0, to exactly control the ARL0, as shown in the following
proposition, which is proved in the supplementary material of [10]. Let the
threshold hν be such that:

P(T ν(W ) > hν |TR) = α (4.2)
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where W is a batch of ν samples drawn from ϕ0. Then, the monitoring scheme
T ν(W ) > hν yields ARL0 = ν/α. In the batch-wise SPLL detector, we
compute the thresholds to guarantee the FPR using bootstrap over the training
set TR since the distribution of the statistics depends on ϕ0. We are under
the hypothesis of this last proposition since the false positive probability is
conditioned on the training set realization. Therefore, by adopting the same
monitoring scheme and setting hν to guarantee P(T ν(W ) > hν |TR) = ν/ARL0

we can obtain the target ARL0.

Computational Complexity - A comparison

A comparison of the computational complexity of QT and the other considered
methods is reported in the following table, where M is the number of Gaussian
components employed by KQT with the Weighted Mahalanobis distance.

Method Training Cost Inference Cost

KQT (Weighted Maha.) O
(
KT

(
N +MNd2 + d3

))
O
(
νKMd2

)
KQT (lp (quasi)-norms) O

(
KT

(
N +Nd+ d3

))
O (νKd)

QuantTree O(KN logN) O(νK)
EIKM O

(
K2N logN

)
O(νK)

SPLL test need to compute the log-likelihood of each sample with respect
to each of the m components of a GMM ϕ̂0 fit on TR. This results in O(md)
operations per sample. In case of batch-wise monitoring, the log-likelihood is
averaged over the batch and only 1 value has to be stored. Details can be read
in the original paper [15]. To monitor the log-likelihood of each new observation

xt with respect to ϕ̂0. The statistic used requires sorting the entire sequence
of log-likelihood values, which results in additional O(t log t) operations. In
this case, all the t values of the sequence have to be analyzed and stored, thus
computational complexity and memory requirement steadily increase over time.
Since this is not appropriate for online monitoring, the algorithm operates over
a window of most recent w samples.

A comparison of the computational complexity of QT-EWMA and the other
considered methods is reported in the following table, where M is the number
of Gaussian components employed by KQT with the Weighted Mahalanobis
distance, m is the number of Gaussian components used by SPLL, and w is the
cardinality of the window of most recent samples employed to compute the test
statistic.

Method Training Cost Inference Cost (per sample)

KQT-EWMA (W.M.) O
(
KT

(
N +MNd2 + d3

))
O
(
KMd2

)
KQT-EWMA (lp) O

(
KT

(
N +Nd+ d3

))
O (Kd)

QT-EWMA O(KN logN) O(K)
SPLL (online) O

(
mNd2

)
O (md+ w logw)
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4.2 Dimensionality Reduction techniques

Dimensionality reduction (DR) is a fundamental technique for improving the
performance of machine learning algorithms. It is defined as the projection
of high dimensional data into a low dimensional space by reducing the input
features to the most relevant ones. There are two main methods: feature
transformation and feature selection. Feature transformation, which we’ll call
DR for simplicity, creates new feature combinations by identifying patterns and
reducing noise in the original dataset. On the other hand, feature selection
retains the most relevant features from the original dataset without changing
them. In a more formal sense, DR is about finding a function or map A : Rd →
Rp, where p ≪ d, to be applied to each instance (Xi) of a dataframe. The
work by Bahri, Bifet, et al. (2020), presents a taxonomy that categorizes DR
techniques into three main groups:

1. Data-Dependent Techniques: These methods rely on the entirety of the
input data to perform the transformation. They analyze the data’s intrinsic
characteristics to achieve the dimensionality reduction.

2. Data-Independent Techniques: In contrast, data-independent techniques
are based on random projections. These techniques do not rely on the
specific properties of the input data for the transformation. Instead, they
employ random projections to reduce dimensionality without considering
the underlying structure of the data.

3. Graph-Based Techniques: This category consists of data-dependent techniques
that employ a graph-based approach. The primary objective of graph-
based techniques is to preserve the local structure or neighborhood relationships
of the data even after the dimensionality reduction process.

Data-dependent techniques construct a projection function – or matrix – from
the data. This requires the presence of the entirety – or at least a part of –
the dataset. In the streaming context, where data are potentially infinite, the
classical techniques from this category are therefore limited, since keeping the
entire data stream in memory is impractical. Principal Components Analysis is
one important example. Data-independent techniques are mainly based on the
principle of random projections. These techniques are therefore appropriate for
evolving streams because they generate the projection matrices (or functions),
and transform data into a low-dimensional space, independently from the input
data.

An interesting property of any dimensionality reduction technique is to
consider its stability. In this context, a technique is said to be ϵ stable, if
for any two input data points, x1 and x2 , the following inequation holds:

(1− ϵ) ∗ ||x− y||2 ≤ ||Φ(x)− Φ(y)||2 ≤ (1 + ϵ) ∗ ||x− y||2

that is, the Euclidean distances in the original input space are relatively conserved
in the output feature space.
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PCA can be computationally expensive for large data and feature selection
requires additional processing steps. Random Projections or hashing can be
much faster and still achieve good results in reducing dimensionality. We will
experiment with different techniques to identify the most relevant features in the
dataframes given the purposes and methods we discussed, considering accuracy
and processing time.

4.2.1 Johnson-Lindenstrauss Lemma and Random Projections

The Johnson-Lindenstrauss Lemma is a fundamental result in mathematics and
computer science, particularly in the field of dimensionality reduction and high-
dimensional data analysis. It addresses the problem of reducing the dimensionality
of data points while approximately preserving their pairwise distances. This
lemma is crucial in various applications such as machine learning, data compression,
and data visualization.

Statement

Given a set of N data points in a d-dimensional Euclidean space, the Johnson-
Lindenstrauss Lemma (JLL) states that for any ϵ > 0 and a sufficiently large
number of dimensions m (with m ≤ d), there exists a linear mapping (or
projection) Φ from the high-dimensional space to a lower-dimensional space
of dimension m such that the pairwise distances between the projected points
are approximately preserved. In other words, for all data points x and y:

(1− ϵ) ∗ ||x− y||2 ≤ ||Φ(x)− Φ(y)||2 ≤ (1 + ϵ) ∗ ||x− y||2 (4.3)

Where ||x − y|| is the Euclidean distance between data points x and y in the
original high-dimensional space, Φ(x) and Φ(y) are the projections of x and
y onto the lower-dimensional space. To obtain a good approximation, m (the
dimension of the lower-dimensional space) needs to be sufficiently large, but it
is much smaller than the original dimension d. The exact value of m depends on
ϵ and the number of data points N. There is a trade-off between dimensionality
reduction (m) and the quality of the approximation (ϵ). In particular, a set of N
points in a high dimensional euclidean space can be mapped into a O(logN/ϵ2
dimensional euclidean space such that distance between any two points change
only by a factor 1± ϵ. We notice that the new dimensionality m is independent
of d, all pairwise distances are maintained within an arbitrarily small ϵ.

Random projections

While principal component analysis (PCA) finds an embedding with optimal
leverage distortion of instances between the original and embedded vectors,
the Johnson-Lindenstrauss Lemma bounds the worst case distortion between
the distances within the original space and distances within the embdedded
space. JLL is powerful not only because it guarantees the existence of a suitable
mapping Φ for dimensionality reduction but also because it doesn’t prescribe a
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specific form for Φ. Instead, it asserts that such a mapping can be found with
certain properties. This flexibility in choosing the mapping makes the lemma
practically useful. Random projections (RPs) involve mapping high-dimensional
data onto a lower-dimensional subspace using a random linear transformation.
This transformation is typically achieved through the multiplication of the
data matrix by a random matrix with appropriately scaled entries. Random
projections are appealing due to their computational efficiency and ability to
approximate pairwise distances between data points. Moreover, they work well
across various types of data and do not rely on data-specific characteristics.
In their paper “Finding Structure with Randomness: Probabilistic Algorithms
for Constructing Approximate Matrix Decompositions” [12], Halko, Martinsson,
and Tropp provide a comprehensive overview of the theory and applications of
RPs, particularly in the context of approximating matrix decompositions, such
as the Singular Value Decomposition (SVD) / Principal Component Analysis
(PCA). RPs can be used to construct low-rank approximations of matrices.
This is particularly valuable when dealing with massive datasets where exact
factorizations are computationally expensive. The authors provide theoretical
guarantees for the quality of the low-rank approximations and introduce randomized
algorithms that leverage random projections to efficiently compute approximate
matrix factorizations. These algorithms significantly reduce computational complexity
compared to traditional deterministic methods. Additionally, they present empirical
results and emphasize that random projection-based methods offer a flexible
framework that can be adapted to different problem domains and data types.

4.2.2 Eckart-Young Theorem and Principal Components
Analysis

Principal component analysis (PCA) stands as one of the most widely used and
straightforward unsupervised techniques. A lower dimensional basis is sought in
such a way to minimize the sum of squared distances between the original data
points and their projections. Essentially, PCA aims to make these distances as
close to zero as possible while simultaneously maximizing the variances between
the first few components. In mathematical terms, PCA seeks to discover a linear
mapping created by a set of orthogonal linear combinations, often referred to
as eigenvectors or principal components (PCs). However, it’s important to note
that PCA calculates these eigenvectors and eigenvalues based on a computed
covariance matrix, relying on the entire dataset. This approach poses challenges
for streaming data scenarios because it necessitates re-estimating the covariance
matrix entirely when new observations arrive, which can be computationally
inefficient.

PCA can be seen as a specific application of Singular Value Decomposition
(SVD), which is a more general factorization technique that decomposes a
matrix into its constituent singular values and vectors, enabling applications
in data compression, noise reduction, information retrieval, ... Given a matrix
A, SVD decomposes it into A = UΣV T , where U and V are called respectively
”left” and ”right” singular vectors matrix and Σ is a pseudo-diagonal matrix
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containing the singular values. In 1936, Carl Eckart and Gale Young published
a seminal paper titled ”The approximation of One Matrix by Another of Lower
Rank”. This laid the foundation of understanding how to approximate a given
matrix with a low-rank one, which is a core concept in SVD. The Eckart-
Young Theorem states that for any rank-k approximation of a matrix A, where
k < rank(A), the best approximation (in terms of the Frobenius or the operator
norm) is achieved by using the first k singular values and their corresponding
singular vectors from the SVD decomposition of A:

Ak = UkΣkV
T
k

where Ak is the best rank-k approximation of matrix A, Uk, Σk and V T
k are the

first k singular vectors and values of the decomposition. Eckart and Young’s
work is fundamental to understand how SVD can be applied to approximate and
reduce data dimensionality and their theorem provides a rigorous mathematical
framework.

PCA aim is to maximize the variance and minimize the covariance of data
features in this new base, which thus depends on the data itself.

1. Let A be our data (N, d) matrix. We define Ā as its centered version with
respect to the mean of A columns: H = I − 1

n11
T such that Ā = HA

2. We define the sample covariance matrix as S = ĀT Ā
N−1 , thus S is symmetric

and positive definite

3. We solve S = V DV T ; D = V TSV contains the eigenvalues of S and V
vectors are the principal components

The problem of finding k orthonormal directions vi is the same as to minimize
the representation error:

JPCA = E||x−
k∑

i=1

⟨vi,x⟩vi||2

Randomized SVD/PCA

Randomized SVD is an innovative and efficient technique for approximating the
dominant singular values and vectors of a matrix, making it particularly valuable
in scenarios where traditional SVD methods are computationally infeasible. It
leverages randomization and sampling to approximate the dominant singular
values and vectors of a matrix efficiently. It offers several advantages:

• Scalability: Randomized SVD is particularly well-suited for large-scale
datasets. By using random projections and sampling, it significantly
reduces the computational complexity compared to traditional SVDmethods.

• Memory Efficiency: Unlike traditional SVD, which requires storing the
entire matrix, it operates on matrix sketches or subsets, making it memory-
efficient for high-dimensional data.
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• Speed: The use of randomization techniques enables faster computation
of singular values and vectors, making it suitable for real-time or near-
real-time applications.

We report here the algorithm shown in Halko et al. (2010) work.

1. Let A be a matrix with intrinsic low rank r. We build a random projection
matrix: A ∈ RN∗, P ∈ R∗∖ then Z = AP ∈ RN∗∖

2. We perform QR factorization of Z, Z = QR; then Q will be an orthonormal
basis for A

3. We project A on Q: W = QTA

4. We compute SVD decomposition for W: W = UwΣwV
T
w

5. Then, A ≈ UrΣrV
T
r ≈ UΣwV

T
w where U = QUw

That is, we first construct a low dimensional space that captures the action of
the data matrix, then we restrict the matrix to that subspace and compute a
standard factorization (QR, SVD, ...) here.

Sample-based PCA vs “theoretical” PCA

To study the algorithm behavior under different conditions, as an alternative
approach and mostly as a “sanity check”, we explored another similar technique
which we refer to as “theoretical” version of PCA. The preprocessing usually
operates on the training data, employing SVD to derive the principal components.
This process, being sample-dependent, is inherently influenced by the peculiarities
of the observed dataset. Rather than relying on the sample-specific covariance
matrix of the training data, our ”theoretical” algorithm leverages the covariance
matrix derived from the original distribution used to generate both training and
testing datasets: by utilizing the eigenvectors and eigenvalues of the theoretical
covariance matrix, we mitigate potential issues arising from outliers and get a
broader perspective by aligning the DR with the underlying statistical properties
of the data generation process. It is worth noting that while sample-based
PCA offers valuable insights into the algorithm’s behavior in realistic settings,
theoretical PCA serves as a benchmark for understanding fundamental characteristics
and assessing the algorithm’s robustness. The comparison between these two
approaches is not fair, since in practical situations the true underlying distribution
of the data is unknown or highly complex: theoretical PCA cannot be applicable,
it does not mirror real-world conditions, but in our case is a valuable instrument
for assessing the potential impact of extreme cases or outliers in the algorithm
behavior, acting as a stress test. We explored different configurations:

1. (Centering (removing the mean))

2. Rotation (projection on eigenvectors)

3. Centering + Rotation
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Figure 4.1: from Wikipedia: Illustration of the singular value decomposition
UΣV ∗ of a real 2×2 matrix M . Top: The action of M, indicated by its effect
on the unit disc D and the two canonical unit vectors e1 and e2. Left: The
action of V ∗, a rotation, on D, e1, and e2. Bottom: The action of Σ, a scaling
by the singular values σ1 horizontally and σ2 vertically. Right: The action of
U , another rotation.

4. Rotation + Scaling (projection on eigenvectors, multiplication by eigenvalues)

5. Centering + Rotation + Scaling

It’s worth noting that QT performance is robust to any translation, since
the histogram spans the entire space guided by the distribution’s quantiles.
Although translation-invariant, the transformation induced by centering before
PCA may alter the subsequent rotation and scaling components.

Robust PCA

If the input vectors are contaminated by outliers, the estimation of mean and
covariance may be wrong, resulting in very poor performance of the PCA.
There are approaches to have a robust PCA which basically amounts to have
robust estimates of the mean and covariance. In 2009, Emmanuel J. Candes,
Xiaodong Li, Yi Ma, and John Wright published “a paper about a curious
phenomenon: recovering the superposition of a low rank matrix and a sparse
matrix as components of the data matrix”[8]:

A = L0 + S0
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with L0 low rank and S0 sparse. Classical PCA seeks the best rank-r matrix in
a l2 sense, by solving:

minimize ||A− L||
subject to rank(L) ≤ r

“however, its brittleness with respect to grossly corrupted observations often
puts its validity in jeopardy - a single corrupted entry in A could render the
estimated L̂ arbitrarily far from the true L0. The authors aim to recover a low-
rank matrix L0 from highly corrupted measurements A = L0+S0 where entries
in S0 can have arbitrarily large magnitude, and their support is assumed to
be sparse, but unknown. Their proposed solutions principal component pursuit
(PCP) was used for our experiments:

minimize ||L||∗ + λ||S||1
subject to L+ S = A

(4.4)

where || ||∗ represents the nuclear norm, and || ||1 the l1 norm.

4.2.3 Kernel PCA

Kernel Principal Component Analysis was presented during the International
Conference on Artificial Neural Networks (ICANN) in 1997 by B. Schölkopf,
A. Smola, and K.R. Müller. They generalized PCA to a nonlinear setting. As
reported in the paper [23], kPCA first maps the data nonlinearly into a feature
space F by

Φ : RN → F, a 7→ A

Even if F has arbitrarily large dimensionality, for certain choices of Φ:, PCA
can still be performed in F , by the use of kernel functions known from Support
Vector Machines. Kernel functions calculates the dot product of data samples
under Φ: κ (ai,aj) = ϕ (ai)ϕ (aj)

T
. In our case, we used a radial basis function

(RBF) kernel , i.e.:

κ (ai,aj) = exp
(
−γ ∥ai − aj∥22

)
This kernel is computed for every pair of points, projecting our dataset to
this new subspace. Then, dimensionality reduction is conducted to obtain the
principal components through SVD/PCA.

4.2.4 Independent Component Analysis

A simple problem used to describe ICA might be considering a recording studio
with a single microphone positioned at its center, and various musicians playing
different instruments around it. Each instrument’s sound reaches the microphone
and the recorded audio contains a blend of all the different sounds. The challenge
is to find a way to extract individual recordings of each instrument from this
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mixed audio. Independent Component Analysis is a technique that transforms
a dataframe into a set of maximally independent components. When applied
to our waveform, ICA could effectively separate the different instruments into
distinct, unmixed audio recordings. While PCA looks for uncorrelated factors
(a constraint on the second-order statistic), ICA looks for independent factors
(a constraint on all the moments). We must notice that after PCA we usually
decide to retain a subset of the components as a reduced representation of the
data; ICA, on the other hand, typically preserves the same number of inputs
and outputs - since outputs are mutually independent, there is no obvious way
to drop components. Still, ICA can potentially reduce dimensionality in the
scenarios where there are few latent factors that explain data’s variability while
being independent from each other. As explained in A. Hyvärinen, E. Oja (2000)
paper “Independent component analysis: algorithms and applications” an ICA
model is strictly related with non-gaussianity [13]. The Central Limit Theorem,
a fundamental concept in probability theory, states that when certain conditions
are met, the distribution of the sum of independent random variables approaches
a Gaussian distribution. Consequently, when you add two independent random
variables together, the resulting distribution generally exhibits greater resemblance
to a Gaussian distribution than either of the original two random variables
individually. The paper outlines the algorithm we employed, providing details
and recommendations (e.g. preprocessing steps).
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Chapter 5

Batch-wise experiments

5.1 Datasets

To get stable performance measures, change detection algorithms need to be
executed on a large number of datasets and, to study the detection performance
when data dimension scales, datasets should be affected by changes at known
locations. Unfortunately, there are not many real-world datasets exhibiting
real changes that satisfy these requirements. In practice, experiments are often
performed on either synthetically generated data or on real-world datasets that
have been manipulated introducing changes at known locations.

5.1.1 Synthetically generated data

Generating synthetic data, or manipulating real-world dataframes, is usually
the most straightforward way to arbitrarily increase the number of datasets
to be tested, thus achieve the desired accuracy in the performance measures.
However, synthetic data rarely represent realistic monitoring scenarios, as they
follow quite simplistic distributions. Most of the papers in the literature resort
to introducing arbitrary shift/scaling, swapping few components of the original
dataset, or mixing different datasets; obviously, these practices yield changes
having magnitude that depends on the data distribution and dimension. Typically,
the magnitude of the introduced changes is not controlled, and most of experimental
practices lead to results that are difficult to reproduce and compare with. This
problem becomes particularly relevant when the data dimension scales. For
example, in [16], the authors wrote that it is difficult to find an acid test for
change detection in unlabeled multidimensional data; for their experiment to
test SPLL with and without PCA, they chose two change heuristics which
could be regarded as instances of equipment failure. In the first one (Shuffle
Values), a random integer k, 1 ≤ k ≤ d was generated to determine how
many features/dimensions out of d will be affected; k random features are
chosen, and the values of each feature are randomly permuted within the post-
change dataframe. In the second one (Shuffle Features), again a random integer
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k, 1 ≤ k ≤ d is sampled to determine how many features/dimensions will
be affected, then the chosen k features are randomly permuted within the
post-change dataframe. As they state, the shuffle values change resembles a
case where a group of sensors stop working as a result of a technical fault
and produce random readings within the sensor ranges. The shuffle features
change can be likened to bleeding of signals into one another. This way is not
erroneous and provides results, but does not seem to be the best approach
to generate a synthetic dataset. To enable a fair comparison among change-
detection algorithms, C.Alippi, G.Boracchi and D.Carrera designed “Controlling
Change Magnitude” (CCM), a rigorous method to introduce changes in multivariate
datasets [2]. In particular, they measure the change magnitude as the symmetric
Kullback-Leibler divergence (see Eq. 1.5) between the pre- and post-change
distributions, and introduce changes by applying a rototranslation directly to
the data. An algorithm to iteratively identify the rototranslation parameters
yielding the desired change magnitude is presented in the paper.

Monomodal Gaussian

We consider a stationary distribution ϕ0 which is a null-mean Gaussian with
a random covariance matrix. The post-change distribution ϕ1 is obtained by
roto-translation using the CCM framework, such that the symmetric Kullback-
Leibler distance (sKL) between ϕ0 and ϕ1 is fixed. If not specified, in our
experiments the target sKL is set to 1. N points are sampled from ϕ0 to generate
the training set, and a number ν of samples is drawn to generate each one of the
nb batches both from ϕ0 (pre-change test data, to compute FPR) and ϕ1 (post-
change test data, to compute TPR). In Figure 5.1 are shown two examples of

Figure 5.1: N = 1024 training points and one batch of 128 testing points drawn
from a bidimensional monomodal gaussian ϕ0 (respectively in gray and blue),
and one batch of 128 testing points drawn from the post-change distribution ϕ1
obtained through CMM such that sKL = 1 (a) and sKL = 10. (b)

this dataframe, with ϕ1 built such that sKL = 1 and sKL = 10 respectively. As
we observe the impact of increasing sKL on our synthetic datasets, discerning
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Figure 5.2: N = 1024 training points and one batch of 128 testing points drawn
from a tridimensional monomodal gaussian ϕ0 (respectively in gray and blue),
and one batch of 128 testing points drawn from the post-change distribution ϕ1
obtained through CMM such that sKL = 1.
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distinct clusters among data points becomes evident. This can be observed both
in two dimensions and three (as in Fig. 5.2) - even if in the latter case might be
struggling since I had to print the dataframe on a 2D thesis page.

5.1.2 Real-world dataframes

In [6], the authors employ real-world datasets from the UCI Machine Learning
Repository with dimensions ranging from d = 5 to d = 50. These datasets
contain no distribution changes, thus stationary samples are drawn by sampling
the datasets, while the post-change distribution ϕ1 is generated by shifting
stationary data in a random direction with a magnitude proportional to the
variance of each component. In [25], a new UCI high dimensional dataframe
(Swarm dataframe, with d = 2400) is used to assess KQT’s performances. We
rely on this dataframe because of its high dimensionality. Also, we don’t have
to construct or synthetically generate the post-change distribution, as we will
describe.

Swarm Behavior dataset

The Swarm Behavior classification dataset from the UCI Machine Learning
Repository comprises high-dimensional data (d = 2400) describing the motion
of large groups of animals, which are labeled as flocking or not-flocking. Flocking
behavior refers to the way that groups of birds, insects, fish or other animals,
move close to each other. They are able to move as a group with the same
velocity, yet without running into each other. Even though it is quite simple
for an individual to move in a flock, the behavior of the whole group can
appear complex to an observer. The University of New South Wales (UNSW
Canberra) ran a survey explaining that “humans easily recognise flocking in
nature, although sometimes it is hard for them to explain why. However, it
is very hard for a machine to recognise flocking. We want to understand how
humans do it”. The dataset achieved from the survey contains 24017 instances
with 2400 features each and has no missing values. The attributes are xm, ym as
the position of each boid (Boids is an artificial life program, developed by Craig
Reynolds in 1986, which simulates the flocking behaviour of birds. The name
“boid” corresponds to a shortened version of ‘bird-oid object”), then contains
the velocity vector, an alignment vector, a separation vector, a cohesion vector,
... several attributes repeated for allm boids, wherem = 1, . . . , 200. Class labels
are binary; 1 refers to flocking, grouped, aligned, and 0 refers to not flocking, not
grouped, and not aligned. In [25] the authors define the stationary distribution
ϕ0 as the distribution of data describing flocking groups of animals; in contrast,
post-change distribution ϕ1 is defined by data corresponding to non-flocking
animals. An exemplary representation is given in Figure 5.3, where sequences
of (x, y) positions of several individuals belonging to flocking (in orange) and
non-flocking (in blue) groups are shown as a scatterplot.
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Figure 5.3: Series of datapoints representing position as (x, y) scattered for
several individuals belonging to flocking (in orange) and non-flocking (in blue)
groups. The dataframe can be found in the UC Irvine Machine Learning
Repository.

5.2 Figures of Merit

As we wrote in the introduction (see Equations 1.7 and 1.8), True Positive Rate
(TPR) and False Positive Rate (FPR) are important metrics used to evaluate
the performance of a binary classification model. We assess the performance of
batch-wise CD algorithms with these two standard figures of merit, which we
report here.

TPR =
# post-change batches triggering an alarm

# post-change batches
∗ 100 (5.1)

FPR =
# pre-change batches triggering an alarm

# pre-change batches
∗ 100 (5.2)

We set the detection thresholds in our experiments to yield an empirical FPR
of α = 5%. To compare the detection power, we rank the algorithms according
to their TPR or the difference ∆(TPR − FPR). We write again that FPR is
a critical metric in monitoring systems, a synonym of the trustworthiness of an
alert, measuring the proportion of instances where the system incorrectly raises
an alert, or signals an anomaly, when there is none; it can be more critical than
the True Positive Rate (TPR). Quantitative criteria also include the execution
time and the memory usage. Qualitative criteria, such as robustness, also play
a significant role in evaluating algorithm performance.

5.3 Detectability loss with QuantTree and kQT

In [3] the authors show that the magnitude of a change can be naturally measured
by the symmetric Kullback-Leibler divergence (Eq. 1.5); they consider change-
detection problems in Rd and investigate how d affects the detectability of a
change when monitoring the log-likelihood of a datastream, and introduce the
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Signal-to-Noise Ratio of the change (SNR) to quantitatively assess the change
detectability when monitoring the log-likelihood:

SNR (ϕ0 → ϕ1) :=

(
E

x∼ϕ0

[L(x)]− E
x∼ϕ1

[L(x)]
)2

var
x∼ϕ0

[L(x)] + var
x∼ϕ1

[L(x)]

where var[·] denotes the variance of a random variable. In particular, SNR(ϕ0 →
ϕ1) measures the extent to which ϕ0 → ϕ1 is detectable by monitoring the
expectation of L, as they considered the log-likelihood of the analyzed data with
respect to the stationary distribution ϕ0 (which, we remind, is often unknown
and has to be preliminarily estimated from a training set of stationary data.

In this empirical analysis, we generated training sets withN ∈ {1024, 2048, 4096, 8192, 16384}
and test batches (ν = 128) from monomodal gaussian distributions with zero
mean in Rd with d ∈ {2, 4, 8, 16, 32, 64, 128, 256}. The post change distribution
ϕ1 was built such that the symmetric KL is unitary. To test the effects of
increasing dimensionality, we measure TPR and FPR obtained from post-change
and stationary batches respectively with QuantTree and kernel QT histograms
with K = 64 bins built, in the latter case, using Mahalanobis and Weighted
Mahalanobis distances. The FPR desired value is set to α = 0.05. Pearson
statistic was chosen for the hypothesis tests. The data was generated 100 times
and each time TPR and FPR were computed over 100+100 test batches. We
plot the mean values of our results in Fig. 5.4.

The results reveales that with increasing dimensionality, the TPR converges
to the FPR, even if the sKL divergence between stationary and post-change
distributions is fixed. We can see that regardless of the dimensionality of the
space it is built in, QuantTree (QT) histogram has effective control over the False
Positive Rate at the specified threshold α. In contrast, both the Mahalanobis
and Weighted Mahalanobis methods exhibited challenges in maintaining control
with high dimensional data, leading to an undesirable escalation of both True
and False Positive Rates to 100%. This observed outcomes can be changed
employing a training set of increased cardinality |TR| as it’s evident in Figure 5.5.
With the Mahalanobis distance, control over FPR is a little more stable. It is
worth noting that FPR does not depend on sKL since it is only measured on
batches drawn from the stationary distribution ϕ0.

We provide a rigorous study of the challenges that change-detection methods
have to face when data dimension scales. Our empirical analysis, performed by
keeping the change-magnitude constant when scaling dimensionality, confirms
detectability loss when using synthetically generated data from monomodal
gaussians. Ongoing works concern extending this study to other change-detection
approaches; we will try several dimensionality reduction techniques that can
be applied to these algorithms, considering that one of the most important
characteristics of QT is its small computational requirement, making it suitable
for online applications.
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Figure 5.4: TPR and FPR measured on data from monomodal gaussians
with increasing dimensionality and sKL = 1 fixed, by: (a) QuantTree;
(b) Mahalanobis kQT; (c) Weighted Mahalanobis QT given training sets
TR of increasing cardinality from left to right. In these experiments, the
True Positive Rate (TPR) reaches the False Positive Rate (FPR) when the
dimensionality of the data increases. A greater number of training points can
delay this phenomenon. Moreover, while the QuantTree (QT) algorithm seems
to effectively control the False Positive Rate at the given threshold at any
dimension, both the Mahalanobis and Weighted Mahalanobis methods cannot.
Consequently, in the latter cases, both the True Positive Rate and False Positive
Rate escalate to 100%. Also this undesirable outcome can be mitigated and
improved with a training set of increased cardinality. The data was generated
100 times and each time TPR and FPR were computed over 100+100 test
batches.
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Figure 5.5: FPR obtained by kQT with weighted-M. and Mahalanobis distances
over dataframes of increasing dimensionality with sKL = 1 fixed. Given the
Mahalanobis distance, control over FPR is a little more stable. The data was
generated 100 times and each time TPR and FPR were computed over 100+100
test batches.

Increasing sKL

What if we increase the distance between the stationary distribution and the
post-change distribution? We try to perform the same experiment with QuantTree:
all the parameters are the same, but sKL divergence (see Eq. 1.5) is gradually,
bus substantially, incremented. We expect the FPR to not change, since it is
an expected value computed on samples drawn from the stationary ϕ0 (it is,
indeed, completely independent from the post-change distribution, which QT
has never seen being built), but the TPR to increase with the distances between
the two distributions.

In Fig. 5.6 and 5.7 and we show this behavior. Even if these results are
averaged over 5 experiments only, thus are noisy, the trend we expected is
evident. QT achieves a 100% TPR on 4-dimensional Gaussians with sKL(ϕ0 →
ϕ1) = 1, but doubling the number of dimensions halves the TPR. In higher-
dimensional spaces, is it necessary to increase the sKL distance between distributions?
How much can QT performance improve with data dimensionality reduction
techniques?

5.4 EIKM

In addition to QuantTree, the concept drift detection algorithm Equal Intensity
K-Means (EIKM) Space Partitioning was employed for comparative analysis.
This approach coinsists in dynamically dividing the data into small clusters,
determining optimal centroids to create partitions. The algorithm then utilizes
Pearson’s chi-square test (χ2 test) for conducting the null hypothesis test,
ensuring the test statistics remain independent of the sample distribution and
size.

The conducted experiments, illustrated in Figures 5.8 and 5.9, reveal that
EIKM struggles to control the False Positive Rate (FPR) when dealing with
high-dimensional data. Moreover, QuantTree generally achieves a higher power
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Figure 5.6: TPR and FPR obtained by QT over dataframes of increasing
dimensionality with the distance between pre- and post-change distributions
sKL ∈ {1, 2, 4, 8, 16, 32, 64}. The data was generated 5 times and each time
TPR and FPR were computed over 512+512 test batches; we see the effects
of detectability loss when data dimension scales, contrasting an increasing sKL
divergence.

Figure 5.7: Another representation of Fig. 5.6: TPR and FPR obtained by QT
over dataframes of increasing dimensionality with the divergence between pre-
and post-change distributions sKL = x, given different data dimensionalities.
The data was generated 5 times and each time TPR and FPR were computed
over 512+512 test batches.
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Figure 5.8: TPR and FPR achieved on data from monomodal gaussians with
increasing dimensionality and sKL = 1 fixed, given training sets TR of
increasing cardinality from left to right, by QT and EIKM algorithms. No
preprocessing were applied to the dataframes. These experiments were repeated
10 times and TPR and FPR values are averaged over 500+500 test batches.

Figure 5.9: Training and testing time comparison between QT and EIKM given
dataframes of different dimension d and different number of training points
N . It is worth noting that QT processing time is independent from data
dimensionality, and EIKM processing time is not. These experiments were
repeated 10 times and TPR and FPR values are averaged over 500+500 test
batches.

∆(TPR-FPR). These experiments were repeated 10 times and TPR and FPR
values are averaged over 500+500 test batches.

As we can see in Fig. 5.8, while in general EIKM cannot control the FPR at
the 5% threshold, the performances are comparable with the ones of QT given
a sufficient number of training data. Also the comparison of computational
efficiency (Fig 5.9) is noteworthy. Despite QuantTree exhibiting a testing time
approximately 10 times higher than EIKM, its processing time remains within
the range of 10-100 milliseconds. On the other hand, EIKM demonstrates
a consistently higher training time, reaching durations of 100-1000 seconds:
its computation is slightly faster than QT’s in small dimensional dataframes
with a few training points, but QT’s processing time is independent of data
dimensionality while EIKM processing time is not.
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5.5 PCA and randomizedPCA

Our first study of the effect of dimensionality reduction over the performance
of QuantTree and its variants was with Principal Components Analysis and
its randomized version proposed in [12]. We proceeded on the same dataframe
generated from monomodal gaussian distributions in Rd with d ∈ {2, 4, 8, 16, 32, 64, 128, 256}.
Preprocessing was applied to select principal components and our models QuantTree
and kQT with Mahalanobis and Weighted Mahalanobis distances were fed those.
Data was generated and preprocessed, as we decided to run our CD algorithms
on the first d′ ∈ {2, 4, 8, 16, 32, 64, 128, 256} principal components and on the
last d′ selected components, i.e. the ones explaining a minimal amount of the
initial d-dimensional dataframe. As before, the post change distribution ϕ1 was
built such that the symmetric KL is unitary, and TPR and FPR were obtained
from post-change and stationary batches respectively with QuantTree and kernel
QT histograms with K = 64 bins built, in the latter case, using Mahalanobis
and Weighted Mahalanobis distances. We separate the results obtained with
Euclidean, Manhattan, and KQTs built on other lp (quasi)norms. Again, the
FPR desired value was set to α = 0.05 and Pearson statistic was chosen for
the hypothesis tests. The data was generated 20 times and each time TPR and
FPR were computed over 1000+1000 test batches.

QuantTree

In Figure 5.10 are shown TPR (top) and FPR (bottom) measured with QuantTree
on data from two 128-dimensional monomodal gaussian distributions with sKL(ϕ0 →
ϕ1) = 1 preprocessed with PCA and randomizedPCA, given a different number
x of “principal” components retained. To link to the discussion([17],[22]) on
whether it is better to keep principal components or the low-variance components
(which are usually discarded after PCA), we notice that, when keeping low-
variance components (dashed lines), QT achieves a better TPR but FPR increases
likewise. The expectation that concept drifts may manifest in the “low variance
components” is indeed intuitive, considering that a drift implies some change
in the underlying data distribution. However, even points from the pre-change
distributions may trigger an alarm. In fact, these points are projected onto low-
variance components that are computed given an insufficient number of training
points, thus are strongly biased. The effectiveness of low-variance components in
detecting concept drift is intricately tied to the robustness of their computation,
emphasizing the importance of an adequately sized and representative training
set.

We notice that QT’s control of the FPR is lost - if too few training points
are drawn from a high-dimensional distribution - after a PCA-like rotation,
even with no dimensionality reduction. The full-space based results in terms
of TPR and FPR computed on datasets with increasing dimensionality d ∈
{4, 8, ..., 256} are reported in Figure 5.11, where we can confront QT’s outcomes
after PCA rotation with no DR with respect to the ones on the same datasets
not preprocessed.

51



(a)

(b)

Figure 5.10: Keeping high variance or low variance components? TPR
(top) and FPR (bottom) measured with QuantTree on data from two 128-
dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed.
Data is preprocessed with PCA and the first d′ ∈ {2, 4, 8, 16, 32, 64, 128 = d}
components are retained both from the top and the bottom in order of variance
explained. We can observe that while low-variance components (dashed lines)
achieve an higher TPR, QT cannot maintain the FPR anymore. Both TPR
and FPR are compared with the reference dash-dot black line (QT performance
on the same 128-dimensional dataset, with no preprocessing). It’s important to
notice that even if PCA preprocessed comes with no dimensionality reduction,
FPR control is lost if an insufficient number of training points is provided. The
expectation that concept drifts may manifest in the “low variance components”
is indeed intuitive, considering that a drift implies some in the underlying
data distribution. However, even points from the pre-change distributions may
trigger an alarm. TPR and FPR are averaged over (512+512) test batches.

52



Figure 5.11: TPR and FPR achieved by QT on x-dimensional gaussian
dataframes given sKL = 1 fixed. We can confront QT performance after
PCA rotation with no DR with its performance on the same datasets with
no preprocessing: if N is not large enough, the estimated principal components
badly represents the original data distribution and FPR control is lost, as with
Mahalanobis KQT. This bad behavior, which is almost unpredictable given
different experiments with different dataframe, is one of the main point of this
thesis work. We will study other PCA-like rotations and decompose PCA into
different steps to try to understand what is the cause and what can be done to
avoid falling into this difficult situation.

These experiments aim to show how PCA, a common preprocessing technique
for high-dimensional data influences QT’s behavior. QuantTree has shown
robustness in maintaining a low FPR under fixed thresholds, even in challenging
conditions; however a PCA preprocessing, even without dimensionality reduction,
badly influences this QT’s capability. In the scatterplot in figure 5.12, we
again analyze the performance of the QT algorithm on datasets of increasing
dimensionality, varying the number of training points N from 1024 to 16384,
and compare the True Positive Rate (TPR) and False Positive Rate (FPR)
under these different conditions, with and without PCA preprocessing. When
the data undergoes no preprocessing, we know there is a noticeable decline in
the TPR when dimensionality scales. However, the FPR consistently remains
below the predefined threshold of α = 5% independently of d, where traditional
methods often struggle. After applying PCA rotation to the data, the False
Positive Rate (FPR) of QT increases with the dimensionality (d) of the data.
These changes might be influenced by the presence of outliers within the data;
indeed, the effect is mitigated by an increased cardinality of the training set.
In the context of the TPR/FPR scatterplot of fig. 5.12 (b), we observe that
the larger dots, which correspond to higher dimensions of the dataframe, tend
to shift closer to the diagonal line, i.e. as dimensionality increases FPR tends
to approach TPR. Experiments conducted with a greater number of training
points, represented by rose and violet dots in the scatterplot, exhibit a lower
FPR. We will discuss other methods to mitigate this effect probably given by
the presence of outliers, or by bad estimation of low-variance components of the
original distribution.

Our experimental analyses will mostly explore this FPR, remarking some
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Figure 5.12: (a) QT generally excels in maintaining a low FPR. While
PCA rotation generally improves detection capabilities, in specific scenarios
with inconvenient N/d ratios, QuantTree’s performance may be compromised,
particularly regarding FPR control.

topics discussed in the concept drift detection literature, remembering that
while TPR signifies a potent ability to detect changes, it is the controlled
FPR that ensures the reliability. With QuantTree, where the thresholds (see
Algorithm 2) of the test statistics can be numerically computed from univariate
and synthetically generated data, the controlled FPR is guaranteed. This
method not only is as robust as traditional methods such as the Pearson goodness-
of-fit test and tests based on empirical thresholds computed through bootstrap,
but even outperforms those in cases with limited training samples. Indeed, QT
maintains this control across the entire spectrum of challenging scenarios with a
few training points sampled from high-dimensional distributions. However, we
acknowledge that data preprocessing may, at times, compromise that property.

PCA is associated to a whitening transformation (or sphering transformation).
If X is a random vector with non-singular covariance matrix Σ and mean 0, then
the transformation Y = WX yields the whitened random vector Y with unit
diagonal covariance when W is a whitening matrix. There are infinitely many
possible whitening matrices satisfying the above condition: if W = Σ−1/2 we
talk about Mahalanobis whitening, while PCA whitening is given by the eigen-
system of Σ. To select components, we are not using Σ, from which we generated
the training and test datapoints, but the sample covariance matrix, which was
estimated from the training set. Is this estimation, very poor from e.g. 1024
points lying in a 256-dimensional space, the cause of these results?

In the following experiments, we will try to understand and show the causes
behind this issues, to refine the algorithms’ applicability in diverse scenarios.
Are there specific configurations or adaptations in the preprocessing pipeline
that avoid the FPR control? We remark that where the algorithm’s robustness
falters, leading to an improved ability to detect changes at the expense of FPR
control, it become pointless: if nearly each new data point is treated as a dire
emergency, with both True Positive Rate (TPR) and False Positive Rate (FPR)
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consistently high, it is much like the boy who cried wolf (‘al lupo al lupo’). The
same discussion also considers Kernel-QuantTree, which partitions the space in
K − 1 compact bins defined by kernel functions evaluated on the training data,
and estimates the sample covariance matrix when using the Mahalanobis and
Weighted Mahalanobis distances.

Kernel QuantTree

We remark a baseline experiment in Figure 5.13a; data was sampled from
the same monomodal multivariate Gaussian distributions with zero mean in
d dimensional spaces (dataframe dimensionality is represented on the x-axis).
Different numbers N of training points (on the y-axis) were used to construct
QuantTree histograms with 64 bins, which were then tested on batches drawn
from the same distribution to compute the FP Rate. We have seen that, no
matter neither the dimensionality of the dataframe nor the number of training
points, both QuantTree and Kernel QuantTree based on the Euclidean distance
between pair of points can control the FPR, i.e. can keep the number of false
alarms around the user-specified value of 5%. In this same setup KernelQuantree
based on Mahalanobis andWeighted Mahalanobis (WM) distances cannot maintain
FPR at the desired value when data dimensionality increases, given that is not
provided a proper number N of points in the training set. WM-KQT struggle
to control the FPR when d increases was recognized and noted in [25] and
explained as a consequences of the fact that, in high-dimensional settings, the
estimated Gaussian Mixture Model (GMM) can become poorly conditioned if
the training set TR is not sufficiently large. The authors proposed the use of
KQT with the Mahalanobis distance in these cases when the GMM fit from
TR yields Gaussian having covariances with large condition numbers. In the
paper it is also affirmed that FPR control worsens in general when d increases,
but that using a large training set heavily mitigates this problem. Moreover, it
is noted that the issue can be avoided by employing dimensionality reduction
techniques, such as PCA.

We plot again our mean FPR values in diverse N/d configurations as in
Figure 5.13a. Comparing Figure 5.13a and 5.13b, we see that KQT performances
are practically unchanged: it is proven [25] that, thanks to the kernel functions
adopted, the KQT monitoring scheme is invariant to any roto-translation of the
input data, while QT loses FPR control in unfavorable N/d ratios.

If we try to apply Principal Component Analysis to our datapoints sampled
from the 256-dimensional gaussian distribution and keep a number x of principal
components to pass to QuantTree, as we’ve already seen, it cannot control the
FPR anymore. This is true if we decide to keep as ”principal” components the
directions explaining the greatest variance of the training set, and particularly
if we consider “principal” components the ones explaining the lowest variance,
the ones usually discarded. We can imagine that, since these “last” components
were computed over a limited amount of points, might not truly explain a small
amount of variance of the original gaussian distribution, that is: a new unseen
test point might be far from its nearest training neighbors along this selected
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(a) FPR control over data drawn from a monomodal Gaussian distribution in x
dimensions, given y training points. The ”difficulty” for the CDD systems increases
from bottom-left to upper-right. FPR desired value was set to 5%. Data is not
preprocessed and it can be seen that QuantTree and Euclidean kQT can effectively
control FPR, while kQT with Mahalanobis and Weighted Mahalanobis distances lose
this property when trained on ”few” points from high dimensional distributions.

(b) FPR control over data drawn from a monomodal Gaussian distribution in x
dimensions, given y training points. Data is preprocessed with PCA and it can be
seen that QuantTree cannot control FPR anymore, with respect to Fig. 5.13a. KQT
with Euclidean distance is able to maintain FPR control even in unsuitable frames
with N/d small, and its performance is invariant to PCA-like rotation. We will focus
on the usage of this distance and other distances derived from lp norms to address
concept drift detection in high dimensional dataframes.

Figure 5.13
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(a) PCA: kQT with Mahalanobis distance

(b) PCA: kQT with weighted-Mahalanobis distance

Figure 5.14: TPR and FPR measured with kernel-QuantTree (based on
Mahalanobis (a) and weighted-Mahalanobis (b) distances) on data from two
d-dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1
fixed. Data is preprocessed with PCA and its randomized version. Kernel-
QT performance with these distances adopted does not depend on any roto-
translation of the data.
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low variance direction. This would trigger a false alarm, since the distribution
is not changed. But what about the “real” PCs?

In Figure 5.15 are shown TPR (top) and FPR (bottom) measured with
Kernel-QuantTree based on Mahalanobis (a) and Weighted-Mahalanobis (b)
distances. Data batches are drawn from two 128-dimensional monomodal Gaussian
distributions with sKL(ϕ0 → ϕ1) = 1 preprocessed with PCA and randomizedPCA,
given a different number x of “principal” components retained. Preprocessing
helps in keeping the FPR consistently lower with respect to the reference (see
KQT on the same 128-dimensional dataset with no preprocessing in a dash-
dot black line); while low-variance components achieve an higher TPR, we
always have to consider the FPR/TPR trade-off. Even if KQT performance
are proved to be invariant under rototranslations, here PCA acts to reduce
dimensionality, and helps in decreasing final average FPR; moreover, keeping a
low number of components gives the best results in terms of the net detection
power ∆(TPR− FPR).

5.6 RobustPCA

PCA preprocessing is used in infinitely-many applications in data processing,
machine learning, etc. Our problem here is that we might have not enough
training points to perform it correctly. Indeed, after a simple data projection
on the prinipal components, QT loses its control over the FPR. To study the
mechanisms that ruin its performance, to know if the problem is given by the
presence of outliers in too small training sets, in the following experiment we
tried RobustPCA preprocessing for our gaussian pre- and post-change distributions.
We refer to Eq. 4.4. Here, the value for the minimization problem was set to
λ = 0.1.

Preprocessed d-dimensional dataframes where given to QT, KQT and EIKM.
The results are shown in Fig. 5.16 with no dimensionality reduction (only the
PCA-like rotation). Experiments were repeated 5 times and FPR and TPR are
averaged over (512+512) test batches. We see that in this settings, the PCA-like
rotation alone ruins the models’ performance, mostly bringing both the FPR
and TPR up to 100%. We report results averaged over 100 experiments for
(512+512) test batches each for QuantTree only in Fig. 5.17.

If we use this preprocessing as it is designed for, keeping only a subset
of the given components, we find the results averaged over 100*(512+512)
confrontations between PCA and robustPCA in Fig. 5.18. When keeping a
small subset of high variance components computed over small training sets,
FPR control seems to be better with robustPCA. But in these settings TPR
always equals FPR. When projecting over low variance components, standard
PCA seems to provide more robust coordinates.
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(a) PCA: kQT with Mahalanobis distance

(b) PCA: kQT with weighted-Mahalanobis distance

Figure 5.15: TPR and FPR measured with kernel-QuantTree (based on
Mahalanobis (a) and weighted-Mahalanobis (b) distances) on data from two
128-dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1
fixed. Data is preprocessed with PCA (red lines) and randomized-PCA (orange
lines) and the first d′ ∈ {2, 4, 8, 16, 32, 64, 128 = d} components are retained
both from the top (solid lines) and the bottom (dashed lines) in order of variance
explained. We can observe that preprocessing helps in keeping the FPR lower
than the reference (kQT performance on the same 128-dimensional dataset,
with no preprocessing, in a dash-dot black line); while low-variance components
achieve an higher TPR, we always have to consider the FPR/TPR trade-off.
The data was generated 20 times and each time TPR and FPR were computed
over 1000+1000 test batches.
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(a) QuantTree

(b) kQT with Mahalanobis distance

(c) kQT with weighted-Mahalanobis distance

(d) EIKM

Figure 5.16: TPR and FPR measured with QuantTree (a), kernel-QuantTree
(based on Mahalanobis (b) and weighted-Mahalanobis (c) distances) and EIKM
(d) on data from two d-dimensional monomodal gaussian distributions with
sKL(ϕ0 → ϕ1) = 1 fixed. Data is preprocessed with robustPCA with λ = 0.1
(see Eq. 4.4) with no dimensionality reduction. Experiments were repeated 5
times and FPR and TPR are averaged over (512+512) test batches. It’s only 5
experiments but we can obviously see that in this settings, the simple PCA-like
rotation ruins the detection models performance, bringing both the FPR and
TPR up to 100%.

60



Figure 5.17: TPR and FPR achieved by QT on an x-dimensional Gaussian
dataframe preprocessed with robustPCA (see Eq. 4.4) using λ = 0.1. A standard
preprocessing with PCA is always better, considering the control over FPR.
Experiments were repeated 100 times over (512+512) test batches.

5.7 Theoretical PCA

We discussed Principal Component Analysis (PCA) as a pivotal tool for dimensionality
reduction and feature extraction. However, in our experiments for concept drift
detection, we saw that traditional sample-based PCA approaches can exhibit
vulnerabilities when applied to datasets characterized by outliers or a paucity of
training data. To address this limitation, we introduced a “Theoretical” version
of PCA which does not rely on training data but on the known distribution from
which our dataframe is sampled. Instead of relying on the empirical training
set sampled, we directly compute the principal components from the known
parameters of the data’s underlying Gaussian distribution. Indeed, known the
covariance matrix, we derive the true principal components as its eigenvectors.
Our aim was to answer the fundamental question: Is PCA genuinely failing, or
are the limitations a byproduct of the training data? The results are presented
in Fig. 5.19, and compare the performance of this “Theoretical PCA” against
the conventional sample-based PCA method. It is worth noting that in real-life
scenarios, we do not have complete knowledge of the true underlying distribution
ϕ0. Therefore, our approach here cannot be a practical solution for applications.
This experiment serves as an essential step in discerning the root causes of
PCA’s performance issues with FPR control. It appears that while a PCA
rotation may cause the loss of the FPR control, the covariance matrix-based
projections in this approach have the capability to enhance the detection power
of QT method in terms of True Positive Rate (TPR). Notably, this improvement
in TPR is achieved without causing the FPR to exceed the predefined threshold
of 5%. These results suggest that the underlying issue contributing to the
observed challenges in using sample-based PCA is likely linked to a suboptimal
estimation of the original data distribution. Specifically, the presence of outliers
appears to be a key factor affecting the performance of the conventional PCA
approach. These conclusions align with the evidence that a substantial increase
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(a)

(b)

Figure 5.18: (a) FPR achieved by QT on a 128-dimensional dataframe
preprocessed with robustPCA, keeping first x principal components (high
variance components). If a sufficient number of training points are provided,
FPR achieved is comparable with the one obtained after PCA and does not
exceed the α = 5% threshold. FPR control seems to be better with robustPCA
when N is small, as expected. (b) Keeping the last x components to project data
points. A robustPCA preprocessing achieves higher TPR values for N = 4096,
but seems to be less robust with respect to simple PCA with small training sets,
in terms of FPR control. Experiments were repeated 100 times and FPR and
TPR are averaged over (512+512) test batches.
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Figure 5.19: TPR (top) and FPR (bottom) measured with QuantTree and
kernelQT on data from two x-dimensional monomodal gaussian distributions
with sKL(ϕ0 → ϕ1) = 1 fixed. Data is projected on the eigenvectors of the
covariance matrix of the original distribution ϕ0 and concept drift detection
performance are presented in violet, compared with the results after a typical
sample-based PCA transformation trained on TR (in red). We can see that, as
PCA, thPCA does not change the performance of kernel-QT with Mahalanobis
and weighted-Mahalanobis distances. On the other side, while a PCA rotation
prevents QT to control the FPR, this covariance matrix-based projections
increases QT detection power (TPR) while not increasing FPR above the set
threshold α = 5%. These experiments were repeated 5 times and FPR and TPR
are averaged each time over (128+128) test batches.
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Figure 5.20: TPR (top) and FPR (bottom) measured with QuantTree on data
from two 128-dimensional monomodal gaussian distributions with sKL(ϕ0 →
ϕ1) = 1 fixed. Data is projected on the eigenvectors of the covariance matrix
of the original distribution ϕ0 and concept drift detection performance are
presented in violet, compared with the results after a typical sample-based
PCA transformation trained on TR (in red). We can see that, as PCA, thPCA
does not change the performance of kernel-QT with Mahalanobis and weighted-
Mahalanobis distances. On the other side, while a PCA rotation prevents
QT to control the FPR, this covariance matrix-based projections increases
QT detection power (TPR) while not increasing FPR above the set threshold
α = 5%. These experiments were repeated 5 times and FPR and TPR are
averaged each time over (128+128) test batches.

in the number N of training points is promoting effective control over the FPR.
In Fig. 5.20 we see that with the covariance matrix-based projections the FPR
control is achieved even reducing dimension. However, the detection power stays
within the range of the one obtained after no preprocessing. We will investigate
the effects of increasing the divergence between ϕ0 and ϕ1 when comparing
these different dimensionality reduction methods and concept drift detectors
all together. These experiments were repeated 5 times and FPR and TPR are
averaged each time over (128+128) test batches. To study QT behavior more
robustly, instead, we averaged TPR and FPR results over 100 experiments given
(512+512) test batches each time, as shown in Fig. 5.21.

5.8 Sample-based PCA dissection

In this experimental investigation, the objective was to dissect the various
components of Principal Component Analysis (PCA) and discern their individual
impacts on the efficacy of a concept drift detection algorithm, particularly
focusing on False Positive Rate (FPR) control. PCA generally comprises two
fundamental steps: centering the data by subtracting the mean of each feature
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Figure 5.21: TPR and FPR achieved by QT on an x-dimensional Gaussian
dataframe preprocessed with theoretical-PCA (as we refer to the projection
over the eigenvectors of the true covariance matrices the dataframes belong
to). Data is preprocessed twice: projected on the eigenvectors of the covariance
matrix, or projected and then scaled by the eigenvalues. Results are given by
the mean over 100 experiments where TPR and FPR are averaged on (512+512)
test batches each time.

and projecting the centered data onto eigenvectors derived from the covariance
matrix. The squared root of the corresponding eigenvalues represents the explained
variance of each component. When dealing with high-dimensional data and
limited training data points, a simple projection onto all principal components,
as we have seen, is sufficient to disrupt the control of concept drift detection
algorithms like QuantTree. Data projection over the principal components,
which can be seen as a rotation when no dimensionality reduction is employed,
enhances the detection power of QuantTree by increasing True Positive Rate
(TPR). This enhancement can be attributed to the ability of PCA to capture
and accentuate the principal directions of variation in the data, making it more
sensitive to changes indicative of concept drift. However, in cases involving
high-dimensional datasets and an insufficient number of training points, the
application of PCA, even without dimensionality reduction, compromises the
control of FPR.

There is a closely related preprocessing step called whitening (or sphering)
which is needed for some algorithms. The goal of whitening is to make the input
less redundant; more formally, our desiderata are that our learning algorithms
sees a training input where (i) the features are less correlated with each other,
and (ii) the features all have the same variance. This can be achieved simply
rescaling each feature already projected on the principal direction with the
square root of the eigenvalue corresponding to that direction, i.e.:

x
(r)
i = x · vi

x
(w)
i =

x
(r)
i√
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Figure 5.22: TPR and FPR achieved by QT on an x-dimensional Gaussian
dataframe preprocessed with different steps of sample-based PCA. QuantTree
performance are invariant under data centering (any rigid translation of the
dataframe). Data is centered (mean of each feature on the training set is
removed from test batches), then is projected on the eigenvectors of the
covariance matrix. Our data projection correspond to the PCA implementation
in scikit-learn Python library (labelled as PCA). If we scale the data with the
square root of the eigenvalues of the sample covariance matrix, FPR control is
lost and both FPR and TPR goes to 100%. The data was generated 100 times
and each time TPR and FPR were computed over 512+512 test batches.

From 5.22 we can see that whitening the data with the eigenvalues of the sample
covariance matrix makes FPR control lost even in low-dimensional frames.

In 5.23 we show the effect of dimensionality reduction in the same cases,
i.e. QT’s performance over data preprocessed by centering the data, projecting
it on principal components, and scaling it by the corresponding eigenvalues,
considering a 128-dimensional dataframe. We can see that the best performance
are obtained given a high N/d ratio of course, and projecting the data on a small
number of components (between 4 and 8).

5.9 Exploring sensitivity to PCA with convex
combinations

In our exploration of the impact of Principal Component Analysis (PCA) on
concept drift detection with QuantTree, we introduced several experiments using
the concept of convex combinations. That is, data matrix is projected by some
matrix M such that M = cA+ (1− c)B with c ranging from 0 to 1.

5.9.1 From the original data to Principal Components

In the first try, combinations are represented by the equation λ ∗ MPCA +
(1− λ) ∗ 1, where MPCA represents the matrix transformation associated with
PCA while 1 is the identity matrix. By varying the value of λ in the range
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Figure 5.23: TPR (top) and FPR (bottom) measured with QT on data from
two 128-dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1
fixed. Data is centered (mean of each feature on the training set is removed from
test batches), then is projected on the eigenvectors of the covariance matrix. Our
data projection correspond to the PCA implementation in scikit-learn Python
library (labelled as PCA). Dimensionality reduction is performed as we keep x
high or low variance components out of the 128-dimensional data batches. The
data was generated 100 times and each time TPR and FPR were computed over
512+512 test batches.

(0, 1), we systematically examined the effects transformation applied to the
data. The outcomes of this experiment are shown in Figure 5.24; we did not
exploit dimensionality reduction but only performed a PCA-like rotation of the
dataframe. As λ increases, we observe a gradual shift away from the identity
matrix (ID) (no preprocessing given λ = 0) towards PCA transformation (λ =
1). As we expected, this shift is accompanied by a noticeable deterioration in
the control over the False Positive Rate (FPR). In other words, higher values
of λ emphasize PCA’s influence on the data, and this emphasis appears to
compromise the ability to maintain effective FPR control. This observation
underscores the sensitivity of FPR to dimensionality reduction methods and
offers a compelling perspective on the challenges of balancing dimensionality
reduction with concept drift detection.

5.9.2 From theoretical to sample-based PCA

Here, combinations are represented by the equation c ∗ MPCA + (1 − c) ∗
Mth, where MPCA represents the matrix transformation associated with PCA
while Mth is the matrix associated with theoretical-PCA, i.e. containing the
eigenvectors of the covariance matrix of the Gaussian distribution. By varying
the value of c in the range (0, 1), we systematically examined the effects transformation
applied to the data. The outcomes of this experiment are shown in Figure 5.25;

67



Figure 5.24: TPR and FPR achieved by QT on the usual d-dimensional gaussian
dataframe given sKL(ϕ0 → ϕ1) = 1 fixed. Dataframe is preprocessed with a
PCA-like rotation matrix given by convex combinations λ ∗MPCA+(1−λ) ∗1,
whereMPCA represents the matrix transformation associated with PCA, 1 is the
identity matrix, and λ ∈ {0.1, 0.2, 0.5, 0.7, 0.9}. Higher values of λ emphasize
PCA’s influence on the data, and this emphasis appears to compromise the
ability to maintain effective FPR control. Experiments were repeated 10 times,
TPR and FPR are averaged each time on (128+128) test batches.
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Figure 5.25: TPR and FPR achieved by QT on the usual d-dimensional gaussian
dataframe given sKL(ϕ0 → ϕ1) = 1 fixed. Dataframe is preprocessed with
a PCA-like rotation matrix given by convex combinations c ∗ MPCA + (1 −
c) ∗ Mth, where MPCA represents the matrix transformation associated with
PCA, Mth is the identity matrix associated with theoretical-PCA, and c ∈
{0.1, 0.2, 0.5, 0.7, 0.9}. Higher values of c emphasize PCA’s influence on the
data, and this emphasis appears to compromise the ability to maintain effective
FPR control as seen in Fig. 5.24. Experiments were repeated 10 times, TPR
and FPR are averaged each time on (128+128) test batches.
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we did not exploit dimensionality reduction but only performed a PCA-like
rotation of the dataframe. As c increases, we observe a gradual shift away
from good results provided by theoretical PCA, which require to know the
data distribution, towards sample-based PCA transformation. As we expected,
this shift is accompanied by a noticeable deterioration in the control over the
False Positive Rate (FPR). In other words, higher values of c emphasize PCA’s
influence on the data, and this emphasis appears to compromise the ability to
maintain effective FPR control as we discussed in the last experiment.

5.10 Rotating away from PCs

One hypothesis behind the effects of PCA over the control of the FPR, even
with no dimensionality reduction, was around the alignment of our algorithm’s
histogram construction with the principal components. We thought that this
alignment may introduce unintended consequences, especially in scenarios where
data points collapse onto particular components (projection on low variance
components). This alignment potentially obstructs the intended control over
FPR, despite the algorithm’s reliability in the original high-dimensional space.
To investigate this hypothesis, an experiment is designed to assess the impact of
data rotation on FPR control. Specifically, it involves computing the principal
components, projecting the data onto them, and subsequently applying a d-
dimensional rotation to these projected data points, systematically varying the
rotation angle. This variation aims to observe how the control of FPR evolves as
the direction of the histogram bins drifts away from the principal components.
If this experiment proves successful, it may offer an elegant solution. Utilizing
PCA for dimensionality reduction, which has intrinsic benefits, while subsequently
applying a rotation to disalign the histogram bins from the principal components,
could potentially preserve FPR control and enhance the algorithm’s robustness
in high-dimensional concept drift detection. The outcomes of this experiment
are shown in Figure 5.26; we did not exploit dimensionality reduction but only
performed a PCA-like rotation of the dataframe. Regrettably, it seems that
the data rotation after PCA preprocessing, does not preserve the control of the
False Positive Rate (FPR); indeed, there is no obvious trend of the results with
varying α.

5.11 Changing the number of bins

An important parameter of our experiment is the number of bins used to
construct the histograms. In each experiment we described, it was fixed to
K = 64, but how can this be enough to fill up d-dimensional spaces with d > 64?
QuantTree models ϕ0 by a histogram made of K bins {Sj}kj=1 constructed

by splitting Rd along random directions. K is a fundamental parameter that
influences the change-detection performance of QT, and if K < d, we’re anyway
performing some random projections along the basis which defines our space.
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Figure 5.26: TPR and FPR achieved by QT on the usual d-dimensional gaussian
dataframe given sKL(ϕ0 → ϕ1) = 1 fixed. Dataframe is preprocessed with
PCA and then rotated under each of the d axes by an increasing angle α ∈
{5◦, 10◦, 22◦, 44◦, 90◦}. Higher values of α should reduce PCA’s influence on
the data, which appears to compromise the ability to maintain effective FPR
control as seen in Fig. 5.24. Experiments were repeated 10 times, TPR and
FPR are averaged each time on (128+128) test batches.
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To analyze the impact of this choice, we test QT withK ∈ 4, 8, 16, 32, 64, 128, 256,
computing the resulting TPR and FPR over (512 + 512) pre- and post-change
batches averaged over 100 experiments, both with and without PCA dimensionality
reduction.

In contrast with histograms based on regular grids, the number of bins K
in QT is a priori defined, and does not need to grow exponentially with d.
From 5.27 we can see that: i) without any PCA preprocessing, the highest TPR
is given, on average by histograms constructed over 32 bins; anyway, we must
consider the value of K together with the number of points in the training set
N and also with the cardinality of each test batch ν; ii) when applying a PCA
rotation without dimensionality reduction, FPR control holds, on average, at
higher dimensions with a smaller number of bins.

From 5.28 and 5.29 we can see that: i) again, the highest TPR is given, on
average by histograms constructed over 32 bins; usually the best way to control
FPR after a PCA-like rotation estimated from the training set is to keep a small
number of components; ii) best detection power in terms of ∆(TPR − FPR)
is always given when keeping the low variance components, although they are
associated to higher FP rates. It’s worth noting that, on average, with fewer
bins it is less probable to build a bin on a low variance component computed
over the training set.

5.12 Between the explained variance and FPR:
bad components

To understand the intricate dynamics of False Positive Rate (FPR) control in the
presence of preprocessing techniques like Principal Component Analysis (PCA),
we propose also a punctual analysis. Through 100 experiments conducted
across datasets of varying dimensions, we can see that as the dimensionality
of the datasets increases, not only does FPR surge to 100%, but the eigenvalues
associated with the last principal components steadily approach zero. This
pattern is shown in Figures 5.30 and 5.31. Could the presence of principal
components with vanishing eigenvalues be a contributing factor to the high
FPR, rendering them susceptible to false alarms in the concept drift detection
process? This question echoes a discourse in the literature where contrasting
perspectives have been presented. In 2014, Kuncheva asserted that components
with the lowest variance should be retained, positing that they are more likely
to be sensitive to changes [17]. However, in 2015, Qahtan offered an alternative
viewpoint, emphasizing the benefits of discarding principal components with
negligible eigenvalues [22]. Qahtan argued that these components, often representing
variances of minuscule magnitude, introduce challenges in density estimation
and comparison due to their sensitivity to sample size and model parameters.
The result, as Qahtan suggested, could be an increased likelihood of false
alarms during change detection. Several key questions should be explored. Are
these vanishing eigenvalues indicative of components that are indeed sensitive
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Figure 5.27: TPR and FPR measured with QT on data from two x-dimensional
monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed. Data is not
preprocessed or preprocessed with PCA with no dimensionality reduction. The
number of bins K ∈ 4, 8, 16, 32, 64, 128, 256 is represented by a color while the
number of points per batch is fixed to ν = 128 (a) or ν = 1024 (b). The data
was generated 100 times and each time TPR and FPR were computed over
512+512 test batches.
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(a) ν = 128, high variance components kept

(b) ν = 128, low variance components kept

(c) ν = 1024, high variance components kept

(d) ν = 1024, low variance components kept

Figure 5.28: TPR and FPR measured with QT on data from two 128-
dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed.
Data is preprocessed with PCA with dimensionality reduction 128 = d→ d′ =
x. The number of bins K ∈ {4, 8, 16, 32, 64, 128, 256} is represented by a color
while the number of points per batch is fixed to ν = 128 (a,b) or ν = 1024
(c,d). Respectively high variance (a,c) and low variance (b,d) components are
kept and given to QuantTree. The data was generated 100 times and each time
TPR and FPR were computed over 512+512 test batches.
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(a)

(b)

Figure 5.29: ∆(TPR-FPR) measured with QT on data from two 128-
dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed.
Data is preprocessed with PCA with dimensionality reduction 128 = d→ d′ =
x. The number of bins K ∈ {4, 8, 16, 32, 64, 128, 256} is represented by a color
while the number of points per batch is fixed to ν = 128 (a) or ν = 1024
(b). Respectively high variance (solid lines) and low variance (dashed lines)
components are kept and given to QuantTree. The data was generated 100
times and each time TPR and FPR were computed over 512+512 test batches.
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Figure 5.30: Exploring the Eigenvalue-FPR Relationship: we present the results
of 100 experiments conducted across datasets of varying dimensions. Each data
point in the scatterplot represents the lowest eigenvalue (in logarithmic scale)
of the experiment and the associated False Positive Rate (FPR) observed in
the concept drift detection process. As dimensionality increases, eigenvalues
approach zero and FPR escalates; a part from this expected behavior, there
seems to be no other correlation between the two quantities.

to changes? How does the choice of principal components affect the overall
robustness of the concept drift detection system? Proposed experiments and
calculations may involve assessing the impact of retaining or discarding principal
components with vanishing eigenvalues on FPR control and the algorithm’s
detection capabilities. It may also be insightful to examine the density estimation
process and its sensitivity to changes in the presence of such components.

5.13 Random Projections

While PCA serves as a widely used technique for dimensionality reduction,
its application in concept drift detection warrants a closer examination. PCA
operates by maximizing the variance captured by each principal component,
which can inadvertently alter the data distribution characteristics. Given that
we practically lack knowledge of the original data distributions, PCA can lead
to unintended consequences, particularly, as we have discussed, when dealing
with high-dimensional data and a limited number of training points. In such
scenarios, the control over the False Positive Rate (FPR) may be lost. That is
why we turned to random projections as an alternative approach for dimensionality
reduction: offering the advantage of reducing dimensionality without imposing
any specific ordering of ‘high’ or ‘low’ variance components, they are a valuable
candidate for concept drift detection as they avoid the potential variance-related
issues associated and provide a robust solution when dealing with limited training
data points. Reducing data dimension d to d′ < d by projecting the original
input space on a randomly generated matrix where components are drawn from
the distribution N(0, 1

d′ ), RPs offer a remarkably simplified solution. When
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(a)

(b)

Figure 5.31: Exploring the Eigenvalue-FPR Relationship: In this fiery
visualization, we present the results of 100 experiments conducted across
datasets of varying dimensions. Each data point on the graph (a) represents the
lowest eigenvalue and the associated False Positive Rate (FPR) observed in the
concept drift detection process is reported in (b). As dimensionality increases,
eigenvalues approach zero, and FPR escalates.
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Figure 5.32: TPR (top) and FPR (bottom) measured with QuantTree
on data from two 128-dimensional monomodal gaussian distributions with
sKL(ϕ0 → ϕ1) = 1 fixed. Data dimension is reduced from d = 128 to
d′ ∈ {2, 4, 8, 16, 32, 64, 128 = d} by projecting the original input space on a
randomly generated matrix where components are drawn from the distribution
N(0, 1

d′ ). We can see the obtained scores compared with the ones obtained with
PCA dimensionality reduction and with the reference dash-dot black line (QT
performance on the same 128-dimensional dataset, with no preprocessing). We
notice that the FPR control is achieved, but with this distance between pre-
and post-change distribution, QT algorithm as no power in detecting the drift
(both TPR and FPR goes to 5%. These experiments were repeated 5 times and
FPR and TPR are averaged each time over (128+128) test batches.

employing PCA, the process typically includes the computation of principal
components, variance maximization, and consideration of ranking, all of which
can be computationally intensive, particularly in high-dimensional datasets.
In contrast, RPs require no such computational overhead. They operate by
mapping the original data onto a randomly generated matrix, where the components
are drawn from a specified distribution: the process essentially boils down to
computing dot products in the lower-dimensional space significantly reducing
the computational burden.

QT performances after Random Projections are shown in Fig. 5.32, juxtaposed
with those obtained through PCA dimensionality reduction. Additionally, the
reference dash-dot black line represents QuantTree’s performance on the unaltered
128-dimensional dataset, without any preprocessing. Interestingly, the outcomes
suggest that while FPR control is successfully achieved, even if the QuantTree
algorithm loses detection power: with sKL = 1 fixed, both TPR and FPR
goes to the set threshold α = 5%. In this framework there seems to be
no difference in QT performances with or without preprocessing. For what
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(a) kernel-QuantTree with Mahalanobis distance

(b) kernel-QuantTree with weighted-Mahalanobis distance

Figure 5.33: TPR (top) and FPR (bottom) measured with kernel-QuantTree
(with Mahalanobis (a) and weighted-Mahalanobis (b) distances) on data from
two 128-dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1
fixed. Data dimension is reduced from d = 128 to d′ ∈ {2, 4, 8, 16, 32, 64, 128 =
d} by projecting the original input space on a randomly generated matrix where
components are drawn from the distribution N(0, 1

d′ ). We can see the obtained
scores compared with the ones obtained with PCA dimensionality reduction
and with the reference dash-dot black line (QT performance on the same
128-dimensional dataset, with no preprocessing). kernel-QT performances are
definitely comparable with the ones obtained after PCA preprocessing keeping
d′ high-variance components; it’s worth noting that the computational burden
with RPs is way lower than the one to perform PCA. These experiments were
repeated 5 times and FPR and TPR are averaged each time over (128+128)
test batches.
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Figure 5.34: TPR and FPR achieved by QT on 128-dimensional gaussian
dataframes given sKL ∈ {1, 2, 4, 8, 16, 32, 64}. As expected, as we generate post-
change distribution ϕ1 with sKL values greater than 1, TPR or the detection
power increases. It is worth noting that FPR does not depend on the post-
change distribution ϕ1 as it measures alarms raised from batches drawn from
ϕ0 by definition. These experiments were repeated 5 times and FPR and TPR
are averaged each time over (128+128) test batches.

matters kernel-QT, instead, results after RPs preprocessing seems in line with
the ones obtained keeping high-variance components after PCA. If dimensions
are effectively reduced from d = 128 to d′ < d, the FPR control is achieved, but
concept drift detection power diminishes. It’s worth noting that the computational
burden with RPs is way lower than the one to perform PCA. We will go through
these performance differences and similarities increasing the divergence between
pre- and post-change distributions.

5.13.1 Increasing sKL with random projections

QT performances after Random Projections were shown in Fig. 5.32, juxtaposed
with those obtained through PCA dimensionality reduction. Additionally, the
reference dash-dot black line represents QuantTree’s performance on the unaltered
128-dimensional dataset, without any preprocessing. Interestingly, the outcomes
suggest that while FPR control is successfully achieved, even if the QuantTree
algorithm loses detection power: with sKL = 1 fixed, both TPR and FPR goes
to the set threshold α = 5%. In this framework there seems to be no difference
in QT performances with or without preprocessing. But if we try to increase the
divergence between the two distributions, we can see how random projections
successfully work. It is worth noting that FPR does not depend on the post-
change distribution ϕ1 as it measures alarms raised from batches drawn from
ϕ0 by definition. We show the increasing detection power in Fig. 5.34.
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Figure 5.35: QT’s TPR and FPR measured on data from monomodal gaussians
with increasing dimensionality and sKL = 1 fixed, given training sets TR of
increasing cardinality from left to right. Even with not dimensionality reduction,
also a kernel-PCA rotation is sufficient for QT to lose control over the FPR
(reference without preprocessing in black). A greater number of training points
can delay this phenomenon. The data was generated 20 times and each time
TPR and FPR were computed over 1000+1000 test batches.

5.14 Kernel-PCA

Next choice in the exploration of dimensionality reduction techniques was kernelPCA
with radial basis kernel functions, as an alternative to standard Principal Components
Analysis. Again, the dataframe was generated from monomodal gaussian distributions
in Rd with d ∈ {2, 4, 8, 16, 32, 64, 128, 256}. Preprocessing was applied to select
principal components and our models QuantTree and kQT with Mahalanobis
and Weighted Mahalanobis distances were fed those. Data was generated and
preprocessed, as we decided to run our CD algorithms on the first d′ ∈ {2, 4, 8, 16, 32, 64, 128, 256 =
d} principal components and on the last d′ selected components. As before, the
post change distribution ϕ1 was built such that the symmetric KL is unitary,
and TPR and FPR were obtained from post-change and stationary batches
respectively with QuantTree and kernel QT histograms with K = 64 bins built,
in the latter case, using Mahalanobis and Weighted Mahalanobis distances.
Again, the FPR desired value was set to α = 0.05 and Pearson statistic was
chosen for the hypothesis tests. The data was generated 20 times and each time
TPR and FPR were computed over 1000+1000 test batches.

In the pursuit of effective dimensionality reduction techniques for enhancing
the performance of concept drift detection algorithms, the exploration turned
towards kernelPCA with radial basis kernel functions as a viable alternative to
the standard PCA, since it can capture nonlinear structure in the data. As we
can see, it might not be the optimal choice here. It is worth noting that PCA
generally has lower memory and runtime requirements than kPCA, and can be
scaled to massive datasets.
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(a) kQT with Mahalanobis distance

(b) kQT with weighted-Mahalanobis distance

Figure 5.36: TPR and FPR measured with kernel-QuantTree (based on
Mahalanobis (a) and weighted-Mahalanobis (b) distances) on data from two d-
dimensional monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed.
Data is preprocessed with kernelPCA with radial-basis kernel functions. We
notice that even with no dimensionality reduction, this preprocessing worsen
the kQT control over FPR. The data was generated 20 times and each time
TPR and FPR were computed over 1000+1000 test batches.
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5.15 Independent Component Analysis

We tried Independent Component Analysis (ICA) as a method to separate our
multivariate signal into additive subcomponents (also called factors or latent
variables). Whitening ensures that all dimensions are treated equally a priori
before the algorithm is run. It is worth noting that our purpose here is not
dimensionality reduction: dimensionality of the output is the same as the input’s,
there is no obvious way to drop components as in PCA and its variants. We
are transforming our dataset in a maximally independent set of components.
In Figure 5.37 are reported the performances of QuantTree (a) and kernel-
QuantTree (based on Mahalanobis (b) and weighted-Mahalanobis (c) distances)
in detecting the drift ϕ0 → ϕ1 with the distributions ϕ0, ϕ1 monomodal gaussians
in x-dimensional spaces, with and without ICA preprocessing. From Fig. (a)
we can see that the detection algorithm’s power is increased by ICA, as the
difference ∆(TPR-FPR) increases for each of the x-dimensional dataframes.
However, QT loses the control over the FPR after the ICA preprocessing if an
insufficient number of training points are provided. For what we can see in (b),
(c), this preprocessing leaves kQT performances unchanged. Experiments were
repeated 10 times and FPR and TPR are averaged over (500+500) test batches.

5.16 Euclidean KQT

In [25] it is proven that KQT is invariant under rototranslations when the
employed kernel function is either the Mahalanobis or Weighted-Mahalanobis
distance. This holds also when the Euclidean distance is employed. The
usage of the Euclidean distance results in isotropic bins, which poorly fit the
data distribution with respect to the Mahalanobis and Weighted Mahalanobis
distances. On the other side, the computation of the histogram is much faster.

We explore the behavior of KQT with the Euclidean distance, and examine
its performance under various conditions, including dimensionality changes and
PCA rotations. We think and show that this implies that there will be no issue
with the FPR control, even if the ratio N/d is not convenient, i.e. with few
training points from high dimensional spaces.

We can see how PCA rotation not affects the behavior of Euclidean kQT: the
algorithm’s FPR control remains intact when employing the Euclidean distance
(see Fig. 5.39 and 5.40), emphasizing its invariance under roto-translations.
However, if the only PCA rotation ensures kQT’s control over the FPR (invariance
under rototranslations) when employing the Euclidean distance, a dimensionality
reduction from d to d′ < d can ruin this property if an insufficient number of
training points is given. In particular, FPR control is lost when we decide to
keep low-variance components from high dimensional dataframes, if these are
trained on too few training points, as we show in Fig. 5.41.

As we discussed at the beginning of the chapter, the Euclidean distance
(lp norm with p = 2) might not be the best choice when dealing with high-
dimensional dataframes because of the curse of dimensionality. We are going to
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(a) QuantTree

(b) kQT with Mahalanobis distance

(c) kQT with weighted-Mahalanobis distance

Figure 5.37: TPR and FPR measured with QuantTree (a) and kernel-
QuantTree (based on Mahalanobis (b) and weighted-Mahalanobis (c) distances)
on data from two d-dimensional monomodal gaussian distributions with
sKL(ϕ0 → ϕ1) = 1 fixed. Data is preprocessed with Independent Component
Analysis (ICA). We notice that while this preprocessing does not change kQT
performances, it increases QT’s TPR at the expenses of worsening its control
over FPR. Experiments were repeated 10 times and FPR and TPR are averaged
over (500+500) test batches.

Figure 5.38: TPR and FPR achieved by QT and kQT with Euclidean and
Mahalanobis distances on x-dimensional gaussian dataframes given sKL = 1.
We can notice that, as it is with QT, FPR control holds when employing
the Euclidean distance, independently from the number of training points and
the data dimension. Experiments were repeated 10 times, TPR and FPR are
averaged each time on (256+256) test batches.
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Figure 5.39: TPR and FPR achieved by QT and kQT with Euclidean
and Mahalanobis distances on x-dimensional gaussian dataframes given a
number y of training points and sKL = 1 fixed. We can notice that FPR
control holds when employing the Euclidean distance, independently from the
number of training points and the data dimension. This property, which
comes from QuantTree space partitioning, is not true employing Mahalanobis
distance or weighted-Mahalanobis distance, but holds with the Euclidean choice.
Experiments were repeated 10 times, TPR and FPR are averaged each time on
(256+256) test batches.

try with different choices like the Manhattan distance (lp norm with p = 1) and
also fractional distance metrics where (p < 1) in the following experiments.

5.17 lp distances with p ≤ 1

InOn the Surprising Behavior of Distance Metrics in High Dimensional Space [1]
it is examined the behavior of lp norms and shown that the problem of meaningfulness
in high dimensionality is sensitive to the value of p. The authors explain that,
under some assumptions on the data distribution, the ratio of the distances of
the nearest and farthest neighbors to a given target in high dimensional space
is almost unitary for a wide variety of data distributions and distance functions:
the nearest neighbor problem here is ill defined. Specifically, it is shown that the
l1 distance metric (Manhattan Distance metric) is the most preferable for high
dimensional applications, followed by the euclidean distance (l2 metric), the l3
metric, ... knowing this, the authors studied fractional distance metrics (where
p < 1) and showed that indeed these are even more effective at preserving the
meaningfulness of proximity measures. It is worth noting that the Euclidean
distance (l2 norm) is invariant under roto-translations. While each norm defines
a translation invariant metric, this is not true for rotations; e.g., the Manhattan
distance is in general dependent from rotations (if these are different from a
π/2 rotation). That is, KQT with these metrics generally loses its invariance
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Figure 5.40: TPR and FPR achieved by QT and kQT with Euclidean and
Mahalanobis distances on x-dimensional gaussian dataframes given sKL = 1.
Data is preprocessed by PCA with no dimensionality reduction. We notice that
FPR control holds when employing the Euclidean distance, independently from
the number of training points and the data dimension, even after a PCA rotation
(kQT is proven to be invariant under rototranslations). Instead, as we already
noticed, PCA rotation only is enough to make QT’s control of the FPR lost.
Experiments were repeated 10 times, TPR and FPR are averaged each time on
(256+256) test batches.
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Figure 5.41: TPR (top) and FPR (bottom) measured with kernel-QuantTree
with Euclidean distance employed, on data from two 128-dimensional
monomodal gaussian distributions with sKL(ϕ0 → ϕ1) = 1 fixed. Data is
preprocessed with PCA or RPs. In the first case, we take as input both first and
last x principal components to build the histogram and project the test batches.
If the only PCA rotation ensures kQT’s control over the FPR (invariance under
rototranslations), a dimensionality reduction from d to d′ < d can ruin this
property if an insufficient number of training points is given. In particular,
FPR control is lost when we decide to keep low-variance components from
high dimensional dataframes, if these are trained on too few training points.
Experiments were repeated 10 times, TPR and FPR are averaged each time on
(256+256) test batches.
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Figure 5.42: TPR and FPR achieved by QT and KQT with Euclidean (l2 norm)
and Manhattan (l1 norm) distances on x-dimensional gaussian dataframes given
sKL = 1. Data is not preprocessed. We notice that FPR control holds when
employing the Manhattan distance, independently from the number of training
points N and the data dimension d. Experiments were repeated 100 times, TPR
and FPR are averaged each time on (256+256) test batches.

Figure 5.43: Manhattan-KQT performance with and without a PCA-like
rotation of the data (no dimensionality reduction). Even if the invariance to
rotations property drops when employing the l1 norm, KQT performance seems
to hold still. Experiments were repeated 100 times, TPR and FPR are averaged
each time on (256+256) test batches.

properties.

5.17.1 Manhattan distance (p = 1)

Similarly to the Euclidean distance and the standard QT, the Manhattan distance
exhibited excellent control over the False Positive Rate (FPR) independently
from the number of training points and the data dimension, as we show in
Fig.5.42. In terms of power (TPR), the performance seems to be similar to
the one of the Euclidean KQT in these configurations of N and d. While the
Manhattan distance, as an l1 norm, is not generally invariant to rotations that
deviate from a π

2 rotation, even in the presence of PCA-like transformations,
kQT’s performance with the Manhattan distance remains remarkably consistent
if a sufficient number of training points is given.

The consistency of KQT’s performance when using the Manhattan distance
in the presence of PCA-like rotations without dimensionality reduction underscores
its potential as a robust tool for concept drift detection in high-dimensional
spaces. Our experiments (see Fig. 5.43) unveiled that when employing PCA
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Figure 5.44: 128-dimensional dataset preprocessed with PCA and RPs and
analyzed by Manhattan-kQT keeping only x components; for PCA we
distinguish the two cases in which we keep high variance (i.e. first x principal
components) and low variance components. FPR control that kQT exhibits
when using the Manhattan distance may not hold if we choose to keep only
a subset of the projections. This is particularly evident when low variance
components (in dashed lines) are retained. This can be mitigated by increasing
the number of training points (N); it is worth noting that this choice of low-var
components can significantly boost the algorithm’s detection power (as shown
by TPR and ∆(TPR−FPR). Experiments were repeated 100 times, TPR and
FPR are averaged each time on (256+256) test batches.

for dimensionality reduction, particularly in retaining only a subset of the
principal components, some challenges arise. Control over the False Positive
Rate (FPR) that KQT exhibits when using the Manhattan distance may not
hold if we choose to keep only a subset of the projections. This is particularly
evident when low variance components are retained, as they often represent
noise or less significant information in the data; however, this effect can be
mitigated by increasing the number of training points (N). The more training
points available, the algorithm becomes more resilient to the noise introduced
by low variance components, as we have seen previously with other methods.
While maintaining strict FPR control is a critical requirement in concept drift
detection, it’s equally important to consider the trade-off between control and
detection power: retaining low variance components, despite the potential challenges
they pose to FPR control, can significantly boost the algorithm’s detection
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Figure 5.45: TPR and FPR achieved by QT and kQT with Euclidean (l2
norm), Manhattan (l1 norm) distance and the lp fractional distances for
p ∈ 0.1, 0.2, 0.5, 0.8 on x-dimensional gaussian dataframes given sKL = 1.
Data is not preprocessed. FPR control holds when employing also the
fractional distance, independently from these numbers of training points N
data dimensions d. Experiments were repeated 100 times, TPR and FPR are
averaged each time on (256+256) test batches.

Figure 5.46: PCA preprocessing: lp-KQT performances after PCA (projection
on principal components with no dimensionality reduction). Even if the
invariance to rotations property drops, KQT performance seems to hold still.
However Experiments were repeated 100 times, TPR and FPR are averaged
each time on (256+256) test batches.

power. The increase in the difference between TPR and FPR is shown in the
last figure of Fig. 5.44.

5.17.2 Fractional distances (p < 0.1)

Similarly to the standard QT, kQT with the Euclidean distance and the Manhattan
distance, also kQT based on a fractional distance (derived from the lp norm with
p ∈ {0.1, 0.2, 0.5, 0.8}) exhibited excellent control over the False Positive Rate
(FPR) given a sufficient number of training points and the data dimension, as
we show in Fig.5.45. In terms of detection power (TPR), the performance seems
to be similar to the one of the Euclidean KQT in these configurations of N and
d. While the fractional distances are not generally invariant to rotations, as we
have seen with the Manhattan distance, even in the presence of rotations like
the ones introduced by PCA-like transformations, kQT’s performance remained
remarkably consistent.

We can see from Fig. 5.47 and 5.48 that even if with a sufficient number
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Figure 5.47: Effects of sample-based PCA with small
training sets: x-dimensional dataset preprocessed with PCA
and analyzed by KQT given the three metrics l0.2, l0.5
and l0.8 keeping only x components. A poor training set
is enough to lose FPR control even without any rotation,
even in small dimensional spaces. KQT performances with
lp distances become invariant to PCA with a sufficient N .
Experiments were repeated 30 times, TPR and FPR are
averaged each time on (512+512) test batches.

Figure 5.48: Overall effect of PCA and Random Projections
with no dimensionality reduction over QT and KQT with
lp distances. We can see that only in the case of p = 2,
i.e. Euclidean distance, the performances of the algorithm
are independent of PCA-like rotations. Experiments were
repeated 30 times, TPR and FPR are averaged each time
on (512+512) test batches.
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N of training points the FPR stays below the fixed threshold α = 5%, KQT
performances with lp norms are never really better than QT’s, considering that a
QT histogram is way faster to compute. The same can be shown when reducing
dimensionality (Fig. 5.49). KQT clusters are more robust when we project
data on the Principal Components (high variance components), maintaing the
FPR at the threshold α = 5% when the number of dimensions is substantially
reduced. On the other hand, QT is more stable when keeping low variance
components, which may be much important than usual in a Concept Drift
Detection framework - in this subspace we expect the change to happen.

5.18 The Swarm Behavior Dataset

We perform our Concept Drift Detection algorithms by randomly selecting a
training set of cardinality N from “flocking” datapoints and split the remaining
12000 − N instances in batches of size K. Post-change batches are made out
of points drawn from the “non-flocking” distribution, as if at some point the
animals had stopped moving in swarms and had begun to move independently,
each on its own. We do not standardize the values of the 12 ∗ 200 = 2400
features.

5.18.1 Random Projections

As discussed in Chapter 4, the Johnson-Lindenstrauss (JL) lemma states that
any high dimensional dataset can be randomly projected into a lower dimensional
Euclidean space while controlling the distortion in the pairwise distances. The
distortion ϵ introduced by a random projection is asserted by the fact that the
projection is defining an eps-embedding with good probability as defined by
Eq. 4.3. There is a minimum number of projection components to guarantee
this eps-embedding, or: the increase of the admissible distortion ϵ allows to
reduce drastically the minimal number of dimensions for a given number of
samples.

We use the high-dimensional dataframe Swarm Behavior to validate the
bounds given by the JL lemma: we want to see that for low values of the
post-processing dimensionality (number of projections), the distribution is wide
with many distorted pairs and a skewed distribution, due to the hard limit
of zero ratios between distances since distances are always positive, while for
larger subsets of components, the distortion is controlled and the distances are
well preserved by the random projections. The dataframe is a multivariate set of
more than 24000 intances in a 2400-dimensional space. We reduce dimensionality
with Gaussian random projections, i.e. drawing the n components fromN (0, 1/n),
and plot the 1D histogram of the ratio of pairwise distances in original and
projected spaces (projectedoriginal ). Results are shown in Fig. 5.50.

According to the JL lemma, projecting 300 samples without too much distortion
will require at least several thousands dimensions, irrespectively of the number
of features of the original dataset. Hence using random projections e.g. on a 128-
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Figure 5.49: Effects of sample-based PCA: 128-dimensional dataset
preprocessed with PCA and analyzed by KQT (N ∈ {1024, 4096}) given the
three metrics l0.1, l1 and l2 and keeping only x components, from left to right
the first (high variance) and the last components respectively. KQT clusters are
more robust when we project data on the Principal Components (high variance
components), maintaing the FPR at the threshold α = 5% when the number
of dimensions is substantially reduced. On the other hand, QT is more stable
when keeping low variance components, which may be much important than
usual in a Concept Drift Detection framework - in this subspace we expect the
change to happen. Experiments were repeated 30 times, TPR and FPR are
averaged each time on (512+512) test batches.
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Figure 5.50: Projection of 300 samples from the Swarm Behavior dataset (d =
2400) using Gaussian RPs. We can see that for low values of n components the
distribution is wide with many distorted pairs and a skewed distribution, while
for larger values of n components the distortion is controlled and the distances
are well preserved by the RP.
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dimensional dataframe, does not make much sense. With this huge dimensional
dataframe, we hope that RPs will able our detection methods to learn something
from the relatively few datapoints provided.

5.18.2 PCA preprocessing

We reduce the dimensionality with PCA to test the performances of QT and
KQT adopting various distances. Evaluations are made on both the high
variance components and the low variance ones, keeping subspaces of increasing
dimension d′ ∈ {2, 4, ..., 512, 1024}. In Figure 5.51 we show the results we obtain
from small training sets of N = 512 points used both to find the projected
space and to build the histograms. Keeping high variance components, KQT
with Weighted Mahalanobis distance is the first to lose FPR control when
the projected space dimensionality scales, followed by KQT with Mahalanobis
distance, QT, and KQT with lp distances with p ∈ {0.1, 1}. Euclidean-KQT is
able to maintain near the α threshold for any number of projection components.
On the other hand, keeping low variance components is always bringing FPR
value to 100% (each new sample raises an alarm).; the only exception given
by KQT if we keep at least d′ = d/2 dimensions for the projected space. The
average TPR computed always equals 100%, i.e. the models are always signaling
an alarm when receiving a post-change batch: each batch drawn from the non-
flocking dataframe is recognized as one. In these conditions, it seems that QT
after reducing dimensionality to d′ ∈ {2, 4} can maintain the FPR below the
5% threshold and achieve a 100% TPR.
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Figure 5.51: Dimensionality reduction by PCA: 1200-dimensional dataset
Swarm Behavior preprocessed with PCA and analyzed by QT and KQT (N =
512) keeping only x components, from left to right the first (high variance) and
the last components respectively. With a threshold α = 5%, all the models are
able to detect the change of the distribution (from “flocking” distribution ϕ0
and non-flocking) Experiments were repeated 30 times over the whole dataframe
randomly sampled. KQT with Weighted Mahalanobis distance is the first to lose
FPR control when the projected space dimensionality scales, followed by KQT
with Mahalanobis distance , QT, and KQT with lp distances with p ∈ {0.1, 1}.
Euclidean KQT is able to maintain near the α threshold for any number of high
variance components. FPR control is completely lost when projecting data on
low variance components estimated from the training set.

96



Chapter 6

Online experiments

In this chapter we present the experimental evaluation of the proposed solution
KQT-EWMA. Our aim is to show that the algorithm controls the false alarms
comparably or better than competing methods, while achieving lower detection
delays. In QT-EWMA and KQT-EWMA we set K = 32 - unless otherwise
specified - and uniform target probabilities πj = 1/K, since uniform histograms
have been shown to be very effective for change detection purposes [7]. For
SPLL we set ν = 32.

6.1 Datasets

6.1.1 Synthetically generated data

As we discussed in the Batch-wise experiments chapter, to enable a fair comparison
among change-detection algorithms, we rely on the ”Controlling Change Magnitude”
framework [2] to generate post-change distributions given the symmetric Kullback-
Leibler divergence with respect to the stationary distribution. We generate
synthetic datastreams in different dimensions d by choosing an initial distribution
ϕ0 with random covariance matrix, and as alternative post-change distribution
a random roto-translation of ϕ0 computed as ϕ1 = ϕ0(Q, v), with parameters Q
and v computed using the CCM framework.

Monomodal Gaussian

We consider a stationary distribution ϕ0 which is a null-mean Gaussian with
a random covariance matrix. The post-change distribution ϕ1 is obtained by
roto-translation using the CCM framework, such that the symmetric Kullback-
Leibler distance (sKL) between ϕ0 and ϕ1 is fixed. If not specified, in our
experiments the target sKL is set to 1. N points are sampled from ϕ0 to
generate the training set; we build sequence of a fixed length (lseq = 10000 if
not specified otherwise) to be monitored. The sequences can be characterized by
a change at some point cp, or not. In the first case, we concatenate a sequence
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drawn from ϕ0 which has length τ with a sequence of length lseq − τ of samples
drawn from the post-change distribution ϕ1; to test the average running length
ARL0 or the false alarm rate, we build sequences with samples drawn from
the stationary distribution ϕ0. When a target ARL0 is given, the sequence is
L = 6∗ARL0 long. We perform our experiments in different configurations given
by the changing cardinality of the training set |TR| = N and the dimensionality
d of the dataframe the sequences are sampled from. The symmetric divergence
is fixed to sKL = 1 unless otherwise specified. A visual insight we can refer
to, together with a discussion on the curse of dimensionality, is given in the
previous chapter (see Figures 5.1, 5.2)

6.1.2 Real-world dataframes

In Challenges in Benchmarking Stream Learning Algorithms with Real-world
Data [24], the authors review the difficulties related to the comparison and
evaluation of streaming algorithms due to the lack of publicly available non-
stationary real-world datasets. To test QT-EWMA, in [10], the authors employ
real-world datasets from the UCI Machine Learning Repository [14] with dimensions
ranging from d = 5 to d = 50. We also test our change-detection method
on these traditional multivariate classification datasets: Credit Card Fraud
Detection (“credit”, d = 28), Sensorless Drive Diagnosis (“sensorless”, d =
48), MiniBooNE particle identi- fication (“particle”, d = 50), Physicochemical
Properties of Protein Ternary Structure (“protein”, d = 9), El Niño Southern
Oscillation (“niño”, d = 5), and two of the Forest Covertype datasets (“spruce”
and “lodgepole”, d = 10). As in [10], we standardize the datasets and sum to
each component of “sensorless”, “particle”, “spruce” and “lodgepole” imperceptible
Gaussian noise to avoid repeated values, which harm the construction of QuantTree
histograms.

The problem with these dataframes is that they are not meant to be used to
test concept drift detection algorithms. The distributions are typically considered
stationary, so we can randomly sample the datastreams, but we introduce
changes thanks to the usual CCM framework [2], differently from [10], where
changes are obtained shifting the post-change samples by a random vector drawn
from a d-dimensional Gaussian scaled by the total variance of the dataset. These
artificially introduced changes should label these experiments as something in
the middle between a synthetic testbed and one from the real world... let’s
be cautious. However, each statistic derived from the pre-change distribution
only, and thus the whole histograms, will be genuinely independent from these
changes. That is why in [24] it is introduced a benchmark dataset based on
the use of optical sensors to recognize flying insect species in real-time, which
was also used in [10]. They cannot assume a stationary stochastic process
because of the behavior of the insects: for example, temperature influences
their metabolism, air pressure and humidity can change their flying behavior.
For these reasons, the measures suffer from concept drifts over time. It works
like this: the sensor has two parallel mirrors face-to-face, an infrared LED uses
the mirrors to create a light window that ends in a phototransistor; when a flying
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insect crosses the light, its wings and body partially occlude it, causing small
variations that are captured by the phototransistor. To classify insect species,
the wing-beat frequency is one of the most relevant information that can be
extracted from the signals. Beyond the fundamental frequency, the spectrum of
a signal also has harmonic components which position also constitute important
information. For three months, the authors of [24] varied temperature and
humidity in these traps and recovered around one million instances for 17
different species including mosquitoes, houseflies, bees, and wasps, to build
a 33-dimensional dataset. They wrote that theirsignal, although optical, is
very similar to audio [as they consider it in the frequency space, ndr] and
consequently high-dimensional. It is worth noting that these 33 dimensions are
all derived from signal processing techniques to extract additional discriminative
features for data obtained from a sensor, i.e. 1D signals, to be transformed in
a feature vector. The authors extracted the wing-beat frequency, complexity
measures of the signal spectrum, statistics from temporal representation, among
others; I believe it is a risky choice to call it a multi-dimensional frame, especially
in the context of machine learning, which tries to come over our human-defined
parameters often burying some of the important aspects.

Considering this ubiquitous artificiality we used these dataframes way less
than synthetics. In fact, we needed data points sampled from an enormous
meshwork of different configurations, specifically considering values for d and
N , and a lot of instances to ran thousands of experiments which results are
often characterized by high variance.

6.2 Figures of Merit

In the context of batch-wise concept drift detection, which classify entire data
batches as originating from either the stationary distribution or a new post-
change distribution, we focus on metrics like True Positive Rate (TPR) and False
Positive Rate (FPR). As we already discussed, TPR quantifies the ability to
correctly classify batches from the post-change distribution, while FPRmeasures
the rate of misclassifying stationary batches as drifted. On the other side, online
methods typically employ metrics such as Average Run Length (ARL) and
Detection Delay, prioritizing timely detection. We better define these quantities
before beginning with the description of the experimental framework.

Empirical ARL0

To assess whether kQT-EWMA and the other considered methods maintain
the target ARL0, we compute the empitical ARL0 as the average time before
raising a false alarm. To this purpose, we run the considered methods on n
datastreams drawn from ϕ0, setting the target ARL0 ∈ {500, 1000, 2000, 5000}
as in [10]. We consider datastreams of length L = 6 ∗ARL0 to have a detection
in each datastream. Since, by construction, the detection time t∗ of our method
under ϕ0 is a geometric random variable with parameter α = 1/ARL0, the
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Equation 2.9 indicates that the probability of having a false alarm before L is
P(t∗ ≤ L) ≈ 0.9975.

Detection delay

We evaluate the detection performance of kQT-EWMA and the other considered
methods by their detection delay, i.e. ARL1 = E[t∗−τ ], where the expectation is
taken assuming that a change point τ is present. We run the methods configured
with target ARL0 ∈ {500, 1000, 2000, 5000} on n datastreams of length lseq =
10000, each containing a changepoint at τ = 300. We estimate the ARL1 as the
average difference t∗ − τ , excluding false alarms.

False alarm rate

To assess whether the considered methods maintain the target false alarm
probability, we compute the percentage of false alarms obtained on the datastreams
used to evaluate the detection delay, i.e., those in which a detection occurs at
some t∗ < τ . Also in this case, we set the target ARL0 ∈ {500, 1000, 2000, 5000},
which, according to Eq. 2.9, yield a false alarm in 45%, 26%, 14% and 6% of
the datastreams, respectively.

6.3 KQT-EWMA

Our first “demo” experiment to test the performance of kernel-QT-EWMA was
performed on datastreams drawn from a relatively small dimensional space Rd

with d ∈ {2, 4, 8, 16, 32}. QT and KQT histograms were built on training sets
TR of cardinality N ∈ {1024, 4096}, containing sequences of samples from the
stationary distribution ϕ0. The post-change samples were drawn from a roto-
translation of ϕ0, ϕ1 built such that sKL(ϕ0 → ϕ1) = 1. The parameter λ for
the computation of the EWMA statistic (see Eq. 2.5) was set to λ = 0.03. Our
purpose was to show that i) the empirical ARL0 of KQT-EWMA approaches the
target and ii) that changes can be detected with smaller delays with respect to
QT-EWMA. We report the outcomes of 1000 experiments in Fig. 6.1. The
empirical ARL0 of KQT-EWMA approach the target in small dimensional
frames (d ≤ 8) or with a sufficient number of training points. While in any
case QT-EWMA and Euclidean KQT-EWMA can control the ARL0 and SPLL
cannot, KQT-EWMA with Mahalanobis and Weighted Mahalanobis lose this
property with increasing dimensionality, when the number of training points
N is fixed. We can compare these results with what was shown in the offline
framework in Fig. 5.4, where we can see that FPR control is lost by KQT
when built on Weighted Mahalanobis (first) and Mahalanobis (later) distances
when dimensionality is increasing. We can compare FPR with ARL0 control.
Also in this case, an increased number of training points N can alleviate this
phenomenon. As QuantTree and Euclidean KQT (see Fig. 6.1) could control
FPR no matter the data dimension, QT-EWMA and Euclidean KQT-EWMA
seems to approach the target ARL0, no matter the data dimensionality or the
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Figure 6.1: Experimental results over Gaussian datastreams with d ∈
{2, 4, 8, 16, 32} and N ∈ {1024, 4096} show that the empirical ARL0 of KQT-
EWMA approach the target in small dimensional frames (d ≤ 8) or with
a sufficient number of training points. While in any case QT-EWMA and
Euclidean KQT-EWMA can control the ARL0 and SPLL cannot, kQT-EWMA
with Mahalanobis and Weighted Mahalanobis lose this property with increasing
dimensionality, when the number of training points N is fixed. Values were
averaged over 1000 experiments.

101



Figure 6.2: Experimental results over Gaussian datastreams with d ∈
{2, 4, 8, 16, 32} and N ∈ {1024, 4096} show that KQT-EWMA achieves the best
(smallest) detection delays given the same false alarm rates. While QT-EWMA
and Euclidean KQT-EWMA can control the false alarm rates, this is not true
with Mahalanobis and Weighted Mahalanobis distances employed. Values were
averaged over 1000 experiments.

number of training points provided. In Fig. 6.2 are compared the detection
delays and the false alarm (FA) rates. KQT-EWMA achieves the best (smallest)
detection delays given the same false alarm rates. While QT-EWMA and
Euclidean KQT-EWMA can control the false alarm rates, this is not true with
Mahalanobis and Weighted Mahalanobis distances employed. Also in this case,
an increased number of training points N can alleviate this phenomenon. As
QuantTree and Euclidean KQT (see Fig. 5.38) could control FPR no matter the
data dimension, QT-EWMA and Euclidean KQT-EWMA seems to approach the
target ARL0 and maintain a low FA rate, no matter the data dimensionality
or the number of training points provided. When there is control over the false
positives, i.e. with a sufficient number of training points, Mahalanobis and
Weighted Mahalanobis KQT-EWMA achieves the lowest detection delays.

6.4 Euclidean KQT-EWMA in High-Dimensional
dataframes

While in any case QT-EWMA and Euclidean KQT-EWMA can control the
ARL0 and SPLL cannot, KQT-EWMAwith Mahalanobis andWeighted Mahalanobis
lose this property with increasing dimensionality, N fixed (same discussion as
for the FPR control batch-wise). When there is control over the false positives,
i.e. with a sufficient number of training points, Mahalanobis and Weighted
Mahalanobis KQT-EWMA achieves the lowest (the best) detection delays and
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Figure 6.3: Experimental results over streams sampled from Gaussian
distributions with d ∈ {2, 4, 8, 16, 32, 64, 128, 256}, N ∈ {1024, 4096}, and
sKL = 1, show that QT-EWMA and Euclidean KQT-EWMA are able to
control RL0 even at small N/d ratios, when SPLL is not. Target ARL0 values
where chosen between 500, 1000, 2000, and 5000. Data was not preprocessed.
Values are averaged over 1000 experiments.

outshines both QT-EWMA and the “oracle” SPLL, both in terms of controlling
ARL0 and in achieving impressively low detection delays when N/d ratio is in
favor. As we did offline, for concept drift detection higher-dimensional spaces
we go on with QT and Euclidean KQT, these being able to control the false
alarms independently from the dimension.

In Fig. 6.3 experimental results conducted on these Gaussian datastreams
with no preprocessing show the effectiveness of QT-EWMA and Euclidean KQT-
EWMA in controlling ARL0 at small N/d ratios. Target values were chosen
between 500, 1000, 2000, and 5000. We remark that SPLL, which assumes a
Gaussian distribution, enjoys an inherent advantage in fitting the data; despite
this, both QT-EWMA and Euclidean KQT-EWMA, employing non-parametric
histogram-based approaches, demonstrate comparable or superior performances
in maintaining control overARL0, especially under challenging conditions. Figure
6.4 emphasize the robust performance of QT-EWMA and Euclidean KQT-
EWMA in achieving the chosen False Alarm (FA) rate, particularly at small
N/d ratios, when SPLL faces challenges and QT-EWMA and Euclidean KQT-
EWMA exhibit the ability to achieve lower detection delays. Another representation
of our results is in Fig. 6.5. As dimensionality scales, QT-EWMA and KQT-
EWMA delays approach the target ARL0 as TPR approaches FPR batch-wise;
we referred to this phenomenon as detectability loss. SPLL’s detection delay
has the same trend, but empirical ARL0 drops away from the target when N/d
decreases.

In situations where the sample size (N) is small (e.g., 1024) and dimensionality
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Figure 6.4: Experimental results over datastreams sampled from Gaussians
with d ∈ {2, 4, 8, 16, 32, 64, 128, 256}, N ∈ {1024, 4096}, and sKL = 1, show
that QT-EWMA and Euclidean KQT-EWMA are able to achieve the chosen
False Alarm (FA) rate even at small N/d ratios, when SPLL is not. In these
inconvenient frames, QT-EWMA and KQT-EWMA achieve lower detection
delays with respect to the “oracle” SPLL given the same FA rates. Target
ARL0 values where chosen between 500, 1000, 2000, and 5000. Values are
averaged over 1000 experiments.

Figure 6.5: Experimental detection delay and FA rate over datastreams
sampled from Gaussians distribution with d ∈ {2, 4, 8, 16, 32, 64, 128, 256},
N ∈ {1024, 4096}, and sKL = 1; QT-EWMA and Euclidean KQT-EWMA
are compared with SPLL given different target ARL0 values in {500, 1000,
2000, 5000}. Values are averaged over 1000 experiments.
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scales, QT-EWMA and Euclidean KQT-EWMA exhibit the lowest (best) detection
delays, with comparable performance (but with QT being way faster to compute
from TR). In more favorable environments with larger training sets, SPLL’s
detection delays decrease under GQT’s; however, the model remains impractical
due to its inability to manage false positives. We remark one last time the
significance of the False Alarm rate as a critical metric in evaluating a model’s
performance, transcending the mere reduction of detection delays, as higher FA
rates indicate a constant stream of alarms, not only when genuinely needed,
undermining the model’s reliability.

6.5 UCI datasets and PCA

We have seen the effects of PCA on the outcomes of our algorithms over
data sampled from Gaussian distributions. We have seen what happens when
we keep a small number of high or small variance components to build the
projected space. We can now guess that when performing PCA with a sufficient
number of training points and then analyze each component separately we obtain
something like Fig. 6.6: given control over ARL0, the detection delay is lower
for low variance components, which are more probable to be affected by the
change significatively.

This section marks the conclusion of the thesis but also starts from my initial
exploration of these algorithms. The works from G.Boracchi et al.( [6], [10], [25])
reported that PCA preprocessing is generally beneficial for QT, but only in
certain settings. We wanted to systematically explore PCA effects over these
dataset, which were referred by that generally, but only in certain settings.
We usually do not rely on one single component since we don’t want to lose
much information while the FPR control holds, still we performed this kind of
experiment for the UCI dataframes to see if this success in using low variance
components is suitable only with Gaussian distributions or if it holds on these
real-world datastreams, too.

In Figures 6.6 and 6.7, we observe that the last components, in terms of
explained variance, often correspond to lower detection delays. It is always
important that the number of training points is sufficient to maintain a the
target ARL0. In these experiments, the mean FA rate remains constant and
fixed, and no significant variations or orderings are measured among different
components. This is not true for “particle” (d = 50) and “insects” (d = 33)
dataframes. In both cases we can’t distinguish any trend with respect to the
variance-based ranking of the components used to project datasets. We can see
the results of this experiment over the Insects dataframe in Fig. 6.8, where the
“last” component is the one achieving the worst detection delay, while on the
direction associated with the lowest detection delay we also lose ARL0 control,
and the FA rate doubles the average.

In Figure 6.9 we show the results obtained building our models over subsets
of first (or last) x principal components, as we always did. We show for example
the“credit” dataframe. There is an obvious trend in the detection delay which
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Figure 6.6: Experimental detection delay and FA rate over datastreams sampled
from Gaussians distribution with d = 32, N = 1024, sKL = 1. Datastreams
are preprocessed with PCA, then projected on one single component and given
to QT-EWMA as 1D signals, one component each time till all are used to be
compared. We saved the mean Explained variance of the n-th component over
1000 experiments and display it on the x axis ordered by its rank.
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(a) “niño” dataframe (d = 5)

(b) “protein” dataframe (d = 9)

(c) “credit” dataframe (d = 28)

(d) “sensorless” dataframe (d = 48)

Figure 6.7: Experimental results over datastreams sampled from UCI datasets
with increasing d and N = 1024. Datastreams are preprocessed with PCA,
then projected on one single component and given to QT-EWMA as 1D signals,
one component each time till all are used to be compared. We saved the mean
Explained variance of the n-th component over 1000 experiments and display it
on the x axis ordered by its rank. 107



Figure 6.8: Experimental results over datastreams from UCI Insect dataframe
(d = 33) with N = 1024. Datastreams are preprocessed with PCA, then
projected on one single component and given to QT-EWMA as 1D signals,
one component each time till all are used to be compared. We saved the mean
Explained variance of the n-th component over 1000 experiments and display
it on the x axis ordered by its rank. We can see no trend in the detection
delay t∗−τ as the explained variance goes to 0; the second principal component
achieves the lowest t∗ − τ but is also associated with a False Alarm rate which
doubles the average. The direction explaining the lowest variance is the one
giving the worst delay.
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(a) Keeping first x PCs (high variance components)

(b) Keeping last x PCs (low variance components)

Figure 6.9: “credit” dataframe (d = 28), N = 1024. Datastreams are
preprocessed with PCA, then projected on groups of x components chosen in
order and given to QT-EWMA as x-dimensional multivariate streams, till all
components are used. We saved the mean Cumulative Explained variance of the
components over 1000 experiments and display it between the detection delay
(on the left column) and the FA rate (right column). We can see no trend in
the FA rate, but the lowest detection delay is achieved when keeping the last
3-4 PCs to project the test points.

reaches its minimum when keeping the last 3-4 principal components to project
the test points.

KQT-EWMA

The problem with these real world datasets, with respect to our usual synthetic
frames generated from Gaussian distributions, might be the control over false
positives. We show for example the results obtained over “particle” (d = 50,
our biggest UCI datasets within the ones used in [10]), “credit” (d = 28), and
“protein” (d = 9) dataframes. We set the cardinality of the training sets to N ∈
{1024, 4096}, and describe the results obtained with our new implementation
KQT-EWMA adopting the three Manhattan, Euclidean (lp with p = 1, p =
2 respectively) and Mahalanobis distances, including a comparison with QT-
EWMA and SPLL.
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We confront control over ARL0, given the fixed target, in Fig. 6.10. All these
models struggle to maintain empirical ARL0 values near the target when this
target increases. This is true also for the “protein” - our smaller - dataset, given
N = 4096 training points. SPLL - which, we remark, is based on a Gaussianity
hypothesis which is not satisfied here, is never able to control the false positives
- same as it ever was; KQT-EWMA with Mahalanobis distances gives the worst
results when the N/d ratio is small (e.g. on “particle” and “credit” dataframes
with N = 1024). KQT-EWMA with Euclidean and Manhattan distances
generally achieves the same control over ARL0 as QT-EWMA did, which is
the best achieved overall. KQT-EWMA with Mahalanobis distance obtains the
best advantages from a bigger training set in terms of decreasing the FA rate.

QT-EWMA and each of its variants always outperforms SPLL over all these
dataframes(see Fig. 6.11). WhenARL0 - thus, FA rate - is controlled, Mahalanobis
KQT-EWMA is the best model in terms of detection delay obtained, achieving
considerably lower detection delays with respect to SPLL, QT-EWMA and
KQT-EWMA with lp norms (Manhattan distance corresponding to p = 1 and
Euclidean to p = 2). Mahalanobis distance, considering global relationships
between datapoints - it is indeed based on the inverse sample covariance matrix
computed over training points - scores a half of the detection delay of QT-
EWMA on the “particle” dataframe when N = 4096, which is was already way
lower than SPLL’s. That is, once more, for what we have tried and we know,
KQT-EWMA can outperform the state of the art, but lacks of robustness.

We reduce dimensionality with PCA using as examples the “particle” and
“credit” dataframes. Results (Fig. 6.12 shows once again that low variance
components are more likely to be useful to detect drifts. Indeed, to achieve lower
detection delays keeping PCs computed by sample-based PCA, it is convenient
to hold a greater number of components, as it is evident in the results obtained
from the “particle” dataframe. Instead, using our models to analyze low variance
components gives way lower detection delays for each of our models. Also, in the
frames we tested and show, low variance components are always robust enough
to achieve the same FA rate that PCs achieve, with the only exception of SPLL
detection performance over the “particle” dataframe.
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(a)

(b)

(c)

Figure 6.10: False Positives control over UCI (a:“particle” (d = 50), b:“credit”
(d = 28), and c:“protein” (d = 10)) dataframes between SPLL, QT-EWMA
and KQT-EWMA variants. The empirical ARL0 is confronted with its target
values, set by the user - here between {500,1000,2000,5000}. All these models
struggle to maintain empirical ARL0 values near the target when this target
increases, given both values of N ∈ {1024, 4096}. Results are averaged over 500
experiments.
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(a)

(b)

(c)

Figure 6.11: Detection Delay and False Alarms (FA) over UCI (a:“particle”
(d = 50), b:“credit” (d = 28), and c:“protein” (d = 10)) dataframes between
SPLL, QT-EWMA and KQT-EWMA variants. All these models struggle to
maintain FA rates near the targets when the target increases, given both values
of N ∈ {1024, 4096}. In these conditions, QT-EWMA achieves lower detection
delays with respect to its generalized version when lp norms are used. If a
sufficient number of training points is provided, KQT-EWMA with Mahalanobis
distances is our best try. Results are averaged over 500 experiments.
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(a)

(b)

Figure 6.12: PCA - Detection Delay and False Alarms (FA) over UCI “particle”
(d = 50) dataframe when preprocessing with PCA and projecting data on
a subset of high (a) and low (b) variance components. The projected space
dimensionality takes values in {2, 4, 8, 16, 32}. Results shows once again that low
variance components are more likely to contain the subspace where the change
happens. Indeed, to achieve the lower detection delays keeping PC selected by
a sample based PCA, it is convenient to hold a greater number of components.
Results are averaged over 500 experiments.

113



114



Chapter 7

Conclusions

Concept Drift Detection frameworks give a comprehensive view of the challenges
and strategies inherent in monitoring predictive models under dynamic data
conditions. The thesis work confronted the complexity of high-dimensional
multivariate data streams, studying the performances of the QT algorithm, its
generalized version Kernel-QT (KQT), and its online variant, QT-EWMA. This
exploration finally included the proposal of a novel online algorithm, KQT-
EWMA, which combines a generalized QT histogram with an exponentially
weighted moving average statistic and outshines both QT-EWMA and the
“oracle” SPLL, both in terms of controlling ARL0 and in achieving impressively
low detection delays when N/d ratio is in favor. We considered the interplay
between dimensionality, training data availability, and the choice of distance
metrics, together with conventional data processing methods such as PCA; in
particular we considered intricacies in FPR control with respect to the significance
of the choice of components for building the projected space.

The conclusions of this study show paths for future explorations and real-
world applications: we tried to set a controlled but comprehensive framework
for establishing the limits of these algorithms, but in doing so, we just discovered
new questions, and the music is just starting. Between all theseN/d inconvenient
ratios we remark that simplicity is often the best answer: QT and QT-EWMA
consistently excel, both with and without data preprocessing, competing favorably
against significantly heavier algorithms in terms of TPR/detection delay and
FPR/ARL0. Their simplicity and elegance, coupled with a foundation in robust
theoretical results, make them stand out. I believe that a potentially important
exploration should be done on the behavior of ensembles of QuantTree models.
Constructing multiple QT histograms on a training set derived from randomized
projections of a high-dimensional space. First of all, randomized feature selection
(e.g. Gaussian RPs we used) induces an implicit regularization; moreover,
this ensemble would satisfy the requirements of diversity, independence, and
superiority of each member to random choices, potentially resulting in a highly
efficient system.
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Chapter 8

Conclusioni e
ringraziamenti

Un quadro sul rilevamento di derive del concetto: scrivere in italiano di “Concept
Drift Detection” mi è complicato tanto quanto provare a raccontare questi
risultati della statistica e dell’analisi dati - anche solo “big data”; come suona
male “dati grandi”.

Abbiamo visto questioni e strategie per il monitoraggio di modelli predittivi
in condizioni dinamiche, passando per la complessità dei flussi di dati multivariati
ad alta dimensionalità, studiando gli ottimi risultati dell’algoritmo QT che
rimane un semplice istogramma, della sua versione generalizzata Kernel-QT
(KQT), e della sua variante online, QT-EWMA. Abbiamo proposto un nuovo
algoritmo per l’analisi online, KQT-EWMA, che combina un istogramma QT
generalizzato con la statistica EWMA e si distingue sia nel controllo di ARL0

che nel rilevare cambiamenti nei pattern in tempi incredibilmente bassi.
Abbiamo considerato l’interazione tra dimensionalità, disponibilità di dati,

e la scelta di metriche di distanza, insieme a metodi di elaborazione dati e
riduzione della dimensionalità convenzionali come PCA; in particolare, abbiamo
esaminato le complessità nel controllo del tasso di falsi positivi (FPR) rispetto
all’importanza della scelta dei componenti per la costruzione dello spazio proiettato.

Le conclusioni sperimentali indicano nuove vie e applicazioni a problemi reali:
abbiamo cercato di stabilire un quadro complessivo ma controllato per definire
i limiti e i benefici di questi algoritmi, ma nel farlo abbiamo solo trovato nuove
domande, e la musica è appena iniziata.
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Grazie a Bianca, senza di te, le tue idee, le tue parole, sarei poco poco. A
te, tutte le simulazioni Monte Carlo.

Grazie ad Alice, ai cinemini alle letture alle mucche armene alla musica che
abbiamo visto insieme; quanto ci sei tu in queste pagine: chissà se lo vedi, anche
se lo nego.

Un grande grazie a mia madre che mi ha permesso di fare questi tanti e tanto
belli anni di università, a tutta la famiglia allargata; non ho e non basterebbero
altre parole.

Un grande grazie a Bea, Ceci, Giacomo, Michele, Mone, Taguhi, Tommi, ai
fisici tossici, e tutt* l* altr* student* del Patio per avermi passato la fisica, la
matematica, l’ostetricia, la lingua araba e le altre cosette che mi hanno permesso
di superare gli esami e scrivere questa tesi.

Soprattutto un grande grazie a Filippo che mi ha guidato, tra tutti questi
esperimenti, attraverso un oceano - letteralmente due, nelle nostre call settimanali
Italia-Nuova Zelanda tra notti estive, mattine invernali e altri incroci; questa
tesi dovrebbe portare anche la sua firma.

Nota finale: Ho fatto girare, approssimativamente, giorno e notte per quattro
mesi, 40 core CPU. Sono 2880 ore in cui, mediamente stimiamo, sono richiesti
100 W. Considerando il costo medio dell’energia in kWH in Italia l’anno scorso,
uguale a 38.9 g di CO2 equivalente, il lavoro dietro questa tesi include oltre un
quintale (∼ 112 kg) di anidride carbonica.
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