
Model-Based Design of a Generic Automatic Flight Control
System for Helicopter Flight Simulation Training Devices
Executive Summary - Laurea Magistrale in Aeronautical Engineering

Author: Francesco Paolo De Simone

Advisor: Prof. Marco Lovera

Co-Advisor: Eng. Francesco Borgatelli

Academic Year: 2021 - 2022

1 Introduction
By the end of 2039, the civil aviation industry
will need to recruit roughly 2.4 million new pi-
lots and technicians to cope with the increasing
demand for air travel [2]. Flight simulators can
play a crucial role in addressing this shortage
by preparing pilots for the complexities of fly-
ing, providing a safe and cost-effective means of
training.
TXT e-solutions S.p.A., a provider of engineer-
ing software solutions, has been a leading com-
pany in this field and has shown interest in us-
ing Model-Based Design to replace traditional
C++ hand-coding approach in the development
of flight simulators.
The current objective, as established by the
company, is to develop a modular and customiz-
able autopilot architecture using the Model-
Based Design approach. The intended outcome
is the creation of a single, generic helicopter au-
topilot that can be adapted to various helicopter
types by simply modifying configurations and
parameters.
A proof-of-concept for low-level functionalities
of a basic generic helicopter autopilot was previ-
ously developed in another work [5]. Instead,
the present research aims to analyze and im-
prove this model in order to demonstrate that

the Model-Based Design approach is still valid,
even when addressing more realistic and intri-
cate autopilot architectures.
As a result, to deal with the increasing complex-
ity of the new autopilot, it has been necessary
to reconstruct the Simulink model from scratch
since the initial configuration did not allow for
sufficient modularity and generality to accom-
modate the high-level functionalities introduced
by the upper modes and their control logics. A
customizable auto-tuning process has also been
developed to optimize the control systems gains
of the assembled model of the generic autopi-
lot. Finally, the results have been validated by
comparing them with the ones achievable with
a twin-engine light utility helicopter Full Flight
Simulator level D (highest flight simulator cer-
tification recognition according to EASA).

2 AFCS Structure
In its most generic definition, an AFCS com-
prises of various hardware components such
as sensors, actuators, computers, as well as
software elements like control laws and logic.
The sensors collect extensive data from both
the helicopter and the surrounding environment
and use these measurements to feed the control
systems of the autopilot. Based on this data,
the control logic and laws determine the most

1



Executive Summary Francesco Paolo De Simone

suitable control inputs and direct them to the
actuators, which adjust the flight controls of
the helicopter accordingly. The main objective
of an AFCS is to ensure the safe and efficient
stabilization and control of an aircraft, while
simultaneously minimizing the workload of the
pilot.
The software components modeled in the cur-
rent autopilot are presented below, considering
the following AFCS framework:

• within the AFCS inner loop, the lower
modes are responsible for controlling the
pitch, roll, and yaw angular rates and
attitude of the helicopter to enhance its
maneuverability and stability.
The Stability Augmentation System ad-
dresses and resolves the inherent instability
of conventional helicopters by utilizing
Proportional (or Proportional-Integral)
controllers.
On the other hand, the Attitude Hold Sys-
tem allows for the selection and automatic
maintenance of a specific attitude. This
system includes a logic module that sets
the reference attitude based on the pilot’s
actions on the force trim and beep trim
controls located on the cyclic and collective
grips. The other module of this system
computes the control action using PID
controllers. In general, the lower modes
provide control in the pitch, roll, and yaw
channels of the AFCS.

• in the outer AFCS loop, the upper modes
enable the control and hold of "external"
conditions [4] by means of PID controllers.
The most important among these systems
are the Indicated Airspeed Hold (IAS), the
Barometric Altitude Hold (ALT), Radar
Height Hold (RHT), the Heading Hold
(HDG) and the Hover Hold (HOV).
The upper modes that control the pitch,
roll, or yaw axes rely on the proper func-
tioning of the ATT to perform their task
successfully. However, this is not the case
for the collective modes.
The autopilot control logics are responsible
for transitioning between modes on differ-
ent axes, as well as for the manual and
automatic engagement and disengagement

decisions of these modes.
The pilot can access these modes primarily
through switches and buttons on the
Autopilot Control Panel (APCP). Adjust-
ments in the reference datum of a specific
upper mode can be made using the force
trim and beep trim controls located on the
stick grips.

• The functionalities also operate within the
inner (or outer) loop of the AFCS. These
systems offer various types of automatic
controls, which aim to improve the con-
trollability, stability, and maneuverability
of the helicopter. The unique feature of
these systems is that they only provide
automatic control actions in specific flight
conditions that are characteristic of the
selected functionality. Among these sys-
tems there is the Turn Coordinator (TC),
which aims to ensure coordinated turns by
utilizing a PID controller that annihilates
lateral accelerations during specific flight
operations.

3 AFCS Modeling
To achieve high levels of modularity, general-
ity, and automation in the development of the
AFCS, Simulink offers several solutions, with
the most significant ones in this work being:

1. Custom Libraries used to store multiples
modular custom blocks of the AFCS which
are reused several times throughout the as-
sembly of the final model.

2. Block Masks are essential to achieve high
levels of system generality. They are cus-
tom GUIs that can be added to a subsystem
made up of different blocks, allowing end-
users to customize the structure, behavior,
and parameters within the masked block.
Proper utilization of the Initialization in-
terface within the Mask Editor enables up-
stream customization and recycling of the
same masked block for multiple uses. How-
ever, for complex and hierarchical struc-
tures like the one present in this AFCS,
it is necessary to define a clear and unam-
biguous notation for managing the multiple
functions of a single custom block.

2



Executive Summary Francesco Paolo De Simone

3. Stateflow Charts which provide a graphi-
cal programming environment based on fi-
nite state machines, essential for the defi-
nition of generic control logic of the AFCS
modes. Stateflow blocks can also be em-
ployed for the modeling and execution of
custom transfer functions by means of per-
sonalized numerical integration algorithms
[5].

4. Code Generation Tools which are basically
the primary reason for switching from tra-
ditional hands-on programming to Model-
Based Design. The Simulink AFCS model
under development must be suitable for be-
ing exportable in C++ by means of Embed-
ded Coder. However, code compiling errors
arise if the simulation timestep is defined as
a tunable parameter [5].
That’s the reason why most of the stan-
dard Simulink blocks concerning control
system development (e.g. PID controllers
and transfer functions) must be recreated
from scratch: the issue is that they employ
the "non-tunable" simulation timestep to
perform integrations. Therefore, a practical
solution involves, as already said, the use of
Stateflow blocks to initialize the structure of
the transfer function (example application
in Fig.1) and the employment of MATLAB
Functions to implement a custom numeri-
cal integration scheme such as Runge-Kutta
4 algorithm (Fig.2). To maintain the gen-

Figure 1: Initialization of the Integrator Block
of the Custom PID Controller

erality of the custom block created, it is
necessary to initialize the structure of the
transfer function coefficients and its corre-
sponding state-space in the Stateflow block,
as shown in Fig.1. By doing so, the tunabil-

ity of the custom block is preserved, as coef-
ficients (in Fig.1, kind and Ti) are directly
extracted from the values specified in the
block’s mask. This approach enables the
creation of custom PID controllers of vari-
ous types (P-PI-PD-PID), which are essen-
tial components of the current AFCS con-
trol systems.

Figure 2: Runge-Kutta 4 algorithm

Using the above-mentioned means, a personal
Custom Library has been created containing all
the modular custom blocks required to construct
a complete generic autopilot. Indeed, every of
these blocks is equipped with a mask which al-
lows to specify customisable parameters in in-
put.
Among these, two blocks are the real core of this
generic autopilot, as they allow, adapting their
mask for the specific customisation, to retrieve
the structure of the ATT for pitch, roll and yaw
axis as well as the structure of every modeled
upper mode, namely the IAS, HDG, ALT (both
on pitch and collective axes), RHT and HOV
(both on pitch and roll axes). Those blocks are:

1. the Mode Setpoint Block, which allows to
evaluate, based on force trim and beep trim
functioning, the reference values assigned to
the above-mentioned modes at each simula-
tion timestep.

2. the Mode δCommand/δSetpoint block,
which is used for two distinct and inde-
pendent functions throughout the AFCS
development.
The first possible task achieved by this
block is the δCommand evaluation, which
is necessary for the ATT and for the
collective modes to provide the necessary
control action to their series actuators.
The second one instead, is the δSetpoint

3



Executive Summary Francesco Paolo De Simone

function, which is necessary for the upper
modes on the pitch, roll and yaw axes to
assess the reference attitude variation to
provide to the ATT.

Along with these principal custom blocks, other
relevant ones are the Modes Logics State-
flow, which account for engagement, disengage-
ment and transitions of upper modes, the PID
Controller (2DOF) Block, the Clamping Anti-
Windup Block, the SAS Block, for the develop-
ment of Stability Augmentation System on the
pitch, roll and yaw axes, etc.
Therefore, by correctly parameterizing these
blocks, it is possible to obtain the complete
AFCS Simulink model. Figure 3 displays the
highest hierarchical layer of this model, in which
the AFCS overall structure is encircled in red,
while other components such as the state-space
representation of the helicopter dynamics are
utilized for tuning purposes.

Figure 3: AFCS Tuning Model

4 AFCS Tuning
In traditional programming, tuning a control
system can be a challenging and time consum-
ing task. On the other hand, in Model-Based
Design, the user hold a mathematical represen-
tation of the plant, derived from first principles
or by data-driven techniques. Therefore, Model-
based tuning can be applied, allowing for more
efficient and automatic techniques to tune a con-
trol system.
Simulink offers numerous interactive interfaces
to tune automatically a control system such as
the Control System Tuner ; however, due to the
usage of custom PID controllers, direct tuning in

Simulink is not feasible as numerous limitations
arise. Since at the command-line those limita-
tions fade away, an external autotuning Matlab
script is generated with the only purpose to find
the optimal gains of the AFCS Simulink model
control systems.
Also in this case, being the aim of the present
work the development of a generic AFCS, it is
essential that the defined tuning process also al-
lows for customisation in terms of requirements
and objectives, which must be defined according
to the specific helicopter and the performance of
the control system required.
The autotuning process defined relies on the
Matlab function systune. This command tunes
the controller parameters optimizing the H∞
norm across a closed-loop system; in practice,
this function applies the structured H∞ synthe-
sis, which in contrast with traditional H∞ syn-
thesis allows to define a fixed-structure on the
controller, which in the present AFCS are mostly
2DOF PID controllers. In addition, systune en-
ables to define the number and configuration of
feedback loops, as well as it allows the speci-
fication of the parameterisation of each tunable
component, and the incorporation of multiple re-
quirements on distinct closed-loop transfer func-
tions [1].
To assess the reliability of the generic auto-
tuning process defined in the Matlab script and
to test the tuning workflow, a twin-engine light
utility helicopter’s linear dynamics model is used
as a case study.
The linear model, which is provided by TXT e-
solutions, is in a trim condition that corresponds
to a steady level flight configuration at a Baro-
metric Altitude of 5926 [ft] and Indicated Air-
speed of 68 [kt]. The matrix dimensions and
properties are presented below:

{
ẋ = Ax+Bu, A ∈ R39×39, B ∈ R39×4

y = Cx+Du, C ∈ R12×39, D ∈ R12×4

Figure 4: Linearized System Inputs

The AFCS is set up in a multiloop feedback con-
figuration, where each mode has its own tunable

4



Executive Summary Francesco Paolo De Simone

Figure 5: Linearized System Outputs

controller gains. However, the tuning process
cannot be completed in a single optimization
phase, and multiple tuning optimizations must
be set and run independently. It is important to
note that the tuning processes that can be de-
fined depend greatly on the operating point at
which the linear model was created, as control
logics may allow or disallow the engagement of
a mode and hence the tuning of its control sys-
tem.
For the case study, several tuning processes were
created, starting obviously with the tuning of
the lower modes and then proceeding to the
upper modes’ control systems. Various tuning
goals were implemented to meet the specific re-
quirements of each mode’s task. However, three
broad types of tuning processes were employed:
• The first loop to be tuned is the most inter-

nal one and the only one that can operate
when both helicopter autopilots fail. This
process involves tuning the SAS on the
pitch, roll, and yaw axes. The optimization
process is enforced by ensuring that the
closed-loop dynamics become stable, as
the open-loop system is unstable. This is
achieved through the use of the Matlab
command TuningGoal.Poles. The result
of this tuning process is presented in Fig. 6.

• Once the gains for the SAS PI controllers
are found, the next step involves the tuning
of the ATT, which is the other lower mode
of the the current AFCS. In this case,
due to the case-study trim condition, this
tuning process involves the ATT on the
pitch and roll axes and the TC, which is
functioning on the yaw axis.
The requirements for the first two systems
are expressed using the Matlab command

Figure 6: Tuning SAS: Closed-Loop Poles

TuningGoal.StepTracking, while for the
third, TuningGoal.StepRejection is used,
as the TC must be able to repel the
lateral accelerations that develop during
roll manoeuvres. Results for the ATT on
the pitch axis and for TC are respectively
shown in Fig. 7 and 8.

Figure 7: Tuning ATT Pitch, ATT Roll and TC:
θref vs θ

• Finally, the third and last category of
tuning processes is focused on optimizing
the gains of the upper modes controllers,
which mostly rely on the ATT to function.
Therefore, optimal gains from the previous
tuning process are required to carry out
these ones.
However, not all the upper modes may be
tuned due to the specific trim point of
the case-study dynamics. Generally, one
tuning process is necessary for each upper
mode, while two separate tuning processes

5



Executive Summary Francesco Paolo De Simone

Figure 8: Tuning ATT Pitch, ATT Roll and TC:
Ayref vs Ay

are required for modes that can operate on
different axes (e.g. ALT).
Requirements, also in this case, are set
using TuningGoal.StepTracking, as the task
accomplished by an ATT is not different
in practice from that of an upper mode:
they both need to track a reference datum.
Fig. 9 provides an example of such tuning
processes.

Figure 9: Tuning ALT Collective: Baraltref vs
Baralt

5 AFCS Validation
In the so-called V-Model, the missing passages
to complete the Simulink Model-Based Design
of the current AFCS are related to the Code-
Generation, Integration and Validation phases.
However, in the previous work [5], the proofs
of concept of the first two phases have already
met satisfying results, and since in the current
work the design methodology and modeling

philosophy have remained unchanged, those
phases can be taken as granted. However, the
Validation phase must be obviously carried out
as the model has been completely re-built and
re-organized from scratch with the addition of
multiple new features.
Given the complexity of the model, three
different verification tests have been employed
to validate the entire autopilot modelling, both
from the point of view of control logic and
physical modelling, and from the point of view
of tuning workflow effectiveness:

• the first test aims to validate the correct
functionality of the upper modes control
logics modeled as state machines in a
Stateflow block.
By means of Signal Builder Blocks have
been generated test cases that cover all
possible states and transitions of the state
machine; later, the outcomes of these tests
have been carefully verified in order to
assess that the output signals matched the
expected ones. An example of these tests
outcomes is shown in fig. 10

Figure 10: Engagement of Modes in Pitch, Roll,
Yaw and Collective axis during the Simulation
of a Control Logics Test

Numerous tests have been carried out
varying numerous flight conditions and
triggering the activation of different combi-
nation of upper modes.
Since at the end of the process each test
was successful, the upper modes control
logics are resulted robust enough to be
validated.

6



Executive Summary Francesco Paolo De Simone

• The second test was conducted to assess the
proper functioning of the Stability Augmen-
tation Systems alone.
The tuning model depicted in figure 3 was
modified to include pilot inputs in the form
of longitudinal and lateral cyclic, pedals,
and collective controls. The pilots inputs
supplied to the Simulink model are the
same gathered from real flight tests of the
same helicopter used for the tuning of the
current AFCS model. Those flight tests
were used for certification purposes dur-
ing the assessment of EASA CS-FSTD(H)
2.c.(1) test and 2.d.(1)(i) test [3].
Therefore, in Simulink, providing these pi-
lot inputs with the only SAS active, was
possible to demonstrate that the results ob-
tained within this Simulink model comply
with the tolerances imposed for these cer-
tification tests. Figure 11 shows one of the
responses obtained by comparing flight test
data and the Simulink AFCS.

Figure 11: Test 2.d.(1)(i): Flight Test and Sim-
ulated Roll Rate Responses with SAS on

• the third and final validation analysis
conducted is employed to prove that the
tuned control systems of the ATT and of
the upper modes are capable of producing
similar responses to those achievable with a
certified Full Flight Simulator (FFS) level
D .
For this phase, TXT e-solutions provided
the possibility to log data directly from the
existing FFS of the same helicopter used
to tune the AFCS Simulink model.
Therefore, on the FFS were generated
multiple real-time simulations in operating

flight conditions similar to the one used
to obtain the linearized model. In each of
those tests, a different mode is engaged
via APCP and is subject to beep trim
excitements.
Once inputs and outputs data are logged
from each FFS simulations, the same tests
are built in the Simulink model and finally
outputs from the custom AFCS and from
the FFS are compared.
An example of these results is depicted in
figure 12: in this test the ALT mode rightly
transitions its control action from the pitch
to the collective axis and is still able to
generate an effective and smooth following
of the reference with a shorter settling time
with respect to the FFS.

Figure 12: Validation of the ALT Collective and
ALT Pitch

6 Conclusions and Future Develop-
ments

In conclusion, the aim of this work was to in-
vestigate the potential of the Model-Based De-
sign approach in the creation of a generic heli-
copter automatic flight control system that guar-
antees modularity, customisation, tunability and
exportability of the code.
At the end of this work, the Model-Based Design
proved to be robust and appropriate enough to
deal with complex autopilot structures equipped
with lower modes, upper modes, functionalities
and control logics.
Therefore, the generic autopilot architecture de-
veloped in this thesis can be used as a start-
ing point for future research in this topic, and

7



Executive Summary Francesco Paolo De Simone

the knowledge gained from this study can be ap-
plied to develop new AFCS upper modes, such as
the Vertical Speed Mode (VS) or the Go Around
Mode (GA), or most importantly to introduce
a new category of modes, namely the Flight Di-
rector Modes such as En-Route Navigation Mode
(NAV), Localizer Mode (LOC) and Glideslope
Mode (GS).

7 Acknowledgments
The author expresses gratitude to all the indi-
viduals who provided support in various ways
towards the completion of this work. Special
thanks are extended to Prof. Marco Lovera,
Eng. Francesco Borgatelli, and Eng. Gennaro
Romagnoli for their significant contributions.

References
[1] P. Apkarian and D. Noll. Nonsmooth H-

infinity Synthesis. IEEE Transactions on Au-
tomatic Control, Vol. 51, Number 1, 2006.

[2] Boeing. Boeing Pilot & Technician Outlook
2020-2039. 2020.

[3] EASA. CS-FSTD(H) (Initial issue). 2020.

[4] E. Pallett. Automatic Flight Control. Black-
wwell Publishing, 1993.

[5] G. Romagnoli. Model-Based Design of
a Generic Autopilot System for Helicopter
Flight Simulators in Simulink. 2021.

8


	Introduction
	AFCS Structure
	AFCS Modeling
	AFCS Tuning
	AFCS Validation
	Conclusions and Future Developments
	Acknowledgments

