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Abstract

Measurement has always fascinated humans. With growing need for measurement, the-
re has been a growing need for mathematical theories to express our knowledge about
the measurement. The theory of error was the first theory thatattempted to quantify
the certainty about the measurement. More recently, the theory of uncertainty has been
proposed and is widely accepted and is currently in use. As the name says, the theory of
uncertainty quantifies the uncertainty or the amount of doubt we have about the measu-
rement. The mathematical theory that has been adapted to represent has long been the
theory of probability. But, with growing complexity of scenarios and thereby the data
in the scenarios, the theory of probability is no more adequate to deal with all classes
of data. The theory of possibility and more specifically, Random-fuzzy variables form
an interesting choice to represent uncertainty since RFVs can represent both systematic
and random contributions to uncertainty in a mathematically accurate way.

There has been a lot of research corresponding to the application of the theory of
possibility and RFVs in different fields. But, so far, there hasnot been much research in
Kalman filter especially using RFVs. Similarly, there hasn’tbeen much research about
the use of RFVs in an industrial setting especially in the Bayes’ theorem during a con-
formity analysis. This is what my thesis focuses on. This thesis presents an overview
of the existing concepts in metrology and kalman filters. Then, a new definition for a
Kalman filter using RFVs is provided. Then the defined Kalman filter has been applied
in a few case studies. Then, another slightly modified version of the RFV based Kal-
man filter has been proposed which allows to partially compensate for the systematic
error. Finally, an overview of the conformity analysis has been presented along with
an overview of the use of Bayes’ theorem in metrology and for conformity assessment.
Finally, the drawbacks of using the Bayes’ theorem blindly are given along with a mo-
dified version of the Bayes’ theorem such that it uses the RFVs isgiven along with a
simulation based as well as experimental validation of the proposed idea.
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Summary

Measurement has long been the focus of mankind. Ever since the beginning of civiliza-
tion, the first measurements started as soon as the humans started to keep track of time.
Along with the advancement in society, the role of measurements kept getting bigger
and bigger. And along with the advancement in technology, the requirement for more
accuracy in measurements kept growing. Soon the act of measurement became much
more than simply assigning a numerical value on a quantity.

Soon, we started to question the correctness of the measurements being made. So,
how do we know if the value we assigned to a particular quantity is right? Soon there
were numerous theories that tried to tackle this question.

The first development towards the modern era of metrology is the theory of error
which was primarily because of the efforts of K F Gauss. The concept of the theory
of error is very simple. It assumed and rightly so that there was a true value for every
quantity that we measure. So, the theory of error tried to represent the measurements
with respect to the true value of the measurand. This had an inherent problem though,
how do we find the true value? It is impossible to do it because every instrument on
earth has at least the tiniest bit of error. So, soon it was discovered that the theory of
error had lots of drawbacks and hence it was not suitable to represent our knowledge
about the measurand.

The next popular theory that has been widely adapted after the theory of error is the
theory of uncertainty which is currently in use. According to this theory, the true value
can never be found but it can be given with a reasonable certainty if the true value is
close to the measured value or not. Now the question is what mathematical theory is
good to represent and formulate the theory of uncertainty.

Since the theory of probability has long been in existence, it has been adapted as
the dominant theory to represent uncertainty. But, probability inherently has problems
such as the inability to be able to represent some classes of data in a logically and
mathematically accurate manner.

Comparatively recently, in the final decades of the 20th century, there have been
other theories like the theory of evidence, theory of possibility, fuzzy set theory etc
which tried to tackle the problems that probability did not have the tools to tackle.

One such attempt is the declaration of random-fuzzy variables (RFVs) based on the
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fuzzy set theory and the theory of possibility which are essentially a special form of the
more general type 2 fuzzy variables. RFVs are a great option torepresent uncertainty
since they can represent both the systematic and the random contributions to uncertainty
together and in an easier way.

There has been a lot of research highlighting the advantagesof RFVs and theory
of possibility in lots of different areas of application. But, there has not been much
research in the area of RFV based Kalman filtering. Also, therehas not been much
research about the use of RFVs in Bayes theorem especially during an industrial con-
formity analysis. These applications form the focus of my research. This thesis can be
broken down into two major areas. The first is the Kalman filterdomain. The second is
the Bayes theorem for conformity analysis.

A graphical abstract is shown in fig. 1.

Figure 1: A graphical abstract of the thesis.

The thesis is organized as follows.
Chapter 1 provides an overview of metrology in general, the different theories that

try to represent our knowledge about the measurand. Then it introduces the Guide to
uncertainty evaluation in measurements (GUM) which is the international standard that
provides all the guidelines required to evaluate the uncertainty related to a particular
measurement. The guidelines given in the guide have also been quickly introduced.

Chapter 2 provides an overview of the more general theory of evidence and then
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moves on to say how the theory of probability and the theory ofpossibility are both
special cases of the theory of evidence.

Chapter 3 provides and overview of the set theory and the RFVs, how they can be
constructed and how they can be combined with each other.

Chapter 4 provides an introduction to the concepts of Kalman filter and then some
examples have been provided to show that the probability based KF are not the best
choice.

Chapter 5 provides an overview of the existing possibilisticKF and its drawbacks.
Finally, a new definition to the possibilistic Kalman filter has been provided.

Chapter 6 provides an overview of the PTP protocol and the application of the pos-
sibilistic KF that has been defined in 5 has been shown using itin PTP networks.

Chapter 7 provides a defense strategy against the malicious attacks on PTP networks
using the Kalman filter.

Chapter 8 provides a sightly modified definition to the possibilistic KF defined in
chapter 5 such that systematic error in the state predictions is at least partially compen-
sated for.

Chapter 9 provides a brief overview of the concepts of metrology and conformity
analysis and discusses the role of Bayes’ theorem in metrology. Then it demonstrates
how the blind use of Bayes’ theorem can be problematic along with some simulations
to prove the point.

Chapter 10 provides a modification to the Bayes’ theorem in probability based on
the Random-fuzzy variables and the effectiveness has been proved with simulated and
experimental data.
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CHAPTER1

Uncertainty and mathematical theories to process
uncertainty

The practice of measurement can be traced back to the oldest human civilizations. For
example, if the measurement of time is considered, it dates back to since the begin-
ning of civilization when people had to keep track of time. Measurement is essentially
the process of assigning a numerical value to a physical quantity, also called measur-
and. However, during the process of measurement, how can thenumerical value be
associated to the quantity? This is where reference units and standards come in. So,
any measurement can be expressed as a multiple of the reference unit for the particular
quantity.

Then the next question arises. How can the correctness of themeasurement be
determined? No matter how carefully the measurement has been performed, there is
always an error. Even when the same quantity is measured multiple times using the
same instrument, the result of the measurement is generallynot the same. There could
be various sources of deviations in the measurement of the particular quantity. They
can be something human such as an error during the observation of the value on the
instrument or an error in the measurement process.

So, to deal with these deviations in the values, various mathematical theories have
been proposed. One such theory is the Theory of error that hasbeen proposed by Karl
Freidrich Gauss.

1.1 Theory of error

According to the theory of error, it is assumed that any physical quantity has atrue
valueand any measurement of the said quantity is compared with thetrue value. The
true value is assumed to be the value that the most accurate instrument would have
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Chapter 1. Uncertainty and mathematical theories to proces s uncertainty

produced.
After guessing the true value, different errors in the measurement can be defined as

follows:

• Absolute error = Xmeas −Xtrue

• Relative error = Xmeas−Xtrue

Xtrue

• Percentage error = Xmeas−Xtrue

Xtrue
.100

WhereXmeas is the result of the measurement of quantityX andXtrue is the true
value ofX.

Errors are then divided into two categories: Systematic errors and Random errors.

1.1.1 Random Errors

Random errors are errors that are due to unpredictable and unknown changes in the
environmental conditions or in the measuring instruments.Like the name suggests,
these are completely random in nature and cannot be predicted. So, they cannot be
compensated for either. They occur with different magnitudes and signs every time the
measurement is performed. But, since they are random in nature, if the same measure-
ment is repeated under the same conditions infinite times, the mean value of the error
in all those measurements becomes zero. In other words, if the same measurement is
repeated infinite times, the average of all measurements is the true value of the measur-
and. This means that, even if a random error can not be compensated for, if we have
enough measurements, it can be averaged to a very small value.

WhenN measurements are taken of a given measurand, the mean value and the
variance are defined as given in (1.1). It should be noted thatthese are only the ex-
perimental mean and variance and they are not equal to the mean and variance of the
random errors.

X =
1

N

N
∑

i=1

Xmeasi

σ2
X =

1

N − 1

N
∑

i=1

(Xmeasi −X)2

(1.1)

whereX is the mean value of all the N measurements andσ2
X represents the variance

which is also a measure of the dispersion of the measurementsaround the mean value.
In mathematical terms, any measurement can be expressed in terms of the true value

of the measurand and the error in measurement as in (1.2)

Xmeasi = Xtrue + ǫi (1.2)

whereXmeasi is thei − th measurement of the measurand andǫi is the error in the
i− th measurement.

If it is supposed that the error in the measurement is purely random, when N mea-
surements are taken and the mean value of all of them is computed as given in (1.3),
then,

2



1.1. Theory of error

X =
1

N

N
∑

i=1

Xmeasi

X =
1

N

N
∑

i=1

(Xtrue + ǫi)

X = Xtrue +
1

N

N
∑

i=1

ǫi

(1.3)

Since the error in the measurement is purely random, it belongs to an unbiased
probability distribution. So, this means that, if infinite values are drawn from the cor-
responding probability distribution, their mean value would be zero.

This means that in (1.3), if N tends to infinity, the mean valueof the error given by
1
N

∑N

i=1 ǫi tends to zero. So, the mean value of the measurementsX tends toXtrue as
given in (1.4).

lim
N→∞

X = Xtrue + lim
N→∞

1

N

N
∑

i=1

ǫi

lim
N→∞

1

N

N
∑

i=1

ǫi = 0

Xtrue = lim
N→∞

X

(1.4)

So, in practice, the mean value of the N measurements can be taken to be the best
estimate of the true value of the measurand. Calculating the average of the measure-
ments also helps in reducing the random error as the varianceof the mean is N times
lower than the variance associated with a single measurement.

1.1.2 Systematic Errors

Systematic errors, on the other hand, do not change and are constant provided that the
measurement conditions and parameters have not changed. So, if the measurement
of the same quantity is repeated with the same instrument, measurement process and
environment, the systematic error is always of the same magnitude with the same sign.

This means that, ideally, the systematic errors, unlike random errors, can be com-
pletely compensated and corrected for in a measurement, as long as they are correctly
and fully identified.

However, in a practical scenario, as explained earlier, no instrument can be one
hundred percent accurate. So, it is not really possible thatthe systematic error can
be exactly identified and thereby can never be fully compensated for. So, in most
cases, the effect of the systematic error contribution can only be reduced and not fully
compensated for.

3
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1.2 Discussion

As can be seen from the discussion till now, there is an inherent problem in the theory
of error. The entire theory of error depends on the knowledgeof the true value of the
measurand. But, if every measurement no matter how accurate the instrument suffers
from an error, the true value of a measurand can never be found. So, to express our
knowledge about the measurement, the theory of error is not sufficient anymore. To
tackle this problem, the theory of uncertainty has been proposed whose overview has
been presented in the next section.

1.3 Theory of uncertainty

The theory of uncertainty in measuement has been proposed towards the end of the
twentieth century as a result of the discussion inside a committee, the “working group
on the statement of Uncertainties” appointed by the International Bureau of Weights
and Measures (BIPM). This is based on the modern probability which has been de-
veloped primarily due to the efforts by mathematician Kolmogorov who refined and
redefined probability through his axioms. It still represents the knowledge about the
measurement but in a different way from the theory of error.

Uncertainty as the word suggests means incomplete knowledge about something.
So, this means that one is not sure about something. The theory of uncertainty as well,
says that one is not sure about the measurement result. Thereis only a reasonable
estimation one can make from the measurement result and no one can know the true
value of the quantity being measured.

Uncertainty in metrology has in fact been clearly explainedin the document Guide to
expression of Uncertainty in Measurement (GUM) published by the Joint committee for
Guides in Metrology (JCGM) starting from the recommendationINC-1 issued in 1980
by the “working group on the statement of uncertainties” andapproved by the BIPM
in 1981. It has been defined that “the word “uncertainty” means doubt, and thus in
its broadest sense “uncertainty of measurement” means doubt about the validity of the
result of a measurement.It has also been defined in the same document that uncertainty
is alsoa parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand[27]”.

So, in metrology, uncertainty refers to the doubt associated to the measurement re-
sult but also refers to the parameter that measures the amount of that doubt. This
has been clarified even in the GUM that, “because of the lack of different words for
this general concept of uncertainty and the specific quantities that provide quantitative
measures of the concept of uncertainty, it is necessary to use the word “uncertainty” in
these two different senses” [27].

When there is a measurement, it is also important to know how accurate the mea-
surement is or how sure one is of the measurement result. Otherwise, a measurement
just becomes a random guess or a random value attached to a quantity. In other words,
the measurement uncertainty associated to the measurementresult needs to be evalu-
ated and specified. The same has been mentioned even in the GUM: “When reporting
the result of a measurement of a physical quantity, it is obligatory that who use it can
assess its reliability. Without such an indication, measurement results cannot be com-
pared, either among themselves or with reference values given in a specification or
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1.4. Theory of probability

standard. It is therefore necessary that there may be a reality implemented, easily un-
derstood, and generally accepted procedure for characterizing the quality of a result of
a measurement, i.e., for evaluating and expressing its uncertainty” [27].

Now that it has been established that the uncertainty associated to the measurement
result needs to be evaluated, the next question is as to how itneeds to be evaluated.
Should one use whatever method feels right for them? Definitely not. There needs to
be a universal framework to evaluate the uncertainty. Otherwise, just like any unit of
measure, it can not be corroborated with or used with other evaluations of the unit or
a standard. The same has been explained in GUM: “Just as the nearly universal use
of the International System of Units (SI) has brought coherence to all scientific and
technological measurements, a worldwide consensus on the evaluation and expres-
sion of uncertainty in measurement would permit the significance of a vast spectrum
of measurement results in science, engineering, commerce,industry, and regulation to
be readily understood and properly interpreted. In this eraof the global marketplace,
it is imperative that the method for evaluating and expressing uncertainty be uniform
throughout the world so that measurements performed in different countries can be
easily compared” [27].

There are multiple approaches that are available and proposed to evaluate uncer-
tainty. Currently, the most widely accepted mathematical theory used to evaluate mea-
surement uncertainty is the theory of probability.

1.4 Theory of probability

Classic probability has been defined by Jacob Bernoulli in early eighteenth century as
follows: the probability of an event is the ratio of the number of equally likely cases that
favor it to the total number of equally likely cases possibleunder the circumstances.

From this, two rules have been proposed for probability by DeMoivre.

• The addition theorem or theorem of total probability whichstates that if A and B
are two mutually exclusive events, probability ofA or B happening is simply the
sum of the individual probabilities ofA andB.

P (A ∪ B) = P (A) + P (B)

if A andB are two mutually exclusive events

• The theory of compound probability or multiplication theorem which states that
for any two eventsA andB, probability of bothA andB happening is the the
probability ofA multiplied by the conditional probability ofB happening ifA has
already happened.

P (A ∩ B) = P (A) ∗ P (B|A)

whereP (B|A) is the probability of eventB given thatA has already happened.

Probability is basically the chance of a particular event happening. In other words,
probability is also a measure of the ignorance of a particular event. This is because,
theoretically speaking, any phenomenon that observes the laws of classical mechanics
can be mathematically modeled and if we know the value of all parameters involved and
all initial states with one hundred percent accuracy, the outcome of the phenomenon
would be known with complete certainty. So, that would mean that nothing in the
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universe is random and everything is perfectly deterministic in nature. But, there is
a basic problem with this. Is there such a thing as one hundredpercent accuracy? At
least, in the human world, it hasn’t been possible to achieveit so far. So, there is always
a certain amount of imprecision with respect to any and all observations. This is one
of the reasons probability comes into play so that useful predictions can be made about
something with a good degree of certainty.

Probability can be defined in two important ways.

• Probability is the relative frequency of an event happening with respect to the
universal set of events.

• Probability is the degree of belief that an event would occur given the states of the
environment regardless of any random process.

1.4.1 Frequentist approach to probability

According to the frequentist approach, probability is determined through repetitions of
the experiment. So, theoretically, the probability of an event is the relative frequency
of the particular event after infinite repetitions of the same experiment. For example,
if an unbiased die is rolled, the probability of rolling a three is not1

6
because there are

six equally likely faces. Rather, if the rolling is performedinfinite times, the relative
frequency of rolling a three approaches1

6
. As can be seen very easily, the inherent

problem with this approach is the infinite repetitions. It ispractically impossible to
perform an infinite number of trials. So, instead, guidelines have been provided on
using a frequentist approach based on hypothesis testing.

A statistical hypothesis is a statement that can be tested byobserving the corre-
sponding phenomenon modeled by a set of random variables. The hypothesis can be
accepted or rejected based on the observed data according toa threshold probability
which is called significance level. But again, there is an intrinsic problem. Who decides
the significance level? Who decides how much error is tolerable in which scenario?

1.4.2 Bayesian approach to probability

In the subjective approach, probability is subjective which means that probability is a
degree of belief of an individual who is assessing the state of the phenomenon being
observed.

Bayesian approach to probability is a case of subjective probability in which the
prior probability of an event is updated to a posterior probability when new evidence is
presented.

Again, the inherent problem in bayesian approach is the degree of belief. Who de-
cides the accuracy of the degree of belief assigned to a particular event? What happens
if the prior probability of an event is not accurately known?In other words, how can
ignorance about an event be properly represented?

Despite this, the theory of probability has been widely established and long since
been in existence. It is, in fact, able to deal with most practical scenarios. Due to
this, probability has been proposed as the mathematical tool to handle uncertainty. In
particular, the modern interpretation of probability proposed by Kolmogorov is used as
the basis for handling measurement uncertainty.
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1.5 Fundamentals of probability

Let us assume that there is a discrete universal set of all possible outcomes represent by
U . For every evente that belongs toU , let’s assume that a probability can be assigned
to the particular event isp(e), thenp(e) should satisfy the following properties.

0 ≥ p(e) ≤ 1 for all e ǫ U
∑

e ǫ U

p(e) = 1 (1.5)

Going by the addition rule of probability, if there are a set of mutually exclusive
events represented byA, then the probability of the setA is given by

p(A) =
∑

e ǫ A

p(e) (1.6)

The above rules apply when the sets of events are discrete. But, if the event space is
continuous,p(e) is called the probability density function.

If a random variable X is considered, starting from a cumulative probabilityC(i) =
P (X ≤ i) which is the probability thatX is less than or equal toi, then, the relation
between the cumulative probability and probability density function is given by,

C(i) =

∫ i

−∞
p(i) di

p(i) =
dC(i)

di

(1.7)

The probability density function should be such that the cumulative probability over
the universal set should be 1.

∫

i ǫ U

p(i) = 1 = P (X ǫ U) (1.8)

Consequentially, the probability of the random variable X being in a set A which is
a subset of U, is

P (X ǫ A) =

∫

i ǫ A

p(i) (1.9)

The Kolmogorov axioms of probability are as follows:

P (X ǫ U) = 1

P (A) ≥ 0, for all A ⊆ U

P (A1 ∪ A2 . . . An) =
n

∑

i=1

P (Ai)if A1, A2,. . . ,An are all disjoint sets

(1.10)

7
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1.6 Measurement uncertainty representation using probabilit y

1.6.1 GUM guidelines for measurement uncertainty

The guide to the expression of uncertainty in measurement orGUM is regarded as
the international reference standard for the evaluation and expression of uncertainty in
measurements. As explained earlier, measurement uncertainty refers to the parameter
that quantifies the dispersion of values that could be attributed to the measurand in a
reasonable way [27].

In particular, standard uncertainty refers to measurementuncertainty associated to
the result of a measurement expressed as a standard deviation.

According to the GUM, the possible methods to evaluate standard uncertainty can be
classified into two Type A and Type B methods depending on how it has been evaluated.

1.6.2 Type A Method:

The method to evaluate standard uncertainty from a statistical analysis of a series of
observations of the measurand is called a Type A method of evaluation of standard
uncertainty.

When N independent measurements(x1, x2, . . . , xN) of a measurandX are taken,
the best estimate of the expected value of the measurand is given by the arithmetic mean
of the N values as in (1.11)

X =
1

N

N
∑

i=1

xi (1.11)

Since the N independent observations differ because of the random effects in the
measurement, the experimental variance is given as in (1.12)

σ2
X =

1

N − 1

N
∑

i=1

(xi −X)2 (1.12)

The variance of the quantityX is calculated according to (1.13)

u2
X =

σ2
X

N
(1.13)

The standard uncertainty ofX is the positive square root of the variance in (1.13).
An inherent requirement for Type A evaluation of uncertainty is that the number of
observationsN should be large enough to prove a reliable estimate of the expectation
and uncertainty of the measurand X.

1.6.3 Type B Method:

In most scenarios, a Type A evaluation of uncertainty is impractical, mainly for time
and cost reasons. Hence, the measurement uncertainty in thecases where there are not
enough independent observations is evaluated based on all available information on the
variability of the measurand. A Type B evaluation of uncertainty can be made based
on [27].
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• Already available measurement data about the measurand.

• Experience with or general knowledge of the behavior and properties of relevant
materials and instruments.

• Specifications provided by the manufacturer.

• Data that have been provided during calibration or other certificates that are avail-
able of the instrument.

• Reference data that have been taken from handbooks and the uncertainty that is
associated to them.

1.6.4 Expanded Uncertainty:

After obtaining the standard uncertainty in either of the two ways of evaluation, usually,
the expanded uncertainty is computed. Expanded uncertainty is defined as a multiple
of the standard uncertainty which provides the interval in which a specified percent-
age (usually a high percentage) of values lie that can be reasonably attributed to the
measurand.

Expanded uncertainty is calculated from the standard uncertainty as given in (1.14)

U(X) = k · uX (1.14)

wherek is called the coverage factor. The value ofk determines how much percent-
age of the values reasonably attributed to the measurand liein the expanded uncertainty
interval.

The probability distribution function associated to the measurand should be known
to define the expanded uncertainty.

1.6.5 Combined uncertainty:

In most cases, the measurand is not directly measured but evaluated based on the mea-
surements of other input quantities. The set of mathematical equations representing
the relation between the input quantities and the measurandis called the measurement
model.

Assuming that the measurand is represented byY and if there areN input quantities
represented byX1, X2, . . . , XN ,

Y = f(X1, X2, . . . , XN) (1.15)

whereY,Xi are random variables of the respective quantities.
It is possible that the input quantitiesX1, X2, . . . , XN are themselves not measured

directly but may be based on the measurement of other quantities. Also, individually,
they are subject to all kinds of uncertainty contributions including systematic contribu-
tions and the necessary corrections for the systematic errors.

The functionf that relates the input quantities to the output quantityY , may be ei-
ther mathematically modeled or modeled experimentally using data. If the mathemati-
cally modeled functionf does not represent the data accurately, it must be modified by
adding other input quantities.

9
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After the function is defined, the mean value of the output quantity Y may be ob-
tained by either (1.16) or (1.17)

Y = f(X1, X2, . . . , XN)

Xi =
1

N

N
∑

k=1

Xi,k

(1.16)

Y =
1

N

N
∑

k=1

f(X1,k, X2,k, . . . , XN,k) (1.17)

Both the equations are the same if the function is linear. In the case of a non linear
function, (1.17) offers a more accurate result.

To evaluate the total uncertainty in measurandY , the individual standard uncertain-
ties ofXi need to be evaluated. The uncertainties in the input quantitiesXi can be
evaluated using either of the Type A or Type B evaluation methods. Then, the total
uncertainty in the measurand Y is calculated by combining the standard uncertainties
of all the input quantities using the Law of propagation of the standard uncertainties.

The law of propagation of the standard uncertainties (LPU) is given by (1.18) if all
the input quantities are independent of each other and by (1.19) if there are correlated
quantities,

u2
c(y) =

N
∑

k=1

(
∂f

∂Xk

)2u2(Xk) (1.18)

u2
c(Y ) =

N
∑

k=1

(
∂f

∂Xk

)2u2(Xk) + 2
N
∑

k=1

N
∑

i=1,i 6=k

∂f

∂Xk

·
∂f

∂Xi

cov(Xk, Xi) (1.19)

whereu2
c(Y ) is the combined standard uncertainty of Y. The mathematicalderiva-

tion of (1.18) and (1.19) can be found in the GUM [27].
This formula is based on the first order Taylor series expansion and hence, in a strict

sense, is only for linear functions. But, in most practical scenarios, it is still good
enough.

In most industrial scenarios, a coverage interval or expanded uncertainty needs to be
provided using the standard uncertainty of the quantity. The combined expanded un-
certainty ofY can be obtained by using (1.14) after calculating the combined standard
uncertainty as stated above in (1.18) or (1.19).

As mentioned earlier, strictly speaking, this is only possible if the distribution of the
quantity is known. But, in cases where it is unknown, the central limit theorem is used.

1.6.6 Central limit theorem:

Let X1, X2, . . . , XN be independent random variables. Assume that both the expected
valueµ and the standard deviationσ exist and are finite.

Then the sum of the random variables given bySN = X1 +X2 + . . . +XN has an
expected valueNµ and a variance ofNσ2.
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Moreover, asN approaches∞, the distribution ofSN approaches a normal distri-
bution with meannµ and a variance ofNσ2.

To apply the central limit theorem, the following assumptions should be satisfied:

• The random variablesX1, X2, . . . , XN are all independent of each other and none
of them dominate the others. So, this means that all of them should have similar
variances.

• N is large and ideally reaches infinity.

• The combination of the random variables should be linear.

1.6.7 Discussion

The central limit theorem is a very useful result in metrology. Let us assume that we ob-
tain N measurement results. If the value ofN is large enough, it can be assumed with a
reasonable certainty that the expected value of the measurand has a normal distribution
with meanµx and varianceσ2

x exploiting the central limit theorem.
Hence, the combined standard uncertainty of the measurand can be evaluated from

the LPU and the expanded uncertainty can be obtained by assuming a normal distribu-
tion using the central limit theorem.

So far, the GUM guidelines seemed good enough to be used to characterize uncer-
tainty.

But, from the third assumption of the central limit theorem, in a strict sense, the
central limit theorem can only be used if the functionf , which expresses the measurand
in terms of the input quantities must be linear and the numberof random variablesN
tends to infinity. There are a lot of cases when these conditions are not satisfied. So,
in those cases, the central limit theorem can not be applied.Hence, the probability
distribution of the measurand can not be determined. In these cases, the combined
standard uncertainty can still be evaluated using the LPU. But, a expanded uncertainty
can not be calculated since the probability distribution isnot known and hence the
coverage probabilities are unknown.

JCGM 101 or Supplement 1 to the “guide to the expression of uncertainty in mea-
surement” - Propagation of distributions using a Monte Carlomethod [28] provides the
guidelines to be applied in these situations.

1.7 Supplement to the GUM

According to the supplement [28], uncertainty is evaluatedin three steps :formulation,
propagation and summarizing.

• Formulation is done in four steps as given below:

– The output quantity or the measurandY should be defined.

– The input quantities (X1, X2, . . . , XN ) on whichY depends should be deter-
mined.

– The relationship between the measurand and the input quantities should be
modeled.

11
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– Assign a probability distribution function to the input quantities based on the
available knowledge about them. If any of the quantities arenot independent
of each other, a join probability distribution function needs to be assigned to
them.

• Propagation: Obtain the distribution for the measurandY by propagating the dis-
tributions of the input quantitiesX1, X2, . . . , XN through the model. Propagation
is done using monte carlo method (MCM) in cases where the approaches dis-
cussed in Section 1.6.1 can not be applied.

• Summarizing is done in three steps:

– The expectation of Y is obtained from the probability distribution ofY .

– The standard deviation ofY is calculated from it’s distribution and is taken
as the standard uncertainty ofY .

– The coverage interval for a specific coverage probability isalso calculated
from the distribution ofY .

1.7.1 Monte Carlo Method

According to the guidelines given in [28], MCM is applied in the following steps:

• Select the numberM of Monte Carlo trials to be made.

• GenerateM vectors, by sampling from the assigned PDFs, as realizations of the
(set ofN ) input quantitiesX1, X2, . . . , XN .

• For each such vector, form the corresponding model value ofY , yieldingM model
values.

• Sort theseM model values into strictly increasing order, using the sorted model
values to provide the distribution ofY .

• Use the distribution to form an estimate of the mean and standard uncertainty of
Y .

• Use the distribution to form an appropriate coverage interval for Y for a specified
coverage probabilityp.

There are also certain conditions that need to be satisfied when using the MCM as
specified in [27]:

• The functionf relating the input quantities and the measurandY is continuous
with respect to the input quantities in the neighborhood of the best estimates of
the input quantities.

• the distribution function forY is continuous and strictly increasing.

• the probability distribution function (pdf) forY is

– continuous over the interval for which this pdf is strictly positive.

– unimodal, and

12
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– strictly increasing(or zero) to the left of the mode and strictly decreasing to
the right of the mode.

• the mean and variance ofY exist

• a sufficiently large value ofM is used.

Especially the last condition that a sufficiently large value of M needs to be used
is a serious computational limitation. Another huge limitation of the MCM is that
convergence is not always assured.

1.8 Discussion

So far, the theory of probability still seems suitable enough for handling uncertainty.
But, there are still a few situations where probability does not have the tools to deal with
them. For example, there can be a systematic error in the measurement. According to
the GUM, all systematic errors are assumed to have been identified and corrected for.
When this is strictly followed, probability is still good to represent uncertainty even if
there is a residual bias due to the uncertainty of the compensation, it can be expressed
as a random variable since the uncertainty of compensation results from the random
measurement error while evaluating the systematic error there by making it random in
nature.

But, this condition is not always satisfied. There could be cases where the system-
atic error is not known and hence cannot be compensated for. But, an estimate of the
interval of its existence may be known. In this situation, probability distributions can
not represent the systematic error in a mathematically correct way. This may result in
an underestimation of uncertainty.

Another case would be where the data is so sparse that a standard probability dis-
tribution can not be attributed to the data. In these cases, probability fails to offer an
appropriate solution to represent our knowledge or ignorance about the data. So a dif-
ferent theory is necessary where all such situations can be dealt with.

This is where the more general theory of evidence and the theory of possibility offer
a better solution as explained in the next chapter.
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CHAPTER2

Theory of evidence.

2.1 Introduction

As discussed in chapter 1, the concept of uncertainty was thefirst attempt to quantify
our knowledge or ignorance about a certain event. Probability, on the other hand, is
great to express our knowledge about a certain random event but does not have the
required tools to represent total ignorance as has been demonstrated in [47, 48, 50].
Total ignorance is the lack of any evidence or, in other words, data to support any belief
about a certain event. Hence, a more suitable theory is needed to represent uncertainty
in a more accurate way. One such theory is the theory of evidence.

The theory of evidence [50] was proposed by Glenn Shafer in 1970 starting from the
research by Arthur P Dempster in which he introduces the notion of upper and lower
probabilities [6].

According to the theory of evidence, the chance of an event isrepresented by belief
functions rather than assigning traditional probability distributions. Even in the the-
ory of evidence, the degree of belief is still assigned a value between 0 and 1 like in
probability. But, the rules that govern the combination of these degrees of belief are
less restricted than those in the theory of probability. This characteristic makes them a
great choice to represent missing data or ignorance about data. Belief functions assign
probability values to sets of events instead of individual events.

In the theory of probability, there is a lot of emphasis on howto evaluate the proba-
bility or, in other words, how to assign a numerical value to the chance of a particular
event. Instead, as has been said by Shafer in his original book [50]: whenever I write
“degree of support” that a given evidence provides for a proposition or of the “degree
of belief” that an individual accords to the proposition, I picture in my mind an act of
judgment. I do not pretend that there exists an objective relation between given evi-
dence and a given proposition that determines a precise numerical degree of support.
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Nor do I pretend that an actual human being’s state of mind with respect to a proposi-
tion can ever be described by a precise real number called hisdegree of belief. Rather,
I merely suppose that an individual can make a judgment, he can announce a num-
ber that represents the degree to which he judges that the evidence to support a given
propositions and, hence, the degree of belief he wishes to accord the proposition.So,
the theory of evidence, instead of focusing on how the degreeof beliefs are calculated,
concentrates instead on the rules of combination of the degrees of belief.

The next section gives some basic definitions in the theory ofevidence and the rules
of combinations for belief functions.

2.2 Basic definitions in the theory of evidence

According to Dempster, if a hypothesis is assigned a particular degree of belief, it
means that any other hypothesis that is implied by the said hypothesis also carries the
same degree of belief. In other words, if a degree of belief isassigned to one subset of
a particular set, it means that the same degree of belief is assigned to all of its subsets.

So, let there be a functionm, called the basic probability assignment function be
defined for the power set ofA as follows:

m : P (A) → [0, 1] (2.1)

andm satisfies the following conditions:

m(∅) = 0 (2.2)

∑

B∈P (A)

m(B) = 1 (2.3)

Eq. 2.2 means that the belief assigned to a null set is zero and(2.3) means that the
total belief is 1.

The degree of belief assigned to each subsetB is called the basic probability number
and it is the degree of belief assigned to the subsetB and it strictly refers to the entire
set and does not say anything about any of the subsets or elements of the setB.

Any subsetB is called a focal element of the setA if m(B) > 0

The belief function of a setA can be defined as follows:

Bel(A) =
∑

B|B⊆A

m(B) (2.4)

as long as it satisfies the following properties:

Bel(∅) = 0

Bel(A) = 1
(2.5)
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2.3. Particular cases of the theory of evidence

Bel(B1 ∪ B2 . . . ∪ Bn) ≥
∑

i

Bel(Bi)−
∑

i<j

Bel(Bi ∩Bj)

+ . . .+−1(n+1)Bel(B1 ∩ B2 . . . ∩Bn)
(2.6)

WhereB1, B2, . . . , Bn are all subusets ofA.
From (2.6), it can be determined that

Bel(A) + Bel(A) ≤ 1 (2.7)

When the rules given in (2.6) and (2.7) correspond to just the equality, the belief
functions are called Bayesian belief functions.

The degree of doubt for setA can be defined as

Dou(A) = Bel(A) (2.8)

The plausibility ofA on the other hand can be defined as:

Pl(A) = 1−Dou(A) = 1−Bel(A) (2.9)

It can also be defined in terms of the basic probability assignment functionm as
follows:

Pl(A) =
∑

B|B∩A 6=∅
m(B) (2.10)

This basically means that the belief function ofA is a lower limit of the probability
assigned to the setA and the plausibility of A is the upper limit of the probability that
is assigned toA.

From (2.7) and (2.9), it can be derived that

Bel(A) + Bel(A) ≤ 1

1− Pl(A) + 1− Pl(A) ≤ 1

Pl(A) + Pl(A) ≥ 1

(2.11)

2.3 Particular cases of the theory of evidence

2.3.1 The theory of probability

Section 2.2 gives some basic definitions of the various functions in theory of evidence.
Bayesian belief functions have been mentioned as well.

It has been also mentioned that belief functions are the lower limit for probability
assigned to a particular set. So, what happens if there are more limitations that are
applied to the definitions of belief functions?

It is known that if there are two setsA andB, the probability function for the two
sets is supposed to satisfy the below condition,
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Pro(A ∪ B) = Pro(A) + Pro(B)− Pro(A ∩ B) (2.12)

whereas a belief function is supposed to satisfy the below rule,

Bel(A ∪B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B) (2.13)

It has been mentioned earlier that the belief functions are degrees of beliefs assigned
to a particular setA and they do not say anything about the degrees of belief assigned
to the elements of the set or to any of its subsets.

The basic probability assignment functionm has also been defined for the sets in
the power set ofA. But what if the focal elements of the setA are all singletons?

Then the belief function simply corresponds to the probability function ofA.
According to (2.4), if all the focal elements are singletons, the belief function be-

comes,

Bel(A) =
∑

B|B⊆A

m(B) =
∑

x∈A
m(x) (2.14)

In the same way, the plausibility function defined in 2.10 becomes,

Pl(A) =
∑

B|B∩A 6=∅
m(B) =

∑

x∈A
m(x) (2.15)

In other words, the belief and plausibility ofA are equal. So, it follows that

Bel(A) = Pl(A)

Bel(A) = 1− Bel(A)

Bel(A) + Bel((A)) = 1

(2.16)

The above rule is similar to the rules for probability.
Also as explained earlier, belief function is the lower limit of probability and the

plausibility is the upper limit of probability. So, if the belief and plausibility are equal,
it means that it is simply the probability.

This means that the belief functions are nothing but probability functions if the focal
elements are all singletons.

2.3.2 The theory of possibility

The theory of possibility is another particular case of the theory of evidence. The theory
of possibility considers the belief functions when the focal elements are all nested. This
means that all the focal elements can be arranged in such a waythat every focal element
is contained in the following one.

Nested focal elements are also called as consonants [48]. A belief function whose
focal elements are nested is said to be a consonant.

If the focal elements in a universal sets are all consonants,then theory of evidence
corresponds to a particular case called the theory of possibility.

When the focal elements are consonants, the belief and plausibility functions satisfy
the following conditions [48]:

18



2.3. Particular cases of the theory of evidence

Bel(A ∩B) = min[Bel(A), Bel(B)]

Pl(A ∪B) = max[Pl(A), P l(B)]
(2.17)

When a belief and plausibility function satisfy the corresponding rules given in
(2.17), they are called the necessity function and the possibility function respectively
[48]. Hence, the equations become,

Nec(A ∩ B) = min[Nec(A), Nec(B)]

Pos(A ∪ B) = max[Pos(A), Pos(B)]
(2.18)

The possibility distribution function

In the theory of possibility, one of the important property is that a frame of discern-
ment (the universal set containing all the hypothesis considered) can be completely
determined using the plausibilities assigned to the singletons of the frame of discern-
ment [48]. So, ifX represents the frame of discernment and that a single element x in
the setX is considered, if a possibility function Pos is defined on X, then the possibility
distribution functionr can be derived.

r : X → [0, 1] (2.19)

such that:

r(x) = Pos(x) ∀x ∈ X. (2.20)

In turn, every possibility function on the power set ofX (P (X)) can be determined
from the possibility distribution function ofX.

For any discrete setA, the possibility ofA can be given by,

Pos(A) = max
x∈A

r(x). (2.21)

If the setA is continuous, the possibility is in turn given by,

Pos(A) = sup
x∈A

r(x). (2.22)

Representing information in theory of possibility

If we consider the case where there is a discrete possibilitydistribution of lengthn as
given below:

r(x) = [r(x1), r(x2), . . . , r(xn)]. (2.23)
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The smallest possibility distribution would correspond tothe case where the pos-
sibility assigned to just one of the elements in the possibility distribution is 1 and the
rest are all 0. This means that we are absolutely sure that theelement to which the
possibility of 1 is assigned, will occur. So, this represents the case of perfect evidence
or no uncertainty.

The largest possibility distribution, on the other hand, would correspond to the case
where we are completely ignorant and hence we do not have any evidence for any of
the elements. In this case, the possibilities assigned to all the elements would be 1.

When a continuous set is considered, total ignorance is represented by aUniform
possibility distribution. This is as shown in the fig. 2.1
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x

0
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0.4

0.6

0.8
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r(
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Figure 2.1: Uniform possibility distribution representing total ignorance.

Similarly, depending on the evidence on the different hypothesis, other possibility
distributions could be modeled.

Probability-Possibility Transformation

In particular, possibility distributions can also be modeled from probability distribu-
tions using probability-possibility (p-p) transformations [8,15,16,36,48]. A probability-
possibility transformation can be done starting from the definition of the possibility be-
ing the upper probability measure. So, a specific p-p transformation is valid if, there is
a probability distribution functionpx such that, when it is transformed into possibility,
it results in a possibility distribution (PD)rX such that,

Pos(X ∈ E) ≥ P (X ∈ E), ∀ E

sup rX(x) ≥

∫

x∈E
pX(x) dx, ∀ E

(2.24)

When the above equations are satisfied, the PD is said to dominate the probability
distribution function (pdf).

The confidence interval denoted byp and the necessity measure of a setE are de-
fined by,

p = P (X ∈ E)

Nec(X ∈ E) = 1− Pos(X ∈ E)
(2.25)
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2.3. Particular cases of the theory of evidence

So, this would mean that,Nec(X ∈ E) ≤ p.
Let the setX∗ be taken as the set built by having a confidence interval ofp around

a valuex. If different such sets are obtained when the confidence level p is changed
keepingx constant, all the obtained sets are actually nested confidence intervals. This
is because, as the confidence the levelp increases, the obtained set with the increased
confidence level would contain the set obtained with the previous confidence level. So,
a PD can, in fact, be modeled by obtaining the nested sets using different confidence
intervals of a probability distribution around its mode.

But, an infinite number of PDs can be modeled starting from a pdfsuch that the PDs
dominate the pdf. So, an infinite number of p-p transformations can be made starting
from a single pdf. This family of infinite PDs is given by:

rX(x) ≥ sup
X∗|x∈X∗

(1− P (X ∈ X∗))
(2.26)

So, a possible way to choose a specific p-p transformation would be to choose a
transformation such that most of the information of the original pdf is retained. This
is called maximum specificity principle. According to this,the smallest PD out of all
the dominating PDs represented by (2.26) must be chosen as a suitable p-p transform.
So, for a certain confidence levelp, the confidence intervalIx should have a minimum
length. Such intervals can be obtained by building them around the mode of the pdf.
Hence, a maximally specific PD can be given by:

rX(x) = 1− P (X ∈ Ix) (2.27)
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Figure 2.2: Normal probability distribution and the corresponding possibility distribution.

A few examples of different possibility distributions and the corresponding proba-
bility distributions obtained from a maximally specific p-ptransformation can be seen
in Fig. 2.2, 2.3 and 2.4
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Figure 2.3: Triangular probability distribution and the corresponding possibility distribution.

Figure 2.4: Uniform probability distribution and the corresponding possibility distribution.

Combination of possibility distributions

The aggregation operation of possibility distributions (PDs) is made using triangular
norms or t-norms [2,3,32–34,48]. An aggregation operationis when different possibil-
ity distributions are combined to form a single possibilitydistribution. In other words,
they can be used to define the joint possibility distributions and to make algebraic op-
erations for different PDs.

There are various t-norms, for example, a min t-norm, Frank t-norm, Dombi t-norm
etc. that have been defined and they should be used depending on how the PDs should
be combined [47].

The definitions of a few fundamental t-norms are as given below [47,48]:

Tmin(a, b) = min(a, b) (2.28)
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2.4. Conclusion

Tprod(a, b) = a · b (2.29)

TL(a, b) = maxa+ b− 1, 0 (2.30)

TD(a, b) =















b if a = 1

a if b = 1

0 Otherwise

(2.31)

WhereTmin is the min t-norm,Tprod is the prod t-norm,TL is the Lukasiewicz’s
t-norm,TD is the drastic t-norm.

Using the fundamental t-norms, Frank t-norm can be defined asgiven below:

T F
γ (a, b) =



























Tmin(a, b) if γ = 0

Tprod(a, b) if γ = 1

TL(a, b) if γ = +∞

1− logγ(1 +
(γa−1)·(γb−1)

γ−1
) otherwise

(2.32)

Frank t-norm has only one parameterλ that determines how the combination is
done on the PDs. There are also t-norms with multiple parameters which offer a greater
degree of freedom.

The generalized Dombi operator (Dombi t-norm) is one such t-norm with two pa-
rameters and is defined as follows [7,47,48]:

TGDO
γ1,γ2

(r) =
1

1 + ( 1
γ1
(
∏N

i=1(1 + γ1(
1−ri
ri

)γ2)− 1))
1
γ2

(2.33)

The case where two triangular PDs have been added using a min t-norm and a Frank
t-norm withγ = 0.7 has been shown in fig. 2.5.

2.4 Conclusion

In this chapter, the theory of evidence has been briefly recalled and the basic definitions
in the theory of evidence have been given. Then, it has been shown how the theory of
probability and the theory of possibility are specific casesof the theory of evidence.
The definitions for possibility distributions and the rulesof combination have been
introduced. In the next chapter, a brief introduction will be given about fuzzy variables
and then Random-fuzzy variables and an explanation will be given about how they
can represent uncertainty. Finally, the construction and combination of RFVs will be
introduced.
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Figure 2.5: Sum of two triangular possibility distribution using min t-norm and the Frank t-norm.
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CHAPTER3

Random fuzzy variables and their construction.

In chapter 1, the concepts of measurement, the theory of probability have been recalled.
It has also been mentioned earlier that the theory of probability does not have the re-
quired tools to represent ignorance or missing data. For this purpose, in chapter 2, the
theory of evidence and the theory of possibility have been introduced. These are two of
the theories that can represent ignorance about a particular event in a better way than
the theory of probability. But they have not yet been applied to the case of metrology
to represent our knowledge about a measurement result.

For this purpose, in this chapter, the concepts about the construction and the mathe-
matics of Random-Fuzzy Variables (RFVs) that have been framedwithin the theory of
possibility have been recalled. RFVs are a specific case of Fuzzy variables. So, before
moving on to the concepts of RFVs, it is important to recall information about fuzzy
variables and fuzzy set theory.

The Fuzzy set theory is framed within the theory of possibility. It has been intro-
duced in 1965. It finds application in most of the fields in the modern world like artif-
ical intelligence, robotics, machine learning, control theory etc. The first publications
of fuzzy set theory have been made by Zadeh and Goguen.

In Zadeh’s own words: “The notion of a fuzzy set provides a convenient point of
departure for the construction of a conceptual framework which parallels in many re-
spects the framework used in the case of ordinary sets, but ismore general than the
latter and, potentially, may prove to have a much wider scopeof applicability, particu-
larly in the fields of pattern classification and informationprocessing. Essentially, such
a framework provides a natural way of dealing with problems in which the source of
imprecision is the absence of sharply defined criteria of class membership rather than
the presence of random variables.” [54].

Some basic definitions of fuzzy set theory are given in the next section.

25



Chapter 3. Random fuzzy variables and their construction.

3.1 Fuzzy set theory

3.1.1 Basic definitions

If X is a collection of objects, denoted generically byx, then a fuzzy setA in X is a
set of ordered pairs:

A = (x, µA(x))|x ∈ X (3.1)

whereµA(x) is called the membership function which mapsX to the membership
spaceM which defines the degree of support that the elementx belongs toX. Its range
is the subset of non negative real numbers whose supremum is finite. WhensupµA(x))
= 1, then the fuzzy set is a normalized fuzzy set. So, in a normalized fuzzy set, the
membership spaceM extends from 0 to 1.

A crisp set on the other hand is deterministic in nature. So, the an element either
belong to a crisp set or they do not. There is no fuzziness about it.

The support of a fuzzy setA, denoted withS(A), is the crisp set given by:

S(A) = x ∈ X|µA(x) > 0 (3.2)

Theα− level set or theα− cut of a fuzzy setA, denoted byAα, is the crisp set given
by:

Aα = x ∈ X|µA(x) ≥ α (3.3)

When the above condition is strictly greater and not equal toα, it is called a strong
α− cut.

A set is called a convex set if every element in between two elements in a set is also
in the set. One of the important properties of fuzzy sets is that they are convex.

A fuzzy setA is convex if all of itsα−cuts are convex.

3.1.2 Rules of operation for fuzzy sets

Zadeh defined the following rules of operation on fuzzy sets [54]:

• Intersection: The membership function of the intersection of two fuzzy setsA and
B is defined as

µA∩B(x) = min(µA(x), µB(x)) (3.4)

• Union: The membership function of the union of two fuzzy setsA andB is defined
as

µA∪B(x) = max(µA(x), µB(x)) (3.5)

• Complement: The membership function of the complement of a fuzzy setA is
defined as

µA(x) = 1− µA(x) (3.6)

3.1.3 Fuzzy numbers

Fuzzy numbers or fuzzy variables form an important part of the fuzzy set theory.
A fuzzy numberM is a convex, normalized fuzzy set of the real lineR such that:

26



3.1. Fuzzy set theory

• it exists exactly onex0 ∈ R such thatµM(x0) = 1. x0 is called the mean value of
M;

• µM(x) is piecewise continuous.

The fuzzy numbers that are defined as above are called Type 1 fuzzy numbers.
An alternate definition for a fuzzy number is as follows [35]:
A fuzzy number is a fuzzy setA onR, which satisfies at least the following proper-

ties:

• A is a normal fuzzy set;

• α−cutAα is a closed interval for everyα ∈ (0, 1].

• the support ofA is bounded.

An example ofα−cut is shown in Fig. 3.1.
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Figure 3.1: Example of a fuzzy number of type 1 and itsα−cut atα−level 0.2

Theα−cuts of a fuzzy number of type 1 are closed intervals inR: Aα = [aα1 , a
α
2 ]

If m is any integer greater than 1, a typem fuzzy set can be defined as a fuzzy set
whose membership value are themselves a typem − 1 fuzzy sets in [0,1]. So, starting
from this, we can say that a type 2 fuzzy number or a type 2 fuzzyvariable are fuzzy
sets whose membership values are in turn type 1 fuzzy sets in [0,1].

According to the authors in [31],α−cuts of type 1 are intervals of confidence of
type 1. This means that they are closed intervals inR and within these intervals, there
is the possibility of finding possible values of an uncertainresult.

Theα−cuts of type 2 are also by definition closed intervals inR but they contain a
second closed interval inside the original interval. Hencetype 2α−cuts can be repre-
sented as:

Aα = [aα1 , a
α
2 , a

α
3 , a

α
4 ] (3.7)
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Figure 3.2: Example of a fuzzy number of type 2 and itsα−cuts

A type 2 fuzzy variable and its alpha cuts can be seen in Fig. 3.2
Just like the type 1 fuzzy variables, type 2 fuzzy variables can also be defined in

terms of a set of type 2 confidence intervals as given in (3.7).They have to obey the
following set of rules:

• aα1 ≤ aα2 ≤ aα3 ≤ aα4 .

• the sequence of intervals of confidence of type 1 [aα1 , a
α
4 ] generates a membership

function that is normal and convex.

• The sequence of intervals of confidence of tupe 1 [aα2 , a
α
3 ] generates a membership

function that is convex.

• ∀α andα′ ∈ [0, 1]:

α′ > α ⇒

{

[aα′1 , a
α′
3 ] ⊂ [aα1 , a

α
3 ]

[aα′2 , a
α′
4 ] ⊂ [aα2 , a

α
4 ]

for aα′2 ≤ aα′3 (3.8)

• If the maximum of the membership function generated by the sequence of confi-
dence intervals [aα2 , a

α
3 ] is found at levelαm, then:

[aαm

2 , aαm

3 ] ⊆ [aα=1
1 , aα=1

4 ] (3.9)

If the above rules are made stricter as given below:

• aα1 ≤ aα2 ≤ aα3 ≤ aα4 .

• the sequence of intervals of confidence of type 1 [aα1 , a
α
4 ] generates a membership

function that is normal and convex.
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3.1. Fuzzy set theory

• The sequence of intervals of confidence of tupe 1 [aα2 , a
α
3 ] generates a membership

function that is normal and convex.

• ∀α andα′ ∈ [0, 1]:

α′ > α ⇒

{

[aα′1 , a
α′
3 ] ⊂ [aα1 , a

α
3 ]

[aα′2 , a
α′
4 ] ⊂ [aα2 , a

α
4 ]

(3.10)

• If the maximum of the membership function generated by the sequence of confi-
dence intervals [aα2 , a

α
3 ] is found at levelα = 1, then:

[aα=1
2 , aα=1

3 ] ≡ [aα=1
1 , aα=1

4 ] (3.11)

The last rule states that the internal and the external intervals always should coincide
whenα = 1.

Then a subclass of the more general type 2 fuzzy variables is obtained, which are
called Random-Fuzzy variables (RFVs) [47].

3.1.4 Relation between the fuzzy set theory and the theory ofevidence

If there is a fuzzy variableX and if theα−cutsXα are considered, it can be seen that for
different values ofα theα−cuts of a fuzzy variable can be ordered in a nested structure.
Theα−cuts have a non zero probability assigned to them (because theα−cut is a set
that represents a confidence interval). So,α−cuts are also focal elements of the fuzzy
variableX.

In chapter 2, it has been demonstrated how the theory of possibility deals with be-
lief functions when the focal elements are all nested and howa possibility distribution
function can be defined for a set whose focal elements are all nested. Hence, because
theα−cuts are all the focal elements of the universal setX or in this case the fuzzy
variableX and are also nested sets, they satisfy all requirements of the theory of possi-
bility. So, basic probability mass can be assigned to theα−cuts which in turn enables
us to define the necessity function, the plausibility function and finally a possibility
distribution function.

So, in terms ofα−cuts:

Nec(Xαi
) =

∑

Xα|Xα⊆Xαi

m(Xα) =
1

∑

α=αi

m(Xα) (3.12)

Pos(Xαi
) =

∑

Xα|Xα∩Xαi
6=
m(Xα) =

1
∑

α=0

m(Xα) (3.13)

As explained before, another way to define a fuzzy variable isusing its membership
function. The membership function in fact assigns a numerical value between 0 and 1
which says to what extent the element belongs to the fuzzy set. So, this is equivalent to
a degree of belief being assigned to the elementx.

Hence, it can be said that the membership function of a fuzzy variable is nothing but
the possibility distribution function in the possibility theory.

29



Chapter 3. Random fuzzy variables and their construction.

Extending the logic, it can be proved that the valueα at eachα−cut is nothing but
the value assigned to the possibility distribution at the extreme points of the particular
α−cut, as given below.

ri = r(xi) = αi (3.14)

It can also be proved that the necessity function at anα−cut is given by the following
equation:

Nec(Xα) = 1− α (3.15)

So, the confidence level of an interval can be simply given by 1-α.

3.2 Random-Fuzzy Variables

Although Random-fuzzy variables have already been mentioned in Sect. 3.1.3, a more
exhaustive definition of RFVs can be given in the two followingways one according to
the possibility distribution and the other according to theα−cuts [47,48]:

• A random-fuzzy variable (RFV) is a type 2-fuzzy variable such that:

– An internal and an eternal membership functions can be identified.

– Both the internal and the external membership functions are normal and con-
vex, that is, they are PDs.

– A unitary possibility value is associated, by the two PDs, tothe same interval.

The internal and external PDs are named, respectively,rint andrext.

• A random-fuzzy variable is a type 2-fuzzy variable defined by a set of nested
intervals of confidence of type 2Aα = [aα1 , a

α
2 , a

α
3 , a

α
4 ], with α ∈ [0, 1] such that:

[aα=1
2 , aα=1

3 ] ≡ [aα=1
1 , aα=1

4 ] (3.16)

3.2.1 Construction of an RFV

As has already been stated in the definition, there are two membership functions in an
RFV: an internal membership function and an external membership function both of
which are PDs.

The internal membership function r
int

The internal membership function or internal PD, denoted byrint, is the PD that takes
into consideration the systematic contributions to uncertainty in the measurement. So,
the internal PD can be built on the available knowledge aboutthe possible systematic
contributions to uncertainty.

As has been stated in chapter 2, a uniform PD is the largest possibility distribution
function over a given interval. And it has been explained that a uniform PD represents
total ignorance about the situation.

In practice, in most cases in measurement, total ignorance is the most common
occurrence with respect to the systematic contributions touncertainty. We can only
guess that it falls in a certain interval of values but absolutely have no idea which one of
those values is the true value. This perfectly represents the scenario of total ignorance.
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3.2. Random-Fuzzy Variables

Hence, in such cases, the internal membership function is simply taken to be a uni-
form (rectangular) PD.

Of course, in case we have other information available aboutthe dispersion of the
systematic values and a pdf can be assigned to it, we can buildthe PD starting from
the available information and applying the maximally specific probability-possibility
transform, as explained in Sec. 2.3.2.

The random membership functionrran

The random PD, denoted byrran takes into account the random contributions to uncer-
tainty in the measurement. This PD can be built based on the metrological information
that we have on the measurand, which is given in terms of a pdf.

Therefore,rran can be built starting from the given pdf by applying the maximally
specific p-p transformation.

An example of a random PD built from a triangular pdf can be seen in the fig. 3.3,
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Figure 3.3: Triangular pdf and the corresponding PD, obtained by applying the maximally specific p-p
transform.

The external membership functionrext and the RFV

As soon as the two PDs, the internal PD and the random PD, are both available, the
external membership function (external PD) and the RFV can bebuilt.

The external PD can be derived using the following equation:

rextX (x) = sup
x′

Tm[r
ran
X (x− x′+ x∗), rintX (x′)] (3.17)

wherex∗ is the mode ofrranX (x) andTm is the min t-norm as explained in chapter 2
in sec. 2.3.2.

It is also possible to construct the RFV from the internal PD and the random PD if
we consider theirα−cuts.

Let us consider theα− cuts at the sameα level for both the random and the internal
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PDs. Let the correspondingα−cuts be [aαL, a
α
R] and [bαL, b

α
R] respectively. Anα− cut

is nothing but a closed interval. So, the interval can be broken down to two separate
intervals around its modex∗ given by [aαL, x

∗] and [x∗, aαR]. Then theα−cut of the
RFV [xα

a , x
α
b , x

α
c , x

α
d ] can be obtained as follows:

xα
a = bαL − (x∗ − aαL)

xα
b = bαL

xα
c = bαR

xα
d = bαR + (aαR − x∗)

(3.18)

An example of construction of an RFV starting from a random andan internal PD
is shown in Fig. 3.4
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Figure 3.4: RFV obtained from the random and internal PDs.

So, by evaluating theα−cut of the RFV for everyα, the final RFV is obtained. Once
the RFV is built, it is capable of representing the effects of both random and systematic
contributions to uncertainty very effectively.

3.2.2 Combination of RFVs

As has been established earlier, a fuzzy variable can be expressed both in terms of its
possibility distribution and in terms of itsα−cuts. The Zadeh extension principle can
be used to combine the fuzzy variables if they are expressed as possibility distributions.

On the other hand, when the fuzzy variable is expressed in terms of itsα−cuts, the
Nguyen’s theorem could be used to combine the fuzzy variables.

The theorem can be stated as follows: Given two fuzzy variablesX andY expressed
in terms of theirα−cuts,Xα andYα respectively, theα−cut of the resultZ which is a
function ofX andY can be given by,
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3.2. Random-Fuzzy Variables

Zα = [f(X, Y )]α =
⋃

T (ǫ,η)≥α

f(Xǫ, Yη) α ∈ (0, 1]

Zα=0 = [f(X, Y )]α=0

(3.19)

whereT (ǫ, η) is the t-norm that has been applied.
The t-norms are applied depending on how the two fuzzy variables are combining

with each other.
When the two quantities are interacting and combining with each other in a sys-

tematic way, then the min t-norm is applied to combine the twocorresponding fuzzy
variables. This is the reason that even for the obtaining theexternal membership func-
tion of an RFV, we use the min t-norm to join the random and internal PDs.

On the other hand, when a Frank or a Dombi t-norm is applied, there is a certain level
of compensation that is observed. So, it is almost as if the two PDs are somehow slightly
compensating each other. This happens only when the two quantities are interacting
with each other in a random way. So, when two variables are combining with each
other in a random manner as do the random contributions to uncertainty or when there
are multiple systematic contributions to uncertainty thatcombine in a random way, the
t-norms other than the min t-norm are used.

It should be noted however that the combination of two PDs using a Frank or Dombi
t-norm is only an approximation, although a very close approximation, of the reference
PD which is obtained by applying the probability-possibility transformation to the re-
sultant pdf obtained from the combination of the two corresponding pdfs in probabil-
ity [47, 48]. Also, since the t-norms have parameters that dictate the resultant PD, it is
important that a suitable value of the parameters are used toapproximate the combi-
nation as closely as possible. It has also been demonstratedin [47, 48] that the Dombi
t-norm is more accurate than the Frank t-norm when there are alarge number of contri-
butions to uncertainty that combine in a random way. So, whenthere are large number
of random contributions to uncertainty that need to be combined, it is recommended to
use the Dombi t-norm.

Fig. 3.5 shows the sum of two PDs corresponding to normal probability distributions
with a min t-norm, a Frank t-norm and a Dombi t-norm as explained in sec. 2.3.2. The
values of the parameter for Frank t-norm isγ = 0.7 and the parameters for the Dombi
t-norm areγ1 = 1.1 andγ2 = 1.7

Since RFVs are constructed from an internal and a random membership function
both of which are PDs, to combine two RFVsA andB to get a resultant RFVC, it
should be done according to the following steps:

• BreakA andB into their corresponding internal membership functionsAint, Bint

and the corresponding random membership functionsAran, Bran respectively.

• Combine the respective internal PDs using a t-norm depending on how they are
interacting with each other (if it is in a random way or a systematic way) as ex-
plained earlier to obtain the internal membership functionof C (C int).

• Combine the random PDs, to get the random membership function of C (Cran),
using a t-norm such as a Frank t-norm or a Dombi t-norm since random contribu-
tions to uncertainty can not interact with each other in a systematic way.
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Figure 3.5: Different t-norms applied to the same two PDs.

• Construct the RFVC using the internal membership function (C int) and the ran-
dom membership function (Cran) obtained in the previous steps.

3.2.3 RFVs in metrology

As has been established in the first chapter, there are various drawbacks to the theory
of probability. Firstly, it can not represent all kinds of data (sparse data or ignorance)
accurately. So, there is the need of a different theory whichis more flexible and allows
us to work with any form of data in a logically sound manner.

So, we found a more general theory which is the theory of evidence. This is a more
general theory in which the theory of probability and the theory of possibility have
been found to be special cases. Then we found that the theory of possibility forms a
better option for representing uncertainty since it can represent also ignorance about
the measurand in a mathematically accurate way. So, the systematic contributions to
uncertainty can be represented in a mathematically accurate way.

Another advantage is that if the probability distribution function is actually available
for the measurand, it can be transformed into a PD using the probability-possibility
transforms. The rules of combination for possibility functions are also more flexible
and not so rigid like in the theory of probability. This makesthe use of the theory
of possibility very appealing for representing measurement uncertainty. In turn, this
makes the fuzzy variables as a good alternative to representuncertainty because they
are also represented by PDs.

As it has been explained earlier, theα−cut ([α1, α2]) of a type 1 fuzzy variable is a
closed set which represents a confidence interval with confidence1 − α. So, it is per-
fectly sufficient if a single confidence interval is needed which corresponds to just the
random contributions to uncertainty or just the systematiccontributions to uncertainty
or the overall interval corresponding to the combined uncertainty of both the systematic
and random contributions to uncertainty.

But, theα−cut ([α1, α2, α3, α4]) has two nested sets in it. Theα−cut [α1, α4] gives
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3.2. Random-Fuzzy Variables

the confidence interval of the external membership functionand hence it represents the
confidence interval corresponding to the combined uncertainty of both the systematic
and random contributions to uncertainty. And theα−cut [α2, α3] gives the confidence
interval of the internal membership function and hence it represents the confidence
interval corresponding to just the systematic contributions to uncertainty.

This makes the use of RFVs which are also type 2 fuzzy variablesa perfect choice
to represent uncertainty in metrology. The advantages of RFVs are:

• Both Random and systematic contributions to uncertainty canbe represented to-
gether and are well recognized.

• The combinations are done using closed-form formulae. So,the mathematics is
easier compared to the probabilistic mathematics especially when dealing with
pdfs other than the normal pdf.

The next few chapters focus on the applications and the use ofRFVs in different
scenarios.
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CHAPTER4

The Kalman filter.

4.1 Introduction

The Kalman filter (KF) is a well-known algorithm for predicting the state variables of
a system [11]. It is a recursive discrete data filtering technique. It has been named
after Rudolf E. Kalman. In the current times, it has become oneof the most common
data fusion algorithms in use. This is because of the low computational requirements
to implement the filter, recursive property, representation of the linear system estimator
assuming gaussian noise which is actually one of the reason for the easy computations
and hence it is easy to be implemented in real time.

Kalman filter, in a way, is an extension of Gauss’s least squares method to estimate
the unknown parameters of a model which estimates the parameters by minimizing the
mean square error in the model. Earlier, most of the systems were static and the mea-
surements therefore remained constant with respect to time. Currently, though, systems
are more dynamic in nature and the measurements are made at regular time intervals.
Hence, Kalman filter becomes a very suitable algorithm to estimate the parameters us-
ing the real time measurements.

Some important aspects of the Kalman filter are:

• It is a type of recursive filter.

• It is a discrete filter which means that it processes samplestaken at regular time
intervals and not continuous signals.

• It predicts the future state of the system based on the current measurements and
then the prediction is adjusted based on the next obtained measurement.

• In a strict sense, it considers gaussian noise as the only “disturbing” effect on the
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Chapter 4. The Kalman filter.

input quantities. In practice though, this is often not the case when experimental
data are collected.

The classical Kalman filter applies, in a strict sense, only to linear systems. But, in
current times, lot of problems are non linear in nature. So, there have been variations
to the original algorithm that have been proposed like the extended Kalman filter.

4.2 Kalman filter

Kalman filter differs from a regular filter in the sense that itrequires a mathematical
model of the system whose states are to be predicted. In otherwords, the process needs
to be defined by a set of mathematical equations which define how the system state
evolves depending on the previous system state and the control variables of the system.

Let us assume a process which is modeled by the mathematical equations given by:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1)

y(k)estimated = Hx(k)
(4.1)

where:

x(k) =













x1(k)

x2(k)
...

xn(k)













; (4.2)

u(k) =













u1(k)

u2(k)
...

un(k)













; (4.3)

y(k)estimated =













y1(k)
estimated

y2(k)
estimated

...

yn(k)
estimated













; (4.4)

w(k) =













w1(k)

w2(k)
...

wn(k)













(4.5)

In the above equations,x(k) is the vector of the system states,u(k) is the vector of
the system control variables,y(k)estimated is the output quantity vector andw(k) is the
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4.2. Kalman filter

vector of the noise in the process.A is called the state-transition matrix,H is called the
transformation matrix andB is the control-input matrix.

Using the variances of each element in the noise vectorw(k), a matrix represented
by Q called the noise covariance matrix can be formulated as given in (4.6). As the
name suggestsQ is the matrix that represents the variances of each element and any
possible covariances between the different elements of thenoise in case they are cor-
related. In most cases, the process is homoscedastic. This means that the variance of
the process remains constant over time. So, noise in the processw(k) is a random vari-
able drawn from a probability distribution that remains constant over time. Hence the
variance of each element in the noise vector remains constant over time.

Q(k) =













V ar(w1(k)) Cov(w1(k), w2(k)) . . . Cov(w1(k), wn(k))

Cov(w2(k), w1(k)) V ar(w2(k)) . . . Cov(w2(k), wn(k))
...
... . . .

...

Cov(wn(k), w1(k)) Cov(wn(k), w2(k)) . . . V ar(wn(k))













(4.6)

The function of the Kalman filter is to use this mathematical model and produce a
prediction of the next state of the system. But, if this was allthere is to it, it would not
be robust and would be highly sensitive to the inaccuracies in the model and the noise.
Instead, the Kalman filter also takes into account the measurements that are made in
every iteration to tune the predictions and adjust them according to the measurements
made.

The measurement model can be represented by:

y(k) = y(k)estimated + r(k) (4.7)

where:

y(k)estimated =













y1(k)
estimated

y2(k)
estimated

...

yn(k)
estimated













(4.8)

y(k) =













y1(k)

y2(k)
...

yn(k)













(4.9)

r(k) =













r1(k)

r2(k)
...

rn(k)













(4.10)
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In the above equations,y(k) is the measurement vector andr(k) is the vector of the
noise in the measurement andy(k)estimated is again the output quantity vector.

So, the function of the Kalman filter is to provide an estimateof x(k) at an instant
k given the previous system statesx(k − 1) and the measurement vector,z(k). This is
done in two steps.

The first stage is called the prediction stage. This is basically using the mathematical
model and the previous adjusted state estimate to provide the initial prediction of the
state vector as given by (4.11)

xa(k) = Axf (k − 1) + Buf (k − 1)

pa(k) = Apf (k − 1)AT +Q
(4.11)

xa(k) is the predicted estimate of the system state prior to using the measured values
to adjust the estimate at instantk. xf (k−1) is the corrected estimate of the system state
after using the measured values at instantk − 1. p(k) is the estimated state covariance
matrix at instantk. Similar super scriptsa andf are used for the control variable vector
u and the state covariance matrixp to denote the predicted estimate and the corrected
estimate respectively.Q is the noise covariance matrix and is usually constant.

It can be seen that the estimated state covariance matrix at instantk increases from
the updated state covariance matrix at instantk − 1 asQ is added to it every iteration.
This would make sense since the uncertainty associated to the prediction is in fact
higher since it has not been corrected yet using the measurements.

From (4.1), the error vector at instantk, e(k), in the predicted states using the mea-
sured values is given by (4.12),

e(k) = y(k)− y(k)estimated

y(k)estimated = Hx(k)

e(k) = y(k)−Hx(k)

(4.12)

The second step is to correct the predicted estimate of the state variables using the
error, a weighted ratio of the noise covariance matrixc(k) andr(k) called the Kalman
gainK(k) at instantk, the measurement noise vector as given in (4.13).

e(k) = y(k)−Hxa(k)

K(k) =
pa(k)HT

(R +Hpa(k)HT )

xf (k) = xa(k) +K(k)e(k)

pf (k) = (I −KH)pa(k)

(4.13)

The Kalman gainK(k) is calculated in such a way that the variance of the errore(k)
is minimized.

R is the noise covariance matrix of the measurements and is usually constant be-
cause of the homoscedasticity of the measurement process. Since the variance of the
measurements remains constant over time as the measurementprocess remains un-
changed, the noise covariance matrix of the measurements also remains unchanged
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4.3. Example: Velocity and acceleration of a vehicle

over time. It can again be seen that the updated state covariance matrix is smaller than
the predicted state covariance matrix and this makes sense as well since the uncertainty
associated to the updated states would be lower since the correction has been applied
based on the measurements.

For an easy comprehension, the above classical KF algorithmhas been shown in
Fig. 4.1.

Figure 4.1: Prediction and assimilation steps alternation in the classical Kalman filter.

4.3 Example: Velocity and acceleration of a vehicle

A simple example is considered, in which a vehicle is moving at a velocity vref(t),
according to the impressed accelerationaref(t), as shown in Fig. 4.2.

The classical Kalman filter described in Sect. 4.2 is used to estimate velocity and
acceleration of the vehicle.

Eq. (4.14) shows the state equations of the model:

• vk andak are velocity and acceleration of the vehicle at timek;

• wv
k andwa

k are the standard deviation of the noise in velocity and acceleration
respectively at timek;
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Figure 4.2: Reference values of velocity (blue line) and acceleration (red line) over time.

• τ is the time period within two successive measurements

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(4.14)

τ has been assumed to be constant and equal to 1 s.

For the considered example, the state vector isxk =

[

vk

ak

]

; the state-transition

matrix, denoted withA in (4.11), is constantA =

[

1 τ

0 1

]

; thecontrol-input matrix,

denoted withB in (4.11) is zero; thetransformation matrix, denoted withH in (4.13),

is: H =

[

1 0

0 1

]

and the measurement vector is:yk =

[

vmk

amk

]

.

As shown in (4.11) and (4.13), two matrices have to be defined:the covariance
matrix Qk, which considers the process noise, and the covariance matrix Rk, which
considers the measurement noise, that is the uncertainty associated to the measured

values. Therefore, it is:Qk =

[

w2
k v 0

0 w2
k a

]

andRk =

[

u2
k v 0

0 u2
k a

]

, whereuk v is

the standard uncertainty associated to the measured valuesof velocity anduk a is the
standard uncertainty associated to the measured values of acceleration.

The following assumptions are done, as far as the initial values of the state variables
and their associated uncertainty values are considered.

• It is supposed thatQk andRk do not vary withk, i. e. Qk = Q =

[

w2
v 0

0 w2
a

]

andRk = R =

[

u2
v 0

0 u2
a

]

.

• The initial velocity of the vehicle is assumed to be a normaldistribution with
mean equal to the first measured value of velocity (vm1) and standard deviation
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4.3. Example: Velocity and acceleration of a vehicle

0.003 m/s. Therefore:v0 = vm1 m/s andwv = 0.003 m/s. This last value
has been chosen by considering the accuracy of a GPS, which isquite accurate
compared to the speedometer of the vehicle, and it is directly retrieved from the
official GPS website [1].

• The initial acceleration is assumed to be a normal distribution centered at the
first measured value of acceleration (am1) obtained from the accelerometer, with
a standard deviation of0.0005m/s2, due to some kind of noise either due to the
circuit or due to the driver applying force on the accelerator. Therefore:a0 =
am1 m/s2 andwa = 0.0005 m/s2.

On the other side, at every stepk, as far as measurements are concerned, the un-
certainty contributions affecting the measured values must be also considered. It has
been assumed that the measured values are affected by both random and systematic
uncertainty contributions. In particular, as far as the velocity is concerned, typical ac-
curacy values have been assumed for the on-board sensor, which are generally one or
two orders of magnitude less accurate than a GPS-based speedometer:

• The random contribution is supposed to be normally distributed, with a standard
deviationuv

ran = 0.16 m/s.

• All systematic errors have been assumed to have been compensated for.

Similarly, also for the acceleration, it is supposed that nosystematic contributions
affect the measurement procedure, while a typical random contribution is considered
which is supposed to be normally distributed, with a standard deviationua

ran = 0.005m/s2

that is one order of magnitude less accurate than the model.
The classical Kalman filter, as explained in Sect. 4.2 is applied, where, according to

the above assumptions, atk = 0 it is:

• xa
0 =

[

vm1

am1

]

;

• Pa
0 = Q.

The results can be seen in Fig. 4.3 and 4.4 respectively for velocity and acceleration.
The blue lines in the respective figures represent the difference between the predicted
states (velocity and acceleration) and the actual states. The red lines represent the
uncertainty estimates for the velocity and acceleration inthe respective figures.

It can be seen that the Kalman filter is clearly able to predictthe states perfectly
inside the uncertainty limits.

But what happens when the ideal conditions required for a Kalman filter are not
satisfied. For example, what if there is an uncompensated systematic error in the mea-
surements? Of course, the theory of the Kalman filter prevents using it when the mea-
surement values have a systematic error. So, the following example is simply aimed at
demonstrating the error in the estimation of the uncertainty associated to the states by
the classical KF in the case of an incorrect application of the Kalman filter, in violation
of the theoretical assumptions behind it.
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Figure 4.3: Difference in the reference and predicted velocity values (blue line) provided by the classical
Kalman filter, together with the predicted uncertainty interval (red lines).
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Figure 4.4: Difference in the reference and predicted acceleration values (blue line) provided by the
classical Kalman filter, together with the predicted uncertainty interval (red lines).

4.4 Example:Velocity and acceleration in the presence of a syste matic
error

The same example given in Sect. 4.3 is considered, in which a vehicle is moving at a
velocity vref(t), according to the impressed accelerationaref(t), as shown in Fig. 4.2.
But, there is a slight difference. In the previous section, ithas been assumed that all
the systematic errors have been fully compensated for and the measurements are free
from all bias. In this example, it has been assumed that the velocity measurements are
affected by a systematic error of magnitude 0.3 m/s which is still inside the2σ limit
for the random contributions to uncertainty since it has been assumed that the velocity
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4.4. Example:Velocity and acceleration in the presence of a systematic error

measurements are affected by a gaussian noise with a standard deviation of 0.16 m/s as
described in the previous section.

The classical Kalman filter without any additional modifications is used to estimate
the velocity and acceleration of the vehicle.

Eq. (4.14) shows the state equations of the model.

Since it is the same example, the state vector is just as before: xk =

[

vk

ak

]

;

the state-transition matrix, denoted withAk−1 in Fig. 4.1, is constantAk = A =
[

1 τ

0 1

]

; thecontrol-input matrix, denoted withBk in Fig. 4.1 is zero; thetransfor-

mation matrix, denoted withHk in Fig. 4.1, is:Hk = H =

[

1 0

0 1

]

and the measurement

vector is:yk =

[

vmk

amk

]

.

The noise covariance matrixQk of the predictions and the noise covariance matrix
Rk of the measurement data are also the same as described in the previous example in
Sect. 4.3.

On the other side, at every stepk, as far as measurements are concerned, it has
been assumed that the measured values are affected by both random and systematic
uncertainty contributions. In particular, as far as the velocity is concerned, typical
accuracy values have been assumed for the on-board sensor, which are generally one or
two orders of magnitude less accurate than a GPS-based speedometer:

• The random contribution is supposed to be normally distributed, with a standard
deviationuv

ran = 0.16 m/s.

• A systematic error is also supposed to be present, with an estimated valueevsys =
0.3 m/s. But this value is supposed to be unknown, so that a systematiccontribu-
tion is modeled, laying in the interval±bsys = ±0.32 m/s (which include the true
systematic errorevsys).

On the other hand, as far as the acceleration is concerned, itis supposed that no
systematic contributions affect the measurement procedure, while a typical random
contribution is considered which is supposed to be normallydistributed, with a standard
deviationua

ran = 0.005m/s2 that is one order of magnitude less accurate than the model.
Just like the previous section, according to the above assumptions (Sect. 4.3), at

k = 0:

• xa
0 =

[

vm1

am1

]

;

• Pa
0 = Q.

As far as the measurements are concerned, the value of the measured velocityvk
is simulated, at every stepk, as a random extraction from a normal distribution with
mean valuevref(k) + evsys and standard deviationuv

ran. The standard uncertainty value
associated to the measured valuevk isuv, which must take into account for both random
and systematic uncertainty contributions. As suggested bythe GUM [27]:

uv =

√

(uv
ran)

2 +
(

uv
sys

)2
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whereuv
sys is the standard deviation of the pdf associated to the considered systematic

contribution. When the GUM [27] is followed and probability theory is employed for
uncertainty evaluation, it is a common practice to assign a uniform distribution over the
interval of possible variation of the systematic contribution. Under this assumption, it
is: uv

sys =
bsys√

3
m/s.

Similarly, the simulated measured accelerationak at every stepk is a random ex-
traction from a normal distribution with mean valuearef(k) and standard deviationua

ran.
Since only random contributions are supposed to affect the acceleration measurement
procedure, the standard deviation associated toak is ua

ran.
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Figure 4.5: Difference in the reference and predicted velocity values (blue line) provided by the classical
Kalman filter, together with the predicted uncertainty interval (red lines).
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Figure 4.6: Difference in the reference and predicted acceleration values (blue line) provided by the
classical Kalman filter, together with the predicted uncertainty interval (red lines).
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The results of the simulation are reported in Fig. 4.5 and 4.6.
The blue line in Fig. 4.5 represents the difference between the predicted velocity

andvref . This difference is of course not constant but, after a transition of about250
iterations (i. e.250 s, since one iteration is done every1 s) oscillates around the value
esys, as expected, because of the presence of the systematic error in the measurements.
On the other hand, the red lines represent the evaluated uncertainty interval. In particu-
lar, for each iterationk, the provided interval is the±3σk interval [27], whereσk is the
standard uncertainty associated to thea posteriorivalue of the velocity at stepk, that
can be retrieved from the values in the main diagonal of matrix Pa

k.
It can be clearly seen that the difference between the predicted velocity andvref(t)

is always outside the obtained uncertainty bounds. So, evenif the classical Kalman
filter can predict quite well the velocity of the vehicle (at steady state), it can be con-
cluded, as expected, that it underestimates the measurement uncertainty and therefore,
the theoretical expectation that it is not suitable when also systematic contributions to
uncertainty are present is confirmed. Furthermore, the convergence time is quite high.

Fig. 4.6 shows the results obtained for the acceleration andthe blue and red lines
have the same meaning as in Fig. 4.5. In this case, since only random contributions
affect the measured values, the±3σ uncertainty intervals contain the measured values
except, of course, when the acceleration has a sudden variation.

4.5 Limitations of the classical KF

In its classical formulation, mathematically, KF requiresthe model uncertainty and
the measurement uncertainty to be normal probability distributions [11]. The second
limitation is that it is required that the noise is completely unbiased. Or, in other words,
all systematic contributions to uncertainty must be compensated for. This is because
the Kalman filter simply follows the pattern of the data that is being observed while
decreasing the effect of the random contributions to uncertainty using the mathematical
model.

In practice, however, this is not possible as sometimes, thesystematic errors can not
be recognized and therefore are not compensated for.

And as it is confirmed by the example in the previous section, the classical KF is not
suitable when there is an uncompensated systematic error inthe observed data as can
be seen in fig. 4.5. It can be seen that the uncertainty limits have been severely under-
estimated which is to be expected because the systematic contributions to uncertainty
have not been taken into account in a mathematically accurate way.

Modified versions of the classical KF are available and they differ in the way they
use different representations of uncertainty to deal with the systematic error in the mea-
surement. In [43], a variation of KF called the Schmidt Kalman filter is proposed which
attempts to take into account systematic uncertainty contributions as well, as explained
in Sect. 4.6 and applied in this chapter.

Another method would be to implement the Kalman filter as a markov process in
the presence of a systematic contribution to uncertainty byconsidering the systematic
error as an ensemble of values from a uniform probability distribution. This has also
been explained in the section and has been implemented.
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4.6 Schmidt Kalman filter

The Schmidt Kalman filter has been proposed in [43], as a variation of the classical
KF, to consider also the systematic uncertainty contributions. The Schmidt Kalman
algorithm is as shown in Fig. 4.7. The same example as before has been considered
again for the sake of homogeneity in the simulations for easycomparison.

I NITIAL ESTIMATE

xa0 , Pa
0 , Q, R, Da

0 , B

PREDICTION

xfk = A · xak−1

Pf
k = APa

k−1AT + Q

Df
k = A · Da

k−1

EVALUATION OF THE K ALMAN GAIN MATRIX

Kk = (Pf
kHT

k +Df
kHT

B)(HkPf
kHT

k +HBDfT
k HT

k +HkDf
kHT

b +HBBHT
B+R)−1

CORRECTION OF THE PREDICTED STATES AND COVARIANCE MATRIX

xak = xfk + Kk(yk − Hxf
k)

Pa
k = (I − KkHk)P

f
k − KkHBDfT

k

Da
k = Df

k − Kk(HkDf
k + HBB)

Figure 4.7: Schmidt Kalman filter algorithm.

It considers the systematic contribution to uncertainty asan additional state variable.
So, the systematic contributions are modeled as a separate matrix of states and the cor-
responding noise covariance matrix is considered. Therefore, new matrices, in addition
to the ones defined in the classical KF have to be defined for modeling the systematic
contribution:

• HB =

[

1

0

]

• B = uv
sys

2 = 0.322/3

• Da
0 =

[

0

0

]

whereB is the variance of the systematic contribution andD is the cross covariance
matrix between the random and systematic errors. It is a zeromatrix because the sys-
tematic and random errors are independent in the consideredexample. The Readers are
addressed to [43] for further details.

The initial values ofxa
0, Q andPa

0 are the same as in Sect. 4.3.
Also the simulated measured valuesvk of velocity are obtained as in Sect. 4.3 but,

in this case, the associated standard uncertainty value isuv
ran, because in the Schmidt

Kalman filter, the systematic uncertainty is propagated as aseparate matrix.
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4.6. Schmidt Kalman filter

The simulated measured values of accelerationak and the associated standard devi-
ation are also obtained as in Sect. 4.3.

The results of the simulations are reported in Fig. 4.8 and 4.9, where the blue and
the red lines have the same meaning as in Figs. 4.5 and 4.6.
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Figure 4.8: Difference in the reference and predicted velocity values (blue line) provided by the Schmidt
Kalman filter, together with the predicted uncertainty interval (red lines).
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Figure 4.9: Difference in the reference and predicted acceleration values (blue line) provided by the
Schmidt Kalman filter, together with the predicted uncertainty interval (red lines).

The results obtained for the acceleration are pretty much the same as in the previous
case in Sect. 4.3, while a difference can be seen in the velocity.

The Schmidt Kalman filter is aimed at considering systematicuncertainty contribu-
tions and indeed the uncertainty intervals are significantly larger than those obtained in
Sect. 4.3, but they do not yet contain the actual velocity of the vehicle. Therefore, even
if the Scmidt KF provides a better estimation of the measurement uncertainty in the
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presence of systematic contributions than the classical KF, uncertainty is still underes-
timated. This would, in turn, mean that the systematic contributions to uncertainty are
still not considered in a completely accurate manner and areunderestimated.

4.7 Kalman filter based on a Monte Carlo sampling

The same example as in Sect. 4.4 has been considered again foreasy comparison. So,
it has been assumed to have a systematic error of 0.3 m/s in thevelocity measurement
data.

When there is an uncompensated systematic contribution to uncertainty, an interval
of values can be estimated where the systematic error lies in. Of course, only an interval
can be assumed but the actual value can not be estimated. Otherwise, it could be simply
compensated for. So, there is a situation of total ignorancein this interval of values. In
the theory of probability, when there is total ignorance, a maximum entropy model is
assumed, which leads us to use the uniform probability distribution to represent total
ignorance.

In this particular example, the distribution corresponding to the systematic contribu-
tion to uncertainty has been assumed to be a uniform distribution with a zero mean and
a half-width of 0.32 m/s which is equal to the2σ interval of the random noise which has
been assumed to be gaussian in nature and with a standard deviation of0.16m/s. So,
the distribution of the velocity would be imposed by both therandom and the systematic
contributions to uncertainty.
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Figure 4.10: Classical Kalman filter algorithm applied based on monte carlo sampling.

The classical Kalman filter that has been described in Sect. 4.2 has been used but
with a change. The difference is that it is implemented basedon a Monte Carlo sam-
pling method. So, the systematic error has been assumed to bean ensemble of values
and each of these values belong to the uniform distribution that has been attributed to
the systematic uncertainty as explained earlier.

So, every iteration of the Kalman filter has been performed for a large number of
samples drawn from the uniform probability distribution sothat every possible system-
atic error in the interval is considered.

The algorithm is as shown in fig. 4.10.
This leads to the consideration of every possible value in the interval so that the

maximum value of the obtained state predictions in each iteration can be considered as
the uncertainty limit for the particular iteration.
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4.7. Kalman filter based on a Monte Carlo sampling

The results are shown in Fig. 4.11.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Error between the velocity estimated by the kalman filter and the actual velocity

Figure 4.11: Difference in the reference and predicted velocity values (blue line) provided by the Kalman
filter, together with the predicted uncertainty interval (red lines).

Again, the blue lines represent the error between the predicted states by the Kalman
filter and the actual velocity. The plot of acceleration is not reported since it is un-
changed with respect to the classical KF since the acceleration does not suffer from
any systematic error. It can be seen from Fig. 4.11 that the blue line representing the
error between the predicted states by the Kalman filter and the actual velocity still has
a mean value of 0.3 m/s. But, the red lines representing the uncertainty are wider apart
from each other and the error lies inside the uncertainty interval.

So, implementing a Kalman filter based on Monte Carlo samplingworks. But, the
number of simulations to be done increases by a very large value and hence, this method
is not computationally efficient.

Hence, the theory of possibility and RFVs have been used as explained in the next
chapter.
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CHAPTER5

The modified possibilistic Kalman filter.

5.1 Introduction

As it has been explained in the previous chapter, the classical Kalman filter and the
theory of probability both are not very suitable to represent and propagate systematic
contributions to uncertainty in a mathematically accurateway. As it could also be seen
in the previous chapter, there have also been modifications to the Kalman filter as an
attempt to consider systematic contributions to uncertainty but they are still inadequate.

The possibilistic KFs defined in [13] and in this chapter alsoserve the same purpose.
There have been other attempts to process systematic contributions to uncertainty us-
ing a Kalman filter [42, 52, 53]. Both [52] and [53] propose algorithms to attempt to
estimate the systematic error in the measurement and then compensate for the error but
do not try to propagate the systematic contributions to uncertainty. Whereas, in [42],
an algorithms is proposed to include a systematic error thatis of unknown magnitude
but is known to be bounded into Bayesian inference and KF usingan approach based
entirely on probability. However, to achieve this, all the different possible probability
density functions over the specified interval with all possible mean values of the cor-
responding pdfs need to be considered. This makes it quite complex. As explained in
chapter 2, a possibility distribution is basically a superior probability distribution. So,
it can be seen as inclusive of all possible pdfs. Hence, if possibility distributions could
be used in a KF, it would make it a more straight forward implementation of [42].

There are KFs based on the theory of possibility available inthe literature [40, 44]
but, as per the author’s knowledge, uncertainty is considered in a kind of subjective way
in those algorithms [13], as is the case with the fuzzy applications. But uncertainty is
a well specified concept in metrology and is recommended by [27,30] to be processed
in the same way. Since uncertainty, in metrology, must be considered according to the
definition given by [27,30], this chapter is hence aimed at proposing a possibilistic KF,
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Chapter 5. The modified possibilistic Kalman filter.

whose definition is perfectly framed within the present Standards [27,30].
As explained earlier in chapter 3, within the mathematical framework of the the-

ory of possibility, Random-Fuzzy variables can be used to represent all contributions
to uncertainty in a more accurate way. Therefore, methods and algorithms aimed at
fully exploiting the advantages provided by the Random-Fuzzy variables in expressing
measurement uncertainty should be capable of processing them. The same goes for the
Kalman Filter as well, and the KF proposed in this chapter using the theory of pos-
sibility, to be able to process all kinds of uncertainty contributions, is based on these
variables (RFVs).

To validate the possibilistic KFs, the same example is considered, where the velocity
of a vehicle, along with its associated measurement uncertainty, has to be estimated,
with a Kalman filter. This example is described in Sect. 4.4.

Two different approaches to the possibilistic KF are applied and compared with each
other: the possibilistic Kalman filter proposed in [13] and arefinement of it, proposed
in this chapter. The modified possibilistic KF proposed in this chapter operates with
the exact same equations as the classical KF but all output and state variables are RFVs
instead of being crisp values as in the classical KF.

Finally, a hybrid KF has also been applied, which combines both the classical KF
algorithm and the possibilistic KF algorithm defined in thischapter, for the random and
systematic uncertainty contributions respectively.

This last version has been considered, as shown in Sect. 5.5,to validate the proposed
possibilistic KF by processing the systematic and random contributions to uncertainty
separately, according to their natural mathematical representation [18,19]. Under these
conditions, the highest accuracy is achieved, as shown in Sect. 5.5, at the cost of a
higher computational burden that, at present, makes the hybrid KF suitable only as a
reference method.

5.2 The considered example

The same example is considered and has been recalled for easyreference, in which a
vehicle is moving at a velocityvref(t), according to the impressed accelerationaref(t),
as shown in Fig. 5.1.

Eq. (5.1) shows the state equations of the model:

• vk andak are velocity and acceleration of the vehicle at timek;

• wv
k andwa

k are the standard deviation of the noise in velocity and acceleration
respectively at timek;

• τ is the time period within two successive measurements

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(5.1)

Since it is the same example as in Sect. 4.4, the state vectors, the measurement
vector and the matrices are all the same as given in Sect. 4.4.
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Figure 5.1: Reference values of velocity (blue line) and acceleration (red line) over time.
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Figure 5.2: Possibilistic Kalman filter algorithm defined in [13].

5.3 The possibilistic Kalman filter

This section considers the application of the possibilistic Kalman filter defined in [13],
with the aim to consider also the presence of systematic contributions to uncertainty.

The basic equations of this algorithm defined in [13] are given in Fig. 5.2. It can be
seen the the equations are very similar to the classical KF equations.

But, in a classical KF, the states are all crisp values and the noise is considered
separately using the noise covariance matrix which is propagated separately from the
states. This is an important reason for which all the noises need to be strictly gaussian
since, otherwise, the equations for the propagation of the noise covariance matrix do
not hold true anymore.
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Chapter 5. The modified possibilistic Kalman filter.

In the possibilistic KF, on the other hand, all variables in the state vectors are RFVs
and the iterations are performed using RFV mathematics [14, 19, 48], so that both ran-
dom and systematic contributions can be mathematically represented and combined
according to their different nature [19, 48]. Hence, the noise covariance matrix does
not need to be propagated separately from the states and is automatically propagated
when the states vectors are combined in the form of RFVs. This makes it possible to
implement the possibilistic KF for any type of distributions.

Furthermore:

• as for the matrix which considers the model uncertainties (matrixQ in the classical
Kalman filter), according to the assumptions reported in Sect. 4.4, we define a
vector of RFVsQPOS where:

– the element related to velocity is an RFV in which there is no internal PD and
the random PD is obtained by transforming [48] a zero mean normal pdf with
standard deviationwv in the possibility domain;

– the element related to acceleration is an RFV in which there isno internal PD
and the random PD is obtained by transforming [48] a zero meannormal pdf
with standard deviationwa in the possibility domain;

• as for the initial state vectorXa
0, it is assumed that

– the initial velocity is an RFV in which there is no internal PD and the random
PD is obtained by transforming [8, 15, 16, 36, 48] a normal pdfwith mean
equal to the first measured value for velocity (vm1) and standard deviationwv

in the possibility domain;

– the initial acceleration is an RFV in which there is no internal PD and the
random PD is obtained by transforming [8, 15, 16, 36, 48] a normal pdf with
mean equal to the first measured value for acceleration (am1) and standard
deviationwa in the possibility domain;

• as for the measured values, for every stepk, the RFV associated to the simulated
measured velocity is centered onvk (obtained as in Sect. 4.4) and

– the internal PD is a rectangular PD with width±bsys aroundvk;

– the random PD is obtained by transforming [48] a zero mean normal pdf, with
standard deviationuv

ran in the possibility domain.

On the other hand, the RFV associated to the simulated measured acceleration is
centered onak (obtained as in Sect. 4.4) and:

– the internal PD is nil;

– the random PD is obtained by transforming [48] a normal pdf, with meanak
and standard deviationua

ran in the possibility domain.

The RFVs for velocity and acceleration for the initial state vector can be seen in Fig.
5.3. They are both centered at zero because the initial measurements for velocity and
acceleration are both assumed to be zero.

The RFVs for velocity and acceleration measured values are asshown in Fig. 5.4.
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Figure 5.3: Velocity and acceleration initial state RFVs
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Figure 5.4: Velocity and acceleration measurement RFVs

The measured velocity is assumed to be3m/s and the acceleration is assumed to be
zero. Hence, they are centered at the corresponding values.

The noise covariance matrix for the state predictionsCXf
k

can be obtained by calcu-
lating the possibilistic variances and the covariances between the system states directly
from the respective RFVs of the states.

The obtained results are shown in Figs. 5.5 and 5.6. In the possibilistic approach, the
difference between the predicted velocity/acceleration and the corresponding reference
values are RFVs1. Therefore, the blue lines in Fig. 5.5 and 5.6 represent the mean val-
ues of these RFVs. On the other hand, the red lines represent, for every iterationk, the
width of theα-cut at levelα = 0.01 of the predicted velocity/acceleration respectively,

1Since the predicted velocity and acceleration are RFVs.
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Figure 5.5: Difference in the reference and predicted velocity values (blue line) provided by the possi-
bilistic Kalman filter defined in [13], together with the predicted uncertainty interval (red lines).
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Figure 5.6: Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in [13], together with the predicted uncertainty interval (red lines).

i. e. the confidence level at coverage probability99%.
With respect to the results provided by the classical KF and Schmidt KF, which both

underestimate the measurement uncertainty, the possibilistic KF is able to consider
correctly also the systematic contribution, so that the provided confidence intervals
almost always include the systematic erroresys except during the transient period when
there is the sudden change in the acceleration and there is anovershoot till the Kalman
filter readjusts to follow the data smoothly. Furthermore, the time of convergence of
the possibilistic KF is117 iterations.

However, Fig. 5.5 also shows a problem in the obtained results, i.e. the non-
negligible oscillations. In fact, if, after reaching convergence, the standard deviation
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5.4. A new definition for the possibilistic Kalman filter

of the results shown in the blue line is evaluated, a value of88.2 · 10−3 m/s is ob-
tained, which is much higher than the value obtained when theresults of the classical
KF (29.9 · 10−3 m/s) and the Schmidt KF (26.7 · 10−3 m/s) are considered.

As also summarized in Fig. 5.2, the gain matrix is evaluated according to the covari-
ance matrixCXf

k
. In [13], it has been suggested that the covariance matrix isevaluated

according to the external membership function of the RFVs, sothat the overall un-
certainty is taken into account. Therefore, under this assumption: CXf

k
= Cext

Xf
k

and

KPOS
k = K ext

k [13] (see again Fig. 5.2).
Since, the external membership function of an RFV representsthe combined un-

certainty of both the random contributions to uncertainty and that of the systematic
contributions to uncertainty, the value of the variances and covariances obtained are
very high. This results in the Kalman gain (KPOS

k ) to be very high as well which results
in always overcompensating the error between the apriori predicted state and the mea-
surement data obtained. Hence, there are very large oscillations in the predicted states
as well as the uncertainty limits evaluated.

This result is not desirable, since the aim of a KF is a good prediction of both the
state variable and its uncertainty. However, in this case, the prediction of the uncertainty
values is not satisfactory.

5.4 A new definition for the possibilistic Kalman filter

In the previous Sect. 5.3, it has been shown how the possibilistic KF is able to correctly
evaluate the measurement uncertainty due to both random andsystematic contributions,
but it is not as efficient in predicting the velocity values, as proved by the oscillations in
the blue line in Fig. 5.5. In this section, a modified possibilistic KF is defined, in order
to maintain the advantages of the already defined possibilistic KF but also to improve
the state variable prediction.

As stated in previous Sect. 5.3, the oscillations in the blueline in Fig. 5.5 are due
to the very high values in the gain matrixKPOS

k , which is evaluated according to the
possibilistic covariance matrixCXf

k
= Cext

Xf
k

.

Since the covariance matrix is evaluated starting from the external membership func-
tions of the RFVs representing the state variables, its elements are quite high in magni-
tude. In the new modified definition for the possibilistic KF,it is proposed to evaluate
the possibilistic Kalman gain matrix, according to the possibilistic covariance matrix
CXf

k
= Cran

Xf
k

. This means that the possibilistic variances and covariances are evaluated

from the random PDs of the RFVs of the state variables.
Similarly, also the possibilistic variance of measurements Yk is evaluated for its

random PDYran
k . In this way, since the possibilistic variance and covariance decrease,

also the elements in the Kalman gain matrix decrease.
To understand the motivation behind this, let us go back to the basics of the Kalman

filter as explained in Sect. 4.2. It is known that the Kalman gain is evaluated in such a
way that the variances of the errors between the predicted states and the measurement
data is minimized. Hence, it is a weighted ratio of the variances of the state predictions
and the variances of the measurement data.

Now, if the measurement data is affected by purely the randomcontributions to un-
certainty, the variance of the data represents the magnitude of variation around the mea-
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Chapter 5. The modified possibilistic Kalman filter.

sured value. Now, if we consider that there is an unknown systematic error and hence
a systematic contribution to uncertainty, it still means that the magnitude of variation
around the measured value is still purely from the random contributions to uncertainty.
The systematic contributions to uncertainty only mean thatthe expected value of the
data is not the true mean value of the distribution, rather, it is shifted by a certain value
which is the systematic error.

But, in the previous definition of the possibilistic Kalman filter algorithm, the pos-
sibilistic variance associated to the state has been evaluated using the external mem-
bership functions of the RFVs which includes both the systematic and random contri-
butions to uncertainty. Hence, the possibilistic variancecalculated from the external
membership function of the RFVs includes the effect of both the variation around the
measured value and the effect of the shift of the expected value from the true mean.
This is not desirable for the calculation of the Kalman gain.

Hence, if the possibilistic variance of just the random partof the RFV is calculated,
that again accurately represents the variation around the measured value, whatever the
expected value might be, which is what we want to use for the calculation of the Kalman
gain.

Under this new assumption, the algorithm for the possibilistic Kalman filter is schemat-
ically represented in Fig. 5.7. With respect to the algorithm in Fig. 5.2, the different
evaluation of the covariance matrix can be readily perceived and, consequently, the
different Kalman gain matrix can be also seen.
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Figure 5.7: The defined possibilistic Kalman filter algorithm.

There is also another difference between the two algorithmsin Figs. 5.2 and 5.7,
shown in the last equation. In the new definition, the correction of the state variables is
done by considering, in the given equation, only the internal PD of the RFV associated
to the measurement value. This is more coherent with the classical KF, in which the
correction of the state variables only depends on the valuevk of the measured velocity
and not on its uncertainty. In the same way, by processingYint

k , all possible values of the
measured velocity caused by the presence of a systematic error are taken into account,
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Figure 5.8: Difference in the reference and predicted velocity values (blue line) provided by the pos-
sibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval (red
lines).
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Figure 5.9: Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval
(red lines).

but the random variability about this value is not considered in the state prediction.
This is equivalent to considering all possible values for the expected value inside the

interval of values represented by the internal membership function of the RFVs. This
is similar to the implementation of the classical KF algorithm based on Monte Carlo
sampling as explained in Sect. 4.7. But, using the theory of possibility and RFVs makes
it much more direct and computationally efficient thanks to the RFV mathematics.

The obtained results are shown in Figs. 5.8 and 5.9, where thered and blue lines
have the same meaning as in Figs. 5.5 and 5.6. Fig. 5.8 clearlyshows that the oscil-
lations reported in Fig. 5.5 have been completely eliminated. Convergence is obtained
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Chapter 5. The modified possibilistic Kalman filter.

after about153 iterations, so convergence is slower than with the originalpossibilis-
tic Kalman filter, but the results are really improved. If, after reaching convergence,
we evaluate the standard deviation of the results in the blueline, we obtain a value of
22.4 · 10−3 m/s, which is lower than in all previous cases.

The good estimation of uncertainty is also confirmed, since the predicted values of
velocity are well inside the predicted coverage interval (red lines). The improvement,
with respect to the implementation shown in Sect. 5.3 is, once again, the absence of
oscillations.

It can be concluded that the defined possibilistic KF improves the behavior of the
possibilistic Kalman filter defined in [13], since both predictions and uncertainty are
correctly evaluated.

5.5 Validation of the proposed possibilistic Kalman filter

In order to validate the possibilistic Kalman filter defined in this chapter, this section
shows the results obtained by employing an hybrid KF, in which the variables are partly
processed according to the theory of possibility, and partly according to the theory of
probability. In particular, the random contributions to uncertainty have been processed
according to the classical KF equations, while the systematic contributions to uncer-
tainty have been modeled and processed as internal PDs of RFVs, by applying the
RFV mathematics. In this way, the systematic contribuitionscan be correctly propa-
gated [18,19,48]. The algorithm in this case is schematically described in Fig. 5.10.

As far as the classical KF is concerned, the same assumptionsare done as in Sect. 4.4
except that, in this case, the standard uncertainty associated to the simulated measured
velocity isuv

ran (and notuv), since only the random contributions are now considered.
As for the RFV part, it is sufficient to consider only the initial internal PDs of velocity
and acceleration in the initial stateXa_int

0 , as defined in Sect. 5.3.
The obtained results are shown in Figs. 5.11 and 5.12.
The blue line in Fig. 5.12 shows the differences between the reference and the

predicted accelerations and the red line gives the evaluated uncertainty intervals.
The blue line in Fig. 5.11 represents the difference betweenthe predicted velocity

(directly provided by the classical KF, at the left side of the algorithm’s model) and
vref(k). On the other hand, the red intervals represent, for every iteration, the99%
confidence interval of the RFV associated at thea posteriorivelocity. In order to obtain
this RFV, at every iteration, it is possible to combine the internal PD (obtained with the
RFV mathematics, at the right side of the algorithm’s model inFig. 5.10) with the
random PD built according to the results given by the classical KF at the same step
(obtained by applying the probability-possibility transformation to the pdf given at the
left side of the algorithm’s model in Fig. 5.10). In particular, we obtain the random
PD by applying the probability-possibility transformation [48] to the normal pdf whose
mean value is the first element inxa

k and whose standard deviation is given by the
element(1, 1) in the covariance matrixPa

k.
In this case, we have convergence after about85 iterations and the standard deviation

of the blue line in the results is30.8 · 10−3m/s after reaching convergence.
By comparing Fig. 5.8 with Fig. 5.11, it can be immediately seen that we have

obtained very similar results, thus confirming the validityof the proposed possibilistic
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Figure 5.10: The employed algorithm to validate the proposed possibilistic Kalman filter.
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Figure 5.11: Difference in the reference and predicted velocity values (blue line) provided by the hybrid
Kalman filter, together with the predicted uncertainty interval (red lines).

KF. Of course, the application of the possibilistic KF is much more immediate than the
application of the Hybrid KF.

63



Chapter 5. The modified possibilistic Kalman filter.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

di
ffe

re
nc

e 
[m

/s
2 ]

Difference between predicted and reference accelerations.
Uncertainty limits associated to the predictions.

Figure 5.12: Difference in the reference and predicted acceleration values (blue line) provided by the
hybrid Kalman filter, together with the predicted uncertainty interval (red lines).

5.6 Further tests and comparison

In order to achieve a more comprehensive validation of the proposed possibilitic KF,
similar simulations as those reported in Sect. 5.2 and 5.5 have been repeated by con-
sidering the pattern shown in Fig. 5.13 for velocity and acceleration.

The results obtained are quite similar to those shown in Fig.5.5, 5.8, 5.11 for
velocity and to those shown in 5.6, 5.9, 5.12 for acceleration. The results for velocity
are shown in Fig. 5.14, 5.16, 5.18 for the original possibilistic KF, modified possibilistic
KF and the hybrid KF respectively. The results for acceleration are shown in Fig. 5.15,
5.17, 5.19 for the original possibilistic KF, modified possibilistic KF and the hybrid KF
respectively.

A few synthetic indexes have been extracted from the obtained results, for a more
immediate comparison of the different considered KFs. In particular:

• Convergence time. It is the time taken to reach the90% of the steady-state value
of the prediction.

• Steady-state error. It is the difference between the average predicted value and the
reference value, once steady state is reached.

• Error variation. It is the standard deviation of the error once steady state is
reached.

• Uncertainty limits. It is the width of the coverage interval that is supposed to
encompass the error on the predicted value with a99% coverage probability, once
steady-state is reached. When the classical KF is employed, this is the±1.96σ
interval. When the possibilistic KF is employed, this is the width of theα-cut at
α = 0.01 level of the RFV of the predicted values.

• Variation of uncertainty limits. It is the standard deviation of the width of the
interval considered above, for the predicted values, once steady state is reached.
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Figure 5.13: Reference values of velocity (blue line) and acceleration (red line) over time for the new
considered case.

Figure 5.14: Difference in the reference and predicted velocity values (blue line) provided by the original
possibilistic KF, together with the predicted uncertaintyinterval (red lines).

• Percentage of values inside the uncertainty limits. It is the relative number of
predicted values whose error falls inside the above interval. This value should be,
theoretically,99%. The closer it approximates this value, the more accurate isthe
prediction provided by the considered KF.

All above indexes have been computed and reported in Table 5.1 (velocity) and
Table 5.2 (acceleration) for the simulated pattern shown inFig. 5.1, and in Table 5.3
(velocity) and Table 5.4 (acceleration) for the simulated pattern shown in Fig. 5.13.

It is, of course, known that the classical KF has been appliedoutside its theoretical
assumptions and hence, the results obtained from the classical KF are inaccurate. The
results from the classical KF have still been reported purely for the sake of comparison.
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Chapter 5. The modified possibilistic Kalman filter.

Figure 5.15: Difference in the reference and predicted acceleration values (blue line) provided by the
original possibilistic KF, together with the predicted uncertainty interval (red lines).

Figure 5.16: Difference in the reference and predicted velocity values (blue line) provided by the modi-
fied possibilistic KF, together with the predicted uncertainty interval (red lines).

The reported data confirm that the proposed possibilistic KFprovides good results
in the presence of systematic contributions to uncertaintyand that the hybrid KF can be
considered as a reference method.

Applications of the proposed KF have been presented in the following chapters.
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Figure 5.17: Difference in the reference and predicted acceleration values (blue line) provided by the
modified possibilistic KF, together with the predicted uncertainty interval (red lines).

Figure 5.18: Difference in the reference and predicted velocity values (blue line) provided by the hybrid
KF, together with the predicted uncertainty interval (red lines).

KF Classical Schmitt Original Possi-
bilistic

Modified Pos-
sibilistic

Hybrid

Convergence(s) 54 847 117 151 85
Steady-state error 0.2961 0.2968 0.3016 0.3024 0.2997
Variation of error 0.0299 0.0267 0.0847 0.0224 0.0308
Uncertainty limits ±0.0371 ±0.1871 ±0.4056 ±0.3706 ±0.3961
Variation of uncer-
tainty limits

0 0 0.0656 0 0

Percentage inside
the uncertainty lim-
its

0.34 5.14 82.36 97.38 99.92

Table 5.1: Synthetic indexes for velocity for case 1 as seen in Fig. 5.1.
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Figure 5.19: Difference in the reference and predicted acceleration values (blue line) provided by the
hybrid KF, together with the predicted uncertainty interval (red lines).

KF Classical Schmitt Original Possi-
bilistic

Modified Pos-
sibilistic

Hybrid

Convergence(s) 10 10 3 7 9
Steady-state error -0.00009 0.00003 0.00052 0.00002 -0.00007
Variation of error 0.0012 0.0011 0.00086 0.00084 0.0011
Uncertainty limits ±0.0015 ±0.0015 ±0.0018 ±0.0028 ±0.0039
Variation of uncer-
tainty limits

0 0 0 0 0

Percentage inside
the uncertainty lim-
its

81.14 83.70 93.88 98.42 98.72

Table 5.2: Synthetic indexes for acceleration for case 1 as seen in Fig.5.1.

KF Classical Schmitt Original Possi-
bilistic

Modified Pos-
sibilistic

Hybrid

Convergence(s) 54 847 117 151 85
Steady-state error 0.2969 0.3138 0.2913 0.3036 0.3032
Variation of error 0.0251 0.0316 0.0843 0.0276 0.0287
Uncertainty limits ±0.0371 ±0.1871 ±0.4056 ±0.3706 ±0.3961
Variation of uncer-
tainty limits

0 0 0.0656 0 0

Percentage inside
the uncertainty lim-
its

0.2 11.96 83.10 99.76 99.88

Table 5.3: Synthetic indexes velocity for case 2 as seen in Fig. 5.13.
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KF Classical Schmitt Original Possi-
bilistic

Modified Pos-
sibilistic

Hybrid

Convergence(s) 10 10 3 7 9
Steady-state error 0.000075 0.0020 0.00062 0.00012 0.00028
Variation of error 0.0011 0.0024 0.0018 0.00096 0.0010
Uncertainty limits ±0.0015 ±0.0015 ±0.0010 ±0.0028 ±0.0039
Variation of uncer-
tainty limits

0 0 0 0 0

Percentage inside
the uncertainty lim-
its

79.40 37.72 77.88 95.96 99.18

Table 5.4: Synthetic indexes for acceleration for case 2 as seen in Fig.5.13.
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CHAPTER6

Application of the modified possibilistic KF in
Precision time protocol

6.1 Importance of time synchronization

The distribution of a common time reference among the nodes of a given distributed
system represents a fundamental issue in several contexts,i.e. smart grids, Industry4.0
and Internet of Things (IoT). In IoT, a large network of sensors and other devices should
be able to interact with each other to be able to implement higher level applications
collectively.

With the increasing level of complexity in IoT, these devices need to be highly dy-
namic and be able to self-configure such that a single device can operate in multiple
different scenarios with different partner devices. This represents one of the challenges
in IoT to be able to provide the device with “high level of intelligence” for a high
fliexibility in operation.

With such a complex network, the IoT devices also need to be time-aware, since
an accurate time is necessary to be able to coordinate with multiple devices. This is
because accurate timestamps of events or data are required so that the data from dif-
ferent nodes can be processed together and also these time stamps are used for latency
measurements.

For example, in finance, especially in high frequency trading networks, traders buy
and sell equities and securities. The trading operations that should occur in these net-
works should be very fast and accurate and should occur in a predefined window of
time to be valid. The speed and accuracy of operations are very important since the
prices change really fast in the financial markets which are highly volatile. So, for large
trading companies that have transactions involving a huge sum of money, any small
time delay which results in an increase or decrease of the equity price would amount to
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huge difference in the revenue. Also, it is important that there is a saved record of all
trading activities so that the portfolio of a particular trader can be known at all instants
in time. So, not only do the trading operations need to occur at a high speed but they
also need to be timestamped accurately.

Similarly, in banking, all financial transactions need to beaccurately timestamped
to keep track of the money being exchanged. Timestamps on financial documents are
another example where accurate time synchronization is very important. Without that,
there would be numerous mishaps in proving that the exchangeof money occurred,
or an agreement was signed or other business operations tookplace when they were
alleged to have taken place to avoid any financial scams.

Other examples where accurate time synchronization is highly important would be
the internet, mobile networks, power systems etc.

Given the importance of time synchronization, there are various protocols that have
been defined with different levels of accuracy in synchronization. The most common
protocol in use is the Network time protocol (NTP). The first specification document
for NTP was released in 1985. It was first devised by D.L. Mills, an American scientist.
It operates using the User Datagram Protocol (UDP). After the first version, there have
been several versions released over time. Currently, it is the fourth version of NTP that
is being run and the specifications for NTPv4 have been definedin 2010. The fifth
version for NTP is currently under work.

Most of the household computers around the world are synchronized to the Coordi-
nated Universal Time (UTC) using NTP. However, the synchronization accuracy using
NTP is around 1 millisecond under good conditions and can be tens or even hundreds
of milliseconds depending on the operating network conditions.

For an industrial scenario, this accuracy may not be good enough. Especially in high
frequency settings, the synchronization needs to be much more accurate. This can be
achieved by either a Global positioning system (GPS) based clock or a Precision time
protocol (PTP) network. Since GPS based clocks are quite expensive, they are usually
used as either reference clocks in a time network or as a time source for a stand-alone
node. On the other hand, for an industry where there are multiple nodes in the same
local network, having a GPS clock for each node becomes quiteexpensive. So, in this
scenario, arranging a PTP network becomes a more feasible option.

6.2 Precision time protocol

Precision Time Protocol (PTP), either as an alternative to Global Positioning System
(GPS) or as a synchronization back-up, is a widely accepted solution for the synchro-
nization of nodes in a time network. PTP provides a synchronization accuracy of the
order of nanoseconds under ideal conditions, as given below. The specification for PTP
protocol, also known as the IEEE 1588 standard has been initially released in 2002 and
the second version which is currently in use has been released in 2008.

A PTP network operates using a Master-slave hierarchy system in different layers
in increasing order of accuracy of the clock. The clock with the highest accuracy that
provides the reference time to the rest of the network is called the grandmaster clock.
This is usually a clock that is synchronized to the UTC with a high degree of accuracy.
Usually, a GPS based clock is used as the grandmaster in the network.
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6.2. Precision time protocol

There are two types of message exchanges that happen betweenthe master clock
and the slave. Event messages are the messages that are used primarily for the synchro-
nization between the clocks and highly accurate timestampsare generated at the sender
end when an event message is transmitted from a node and also when the message is
received at the receiving end.

General messages instead are the messages which do not require the generation of
an accurate timestamp. Usually, the timing information of the event messages is relayed
using the general messages.

There are several requirements for the PTP network that havebeen prescribed for an
optimal functioning of the network, as given in the IEEE1588standard:

• Cyclic forwarding of the PTP messages within the same communication path
needs to be eliminated by the network using suitable algorithms because PTP
assumes that it is done and only takes care that PTP messages are not cyclic for-
warded between different communication paths.

• The event that there is a missed message occasionally, duplicated messages or a
message that arrives out of order needs to be rare although PTP is tolerant to such
occurrences if occasional.

• PTP assumes that the network is operating in a multicast communication mode.
So, it is assumed that announce messages are sent in regular intervals by one port
and the message is received by all the other ports of the ordinary or boundary
clocks in the communication path. PTP ports discover other ports when they re-
ceive the multicast announce messages in a network.

So, if it is not possible to use multicast mode in a network, care should be taken
that the PTP behavior is preserved in the mode. So, the announce message needs
to be replicated to all the ports in the communication path using unicast messages.
Discovery is not possible if not using multicast. So, an alternative method like
configuration needs to to be used to facilitate the discoveryof clocks.

• Like any other synchronization algorithm, the accuracy obtained in PTP is de-
pendent on the error in calculating the offset which is in turn dependent on the
asymmetry in the forward and return paths of the message. This error is not de-
tectable by PTP.

• Two step clocks are the devices that use two messages to provide the timing in-
formation to a port. The first message is called an event message, which relays
the information about the request, and the net message is called a general mes-
sage, that contains the information about the time when the event message was
generated. In such cases, if the event message and general message travel to the
node through different paths in the network, that would result in an error in the
calculation of the path delay and this introduces jitter andadditional error in the
offset calculation.

• It is assumed that the number of boundary clocks used in the master slave syn-
chronization hierarchy from the grandmaster to any slave inthe network is less
than 255.
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• Components in the network like bridges cause unwanted jitter which results in
error. The jitter is dependent on the traffic in the network. So, care should be
taken that the network is designed in such a way to minimize the traffic in the
network. PTP messages should also be set to be processed at a high priority with
respect to other messages at the device.

• The protocol in the network should be structured in such a way that the message
timestamp point can be defined. Message timstamp point is thepoint within the
PTP event message which, when passes the reference plane of aclock generates
a timestamp. A PTP message is a data packet. So, the message timestamp point
refers to the part of the data in the datapacket which when being processed by
the clock triggers the generation of the timestamp at the clock. It is like a trigger
command in the data packet. So, it should be clearly defined where this trigger
command is placed in the PTP message.

The clock synchronization of a slave clock in a PTP network occurs at the beginning
of every UTC second and is initiated by the master clock.

Let us suppose that the sync message is received at a time instant (tsync) by the slave
which triggers the clock synchronization. The clock synchronization in a PTP network
occurs as given below and shown in the fig. 6.1:

• The slave receives async message from the master and the timeTM(tsync) is
recorded which is the timestamp denoting the time at which the sync message is
sent from the master.

• The master sends the information aboutTM(tsync) either by sending aFollow up
message if it is a two-step clock or by embedding the timestamp in the sync mes-
sage that was sent in the first step if it is a one-step clock.

• The time of reception of the sync message is recorded by the slave the moment
the sync message is received at the node. Let the timestamp recorded by the slave
beT S(tsync).

• The slave sends aDelay − Request message to the master and the time at which
the message has been transmitted is recorded by the slave. Let the timestamp be
T S(tdelay).

• The master receives the message and records the time at which this message has
been received from the slave. Let the corresponding timestamp beTM(tdelay).

• The timestampTM(tdelay) is sent to the slave by the master using aDelay −
Response message, so that, at the slave, all four timestampsTM(tsync), T S(tsync),
T S(tdelay) andTM(tdelay) are available.

The propagation delay and the time offset are calculated using the four timestamps.
In particular, the propagation delaŷd is calculated by:

d̂ = (T S(tdelay)− TM(tsync))− (T S(tdelay)− TM(tdelay))/2 (6.1)

While the time offset̂θtsync
at the time instanttsync is given by:

θ̂(tsync) = T S(tsync)− TM(tsync)− d̂ (6.2)
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6.2. Precision time protocol

Figure 6.1: Message exchange in a PTP network.

This offset is then used to correct for the error in time between the slave clock and
the master clock. The error is produced because there is a drift in any clock in the
world. So, the slave clock is constantly drifting away from the reference time. Hence,
to always maintain a high degree of accuracy in the time synchronization, it is very
important that the synchronization process is continuously repeated at regular intervals
in time. So, essentially, synchronization is like a constant calibration that is being done
on the slave clock.

Just like any other measurement process, also synchronization has several sources of
error. Some sources are of random nature like the noise in timestamping or the random
delay in the transmission of the messages. Other sources areof systematic errors like
error in offset calculation due to asymmetricity.

6.2.1 Uncertainty in PTP networks

As mentioned earlier, any timestamping process is effectedby a random noise in times-
tamping. For the sake of simplicity, we assume in the following that the uncertainty
contribution affecting master timestamps can be neglectedwhen compared to other un-
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certainty sources; this leads to:

TM(tsync) = tsync − d (6.3)

whered is the actual propagation delay between master and slave.
Let us assume that the timestampT S(tsync) measured by the slave is affected by

a timestamping noiseνT . But, it is also affected by the current value of time offset
θ(tsync) between the local clock and the time reference:

T S(tsync) = tsync + θ(tsync) + νT (6.4)

By substituting (6.4) and (6.3) in (6.2) we can obtain the relationship between esti-
mated and the actual offset values:

θ̂(tsync) = θ(tsync) + νT + (d− d̂) (6.5)

Assuming a hardware timestamping mechanism, and hence assuming that there has
been no latency in the generation of the timestamp, the measurement uncertainty in
the timestamp is essentially due to the finite clock resolution. The clock resolution
can be modeled as a zero-mean white noise with a uniform distribution and variance
σ2
ν = 1/(12f 2

0 ), wheref0 is the nominal frequency of the local oscillator [12].
The second contributiond − d̂ instead depends on the accuracy of the delay esti-

mation procedure. This procedure is based on the assumptionthat the direct link delay
dMS from master to slave, and the inverse link delaydSM from slave to master are
symmetric and time-invariant. Several hardware solutionscan be adopted to guarantee
the fulfillment of this requirement, such as the use of boundary clocks or transparent
clocks. These solutions however present a high cost and theycan be implemented only
on proprietary networks. Typical examples can be found in industrial applications,
where IEEE 1588 compliant network devices are employed.

So far, the contributions to uncertainty are only of random nature. So, suitable
servo clocks have been proposed in the literature for further reducing measurement
uncertainty in offset and propagation delay estimations provided by the PTP, before
using them for the correction of the local clock. Among the available servo clocks,
servo clocks based on Kalman filter have also the advantage toprovide information
about the accuracy of the local clock, thus providing a self-aware local clock [22].

But, propagation delays over the Internet strongly depend onrouting protocols,
which might select different network paths from direct and inverse links, and on net-
work traffic load. In general, propagation delays can be modeled by the sum of two
contributions: a constant termDMS (or DSM ) and a random termqMS (or qSM ) repre-
senting the packet delay variability. In general [24]:

d = D + q (6.6)

where the subscriptsMS andSM are omitted for the sake of simplicity. The first
contribution is mainly associated to the length of a propagation path and it varies only
when the packet routing is changed. In this case,D presents an abrupt variation, either
increasing or decreasing; anyway the rate of occurrence of these events is typically low
and it can be managed in order to keep the behavior of the servoclock unaffected.

The second random contributionq is associated instead to queuing phenomena and
strongly depends on the traffic load, the kind of traffic (video, voice, best-effort), the
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number of switches along the path and so on. A widely acceptedstatistical model for
this random component consists in modeling its probabilitydensity function (pdf) by a
Gamma distribution:

fq(a) =
exp

(

− a
β

)

βΓ(k)

(

a

β

)k−1

1(a) (6.7)

beingk, β > 0. The function1(a) is the unit step, that is,1(a) = 1 for a > 0 and
1(a) = 0 otherwise. This distribution is parameterized in terms of shape parameterk
and scale parameterβ, which depend on the traffic load, packet size profile and number
of switches, as specified in the ITU-T G.8261 recommendation. The mean and variance
are, respectively: E[q] = kβ and var[q] = kβ2.

The propagation delay, estimated by the PTP engine, corresponds to the one-way
delay, that is:

d̂ =
dMS + dSM

2
=

qMS +DMS − qSM −DSM

2
(6.8)

It follows that it depends on the difference between two Gamma random variables
and two constant contributions. Therefore, the uncertainty contributiond − d̂ depends
on the traffic load differences between direct and inverse link and, in general, it presents
a non-zero mean valueE[d − d̂] 6= 0. So, along with a random errors, there is the
possibility of a systematic error.

When PTP messages are exchanged through a network infrastructure subjected to
an intense traffic load, the performances of this synchronization system are affected by
the packet delay variability (PDV). PDV is the difference inend-to-end one-way de-
lay between selected packets in a flow with any lost packets being ignored. PDV may
lead to significant asymmetries between the direct and inverse path between master and
slaves, thus causing a degradation in PTP performances. A solution consists in adopt-
ing PTP-aware devices, as for instance preemptive network switches able to manage
packets having different priorities. Nonetheless, a systematic uncertainty contribution
due to the asymmetries in the traffic load between direct and inverse path still remains
and current servo clocks, which are based on the assumption of having a symmetric
path, cannot deal with this error contribution.

Some articles can be found in the literature [38, 39, 41, 46, 49], where some algo-
rithms have been proposed to deal with asymmetric loads. However, all these algo-
rithms only try to lessen the systematic error due to the asymmetric loads as much as
possible. But, they do not propagate the uncertainty limits associated to the measure-
ments due to asymmetricity, which is an important result because even if the systematic
error is lessened, there is still some residual error. So, the overall uncertainty of the
clock is affected by both random and systematic contributions to it. Hence, it is very
important to correctly propagate it, to properly estimate the accuracy of the clock.

The Kalman filters available in the possibility domain allowto propagate all kinds
of uncertainty contributions, included the systematic contributions.

It is proposed in this chapter first to characterize the PTP network and then use the
possibilistic KF proposed in chapter 5 [20] to propagate thesystematic contributions to
uncertainty due to asymmetric delays and evaluate the overall uncertainty associated to
the offset calculations between the master and the slave.

77



Chapter 6. Application of the modified possibilistic KF in Pr ecision time protocol

6.3 KF-based servo clock

The Kalman filter is based on a set of equations that provide a recursive solution to
a least-squares problem. A KF-based servo clock was introduced in [23] and refined
in [22]. Its implementation, here recalled for completeness, is based on the two-state
discrete-time clock model introduced in [23]. Letθ(n) be the time offset andγ(k) the
fractional frequency deviation. Equations describing theevolution of clock state with a
time stepτ are:

{

θ(k) = θ(k − 1) + γ(k) · τ + ωθ(k)

γ(k) = γ(k − 1) + ωγ(k)
(6.9)

whereωθ(k) andωγ(k) are two uncorrelated zero-mean random processes with vari-
ances respectivelyσ2

θ andσ2
γ [23]. ωθ(k) corresponds to the random noise effecting

the offset between the slave and the master.ωγ(k) corresponds to the random noise
affecting the skew which is the normalized difference between the frequency of the lo-
cal clock and the frequency of the reference clock.σθ andσγ depend on the different
noises like the Weiner noise which contribute to the overallnoise in the offset and the
skew in the clock model [23,55].

The classical Kalman filter as has been explained in Sect. 4.2has been employed
to filter the offset calculations and provide the state estimations for a slave clock in the
PTP network. The Kalman filter algorithm is recalled in Fig. 6.2 for easy reference.

I NITIAL ESTIMATE

xa0 , Pa
0 , Q, R = u

y

PREDICTION

xfk = A · xak−1

Pf
k = APa

k−1AT + Q

EVALUATION OF THE K ALMAN GAIN MATRIX

Kk = Pf
kHT

k

(

HkPf
kHT

k + R
)

−1

CORRECTION OF THE PREDICTED STATES AND COVARIANCE MATRIX

xak = xfk + Kk(yk − Hxf
k)

Pa
k = (I − KkHk)P

f
k

Figure 6.2: Classical Kalman filter algorithm.

So, the offset calculations made by the slave clock are fed tothe Kalman filter to
further filter the noise associated to the calculated offsetand provide more accurate
predictions of time for the slave clock.

The filter parameters can be obtained from (6.9) and are as given below:

• State vector: xk =
[

θ(k) γ(k)
]T

. θ(k) andγ(k) represent the time offset and
the frequency deviation.
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• State transition matrix : A =

[

1 τ

0 1

]

.

• Measurement: zk = [θ̂(tsync)]. θ̂(tsync) is the time offset measured in correspon-
dence to thek-th synchronization time instanttsync = kτ .

• Measurement matrix: H =
[

1 0
]

since only the offset is being measured.

• Process noise covariance matrix: Q =

[

σ2
θ 0

0 σ2
γ

]

. This is the noise covariance

matrix that corresponds to the offset and skew states in the model given in (6.9).

• Measurement noise variance: R = σ2
θ̂
. This is the noise that affects the offset

measurement made by the slave clock.

The Kalman filter operates in two phases. During the prediction phase, the a-priori
estimate of the statexf

k is obtained from the knowledge of the state at the previous time
instantxa

k−1:

xf
k = Axa

k−1 (6.10)

P
f
k = APa

k−1A
T +Q (6.11)

wherePf
k is theapriori estimate error covariance matrix.

During the correction phase, a refinedaposteriori state estimatexa
k is obtained by

using the new measurement:

xa
k = xf

k +Kk(zk − Hxf
k) (6.12)

Pa
k = (I−KkH)Pf

k (6.13)

where:
Kk = P

f
kH

T (HP
f
kH

T +R)−1 (6.14)

is the Kalman gain.
As has been explained in chapter 4, in Sect. 4.4, a classical Kalman filter works

perfectly fine when there are only random contributions to uncertainty. So, it is the
same also for PTP networks. Under, ideal conditions, PTP networks are in fact free
from systematic errors. But, as explained in the Sect. 6.2.1,there are cases especially
when there is an asymmetry in the paths between the master andthe slave. In such
situations, there is a bias that is introduced in the offset calculated by the slave clock.
Such a case is considered here as an example.

It has been considered that there is an asymmetry in the traffic loads between the
path from the master to the slave and the path from the slave tothe master. Due to the
difference in traffic loads, the delay in the transmission ofthe packets in the path from
the master to the slave is different from that between the slave and the master. It has
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been assumed that, in this example, the traffic load is equal to 20% of the bandwidth
in the path from master to slave and60% of the bandwidth in the path from slave to
master. This introduces a significant bias in the calculation of the offset.

So, when the classical KF shown in Fig. 6.2 is employed to predict the time of
the slave clock in this situation, the results are as shown inFig. 6.3. The blue line
represents the residual offset between the master and the synchronized slave clocks,
while the red lines represent the uncertainty intervals corresponding to a99% interval
[27]. The uncertainty interval can be evaluated from the noise covariance matrix of the
states that is also estimated by the Kalman filter. The noise covariance matrix contains
the variances of the states and the covariances between the states. So, the standard
deviation of each state can be evaluated by making a square root of the corresponding
variance. Since the noises that affect a clock has been said to be gaussian, the99%
confidence interval corresponds to the±3σ interval. It can be easily noted that, due
to the presence of systematic errors originated by the traffic asymmetry, the confidence
interval is underestimated.
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10-5 Synchronized local clock residual offset

Figure 6.3: Results obtained with the classical Kalman filter, with constant traffic load. The blue line
represents the residual offset between the master’s and slave’s clocks. The red lines represent, for
each iteration, the uncertainty limits.

Another example has also been considered, where the traffic loads between the mas-
ter and the slave are varying as shown in Fig 6.4. It can be seenthat till the time instant
t = 40000s, the traffic loads in the path between the master and the slaveand in the
path between the slave and the master are both at20%. After that, the traffic load in the
path between the slave and the master constantly increases till t = 80000s and then it
becomes constant while the traffic load in the path between the master and the slave is
always constant at20%.

The classical Kalman filter shown in Fig. 6.2 is again appliedto this case and the
results have been reported in Fig. 6.5. Again, the blue line represents the residual offset
between the master and the synchronized slave clocks. It canbe immediately seen that
till time t = 40000s, the residual offset has a zero mean value. This is to be expected
as the traffic loads in the onward and the return paths have been equal till now. And
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6.3. KF-based servo clock

then, it can also be seen that, after this point, the residualoffset starts increasing till
t = 80000s. This is because the asymmetry between the traffic loads in the onward and
the return paths keeps increasing till that point.

The red lines represent the uncertainty intervals corresponding to a99% interval. It
can be immediately seen how the uncertainty limits are underestimated as soon as there
is an uncompensated systematic error that is introduced because of the asymmetric
traffic loads.
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Figure 6.4: The variable traffic load simulated in the network.
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10-5 Synchronized local clock residual offset

Figure 6.5: Results obtained with the classical Kalman filter, with varying traffic load, according to Fig.
6.4. The blue line represents the residual offset between the master’s and slave’s clocks. The red lines
represent, for each iteration, the uncertainty limits.
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6.4 The servo clock with the modified possibilistic Kalman filter

As can be recalled from chapter 5, the possibilistic Kalman filter provides a good so-
lution to correctly estimate the uncertainty interval associated to the states when there
are systematic contributions to uncertainty in the measurements.

So, the possibilistic KF would be perfect for the two examples considered in the
previous section.

Fig. 6.6 shows the possibilistic KF equations. Let us consider here how the different
matrices and RFVs are defined, according to the given metrological assumptions.

I NITIAL STATES

X
a
0 , QRFV

APRIORI STATE CALCULATION USING THE STATE EQUATIONS

Xf
k = A · Xa

k−1 + QRFV

EVALUATION OF THE NOISE COVARIANCE MA -
TRIX FROM THE RANDOM PDS OF THE RFVS

C
ran

X
f

k

K ALMAN GAIN MATRIX FROM THE NOISE COVARIANCE MATRIX

KPOS
k = K ran

k = CXf

k

HT
k (HkCXf

k

HT
k + cY ran

k
)−1

CORRECTION OF THE APRIORI RFVS

TO GET THE APOSTERIORI RFVS

Xa
k = Xf

k + KPOS
k (Y int

k − HXf
k)

Figure 6.6: The modified possibilistic Kalman filter algorithm.

QRFV is the noise vector of the state RFVs. Since it is assumed that offset and skew
of a clock are affected by random noises which distribute according to gaussian pdfs,
with standard deviationσθ andσγ respectively. Therefore:

• The RFV corresponding to the noise affecting the offset is centered at zero; its in-
ternal PD is nil, since no systematic contributions are assumed in the model, while
its random PD (which in this case is also the external one) is the PD which contains
the same metrological information of the assumed pdf by making a probability-
possibility transformation on the pdf that is the Gaussian distribution with standard
deviationσθ.

• The RFV corresponding to the noise affecting the skew is centered at zero; its in-
ternal PD is also nil, since no systematic contributions areassumed in the model,
while its random PD (which in this case is also the external one) is the PD which
contains the same metrological information of the assumed pdf, that is the Gaus-
sian distribution with standard deviation ofσγ.
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6.4. The servo clock with the modified possibilistic Kalman fi lter

Xa
0 is the vector of the state RFVsΘa

0 andΓa
0, associated to the initial offset and

skew. Since the states in the process model are affected onlyby the random noise given
by the noise vectorQRFV and since there is no available prior information about the
offset and skew, it is assumed that the values of the initial offset and skew are zero.
This means that the RFVs of the offset and skew Under this assumption, the initial
RFVs associated to offset and skew are simply the RFVs associated to their affecting
noises, so that:Xa

0 = QRFV . The resulting RFVsΘa
0 andΓa

0 are given in Fig. 6.7 and
6.8 respectively. The red line is the internal PD. The blue line is the external PD. It is
worth to underline that the initial RFVsΘa

0 andΓa
0 are not complete RFVs, since the

internal PDs are nil, but, after one step they become complete RFVs, because of the
presence of the measurementYk in the possibilistic KF equations.

As explained in chapter 5 in Sect. 5.4,Cran

X
f
k

is the possibilistic noise covariance

matrix and it is the equivalent of matrixPf
k in the probability domain. However, in

probability,Pf
k is evaluated thanks to anad hociterative formula (see (6.14)), while,

in the possibilistic KF,Cran

X
f
k

is evaluated directly from the random PDs of the RFVs

in the state vector at stepk. This is because during the evaluation of the state vector
at each iteration, since the states are all RFVs, they alreadyinclude the effects of the
different contributions to uncertainty in them. So, the noise covariance matrix does not
need to be propagated separately like in probability. So, itcan simply be evaluated in
each step directly from the RFVs. In particular, the definitions of possibilistic variance
and covariance are applied to the random PDs inX

f
k .
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Figure 6.7: Initial RFV of the state variable theta:Θa
0
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Figure 6.8: Initial RFV of the state variable gamma:Γa
0 .

Similarly, cY ran
k

is the possibilistic variance associated to the measurement RFV,
Y ran
k .

As explained in chapter 3, for an RFV described by an infinite number ofα-cuts,α
being a real variable, operatively, it can be represented bya finite discrete number of
α-cuts. IfN α-cutsαi, with i = 1...N , are considered, mean value and variance of an
RFV X are defined as given below:

M(X) =
1

N
·

N
∑

i=1

αi

(

xαi

2 − xαi

1

)

V ar(X) =
1

2 ·N
·

N
∑

i=1

αi

(

xαi

2 − xαi

1

)2

whereαi =
1

N−1
· (i− 1).

Where as the covariance of two RFVs A, B is given as below:

Covar(A, B) =
1

2 ·N
·

N
∑

i=1

αi

(

xαi

2 − xαi

1

)(

yαi

2 − yαi

1

)

whereαi =
1

N−1
· (i− 1).

After evaluating the noise covariance matrices of both the states and the measure-
ments, the formula for the evaluation the possibilistic Kalman gain matrixKPOS

k is seen
in fig. 6.6.

Yk is the RFV associated to the offset measurement at stepk. By assumption, both
random and systematic contributions to uncertainty affectthe measurement procedure;
thereforeYk is always (at every stepk) a complete RFV, with well defined internal and
random PDs: the internal one which takes into account the effects of the systematic
contributions; the random one, which takes into account theeffects of the random ones.
Hence:

• the random PDY ran
k is the PD corresponding (obtained by applying a probability-

possibility transformation as given in Sect. 2.3.2) to a gaussian pdf with mean the
measured valuêθk and standard deviationσ2

θ̂
.
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6.5. Simulation Results with the possibilistic KF

• the internal PDY int
k is a uniform PD. The mean value of this PD is zero, while the

width depends on the considered assumption. In fact, the PTPnetwork has been
simulated for different combinations of loads in the directand inverse paths, both
constant and variable (as shown in Fig. 6.4) and, for every different simulation,
the width of the rectangular PD is assumed to be twice the maximum observed
offset.

Fig. 6.9 shows an example of RFVYk, when the traffic is20% from master to slave
and60% from slave to master. The red line corresponds to the internal PD Y int

k , while
the blue line corresponds to the external PD, which combinesthe internal PD with the
random one.
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Figure 6.9: Example of RFVYk, representing the measured offset.

6.5 Simulation Results with the possibilistic KF

In order to make an easy comparision between the results obtained by the classical KF
in Sect. 6.3, the modified possibilistic KF defined in chapter5, sec. 5.4, is applied for
the same two cases of traffic load as assumed in Sect. 6.3. The results are shown in Fig.
6.10 and 6.11.

Fig. 6.10 shows the residual offset between the master and slave’s clocks when con-
stant traffic load is considered. Since, when the servo clockbased on the possibilistic
KF is applied, the residual offset is an RFV, the mean value of the RFV is plotted (blue
line). On the other hand, the red lines show, for every time step, theα-cut at level
α = 0.01 of thea posterioriRFVsΘa

k, which corresponds to the confidence interval at
confidence level99%.
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10-5 Synchronized local clock residual offset

Figure 6.10: Results obtained with the possibilistic Kalman filter, withconstant traffic load. The blue
line represents the residual offset of the servo clock afterthe synchronization procedure (mean value
of the RFVΘa

k). The red lines represent, for each iteration, the width of the99% confidence interval,
which corresponds to theα-cut at levelα = 0.01 of Θa

k.

This figure has to be compared with the corresponding figure 6.3, obtained when the
classical KF is applied. It can be noted that the servo clock based on the possibilistic
Kalman filter provides a correct estimate of the uncertaintyintervals. The disadvantage
is that the convergence is lower than that of the classical KF.

Fig. 6.11 shows the results given by the servo clock based on the possibilistic KF,
when the variable traffic load, as given in Fig. 6.4, is considered. In particular, Fig. 6.11
shows the residual offset (the meaning of the blue and red lines is the same as in Fig.
6.10). This figure has to be compared with the corresponding figure 6.5, obtained when
the classical KF is applied. It can be seen that the possibilistic KF is able to evaluate
the uncertainty also in the case of a variable traffic load.
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10-5 Synchronized local clock residual offset

Figure 6.11: Results obtained with the possibilistic Kalman filter, withvarying traffic load, according to
Fig. 6.4. The blue line represents the residual offset between the master’s and slave’s clocks (mean
value of the RFVΘa

k). The red lines represent, for each iteration, the width of the99% confidence
interval, which corresponds to theα-cut at levelα = 0.01 of Θa

k.
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CHAPTER7

Defense against malicious attacks on a PTP
network using the possibilistic Kalman filter

As it has been established, accurate time synchronization is extremely important in the
modern world. It is important in everywhere including powergrids, defense etc.

If there is any problem with the time synchronization, depending on the severity, it
can cause problems as small as in accurate navigation for a car driver to something as
serious as a blackout or a plane crash.

So, malicious attacks on a time network are of serious concern for any entity. Hence,
defense against such attacks on the time network is of utmostimportance. This chapter
proposes one possible solution to malicious attacks especially on a PTP network. As
explained in the previous chapter, the possibilistic KF is capable of propagating all
contributions to uncertainty in a PTP network including thesystematic contributions to
uncertainty accurately. So, a possible defense strategy based on this uncertainty attacks
is described in this chapter.

7.1 Malicious attacks on the PTP network

There are numerous types of attacks that could be used to attack a PTP network.

7.1.1 Asymmetric delay attack

A PTP network works based on the assumption that the packet transfer delays between
the master and the slave are symmetrical for a highly accurate synchronization. When
the transmission delays are equal, they cancel each other during the offset calculation
as shown in Sect. 6.2.1. When they are not symmetrical, they introduce a bias in the
offset measured by the slave.
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This is what is taken advantage of in an asymmetric delay attack. As the name
suggests, the attacker manipulates the transmission of thedata packets between the
master and slave. This can be done by hacking the switches andmanipulating the
switch in such a way that the messages from the master to the slave are held at the
switch for a certain duration before transmitting it to the slaves that are connected to
the master through the particular switch.

This would make the delay in the transmission of the messagesfrom the master to
the slaves higher than the delay from the slaves to the master. This way, an asymmetry
is introduced in the delays and thereby a bias is introduced in the offset measured by the
slaves. This way, all the slaves that are connected to the master through the particular
switch are affected by the attack and they all fall out of synchronization.

7.1.2 Denial of service

For synchronization to occur between the master and the slave clocks in the PTP net-
works, there needs to be an exchange of messages between the two of them. When the
attackers try to shut down a node in a network or the network itself so that others can
not access it, it is called denial of service. Usually, this is done by flooding the target
with heavy traffic.

7.1.3 Spoofing

In spoofing, the attacker mimics an actual master clock. So, the attacker creates similar
packets as the master clock and transmits them to the slaves.Except that the informa-
tion in the packets is modified to include wrong information about the timestamp. The
slave keeps thinking that the packets are being received from the master and hence falls
out of synchronization.

7.1.4 Replay attack

In this type of attack, some of the messages from the master are recorded and then they
are replayed at a later time. So, in this type of attack, the packets are entirely legitimate
but since they are replayed at a later time, the time information in them is completely
wrong. This would make the offset calculated by the slave wrong and makes it fall out
of synchronization.

7.1.5 Jamming attack

In jamming, some or all of the protocol packets are intercepted by the attackers and
they are not transmitted to the destination.

7.2 Proposed Defense strategy using the possibilistic KF

A Kalman filter, in general, can not only predict the system states but also evaluate
the uncertainty associated to the states. The same is true also for PTP networks. The
uncertainty associated to the slave clock can be evaluated by also the classical Kalman
filter.

So, what happens if we use this uncertainty limits to selectively use the offset data
without using everything blindly? The answer is that it would absolutely work if we
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do not have any systematic contributions to uncertainty in the data. In this particular
scenario, all the data that lie outside the uncertainty limits evaluated by the classical KF
could be discarded as faulty data.

But, as shown in Chapter 4, the classical KF algorithm underestimates the uncer-
tainty associated with the states in the presence of a systematic error in the measurement
data. So, if the uncertainty limits are used to discard the data outside the uncertainty
limits, it would mean that also the correct timestamps from the reference clock would be
discarded if there were a systematic error in the calculation of the offset. This is espe-
cially important in PTP networks that use optical transportnetwork (OTN), since these
networks have static asymmetries for long intervals of timebefore changing abruptly.
So, in these networks, the asymmetries are simply a part of the network and they do
introduce systematic error in the offset. So, if all these timestamps are rejected, this
would mean that the slave will not use any of the timestamp from the reference clock
and this would mean that there would be no synchronization and it would keep drifting
and falling out of synchronization. This is equivalent to actually performing a denial
of service attack on the target. This is the main hurdle to be able to use the uncertainty
limits obtained by a classical KF algorithm to defend against malicious attacks.

But, the above mentioned problem would be solved if the systematic uncertainty
in the network could also be propagated. As seen in chapter 6,the possibilistic KF
is capable of propagating also the systematic contributions to uncertainty accurately
in a PTP network. So, if the PTP network is characterized accurately, the uncertainty
evaluated by the possibilistic KF would include any possible offset that could result
from an actual asymmetry in the traffic loads in the network.

Now, in the case of an attack on the PTP network that involves the modification
of the timestamp like an asymmetric delay attack or a spoofingattack, the offset that
would be measured by the slave would fall out of the uncertainty intervals evaluated by
the possibilistic KF.

So, if the measured offset is outside the uncertainty limits, the timestamp would be
deemed invalid and would not be used to correct the slave clock. In Fig. 6.6, the final
step of the possibilistic KF algorithm should only be used when there is a valid mea-
sured offset available to refine the offset prediction calculated in step 2 of the algorithm.
Instead, when the measured offset falls outside the uncertainty limits, it is deemed in-
valid. So, the offset calculated by the possibilistic KF in step 2 would be directly used
till the attack stops and the offset between the slave and themaster again falls inside
the uncertainty limits. Then, the normal operation of the KFwould be resumed.

When the measured offset values fall outside the uncertaintylimits for a long dura-
tion, it is also possible to alert the system about the possibility of the attack, of course.

7.3 Simulation results against an attack

The PTP network example with constant traffic load as explained in Sec. 6.3 has been
used also in this chapter. So, the traffic load from the masterto slave is 20% and the
traffic load from the slave to master is 60%.

Two case studies of asymmetric delay attack have been performed, as explained
below. For each of the case studies, two situations have beenconsidered:

• Situation I: the Possibilistic KF that has been described in Sect. 5.4 has been used
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according to the procedure described in Sect. 6.4 but without using the uncertainty
limits to validate the measured offset.

• Situation II: The uncertainty limits have been used to dispose of the invalid times-
tamps during the duration of the attack, as explained in Sect. 7.2.

7.3.1 Asymmetric delay attack case study A

An asymmetric delay attack on the PTP network has been simulated where the offset
between the slave and the master has a bias of about 800µs starting from 25000 s till
the rest of the simulation.

The results for situation I can be seen in Fig. 7.1. The residual offset between the
slave and the master clock is shown in the blue line. The uncertainty limits evaluated
by the possibilistic KF are given in red lines. It can be seen that the residual offset is
quite high and goes to 800µs as expected from the attack and is completely outside the
uncertainty limits evaluated by the possibilistic KF.

The results for situation II can be seen in Fig. 7.2. In this situation, invalid times-
tamps falling outside the uncertainty limits are discarded. Again, the residual offset
between the slave and the master clock is shown in the blue line. The uncertainty limits
evaluated by the possibilistic KF are given in red lines. It can be clearly seen that the
residual offset between the slave and the master clock is well within the uncertainty
limits (red lines) evaluated by the possibilistic KF and is almost the same as seen in
Fig. 6.10. So, it can be clearly seen that the proposed defense strategy is quite effective
to defend in the case of a malicious attack on the PTP network.
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10-4 Synchronized local clock residual offset

Figure 7.1: Residual offset between the slave and the master clock shownin the blue line with the
uncertainty limits evaluated by the possibilistic KF givenin red lines when the clock is not defending
against the attack.
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Figure 7.2: Residual offset between the slave and the master clock shownin the blue line with the
uncertainty limits evaluated by the possibilistic KF givenin red lines when the defense strategy is
employed.

7.3.2 Asymmetric delay attack case study B

In the second case study, an asymmetric delay attack on the PTP network has been
simulated at random instants during the simulation. The offset between the slave and
the master increases constantly at the rate of 20µs every second for 50 s which is the
duration of the attack. The randomness of the attack has beensimulated by generating
a random integer from 1 to 500 and the attack starts whenever the number generated is
1. Every time the attack starts, it continues for 50 s and thenstops.
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10-3 Synchronized local clock residual offset

Figure 7.3: Residual offset between the slave and the master clock shownin the blue line with the
uncertainty limits evaluated by the possibilistic KF givenin red lines when the clock is not defending
against the attack.
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10-5 Synchronized local clock residual offset

Figure 7.4: Residual offset between the slave and the master clock shownin the blue line with the
uncertainty limits evaluated by the possibilistic KF givenin red lines when the defense strategy is
employed.

The results for situation I can be seen in Fig. 7.3. The residual offset between the
slave and the master clock is shown in the blue line. The uncertainty limits evaluated
by the possibilistic KF are given in red lines. It can be seen that the residual offset is
quite high and goes to a maximum of about 9 ms from the attack and is completely
outside the uncertainty limits evaluated by the possibilistic KF.

The results for situation II can be seen in Fig. 7.4. In this situation, invalid times-
tamps falling outside the uncertainty limits are, again, discarded. Again, the residual
offset between the slave and the master clock is shown in the blue line. The uncertainty
limits evaluated by the possibilistic KF are given in red lines. Again, it can be clearly
seen that the residual offset between the slave and the master clock is well within the
uncertainty limits (red lines) evaluated by the possibilistic KF and is almost the same as
seen in Fig. 6.10. So, it can be clearly seen that the proposeddefense strategy is quite
effective to defend in the case of a malicious attack on the PTP network.
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CHAPTER8

Error compensation Kalman filter and Drone

8.1 Introduction

As explained in chapter 5, there have been numerous attemptsto further the classcial KF
algorithm to be able to consider and propagate systematic contributions to uncertainty
[42,43,52,53], still using the theory of probability. And as has already been explained,
the theory of possibility provides a better mathematical frame to express and propagate
systematic contributions to uncertainty.

Articles presenting KF algorithms based on the theory of possibility and fuzzy logic
are available in the literature [40,44]. And there are also possibilistic KFs that are based
on RFVs as defined in 5 and [13, 20] so that uncertainty can be expressed and propa-
gated in a way that is compatible with GUM. But all these KF algorithms only attempt
to propagate the systematic contributions to uncertainty and none of them attempt to
compensate or reduce them.

Starting from the modified possibilistic KF defined in Sect. 5.4, this chapter pro-
poses an alternative version, which also allows to reduce the systematic contributions
to uncertainty, thereby reducing the overall uncertainty associated to the system state
predictions. While the modified possibilistic KF defined in Sect. 5.4 is useful when we
are only interested in propagating the residual systematicuncertainty to evaluate the
total uncertainty associated to the state predictions fromboth the random and system-
atic contributions, the KF defined in this chapter can be usedto reduce the systematic
uncertainty and thereby also reduce the overall uncertainty associated to the state pre-
dictions.

To facilitate an easy comparison between the proposed alternative possibilistic KF
and the original one defined in Sect. 5.4, a similar simulatedcase study as in Sect. 5.2
is considered here, as briefly described in Sect. 8.2.
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8.2 The case study

The considered case study is quite simple and is similar to the one described in Sect.
5.2. A vehicle is moving at a velocityvref(t) with an accelerationaref(t), as shown in
Fig. 8.1.
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Figure 8.1: Reference values of velocity (blue line) and acceleration (red line) over time.

The state equations of the vehicle can be written as:

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(8.1)

• vk andak are velocity and acceleration of the vehicle at timek;

• wv
k andwa

k are the standard deviation of the noise in velocity and acceleration
respectively at timek;

• τ is the time period within two successive measurements

It is assumed that the noises do not vary with time and are gaussian since the same
considerations have been taken as in Sect. 5.2. So,wv

k = wv andwa
k = wa are the

standard deviations of constant normal distributions withzero mean.
wv is assumed to be0.003 m/s. This value has been derived by considering the

accuracy of a GPS which has been reported in the official GPS website [1], which is
usually quite accurate compared to the speedometer of the vehicle. Whereas,wa is
assumed to be0.0005m/s2. This has been assumed to be because of some noise in the
circuit or due to the driver applying force on the accelerator.

The measured values of the velocity and the acceleration aresupposed to have been
obtained from the on board sensors of the vehicle. The accuracies of the onboard sen-
sors are in general one or two magnitudes less accurate than aGPS based measurement.
So, the following is considered:
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• For the velocity, the random contribution is assumed to be normally distributed
with a standard deviation ofσv

m = 0.16m/s. It has also been assumed that there is
a residual systematic error in the measurement with an estimated value of0.3m/s.
But, this is unknown and only an interval of possible values isknown: esys =
±0.32 m/s has been assumed.

• For the acceleration, it has been assumed that there is no systematic error in the
measurements and the random error is supposed to be normallydistributed with a
standard deviation ofσa

m = 0.005 m/s2.

8.3 The modified possibilistic Kalman filter

Although this has been explained in detail in sec. 5.4, the flowchart of the algorithm
has been recalled in this chapter for an easy comparison withthe algorithm for the
alternative possibilisitc KF defined in this chapter.

In the possibilistic Kalman filter defined in sec. 5.4, all thestates are RFVs.
The algorithm is as shown in Fig. 8.2 [20].
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Figure 8.2: The possibilistic Kalman filter algorithm [20]

According to eqn. (8.1),Ak = A =

[

1 τ

0 1

]

andHk = H =

[

1 0

0 1

]

.

Matrix QPOS considers the model uncertainties and is a matrix of RFVs. According
to the assumptions given in Sec. 8.2, we defineQPOS where:

• The element related to velocity is an RFV obtained by transforming the velocity
noise variable into possibility domain. Since there is no systematic error in the
noise and the random part is assumed to be gaussian, there is no internal PD
in the RFV and the random PD is obtained by using the probability-possibility
transformation on the zero mean normal pdf with standard deviation wv in the
possibility domain;
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• Similarly, the element related to acceleration is also an RFV in which there is no
internal PD and the random PD is obtained by using the probability-possibility
transformation on a zero mean normal pdf with standard deviation wa in the pos-
sibility domain;

As for the initial state vectorXa
0, it is assumed that there are no systematic contribu-

tions to uncertainty. So, the RFV is obtained by just the random PD as follows:

• The initial velocity is an RFV consisting of just the random PD which is obtained
by using the probability-possibility transformation on a normal pdf with mean
equal to the first measured value for velocity (vm1) and standard deviationwv;

• Similarly, the initial acceleration is an RFV consisting ofjust the random PD ob-
tained by using a probability-possibility transformationon a normal pdf with mean
equal to the first measured value for acceleration (am1) and standard deviationwa.

As for the measured values in each stepk, matrix Yk is the matrix of the RFVs of
the velocity and acceleration measurements.

The RFV associated to the simulated measured velocity is centered on the simulated
measured velocity at step k (vmk) and

• The internal PD is a rectangular PD with width±esys aroundvmk;

• the random PD is obtained by using the probability-possibility transformation on
a zero mean normal pdf, with standard deviationσv

m.

On the other hand, the acceleration has no systematic error.So, the RFV associated to
the simulated measured acceleration is centered on the simulated measured acceleration
at step k (amk) and:

• the internal PD is nil;

• the random PD is obtained by using a probability-possibility transformation on a
normal pdf, with meanak and standard deviationua

ran.

Matrix CXf
k

is the noise covariance matrix of the velocity and acceleration RFVs.
But, as it is shown in the equations in Fig. 8.2,CXf

k
= Cran

Xf
k

. So, the possibilistic vari-

ances and covariances are evaluated from only the random contributions to uncertainty
in both the velocity and acceleration RFVs.

Similarly,CYk
= CYran

k
which means that the possibilistic variances and covariances

of the noise covariance matrix associated to the measurements are evaluated from just
the random uncertainty contributions in the velocity and accleration measurements.

The described Kalman filter has been applied to the case studydescribed in Sec. 8.2.
The results obtained from the simulations are presented in the following figures 8.3 and
8.4.

The predicted values of the velocity and acceleration from the Kalman filter are
obtained by evaluating the mean values of thea posterioriRFVs in the matrixXa

k.
In both figures 8.3 and 8.4, the blue lines represent the differences in the predicted

values given by the Kalman filter and the true values of the velocity and acceleration
respectively.

98



8.4. The alternative possibilistic Kalman filter Algorithm

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

di
ffe

re
nc

e 
[m

/s
]

Difference between predicted and reference velocities.
Uncertainty limits associated to the predictions.

Figure 8.3: Difference in the reference and predicted velocity values (blue line) provided by the possi-
bilistic Kalman filter together with the predicted uncertainty interval (red lines).

The uncertainty limits associated the state predictions (red lines) are theα−cut at
α = 0.01 of the velocity and acceleration RFVs predicted by the Kalmanfilter. The
α−cut can be considered as the confidence interval at the confidence level 1-α [48]. For
α = 0.01, these intervals correspond to99% confidence interval in the corresponding
pdf.

8.4 The alternative possibilistic Kalman filter Algorithm

In this chapter, an alternative version of the Kalman filter algorithm recalled in the pre-
vious is presented, which attempts to reduce the residual systematic error. It can be
clearly seen in the results in fig. 8.3 and 8.4, the possibilistic Kalman filter algorithm
described in Sec. 8.3 propagates the systematic contributions to uncertainty and esti-
mates the overall uncertainty and confidence intervals associated to the predictions very
accurately in the presence of a systematic error. However, the systematic error is still
present in the state predictions provided by the KF.

Since the systematic contributions to uncertainty are propagated accurately, this
means that an interval of values is available within which the overall systematic error
in the state predictions lies. Hence, it is proposed to use this knowledge to compensate
for the systematic error and attempt to reduce the systematic error and thereby reduce
the overall uncertainty in the state predictions. The new KFalgorithm also called the
alternative possibilistic KF algorithm is synthetically shown in fig. 8.5. With respect to
the algorithm in sec. 8.3, all the steps except the last step are the same. The final step
in the new algorithm corresponds to the “correction of the predicted states."

The idea of the algorithm is to use the internal membership ofthe state RFVs that
have been predicted in each iteration to compensate for any possible systematic uncer-
tainty in the measurement data and thereby the predicted states, since they follow the
measurement data in the usual case.

To accomplish this, in the new algorithm, a new RFVYcomp
k is defined which con-
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Figure 8.4: Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

tributes to reduce the overall systematic contributions touncertainty.Ycomp
k is related

to the RFVs of the state estimates obtained in the previous iterationXa
k−1. In particu-

lar, at each step k,Ycomp
k consists of just the internal membership function ofXa

k−1 but
centered at the positive uncertainty limit evaluated by theKalman filter at the previous
iteration (stepk − 1). Only the internal membership function is taken since thisis the
part that corresponds to the systematic contribution to uncertainty. Moreover, since the
objective is to compensate for the maximum possible systematic error, it is proposed to
have theYcomp

k centered at the positive uncertainty limit.
Yint_modified

k is then obtained by adding or subtracting the RFVYcomp
k from Yint

k ,
depending on if the systematic error is positive or negative:

Yint_modified
k =

{

Yint
k + Ycomp

k if systematic error< 0

Yint
k − Ycomp

k if systematic error> 0
(8.2)

This is similar to a negative feedback loop in a regular system in which the output
of the system is fed back to make a comparison with the reference value for the output
so that the system stabilizes at the reference value. In thiscase, the uniform possibility
distribution representing the overall systematic contribution to uncertainty within which
the systematic error is supposed to lie in, predicted by the Kalman filter, is used as a
feedback input to compensate for a systematic error in the predictions, so that any
possible systematic error in the state prediction is at least partially compensated for.
Since the systematic contribution to uncertainty in the RFVsassociated to the state
predictions is also reduced with every iteration, because of the compensation of the
error, it means that the compensation applied in each step also keeps going down till
the system stabilizes around a particular value, which is around half of the original
systematic contribution to uncertainty.

To apply the algorithm, there is one intrinsic requirement.Some knowledge of the
systematic error is required. It is a given that the magnitude of the systematic error is
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Figure 8.5: The alternative possibilistic Kalman filter algorithm.

unknown since, otherwise, it would simply be compensated for and eliminated. Instead,
the direction or the sign of the systematic error must be known i.e., it should be known
if the systematic error is positive or negative.

8.4.1 Simulation results

The same example described in the previous Sect. 8.3 is also considered to apply the
alternative possibilistic KF, for an easy comparison of theobtained results. As recalled
in Sect. 8.2, the velocity measurement has been assumed to have a systematic error of
+0.3m/s, whose value is assumed to be unknown, but whose sign is assumed here to
be known to the user. According to this assumption, the expression forYint_modified

k is
given by:

Yint_modified
k = Yint

k − Ycomp
k (8.3)

The obtained results are shown in Fig. 8.6 and 8.7 for the velocity and the accelera-
tion respectively. Again, the predicted values for the velocity and acceleration given by
the Kalman filter are the mean values of the velocity and acceleration RFVs in matrix
Xa

k.
As in Fig. 8.3 and 8.4, in Fig. 8.6 and 8.7, the blue lines represent the differences in

the predicted values given by the Kalman filter and the true values of the velocity and
acceleration respectively.

The uncertainty limits associated the state predictions (red lines) are theα − cut at
α = 0.01 of the velocity and acceleration RFVs predicted by the Kalmanfilter.

It can be clearly seen, by comparing the results in Fig. 8.6 with those shown in Fig.
8.3, that the uncertainty limits have been significantly reduced along with the residual
systematic error in the velocity estimate provided by the Kalman filter defined in this
chapter. For easier reference, the important results have been presented in a tabular
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Figure 8.6: Difference in the reference and predicted velocity values (blue line) provided by the pos-
sibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval (red
lines).

format in table 8.1.

KF Modified Possibilistic alternative Possibilistic
Mean Steady-state error 0.3024 0.1657
Uncertainty limits ±0.3706 ±0.2106

Table 8.1: Synthetic indexes for velocity estimates in Fig. 8.3 and 8.6.

8.5 Further simulations to verify the extreme situations

As has been explained in the previous section, in the alternative possibilistic KF, the
maximum possible value of the interval predicted by the KF, in which the systematic
error should lie in, is used to compensate for the residual systematic error. This means
that no matter what the actual systematic error is, it is always compensated by the
maximum possible value since the uncertainty limit of the RFVs evaluated in each step
(which is the value of theα-cut atα = 0.01 of the RFV) is used to compensate for any
possible systematic error.

This means that it could be possible that the residual systematic error is overcompen-
sated, since the magnitude of this is unknown. But this scenario would not be detected
by us, since the actual magnitude of the systematic error is not known to us, but only an
interval of values in which it might be, represented by the uniform possibility distribu-
tion. The worst case scenario would be when there is no actualsystematic error present
and there has been a compensation of a non-existent systematic error.

In this specific situation, it would be very important that the systematic error that
may still be present after the compensation lies inside the total uncertainty limits eval-
uated by the KF algorithm.

This means that even in the worst case scenario, where the actual systematic error is
zero, the compensation should be low enough for the state predictions of the KF to still

102



8.6. Experimental case study

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01
di

ffe
re

nc
e 

[m
/s

2 ]
Difference between predicted and reference accelerations.
Uncertainty limits associated to the predictions.

Figure 8.7: Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval
(red lines).

lie inside the new uncertainty limits evaluated after the compensation.
To verify the effectiveness of the proposed algorithm in allpossible situations, fur-

ther simulations have been performed, considering the worst case scenario in which the
alternative possibilistic KF algorithm has been applied, but the actual residual system-
atic error zero.

The same example described in the Sec. 8.2 is now considered except that the sys-
tematic error is considered to be zero (instead of+0.3m/s).

When the alternative possibilistic KF is applied to the considered scenario, the ob-
tained results in Fig. 8.8 and 8.9 are obtained for velocity and acceleration respectively.

As expected, it can be seen in Fig. 8.8 that there is definitelyan overcompensation of
the systematic error in the velocity, since, basically, thealgorithm actually introduces a
systematic error in the prediction in the worst case scenario where the actual systematic
error is zero, but it is still well-bound by the uncertainty limits newly evaluated by the
KF.

This demonstrates that the proposed Kalman filter algorithmsuccessfully decreases
the overall uncertainty associated to the state predictions provided by the Kalman filter
in all situations. In fact, the average uncertainty in Fig 8.8 is in any case smaller than
the one in Fig. 8.3.

8.6 Experimental case study

An experimental validation of the proposed algorithm has been performed, considering
the parrot AR drone, shown in Fig. 8.10. The parrot AR drone has been developed as a
low cost drone by “parrot” company and is quite customizable. The code is open source
and can be modified according to the necessity. It has a variety of sensors and the data
can be obtained from them and processed as needed. For the present case study, the
velocity and acceleration measurements have been considered.
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Figure 8.8: Difference in the reference and predicted velocity values (blue line) provided by the pos-
sibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval (red
lines) when residual systematic error is zero.
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Figure 8.9: Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this chapter, together with the predicted uncertainty interval
(red lines) when residual systematic error is zero.

The drone that was used has been observed to have a negative systematic error in the
velocity measurements obtained from the sensors present inthe drone. So, the velocity
is being underestimated by the sensors of the drone. It has also been observed that
the systematic error is not constant for all runs. Each individual run had a systematic
error that may be different from the other runs. So, only an interval of values can be
estimated and the error can not just be compensated for.

By performing a large number of runs of the drone, the intervalfor the systematic
error has been estimated and this was used to construct the internal membership func-
tion of the RFV for the measured velocity. The constructed RFV,assumed in this figure
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Figure 8.10: The parrot drone.

to be centered at zero velocity, can be seen in Fig. 8.11.
The measured acceleration, on the other hand, doesn’t have any systematic contribu-

tions to uncertainty. Hence, the RFV can be constructed by simply using a probability-
possibility transformation on the probability distribution of the acceleration.

The drone was made to fly for a few seconds to cover a distance ofapproximately 4
m. The velocity and acceleration data from the sensors is obtained from the drone every
5 ms. The defined possibilistic KF described in Sec. 8.4 has been used to provide the
filtered velocity and acceleration predictions with their respective uncertainties as well
as compensate partially for the systematic error in the velocity measurements provided
by the drone.

The velocity estimates provided by the Kalman filter have been integrated to get
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Figure 8.11: RFV of the velocity constructed from the data. Blue line represents the external membership
function and the red line represents the internal membership function.

the estimated distance that the drone traveled. Similarly,the velocity measurements
directly obtained by the drone have been integrated as well,to get the distance that the
drone traveled according to the sensors present in the drone.

At the end of every run, the actual distance from the startingpoint has been mea-
sured. Several runs have been made and the distances estimated by the KF and those
estimated according to the sensor data have been compared with the actual distance
traveled by the drone.

To facilitate a comparision between the alternative KF defined in this chapter and
the possibilistic KF defined in Sect. 8.3, the sensor data hasbeen processed using both
the KFs seperately.

The results using the possibilistic KF defined in Sect. 8.3 can be seen in Fig. 8.12.
The green line represents the distances estimated according to the velocity measure-
ments obtained directly from the sensors in the drone. The blue line represents the
distance obtained from the velocity estimates of the definedpossibilistic KF. The black
line represents the actual distance traveled by the drone. Finally, the red lines represents
the upper and lower bounds for the uncertainty.

It can be seen that the distances estimated by the possibilistic KF are quite close to
the distances from the sensors. The blue line and the green line in Fig. 8.12 are almost
the same and that is why only the green dots and the blue line can be seen in the figure.
But, the real measurements lie inside the uncertainty limitsof the distances provided
by the possibilistic KF.

The results using the alternative KF defined in this chapter can be seen in the Fig.
8.13. Again, the green line represents the distances estimated according to the velocity
measurements obtained directly from the sensors in the drone. The blue line represents
the distance obtained from the velocity estimates of the defined possibilistic KF. The
black line represents the actual distance traveled by the drone. Finally, the red lines
represents the upper and lower bounds for the uncertainty.

It can be clearly seen that the distance obtained using the alternative KF defined in
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Figure 8.12: Distances obtained from the velocity estimates of the possibilistic KF (blue line). The
predicted uncertainty intervals (red lines). Actual distance traveled by the drone (black line) and
distances estimated according to the velocity measurements obtained directly from the sensors in the
drone (green line). Green line and blue line are almost the same.
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Figure 8.13: Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The predicted uncertainty intervals (red lines). Actual distance traveled by the drone
(black line) and distances estimated according to the velocity measurements obtained directly from
the sensors in the drone (green line)

this chapter is much more accurate and closer to the real measurements than the dis-
tances obtained from the sensor measurements or those obtained from the possibilistic
KF defined in [20].

Also, it can be easily seen that the width of the uncertainty limits associated to the
distance (red lines) are smaller in Fig. 8.13 compared to that in Fig. 8.12.

This confirms that, by using the defined alternative possibilistic Kalman filter, the
systematic error in the velocity has been compensated quiteefficiently and the overall
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uncertainty associated to the predictions is decreased as well.
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CHAPTER9

Bayes’ theorem in Conformity Analysis.

9.1 Introduction

As explained in the chapter 1, a measurement result can not simply be expressed as
a single numerical value along with it’s unit. It should be accompanied by additional
information such as its measurement uncertainty or confidence interval. When the un-
certainty and the confidence interval is specified along withthe measurement result, the
pdf can be assumed or derived from some additional information about the measurand.

To recall a few more concepts that have been given in chapter 1, in the case, when
the confidence interval can not be directly determined because the probability distri-
bution of the measurand is not known, a Monte Carlo method is implemented and a
probability density function (pdf), which represents the distribution of the values that
can be reasonably attributed to the measurand is derived. Then, from this pdf, it is
possible to retrieve [27,28]

1. a measured value and a standard uncertainty, which are given, respectively, by the
mean value and standard deviation of the pdf;

2. a confidence interval, about the measured value, that is aninterval of possible
measurement values along with the associated confidence level, or coverage prob-
ability.

Regardless to the way measurement uncertainty is evaluated,its correctness depends
on the correctness of the available information, and how well it is processed to evaluate
the different contributions to uncertainty and propagate them through the measurement
process [19,27,28].

Usually, measurement results are employed as input elements in decision-making
processes, such as conformity assessment. This is probablythe most frequent use of
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measurement results, especially in industrial applications, as well as in healthcare, en-
vironment protection and many other important applications.

In most situations, we also have access to preexisting sources of information about
the measurand in addition to the measurement result. When we have thisa priori
information, usually it is benificial to use it so that we can make a more informed
decision which in general is expected to result in a better decision. This is usually done
by applying the Bayes’ theorem to combine both thea priori information as well as
the measurement result to derive a subjective probability distribution which can then be
used in the decision making process.

When doing this though, ensuring that the available information is reliable is a crit-
ical key point. But what happens when this information is not reliable? This could
happen when the measuring instrument deviates resulting inthe measurement result
being wrong or when the process deviates resulting in thea priori information being
wrong. In this chapter, it is demonstrated what happens whenthe Bayes’ theorem is
applied in a blind manner without having reliable information.

In the next section, some concepts about conformity assessment have been recalled.

9.2 Conformity assessment

Conformity assessment is defined broadly as any activity whose goal is to judge if a
particular quantity or product meets a certain standards and specified requirements.

As has been expressed earlier, a measurement result is expressed in terms of prob-
ability distribution function which gives a best estimate of the measurand along with
the associated measurement uncertainty or a coverage interval which contains the true
value of the measurand with a specified coverage probability. Due to the uncertainty
in any measurement, it is inevitable that there is always a risk of making incorrect
decisions about an item’s conformity or non conformity.

The general terms and definitions related to conformity assessments are given in
ISO/IEC 17000:2004 document. In any conformity assessment, the decision if a given
product meets the specific requirement is dependent on the measurement of the relevant
measurand. ISO 10576-1:2003 document stipulates the rulesto check the conformity
within specified limits and the coverage interval of the measurement is compared with
a tolerance interval.

The JCGM guide 106 [29] extends the approach to conformity analysis to consider
risks, such as producer’s risk or consumer’s risk in the casewhere conformity is incor-
rectly assessed, and provides some general guidelines to perform a conformity analysis
depending on a measurement result.

Hence, anacceptance intervalcan be defined by specifying a set of acceptable val-
ues for a measurand in such a way that the risk of wrong decision of both conformity
and non conformity can be balanced to minimize the cost due toeither of the wrong
decisions. An acceptance interval is the interval which enables us to make a binary
conformity analysis about a quantity. So, if the value of themeasurand lies inside the
acceptance interval, the item is conforming and non conforming otherwise.

Some basic definitions to perform a conformity analysis are as follows [29]:

• A tolerance interval, on the other hand, is defined as an interval of permissible
values for a property.
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• Tolerance limit is the specified upper or lower bound of permissible values of a
property.

• Tolerance is defined as the difference between the upper andlower tolerance lim-
its.

• A decision rule is a documented rule that describes how measurement uncertainty
will be accounted for with regard to accepting or rejecting an item, given a speci-
fied requirement and the result of a measurement.

• Specific consumer’s risk is the probability that a particular accepted item is non-
conforming.

• Specific producer’s risk is the probability that a particular rejected item is con-
forming.

• The measurement capability indexCm is a parameter which characterizes the
quality of measurement with respect to a requirement specified by a tolerance
and is given by,

Cm =
Tu − Tl

4um

. (9.1)

According to [29], a conformity analysis is done in three sequential steps:

• Measure the property of interest of the product.

• Compare the measurement result with the specified requirement.

• Decide on a subsequent action whether to reject or accept the product.

Once a measurement result is obtained, the decision on whether to reject or accept
the product is done based on a previously established decision rule.

A coverage interval corresponds to the set of values such that the probability that the
quantity lies inside the coverage interval is equal to a specified probability called the
coverage probability.

If the true value of the measurand lies inside the tolerance limits, then the corre-
sponding quantity is said to conform to the specified requirement.

If the probability distribution of the measurand is in fact,known, and it is assumed
that it is represented byg(η|ηm), then the statement of conformity is an inference with
a certain probability of it being true. If the set of conforming values of the measurand
Y are denoted byC, the conformance probability is given as shown below [29]:

pc = Pr(Y ∈ C|ηm) =

∫

c

g(η|ηm)dη. (9.2)

If an upper and lower tolerance levels (Tu andTl respectively) are given , then the
equation modifies to,

pc =

∫ Tu

Tl

g(η|ηm)dη. (9.3)
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A measurement result can often be summarized by just a coverage interval with
an associated coverage probability without a probability distribution function that is
explicitly stated for the measurand. In such a case, [29] says that a statement of confor-
mance probability can be made by comparing the coverage interval with the tolerance
interval. If the entire coverage interval with the corresponding coverage probabilityp
lies inside the tolerance limit, then the conformity probability is definitely more thanp.
If the entire coverage interval lies outside the tolerance limit, then it is definitely less
thanp. But, if part of the interval is inside the tolerance limit andpart of it outside, no
decision can be made about the conformance probability.

9.3 Discussion

From all the discussion about the conformity assessment, itcan be seen that no decision
can be taken without the knowledge of the measurement uncertainty value associated
to the obtained measured value.

Therefore, in this respect, it could be thought that the GUM [27] provides the main
and most important guidelines to be followed. However, the approach followed by the
GUM to assign a pdf to a measured value is perfectly good when no a-priori infor-
mation about the measurand is available, which is the case inmost calibration labs.
However, whena priori information is, in fact, available, the more recommended ap-
proach is the application of Bayes’ theorem. It is in fact recommended by the [29]
to use the Bayes’ theorem whenever prior information is available about a particular
quantity.

It follows that Bayes’ theorem is expected to provide a betterresult than that pro-
vided by the commonly employed GUM approach. The aim of this chapter is to further
discuss this statement and the robustness of the proposed approach with respect to the
correctness of thea priori assumptions. Simulation and experimental results will be
proposed and analyzed to this purpose.

The next section recalls Bayes’ theorem and tries to highlight its advantages and
disadvantages when it is applied in metrology.

9.4 Bayes’ theorem in metrology

Let us consider a random variableX, mathematically represented by its probability
density functionpX(x), and a random variableY , mathematically represented by its
probability density functionpY (y), wherex andy represent single realizations ofX
andY respectively.

If the possible mutual dependence ofX andY is also known, it is possible to define
the joint probability density functionpX,Y (x, y) of the two variablesX andY .

In particular, it can be written:

pX,Y (x, y) = pX(x) · pY |X(y|x) (9.4)

wherepY |X(y|x) is the conditional probability of random variableY , givenX.
It is obvious that the conditional probabilitypY |X(y|x) of eventy givenx depends

on the particular value assumed by the random variableX. When the random variables
X andY are independent of each other, the conditional probabilitypY |X(y|x) of event
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y givenx does not depend on the valuex assumed byX. Therefore, it is:

pY |X(y|x) = pY (y) (9.5)

Under this assumption, it follows:

pX,Y (x, y) = pX(x) · pY (y) (9.6)

Equation (9.4) can be also rewritten as:

pX,Y (x, y) = pX|Y (x|y) · pY (y) (9.7)

wherepX|Y (x|y) is the conditional probability of random variableX, givenY . pX|Y (x|y)
depends on the particular value assumed by random variableY , except whenX andY
are independent variables. In this case:

pX|Y (x|y) = pX(x) (9.8)

and (9.7) becomes the same as (9.6).
In the more general situation of dependent variables, because of (9.4) and (9.7), it

is:

pX,Y (x, y) = pX(x) · pY |X(y|x) = pX|Y (x|y) · pY (y) (9.9)

that can be rewritten as:

pX|Y (x|y) =
pX(x) · pY |X(y|x)

pY (y)
(9.10)

which is the formulation of Bayes’ theorem.
From the mathematical point of view, it is also:

pY (y) =

∫

x

pX,Y (x, y)dx =

∫

x

pX(x) · pY |X(y|x)dx (9.11)

wherepY (y) is called the marginal probability distribution.
Thanks to (9.11), it follows thatpX|Y (x|y) can be obtained by simply knowing

pX(x) andpY |X(y|x).
Eq. (9.10) is very important in metrology. Indeed, let us suppose that random vari-

ableX represents the measurand and random variableY represents the measurement
result. The obtained distribution of the measured values ispY |X(y|x), since it is the
distribution of the measured values, given the particular measurand’s value.

However, the very aim of a measurement process is not that of knowing the distribu-
tion of the measured values (pY |X(y|x)), but knowing the distribution of values that can
reasonably be attributed to the measurand, given the measured value. In mathematical
terms, this means that the aim of a measurement process is that of evaluatingpX|Y (x|y).

This can be obtained by applying Bayes’ theorem (9.10). In fact, according to [29],
Bayes’ theorem can be effectively employed to obtained the desired distribution if reli-
ablea-priori information (pX(x)) is available about a measurand.

In particular, the following interpretation is given to thequantities in (9.10):

1. pX(x) is the pdf expressing thea-priori information about the measurand;
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2. pY |X(y|x) is the pdf representing the distribution of measured valuesprovided by
the measurement process;

3. pY (y) is the marginal pdf, given by (9.11);

4. pX|Y (x|y) is the pdf associated to the measurand, which combines thea-priori
information with the information provided by the distribution of measured values.

The main advantage in the use of Bayes’ theorem in metrology isthat it yields
the pdf associated to the measurand (posterior), by combining two different kinds of
information: the available information about the measurand itself (prior) and the infor-
mation provided by the measured values.

However, all previous considerations have been derived under a purely mathematical
perspective, that does not doubt about the correctness of all considered quantities. In
other words, the implicit assumption behind Bayes’ theorem is that there is full belief
on both thea-priori knowledge and the distribution of measured values. This means
full knowledge about the possible distribution of the measurand values and zero doubts
about the correctness in the evaluation of the uncertainty associated to the measured
value.

It can be readily perceived that this is not the situation in practical applications. Even
if the measurand variability is known, because, for instance, the production process
is known, it may always drift from the normal operating conditions. Similarly, the
measurement process may deviate from its expected operating conditions, thus making
the evaluated uncertainty incorrect. It is then important to understand the consequences
of a lack of total trust on thea-priori knowledge or the measured values.

This chapter considers, with both simulations and experimental data, the effect of
the application of Bayes’ theorem in different possible situations:

1. when one can assign total belief on both thea-priori knowledge and the measured
values;

2. when no total belief can be assigned to thea-priori knowledgepX(x); this means
that a deviation might occur in the process model, or the process model does not
represent exactly the manufacturing process;

3. when no total belief can be assigned to the assumed distribution of measured val-
ues; this means that the measured values might deviate from the expected distri-
bution due, for instance, to a drift in the employed measurement instrument.

This chapter also considers the risk in taking a wrong decision (false acceptance or
false rejection of a product) when the obtained measurementresults are employed in
conformity assessment [29]. A comparison is made, under different assumption, in the
obtained risks values:

• when only the distribution of measured values is taken intoaccount without ap-
plying the Bayes’ theorem to estimate the measurand value;

• when Bayes’ theorem is applied, that is when thea posteriorivalues are consid-
ered as the measurement result.
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9.5 Simulations

A typical example of conformity assessment is considered todiscuss the robustness
of Bayes’ approach: the resistance of the manufactured resistors is measured to check
whether it is inside the tolerance limits or not. Thea-priori information is represented
by the expected dispersion of the resistance values of the manufactured resistors due to
variations in the production process.

A nominal valueRnv = 15 Ω is assumed for the resistors, and the given production
tolerance is±0.5%, that is±75 mΩ. The dispersion of values due to the production
process is supposed to be represented by a normal probability distribution, where the
±3σ coverage interval is assumed to be the same as the tolerance interval. Therefore,
in the considered example, theprior distribution is given by:

pX (x) = N
(

Rnv, σ
2
nv

)

(9.12)

whereRnv = 15 Ω andσnv = 25 mΩ.
It is then assumed that the resistance is measured by a Fluke 8845A, 6.5 digit preci-

sion multimeter1. According to the manufacturer specifications, the following applies:

• the measured15 Ω value falls in the100 Ω range;

• in the100 Ω range, an accuracy interval

±0.003% of reading ± 0.003% of range

is provided, which corresponds to:

±Rm · 3 · 10−5 ± 3 · 10−3 Ω

whereRm is the resistor measured value.

The distribution of the possible measured values is assumedto be a normal distri-
bution, with mean value equal to the measured valueRm and standard deviation given
by:

σm = 0.001% of reading ± 1mΩ = ±Rm · 1 · 10−5 ± 1 · 10−3 Ω

If, for instance,Rm = Rnv, then it isσm = 1.15mΩ.
10000 values have been considered, in each simulation, for the measured values,

and the three following cases have been considered.

9.5.1 Case I: no deviation in the instrument or the process

Case I considers the situation in which neither the instrument nor the process is deviat-
ing.

According to the assumptions given above in Sec. 9.5, anprior normal pdf with
mean valueRnv and standard deviationσnv is associated to each resistor. Then, since
the process is not deviating, the “simulated true values”RSTV of the100000 resistors
have been simulated by randomly generating100000 values from this normal pdf.

On the other hand, since the instrument is not deviating, to simulate the measurement
of each resistor (Rm), a random value is generated from a normal pdf centered on the

1The behavior of this instrument was simulated, because this same instrument was used in the experimental validation process.
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Figure 9.1: Histogram associated to the obtained100000 a posteriori values, in case I.

corresponding “simulated true value”RSTV and with standard deviationσm. Hence, a
normal pdf centered atRm with the corresponding standard deviationσm is associated
to every measured value.

Bayes’ theorem is then applied, according to the measurementdata and thea priori
knowledge.

It is well-known that the mean value of theposterior pdf, according to the given
measurement datay and thea priori knowledge is given by:

µposterior=
µa priori · σ

2
y + y · σ2

a priori

σ2
y + σ2

a priori

(9.13)

Considering the proposed example, the quantities in (9.13) take the following values:

• µa priori = Rnv = 15 Ω;

• σa priori = σnv = 25 mΩ;

• y = Rm;

• σy = σm

Fig. 9.1 shows the histogram associated to the 100000 obtaineda posteriorimean
valuesµposterior, given by (9.13). These values represent thea posteriorivalues associ-
ated to the100000 resistors (Ra posteriori).

It can be readily checked that the obtained histogram approximates quite well a
normal pdf, as expected since normal pdfs have been assumed.The mean and standard
deviation associated to the 100000 obtaineda posteriorimeans are evaluated and the
normal pdf, drawn in blue line in Fig. 9.2, is obtained. This pdf is compared with thea
priori pdf (red line in Fig. 9.2).

It can be seen that the two pdfs are in perfect agreement. Thisresult was expected,
since no deviation in the measuring instrument or the process is considered in this case
I.

It is also possible to perform a risk analysis, according toRa posteriori. In fact, for
every obtained value, it is possible to verify whether it falls inside the tolerance limit
(Rnv ± 75 mΩ) or not. If the value falls inside the limit, the resistor is within the
tolerances and should be accepted; on the other hand, if the value falls outside the limit,
the resistor is supposed to exceed the tolerances and shouldbe rejected.

Of course, due to measurement uncertainty, the actual resistance value can differ
from the measured one. Therefore, if this last value is considered in the comparison
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Figure 9.2: A priori pdf associated to the resistors (red line) and a posteriori pdf (blue line), when case
I is considered.

with the tolerance limits, there is always a risk that a bad resistor is erroneously ac-
cepted, or that a good resistor is erroneously rejected. In order to state if a decision is
correct or wrong, for every resistor, we also compared the corresponding “simulated
true value”RSTV with the tolerance limit (Rnv ± 75 mΩ) and verified if the two values
(Ra posteriori andRSTV) lead to the same decision. Of course, the correct decision is the
one obtained whenRSTV, which is thetrue valueof the resistor, is considered.

The percentage risk of taking a wrong decision is defined as:

Risk total =
Total wrong decisions

Total decisions
· 100 (9.14)

When only false acceptances are considered, the following risk can be defined,
which represents the risk that bad resistors are erroneously accepted:

Risk f. a. =
Total false acceptances

Total decisions
· 100 (9.15)

On the other hand, when only false rejections are considered, the following risk can
be defined, which represents the risk that good resistors areerroneously rejected:

Risk f. r. =
Total false rejections

Total decisions
· 100 (9.16)

Of course, it is:
Risk total = Risk f. a. +Risk f. r.

Considering the values provided by Eq. (9.13) in this case I, the following percent-
age risk values have been obtained:

Risk total = 0.038% Risk f. a. = 0.02% Risk f. r. = 0.018%

The total risk can be compared with the corresponding total risk value evaluated
without applying the Bayes theorem, when the “measured values” Rm are taken into
account and compared with the tolerance intervalRnv ± 75mΩ:

Risk total = 0.038%

The obtained values are perfectly compatible, as expected since no deviation in the
instrument or the process is supposed in this case I. Therefore, in this case I in which no
deviation is present in the process or the instrument, the application of Bayes’ theorem
does not modify the results of the risk analysis.
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Figure 9.3: Histogram associated to the obtained100000 a posteriori values, in case II.

9.5.2 Case II: deviation in the process

Case II considers the situation in which the process is deviating.
In this second case, to consider the process’ deviation, the“simulated true values”

cannot be extracted by thea priori pdf. Therefore,100000 normal pdfs has been con-
sidered with:

• mean value
Rnv + (0.75 · k µΩ)

wherek = 1...100000;

• standard deviationσnv

In other words, the same shape and standard deviation of thea priori pdf are con-
sidered, but the mean value is not centered on the resistors’nominal valueRnv, but it is
shifted by value0.75 · k µΩ. The value0.75 µΩ has been chosen so that, at the end of
the100000 iterations, the process is deviated by exactly75 mΩ which is the tolerance
limit (see Sect. 9.5).

Hence, the100000 “simulated true values”RSTV are obtained by randomly extract-
ing one value from each of the above pdfs.

On the other hand, since the instrument is not deviating, to simulate the measured
value of each resistor (Rm), a random value is generated from a normal pdf centered
on the corresponding “simulated true value”RSTV and with standard deviationσm.
Hence, a normal pdf centered onRm with the corresponding standard deviationσm is
associated to every measured value.

Bayes’ theorem is then applied, according to the measurementdata and thea priori
knowledge, as given by Eq. (9.13). In the application of thisformula, with respect to
previous case I, thea priori knowledge is always the same, but the measurement values
Rm are different, as explained above. The histogram in Fig. 9.3is obtained, associated
to the obtained resistors’ valuesRa posteriori.

Also in this case II, the histogram approximates quite well anormal distribution and
the pdf in blue line in Fig. 9.4 represents the correspondingpdf. In this same figure,
thea priori pdf is also reported (red line). It can be seen that the blue line is shifted in
the direction in which the process is deviating. Moreover, it has a higher variance than
thea priori.

As in case I, it is also possible to perform a risk analysis, according to the obtained
valuesRa posteriori (that is, when Bayes’ theorem is applied) and according to themea-
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Figure 9.4: A priori pdf associated to the resistors (red line) and a posteriori pdf (blue line), when case
II is considered.

sured valuesRm (that is, without applying Bayes’ theorem). The following values are
obtained, as far as the total risk is concerned:

Risk total = 0.64%

whenRa posteriori is considered;

Risk total = 0.59%

whenRm is considered.
It can be noted that the risk increases a little bit after the use of Bayes’ theorem.

Therefore, the application of Bayes’ theorem, in this case, increases the risk of wrong
decision.

It is worth noting that the amount of risk is strictly dependent on the accuracy of the
instrument. The greater the accuracy of the instrument withrespect to thea priori, the
lesser the correction due to Bayes’ theorem. Therefore, the lesser the difference in the
risks with and without the application of Bayes’ theorem. Therefore, with less accurate
instruments, the risk of taking wrong decisions after the application of Bayes’ theorem
could become significant.

This is maybe a trivial conclusion, since very accurate instruments do not require,
in principle, corrections. On the other hand, this conclusion must be taken into careful
consideration if the correction obtained by the application of Bayes’ theorem is used to
counterbalance possible drifts in the measurement process. If this is the case, the belief
in the stability of the manufacturing process must be higherthan that in the stability of
the measurement process not to have unpleasant surprises.

9.5.3 Case III: Deviation in the instrument

Case III considers the situation in which the instrument is deviating.
In order to simulate the true values of the resistors, since the process is not deviating,

the same considerations as in case I apply. Therefore,100000 extractions are taken from
thea priori pdf. These are the “simulated true values”RSTV.

On the other hand, the measurementsRm must consider that the instrument is devi-
ating. Therefore,100000 normal pdfs has been considered with:

• mean value
RSTV + (0.75 · k µΩ)

wherek = 1...100000;
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Figure 9.5: Histogram associated to the obtained100000 a posteriori values, in case III.

Figure 9.6: A priori pdf associated to the resistors (red line) and a posteriori pdf (blue line), when case
III is considered.

• standard deviationσm

In other words, all pdfs have the same shape and standard deviation, but their mean
value drifts. The value0.75 µΩ has been chosen so that, for the last100000th resistor,
the measued value is deviated by exactly75 mΩ, which is the resistor tolerance limit
(see Sect. 9.5).

Hence, the100000 measurement resultsRm are obtained by randomly extracting
one value from each of the above pdfs. Then, for every measured value, a normal pdf
with mean valueRm and standard deviationσm is assumed.

Bayes’ theorem is then applied, according to the measurementdata and thea priori
knowledge, as given by Eq. (9.13). As already stated above, thea priori knowledge is
always the same, but the measurement valuesRm are different. The histogram in Fig.
9.5 is obtained, associated to the obtained resistors’ valuesRa posteriori.

Also in this case III, the histogram approximates quite wella normal distribution
and the pdf in blue line in Fig. 9.6 represents the corresponding pdf. In the same figure,
thea priori pdf is also reported (red line). It can be seen that the blue line is shifted in
the direction in which the instrument is deviating. Moreover, it has a higher variance
than thea priori.

As in the previous cases, a risk analysis has been performed,and the risks of wrong
decisions, obtained when the measurementsRm and when thea posteriorivaluesRa posteriori

are considered, are compared with each other. In particular:

Risk total = 13.14%

whenRa posteriori are considered;

Risk total = 13.26%
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whenRm are considered.
The difference between the obtained values for the total risk is small, even in this

case III. However it can be noted that, in this case, the application of Bayes’ theorem
yields better results.

Once again, it can be underlined that the risk depends on the accuracy of the instru-
ment. The greater the accuracy of the instrument with respect to thea priori informa-
tion, the lesser the correction due to Bayes’s theorem and, consequently, the lesser the
difference in the risks with and without the application of Bayes’ theorem.

Of course, this makes sense because if the uncertainty associated to the measurement
result is very low, it means that the measurement result is trusted much more than
the a priori information. So, if the instrument deviates, thea priori information is
still not trusted enough to correct the measurement result.So, in this situation, the
more accurate thea priori information is with respect to the instrument, the more is
the correction applied thereby leading to a better decisionafter the application of the
Bayes’ theorem.

It is also interesting to observe that:

Risk total = 13.14% and Risk f r = 13.02%

thus meaning that, among all the wrong decisions, most of them correspond to false
rejection, because of the wrong measurements due to the instrument’s deviation.

9.6 Experimental results

In order to verify whether the simulation results are experimentally confirmed, so that
the method based on Bayes’ theorem can be applied in practice,80 resistors have been
used with resistance value, given by the manufacturer specifications:15± 0.15 Ω.

First of all, the values of the resistors have been measured with a reference multi-
meter: Fluke 8508A with 8.5 digits.

The obtained measurements have been considered the conventionally true values of
the resistors. The mean of all conventionally true values has been found to be14.94 Ω.
This value is indeed within the manufacturer tolerance interval but, ideally, it was sup-
posed to be15 Ω. So, according to the three case studies described above, weare in the
case in which “the process is deviating”.

Moreover, for the sake of experiment, we also made a different assumption. Since
the measured true values of the resistors were all inside thetolerance interval given by
the manufacturer, in order to simulate some outliers, we assumed a stricter manufac-
turer specification:15±0.075 Ω. Also under this different assumption, the mean of the
true values (14.94 Ω) falls within the tolerance interval.

Therefore, it is supposed that thea priori knowledge is represented by a normal pdf
with mean value15 Ω and standard deviation25 mΩ.

At this point, we measured the resistance values of the80 resistors with the Fluke
8845 multimeter. The obtained values are the resistors’ measured values. Taking into
account these measured values and the a priori knowledge, Bayes’ theorem has been
applied to get thea posteriorimean values according to (9.13), where:

• y is the measured value of the specific resistor;
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Figure 9.7: A priori pdf (red line) and a posteriori pdf (blue line) in thefirst experimental study, where
the process is deviating.

• σy is the uncertainty associated to the resistor’s measured value and, according to
the Fluke 8845 precision multimeter specifications, it is calculated as:

σy =
1

3
·
0.003 · y + 0.003 · 100

100
(9.17)

where it is assumed that the total error of the instrument, given by the manufac-
turer’s accuracy specifications, corresponds to the±3σ interval;

• µa priori = 15 Ω, that is the nominal value given by the manufacturer;

• σa priori = 25 mΩ, as explained above.

The distribution of thea posteriorimean values is shown in Fig. 9.7 in blu line,
while the red line shows, for a comparison, the distributionof thea priori knowledge.

The obtaineda posteriori mean values have been stored and compared with the
tolerance interval15 ± 0.075 Ω in order to state weather the resistor is compliant with
the specifications or not. This is what happens in the industrial world (in a resistor
manufacturing company, in this case), where a decision needs to be made (accept or
reject) whether the product is compliant or not with the specifications.

A risk analysis has been also made according to (10.3), by considering, firstly, the
measured values and, subsequently, thea posteriorivalues. The following results have
been obtained:

Risk total = 1.27%

when thea posteriorimeans are considered;

Risk total = 0%

when the measured values are considered.
This means that the application of Bayes’ theorem worsens theresults of the risk

analysis, in this case. It is worthwhile to observe that the entire 1.27% risk is entirely
due to false acceptances. So, actually, consumer risk has been increased because of the
application of Bayes’ theorem.

After this first experimental validation, which consider the case of a “deviation in the
process”, a “deviation in the instrument” has been simulated, by adding an increasing
offset to the resistors.
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Figure 9.8: A priori pdf (red line) and a posteriori pdf (blue line) in thesecond experimental study,
where the instrument is deviating.

In particular, we increased the offset by5 mΩ every5 resistors starting with an
offset of5 mΩ for the first5 resistors. According to this assumption, a final offset of
about80 mΩ is added at the end of the measurement procedure, which is a little above
0.075 Ω, the3σ interval of the considereda priori pdf.

The offset has been added to the resistors’ measured values taken with the Fluke
8845A multimeter, as stated above, and the obtained values have been considered as
the new measured values. These values have been used in Bayes’formula (9.13) to
obtain the newa posteriorimean values.

The distribution of the obtaineda posteriorivalues is shown in Fig. 9.8 in blue line,
while the red line represents the pdf associated to thea priori knowledge and the black
line represents the actual pdf, according to the resistors’true values.

A risk analysis has been done, according to both the new measured values and thea
posteriorivalues. The following results are obtained:

Risk total = 26.58%

when thea posteriorimeans are considered;

Risk total = 26.58%

when the measured values are considered.
This result (equal total risk) should not be surprising: indeed, in this case, the em-

ployed instrument is quite accurate and the variance of the pdf expressing the distribu-
tion of the possible measured values is significantly lower than that of theprior pdf.
Therefore, the correction provided by the application of the Bayes’ theorem is negligi-
ble and does not go in favor of a risk reduction.

Moreover, if the partial risksRisk f. a. andRisk f. r. are analyzed, we get:

Risk f. a. = 22.78% and Risk f. r. = 3.8%

when thea posteriorimean values are considered; and

Risk f. a. = 22.78% and Risk f. r. = 3.8%

when the measured values are considered. So, also the partial risks do not differ. It
is important to underline that, out of the total26.58%, 22.78% of the risk is due to
false acceptances, while only3.8% is due to false rejection. This happens because the
instrument is deviating in the opposite direction with respect to the process’ deviation.
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So, the bias caused by the process deviation is compensated by the bias caused by
the instrument deviation. Therefore, in this case Bayes’ theorem does not improve the
measurement result and does not reduce the risk of wrong decision.

9.7 Conclusion

It should be noted that the application of the Bayes’ theorem should not be used under
the conditions assumed in this chapter. At least, when thereis a suspicion of a bias
either in the instrument or the process, the results of the Bayes’ theorem should not be
used.

But, how can we be sure that the information is correct? Usually, in the industry,
the measuring instruments are calibrated at regular intervals. The calibration results
simply specify the state of the instrument at the instant of calibration. So what is the
guarantee that the instrument is behaving entirely correctly till the next calibration? For
these reasons, a bias might remain undetected, sometimes even for long durations, thus
producing incorrect results and causing problems.

For example, if the equipment used to evaluate the carbon emissions in an automo-
bile deviates in an automobile industry and this is not detected, the entire manufacturing
plant needs to be stopped to check the production process or even the design of the au-
tomobile itself may need to be re-investigated. These situations cost a lot of money to
the company.

Therefore, the aim of the analysis done in this chapter is notto prove that the Bayes’
theorem introduces errors in the presence of bias which is expected given that the re-
quirements for the correct application of the Bayes’ theoremare not satisfied. Rather,
the aim is to show the significance of this error.

So, if somehow a possible deviation could be taken into account, a better result could
be obtained. This is the aim of the next chapter.
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CHAPTER10

Conformity analysis in an industry using RFV
based Bayes theorem

10.1 Introduction

As expressed in the previous chapter, JCGM 106:2012 document[29], encompassed in
the ISO/IEC guide 99-4:2012 [26], is the main document when conformity assessment
is considered. This guide provides guidance and proceduresfor assessing conformity
of an item with specified requirements.

When alsoa priori information about the measurand is available, Bayes’ theorem
can be applied and, in such a case, its application is generally recommended in metrol-
ogy [29], since it is expected to provide a better result thansimply considering the
measurement results and the associated uncertainties. In other words, it is expected
that, thanks to the application of Bayes’ theorem, there is a reduction in the risk of
taking wrong decisions (“false acceptances” or “false rejections”).

It has been shown in the previous chapter that it is not alwaysthe case. There
are cases in practical scenarios when there are undetected deviations in the process or
measurement such that the probability distribution assigned to them is inaccurate. In
those cases, depending on the scenario, blindly applying the Bayes’ theorem could even
prove detrimental to our original goal of decreasing the risk of wrong decisions.

Especially, in industrial applications, situations occurquite often in which either
the production process or the instrument suffer undetecteddeviations, thus adding an
unknown systematic contribution to uncertainty. While the GUM [27] requires that
all systematic effects are recognized and compensated for,and several tools, such as
control charts, Process Capability Analysis (PCA) and Measurement System Analysis
(MSA) can be used to detect systematic effects, they are not always applied in the com-
mon industrial practice either because of their cost or the time required to implement
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them. Nevertheless, the contribution of such unknown, uncompensated systematic ef-
fects shall be taken into account to evaluate measurement uncertainty and use it to
model the input variables to Bayes’ theorem.

Since a deviation is, by its very nature, a systematic contribution, it can be modeled
inside the theory of possibility [9,18,51], in terms of Random-Fuzzy Variables (RFVs)
[17,18] and Bayes’ theorem can be reformulated inside this new framework.

There are articles available in the literature aimed at reformulating the classical
Bayes’ theorem using theory of possibility called the generalized Bayes’ theorem [10,
37]. In [45], the authors consider the cases of imprecise probabilities in risk assessment
and how to treat them using theory of possibility and possibilistic Bayes’ theorem. But,
the mathematics used is more complex and is, in fact, suitable for applications highly
sensitive to risk. In industrial conformity analysis, often, a simple point value is used to
make the decision of conformity and a more computationally efficient way is needed to
save money and time for the industry. This chapter aims at providing such a solution.

A modified Bayes’ theorem, based on the representation of the measurement results
and the metrologicala priori knowledge in terms of RFVs (Chapter 3), is considered
in this chapter, with the aim to improve the results obtainedby the application of the
classical Bayes’ theorem in the previous chapter and prove that it is more easily appli-
cable than the ones based on a purely probabilistic approach[5,21,25] in an industrial
context since, as it will be shown in the following, it requires only algebraic operations.

10.2 RFVs and the proposed modified Bayes’ theorem

It has been shown in the chapter 9 that the application of Bayes’ theorem could be detri-
mental as expected when it is applied incorrectly in the presence of deviations. So, if
somehow the deviation in the process or the instrument can betaken into consideration
while applying the Bayes’ theorem, we should be able to get better results.

It is proposed in this chapter to represent both thea priori information and the
measurement results in terms of RFVs and then apply a similar equation as (9.13),
where the afore-mentioned possibilistic mean values and variances of RFVs [4] are
considered instead of the probabilistic mean and variance

Just to recap what has already been discussed in chapter 3, anRFV can be defined
also in terms of itsα-cuts. While an RFV is described by an infinite number ofα-cuts,
α being a real variable, operatively, it can be represented bya finite discrete number
of α-cuts. IfN α-cutsαi, with i = 1...N , are considered, mean value and variance of
RFV X are defined as [4]:

M(X) =
1

N
·

N
∑

i=1

αi

(

xαi

2 − xαi

1

)

V ar(X) =
1

2 ·N
·

N
∑

i=1

αi

(

xαi

2 − xαi

1

)2

whereαi =
1

N−1
· (i− 1).

Hence the aposteriori mean and variance according to the modified Bayes’ theorem
are given by:

Ma posteriori =
M(Ya priori) · V ar(Ym) +M(Ym) · V ar(Ya priori)

V ar(Ya priori) + V ar(ym)
(10.1)
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whereYapriori andYm are, respectively, the RFVs corresponding to thea priori knowl-
edge and the measurement results, whose shapes are strictlyrelated to the available
metrological information.

In section 10.3.1, three case studies will be considered, with different metrological
information. According to that, the RFVs in Eq. (10.1) will take different shapes and
values.

10.3 Simulated case studies

As a case study, this chapter considers the same example, as has been discussed in
chapter 9 in Sect. 9.5, where a typical industrial process where a property of one item
is measured, to decide if the item is compliant or not with thespecifications, in order
to accept or reject it. The only difference from the example in Sect. 9.5 is that the
measuring instrument is different in this chapter from thatused in chapter 9.

For the sake of completeness, the same data and assumptions considered in Sect. 9.5
has been briefly summarized.

Resistors with nominal valueRnv = 15 Ω are considered, with a tolerance of
±0.5 %. We suppose that the tolerance interval corresponds to the±3σ coverage inter-
val of a normal probability distribution which represents the dispersion of values due to
the production process. Therefore, according to the above assumptions, the tolerance
interval is±75 mΩ and thea priori distribution is given by:

pX (x) = N
(

Rnv, σ
2
nv

)

(10.2)

whereRnv = 15 Ω andσnv = 25 mΩ.
The resistance values are measured with an Agilent5.5 Digit 34450A Multimeter.

According to the manufacturer specifications, the following applies:

• the measured15 Ω value falls in the100 Ω range;

• in the100 Ω range, an accuracy interval

±0.05 % of reading ± 0.008 % of range

is provided in the data sheet, which corresponds to:

±
(

Rm · 5 · 10−4 + 8 · 10−3
)

Ω

whereRm is the resistor measured value.

Since the aim of this work is to compare the effectiveness of the modified Bayes’
theorem with that of the classical Bayes’ theorem, we supposethat the above interval
is the±3σ coverage interval of a normal probability distribution which now represents
the possible measured values of the resistor, so that a closed form solution for thea
posteriori information can be derived when using the classical Bayes’ theorem. We
can hence evaluate a standard deviation:

σm =
1

3
(0.05 % of reading + 8) mΩ

which represents the standard measurement uncertainty associated to the measured
resistance. It can be noted thatσm depends on the measured valueRm.

Three different possible situations are considered here.
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1. Case I: No deviation in either the instrument or the production process
In the first simulated case, we assume total belief on both thea-priori knowledge
and the measured values. In other words, it is assumed that there are no deviations
in neither the process nor the instrument.

2. Case II: deviation in the production process
In the second simulated case, we assume that no total belief can be assigned to the
a priori knowledge. This means that a deviation might occur in the production, or
the production model does not represent exactly the production process.

3. Case III: deviation in the instrument
In the third simulated case, we assume that no total belief can be assigned to
the distribution of the measured values. This means that themeasured values
might deviate from the expected distribution due, for instance, to an undetected
drift in the employed measurement instrument. This particular situation might
occur, especially in industrial environment, even when accurate instruments are
employed if the instrument itself suffers a drift that may result in instrument’s
operations outside the expected accuracy range and that mayremain undetected
till the next calibration. This situation is quite criticalsince, if the measured values
are not corrected by the application of Bayes’ theorem, the subsequent conformity
assessment might be largely incorrect.

Under this respect, to prove that the proposed method works for any systematic con-
tribution inside a pre-defined range of values, different process or instrument constant
deviations selected at random are considered.

This chapter also considers the risk in taking a wrong decision (false acceptance or
false rejection of a product) in conformity assessment [29]. The considered decision
rule is to accept resistors whose values fall in the rangeRnv±75 mΩ, that is, fall inside
the tolerance interval.

The percentage risk of taking a wrong decision is defined as:

Risk T =
Total wrong decisions

Total decisions
· 100 (10.3)

which is the sum of the risk of false acceptances:

Risk f. a. =
Total false acceptances

Total decisions
· 100 (10.4)

and the risk of false rejections:

Risk f. r. =
Total false rejections

Total decisions
· 100 (10.5)

A comparison of the obtained risk values is made, when evaluated according to three
different situations:

• when there is noa priori information and hence, measurment data is directly used
in conformity assessment;

• when classical Bayes’ theorem is applied as shown in Sect. 9.4, and the obtained
distribution of thea posteriorivalues is considered in conformity assessment;
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• when the modified Bayes’ theorem proposed in this chapter is applied, and the
obtained possibility distribution of thea posteriorivalues is considered in confor-
mity assessment.

10.3.1 Modified Bayes’ theorem simulation results

Case I

In this case, the same considerations as those reported in Sect. 9.5.1 apply, after having
represented thea priori information and the measurement results in terms of RFVs.
In particular, the blue lines in Fig. 10.1 represent thea priori RFV Rnv, and its ran-
dom PD is obtained by applying the probability-possibilitytransformation, in Sect.
2.3.2, to pdfN (Rnv, σ

2
nv). On the other hand, the green lines represent the RFVRm of

one of the measurements (Rm = 15.04Ω). Its random PD is obtained by applying the
probability-possibility transformation [48] to pdfN (Rm, σ

2
m), whereRm andσm are

the same simulated values as in Sec. 9.5.1.
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Figure 10.1: A priori RFV is represented by blue and RFV associated to one measured value represented
in green, in case I.

Eq. (10.1) is applied to all RFVs representing the simulated measured values and
the distribution of the possibilistic means of the 1000a posterioriRFVs is represented
by the green pdf in Fig. 10.2 (completely overlapped to the blue pdf since the same
information as that used in sect. 9.5.1 has been processed here).

Conformity assessment is also considered, by considering the results from (10.1),
and the risk’s values given in the last row of Table 10.1 are obtained, thus showing the
perfect agreement of the modified Bayes’ theorem and the classical Bayes’ theorem
in this case. The results in the first two rows of the table are those in the situation
when there is noa priori information and hence, measurement data is directly used in
conformity assessment and in the situation when the classical Bayes’ theorem has been
applied to obtain thea posteriorivalue which has then been considered in conformity
assessment. These results have been reported for the sake ofcomparison.
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Figure 10.2: Case I: a priori pdf associated to the resistors (red line); pdf of the a posteriori mean
values when the classical Bayes approach is followed (blue line); pdf of the a posteriori mean values
when the modified Bayes approach is followed (green line).

Table 10.1:Evaluated risks in case I.

Risk T Risk f. a. Risk f. r.

No a priori 0.5 % 0.1 % 0.4 %
classical Bayes’theorem 0.4 % 0.2 % 0.2 %
modified Bayes’theorem 0.4 % 0.2 % 0.2 %

Case II

In case II, we suppose that the process is deviating, and we simulate the deviation of
the process as explained in Sec. 9.5.2 . We can take into account this deviation in
the a priori RFV, by considering the presence of a systematic contribution.Under
this assumption, thea priori RFV Rnv (blue lines) and the RFVRm associated to one
measured value (green lines,Rm = 15.04 in the figure) are the ones shown in Fig. 10.3.
The random PDs in both RFVs are built in the same way as in case I,while the internal
PD ofRnv is built by considering a rectangular PD over interval±3σnv.

Eq. (10.1) is applied to all RFVs representing the simulated measured values and
the distribution of the obtained1, 000Ma posteriori values is represented by the green pdf
in Fig. 10.4. Conformity assessment is also considered, by considering the results from
(10.1), and the risk’s values given in the last row of Table 10.2 are obtained. Again,
the results in the first two rows of the table are those in the situation when there is
no a priori information and hence, measurement data is directly used inconformity
assessment and in the situation when the classical Bayes’ theore has been applied to
obtain thea posteriorivalue which has then been considered in conformity assessment.
These results have been reported for the sake of comparison.

These values show a small reduction of the total risk, with respect to the other two
considered methods (first and second rows in the same Table).In particular, it can be
stated that the modified Bayes’ theorem provides better results than the classical one
and it can be applied also when there is a deviation in the process, without worsening
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Figure 10.3: A priori RFV is represented by blue and RFV associated to one measured value represented
in green, in case II.
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Figure 10.4: Case II: a priori pdf associated to the resistors (red line);pdf of the a posteriori mean
values when the classical Bayes approach is followed (blue line); pdf of the a posteriori mean values
when the modified Bayes approach is followed (green line).

the risk values.
When the process is deviating and the classical Bayes’ theoremhas been applied,

the a priori information is being used to “correct” the measurement result. Since the
a priori information is incorrect, this would result in an incorrect“correction” in the
measurement result thereby causing an increase in risk. But,since the instrument has
a very low uncertainty compared to that of thea priori information, the amount of
correction is very low. So, the increase in risk of wrong conformity analysis is very
low.

In the modified Bayes’ theorem, the uncertainty of thea priori information is further
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increased because of the internal membership function. So,the “correction” in the
measurement result is lower than that in the classical Bayes’theorem. So, the risk
of wrong conformity analysis is slightly decreased than that of the classical Bayes’
theorem.

Table 10.2:Evaluated risks in case II.

Risk T Risk f. a. Risk f. r.

No a priori 2.8 % 1.3 % 1.5 %
classical Bayes’theorem 3.0 % 2.4 % 0.6 %
modified Bayes’theorem 2.8 % 1.3 % 1.5 %

Case III

In case III, we suppose that the instrument is deviating, andmay operate outside its ac-
curacy range due to a large undetected systematic deviationthat may remain undetected
till the next calibration. Under such condition, the measured values become much less
reliable than thea priori knowledge about the process, and the application of Bayes’
theorem is expected to assign full credibility to thea priori information, provided that
the range of the possible instrument deviation is correctlyestimated1.

Therefore, to take into account also extreme situations, the deviation of the instru-
ment is simulated as explained in Sec. 9.5.3 . We can take intoaccount this deviation
in the RFV associated to each measured value, by considering the presence of a sys-
tematic contribution. Under this assumption, thea priori RFV Rnv (blue lines) and the
RFV Rm associated to one measured value (green lines,Rm = 15.04 in the figure) are
the ones shown in Fig. 10.5. The random PDs in both RFVs are built in the same way
as in case I, while the internal PD ofRm is built by considering a rectangular PD over
interval±3σnv.
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Figure 10.5: A priori RFV is represented by blue and RFV associated to one measured value represented
in green, in case III.

1This can be done by analysing the history of all previous calibration results.
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Figure 10.6: Case III: a priori pdf associated to the resistors (red line); pdf of the a posteriori mean
values when the classical Bayes approach is followed (blue line); pdf of the a posteriori mean values
when the modified Bayes approach is followed (green line).

Eq. (10.1) is applied to all RFVs representing the simulated measured values and
the distribution of the obtainedMa posteriori values is represented by the green pdf in
Fig. 10.6. It can be seen, in this figure, that the distribution of the possibilistic means of
thea posterioriRFVs is significantly narrower than the distribution of thea posteriori
mean values obtained from the classical Bayes’ theorem. Thisis due to the fact that
the possible instrument’s undetected systematic deviation is correctly modeled by the
RFV representation and, consequently, a significantly larger correction is applied on
the measured values provided by the instrument. This implies that RFVs are provid-
ing a better model of the available information compared to aprobability distribution
function. This does also explain why the false rejection risk is even lower than the
one shown in Table 10.1. It is worth noting that, should the instrument operate under
these critical conditions, the provided measurement results would be useless without
the applied correction and the risk of false rejection wouldbe very high. The applica-
tion of Bayes’ theorem, by considering the availablea priori information, corrects the
measured values so that this risk is reduced. It is also worthnoting that this reduction
is not due to acceptance of all resistors, but only to the factthat those outside tolerance
are correctly identified and discarded. Moreover, the fact that a large deviation is mod-
eled by the RFV representing the measured values does not meanthat the measured
values are indeed useless, as it might be incorrectly thought, since the same results
are obtained when much smaller deviations are considered, as proved by the additional
simulation results provided in next Section 10.4.

Conformity assessment is also considered, by considering the results from (10.1),
and the risk’s values given in the last row of Table 10.3 are obtained. Again, the results
in the first two rows of the table are those in the situation when there is noa priori
information and hence, measurement data is directly used inconformity assessment
and in the situation when the classical Bayes’ theore has beenapplied to obtain the
a posteriorivalue which has then been considered in conformity assessment. These
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results have been reported for the sake of comparison.
The obtained results show a great reduction of the risk values (the total risk is de-

creased by two orders of magnitude), thus also showing the great advantage in the use
of the proposed modified approach.

Table 10.3:Evaluated risks in case III.

Risk T Risk f. a. Risk f. r.

No a priori 13.5 % 0.1 % 13.4 %
classical Bayes’theorem 11.4 % 0.1 % 11.3 %
modified Bayes’theorem 0.3 % 0.3 % 0.0 %

10.4 Additional simulations

In order to verify the validity of the proposed approach, many different other simula-
tions have been run.

In the examples considered above (case II and case III), the RFV representing the
possibledeviations(process or instrument) is built by taking an internal PD of width
±3σnv.

Other simulations have been run, by considering, in the RFV representingdeviation,
an internal PD of width ranging from±σnv to±5σnv, that is lower and greater than the
considered deviation (3σnv). The results obtained under this assumption are shown in
Table 10.4, and show that the proposed modified approach works in a satisfactory way
even if the deviation is underestimated or overestimated, provided that the possibility
that a deviation exist is taken into account. The slight differences in the provided results
are due to numerical noise in the simulation..

Table 10.4: Evaluated risk for different widths of the internal part of the RFV representing the possible
deviation of the process or the instrument when the modified Bayes’ theorem is applied

Internal PD width
Production Process Deviating Instrument Deviating

Risk T Risk f. a. Risk f. r. Risk T Risk f. a. Risk f. r.

1 · σ 2.7 % 1.4 % 1.3 % 0.3 % 0.3 % 0.0 %
1.5 · σ 2.8 % 1.4 % 1.4 % 0.3 % 0.3 % 0.0 %
2 · σ 2.8 % 1.3 % 1.5 % 0.3 % 0.3 % 0.0 %
2.5 · σ 2.8 % 1.3 % 1.5 % 0.3 % 0.3 % 0.0 %
3 · σ 2.7 % 1.2 % 1.5 % 0.3 % 0.3 % 0.0 %
3.5 · σ 2.7 % 1.2 % 1.5 % 0.3 % 0.3 % 0.0 %
4 · σ 2.8 % 1.3 % 1.5 % 0.3 % 0.3 % 0.0 %
4.5 · σ 2.7 % 1.2 % 1.5 % 0.3 % 0.3 % 0.0 %
5 · σ 2.8 % 1.3 % 1.5 % 0.3 % 0.3 % 0.0 %

This shows that, applying the modified Bayes’ theorem (based on the possibility dis-
tributions) and considering also the systematic contributions in the RFVs of either the
production process or the instrument improves the results and reduces the risks’ values,
even if the amount of the deviation is not exactly known and hence somehow roughly
estimated. Even if such a statement may appear as counterintuitive, especially when
the deviation is underestimated, it is absolutely plausible, given the fact that the con-
sidered deviation is the same as the required tolerance. Therefore, even when a smaller
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correction than the actual deviation is considered by the modified Bayes’ theorem, it is
enough to reduce the risk of wrong decision due to the instrument deviation and reduce
it when the production process is deviating.

10.5 Evaluating the possibility of deviation

The main limitation in the industrial application of the classical Bayes’ theorem is that,
since, if either the process or the instrument deviate with respect to the situation repre-
sented by the employed distributions, thea posterioriinformation might be misleading.
On the other hand, even if we want to use the modified Bayes’ theorem presented in
this chapter, to construct the RFVs, it is necessary to know the possibility of deviation
in thea priori information or the instrument.

In principle, while it is possible to detect deviations in the instrument behavior by
calibrating it, though with a possible delay with respect tooccurrence time, deviations
in the process might be difficult - if not impossible - to detect unless additional infor-
mation is available.

In the present day where there is Internet of Things (IOT) andBig data, we have ac-
cess to a huge amount of data from a large number of sources. Inan industrial scenario,
this means that we have access to data from hundreds or thousands of sensors placed
throughout the industry. If any of that data is somehow correlated to the measurand,
that would mean that this data could be used to make a correlation between the measur-
and and the additional data,in other words, more educated guesses about the measurand
could be made using this data.

So, theoretically speaking, if we have access to the right sort of data, it is not im-
possible to verify our measurement results with this additional information so that any
possible deviation in either the instrument or the process could be detected. In the age
of big data, this sort of data is probably available to the metrologist, since it offers the
opportunity to access data, different from those directly related to the process or the
measurement results, but, still, correlated to the measurand. By analyzing those data,
it is possible to have a clearer idea if either the process, represented by thea priori
distribution, or the instrument is deviating.

In principle, once evidence is collected about the presenceof a possible deviation,
but it is not possible to apply a correction, it is possible toadapt thea priori information
or the measurement result to recount for it.

10.6 Experimental case study

To verify the modified Bayes’ theorem based on the RFVs as well asto demonstrate
how the use of other measurement data could be used to evaluate the possibility of a
deviation as proposed in Sect. 10.5, a simple experiment hasbeen considered: A simple
electric circuit is built as shown in Fig. refcircuit, whichsimulates a power system
supplying an industry; the voltage and the current on the load side are being monitored.
The voltage needs to be within certain limits and this is thea priori distribution.

The voltage sourceVS is the grid voltage. The source resistance has been taken to
be 2 Ω. The load side resistance is a variable resistor and is varied from 104 Ω to
the maximum value which is600 Ω. The minimum value104 Ω that can be set on
the variable resistance is evaluated so as to not exceed the 2A current rating of the
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elements used in the circuit.

Figure 10.7: Electrical circuit used for the experiment.

The a priori information about the the supply voltage during normal operation
needs to be known to perform the conformity analysis as well as to be used in the
classical and modified Bayes’ theorems.

To collect information about the possible variability of the supply voltage (VL) dur-
ing normal operations, data have been gathered for a few daysusing the NI 9215 DAQ
board without changing any parameter in the circuit so that the source was loaded with
a constant current of 1 A and did not contribute to voltage variability. 2000 data have
been collected and the distribution attributed to these measured voltage values has been
assumed as thea priori distribution. The histogram of the collected data is shown in
Fig. 10.8 and the same Fig. 10.8 shows that their distribution can be very well approx-
imated by a normal distribution with mean valueVap = 220 V and standard deviation
σv = 1.14 V. The uncertainty of the experimental setup is negligible compared to this
and hence has not been included.

Figure 10.8: Distribution of the supply voltage values.

So, thea priori distribution is hence given by

136



10.6. Experimental case study

pX (x) = N
(

Vap, σ
2
v

)

(10.6)

whereVap = 220 V andσv = 1.14 V.

This a priori distribution can be used to perform the conformity analysison the
measured values of the supply voltage.

Since the current and voltage on the load are correlated, it is possible to perform
a regression and obtain a relation between these two quantities. This is used while
monitoring the supply voltage on the load side. Hence, when the voltage is measured, it
is possible to look at the corresponding current and have an idea if a deviation occurred
in either the instrument or thea priori distribution of the voltage.

To do this, the current on the load side has been measured by using a1 Ω shunt and
measuring the voltage across the shunt using an NI 9215 DAQ board.

As already stated, a regression analysis has been performed, keeping the source
voltage constant, to obtain a relationship between the loadvoltage and the load current
which could be used to asses whether variations in the measured load voltage should
be attributed to variations in the load (process variations) or instrument drifts. The
relationship between the voltage and current in this particular case has been found to
be as below:

Vest = 230.08− 12.36 · Im (10.7)

whereVest is the estimated voltage givenIm which is the measured value of the load
current. The regression line is shown in Fig. 10.9, togetherwith the acquired data,
and it can be readily recognized that the regression equation is not a perfect fit for
all measured values. So, the estimated values of voltage obtained from the regression
equation may have a high residual error with respect to the actual value and cannot be
used to compensate for the deviation but only to assess whether a deviation has likely
occurred either in the process or the instrument.
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Figure 10.9: Regression plot.

Reference values for the supply voltageVL RMS value are obtained by means of
a specifically designed measurement setup, based on a resitive voltage divider, an NI
9215 DAQ board and a developed VI in LabView to evaluate the RMSvalue from the
acquired samples. The standard uncertainty of this setup isestimated to be 6.8 mV. The
values measured by this setup were used as “true values” of the supply voltage.

On the other hand, an Agilent 34450A 5.5 digit multimeter hasbeen used to gener-
ate the actual measured values of the supply voltageVL to be used in the conformity
analysis.

According to the manufacturer specifications for measurement of AC voltages, the
following applies for the 34450A multimeter:

• the measured 220 V and 50 Hz voltage falls in the 750 V and 45 Hz– 10 kHz
range;

• in the 750 V range, an accuracy interval

±0.2 % of reading ± 0.1 % of range

is provided in the data sheet, which corresponds to:

±
(

Vm · 2 · 10−3 + 750 · 10−3
)

V

whereVm is the measured voltage value.

To estimate how the measured value distribute inside this accuracy interval, a con-
stant voltage with rms valueV = 220 V was generated and sent to the multimeter input.
2000 measured values have been collected, and the histogramin Fig. 10.10 has been
generated. It can be readily checked that the obtained histogram can be pretty well
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Figure 10.10: Distribution of the voltage values measured by the multimeter under a constant ac input
voltage.

interpolated by a normal distributionN (220, σ2
m). Therefore, the pdf corresponding to

the measurement can be represented byN (Vm, σ
2
m).

Only the two cases where either the instrument or the processdeviates have been
considered as it has already been established through simulations that when there is no
deviation in either the instrument or thea priori distribution, both the classical and the
modified Bayes’ theorem provide correct results.

10.6.1 Conformity analysis

The considered experimental set-up is aimed at modeling thecase of a customer whose
contract with the utility grants strict tolerance limits for the admissible variation of the
supply voltage at the coupling point.

In the considered example, a tolerance interval of±3σv limit (σv = 1.14 V) was set
for the supply voltageVL about its rated value of 220 V. Consequently, a conformity
analysis on the measured values is performed, to asses whether the voltage supplying
the load (VL) remains inside these limits

To perform the conformity analysis on the voltage measurements using the modified
Bayes’ theorem, the following steps have been considered:

• Determine if there is a deviation in the instrument or the supply voltage
To estimate whether a deviation occurred in the source (hereassimilated to the
processof the previous examples) or in the instrument, for any measured voltage
value, equation (10.7) is used to compute the estimated voltage (Vest) correspond-
ing to the measured current valueIm. This value is compared with the correspond-
ing measured voltage valueVm. If the two values are compatible, then it means
that the source that is likely deviating. If the values are not compatible, it means
that the instrument is likely deviating.

• Estimate the deviation and construct the appropriate RFV for the process
and instrument.
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Supply voltage deviation:When the supply voltage is deviating, we can estimate
the contribution of such a deviation to uncertainty in the definition of thea priori
distribution as the difference between the mean of thea priori distribution (Vap)
and the estimated voltage (Vest) using equation (10.7). This deviation is consid-
ered as the width of a uniform PD centered atVap, which represents the internal
membership function of the RFV corresponding to thea priori distribution.

Instrument deviation:When the instrument deviates, it is possible to estimate
the contribution of such a deviation to uncertainty in the measured voltage as the
difference between the estimated voltage (Vest) using equation (10.7) and the mea-
sured value (Vm). This deviation is again considered as the width of the uniform
PD, centered atVm, which represents the internal membership function of the RFV
used to represent the measurement.

• Apply the modified Bayes’ theorem as explained in section 10.2.

10.6.2 Case I: Deviation in the Supply voltage

To simulate a deviation in thea priori distribution, the value of the variable resistor
RL has been varied from the maximum value to the minimum. This changes the value
of the current and since the source side resistance is constant, the voltage drop on the
source side changes which results in a change in the load sidevoltage.

The voltage measurements obtained using the NI 9215 DAQ are considered to be the
true values and the decision made using these data is considered as the correct decision.
Then, the decisions are again evaluated using the measurements obtained from Agilent
34450A multimeter in three scenarios:

• Without applying Bayes’ theorem, that is directly using themeasurements to make
a conformity decision.

• Using the classical Bayes’ theorem as explained in section 9.4 on the measurement
data and using thea posteriorivalue to make a decision.

• Using the modified Bayes’ theorem as explained in section 10.2 on the measure-
ment data and using thea posteriorivalue to make a decision.

To use the modified Bayes’ theorem, the RFVs representing thea priori distribution
and the measurement are built as follows:

• a priori: The internal membership function representing the systematic contri-
butions to uncertainty is evaluated as explained in section10.6.1 and the PD
representing the random contributions to uncertainty is obtained by making a
probability-possibility transformation ofN (Vap, σ

2
v). The RFV is then obtained

as explained in section 10.2.

• Measurement:Since the deviation is only present in the source, the RFV repre-
senting the measurement result consists of only the random contribution to un-
certainty. This is obtained by making a probability-possibility transformation of
N (Vm, σ

2
m).

The RFVs for thea priori and the measurement can be seen in Fig. 10.11
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Figure 10.11:RFVs for the a priori and the measurement of the supply voltage.

Risk analysis has been performed just as in section 10.3 and the results are given in
Table 10.5.

Table 10.5:Evaluated risks when the process deviates.

Risk T Risk f. a. Risk f. r.

No a priori 4.3 % 2.5 % 1.8 %
classical Bayes’theorem 6.6 % 6.2 % 0.4 %
modified Bayes’theorem 4.2 % 2.5 % 1.7 %

It can be clearly seen that the classical Bayes’ theorem actually provides worse
results whereas the modified Bayes’ theorem provides slightly better results compared
to the case where the measurement results are directly used to make a decision.

10.6.3 Case II: Deviation in the instrument

To simulate a deviation in the instrument, the current has been kept constant at1 A and
voltage has been measured using the Agilent 34450A, but someerror has been added
to the actual measured values. The error has been increased in each step such that the
deviation in the final measurement would be exactly3.5V , which is equal to3σv.

Just like the previous case, the voltage measurements obtained using the NI 9215
DAQ are considered to be the true values and the decision madeusing these data is
considered as the correct decision. Then, the decisions areagain evaluated using the
measurements obtained from Agilent 34450A multimeter in the three scenarios:

• Without applying Bayes’ theorem, that is directly using themeasurements to make
a conformity decision.

• Using the classical Bayes’ theorem as explained in section 9.4 on the measurement
data and using thea posteriorivalue to make a decision.

• Using the modified Bayes’ theorem as explained in section 10.2 on the measure-
ment data and using thea posteriorivalue to make a decision.
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To use the modified Bayes’ theorem, the RFVs representing thea priori distribution
and the measurement result are constructed as follows:

• a priori: Since the deviation is only present in the instrument, the RFVrepre-
senting thea priori information consists of only the random contribution to un-
certainty. This is obtained by making a probability-possibility transformation of
N (Vap, σ

2
v).

• Measurement:The internal membership function representing the systematic con-
tributions to uncertainty is evaluated as explained in section 10.6.1 and the PD
representing the random contributions to uncertainty is obtained by making a
probability-possibility transformation ofN (Vm, σ

2
m). The RFV is then obtained

by combining the two contributions as explained in section 10.2.

The RFVs for thea priori and the measurement can be seen in Fig. 10.12
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Figure 10.12:RFVs for the a priori and the measurement of the supply voltage.

Risk analysis has been performed just as in section 10.3 and the results are given in
Table 10.6.

Table 10.6:Evaluated risks when the instrument deviates.

Risk T Risk f. a. Risk f. r.

No a priori 10.4 % 0.1 % 10.3 %
classical Bayes’theorem 5.5 % 0.0 % 5.5 %
modified Bayes’theorem 0.1 % 0.1 % 0.0 %

In this case, it can be seen that the results provided by the classical Bayes’ theorem
decrease the risk compared to the first case where the measurement results are directly
used to make the decision. On the other hand, the modified Bayes’ theorem still signif-
icantly decreases the risk compared to both the other cases.

142



CHAPTER11

Conclusion and future research

11.1 Conclusion

In this work, it has been successfully demonstrated that theuse of RFVs provides sig-
nificant advantages in the areas of Kalman filtering and conformity analysis with re-
spect to the corresponding algorithms based on the theory ofprobability, when there
are systematic contributions to uncertainty.

There have been KF algorithms proposed in the literature, which make use of the
theory of possibility to deal with systematic contributions to uncertainty. But these KF
algorithms consider uncertainty in a fuzzy way. So, they arenot compatible with the
guidelines presented in the GUM. So, the uncertainty associated to the state predictions
provided by these KFs are also not compatible with the GUM. RFVs, on the other hand,
represent also the systematic contributions to uncertainty in a GUM-compatible way.
Hence, an RFV based KF is more suitable when propagating systematic contributions
to uncertainty.

Since a KF algorithm based on RFVs which can provide reliable state estimates
while estimating uncertainty accurately has still been missing in the literature, a pos-
sibilistic RFV based KF algorithm was proposed in this thesis. The advantages of this
possibilistic KF are accurate state and uncertainty limitsestimates, with a high percent-
age of the predicted state estimates inside the evaluated uncertainty limits.

The applications of possibilistic KFs have been mainly in the areas of navigation
systems and control systems. But, in time synchronization networks like PTP or NTP
networks, there have been applications of only the probabilistic KF algorithms mainly
to filter the random noise in the time offset calculations in the slave clock to provide a
more accurate time synchronization. Possibilistic KFs have never been used in this area.
In this thesis, the developed possibilistic KF algorithm has been used in a PTP network
to not only propagate the systematic contributions to uncertainty in the network but also
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to define a defense strategy to improve the security of the network against malicious
attacks which has never been done before. It has been shown how the slave provides a
reliable time even under attack when the proposed strategy is used.

There have never been any possibilistic KFs that try to reduce the systematic con-
tributions to uncertainty. The proposed possibilistic KF has been developed further to
provide a partial reduction in the systematic contributionto uncertainty thereby also
reducing the overall uncertainty and it has been successfully applied in simulations as
well as in a drone to estimate the distance traveled by the drone. It has been shown that
the error in the estimated distance by the drone is significantly reduced by applying the
proposed algorithm.

The proposed possibilistic KF algorithm could be used in thenavigation systems
in vehicles or robots and in control systems where there is a possibility of systematic
error.

Another area of research covered by this thesis is related tometrology. There have
been research articles that demonstrated the advantages ofusing RFVs to represent the
measurement results when there are systematic contributions to uncertainty. However,
up to now, RFVs have never been exploited in conformity analysis.

In this thesis, an RFV based conformity analysis has been presented along with a
strategy to use other available information to make decisions which significantly im-
proved the results decreasing the risk of wrong decisions especially when the measur-
ing instrument deviates thereby having a systematic error in the measurement. The
use of this method could provide significant advantages in industries, since this would
decrease the risk for industries to stop their manufacturing processes because of the
instrument deviation, thus saving a lot of time and effort.

11.2 Future Research

This thesis represents only a step in the application of the possibility theory and RFVs in
metrology. Several interesting and important points in metrology would largely benefit
of an RFV approach, such as the representation of bimodal or multimodal distributions
in possibility and the deconvolution of probability distributions, but are still largely
unsolved.

In particular, the second problem is very interesting in metrology and the mathemat-
ical tools proposed in this thesis might help finding a solution. If there is a large number
of experimental data, if there is a way to perform the deconvolution of two distributions
accurately, it would be possible to define a more accuratea priori information for a
process removing the uncertainty of the measuring instrument.

This is especially useful when calibration is performed forinstruments with an ac-
curacy that is comparable with that of the calibration process itself. In this case, the
uncertainty in calibration can not be neglected. So, if a deconvolution could be made,
it would be possible to define a more accuratea priori for the instrument.

Currently, the problem is that the mathematics using probability is very easy to
develop when the two pdfs are both normal distributions. Whenthis is not the case, the
mathematics would become much more computationally intensive. So, the use of PDs
and RFVs could once again prove useful here.

JCGM guide 106 specifies the instructions and methodology to perform conformity
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analysis. In particular, it discusses the calculations of the probabilities of conformity,
acceptance intervals, consumer and producer risks etc. Theentire document is based
on the theory of probability. It would make an interesting study to see how the the-
ory of possibility and RFVs could be used instead to redefine the methods to perform
conformity analysis. This is also intended for the future.

As it has been demonstrated in chapters 6 and 7, the use of the possibilistic KF
would make it possible to defend against malicious attacks in PTP networks. This is
useful in various applications such as phasor measurement units (PMUs), intelligent
circuit breakers in power systems etc. There are International standards defined for the
communication and time synchronization in such devices in power systems.

IEC61850 is the standard that specifies the requirements and methods for communi-
cation between intelligent devices in a power system. In particular, IEC/IEEE 61850-
9-3:2016 specifies the precision time protocol profile that is to be used in such devices.

There have been various research articles in the literaturethat investigate the effect
of malicious attacks on PMUs and circuit breakers in power systems. But, none of them
proposes a defense strategy against such attacks. So, the application of the proposed
defense strategy would be quite useful. So this is also intended for the future.

Another interesting application would be in speedometers and odometers of vehi-
cles. The regulations for speedometers in vehicles state that the speedometer in the car
is supposed to be designed in such a way that it never shows a value that is lower than
the actual speed of the vehicle and it is allowed to show a value up to10% more than
the actual speed of the vehicle.

This means that the speedometer of the car is allowed to have any systematic error
in its reading between0% and10%. So, this means that it is safe to assume that there
is a positive systematic error somewhere between0% and10%.

Therefore, the algorithm used in chapter 8 would be quite useful here. So, this is
another case that could be investigated in the future.

Furthermore, further research can be also planned in devising control strategies for
navigation of drones and robots using the possibilistic Kalman filter
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