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Abstract

In the last decades formation flying obtained such prolific results that ESA, in collabora-
tion with NASA, decided to develop one of the most ambitious missions ever conceived:
Laser Interferometer Space Antenna (LISA). The objective of the mission is to observe
the entire universe in search of gravitational waves, detecting and measuring with high
precision this obscure phenomenon. LISA assumes the so-called cartwheel formation,
where three satellites uniformly distributed on a circumference, keep a rotating trian-
gular configuration during operation in an Earth Displaced Heliocentric Orbit (EDHO).
The uniqueness of LISA is due to the fact that just gravitational accelerations affect the
spacecraft’s motion, making previous studies on this formation valid only for this peculiar
mission. The work aims to generalise the framework in which this type of cartwheel for-
mation has been investigated up to now, focusing on two main objectives: the acquisition
of the formation and the transfer of the fleet from Earth to the final heliocentric orbit.
In a different dynamical environment, the satellites must maintain the correct reciprocal
position to keep the stability, measured using geometrical parameters like arm length, arm
length rate and corner angle, within the imposed requirements. The stabilization process
is tackled by optimizing the initial conditions of the spacecraft starting from a Keplerian
definition of the cartwheel configuration; this optimization is proposed for multiple type
of formation with different initial displacement angles and arm lengths. Regarding the
first phase, a single launch containing all the units is considered; this imposes a major
challenge in the mediation process between the transfer and the science phase in which
the inter-satellite distance pass from zero to 2.5 million km. This issue is addressed by
developing two different strategies which aim directly at the final science orbits previously
optimized. These results provide a more general view of the cartwheel formation flying
in EDHO suggesting a possible optimization approach for the maintenance of the config-
uration and defining a fuel-optimal transfer design for future works.

Keywords: Cartwheel Formation Flying; Trajectory Design; Earth Displaced Helio-
centric Orbits; Optimized Formation;





Abstract in lingua italiana

Nelle ultime decadi le missioni in formazione hanno ottenuto risultati così positivi da
portare l’ESA, in collaborazione con la NASA, a sviluppare una delle più ambiziose mis-
sioni mai concepite: LISA. L’obiettivo della missione è quello di osservare l’intero universo
in cerca di onde gravitazionali, individuando e misurando con elevata precisione questo
fenomeno. La configurazione assunta da LISA, chiamata ‘cartwheel’, è composta da tre
satelliti distribuiti uniformemente su una circonferenza su cui la formazione ruota man-
tenendo una geometria triangolare durante le operazioni in EDHO. L’unicità di LISA
è dovuta al fatto che solamente accelerazioni gravitazionali ne influenzano la dinamica,
limitando la validità di precedenti studi a questa missione. La tesi punta a generalizzare
il framework in cui questo tipo di configurazione a ‘cartwheel’ è stata investigata fino ad
ora, concentrandosi su due maggiori obiettivi: la stabilità della formazione e il trasferi-
mento della flotta dalla Terra fino all’orbita eliocentrica finale. Soggetti ad una diversa
dinamica, i satelliti devono mantenere la corretta posizione reciproca per conservare la
stabilità, misurata attraverso la lunghezza dei bracci, le velocità relative e l’angolo tra
i bracci, entro i limiti richiesti. Il processo di stabilizzazione è affrontato ottimizzando
le condizioni iniziali del satellite partendo da una definizione Kelperiana della configu-
razione. L’ottimizzazione viene proposta per vari tipi di geometria modificando l’angolo
di spostamento iniziale e la lunghezza dei bracci. Per quanto riguarda la prima fase della
missione viene considerato un singolo lancio contenente tutti e tre i satelliti; questo im-
pone una maggiore sfida per il passaggio dal trasferimento alla fase scientifica in cui la
distanza tra i satelliti passa da zero a 2.5 milioni di km. Questo problema viene trattato
sviluppando due diverse strategie che puntano direttamente alle orbite scientifiche finali
precedentemente ottimizzate. Questi risultati forniscono una visuale più generale sulla
‘cartwheel’ formation in EDHO suggerendo un possibile approccio di ottimizzazione per
il suo mantenimento e trasferimento per lavori futuri.

Parole chiave: Formazione a Cartwheel; Design di Traiettoria; EDHO; Formazione
Ottimizzata;
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1| Introduction

The space industry contains in itself a fundamental dichotomy between the necessity of
making groundbreaking technological and scientific discoveries and the demand of limiting
the costs to the essentials. This phenomenon increased when private companies gradually
began to invest in the space sector, trying to develop more financially stable models. In
the last decades, the launch of formation flying missions increased significantly, trying to
reconcile low-budget solutions with innovative results.
Formation flying (FF) can be defined as a multi-satellite mission in which a desired relative
attitude and position between the spacecraft is maintained stable or actively controlled.
Several benefits can be obtained by using this type of mission, which are here briefly
explained. The main advantage is the possibility of dividing the functions of a single
spacecraft between the elements composing the formation, adding redundancy to the sys-
tem. In this sense, the failure of a component or even the loss of one satellite would not
jeopardise the formation’s performance, while in the case of single spacecraft missions this
could result in an early end of operation or the need for manned on-orbit maintenance.
Manufacturing multiple smaller satellites, usually very similar or even identical to each
other, can simplify and reduce the cost of the production and testing phase compared
to a monolithic system [1]. The second reason consists in the high technological and
scientific returns of these missions; by assuming specific configurations the formation can
achieve high-precision results that could not be obtained otherwise, in particular improv-
ing resolution and coverage of Earth-observing missions. In addition, the development of
precision formation flying is fundamental for the refinement of autonomous rendezvous
and docking, on-orbit assembly and servicing. Finally, formation flying not only improves
the quality of already achievable results but also gives the possibility of designing config-
urations capable of measuring and detecting phenomena that with a single satellite could
not be observed. In general FF has a set of unique characteristics that can be summarized
in these four points [2]:

Formation Design: The science objective of the mission dictates a geometry that must
be kept during the entire lifetime of the spacecraft. The final goal is to keep the
formation as long as possible with no or low fuel consumption.
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Relative Navigation: Since FF is such only if satellites maintain a relative distance
between each other, is necessary to assess the relative positions between two or
more members of the fleet to verify that the requirements are all satisfied.

Inter-satellite Communication: An exchange of information between the satellites is
vital for their survival since the formation control needed to keep the correct distance
between the S/C heavily relies on these communications.

Formation Control: The formation needs a control system to keep the geometry as
intended, especially in highly perturbed orbits.

Generally, formation flying mission can be categorized by the body that is orbited by
differentiating between geocentric or heliocentric missions and by the geometry assumed
by the fleet during operations; some examples are trailing, in which different satellites
follow the same trajectory, tetrahedral, where four satellites assume a pyramidal configu-
ration and cartwheel formation, composed of n-spacecraft orbiting the same relative orbit
equally spaced.

1.1. Formation Flying Missions

In the last decades, multiple formation flying missions have been launched successfully;
in this section, an initial presentation of the most relevant FF missions is followed by a
description of the cartwheel formation, a particular type of configuration on which this
work is focused on. Two of the earliest missions implementing formation flying technology
are ESA’s CLUSTER mission and ESA/NASA GRACE mission, launched respectively
in 2000 and 2002. The Cluster mission is composed of four identical spacecraft to study
small-scale plasma structures at the boundaries of the magnetosphere. The satellites are
injected into highly elliptical polar orbits, designed to obtain a tetrahedral configuration,
ideal to measure the three-dimensional plasma structures in the different regions of Earth’s
magnetic field. The necessity of collecting three-dimensional measurements imposes the
type of configuration assumed by the satellites since one or two-spacecraft missions are
capable of obtaining only one-dimensional measures [3]. After over 20 years of observa-
tions, the Cluster mission provided a deeper understanding of the magnetosphere thanks
to its unique architecture. Cluster’s main achievements consisted of a more complete
investigation of the solar wind and the turbulence associated with this phenomenon, ob-
servations of the magnetic reconnection process and in-depth analysis of space weather
and geomagnetic storms, making it one of the most successful ESA’s mission1.

1https://www.esa.int/Science_Exploration/Space_Science/Cluster/Cluster_s_20_years_
of_studying_Earth_s_magnetosphere

https://www.esa.int/Science_Exploration/Space_Science/Cluster/Cluster_s_20_years_of_studying_Earth_s_magnetosphere
https://www.esa.int/Science_Exploration/Space_Science/Cluster/Cluster_s_20_years_of_studying_Earth_s_magnetosphere
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DLR and NASA developed the GRACE mission which features two identical satellites,
GRACE-1 and GRACE-2, in a leader-follower configuration on circular polar co-planar
orbits. The purpose of this mission is to obtain a high-fidelity model of Earth’s gravity
field by measuring the spatial and temporal alteration of its mass. The mean inter-satellite
distance between the two units is 220 km with variations of ± 50 km; the key mission’s in-
strument, Ka-Band Ranging System, measures this separation which is a direct expression
of the gravitational variations due to a non-homogeneous mass distribution [4]. GRACE
mission provided fundamental insights into the relationship between oceans and land in
terms of mass redistribution around the globe. The constant mapping of the gravity vari-
ations offered helpful information on the loss of ice mass in the polar regions, the sea level
rise, underground water sources and solid Earth changes2.
Formation Flying missions are not only widely used for investigating scientific goals but
can be also employed as technological demonstrators like PROBA-3 and PRISMA, both
developed under ESA’s supervision. PROBA-3 is a technological demonstrator for precise
formation flying, consisting of two small spacecraft keeping a distance between 25 to 250
meters and controlling the relative position with accuracy in the order of one millimitre.
Such configuration, if successful, could set the path for a new multi-satellite mission in
which the fleet acts as a single structure, with the possibility of improving different fields
such as Earth-observation, in-orbit servicing, deorbiting and automated rendezvous and
docking [5].

Figure 1.1: PROBA-3 configuration (image credit: PROBA-3 consortium).

2https://www.jpl.nasa.gov/news/prolific-earth-gravity-satellites-end-science-mission

https://www.jpl.nasa.gov/news/prolific-earth-gravity-satellites-end-science-mission
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PRISMA mission‘s objective is to test Guidance, Navigation and Control (GNC) capabil-
ities for formation flying and rendezvous. The mission consists of two satellites, one called
MAIN with high manoeuvrability and one called TARGET with no orbit manoeuvring
capability; once in orbit, for 8–10 months, a continuous sequence of experiments ranging
from autonomous formation flying using GPS to rendezvous and proximity operations us-
ing vision-based systems. This mission manages to test and validate different algorithms,
sensors and actuators in the formation flying framework [6, 7].

Cartwheel formation

Formation flying missions are not limited to geocentric orbits, but can be applied to
different kinds of orbits such as heliocentric ones; the most remarkable example is Laser
Interferometer Space Antenna (LISA), programmed to be launched in 2034. LISA is the
third L class mission selected in the ESA Cosmic Vision 2015-2025 plan with the objective
of detecting and measuring gravitational waves with frequencies between 0.1 mHz and
1 Hz, undetectable on Earth due to limitation of the instruments’ length and gravity
gradient noise. The formation assumed for this mission, as shown in Fig. 1.2, is called
cartwheel formation flying, which in general can be described as n satellites on individual
orbits uniformly distributed on an ellipse centred on the formation centre. In the case of
LISA, three identical satellites orbit the Sun in a trailing Earth Displaced Heliocentric
Orbit (EDHO) with a distance from Earth between 50 and 65 million km and an inter-
satellite distance of 2.5 million km. The objective of the mission design is to maintain the
formation within the limit imposed by the mission requirements on arm length L (relative
distance between the satellites), arm length rate L̇ (relative velocity between the satellites)
and corner angle α (angle between the arms of the formation). What makes this mission
unique is that the spacecraft need to follow the two test masses contained in each S/C
which are subjected only to gravitational acceleration; all non-gravitational accelerations,
including Solar Radiation Pressure, are counteracted by the Drag-Free Attitude Control
System (DFACS), meaning that only gravitational acceleration affects the motion of the
spacecraft [8, 9].

1.2. Motivation, research question and objective

LISA is a unique mission due to its payload, the dynamic conditions under which oper-
ates and its high-level requirements needed to gather successfully all the data, meaning
that a more general understanding of the cartwheel configuration is needed in case other
missions target similar formation with different scientific requirements and payloads. Mis-
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Figure 1.2: Cartwheel formation flying.

sions taking advantage of this cartwheel configuration are currently being proposed, with
ALBATROS being the most remarkable example. The objective of this mission consists
of an all-sky of monitoring of high-energy events with particular attention on obtaining a
substantial sample of Gamma Ray Bursts [10]. The focus of this work is centred on defin-
ing different optimization strategies both for the formation design and the transfer of the
fleet. In particular, to generalize the problem with respect to LISA, a complete dynamic
including non-gravitational forces is considered both for the optimization of the formation
and the transfer. This work has been developed to answer the following question:

How can we design a cart-wheel formation maximizing its stability
and achieve the best strategies to transfer it?

The first layer of complexity of this problem is given by the fact that three individual
satellites must be optimized both for the formation design and the transfer. The units of
the fleet composing the cartwheel formation belong to the SmallSat class, meaning that
the mass ranges from 100 kg to 500 kg; with this mass all spacecraft can be launched using
a single launcher, implying that is necessary to find a way to reconcile the initial transfer
phase in which the satellites are all stowed in the launch vehicle with a null inter-satellite
distance, with the scientific phase in which the nominal arm length for a LISA-like mission
is 2.5 million km. The equilibrium between the two phases is of high priority to assure a
stable formation and a low-cost transfer. For this reason to avoid dealing with a single
optimization problem taking care of both phases simultaneously the problem is split into
two simpler objectives ensuring a lower level of complexity. The three main focus points
are a preliminary analysis of formation stability and transfer costs, the definition of an
optimization procedure to stabilize the formation and the selection of a transfer strategy.
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These objectives are:

1. Preliminary analysis on formation design and transfer: the parameters affecting the
evolution of the geometry characteristics of the fleet are studied to better understand
the behaviour of the cartwheel formation. In addition, an initial analysis of the
transfer is needed to gain general knowledge on the main figure of merit of the
transfer, such as ∆V and time of flight.

2. Develop an optimization routine to maintain the formation stable. The geometry
and its variation are defined by the science objectives which can vary from mission
to mission; the performances of the optimization are measured in terms of variation
of arm length, arm length rate and corner angle with respect to the nominal values.

3. Develop an optimal transfer strategy to deploy the three S/C in their final orbits.
The complexity of such problem relies mainly on the fact that each satellite is
independent from the others from a certain epoch onward, increasing the degrees of
freedom of the problem.

1.3. Thesis Overview

The thesis is structured as follows. In Chapter 2 the theoretical background for formation
flying is presented starting from the equations of relative motion necessary to describe
FF. In Chapter 3 the environment in which the work is developed, GODOT and PyGMO,
is described and the most important and used features are discussed with more attention.
In Chapter 4 a first general presentation of the problem is followed by a more detailed
analysis of the approaches used to optimize the formation maintenance and transfer. In
Chapter 5 the results of the optimizations are presented and finally, in Chapter 6, the
conclusions and possible future development are stated.
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This chapter collects the main theoretical topics which support this work. A review
of state-of-the-art formation flying concepts is presented, in which different models of
relative motions are presented and analysed to achieve a mathematical description of the
cartwheel formation. The objective of this chapter is to retrieve the relations between
orbital elements in such a way that the cartwheel formation is fully described; starting
from non-linear relative motion, the equations are linearized and then parameterized with
respect to relative orbital elements (ROE) through which a description of the formation
can be obtained.

2.1. Non-linear relative motion

The first step to define the cartwheel configuration is to find the equations that charac-
terize the relative motion of a satellite. Let’s consider two spacecraft orbiting the same
body and refer to them as chief and deputy. This nomenclature is used to describe a
general motion between two satellites with respect to the more specific leader/follower
and target/chaser, respectively used for in-line formation flying and orbital rendezvous.
The objective is to describe the motion of the deputy with respect to the chief, which can
be a real satellite or a fictitious point in space like in the cartwheel formation. The rela-
tive motion equations are defined using Keplerian two-body dynamic, first in the inertial
frame and then in the Euler-Hill frame. The inertial frame is centred at the primary and
the axis are defined as follows: x̂ is directed from the main body’s centre along the vernal
equinox, ẑ is normal to the plane, positive in the north direction and ŷ complete the coor-
dinate system. The Euler-Hill frame is instead an LVLH rotating system with the origin
on the chief satellite, in which the x̂ component is directed from the spacecraft radially
outward, the ẑ component is normal to the orbital plane and the ŷ component complete
the right-handed coordinate system as shown in Fig. 2.1; this frame will be referred to
as L. Note that in the equations any quantity associated with the chief will be indicated
using (·)0, while for the deputy (·)1 will be used.
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ẑ

 

ρ

Figure 2.1: Rotating Euler-Hill frame.

The inertial equations that describe the motion of the chief and deputy are

r̈0 = − µ

r30
r0 where r0 = ||r0||

r̈1 = − µ

r30
r1 where r1 = ||r1||

while, given that the relative position of the deputy with respect to the chief is ρ = r1−r0,
then the relative acceleration is

ρ̈ = − µ(r0 + ρ)

||r0 + ρ||3
+
µ

r0
r0

To define the relative acceleration between the two frames we can recall that

ρ̈ = ρ̈L + 2ωL × ρ̇L + ω̇L × ρ+ ωL × (ωL × ρ) (2.1)

where ωL is the angular velocity vector of the Euler-Hill frame relative to the inertial one.
The component-wise equations for the relative motions can be obtained substituting

ωL = [0, 0, θ̇0]
T

r0 = [r0, 0, 0]
T
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in Eq. 2.1, yielding to the following

ẍ− 2θ̇0ẏ − θ̈0y − θ̇20x = − µ(r0 + x)

[(r0 + x)2 + y2 + z2]
3
2

+
µ

r20

ÿ + 2θ̇0ẋ+ θ̈0x− θ̇20y = − µy

[(r0 + x)2 + y2 + z2]
3
2

z̈ = − µz

[(r0 + x)2 + y2 + z2]
3
2

(2.2)

where ρL = [x, y, z]T .

2.2. Linear relative motion

Eqs. 2.2 can be simplified by assuming that the chief is on a circular orbit around the

primary, which is usually an acceptable assumption. In this case θ̇0 = n0 =

√
µ

a30
, θ̈0 = 0

and r0 = a0 = const, that substituted in Eqs. 2.2, yields to:

ẍ− 2n0ẏ − n2
0x = − µ(a0 + x)

[(a0 + x)2 + y2 + z2]
3
2

+
µ

a20

ÿ + 2n0ẋ− n2
0y = − µy

[(a0 + x)2 + y2 + z2]
3
2

z̈ = − µz

[(a0 + x)2 + y2 + z2]
3
2

(2.3)

which is a system of non-linear equations describing the motion of the deputy relative to
the chief satellite orbiting on a circular trajectory [11]. These equations can be further
simplified by linearizing them with respect to the circular orbit, obtaining the so called
Clohessey–Wiltshire (CW) equations. By expanding the right-hand side (RHS) of Eqs. 2.3
and linearizing about the origin of the chief-fixed frame the following results are obtained

− µ(a0 + x)

[(a0 + x)2 + y2 + z2]
3
2

≈ n2
0(2x− a0)

− µy

[(a0 + x)2 + y2 + z2]
3
2

≈ −n2
0y

− µz

[(a0 + x)2 + y2 + z2]
3
2

≈ −n2
0z
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Then, the CW equations then can be written as

ẍ− 2n0ẏ − 3n2
0x = 0

ÿ + 2n0ẋ = 0

z̈ + n2
0z = 0

(2.4)

The closed-form solution of these equations, where cnt = cos(nt), snt = sin(nt) and the
subscript 0 is removed, meaning n0 = n, is given by:



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



4− 3cnt 0 0
1

n
snt

2

n
(1− cnt) 0

6(snt − nt) 1 0 − 2

n
(1− cnt)

1

n
(4snt − 3nt) 0

0 0 cnt 0 0
1

n
snt

3nsnt 0 0 cnt 2snt 0

−6n(1− cnt) 0 0 −2snt 4cnt − 3 0

0 0 −nsnt 0 0 cnt





x0

y0

z0

ẋ0

ẏ0

ż0


(2.5)

Some critical observations can be made. From Eqs. 2.4 it is clear that the motion along
the ẑ direction, also referred to as ‘out-of-plane’ or ‘cross-track’ motion is decoupled from
the one in the x̂-ŷ direction. As can be seen in the solution in Eq. 2.5 the cross-track
motion is a harmonic motion that can be cancelled by considering as initial conditions
z(0) = ż(0) = 0.
The along-track motion shows a drift which varies linearly with time, meaning that the
motion in the ŷ direction is unstable. It is possible to find a stable sub-space for which
this drift is nullified, obtained with the following initial condition: ẏ0 = −2nx0. This
assumption is needed since the objective is to obtain the motion of the deputy bounded,
even if only in first approximation, to the one of the chief.
The characteristics of a formation are usually defined by some geometric constraints,
meaning that these equations need further analysis to obtain geometric insight. To do so
Eqs. 2.4 can be rewritten in magnitude/phase form as

x(t) = ρx sin(nt+ αx)

y(t) = ρy + 2ρx cos(nt+ αx)

z(t) = ρz sin(nt+ αz)

(2.6)
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where

ρx =

√
(ẋ2(0) + x2(0)n2

n

ρy = y(0)− 2ẋ(0)

n

ρz =

√
(ż2(0) + z2(0)n2

n

αx = arctan
nx(0)

ẋ(0)

αz = arctan
nz(0)

ż(0)

(2.7)

Through this formulation, by setting up relations between the parameters defined in Eqs.
2.7, is possible to geometrically characterize the relative motion [12]. In general the in-
plane motion in the x̂− ŷ plane is a ellipse with semi-major axis 2ρx, semi-minor axis ρx
and constant eccentricity

√
1− ρ2x/(4ρ

2
x) =

√
3/2. A more interesting result is obtained

by choosing αx = αz and ρz = ±
√
3ρx, which leadsto a relative circular orbit with radius

2ρx, called general circular orbit (GCO) [13]. These circular orbits are inclined by 60°
with respect to the orbital plane of the chief satellite and can be used to construct the
cartwheel formation. Recalling that the formation under study is composed of three
spacecraft forming an equilateral triangle, is possible to design the fleet by distributing
on a circular orbit relative to a fictitious centre the three satellites with a phase between
each other of 120°.

2.3. Relative orbital elements

The last step consists in moving the description of the relative motion from Cartesian
coordinates to a set of ROE defined as follows:

δα =



δa

δλ

δex

δey

δix

δiy


=



(a(j))− a0)/a0

(u(j) − u0) + (Ω(j) − Ω0) cos i0

e
(j)
x − ex0

e
(j)
y − ey0

i(j) − i0

(Ω(j) − Ω0) sin i0


(2.8)

where the subscript 0 refers to the chief orbit and the superscript j to a generic space-
craft of the formation. The vector of relative orbital elements is composed of: δa, the
normalized semi-major axis difference, δλ, the relative mean longitude defined using the
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mean argument of latitude u = ω +M , while the remaining quantities are respectively
the components of the eccentricity and inclination vectors which in polar notation are

δe =

(
δex

δey

)
= δe

(
cosϕ

sinϕ

)
δi =

(
δix

δiy

)
= δi

(
cosψ

sinψ

)
(2.9)

where ϕ and ψ are referred to as relative perigee and relative ascending node. The
objective is to parameterize the CW equations using the relative orbital elements; it
is possible to demonstrate a correspondence between the integration constants in Eqs.
2.7 and the relative orbital elements defined in Eq. 2.8, under the assumption of near-
circular orbit of the chief spacecraft and small relative radius compared to the one of the
chief in the inertial frame1 [14]. It is important to note that the relative orbital elements
defined in Eqs. 2.8 are dimensionless, while the integration constants of the CW equations
for rectilinear coordinates have the dimension of a length, meaning that the correlation
between the two exists when the quantities are normalized with respect to the semi-major
axis of the chief orbit. The relative motion for near-circular orbits using relative orbital
elements can be described in general as

x

a
≈ δa− δe cos(u− ϕ)

y

a
≈ −3

2
δa(u− u0) + δλ+ 2δe sin(u− ϕ)

z

a
≈ δi sin(u− ψ)

(2.10)

By adding the bounded motion condition, which, for relative orbital elements, consists in
δa = 0 and ∆u = −∆Ωcos i, equivalent to δλ = 0, the deputy follows an elliptic trajectory
around the chief with semi-major axis 2a δe in along-track direction and semi-minor axis
a δe in radial direction [15].
Now it is possible to build up the conditions on the orbital elements that define the
cart-wheel formation. The first step is to recall that the fleet is on an EDHO meaning
that the centre of the formation is displaced by a given angle, referred to as θ0, with
respect to the Earth’s position. This angle in this work is defined as the difference
between the initial mean heliocentric longitude of the formation centre with respect to
the mean Earth and can assume both positive and negative values generating respectively
leading and trailing configurations. The heliocentric mean longitude can be defined as
l0 = u0 + Ω0 = ω0 +M0 + Ω0, while as said the θ0 = l0 − lME [16]. The definition of

1Note that there are only five integration constants coming from the Cartesian CW equations and six
relative orbital elements; this is due to the fact that the CW equations shown in 2.6 are already simplified
to describe a bounded relative motion.
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the displacement angle used in this thesis diverges slightly from the one of other works
in which this angle is referred to as Mean Instantaneous Displacement Angle, defined by
taking as a reference the mean Earth-Moon barycentre, instead of the mean Earth. This
difference will not cause any major mismatch since, as presented in Section 4.2, the initial
orbital elements are used only as initial guess for the optimization.

θ0 

Earth

Sun

L

L
.

α 

Figure 2.2: Major characteristic of the cartwheel formation.

The chief of this formation is a fictitious point in the geometric centre of the triangle
formed by the fleet, which follows a circular heliocentric orbit with a distance of 1 AU
from the Sun, meaning that

a0 = 1 AU

e0 = 0

i0 = 0°

Imposing the bounded motion condition, δa = 0, leads to a(j) = a0 = 1 AU, while with
the relation between ρx and ρz an the nominal arm length is possible to define the relative
inclination and eccentricity as

δi(j) =
√
3δe(j)

δe(j) = e(j) =
L

2a0
√
3

Now it is possible to add the other condition which grants the formation of a GCO,
αx = αz, equivalent to having a perpendicularity condition between relative eccentricity

and inclination vector, ϕ = ψ+
kπ

2
, k ∈ 2Z+1. From this equation is possible to identify
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the other relative orbital elements using the definition in Eq. 2.8:

From i0 = 0 =⇒ sin i0 = 0

=⇒ δiy = δi(j) sinψ = 0

=⇒ ψ = nπ, n ∈ Z

Recalling that the eccentricity vector is defined as

e =

(
ex

ey

)
= e

(
cosω

sinω

)

and using the perpendicularity condition between δe and δi, follows that δex = 0, leading
to only two values of argument of perihelion that can satisfy this result: ω(j) =

π

2
or

ω(j) =
3π

2
. These values of ω define two types of cartwheel formation, which can be

explained by looking at the motion of the cartwheel from the Sun: for ω =
3π

2
the motion

of the three satellites is clockwise, while for ω =
π

2
it is counter-clockwise.

Heliocentric orbital 
motion

Counter-clockwise 
motion

(a) Counter-clockwise motion

Heliocentric orbital 
motion

Clockwise 
motion

(b) Clockwise motion

Figure 2.3: The outcome motion depending on the selection of ω.

The fleet assumes the desired configuration if all three spacecraft have the same initial
mean longitude, which is equal to the one of the formation centre, defined by l0. Therefore,
there is just one remaining degree of freedom to fully define the fleet’s geometry, the RAAN
or the mean anomaly of a single satellite, through which is possible to set the phase angle
between each element of the formation. With a phase angle equals to 2π/3 the satellites
uniformly distribute on the relative circular orbit around the centre forming an equilateral
triangle configuration. In this work the selected free parameter is the RAAN of the first
satellite and by changing its values the only variation that occurs to the geometry is a
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relative rotation of all satellites around the formation centre. The ecliptic orbital elements
of the three spacecraft and the formation centre are reported in Table 2.1.

SC Semi-major axis Eccentricity Argument of Perihelion

Centre a0 = 1 AU e0 = 0 ω0 = 0

SC1 a(1) = 1 AU e(1) = L/2a0
√
3 ω(1) ∈ {π/2, 3π/2}

SC2 a(2) = 1 AU e(2) = e(1) ω(2) = ω(1)

SC3 a(3) = 1 AU e(3) = e(1) ω(3) = ω(1)

SC Inclination RAAN Mean anomaly

Centre i0 = 0 Ω0 = 0 M0 = MIDA + lMEMB

SC1 i(1) = e
√
3 Ω(1) ∈ R M (1) = l0 − ω(1) − Ω(1)

SC2 i(2) = i(1) Ω(2) = Ω(1) − 2π/3 M (2) =M (1) + 2π/3

SC3 i(3) = i(1) Ω(3) = Ω(1) − 4π/3 M (3) =M (1) + 4π/3

Table 2.1: Summary of orbital elements necessary to design the formation.
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In this section, the two libraries used to develop the work are briefly presented, discussing
and showing the implementation of the main functionalities. On a basic level, to solve the
problem outlined in the research question is necessary to perform trajectory propagations
and optimizations. GODOT takes care of everything related to the propagation from the
epochs definition to the development of the dynamic in which the satellites have to fly,
adding the necessary gravitational and non-gravitational accelerations. GODOT is widely
used at operational levels at ESOC and can be thought of as a more complete alternative
to SPICE. PyGMO deals with the optimization part and provides a simple interface to
implement and solve any kind of optimization problem, even if it is tailored to work with
aerospace-related problems, making it perfectly suited to this context. In the following
sections, more details on these two tools and software are given.

3.1. GODOT

GODOT, acronym of General Orbit Determination and Optimization Toolkit, is an ap-
plication at ESA/ESOC for flight dynamics. The software is coded in C++, but can be
used with a Python interface and is still in development; the version on which the code
runs on is 0.10.0. This application is formed by three main libraries, each one with specific
directories dedicated to a single theme. These three libraries are:

• Core contians general directories without a common relation between them (e.g.
constant and epoch definition, astrodynamic computations and numerical utilities).

• Model defines the frames and points that need to be propagated.

• Cosmos is the place where the actual modelling of the dynamic takes place.

GODOT contains a lot of libraries dedicated to all sort of problems, but only the most
essential are here reported and briefly discussed.

Tempo: this library is fundamental since it handles all time computations involved in
GODOT. The main element is the Epoch constructor through which time can be defined
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using different time scale such as TDB, TAI and UT. The epoch is coded using the
following line:

t0 = tempo.Epoch('2020-05-14T00:00:00.0000 TDB')

Universe: This is one of the most important functionalities of GODOT; through this
class is possible to set up the environment where all the propagation, estimation and
optimization problems are carried out. The Universe is defined by a series of plug-ins,
each one taking care of a single aspect of the environment that the user wants to develop.
The Universe object is created through a .json or .yml file which needs to be validated
against a schema available on the GODOT site1. Below are reported only the mandatory
and most relevant plug-ins:

- Version plug-in: configures the file version.

- Spacetime plug-in: defines the space-time coordinates for the solar system, BCRS
(Barycentre Celestial Reference System) for simulations ‘far’ from Earth and GCRD
(Geocentric Barycentre Celestial Reference System) for models ‘near’ Earth.

- Ephemeris plug-in: uploads, using kernels, all the ephemerides that are needed for
the modelling; constants, frames and bodies are all extracted from this plug-in.

- Frames plug-in: defines axes and points that are not defined by default in GODOT.
The only frames and points automatically created are ICRF (Inertial Celestial Ref-
erence Frame), EMC (Earth Mean eCliptic frame) and SSB ( Solar System Barycen-
tre), other frames can be added using the Orient library, while points can be gen-
erated using TLEs, Keplerian elements, IPF or OEM files.

- Constants plug-in: collects constants of different nature, mathematical (e.g. Pi, Deg
and Rad conversion), physical (e.g. Astronomical Unit, Speed of Light) and body
constants (e.g. gravitational constants, radii, and spheres of influence of bodies).

- Bodies plug-in: sets up the bodies that need to be taken into consideration during
the gravitational acceleration computation.

- Gravity plug-in: configures the gravity that will influence the spacecraft during
numerical propagation; in addition, it is possible to configure a structure of bodies
that can automatically take care of switching the center of integration in case the
satellite crosses a sphere of influence.

- Dynamics plug-in: adds all the accelerations that the propagator needs to consider
(gravitational, solar radiation pressure and drag).

1https://godot.io.esa.int/docs/0.10.0/index.html

https://godot.io.esa.int/docs/0.10.0/index.html
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- Spacecraft plug-in: collects all the characteristics of the spacecraft that need to
be propagated, mass, cross-section area, drag and reflectivity coefficient, thruster
parameters and many others.

The Universe object can be created using the following code:

uni_config = cosmos.util.load_yaml('.../path_to_file/Universe.yml')

uni = cosmos.Universe(uni_config)

Trajectory: It is worth mentioning a powerful method to initialise and propagate ele-
ments of a trajectory (such as state, mass and ∆V) using the Trajectory class, even if is
not used extensively in this work. The setup is similar to the one of the Universe and it
is computed using .json or .yml files; the main part of the configuration is the timeline
which contains a chronological list of all the trajectory steps. There are different types of
timeline, each one with a specific use:

- Control: these points are characterized by a known state, input by the user, from
which the propagation can begin, in both directions, forward or backward.

- Point: these allow the introduction of a discontinuity in the state and can be used
as an initial or final point for the propagation.

- Manoeuvre: these points are similar to the one just described, but it is possible to
introduce an acceleration to the spacecraft.

- Match: in case multiple Control points are given a Match point must be inserted
between these and a constraint must be added to assure a continuous trajectory.

The other parts consist of Setting which defines the tolerances, the integration method
and the maximum steps available to the propagator and Setup which setups the quantities
that need to be integrated. Similarly to the Universe, the Trajectory object is created as
follow:

tra_config = cosmos.util.load_yaml('.../path_to_file/Trajectory.yml')

tra = cosmos.Trajectory(uni, tra_config)

Propagator: GODOT offers two alternatives to propagate quantities respect to the Tra-
jectory class, which do not require any external file: BallisticPropagator and Propagator.
Here the attention moves to the other methods which are used more extensively in the
development of this work.
BallisticPropagator is a tool defined in the Cosmos library and allows the propagation
of position and velocity (not mass and ∆V) of a spacecraft with the dynamic defined in
the plug-ins of the Universe. To implement this kind of propagator and extract the state
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information the necessary code is the following:

pro = cosmos.BallisticPropagator(uni, 'SC', 'Dynamic', t0, 'Body', tol)

pro.compute(x0, dt0, tf)

x = uni.frames.vector6('wrt_Body', 'SC', 'Frame', tf)

where the variable uni is the Universe object, 'SC' and 'Dynamic' are the names of the
satellite and dynamic defined in the Spacecraft and Dynamic plug-ins of the Universe, t0
and tf are respectively the initial and final epoch, 'Body' is the name of the body to
which the in initial state is given (the center of integration), x0 is the initial state and
dt0 is the initial time delta. With the last line of code, the state can be extracted at any
epoch between the initial and final time, with respect to any body and frame present in
the Universe defined by 'wrt_Body' and 'Frame'.
Propagator belongs to the Model library and can be used to propagate different quantities
other than the state, as in the Trajectory class. This method is more articulated with
respect to the previous one, but more adaptable to user needs since manoeuvre and mass
propagation can be added. The implementation can be divided into different steps: cre-
ation of frames and points, input definition and propagator formulation. A code example
is reported to display the main steps previously reported.

# Add frame and point

fra = uni.frames

icrf = fra.axesId('ICRF')

earth = fra.pointId('Earth')

SC_point = fra.addPoint('Spacecraft', tempo.TimeScale.TDB)

# Set up the input

propPoint = prop.PropagatorPoint(fra, icrf, SC_point)

input = [prop.PointInput(propPoint, earth, x0, dyn, tol, tol)]

# Create the propagator

pro = prop.Propagator('Prop', t0, dt0, input)

pro.compute(tf, False)

The dynamic used in input can be defined externally in a different function or directly
extracted by the Universe and passed as a parameter. When computing the propagation
with the command pro.compute(tf, False), is possible to set the flag to True or False
in case the user is interested in estimating the partials (note that this feature is present
also in the BallisticPropagator).
In all three method is possible to select different integration methods, the available algo-
rithms are 8th order Runge Kutta schemes with four different type of interpolation and
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Adams algorithm with variable order and step size; the one used to develop this work is
the default method Runge Kutta Verner787 algorithm.

Autodif: GODOT support through this library automatic differentiation, making the
computation of gradients of any function with respect to any variable trivial. Autodif
defines a new type of object characterized by the value of the variable and the leaf, that
for simplicity can be thought as a space in which the partial derivatives are stored. The
parameters defined using the Automatic Differentiation library can have scalar, vector
or matrix as value and more than one leaf. To clarify how the Autodif module works a
simple example is reported below, where the gradients of the Cartesian state with respect
to the orbital elements need to be computed [17].

# Orbital element definition

coe = [10000, 0, 0, 0, 0, 0]

ad_coe = ad.Vector(coe, 'coe')

# Convertion to cartesian element

ad_state = astro.cartFromKep(ad_coe, GM_Earth)

# Value and gradient extraction

state = ad_state.value()

gradient = ad_state.gradient()

Given an initial vector coe of orbital element, the object ad_state contains in the method
value(), the actual values of the state x in Cartesian coordinates and in the gradient()

method, the gradient of the state with respect to the orbital elements
∂x

∂coe
.

3.2. PyGMO

PyGMO (Python Parallel Global Multi-objective Optimizer) is a library developed by the
Advanced Concepts Team of ESA supporting many different problems and algorithms in-
tended for computing parallel optimization of aerospace-related problems. PyGMO is
capable of supporting constrained, unconstrained, single objective and multiple objective
problems, making it suitable for any type of optimization [18]. Both local and global op-
timization algorithms are implemented in this library. The first ones limit the research of
the optimal solution in a narrow area near the given initial guess, finding a local minimum
or maximum depending on the problem. Global algorithms use a set of initial guesses,
which are usually referred to as population, and evaluate the objective function outcome
of each individual. The best guesses are extracted and slightly modified creating a new
generation of individuals, which form a new population; these steps are repeated until
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the termination criterion is satisfied and the individual which minimizes or maximizes the
objective function is presented as the best solution.
In this section a brief general description of how to formulate an optimization is given,
after which a simple implementation using PyGMO is presented for clarity. An optimiza-
tion problem starts with the definition of the objective function f(x) which needs to be
minimized or maximized; this function depends on a set of n-variables that together form
a vector, usually referred to as decision vector.

x = [x1, x2, ..., xi] for i = 1, 2, ..., n

A general optimization problem can be subjected to two type of constraints: inequality
and equality ones indicated respectively as:

gj(x) ≤ 0 for j = 1, 2, ..., l

hk(x) = 0 for k = 1, 2, ...,m

where l and m represent an arbitrary number of constraints. In addition, it’s possible to
define upper and lower bounds acting directly on the decision vector, limiting the search
region of the problem. Therefore, the general statement of an optimization problem
subjected to inequality and equality constraints and bounds can be summarized as follow:

Find x = [x1, x2, ..., xi]

subject to


gj(x) ≤ 0

hk(x) = 0

xl ≤ x ≤ xu

which minimizes f(x)

Any vector that satisfies the constraints is called feasible solution, the collection of all
feasible solutions is called feasible region and the optimization problem is solved when the
vector x̄ such that f(x) ≥ f(x̄) for each feasible x is found. In PyGMO it’s possible to
code a problem, referred to as User Defined Problem (UDP), following these steps. First
of all, as an example, a simple problem formulated in a more compact way is presented.

min
x1, x2

f := (x1 − 3)2 + (x2 − 2)2 s.t.


g1 := x21 − x2 − 3 ≤ 0

h1 := x2 − 1 = 0

−1 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1
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The problem can be constructed using a class and two mandatory methods: fitness

and get_bound; in case of a more complex problem, like the one in the example, other
methods need to be added, such as get_nic and get_nec that respectively represent the
number of inequality and equality constraints.

class example_function:

def fitness(self, x):

obj = (x[0] - 3)^2 + (x[1] - 2)^2

ci1 = x[0]^2 - x[1] - 3

ce1 = x[1] -1

return [obj, ce1, ci1]

def get_bounds(self):

return ([-1]*2,[1]*2)

def get_nic(self):

return 1

def get_nec(self):

return 1

Once the problem is completely defined, an algorithm, that can be selected from the
one available in the library or can be implemented by the user, must be selected. Each
algorithm is associated with a specific type of problem that can be fully described by
three properties:

• Constrained or Unconstrained

• Single or Multi-Objective

• Continuous, Integer or Mixed integer

With the properties of the problem defined the corresponding algorithm can be selected
noting that PyGMO supports algorithms from other libraries such as SNOPT, SciPy,
NLOPT and IPOPT. Along with the definition of the algorithm, a termination criterion
must be implemented if the default ones do not satisfy the requirements of the user; the
criteria are based on relative and absolute tolerance, maximum computational time and
maximum number of iterations.
At last, by giving an initial guess in the case of a local optimizer or by defining an initial
population for stochastic optimization the problem can be solved.

In the context of the thesis GODOT and PyGMO have been used to deal with space-
related computations and optimization problems respectively. The Universe function is
used to define the dynamic, defined by all Solar System’s planets and SRP, in which
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the three satellite are propagated. This method is selected to implement the RHS since
is trivial to add ephemeris file to the environment, fundamental to the transfer phase
defined in Section 4.3. Another key feature used from GODOT is the Propagator which
is used to extract the states of the spacecraft at any epochs specified by Tempo. The
great versatility of PyGMO is exploited to create UDP taking care of different parts of
the problem analysing the geometry of the formation during the operational phase and
the costs in terms of delta-Vs for the transfer phase.
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In this section, the objective is to outline the framework in which the thesis is developed
and the approaches used to solve the problem. In particular, the three research objectives
defined in the introductory chapter are analysed as follows. The first step is to understand
how a non-optimized formation behaves in an n-body dynamic environment with SRP
perturbation, varying initial displacement angle and arm length. In addition, simple
initial analyses of the transfer are made to have an idea of the magnitude of characteristic
parameters such as ∆V and time of flight. Then the chapter develops by focusing on
the optimization of the science phase, followed by a presentation of different transfer
strategies.

4.1. Preliminary cartwheel analysis

The aim of the thesis is to find optimal initial conditions for the three satellites in order to
maintain the geometry of the formation for as long as possible and minimize the amount
of fuel needed to transfer the fleet into EDHO. The idea of tuning the conditions defining
the beginning of the science phase is essential since it exploits the natural evolution
of the three satellite orbits minimizing the cost of station keeping and increasing the
life span of the mission. The quality and stability of the formation is defined by its
geometrical characteristics, arm length (L), arm length rate (L̇), and corner angle (α).
The optimization must be carried on simultaneously for all the units of the fleet since L,
L̇, and α are all quantities that can be computed knowing the states of all the satellites
at the same time. In the RHS defining the dynamic of the satellites the following bodies
and perturbations are considered:

• Main bodies in the Solar System (Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter
and Saturn)

• SRP

• Neither Earth’s J2 perturbation nor Sun’s one are considered due to the irrelevant
influence with respect to the other accelerations
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The choice of considering only these perturbations comes from a simple analysis of the
accelerations affecting a satellite in an EDHO. In the considered Solar System the orbits
are all circular with radii equal to the semi-major axis and all planets, except Earth, are
aligned with the test satellite as shown in Fig. 4.1. Since an EDHO must be considered,
the Earth and the Moon are displaced by an angle θ0 which is varied in order to compute
the intensity of the gravitational acceleration as a function of different initial displacement
angles. Regarding the other planets two different configurations can be identified: one in
which the satellite and the planet are the closest as in Fig. 4.1 and one in which the planet
is on the opposite side with respect to the Sun affecting the motion of the satellite the least.
These two solutions are then merged to compute the average acceleration of the planets
resulting in a constant trend as a function of θ0 as shown in Fig. 4.21. It can be noticed
that other than the Sun which is the main attractor, the gravitational accelerations of
Jupiter and Venus have a similar magnitude which can be more or less than the one of
Earth depending on the θ0. Earth remains still the main source of perturbation since
the distance between the satellite and the planet is almost constant, meaning that the
gravitational pull acts continuously with the same magnitude on the spacecraft’s dynamic.
This is not valid for all the other planets since the condition of the closest approach is
reached only once a year. The last planet considered is Mercury and any perturbation
below its value, like Uranus, Neptune and the J2 accelerations are considered negligible
as shown in Fig. 4.2b.

Figure 4.1: Solar System configuration for the acceleration analysis (not in scale).

1Even though two different configurations are considered the average is quite similar to the acceler-
ation of the closest approach since the perturbations computed when the planets are further away are
almost negligible.
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The intensity of the SRP perturbation is one of the most relevant, meaning that a more
generalized analysis of the cartwheel formation which considers all acceleration is needed.
This simplified analysis gives approximate information on the order of magnitude of the
most relevant perturbation defining the accelerations that must be considered to propagate
the spacecraft.

(a) Considered perturbations.

(b) Neglected perturbations.

Figure 4.2: Acceleration analysis considering gravitational, SRP and J2 perturbations.

The satellites composing the fleet are somehow connected during their entire operational
life, from the launch on the same carrier rocket to the operational phase in which the
formation is obtained, meaning that some simplifications need to be adopted to solve the
problem. First of all the entire mission is divided into two parts: the transfer phase,
starting from a parking orbit around Earth and the scientific phase which begins once
the formation is completely acquired. Both need to be optimized and conceiving a single
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optimization problem taking care of the entire mission wouldn’t be a reliable first step.
Therefore, the problem is divided in two and each part can be addressed and optimized
separately, keeping in mind that these segments rely on each other; the transfer must be
designed to accommodate the requirements of the formation in terms of position with
respect to Earth and inter-satellite distance.

4.1.1. Formation analysis

In this section the behaviour of the non-optimized formation is analysed starting from
the orbital elements presented in Table 2.1, which have four degrees of freedom: arm
length, L, argument of perigee, ω, right ascension of the ascending node, Ω and the initial
displacement angle, θ0. The latter is computed using the Mean Earth, a fictitious Earth
with the same orbital period as the true one which covers a circular paths around the Sun.
On a practical level, the Mean Earth is obtained by extracting at a given epoch the state
of the True Earth from the ephemeris and converting the state into orbital elements. From
these elements is possible to define the osculating orbit which is the Keplerian trajectory
that the body would follow if in that instant all perturbations would vanish; every point
on the perturbed trajectory has its own osculating orbit. The Mean trajectory has the
same plane and period as the osculating one, but it follows a circular orbit, meaning that
only the eccentricity from the initial orbital elements must be modified and set to zero.
These three different orbits are shown in Fig. 4.3 considering a one year propagation. The
difference between the Osculating and Mean Earth is small in terms of trajectory, but the
key factor which differentiate these two orbits is that Mean Earth follow a circular path.
Let’s analyse the geometry characteristics using a Keplerian model with arm length of
2.5e6 km, an initial displacement angle of -20◦ and a counter clock-wise rotation in which
only the Sun affects the motion of the satellites.

Figure 4.3: Difference between True, Osculating and Mean Earth.
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Figure 4.4: Geometry evolution in Keplerian model.

The orbital elements presented in Table 2.1 are propagated for 10 years and the geometric
characteristics and the distance from the True Earth are computed. As can be seen in
Fig. 4.4, the geometry is not frozen and the values of L, L̇ and α are not constant in
time; the flexing of the formation is usually referred to as breathing and is due to the
fact that the orbital elements are the results of a linearization, valid only for near-circular
chief orbits and small relative orbit’s radius compared to the inertial one, which is then
used in a non-linear environment. The last condition is not well satisfied since considering
an equilateral triangle of side a the distance between the centre and the vertex is a/

√
3,

meaning that the ratio between the semi-major axis and chief-deputy distance is 0.965%
for a nominal arm length of 2.5e6 km, which is not negligible. In addition, the linearised
dynamics that would generate a GCO with a constant distance between the satellites and
the centre of the formation, is used in a n-body environment causing the distance to the
centre to vary with a one-year periodicity [19].
The next step consists in propagating the satellites in a complete dynamical environment
taking into account all the perturbations. The main perturbation is due to Earth which
accelerate constantly the satellites in a near along-track direction; this acceleration gener-
ates a drift in the semi-major axis, which translates into an increment or reduction of the
distance between Earth and the fleet, depending if the formation is trailing or leading.
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Figure 4.5: Geometry evolution in N-body model.

For a trailing formation, the Earth-Moon system accelerates the satellites along the ve-
locity direction which increases the semi-major axis, resulting in a lower orbital period.
With these conditions the formation drifts backwards, increasing the distance from Earth
as can be seen in Fig. 4.5. The addition of these perturbations makes the geometrical
parameters diverge from the nominal conditions, generating an unstable configuration
capable of threatening the science requirements. It is necessary to impose some require-
ments on L, L̇ and α to verify a posteriori if the optimization technique can satisfy such
limits; in this case a 2% bound for arm length and corner angle and ± 10 m/s limit of
arm length rate are considered, which correspond to slightly less rigid constraints with
respect to the one of LISA. Neither of these requirements is satisfied for the time period
considered meaning that an optimization of the initial conditions is necessary.

L [km] L̇ [m/s] α [deg]

Keplerian [2.494× 106, 2.506× 106] [-0.98, 0.98] [59.78, 60.22]

N-body [2.370× 106, 2.629× 106] [-30.17, 22.04] [57.03, 62.87]

Table 4.1: Min and max deviation of L, L̇ ans α in Keplerian and N-body model.



4| Methodology 31

The next step consists in analysing the behaviour of the formation by varying the pa-
rameters that define its geometry and position. The main focus is on the arm length and
the initial displacement angle since a variation of ω modifies the rotation direction seen
from the Sun and Ω results only in a relative rotation of the geometry around its centre.
Not all initial displacement angles are acceptable since by getting too close to Earth the
gravitational perturbation would be too strong for the formation to keep its geometry;
therefore, the analysis is limited to an initial angle higher than ±10°. By increasing the
angle, the distance from Earth increases as well, decreasing the overall perturbations and
making the configuration more stable; this can be shown by propagating the initial con-
ditions considering different values of the initial angle θ0 and evaluating the maximum
deviation of each geometrical parameters. The maximum and minimum value of L, L̇
and α at different initial displacement angles are shown in Fig. 4.6 which displays a clear
instability with increasingly higher variations for configurations closer to Earth.

Figure 4.6: Geometry parameters in function of the initial displacement angle.

A similar analysis can be done for arm length variations considering a wide range between
1e4 km and 2e7 km to catch a particular trend as shown in Fig. 4.7. The maximum de-
viation of L and L̇ increases by increasing the arm length since by doing so the distance
from the centre raises, increasing both the breathing of the formation and the gravita-
tional perturbations affecting each satellite. Regarding the corner angle, for low values of
arm length the maximum deviation decreases and then returns to increase as the other
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parameters for high L. These results are essential to understand the behaviour of the
formation in different conditions and to build and design an optimal strategy capable of
maintaining limited in time the maximum deviation of each geometric characteristic.

Figure 4.7: Geometry parameters in function of arm length.

The last considerations on the evolution of the formation can be done by analysing the
orbital elements in the ecliptic frame. As previously discussed for trailing cartwheel for-
mation the semi-major axis increases in time, while eccentricity, inclination and argument
of perigee all starting from the same conditions evolves into different final values; the idea
of the optimization consists in tuning the initial orbital elements in a way that makes the
final conditions satisfy the requirements.

4.1.2. Transfer analysis

The fleet can be transferred from Earth towards Earth-Displaced Heliocentric Orbit with
different strategies that can be divided into such categories [20]:

a) Direct transfer with or without Deep Space Manoeuvres (DSM), in which the satel-
lites are injected on a transfer trajectory towards the final orbit directly by a launch
vehicle.

b) Trajectory considering a transfer module that from an Earth-bounded orbit reaches
the escape condition thanks to an Apogee Raising Manoeuvre (ARM) which in-
creases the apogee with multiple manoeuvres, as was done for the LISA Pathfinder
mission [21].
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Figure 4.8: Orbital elements evolution.

c) Low-energy transfer such as escaping Earth using an unstable manifold in the Sun-
Earth system or Lunar Gravity Assist (LGA).

The problem of transferring a satellite from Earth to a general EDHO can be thought of
as a phasing manoeuvre with a small plane change due to the different inclinations of the
final orbits. The direct injection strategy can be pursued only in case a powerful launcher
is available and the satellites can be put directly from Earth in an escape trajectory; the
other options are possible alternatives in case smaller launchers, not capable of reaching
the escape velocity, are used. This work is intended as a preliminary mission analysis and
for this reason the transfer is based on a direct injection without DSM. The first approach
to the transfer design is simple Lambert problem from Earth targeting an EDHO with
an initial displacement angle of -20°. To solve the Lambert problem an initial and final
positions are needed: in this case the True Earth is used for departure, while the arrival
orbits are the ones optimized with the methods presented in Section 4.2. Multi-revolution
Lambert problems are not presented as an available solution due to a limit in the maximum
transfer time, imposed to avoid high commissioning time. As can be seen in Fig. 4.9 the
time of flight for each spacecraft is in the order of 360 days, while the values of ∆V
have a minimum around 1.2 km/s. The trend shown in the plot is repeated each year,
while it can be noticed that a seasonal variation of ∆V occurs with two local minima
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obtained departing in April/May and in October/November. In Table 4.2 the results of
leading and trailing configurations for different initial displacement angles are presented.
The minimum ∆V for leading orbits is found later in the year, in the October/November
period, and the cost is higher with respect to ETHO since lowering the perihelion to
obtain ELHO is more expensive than increasing the aphelion by the same quantity[20].

Figure 4.9: Pork-chop opportunity maps for each satellite.

The transfer is far more complex than a simple Lambert problem since the three satel-
lites need to be launched all together using a single launch vehicle meaning that all the
trajectory are somehow connected. The different design strategies proposed to transfer
the fleet will consider only trailing formations due to lower cost in terms of ∆V.

∆V1 [km/s] ∆V2 [km/s] ∆V3 [km/s] Period

θ0 = −20° 1.29 1.26 1.16 April/May

θ0 = −15° 1.03 1.00 0.91 April/May

θ0 = 15° 1.09 1.07 0.97 October/November

θ0 = 20° 1.41 1.38 1.28 October/November

Table 4.2: Cost and period of the transfer for different θ0.
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4.2. Science phase

In this section different optimization techniques to maintain the formation stable are
presented. The idea is to tune the initial orbital elements to satisfy the requirements
imposed on the geometry of the formation. The first step is to identify the decision vector
which is defined by an initial time, corresponding to the moment that the fleet acquires
the geometry, and three sets of orbital elements, fully defining the initial conditions of the
formation.

y = {t0,K1,K2,K3} where Kj = {a, e, i, ω,Ω, θ} with j = 1, 2, 3

With the decision vector well designed a cost function J minimizing the perturbation
must be defined with the idea of incrementing its value every time the geometry exceeds
or moves towards the geometrical bounds. To build such a cost function two different
approaches can be used. In the first one, a penalty is added every time a constraints’
violation is detected; since the objective is to limit the range between the maximum and
minimum value of L, L̇ and α, each of this parameter has an upper and lower limit that,
if infringed, would add a penalty to the cost function [16]. This concept is repeated at
each instant of time between t0 and the final time, for each of the geometrical parameters.
The problem with such formulation is that the gradient of the cost function with respect
to the decision vector is not well defined since the J itself is not continuous in time.
The second approach consists in defining a continuous cost function which penalizes the
difference between the geometrical parameters. By focusing on the geometry of a triangle,
the minimization of the difference between its sides would push the triangle towards an
equilateral formation, resulting in no relative velocity between the vertex and angles of
60°. The same can be obtained if the difference of the relative velocities is minimized
since the formation will move towards an equilateral triangle geometry as well; note that
if the same reasoning is applied to a cost function based only on the corner angles, it
would be less reliable since constraining only the angles does not impose any restriction
on the breathing motion of the formation. This leads to the definition of the following
costs functions:

JLength =

∫ tf

t0

(L1(t)− L2(t))
2 + (L1(t)− L3(t))

2 dt

JRate =

∫ tf

t0

(L̇1(t)− L̇2(t))
2 + (L̇1(t)− L̇3(t))

2 dt
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The cost functions do not contain the difference between elements (·)2 and (·)3 since it
would be redundant due to transitive property defining an implicit relation between these
parameters. The final optimization problem consists in minimizing JLength or JRate with
respect to y without any equality or inequality constraints.

The optimization procedure is computed following these steps which are the same for the
two cost functions.

Initial guess: The initial guess must be retrieved by defining the initial displacement
angle θ0, the arm length, L and the initial time t0 which is used to define the
longitude of the Mean Earth lME and the mean anomaly of each satellite. Then,
the three sets of initial orbital elements are converted into initial Cartesian states
composed of positions and velocities.

Propagation: The geometrical parameters are computed from t0 to tf , meaning that
the initial state of the satellites must be propagated as well. A time grid is defined
and by calculating the state at each time also the geometry can be calculated. For
JLength only the arm length is needed to compute the cost function, while for JRate

both L̇ and L are necessary.

Compute the cost function: At this point the values of L or L̇ are available at each
time defined in the grid, making possible the computation of the cost functions.
Since the algorithm used for this optimization is a gradient-based algorithm the
gradient of J with respect to y need to be computed.

∂J

∂y
=

[
∂J

∂t0
,

(
∂J

∂aj
,
∂J

∂ej
,
∂J

∂ij
,
∂J

∂ωj

,
∂J

∂Ωj

,
∂J

∂θj

)
j=1,2,3

]

By running the optimization problem is possible to retrieve the optimized initial
time and orbital elements. From these quantities the final trajectories defining a
stable formation are calculated and collected into OEM (Orbit Ephemeris Message).
This type of format contains position and velocity of a single spacecraft in a time
interval defined by an initial and final epoch. This format is the recommended
standard by the CCSDS to store ephemeris data and in this work is obtained by
the mean of the SPICE utility spk2oem. Building ephemeris files for each optimized
trajectory will come in handy during the presentation of the optimization of the
transfer strategies in Section 4.3.

The process is the same for the two cost functions and will be used to optimise different
configurations of the cartwheel varying θ0 and L to identify which J is more suitable for
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Initial guess y

Convert to cartesian state

Propagation Grid definition
t = t0, t1, ..., tf

Compute J

Compute geometry parameter

Optimized state

science.oem

Figure 4.10: Diagram showing the steps followed to optimize the scientific phase.

this problem. The whole process used to optimize the formation maintenance is briefly
summarized in the diagram presented in Fig. 4.10.

4.3. Transfer phase

In this section two different strategies to transfer, within reasonable ∆V and time of
flight, the fleet from Earth to the final science orbits will be presented considering a
direct injection, meaning that the launcher selected must be capable of reaching the
escape velocity. The transfer problem can be simplified by splitting the trajectory into
two parts: a hyperbolic escape from a parking orbit up to the Earth’s Sphere of Influence
(SOI) and a heliocentric transfer from the SOI to the final science orbit defined by the
OEM files computed in Section 4.2. The idea is to optimise the manoeuvres and the
conditions at infinite (equivalent to the conditions at the SOI) in such a way that the
heliocentric transfer and the hyperbolic escape can be obtained by propagating forward
and backward the initial conditions. The infinite velocity v∞ is defined by the magnitude
v∞, the infinite right ascension α∞ and the infinite declination δ∞ as shown in Fig. 4.11.
The position on the sphere of influence is not subjected to an optimization since it can
be defined from v∞ by fixing the perigee and the inclination of the departing hyperbola.
For formation flying missions the spacecraft are usually launched with a single rocket;
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therefore, both strategies consider for the first segment of the trajectory a carrier hosting
all three satellites. The carrier does not have a propulsion system, follows the infinite
conditions of the launcher and has the possibility of releasing each spacecraft at different
instants, increasing the degree of freedom of the problem. Other than optimizing the
initial conditions at infinite and the time at which the spacecraft are released the problem
needs to minimize the total cost of the transfer, optimizing the ∆V of the manoeuvres.

δ∞ 

α∞ 

v∞ 

γ 

rSOI

Figure 4.11: Condition at infinite defined by v∞, α∞ and δ∞.

4.3.1. First Transfer Strategy

The first strategy approaches the problem by dissecting the transfer into single trajectories
in which each spacecraft is optimized individually. This is done by developing a simple
single shooting method between two known trajectories defined by ephemerides: the final
science orbit, already computed and stored into OEM, and the carrier trajectory, which
is still unknown. The objective is to compute an acceptable carrier orbit, defined only by
the condition at infinite, create an OEM file containing the relative ephemeris and then
apply the single shooting method between the two known trajectories.
The entire strategy can be defined by these main steps:

1. Define the carrier orbit by optimizing singularly each satellite using Problem 1.1, in
which the initial infinite conditions are optimized to minimize the final ∆V.

2. Select the reference trajectory among the ones just optimized to be used as a carrier.

3. Reoptimize using Problem 1.2 the remaining trajectories from the carrier to the
final orbit in order to obtain three complete trajectories.
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Initially, the satellites are treated as three individual objects departing from the SOI with
v∞ defined by the launcher; the decision vector is formed by the conditions at infinite, the
initial time in which the spacecraft is on the SOI and the final time when the science orbit,
indicated with (·)s, is reached. The cost function of such problem, defined in Problem 1.1,
is composed only by the final ∆V, since the initial ∆V is given by the launcher and not by
the propulsion system of the spacecraft. Despite this, even though the v∞ is not directly
included in the cost function, it is heavily bounded to limit its value around hundreds of
m/s in order to avoid relying too much on the launcher performance. The three carrier
trajectories obtained with this optimization have all different initial conditions and lead
the satellites into their respective science orbits, completely independent from each other.
The problem is formally stated below and graphically represented in Fig. 4.12a.

Problem 1.1.

Find y1 = [v∞, α∞, δ∞, ti, tf ]

subject to


x(tf ) = xs(tf )

y(tf ) = ys(tf )

z(tf ) = zs(tf )

which minimizes ∆Vf

The selection process to choose the reference trajectory is based on the initial time;
between the three optimized transfers, the earliest one is used as the carrier for all the
other satellites since ideally, this trajectory will contain also the optimal releasing times
of the two other units. This statement is valid only if the optimal releasing time and
the time in which the satellite is on the SOI are relatively similar, which will be verified
in Section 5.2.1. The reference orbit is then propagated for a limited interval and the
carrier’s states are computed and collected into an OEM file.
The final step consists in reoptimizing the other two satellites using a simple shooting
methods departing from the carrier orbit and arriving at the final science trajectory as
presented in Problem 1.2. This problem has as decision vector the releasing time ti, the
arrival time tf and the vectorial components of the initial ∆V, and as objective function
the sum of the initial and final delta-Vs. In this case, both delta-Vs are considered since
after detaching from the carrier the spacecraft needs to change the initial trajectory to
reach its final arrival scientific orbit since the carrier path is optimal only for the spacecraft
non-optimized with this problem. The statement of the second optimization problem and
its graphical interpretation are shown respectively in Problem 1.2 and Fig. 4.12b.
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Problem 1.2.

Find y2 = [ti, tf ,∆Vi]

subject to


x(tf ) = xs(tf )

y(tf ) = ys(tf )

z(tf ) = zs(tf )

which minimizes ∆Vi +∆Vf

ti

tf

ΔVf 

v∞(v∞, α∞, δ∞)

transfer

science

(a) Problem 1.1

science

transfer

reference

ΔVf 

ΔVi 

tf

ti

(b) Problem 1.2

Figure 4.12: Schemes of the optimization problem for the first strategy.

The diagram in Fig. 4.13 summarizes the whole optimization process: the problem is
greatly simplified by sectioning the entire transfer into individual segments that can be
solved in parallel. Even though the optimizations are all carried on individually, the
trajectories must be connected to each other and this issue is addressed by providing a
common initial carrier trajectory. The final result considering the presence of all three
satellites is shown in Fig. 4.14. In this example by solving Problem 1.1 turns out that if
hypothetically the spacecraft were launched individually, the third S/C would reach the
SOI first, making its trajectory the reference for the other two. The trajectory of the third
spacecraft is completely defined from the first optimization process, while Problem 1.2
takes care of the trajectory of the other two satellites which were not selected as reference.
The new optimized trajectories start from the carrier orbit detaching at optimal times
and arrive on the final science orbit, completing the entire transfer.
This approach breaks the transfer into smaller segment in order to ease the solving process
which becomes more manageable from a computational point of view. On the other
hand, even though singularly the optimization problems can be computed quite fast, the
downside is that five problems must be solved, three to obtain the reference trajectory
and two to reoptimize the the missing satellites, making this procedure fairly long. The
major disadvantage of this strategy is that the satellite injected in a heliocentric leg
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science.oem

carrier.oemSelect reference

Optimization
Problem 1.1

Reoptimization
Problem 1.2

Optimized trajectory

Figure 4.13: Diagram of the optimization process used for the first strategy.

directly by the launcher will always have a lower ∆V with respect to the other since the
initial ∆V is not given by the onboard propulsion system. In a mission such as the one
under analysis, in which all the satellites are identical, a different cost in ∆V translates
into different amounts of fuel remaining in the tanks. This fuel difference can limit the
mission under different aspects; by following this transfer strategy two spacecraft have less
fuel, meaning that a lower operational lifetime imposed by the exhaustion of propellant
is expected. This phenomenon can be mitigated by forcing the satellite with more fuel
to execute more frequent trajectory correction manoeuvres to compensate for the lack
of manoeuvrability of the other satellites. This solution solves partially the problem of
having different transfer costs between the spacecraft but increases the complexity of
mission management during the operational phase.

4.3.2. Second Transfer Strategy

The second transfer strategy addresses the problem in a more generic way, avoiding the
simplifications added in the first case such as constraining the trajectory of a satellite
to follow the one of the carrier. The idea for this transfer is to optimize the conditions
at infinite defined by v∞ and then consider three distinct releasing times, one for each
spacecraft. As a consequence, the infinite conditions are so to be optimal for all three
satellites and not just for a single spacecraft, meaning that the total ∆V budget of the
transfer is distributed more evenly between the units of the fleet.
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s/c detaches from carrier
s/c arrives at final orbit
carrier trajectory
sc1 transfer
sc2 transfer
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Figure 4.14: Resulting trajectories for the first optimal transfer strategy.

The strategy is briefly summarized in Fig. 4.15 and follows these steps:

1. Define the initial conditions of the carrier and propagate its trajectory.

2. Extract the initial conditions of each satellite from the state of the carrier and
propagate the trajectories up to the final time.

3. Compute the cost function and the constraints with the final conditions of the
satellites and obtain the three optimized transfer trajectories.

The first phase consists in defining the trajectory of the carrier, indicated with (·)c, using
the initial conditions (v∞, α∞, δ∞) and an initial and final time, respectively t0 and tf .
The initial and final times are needed to propagate the carrier’s orbit from which the initial
states of the satellites are extracted; these are not optimization variables, meaning that
the optimal transfer trajectory of each spacecraft is bounded to start after t0, decreasing
the search space of the problem. Once the carrier’s trajectory is computed, is possible to
extract the initial state at the releasing time of each satellite; the positions are given by
the position of the carrier and velocities by the velocity of the carrier plus the initial ∆Vi.
The next step consists in propagating the trajectories of the satellites up to the final
times and computing the remaining part of the cost function, the final delta-Vs, and
the constraints on the final positions. With these information the optimization problem
stated in Problem 2 is fully described and can be solved obtaining the optimized transfer
trajectories.
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Problem 2.

Find y3 = [v∞, α∞, δ∞,X 1,X 2,X 3]

subject to


r1(tf ) = rs

1(tf )

r2(tf ) = rs
2(tf )

r3(tf ) = rs
3(tf )

which minimizes ∆V1 +∆V2 +∆V3

where

X 1 = [t1,i, t1,f ,∆V1,i]

X 2 = [t2,i, t2,f ,∆V2,i]

X 3 = [t3,i, t3,f ,∆V3,i]

∆V1 = ∆V1,i +∆V1,f

∆V2 = ∆V2,i +∆V2,f

∆V3 = ∆V3,i +∆V3,f

science.oem

Carrier
(v∞, α∞, δ∞, t0, tf)

Extract initial conditions

Spacecraft
r(ti) = rc(ti)

v(ti) = vc(ti)+ΔVi  

Compute J

Propagate

Optimized trajectory

Figure 4.15: Resulting trajectories for the second optimal transfer strategy.

As can be seen in Fig. 4.16 the carrier has its own trajectory and each satellite is released
individually at a different time. As mentioned before, the time when the carrier and all the
satellites reach infinite conditions is fixed, optimizing only the releasing times. The search
space is further limited by imposing that the three satellites have maximum one month
after t0 to detach from the carrier and start their journey toward the final orbit. The
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selected time range is completely arbitrary, but it seemed reasonable to allow significant
freedom in this sense, recalling that the expected time of flight is one year.
The main disadvantage of this strategy is that is computationally heavier than the one
described in Section 4.3.1 since the optimization problem has to define the optimal values
of 19 variables; although the search space for time is limited to one month and all the
variables are bounded, the space defined by the feasible solutions is still massive. By
stating the problem in this way the major disadvantage of having delta-Vs with different
values is partially eliminated since all satellites have both an initial and final ∆V. It is not
excluded that with this strategy the carrier injects the three satellites into a heliocentric
orbit which is more favourable in terms of ∆V to one S/C with respect to another.
However, compared to the first strategy in which this phenomenon is embedded into
the problem since one spacecraft always performs one less manoeuvre, this case largely
averts this issue and its presence is not consistent as proved by the results in Section
5.2.2. Finally, having a similar amount of fuel in all satellites allows having a more
balanced allocation of correction manoeuvres between the units of the fleet and manages
to eliminate the different operational lifetimes due to the lack of propellant. This is
undoubtedly the best and most promising strategy and it will be analysed more extensively
in Chapter 5, completely dedicated to the results of the optimizations.

s/c detaches from carrier
s/c arrives at final orbit
carrier trajectory
sc1 transfer
sc2 transfer
sc3 transfer

sc1 science
sc2 science
sc3 science

ti
3

ti
1
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2
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tf
2

tf
1

t0

tf

v∞

ΔVf
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ΔVf
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ΔVf
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ΔVi
3 ΔVi
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ΔVi
2 

Figure 4.16: Diagram of the optimization process used for the second strategy.
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The main objective of this work is to define a complete preliminary design of a trajec-
tory transferring the cartwheel formation from Earth to an EDHO and analyse the main
parameters that affect both the formation stability and the transfer. In this chapter,
the results of the optimization problems and transfer strategies adopted to answer the
research question are reported. In the first part regarding the science phase the results
determining the stability of the formation are analysed by considering two cost functions,
JLength and JRate. The two approaches are compared using different initial displaced angles
and nominal arm lengths to check if the requirements reported in Table 5.1 are satisfied
and if one function is better than the other.

L Range [km] L̇ Range [m/s] α Range [deg]

[2.45× 106, 2.55× 106] [-10, 10] [58.8, 61.2]

Table 5.1: Requirements on the geometry of the formation.

In the second part, the transfer strategies defined in Section 4.3 are analysed by fixing the
structure of the formation, selecting the initial displacement angle and the arm length.
After the evaluation of both strategies, their results will be assessed to understand which
one obtained the best performance in terms of total ∆V and maximum difference between
the delta-Vs of each spacecraft.

5.1. Science Phase

The first step is to verify that by tuning the initial conditions defined by the orbital
elements, the formation can be stabilized without station keeping manoeuvres for long
periods of time, in this case 10 years. The test run presented in Fig. 4.5 refers to the
geometry evolution of a formation defined by an initial displacement angle of -20° and
a nominal arm length of 2.5e6 km. The results of the optimization using the two cost
functions with the same conditions are shown in Fig. 5.1; the breathing motion of the
formation is lowered up to a point in which the geometry requirements are all satisfied.
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(a) Not Optimized

(b) Optimized with JLength

(c) Optimized with JRate

Figure 5.1: Formation with θ0 = -20° and L = 2.5× 106 km.
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(a) Not Optimized

(b) Optimized with JLength

(c) Optimized with JRate

Figure 5.2: Formation with θ0 = 15° and L = 2.5× 106 km.
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(a) Not Optimized

(b) Optimized with JLength

(c) Optimized with JRate

Figure 5.3: Formation with θ0 = -25° and L = 2.5× 106 km.
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The geometry characteristics, instead of diverging in time as in the non-optimized case
have a more uniform behaviour, verifying the success of the optimization process. The
preliminary analysis in Section 4.1.1, studying leading and trailing configurations for a
range of initial displacement angles from 12° to 26° (Fig. 4.6), shows a behaviour in the
maximum deviation of the geometry parameter that can be categorized into three different
levels: a highly perturbed formation for |θ0| < 16°, where the geometry is still preserved
but is not stable, a low perturbation environment for |θ0| > 24°, in which there is no
significant difference in the maximum deviation from the nominal conditions and an in-
termediate level, in which Earth’s perturbations have a medium intensity. The analysis is
repeated for initial angles in these ranges as reported in Fig. 5.2 and Fig. 5.3, respectively
for θ0 = 15° and θ0 = -25°, to cover both leading and trailing configurations. As expected,
the perturbation of Earth is too intense to have a formation satisfying the requirements
even with the optimization. In the non optimized case the arm length ranges between
2e6 km and 3e6 km, the arm length rate between ±75 m/s and the corner angle between
48° and 72°. The optimization manages to limit these large variations without bounding
them within the imposed limits. It can be noticed that for the corner angle in the op-
timized cases the requirements are not met at the beginning and end of the time period
considered. In case of a less perturbed environment (θ0 = -25°) even without optimization
the parameters satisfied the bounds for the most of the time, exceeding these limits only
in the last part of the propagation; in this situation, both functions manage to tune the
initial orbital elements so that all requirements are satisfied.
To show the improvements due to the optimization for different θ0, the maximum and
minimum value of L, L̇ and α are computed using optimized and non-optimized methods
as shown in Fig. 5.4. For higher angles the action of the optimization is not that evident
since the breathing motion is rather limited, while is quite the opposite for low angles
where the optimization’s results are remarkable, but the perturbations are too high to
assure compliance with the requirements. The same figure is proposed focusing on the
maximum deviation and the limits to analyse the behaviour of the two cost functions and
understand which one produces the best results. As presented in Fig. 5.5, |θ0| = 15° never
complies with the requirements, while for most of the other cases the results are well
bounded. Regarding the difference between the two cost functions, there is no clear trend
that identifies the optimization problem which consistently produces the best results.
The investigation on the behaviour of JLength and JRate continues by analysing the maxi-
mum variations of the geometrical parameters for different arm lengths with θ0 = -20°. In
this case the results are reported differently from Fig. 5.4 and only the difference between
the maximum and minimum variation is reported for each value of L. The analysis is
limited to more realistic values of arm length ranging from 4e5 km to 5e6 km, the latter
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Figure 5.4: Maximum variation comparison between optimized and non-optimized solu-
tions with respect to θ0.

being the nominal arm length of LISA selected in the early stages of the mission analysis.
As shown in Fig. 5.6, both cost functions repeat the expected trend as in Fig. 4.7 with an
increment in variations for L and L̇ for higher arm length and an initial decrement followed
by a growth for the corner angle. The higher the value of the variation, the higher the
breathing motion, meaning from this figure is possible to verify which optimization process
performed worse. The cost function defined with the arm length obtains the best results
for low inter-satellite distances up to 2.5e6 km, point in which the two J have almost the
same behaviour, with JLength still being slightly better than JRate. For higher values of
arm length the variations are approximately the same, but JRate achieves overall superior
outcomes with respect to JLength. From these results is possible to fully define the best
cost function to optimize the science phase needed for the transfer; considering a nominal
arm length of 2.5e6 km and an initial displacement angle of -20°, the cost function with
the best results is JLength and through this optimization is possible to create the OEM
files needed to design of the transfer trajectory.
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Figure 5.5: Maximum variation comparison between JLength and JRate with respect to θ0.

Figure 5.6: Maximum variation comparison between JLength and JRate with respect to L.
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5.2. Transfer Phase

The results obtained from the two transfer strategies are reported considering the same
final orbits, fully defined in the optimization of the science phase. Only a single formation,
the one with the same conditions as LISA, is investigated in order to compare the results
with the one of LISA. It is fundamental to note that the results of the trajectory design
of LISA reported in [22] come from a similar problem in terms of formation design, but
with some key differences: the dynamic, that does not consider the SRP, the use of Solar
Electric Propulsion (SEP), which set a range of acceptable Sun aspect angle (SAA), the
presence of communications requirements, which determine a maximum Earth distance of
65e6 km and the departure epoch fixed in 2034, instead of 2031 as in the cases presented
in this sections.

5.2.1. First Transfer Strategy

To solve the optimization problems presented in Section 4.3.1 it is necessary to choose
a time for both the departure and arrival epochs which define the search space of the
problem. Since the optimized science trajectories are computed from January 2032 on-
ward, the arrival time is constrained to be after this date, meaning that the departure
date can be found by subtracting the time of flight from the arrival date. The pork-chop
plots in Fig. 4.9 represent the costs for a transfer from the mean Earth to the final science
orbit; the time of flight for the optimal ∆V is slightly lower than one year, meaning that
considering the transfer without the hyperbolic leg 11 months is an acceptable guess. For
the example reported in this section, the initial and final guessed dates are respectively

ti,guess = 2031-05-01T00:00:00
tf,guess = 2032-04-01T00:00:00

with a window of two months centred in these epochs. Another parameter that needs to
be defined is the magnitude of the infinite velocity which, with right ascension, declination
and payload mass, imposes the performance of the launcher. The search space defined by
the initial and final time and the v∞ is the following:

ti,range = [2031-04-01T00:00:00, 2031-06-01T00:00:00]
tf,range = [2032-03-01T00:00:00, 2032-05-01T00:00:00]

v∞,range = [300, 500] m/s

With the limits of the problem well defined is possible to solve Problem 1.1 obtaining the
results reported in Table 5.2. The earliest date is the one relative to the third spacecraft,
which is then taken as reference, meaning that Problem 1.2 needs to be solved only for
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the other satellites as shown in Table 5.3. The departure date does not change exces-
sively, meaning that the assumption made during the problem description regarding the
similarity between the optimal releasing time and the time at which the satellite is on the
SOI, can be considered valid.

∆V [km/s] ti tf

SC1 0.638 2031-05-22T12:07:20 2032-04-07T21:01:35

SC2 0.652 2031-05-08T21:26:21 2032-03-19T16:22:39

SC3 0.564 2031-04-27T18:05:45 2032-03-25T23:52:13

Table 5.2: Results obtained solving Problem 1.1.

∆V [km/s] ti tf

SC1 1.041 2031-05-28T09:50:58 2032-03-30T17:24:08

SC2 0.837 2031-05-12T16:07:23 2032-03-28T09:35:08

Table 5.3: Results obtained solving Problem 1.2.

The total cost to transfer all three satellite is ∆V = 2.442 km/s, while the time of flight
can be computed by defining the hyperbolic leg setting the perigee of the hyperbola at
an altitude of 250 km. The resulting infinite velocity is 500 m/s and with such value the
expected eccentricity is small, meaning that the escaping trajectory takes a non-negligible
part of the transfer. In this example the total duration of the hyperbolic trajectory from
the parking orbit to the SOI is about 7 days and the total times of flight for SC1, SC2 and
SC3 are respectively 353, 334 and 340 days. As expected, the ∆V of the satellite coupled
with the carrier is much lower than the other; in this case ∆V3 is half of ∆V1 which
makes the design and sizing of all the satellite system more complex and the management
of the operational phase more challenging since a more cautious allocation of correcting
manoeuvre must be considered. To conclude the analysis of the first strategy the entire
trajectory transfer and part of the science phase are plotted in Fig 5.7. The carrier and
the three satellites stowed in it leave Earth on a hyperbolic trajectory up to the SOI where
the carrier and the third satellite continue on the same path. The other two satellites
detach at an optimal time from the carrier and then perform an initial ∆V manoeuvre
that put them in the correct orbit to reach the final formation. All three satellites need
a final manoeuvre to match the velocity of their respective final orbit, which in the figure
are propagated only for one year to ease visually the reader.
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Figure 5.7: Transfer and science trajectories using the first strategy.

5.2.2. Second Transfer Strategy

The results of the second transfer strategy are presented as follows; firstly, a single opti-
mization is shown as in the previous section, and then the optimization process is repeated
for a whole year to obtain the best period to transfer the fleet. The first step to solve
Problem 2 is to fix the time in which the carrier reaches the SOI, that for this example is:

t0 = 2031-04-16T00:00:00

Then, the release times are selected after 15÷20 days from t0, with a range of ±15 days
to define a search space of one month. By defining v∞ with the same limits as the one in
the first strategy the problem can be solved, obtaining the results reported in Table 5.4.

∆V [km/s] ti tf

SC1 0.965 2031-05-15T23:59:14 2032-03-31T21:51:33

SC2 0.761 2031-05-01T04:51:10 2032-03-19T09:01:35

SC3 0.735 2031-05-11T15:36:25 2032-04-07T00:47:22

Table 5.4: Results obtained solving Problem 2.
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The total ∆V of the transfer is 2.460 km/s which is slightly higher than the one obtained
using the first strategy, recalling that in this case an additional initial ∆V is expected.
Regarding the difference in the delta-Vs of each satellite, the maximum difference is only
0.2 km/s, meaning that the new strategy defined to correct this performance difference
does work. The optimized infinite velocity is not maximized as in the first strategy, since
all three satellites depend on the initial infinite conditions. The newly defined optimization
problem must seek an equilibrium that optimizes all releasing conditions simultaneously,
while in the previous strategy the carrier optimization affected only one satellite. In this
example the infinite velocity is

v∞ = 424.3 m/s

and the total times of flight from Earth to the final formation are 328, 330 and 339 days
respectively for SC1, SC2 and SC3, comparable with the results of the first strategy.

Figure 5.8: Transfer and science trajectories using the second strategy.

The complete trajectory is shown in Fig. 5.8; here the escape leg includes both the hy-
perbolic and the carrier trajectory which is propagated up to the final releasing epoch,
coincident with SC1. Other than plotting the orbit is possible to check the behaviour of
the geometry characteristics L, L̇ and α from t0 to one year into the science phase as shown
in Fig. 5.9. Initially, all parameters are null since the satellites are still attached to the
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Figure 5.9: Geometry evolution during the transfer and part of the science phase.

carrier, then, with each impulsive initial manoeuvre, the formation starts to assume its
form. The maximum value of the arm length is 4.5e6 km which is almost double the nom-
inal value of 2.5e6 km, while the arm length rate and the corner angle have respectively
a maximum of 580 m/s and 150°. In cases in which inter-satellite communications are
needed also during the transfer, this could create problems on the communication system
that should be sized on the geometry that the fleet assumes during the commissioning
and not during the science phase.
To conclude this section, an in-depth analysis of this strategy is presented by analysing the
behaviour of the ∆V across an entire year. The time reference used to define the different
delta-Vs is the epoch on which the carrier reaches the SOI, t0; for every new optimization,
t0 is moved forward one month and the same happens to the initial and the final guessed
times. The range selected to compute the additional optimization is one month since the
allowed time window defined in the optimization problem is one month as well, meaning
that the whole year is covered by the optimization process. Recalling that the scientific
phase starts on January 2032 and the time of flight is on average 11 months, the first
available date for t0 is 2031-02-16T00:00:00, while the last one is 2032-01-16T00:00:00.
The results shown in Fig. 5.10 represent the total cost of the mission and the individual
delta-Vs of each satellite for different departing epochs.

The cost of the mission varies along the year, but it is well bounded between 2.5 km/s
and 3.4 km/s; by looking at the trend of ∆V, it is possible to identify two local minima,



5| Results 57

Figure 5.10: ∆V trend for an entire year.

Figure 5.11: Time of flight variation over a one-year window.

one in April, the lowest, and one in October-November which is exactly what is expected
by looking at the pork-chop plots in Fig. 4.9 for a trailing formation. Regarding the
minimum and maximum difference between individual delta-Vs this analysis shows a
varying behaviour with cases in which the three manoeuvres are almost identical and
cases in which the costs are quite different. The two best and worst cases in this sense
are obtained departing in July and November as reported in Table 5.5.

∆V1 [km/s] ∆V2 [km/s] ∆V3 [km/s] ∆V Difference [m/s]

July 1.076 1.114 1.045 69

November 0.850 1.154 0.589 556

Table 5.5: Optimization results of July and November.
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The minimum difference in ∆V is just 69 m/s which is totally in agreement with the
idea of using three identical spacecraft, but this comes at overall higher total cost of the
mission equals to 3.236 km/s. From this analysis emerges the fact that this strategy does
not prevent systematically results with major differences in ∆V, but this phenomenon is
largely limited due to the way the problem is constructed; in particular, by looking at the
analysis over an entire year is possible to notice that the launch in November in which the
difference in the delta-Vs is maximum is an isolate case. The last analysis deals with the
transfer time elapsed from t0 to the final arrival time which does not consider the time
spent on the hyperbolic leg of around 7 days; as shown in Fig. 5.11 the transfer duration
for the different departure epochs ranges between 320 days and 370 days. From these
results is clear that this approach can produce results as good as the first strategy with
one less manoeuvre, but with better distribution of the costs between the three satellites
of the fleet.
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6| Conclusions

The work developed in this thesis focuses on the preliminary mission design for a cartwheel
formation in an EDHO, generalizing the dynamic environment in which this type of
configuration was studied up to now. This final chapter outlines the main results and
provides possible paths to future research.

The first step was to analyse the behaviour of the formation in a newly characterized
dynamic environment which considered the presence of SRP to gain information on which
parameters defining the formation affected its stability the most. The formation can be
maintained stably without station keeping manoeuvre only for |θ0| ≥ 20°, threshold under
which the Earth’s perturbations are too intense to preserve a high-precision formation.
The objective of designing a complete trajectory from Earth to the end of operation
maintaining a stable formation and low transfer cost is reached as presented in Chapter
4. Regarding the stability, the proposed cost functions performed positively, achieving
optimal performance in terms of minimization of the geometry’s variation, highly limiting
the breathing motion of the formation. The strategies proposed for the transfer succeeded
in placing the satellites in their final heliocentric orbits with low-cost manoeuvres; the
transfer considered only the main impulses, overlooking in first analysis small correction
manoeuvres which are necessary for more refined mission design. The second strategy
described in Section 4.3.2 obtained the overall best results considering the necessity of
similar costs between the three satellites. The cartwheel formation used for the transfer
analysis with θ0 = -20° and L = 2.5e6 km has been selected to be as close to LISA as
possible and compare the outcomes. This thesis and the LISA mission analysis have some
fundamental differences that are worth to be highlighted; LISA considered a SEP system
from which additional constraints like limited SAA are derived, the selected departure
epochs are in 2034, while in this work the launches are in 2031 and finally, LISA is
not a mission in preliminary phases and there are additional restrictions on the transfer,
such the ones on the communication system, imposing a maximum Earth’s distance and
elevation due to the limits of the High-Gain Antenna (HGA). Despite these differences, a
fair comparison can be still carried out. The total ∆V for LISA ranges between 2.0 and
3.0 km/s, while for this analysis the variation is limited between 2.5 and 3.4 km/s. This
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distinction derives other than the previously discussed differences, from the discrepancy
between the total time of flight of the transfer; for LISA this figure varies between 440
days and 540 days, while for the proposed strategy the transfer duration is much quicker
ranging between 320 days and 370 days. In addition, the entirety of this thesis has been
developed on GODOT to demonstrate and show the great potential of this software. In
particular, the combination of GODOT and PyGMO makes the optimization, not only of
the ∆Vs of the transfer but also of generic problems as the one needed for the stability
of the formation, easy to implement and solve, due to the high compatibility of these two
programs.

Despite the promising results, many future developments can improve and refine this
type of solution starting from the selection of the escape trajectory. This thesis as a
preliminary approach a direct injection toward the EDHO has been used considering the
availability of a heavy-lift launch vehicle. Further improvements could consider smaller
launchers defining different escape strategies; one possible example is the Lisa Pathfinder
mission, launched on a Vega rocket toward the Lagrange point L1, in which an additional
propulsion module performing six ARM was designed and added to the spacecraft. Other
possible strategies consist in taking advantage of the lunar perturbations through Lunar
Gravity Assist or exploiting low energy escape via the Sun-Earth Lagrange Points. Future
work could also approach differently the solution to this problem without splitting the
analysis into transfer and scientific parts. This would further complicate the problem
since a single multi-objective optimization with multiple cost functions and constraints
would be needed. Considering simultaneously the optimization of the initial conditions
for the formation stabilization and the manoeuvres needed to transfer the fleet would
produce a more general and complete solution to the cartwheel flying formation problem,
to the detriment of a more complicated implementation.
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