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Abstract

Great progress has been made in recent years to develop aerodynamic models capable of
reproducing suspended bridges dynamics behaviour with great accuracy. However, simpli-
fied and easy-to-evaluate models are still required for preliminary design and in reliability
assessment of cable supported bridges.
The goal of the present work is to develop an effective linear model for the approximation
of self-excited forces on bridge decks. The model is designed using a set of orthonormal
Laguerre functions as basis to express the linear kernel of a Volterra series expansion for
the aerodynamic forces.
A model training procedure is developed and tested on a first-order simulated system.
Then, the strengths and weaknesses of the framework are explored on real data tests.
The data used for testing are from the Norwegian University of Science and Technology
wind tunnel in Trondheim, Norway.
The designed model is then compared with a well-established model for experimental
data interpolation: the rational functions model. The Laguerre expansion model proved
to be effective and capable of foreseeing wind action with similar performances to rational
functions in time domain and for most of the tested frequency range in frequency domain.
The force prediction model is then inserted in a simulated dynamic model of a deck sec-
tion. With time series simulations the Laguerre model led to correct structural dynamic
behaviour forecast, compared to classic identification methods. Agreement in the pre-
dicted instability limits was found comparing the use of the Laguerre model and rational
functions model as force prediction frameworks.

Keywords: Aeroelasticity, Wind Engineering, Bridge aerodynamics, Linear model, La-
guerre filters, Orthonormal functions, Aerodynamic forces, Flutter instability





Abstract in lingua italiana

Numerosi progressi sono stati fatti negli ultimi anni nello sviluppo di modelli aerodimici in
grado di approssimare con precisione il comportamento dinamico di ponti sospesi. Nonos-
tante ciò, rimane fondamentale la presenza di modelli semplificati e di facile calcolo per la
fase di design preliminare e di analisi dell’affidabilità per progetti di ponti di grande luce.
L’obbiettivo di questo progetto è quello di sviluppare un modello lineare e di semplice
calcolo per la modellazione delle forze aeroelastiche. Ciò è stato realizzato utilizzando le
funzioni ortonormali di Laguerre come base per esprimere l’espansione di Volterra, fer-
mata al primo ordine, delle forze aerodinamiche.
É stata sviluppata una procedura di training del modello e testata su un sistema del primo
ordine simulato.
In seguito i punti di forza e le debolezze dell’algoritmo sono state esplorate su un set di
dati reali. I dati utilizzati provengono da test nella galleria del vento della Norwegian
University of Science and Technology di Trondheim, in Norvegia.
Il modello identificato è poi stato paragonato con un modello normalmente utilizzato per
interpolare i dati sperimentali: il modello delle rational functions. Il modello di espansione
di Laguerre ha dato prova di essere in grado di prevedere in maniera efficace l’azione del
vento sulla struttura, con prestazioni simili al modello delle rational functions nel tempo
e per la maggior parte delle frequenze testate.
Il modello per la previsione delle forze aerodinamiche qui identificato è stato poi accop-
piato con il modello dinamico completo di una sezione di ponte. Analizzato attraverso
simulazioni nel tempo, il modello di Laguerre è stato in grado di fornire una previsione
corretta del comportamento dinamico della struttura, in accordo con metodi di calcolo
tradizionali. I limiti di stabilità calcolati sono in accordo con quelli trovati inserendo il
modello delle rational functions come modello di calcolo delle forze aerodinamiche.

Parole chiave: Aeroelasticità, Ingegneria del vento, Ponti sospesi, Modello lineare, Filtri
di Laguerre, Funzioni ortonormali, Forze aerodinamiche, instabilità flutter
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1

Introduction

Wind-induced dynamic response is one of the major concerns in long-span bridge de-
sign. Self-excited forces acting on girder, cables and towers can induce vibrations that
can damage or weaken the structure. Thus, the study of the interaction between bridge
components and the wind has been an important research topic in structural engineering
in recent years. Great progress has been done to develop models that can reproduce the
bridge dynamic as accurate as possible. However, simplified models are still convenient for
preliminary design when assessing the reliability of cable supported bridges. Self-excited
forces on bridge decks are commonly modelled in frequency domain with experimentally
determined aerodynamic derivatives that are function of reduced frequency and depend
on the geometry of the girder [13, 17, 18]. The aerodynamic derivatives are usually de-
termined by wind tunnel experiments on section models at discrete reduced frequencies.
To have a continuous time representation and remove the dependency on frequency, the
experimental data can be interpolated in the tested frequency range by a particular dy-
namic model. What is often done in literature is least-squares fitting a rational function
model in frequency domain that is then expressed back in time domain via inverse Fourier
transforming [13, 16]. However, this is not the only way of doing and alternative meth-
ods have been investigated to reduce computational effort or to better capture nonlinear
behaviour of particular section geometries.
Skyvulstad et al. [20] investigated the use of a Volterra series model for nonlinear bridge
aerodynamic modelling in time domain. A Volterra series can be imagined as a Taylor se-
ries expansion with a memory and it is used to construct a non-linear model that expands
linear convolutions to higher order convolutions [25]. One problem with Volterra series
model is the rapid increase of computational burden with the number of inputs, order of
the kernels considered and memory length. To mitigate this issue one possibility is to use
parameterized kernels expanded by basis functions with few coefficients. As innovation in
bridge aerodynamic, Skyvulstad et al. [20] used Laguerrian expansion basis for Volterra
kernels estimation. As shown in the following, the number of Laguerrian coefficients to be
identified is independent on memory length, which can be set arbitrarily long. Moreover,
Laguerrian filters are orthonormal functions and the filters coefficients become orthogonal
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for white noise inputs, which makes the identification process better conditioned. Further-
more, these functions decay to zero, which is the case for most physical system impulse
response functions. This property makes them also good low-pass filters that suppress
higher-order noise making the kernels smoother than traditional identification methods.
In the cited work Laguerrian expansion technique is used to identify Volterra kernels to
estimate nonlinear motion-induced forces on bridge profiles. The present work proposes
to investigate the feasibility of a Volterra series model stopped at the first order.
Hence, the intention of the author is to verify the practicality of a linear model with the
kernel estimated with a Laguerrian expansion basis to predict wind induced self-excited
forces on bridge decks.
Once the linear Laguerrian model has been identified, its performance are evaluated com-
paring the results with the well established rational functions approximation model for
bridge aerodynamics.
The theory needed for calculations is presented in Chapter 1. Then the work is introduced
with a general overview of orthonormal functions used as expansion basis, the Laguerrian
expansion model is introduced and the identification method is explained with a simple
example on a first order system.
The model is tested on real data from state-of-the-art wind tunnel experiments carried
out by Bergerud and Torød [1] in the wind tunnel of the Norwegian University of Science
and Technology (NTNU). With these data the capability of the model to predict self-
excited forces in time domain is checked, comparing the predicted force time history and
the experimentally measured one. The possibility to identify an optimal calibration of the
parametric model is verified checking how the goodness of the identification varies with
the two model parameters: the number of filters considered and the filters decay factor.
Furthermore, the presence of a possible dependency of the model on the girder geometry
is investigated using experimental data from different sections tested in the experimental
campaign. Moreover, the model forecasting performance is been analyzed in frequency
domain, identifying the system transfer functions and comparing them with the experi-
mentally derived aerodynamic derivatives.
The presented model has been then compared with the rational function model fitted to
experimental data. The comparison has been done in time domain, and frequency do-
main, comparing their forecasting performances.
Finally, with numerical simulation of a two degrees of freedom (2 Dof) deck section, the
use of the Laguerrian linear model for predicting aeroelastic dynamic behaviour of the
girder has been investigated. The model has been also used to predict flutter stability
limit and its prediction is compared with the one calculated with the rational functions
model.
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Forces

1.1. Quasi Steady Theory

Self-excited forces are generated by the motion of a body immersed in a flow of fluid. They
can be described following two approaches: unsteady models, which take in to account
how the motion of the structure itself influences the flow around it, and steady models,
that use force coefficients measured on a static model.
The most important steady model is the Quasi Steady Theory (QST), that assumes that
the aeroelastic forces on the girder are the same as the static forces measured in still air
tests [16]. This theory correctly depicts the aerodynamic forces if the reduced velocity
V ∗ = V

fB
is greater than 10 - 20. This means that the time B/V needed by a fluid particle,

travelling at speed V , to move through the length of the bridge deck (B) is at least a
tenth of the deck’s vibration period T = 1

f
. According to QST the aerodynamic forces

consisting in drag, lift and moment are expressed as:

FD =
1

2
ρV 2

RelBLCD(α)

FL =
1

2
ρV 2

RelBLCL(α)

M =
1

2
ρV 2

RelB
2LCM(α)

(1.1)

Here the air density is ρ, B and L are the deck width and length respectively and α is
the angle of attack: the angle between the wind relative velocity and the deck during its
motion. The coefficients CD, CL, CM are the static coefficients for drag, lift and moment
respectively, function of the angle α between the relative velocity VRel and the deck. They
can be determined with static wind tunnel experiments measuring the forces acting on
the deck for different angles of attack and constant wind velocity. VRel represents the
wind velocity relative to the deck, which can be computed taking into account the mean
wind velocity (Vm), the deck velocity components (ẋ, ẏ) and the horizontal turbulence
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component v and vertical turbulence component w. However, according to the choice
of reference point for the measurement of the deck speed components, different relative
velocities may be defined. Indeed, if a reference point P , distant B1 from the centre G of
the section is chosen, as in Figure 1.1, the relative velocity is defined as in Equation 1.2,
and the angle of attack of the relative wind speed is defined as in Equation 1.3.

V 2
Rel = (Vm + v − ẋ)2 + (w − ẏ −B1θ̇)

2

ψ = tan−1

(
w − ẏ −B1θ̇

Vm + v − ẋ

) (1.2)

(1.3)

The angle of attack between the relative wind velocity and the deck, will be given by
Equation 1.4, where θ is the angle of absolute rotation of the deck.

α = ψ + θ (1.4)

The forces components and the sign conventions for forces and angles are shown in Fig-
ure 1.1. The choice of not considering the reference point in the center of the section allows
to include in the modelling the angular speed of the deck θ̇ and therefore to introduce
damping in the system.

Figure 1.1: Absolute and apparent reference reference frames with sign conventions for
forces and angles. It is also shown the vectorial sum for the relative velocity.
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The problem can be simply modelled as in Figure 1.2, where y, x and θ stand for vertical,
horizontal and torsional displacement components. The bridge has its natural vibration
modes defined as vertical, horizontal and torsional motions, to understand the deck be-
haviour under turbulent wind action is sufficient to consider the fist vertical, horizontal
and torsional modes. The elastic links represent the structural damping and stiffness on
the three degrees of freedom granting the same natural frequencies as the first modes of
the real structure. Lift, drag and pitch moment are converted to global reference system,
using the angle of attack ϕ. Hence, the the equations of motion of the bridge deck section
in Equation 1.5 are obtained.

mxẍ+ rxẋ+ kxx = Fx = FDcos(ψ)− FLsin(ψ)

myÿ + ryẏ + kyy = Fy = FDsin(ψ)− FLcos(ψ)

JGθ̈ + rθθ̇ + kθ = Fθ =M

(1.5)

Figure 1.2: Elastically suspended deck section.

Substituting the expressions for the relative wind speed and the angle of attack (Equa-
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tions 1.2 and 1.3) into Equation 1.5 the following non linear system is obtained:

mxẍ+ rxẋ+ kxx =
1

2
ρBL

(
(Vm + v − ẋ)2 + (w − ẏ −B1xθ̇)

2
)
(CD(α)cos(ψ)− CL(α)sin(ψ))

myÿ + ryẏ + kyy =
1

2
ρBL

(
(Vm + v − ẋ)2 + (w − ẏ −B1yθ̇)

2
)
(CD(α)sin(ψ)− CL(α)cos(ψ))

JGθ̈ + rθθ̇ + kθ =
1

2
ρBL

(
(Vm + v − ẋ)2 + (w − ẏ −B1θθ̇)

2
)
CM(α)

(1.6)

where:

α = θ + ψ = θ + tan−1

(
w − ẏ −B1θ̇

Vm + v − ẋ

)
(1.7)

The distance B1 can assume different values according to the considered component of the
aerodynamic forces (B1y for Fy, B1x for Fx and B1θ for M). In this case the formulation
is referred to as the Corrected Quasi Steady Theory (QSTC) (see Subsection 1.2.2 for
details). Moreover, the non linear model expressed in Equation 1.6 can be expressed in
matrix form using the state vector X = [x, y, θ]T as in Equation 1.8.

MsẌ +RsẊ +KsX = FQST

(
X, Ẋ, Vm, v(t), w(t)

)
(1.8)

Where

Ms =

mx

my

JG

 ; Rs =

rx ry

rθ

 ; Ks =

kx ky

kθ


With the hypothesis of small variations of the parameters X, Ẋ, v(t), w(t), the above
formulation of the self-excited forces can be linearised around an equilibrium position.
The static equilibrium position can be found solving the static problem in Equation 1.9.

KsX = Fstatic (X, Vm) (1.9)

X0 =

x0y0
θ0

 ; Ẋ =

00
0

 ;b0 =

[
v(t)

w(t)

]
=

[
0

0

]

Hence, the linear expression of the quasi-steady forces can be obtained by linearisation
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around the equilibrium position:

FQST (X, Ẋ, Vm, b) = FQST (X0, Ẋ0, b0) +
∂FQST

∂X

∣∣∣∣
0

(X −X0) +
∂FQST

∂Ẋ

∣∣∣∣
0

Ẋ +
∂FQST

∂b

∣∣∣∣
0

b

(1.10)

The different terms of the force components in Equations 1.6, 1.7 need, therefore, to be
linearised around x0, y0, θ0. This can be done assuming that the mean wind velocity is
significantly larger than the turbulence components: Vm >> w, Vm >> v. This might
be slightly inaccurate on top of the gusts, but in general it is an acceptable engineering
approximation. It can be also assumed that the horizontal velocity of the structure is
considerably smaller than the mean wind speed Vm >> ẋ. Finally, it is assumed that the
angle of attack of the relative wind speed is sufficiently small that tan(ψ) ≃ ψ. Under all
these assumptions and some passages shown in Appendix A, the linearised expression of
the quasi-steady forces is rewritten in matrix form as in Equation (1.11).

FQST = F st
QST +Rae

˙̄X +KaeX̄ +Amb (1.11)

Here the state vector X̄ = [x̄, ȳ, θ̄]T of displacements from the equilibrium position is
defined, and the aerodynamic forces FQST can be divided in static aerodynamic forces
F st

QST , which are not dependent on the motion of the section and are shown in Equa-
tion (1.12a). And components function of the position X̄ and the velocity ˙̄X. These
latter components are obtained multiplying the position and velocity by the damping,
stiffness and admittance matrices shown in Equation (1.12).

F st
QST =

1

2
ρBLV 2

m

 CD0

CL0

BCM0



Rae = −1

2
BLVm

 2CD0 C ′
D − CL0 B1x(C

′
D − CL0)

2CL0 C ′
L − CD0 B1y(C

′
L − CD0)

2CM0B BC ′
M B1θBC

′
M



Kae =
1

2
ρBLV 2

m

0 0 C ′
D

0 0 C ′
L

0 0 BC ′
M



Am =
1

2
ρBLVm

 2CD0 C ′
D − CL0

2CL0 C ′
L − CD0

2CM0B BC ′
M



(1.12a)

(1.12b)

(1.12c)

(1.12d)
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The linearised quasi-steady force can be introduced in the equation of motion in Equa-
tion 1.8 obtaining the linearised form in Equation 1.13.

Ms
¨̄X + (Rs +Rae)

˙̄X + (Ks +Kae)X̄ = Amb (1.13)

The matrices Rae and Kae represent the aerodynamic damping and stiffness, that mul-
tiplied by ˙̄X and X̄ give the self-excited aerodynamic forces. While the matrix Am

multiplied by b gives the buffeting forces function of the incoming turbulence. The ac-
tion of the wind on the bridge is therefore capable of modifying the overall damping and
stiffness of the structure. When matrix Kae changes, also the natural frequencies of the
structure change, compared to the still air condition, causing phenomena of instability:
see Section 1.4.

1.2. Aerodynamic Derivatives

As previously said, however, the QST is valid only for high reduced velocities V ∗ > 10−20.
Therefore, for lower reduced velocity the way the structure itself influences the flow around
it has to be taken in to account. In literature this is done by the unsteady aerodynamic
models. These models modify the aerodynamic part of Equation (1.11) introducing in
the dimensionless coefficients CL, CD, CM the dependence on the wind velocity and the
frequency of motion.
Among the unsteady models, the most common representation of self-excited aerodynamic
forces is with dimensionless aerodynamic derivatives (ADs). They are also function of the
external geometry of the girder and need to be determined experimentally by wind tunnel
tests. The first to develop a theoretical formulation for the ADs was Theodorsen [24]
applied to thin airfoils. Some years later, Scanlan and Tomko [17] expanded the model
applying it to bridge engineering, resulting in 18 ADs to account for horizontal, vertical
and torsional movement of the bridge section. There exist different notations to express
the ADs, one is the one given by Scanlan and used in this work. An alternative notation,
that is used at Politecnico di Milano, is shown in Appendix C.
The matrices from Equation (1.11) are therefore reformulated as shown in Equation (1.15)
to introduce the dependency from the reduced circular frequency of motion K = Bω

V
= 2π

V ∗ .
The coordinate reference system considered is the same as Figure 1.1. The aerodynamic
self-excited forces are therefore obtained as function of time, frequency of motion and
wind speed.

Fae(t) = Rae(K)Ẋ(t) +Kae(K)X(t) (1.14)
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Rae(K) =
1

2
ρV BK

 P ∗
1 P ∗

5 BP ∗
2

H∗
5 H∗

1 BH∗
2

BA∗
5 BA∗

1 B2A∗
2



Kae(K) =
1

2
ρV 2K2

 P ∗
4 P ∗

6 BP ∗
3

H∗
6 H∗

4 BH∗
3

BA∗
6 BA∗

4 B2A∗
3



(1.15a)

(1.15b)

Here V is the mean wind velocity (previously referred as Vm, from here on the sub-
script m will be omitted), ρ is the air density and B is the girder width. The vec-
tor X(t) = [x(t), y(t), θ(t)]T represent the horizontal, vertical and torsional displace-
ment of the section, positive in the same direction of the forces depicted in Figure 1.1.
P ∗
i , H

∗
i , A

∗
i , i ∈ {1, 2, ...6} are the dimensionless ADs expressed in function of the reduced

frequency of motion. Normally the aerodynamic derivatives are found experimentally
through wind tunnel tests and therefore are known only at discrete frequencies, therefore
Equation 1.14 is strictly valid only for a single harmonic motion. However, the self-excited
forces can be calculated for a more general motion under the assumption that the princi-
ple of superposition holds.
Couples of ADs represent the real and imaginary part of the transfer functions between
the different degrees of freedom and the self excited force, this can be seen taking the
Fourier transform of Equation 1.14, obtaining Equation 1.16 [13], where i =

√
−1 is the

imaginary unit.

GFae
(ω) =

1

2
ρV 2K2

 (P ∗
1 i+ P ∗

4 ) (P ∗
5 i+ P ∗

6 ) B(P ∗
2 i+ P ∗

3 )

(H∗
5 i+H∗

6 ) (H∗
1 i+H∗

4 ) B(H∗
2 i+H∗

3 )

B(A∗
5i+ A∗

6) B(A∗
1i+ A∗

4) B2(A∗
2i+ A∗

3)

X(ω) (1.16)

Here GFae
(ω) =

∫∞
−∞ Fae(t)e

−iωtdt is the vector of the Fourier transform of the self-
excited forces, while X(ω) = [X(ω), Y (ω),Θ(ω)]T is the Fourier transform of the vector
X(t) of the motion histories. To be independent from the scale it is often useful to use
dimensionless quantities. Equation 1.16 can be adimensionalised obtaining the vector
G̃Fae

(ω) of adimentional transfer functions in Equation (1.17).

G̃Fae(ω) = K2

 (P
∗
1 i+ P ∗

4 ) (P ∗
5 i+ P ∗

6 ) (P ∗
2 i+ P ∗

3 )

(H∗
5 i+H∗

6 ) (H∗
1 i+H∗

4 ) (H∗
2 i+H∗

3 )

(A∗
5i+ A∗

6) (A∗
1i+ A∗

4) (A∗
2i+ A∗

3)

 X̃(ω) (1.17)
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Where X̃(ω) = [X(ω)
B
, Y (ω)

B
,Θ(ω)]T is the vector of adimentional input motions in fre-

quency.
If the experimental identification of the ADs is done also at high reduced velocities, where
also the QST is valid, the matrix coefficients in Rae(K) can be used to experimentally
identify the values of B1x, B1y and B1θ that differentiate the QST to the QSTC (Equa-
tion (1.6)). Comparing the expression for the damping matrix in Equation 1.15a with the
one in Equation 1.12b, it can be obtained:

B1x =
P ∗
2

P ∗
5

B

B1y =
H∗

2

H∗
1

B

B1θ =
A∗

2

A∗
1

B

(1.18a)

(1.18b)

(1.18c)

The formulation that uses aerodynamic derivatives to correct the QST is commonly called
Correct Quasi Steady Theory (QSTC) [3].
Aerodynamic derivatives can be identified experimentally from wind tunnel tests with two
different methods: the free motion method and the forced motion method.

1.2.1. Free motion method

In free motion tests the model is suspended with springs and vibrates due to imposed
initial conditions and the interaction with the wind flow. The vibration of the system is
measured. The comparison between the measured decay at a given wind speed and the
computed one allow to identify the ADs through least squares minimization. [4]. Free
motion tests are considered to give a more realistic in wind vibration of the deck and are
easier and cheaper to set up. However, is more difficult and easily subjected to errors to
identify aerodynamic derivatives from this kind of test.

1.2.2. Forced motion method

Forced motion tests are more expensive but much more reliable. The section model
is forced to vibrate along the three degrees of freedom and the self-excited forces are
measured in real-time for a constant wind speed. This kind of tests are also suitable for
higher wind velocities, higher motion amplitudes and higher turbulence intensities. A
possible drawback might be that with this methodology less realistic bridge motion can
be realized. But this obstacle is partially overcome with special vibration rigs capable of
forcing the model with any desired motion. This kinds of rigs are for example installed
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in the wind tunnels of NTNU and PoliMi and described in Section 3.2. There are several
methods to identify ADs from a forced vibration test. One possibility is to study the
phase angle between the self-excited forces and the forced motion. Another possibility is
to consider the complex Fourier amplitudes of the self-excited forces and relate them to
the aerodynamic derivatives. However, these methodologies can lead to inaccuracies due
to errors in the phase angle estimation or due to spectral leakage [19].
A more reliable method is to use a time domain approach where the model of self-excited
forces is fitted through least-squares to the experimental data [19]. Equation 1.14 can
be rewritten in a more compact matrix form as in Equation 1.19. Where Fae(t, V,K)

represent the self-excited forces dependent on time, the wind speed and the reduced
frequency of motion. The matrix E collects all the ADs and the matrix Z contains
the motion histories and their time derivatives. The mentioned matrices are shown in
Equation 1.20 and 1.21.

Fae(t, V,K) = ZE (1.19)

E =
1

2
ρV 2BK



P ∗
1 /V H∗

5/V BA∗
5/V

P ∗
5 /V H∗

1/V BA∗
1/V

BP ∗
2 /V BH∗

2/V B2A∗
2/V

KP ∗
4 /B KH∗

6/B KA∗
6

KP ∗
6 /B KH∗

4/B KA∗
4

KP ∗
3 KH∗

3 BKA∗
3


(1.20)

Z =


ẋ1 ẏ1 θ̇1 x1 y1 θ1

ẋ2 ẏ2 θ̇2 x2 y2 θ2
...

...
...

...
...

...
ẋn ẏn θ̇n xn yn θn

 Fae =


Fae,x1 Fae,y1 Fae,θ1

Fae,x2 Fae,y2 Fae,θ2
...

...
...

Fae,xn Fae,yn Fae,θn

 (1.21)

The coefficients matrix E can then be found, and thus the ADs by minimizing the sum
of squares as in Equation 1.22.

E = (ZTZ)−1ZTFae (1.22)

Once ADs are identified, the self-excited forces can be expressed with Equation 1.14 as
function of time, wind speed and discrete reduced frequencies.
To have a continuous time domain description and to remove the dependency on the fre-
quency of motion a new dynamic model has to be introduced. A model that is usually
applied is the rational functions model (Section 1.3).
In the present work an alternative approach will be presented: approximating the system
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transfer functions with a linear expansion of special orthonormal functions. These func-
tions are called Laguerre filters and their application to bridge aerodynamic is exposed in
Section 2.3.

1.3. Rational Functions

The rational functions model is identified in frequency domain interpolating the experi-
mental data of the aerodynamic derivatives for any reduced frequency of motion with a
curve fit. Then the time domain representation is obtained through inverse Fourier trans-
forming. Therefore the chosen expression must be suitable for this kind of domain change
[14]. A formulation frequently used in literature [13, 18] is reported in Equation 1.23. As
an example, in Equation 1.23a is reported the transfer function for the self-excited forces
due to vertical motion. The rational functions are contained in the one by three vectors
ay
i , i ∈ [1, ...N ], while dyl is the lag coefficient related to the lift force, in general more

lag terms can be included, but for many cross sections one is usually considered sufficient
(N = 4) [18].

GFae
y
(ω) =

1

2
ρV 2

[
ay
1 + ay

2

iωB

V
+ ay

3(
iωB

V
)2 +

N−3∑
l=1

ay
l+3

iωB/V

iωB/V + dyl

]

F ae
y (t) =

1

2
ρV 2

(
ay
1X(t) +

B

V
ay
2Ẋ(t)

+
N−3∑
l=1

ay
l+3

(
X(t)− dyl V

B

∫ t

0

e−
d
y
l
V

B
(t−τ)X(τ)dτ

))

(1.23a)

(1.23b)

By taking the inverse Fourier transform of the transfer function in Equation 1.23a, and
neglecting the added mass effect (a3 ≈ 0), the time domain expression of the self-excited
lift force due to motion in all the three degrees of freedom can be obtained as in Equa-
tion 1.23b. Here X(t) = [x(t), y(t), θ(t)]T is the three by one vector containing the
displacement of the three degrees of freedom in the instant t.
The rational function coefficients can be determined by non-linear least squares fit to
experimental aerodynamic derivatives. The relation between rational functions and aero-
dynamic derivatives can be derived by the real and imaginary part of the transfer function
in Equation 1.23a, considering only the lift force due to vertical motion, leading to Equa-
tion 1.24 [13].
In recent years algorithms have been developed to directly extract rational functions from
forced vibration tests data [2] without passing from aerodynamic derivatives. This might
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save some errors caused by fitting a model to another experimental model.

H∗
4 =

Re(Fyy(ω))

1/2ρV 2K2
= V̂ 2

(
ayy1 +

N−3∑
l=1

ayyl+3

1

(dyyl V̂ )2 + 1

)

H∗
1 =

Im(Fyy(ω))

1/2ρV 2K2
= V̂ 2

(
ayy2 + V̂ 2

N−3∑
l=1

ayyl+3

dyyl
(dyyl V̂ )2 + 1

) (1.24)

Equation 1.23b can be also reformulated in matrix form, to obtain a state-space rep-
resentation of the problem. This representation is shown in Equation 1.25, where the
self excited forces for each degree of freedom are represented as function of the rational
functions.

F ae = A1X(t) +A2Ẋ(t) +Z(t)

A1 =
1

2
ρV 2a1, A2 =

1

2
ρV 2B

V
a2

Z(t) =
1

2
ρV 2

N−3∑
l=1

ay
l+3

(
X(t)− dlV

B

∫ t

0

e−
dlV

B
(t−τ)X(τ)dτ

) (1.25)

Here ai, i ∈ [1, ...4] are three by three matrices to give the forces on all the three degrees
of freedom. The vector Z contains the time-history-dependent terms.
It is time consuming to calculate the convolution integrals numerically: it is therefore
convenient to include them as unknowns in the system of equations [14]. The vector Z

can be expressed as shown in Equation 1.26.

Z = Q∆

Q =
[
A4 A5 . . . AN

]T
∆ =

[
δT
1 , δ

T
2 , . . . δ

T
N−3

]T (1.26)

Here the components of vector X contain the convolution integrals as shown in Equa-
tion 1.27. Taking the derivative of this equation, these integrals can be modelled by first
order differential equations obtaining Equation 1.28 [14].

δl =

(
X(t)− dlV

B

∫ t

0

e−
dlV

B
(t−τ)X(τ)dτ

)
δ̇l = X(t)− dlV

B
δl

(1.27)

(1.28)

Therefore from Equation 1.28 can be obtained the additional equation needed to introduce
the convolution integrals as unknowns in the system. The representation of self-excited
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forces with state-space matrices is then shown in Equation 1.29.

A1X +A2Ẋ +Q∆ = F ae

EẊ +B∆̇+D∆ = 0
(1.29)

Where

E =


I

I
...
I

 , B =


I

I
. . .

I

 , D =
V

B


d1I

d2I
. . .

dN−3I

 (1.30)

and I is three by three identity matrix.

1.4. Instability Conditions in Bridge Aerodynamics

Once a correct dynamic model has been defined, it can be used to identify the critical
working conditions that might lead to unstable motions. If the reduced velocity is high
enough to use the QST, to identify unstable conditions, the deck equations of motion in
Equation (1.13) can be rewritten in homogeneous form as in Equation (1.31).

Ms
¨̄X + (Rs +Rae)

˙̄X + (Ks +Kae)X̄ = 0 (1.31)

It can be imposed X̄ = Φ̄eλt obtaining Equation (1.32) writing in compact form the
matrices Rt = Rs +Rae and Kt = Ks +Kae. The λ values for which the determinant of
(λ2Ms + λRt +Kt) is equal to zero identify the eigenvalues, while the corresponding Φ̄

are the eigenvectors.

(λ2Ms + λRt +Kt)Φ̄ = 0 (1.32)

However, if QST cannot be considered, the representation with aerodynamic derivatives
must be introduced to consider the influence of the structure in the flow around it. There-
fore, the stiffness and damping matrices will be expressed as in Equation (1.15) and will
be function of λ as well. This will cause the eigenvalue problem to be solved in an iterative
way.
To avoid this, the problem can be rewritten in a state-space form using the rational func-
tion model to interpolate the aerodynamic derivatives. The rational functions state-space
form in Equation (1.29) is coupled with the equation of motion of the system in Equa-
tion (1.8), obtaining the system in Equation (1.33). This is then rearranged in a correct
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state-space form as in Equation (1.34).

MẌ + (Rs −A2)Ẋ + (Ks −A1)X −Q∆ = 0

EẊ +B∆̇+D∆ = 0
(1.33)

ẊẌ
∆̇

 =

 0 I 0

M−1(A1 −Ks) M−1(A2 −Rs) M−1Q

0 −B−1E −B−1D


XẊ
∆

 (1.34)

Hence, the eigenvalues of the system will be the eigenvalue of the matrix in Equa-
tion (1.34).
Instability occurs when one of the eigenvalues have positive real part. The associated
eigenvectors identify the kind of instability: one or two degrees of freedom instability.
Suspended bridge decks do not suffer from 1 degree of freedom (1 D.o.f.) instability,
which occurs when one of the diagonal terms of Rae is negative and greater than the
corresponding one in the Rs matrix, as absolute value. However, they are subjected
to 2 d.o.f. instability, also called flutter instability. Flutter instability occurs when the
equivalent stiffness matrix Kae +Ks is not symmetric, this is always the case in bridge
aerodynamic, and is in condition to make the vertical and torsional frequencies coincide
[24]. The wind speed at which one of the eigenvalues gets zero real part is called flutter
critical speed. Above that velocity the bridge will be unstable.
Flutter instability is a major problem with very long suspended bridges. Indeed, increas-
ing the span length, the ration between torsional and corresponding vertical frequencies
decreases, and the aerodynamic forces can therefore more easily make them coincide. In
bridge aerodynamic the wind speed that causes flutter instability is called flutter critical
speed, and it is an important design parameter for bridge engineering.
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2| The Use of Orthonormal Basis

for System Identification

2.1. Orthonormal Functions

A set of functions v1(τ), v2(τ), ... is said to be orthonormal in the range (a, b) if it satisfies
the relation: ∫ b

a

vn(τ)vm(τ) dτ =

1 if m = n

0 if m ̸= n
(2.1)

Then any generic real and continuous function f(τ) can be represented as a linear com-
bination of these orthonormal functions:

f(τ) =
∞∑
n=1

cnvn(τ)

cn =

∫ b

a

f(τ)vn(τ) dτ

(2.2)

(2.3)

The expression for the coefficients of the linear combination is the one in Equation (2.3),
this is because if Equation (2.2) is multiplied by vm(τ) and integrated over (a, b) the
following expression is obtained:∫ b

a

f(τ)vm(τ) dτ =

∫ b

a

∞∑
n=1

cnvn(τ)vm(τ) dτ

which leads in accordance to Equation (2.1) to:

∫ b

a

f(τ)vn(τ) dτ =

cm if m = n

0 if m ̸= n

A series of orthonormal functions {vn(τ)}, it is said to be complete if the following state-
ments are true.
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1. There exists no function x(τ) with
∫ b

a
x2(τ)dτ <∞ such that

∫ b

a

x(τ)vn(τ)dτ = 0 for n = 1, 2, ... (2.4)

2. For any piece-wise continuous function f(τ) with
∫ b

a
f 2(τ)dτ < ∞ and ϵ > 0, how-

ever small, it exist a integer N and a polynomial
∑N

n=1 cnvn(τ) such that

∫ b

a

|f(τ)−
N∑

n=1

cnvn(τ)|2dτ < ϵ (2.5)

The expansion in Equation (2.2) has, in theory an infinite number of terms. However, if
the set is complete the function f(τ) can be approximated arbitrarly closely by a finite
summation

∑N
n=1 cnvn(τ) with an increasing number of terms N . With the orthonor-

malization in time or frequency domain [8] it is possible to manipulate series of real
and continuous functions to obtain series that are complete and satisfy the orthonormal
properties in Equation (2.1).

2.2. Orthonormal Functions for Impulse Response ap-

proximation

A complete orthonormal sets {vn(τ)} seen above can therefore be used to express exactly
(with an infinite summation) or to approximate, any kind of continuous real functions. It
is interesting to use them to express the unit-impulse response of linear systems h(t), as
in Equation (2.6).

h(t) =
∞∑
n=1

cnvn(t) with 0 ≤ t <∞ (2.6)

In theory the summation in Equation (2.6) requires an infinite number of terms. However,
if the impulse response h(τ) satisfies the condition in Equation (2.7), thanks to properties
of complete sets (Equation 2.5), it can be approximated arbitrarily closely by a linear
combination of orthonormal functions

∑N
n=1 cnvn(τ) with an increasing number of terms.

∫ b

a

h2(τ)dτ <∞ (2.7)

The condition on the impulse response expressed in Equation (2.7) is the condition for
a system to be L2 stable. That means a system with all poles strictly on the left-half
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complex plane. For this class of systems the accuracy of the approximation of the impulse
response increases with the number of terms considered.
The coefficients of the expansion can be found minimizing the cost functions in Equa-
tion (2.8). Because of the orthonormal properties of the set {vn(τ)}, seen in Section 2.1,
the optimal solution is given by Equation (2.9).

C =

∫ ∞

0

(h(τ)−
N∑

n=1

cnvn(τ))
2dτ

cn =

∫ ∞

0

h(t)vn(t)dt

(2.8)

(2.9)

The same orthonormal function expansion can be done in frequency domain. The transfer
function of the system is the Fourier transform of the impulse response function. However,
as seen previously, the impulse response function can be written as linear combination of
orthonormal functions as in Equation (2.10). Here i =

√
−1 is the imaginary unit.

H(ω) =

∫ ∞

−∞
h(t)e−iωdt =

=

∫ ∞

−∞

N∑
n=1

cnvn(t)e
−iωdt

(2.10)

H(ω) =
N∑

n=1

cnVn(ω) (2.11)

Bringing the summation out of the integrals, as it doesn’t depend on time, it can be
seen how also the transfer function of the system in frequency domain can be written as
a summation of orthonormal functions as in Equation 2.11. In this case these functions
Vn(ω) are the Fourier transform of the orthonormal set {vn(τ)} considered in time domain.

2.3. Laguerre Functions

An interesting example is the series known as Laguerre functions {ln(τ)} given in [8, 21, 22]
as orthonormalization of the sequence (pτ)ne−pτ for n = 0, 1, 2, ... in the range 0 ≤ τ <∞.
This set satisfies the orthonormal and complete properties defined in Equation (2.1) and
(2.4). The set of Laguerre functions is defined as in Equation (2.12) in continuous time-
domain, where n is the order of the function and p > 0 is the decay rate. The higher is
the value of p, the shorter is the settling time of the function, as shown in Figure 2.2.
Figure 2.1 shows Laguerre functions of different orders, note that the number of crossings
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of the horizontal axis is equal to the order n.

l0(τ) =
√

2pe−pτ

l1(τ) =
√

2p(−2pτ + 1)e−pτ

... =
...

ln(τ) =
√

2p
n∑

k=0

(−1)k(2pτ)n−k n!

k![(n− k)!]2
e−pτ

(2.12)

It can be seen how this set is a particularly suitable basis for estimation of transfer
functions of damped dynamical systems as its functions have an inbuilt exponential decay.
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Figure 2.1: Laguerre functions ln(τ) n = 0, 1, 2, 3, 4, p = 0.2
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Figure 2.2: Second order Laguerre function l2(τ) for different p values.
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Applying the Laplace transform to Equation (2.12), the set of Laguerre filters {Ln(ω)}
can be found also in continuous-frequency domain [6, 8] as in Equation (2.13).

L0(ω) =

∫ ∞

0

l0(t)e
−iωtdt =

√
2p

2π

1

(p+ iω)

L1(ω) =

∫ ∞

0

l1(t)e
−iωtdt =

√
2p

2π

(p− iω)

(p+ iω)2

... =
...

Ln(ω) =

∫ ∞

0

ln(t)e
−iωtdt =

√
2p

2π

(p− iω)n

(p+ iω)n+1

(2.13)

Applying Parseval’s theorem to the set {ln(t)} and its transform {Ln(ω)}, Equation (2.14)
is obtained. ∫ ∞

0

lm(t)ln(t)dt = 2π

∫ ∞

−∞
Lm(ω)Ln(ω)dω (2.14)

Because of the orthonormal properties of the set {ln(t)} follows that the filters transfer
functions in Equation (2.13) satisfy the orthonormal properties in frequency domain of
Equation (2.15).

2π

∫ ∞

−∞
Lm(λ)Ln(λ)dλ =

1 if m = n

0 if m ̸= n
(2.15)

The Laguerre functions set can be also reformulated to pass in discrete time and discrete
frequency domain. In the present work the formulation in Equation (2.16), given by [9], is
used to construct a model in discrete time domain. Moreover, this is done for comparative
purposes with the work in [20].

gn[k] = α
k−n
2 (1− α)1/2

n∑
i=0

(−1)i
(
k

i

)(
n

i

)
αn−i(1− α)i for k > 0 (2.16)

The discrete time formulation in Equation (2.16) can be passed in discrete frequency
domain via z-transform, obtaining the relation in Equation (2.17).

Gn(z) =

( √
α− z−1

1−
√
αz−1

)n( √
1− α

1−
√
αz−1

)
(2.17)

In discrete time, as in continuous time, the functions tend to zero for large values of k
controlled by the decay parameter α as can be seen in Figure 2.3. However, the decay
parameter in the formulation by [9] can assume only values in the range 0 < α < 1, and
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to higher values corresponds a longer settling time as shown in Figure 2.4.

|Gn(z)| =
∣∣∣∣ √

1− α

1−
√
αz−1

∣∣∣∣ (2.18)

It can be noted from Equation (2.18) and from Figure 2.5 how the gain of these filters is
independent from the filter order n and depends only on the decay parameter α [20].
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Figure 2.3: Laguerre functions gn[k] n = 0, 1, 2, 3, 4, α = 0.4.
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Figure 2.4: Second order discrete Laguerre function g2[k] for different α values.
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Figure 2.5: Gain of Laguerre functions |Gn(z)| for different decay factors. The gain is
independent from the filter order n and depends only on the decay factor α.

2.4. Laguerre Orthonormal Expansion in Bridge Aero-

dynamic

With the aim of characterize the bridge aerodynamic problem, if the hypothesis of small
vibration is taken, a linear approximation of the system transfer functions can be con-
sidered. A general linear single-input-single-output system (SISO) can be written in
continuous time-domain in terms of the well-known convolution integral:

Fn(t) = hnm0 +

∫ t

0

hnm(τ)rm(t− τ) dτ (2.19)

If this model is applied to a section of a bridge deck, the input, rm(t), will be either the
horizontal, the vertical or the pitch motion. While the output, Fn(t), will be either the
self-excited drag, lift or pitch moment. The term hnm0 is the static contribution, while
hnm(t) is the impulse response function relative to the specific combination of input motion
and output force. If this model is used however, because of the linear approximation, all
the non-linear effects of the self-excited forces cannot be captured.
The impulse response function can be rewritten as shown in Section 2.2 with a linear
combination of infinite orthonormal Laguerre functions as in Equation (2.20).

Fn(t) = hnm0 +

∫ t

0

∞∑
j=0

cnmj lj(τ)rm(t− τ) dτ (2.20)
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However, if a stable system with all poles strictly on the left-half complex plane is con-
sidered, the impulse response function can be approximated with a finite summation of
L functions and the goodness of the approximation increases with the number of polyno-
mials considered. Therefore Equation (2.21) is obtained.

Fn(t) = hnm0 +

∫ t

0

L∑
j=0

cnmj lj(τ)rm(t− τ) dτ (2.21)

To identify the system with numerical methods the convolution integral must be rewritten
in discrete time-domain. Introducing the assumption that the system has finite memory
with length M , the Equation (2.19) can be rewritten in the form of Equation (2.22) in
discrete time.
Then Equation (2.23) is obtained approximating the discrete impulse response with L

discrete Laguerre functions according to the formulation by [20] (Equation (2.16)).

Fn[n] = hnm0 +
M∑
k=0

hnm[k]rm[n− k]

Fn[n] = hnm0 +
M∑
k=0

L∑
l=0

cnml gl[k]rm[n− k]

(2.22)

(2.23)

Identifying the impulse response functions of the system in time domain can be quite com-
putationally expensive according to the memory length considered. However, comparing
Equation (2.22) with Equation (2.23), it can be seen how expanding with orthonormal
series the system first order kernel can reduce the computational burden of the problem.
In the case of Equation (2.22), to characterize the system, M unknown coefficients
(h(k) i = 1, ...M) have to be determined. And this has to be done for each possible
combination between input motion and output self-excited force. Considering a two di-
mensional deck section with three degrees of freedom, this means 3M coefficients for each
of the three possible input motions, for a total of 9M coefficients to be determined.
Instead, an alternative is to expand the impulse response function h(k) with the set of
orthonormal function {gl[k]} with l = 0, 1, ...L as in Equation (2.23). In this case the
unknowns to determine will become the ci coefficients with i = 1, 2..., L for each degree
of freedom: with a total of 3L coefficients for each of the three possible input motions.
This results in a total of 9L coefficients to be determined.
If a good approximation can be obtained with L < M filters, then the reduction of com-
putational burden can be significant.
Moreover, all the Laguerre filters decay to zero because they have an inbuilt negative ex-
ponential, this makes them particularly suitable for the approximation of most mechanical
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system impulse response functions. This property makes them also good low-pass filters
suppressing higher-order noise, allowing for a smoother estimation of the response func-
tions compared to other functions. Finally, if the training of the model is done with
white noise input, the coefficients of the functions become orthogonal, which makes the
identification process better conditioned.
As shown in Section 2.2, the approximation can be done also in frequency domain, ex-
panding the system transfer functions as linear combination of orthonormal filters.

Fn(ω) = hnm0δ(ω) +Hnm(ω)Rm(ω) (2.24)

For the convolution theorem the Fourier transform of the convolution integral in Equa-
tion 2.19 becomes the product of the Fourier transform of the input signal R(ω) and the
transfer function H(ω), as in Equation 2.24. Then the transfer function can be approxi-
mated with a finite sum of filters as in Equation 2.25, where Gj(ω) are the Laguerre filters
in frequency domain from Equation (2.17). It is interesting to notice that the coefficients
of the expansion in time domain are the same in frequency domain, so the identification
process can be done in either one of the two.

Fn(ω) = hnm0δ(ω) +

(
∞∑
j=1

cnmj Gj(ω)

)
Rm(ω) (2.25)

In the following is shown with a simple example how the coefficients of the Laguerre filters
can be found through least-squares identification in time domain and, once the model is
trained, how it can be used to foresee the output for a generic input. Moreover, which is
the influence of the model parameters on the goodness of the prediction.

2.5. 1 Dof example: Identification of First Order Sys-

tem

A simple example is created to give a clearer example of the Laguerre model identification
procedure. The first order system in Equation (2.26) is considered, which has the typical
transfer function in Equation (2.27). The input is the time series u(t), while the output
is y(t) and τ is the time constant of the system which is set to τ = 0.15.

τ ẏ(t) + y(t) = u(t)

H(s) =
1

τs+ 1

(2.26)

(2.27)
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Since the presented Laguerre expansion model is a discrete time model, the system in
Equation (2.26)-(2.27) is discretised with time step ∆t = 0.005s as in Equation (2.28)-
(2.29) with Tustin method.

y[k + 1] = e−
1
τ
∆ty[k] + (1− e−

1
τ
∆t)u[k]

H(z) =
∆t(z + 1)

(∆t+ 2τ)z +∆t− 2τ

(2.28)

(2.29)

To train the Laguerre model a sinusoidal training input utrain(t) is created with six ex-
citation frequencies at 0.5, 1, 1.5, 2, 2.5, 3Hz as shown in Figure 2.6. The system output
ytrain(t) for the training input is simulated with the Matlab [23] function lsim().
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Figure 2.6: Training input time series with vibration frequencies at 0.5, 1, 1.5, 2, 2.5, 3Hz.
Used to train the Laguerre model.

The Laguerre model is defined reformulating Equation (2.23) in matrix form. The constant
coefficient hnm0 is neglected because in this example the training signal is with null mean
value. The time history of the input u is arranged in the matrix A to consider the absence
of past memory as in Equation (2.32). The discrete values of the filters evaluated over the
memory M are arranged in the matrix G. The product between matrix A and matrix G

gives the regression matrix X, which is multiplied by the vector of coefficients c to give
the approximated output time history y (Equation (2.30)).
To train the model, the matrix Xtrain = A(utrain)G is constructed with the training
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input vector utrain, then the coefficients vector c is found minimizing the sum of squared
residuals with the training output ytrain as in Equation (2.31).

y = A G c = X c

c = (XT
trainXtrain)

−1XT
trainytrain

(2.30)

(2.31)

A =


u(0) 0 . . . 0

u(1) u(0) . . . 0
... . . . ...

u(n) u(n− 1) . . . u(n−M)

 ,G =


g0(0) g1(0) ... gl(0)

g0(1) g1(1) ... gl(1)
...

g0(M) ... ... gl(M)

 , c =


c1

c2
...
cL



(2.32)

However, with this approach only M points are considered for the evaluation of the filters.
The efficiency of the identification can be improved removing this truncation using the
recursive relation in Equation (2.33) to directly construct the matrix X from the input
time history [12]. In this way the length of the memory considered is determined by
the longest stretching filter, that is also the one of highest order, as can be seen from
Figure 2.1, and M is not anymore a parameter of the model.

x0[k] =
√
αx0[k − 1] +

√
1− αv[k], x0[0] = 0

xl[k] =
√
αxl[k − 1] +

√
αxl−1[k]− xl−1[k − 1], l = 1, ...L, xl[0] = 0

(2.33)

Once the model is trained, the modelling performance can be verified foreseeing the out-
put for a generic input. The model will best perform inside the identified frequency
range ω ∈ [0.5, 3]Hz: for instance it is considered a sinusoidal input uvalid with frequency
ωvalid = 1.3Hz. The regression matrix Xvalid is constructed with the recursive relation in
Equation (2.33), considering parameters L = 3 and α = 0.85, and multiplied by the coeffi-
cients vector to obtain the corresponding output time history yvalid as in Equation (2.30).
The result obtained is compared with the output simulated with the Matlab function
lsim() in Figure 2.7.
The performance of the identification can be also checked in terms of system impulse re-
sponse function in time hlag(k) and system transfer function Hlag(z) in Equation (2.29) in
frequency. The former is obtained as a linear combination of Laguerre functions with the
identified coefficients, as shown in Equation (2.34). While the latter is obtained writing
in matrix form the finite summation of Laguerre filters Gj(ω) multiplied by the identified
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coefficients c as in Equation (2.35).

hlag(k) =
L∑
l=1

clgl(k)

Hlag(z) =
L∑
l=0

clGl(z) =
[
G0(z) G1(z) . . . GL(z)

]
c

(2.34)

(2.35)
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Figure 2.7: Comparison between the Laguerre model output and the output simulated
with Matlab for sinusoidal input with frequency ω = 1.3Hz. Identification parameters
L = 3, α = 0.85.
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Figure 2.8: Comparison between the Laguerre model transfer function and the first order
system transfer function. Identification parameters L = 3, α = 0.85.
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Figure 2.9: Comparison between the Laguerre model impulse response function and the
first order system impulse response function. Identification parameters L = 3, α = 0.85.
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The system output is quite well reconstructed by the Laguerre model. Some differences
can be noticed in time domain on the peaks of the curves and this is confirmed by the
not exact correspondence between the two transfer functions in the selected excitation
frequency. The identification can be improved with a better choice of model parameters
as shown in Subsection 2.5.1.

2.5.1. Model parameters identification

The identified Laguerre model is ruled by two parameters: the highest order of the filters
L to be included and the decay factor α. Considering the discrete formulation of the
Laguerre filters in Equation (2.16), used in [20], α can have a value between 0 and 1.
This parameter determines the speed of decay of the filter: higher values result in slower
decay (see Figure 2.4). Therefore, a first indication for the choice of the α value is the
length of the effective memory that the model is wanted to have. Analysing the filters in
frequency domain, it can be seen from Figure 2.5, that higher alpha emphasizes more the
lower frequencies.
Some guidelines for the choice of α are given in [9]. According to this guidelines a lower
bound for α is set with Equation (2.36) where fs is the sampling frequency. This suggestion
is done with the intention of choosing a decay parameter such that the cutoff frequency of
the highest filter is less than the highest input frequency of the system fmax [20]. While
an upper bound (Equation (2.37)) is set to avoid overfitting: the final value of the highest
order filter should be beneath an heuristic value, to capture the memory length precisely.

α ≥ (2− cos(β)−
√

cos(β)2 − 4 cos(β) + 3)2 with β = 2π
fmax

fs

gL(M) ≤ 0.01

(2.36)

(2.37)

In the presented case the maximum frequency to be included in the model is the maximum
training frequency: fmax = 3Hz. According to Equation (2.36) this leads to αmin =

0.8283. While the maximum value for the parameter is set at αmax = 0.889 because
this causes the final value of the highest order filter to be gL(M) = 0.0096. To have
an experimental evidence of the validity of these guidelines, in Figure 2.10 is shown the
system transfer function approximated with models trained with different values of the
parameter α. The number of filters considered is set to L = 3. It is confirmed that values
below and above the suggested limits give a bad approximation of the system transfer
function. It is interesting to underline that among the values within the allowed range,
values nearer to the upper bound give a better approximation.
It must be underlined that Equation (2.37) cannot be used if the recursive relation in
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Equation (2.33) is used to define the model. Indeed, in this case the memory length M is
embedded in the recursive relation and is not a parameter of the model anymore.
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Figure 2.10: Comparison between the analytical transfer function and the Laguerre iden-
tified transfer functions with different values of the α parameter for the identification.
Parameter L set to L = 3.
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Figure 2.11: Comparison between the analytical transfer function and the Laguerre iden-
tified transfer functions with different values of the L parameter for the identification.
Parameter α set to α = 0.889.

The second parameter of the model is the number of filters to be considered. However, no
specific guidelines have been mentioned in previous literature. As explained in Subsec-
tions 2.1 and 2.2, the approximation by orthonormal series expansion (Equation (2.11))
increases of accuracy as the number of considered terms L increases. This is shown in
Figure 2.11, where the first order system transfer function is really precisely approximated
already with four filters considered. However, increasing the number of filters has as a
drawback the directly proportional increase of the unknowns to be identified during the
model training, as it is shown in Section 2.3. Therefore, in more complex models training,
a balance between accuracy and computational burden has to be found.
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3| Experimental Example on
Langenuen Bridge Wind
Tunnel Data

3.1. Langenuen Fjord Crossing Bridge

Figure 3.1: Langenuen suspension bridge as presented by Norconsult [10].

A first conceptual plan of the Langenuen bridge was presented by Norconsult in 2015.
It consisted of a fjord crossing bridge, part of the project Coastal Highway Route E39,
led by the Norwegian Public Roads Administration, to link Kristiansand and Trondheim
with a continuous highway route [11]. This includes crossing two fjords: Bjørnafjorden
and Langenuen. In Norconsult’s report the bridge section was dimensioned with four road
lanes, two shoulder lane and one pedestrian lane (Figure 3.2). The actual shape of the
section was object of later studies with the aim of achieving good aerodynamic stability
and also low construction cost [15].
The data used to test the model in the present work come from the wind tunnel charac-
terization of different possible girder sections for the Langenuen bridge. The experimental
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campaign was carried out in 2021 by Bergerund and Tørod for their Master Thesis work
[1] in the wind tunnel of the Norwegian University of Science and Technology (NTNU)
in Trondheim (see Section 3.2). Their aim was to investigate several girder shapes to
estimate their aerodynamic stability limits to identify the best solution for the design
of an innovative aluminium girder for the Langenuen. The different girder shapes were
obtained deriving the section dimensions in function of two parameters: the height H and
the angle θ as shown in Figure 3.3. These parameters were changed moving the section
along a curve of constant torsional stiffness. This was decided based on the report of
Dr. techn. Olav Olsen [15] where a sufficient aerodynamic stability limit was achieved
mainly with an increase of torsional stiffness. For the analysis in the present work, the
wind tunnel tests of four girder shapes reported in Table 3.1, were selected.

Figure 3.2: Steel box girder as presented by Norconsult in 2015 [10].

Figure 3.3: Parametric girder section [5].
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Code H [m] θ[◦] Girder Shape

LN21-5200 5.2 25.3

LN21-5500 5.5 20.8

LN21-5800 5.8 18.3

LN21-6100 6.1 16.7

Table 3.1: Experimental campaign girder shapes [1]

3.2. Experimental Setup

The main aim of wind tunnel testing of a bridge cross-section is to determine experimen-
tally the aerodynamic derivatives (ADs). There are two kinds of wind tunnel tests: free
vibration and forced vibration tests, better described in Subsections 1.2.1 and 1.2.2. The
data used in this work come from a forced vibration test carried out NTNU wind tunnel
which is provided with an enhanced forced vibration test rig capable of forcing the section
model in nearly any desired motion [19].
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Figure 3.4: NTNU test vibration rig: 3D model and experiment preparation in the tunnel.

This forced vibration rig consists in two 3-DOF actuators that clamp the bridge model
on both sides as shown in Figure 3.4. Between each actuator and the clamp holding the
model its placed a 6-axis force/torque transducer as can be seen in Figure 3.5. These load
cells can measure the self-excited forces acting on the model during the imposed motion.
For the identifications of the aerodynamic derivatives the model has been forced with
three different single-harmonic motions: horizontal, vertical and torsional, each at two
different wind speeds. Each oscillatory motion was carried out at eight different oscillation
frequencies, so to give 16 data points for each AD. Each motion has then also been tested
in still air to be able to remove the inertia contribution from the measured forces during
the data processing.

Figure 3.5: On the NTNU test rig actuators the load cells are placed between the clamp
holding the model and the actuator.

An overview of testing setup parameters is given in Table 3.2.
The collected data have been used to test the Laguerrian model explained in Section 2.4.
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To be used for effective model identification all input-output time series have been pro-
cessed as explained in the next section.

Amplitude of vertical
vibration:

±1cm Tested velocities: Variable be-
tween models

Amplitude of horizon-
tal vibration:

±2cm Tested frequencies: 0.25, 0.5, 0.8,
1.1, 1.4, 1.7, 2.0,
2.5 Hz

Amplitude of torsional
vibration:

±1.0◦ Reduced velocity
range:

From 0.72 up to
3.64

Sampling frequency: 200Hz Duration of time se-
ries:

ca. 220s

Table 3.2: Induced motion characteristics. [5]

3.3. Data Processing

The measurement data from the load cells of the testing rig are given relative to local
reference systems. Therefore all the measurements have been converted in global coordi-
nates referred to a fixed reference system as shown in Figure 3.6. However, the measured
forces are not yet the self-excited forces needed. In general the total force acting on a
section model can be expressed as in Equation 3.1.

Ftot(X, Ẋ, Ẍ, U, v, w) = FE + FG + FI(Ẋ) + FB(U, v, w) + FSe(U, Ẋ, Ẍ) + FS(U)

(3.1)
Where FE are the external forces due to clamping, those are cancelled out summing
together forces measured on the same axis of the two load cells. FG is the static gravi-
tational load and FS is the static wind load: these are removed subtracting their mean
value to all the time series. FI is the inertia contribution, which is removed subtracting
the force measurements collected in still air. FB is the buffeting response, function of the
wind speed and the turbulence main components, in these case it can be neglected as the
tests have been carried out in laminar flow. Therefore wind speed VRel relative to the
deck is coincident with the mean wind speed U . What is left are the self-excited forces
and moments FSe which are considered positive as shown in Figure 3.7. All the named
quantities have three components, namely the force in each degree of freedom.
Finally, all the time series have been filtered, removing all components higher than 3.0 Hz.
Then the first half of the time series has been further filtered removing all components
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higher than 0.8 Hz. This allowed to remove noise, but also the vibration contribution due
to possible higher frequencies resonances of the model.
A check on the memory length for the initial part of the time series is been also carried
out. Looking at Equation (2.32) it can be seen that the matrix of the input A is lower
triangular because of lack of memory in the first M − 1 points of the time history. To be
sure that no data is lost, is been checked that the actual imposed motion starts after at
least one memory length from the start of the recorded signal. In the considered Laguer-
rian model the length of the memory is indirectly determined by the higher order filter,
which is also the one stretching further, as it is explained in Section 2.5.
With the values of the parameters L, α chosen for the analysis, as can be seen from
Figure 3.10, the memory is about M = 40, that, with a sampling frequency of 200Hz,
corresponding to a sampling time of 0.005s, results in a memory length of 0.20s. All the
imposed motions start after 8s from the beginning of the recording, so there is no risk of
data to be lost.

To have more data points for model identification, time series recorded at different wind
velocities were stacked together. To be able to do this the recorded data were sent trough
an adimensionalization process that made them independent from the wind speed. The
quantities used to make the data dimensionless were the width of the section B, the
length of the model L = 2.68m, the air density ρ and the wind mean velocity during the
experiment V .
The time was made dimensionless with Equation 3.2. While force and momentum data
were adimensionalized with Equation 3.3 and 3.4.

s =
V

B
t

f = F
1

ρLBV 2

m =M
1

ρLB2V 2

(3.2)

(3.3)

(3.4)

The dimensionless time series from different wind velocity test on the same section can
then be stacked together in a single input-output time series and could be used to train the
model with Equation (3.5). However, after the adimensionalization with Equation (3.2),
the ∆s is different for each wind speed. To be able to stack the data together the lower
wind speed data were re-sampled with a longer ∆s, equal to the one of the highest wind
speed data.
In this way a set of 3L coefficients C were found for each combination of degrees of freedom
and knowing V,B, L, ρ of a specific section the dimensional output can be reconstructed.
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In Figure 3.8 is reported the model flow chart: once the model for a section is trained,
any input can be adimensionalized, the dimensionless output modelled, and finally the
real output reconstructed.

In the present work the analysis is been limited to the modelling and evaluation of the
self-excited lift and torque, disregarding the drag. Furthermore, as imposed motions, only
vertical and torsional actions were considered.
This was done because the measured drag force was only 0.2% and 7% of the lift force in
case of vertical and torsional imposed motions respectively. While, during the horizontal
imposed motion the lift force was at least 80% smaller, and the torsional moment 86%
smaller, than in the other two cases. Finally, the transfer functions related to drag force
are highly nonlinear [20] and therefore not suitable for identification with a linear model.

Figure 3.6: Reference system transformation from the local systems of the two load cells
to a global system for the whole model (in red).
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Figure 3.7: Self-excited forces on the section. U is the incoming wind flow, considered
with negligible turbulence.

Figure 3.8: Laguerre self-excited prediction model flow chart

3.4. Laguerre Model Training

A simple one degree of freedom example of the training phase of the Laguerrian model
for self-excited forces identification was exposed in Section 2.5. A general three degrees
of freedom training procedure has been developed in the present work expanding the
model given in Equations (2.30)-(2.32). For each imposed motion vertical, horizontal and
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torsional, the L coefficients relative to the transfer function to each degree of freedom need
to be determined. This is done expanding the size of the matrices as in Equation (3.5).
Here X̂v is a diagonal matrix, of which diagonal elements are equal regression matrices
constructed with the recursive relation from Equation (2.33) with v ∈ [y, x, θ]. Solving
the linear least-squares problem in Equation (3.6) the vector Cv is identified, containing
the 3L coefficients relative to the transfer functions from the generic input v ∈ [y, x, θ] to
the three aerodynamic forces in Fv. This procedure is repeated for all the three imposed
motions, finding in total 9L coefficients [Cy,Cx,Cθ] to fully characterize the system.

Fyv

Fxv

Fθv

 =


Xv 0 ... 0

0 Xv ... 0
. . .

0 0 ... Xv


cyvcxv

cθv

 = X̂vCv

Cv = (X̂T
v X̂v)

−1X̂T
v Fv

(3.5)

(3.6)

Once the model of the system is characterized, it can be used to foresee the output from
any input using the superposition principle.

Fx = X̂x Cx, Fy = X̂y Cy, Fθ = X̂θ Cθ

F = Fx + Fy + Fθ

(3.7)

(3.8)

This forecast is done constructing a regression matrix for the input time history on each
degree of freedom separately and, with the corresponding coefficients, its contribution
to the output self-excited forces is determined as in Equation (3.7). Then the complete
output of the system is calculated with Equation (3.8) summing together the contribution
of each motion.

3.5. Model Performance Evaluation

To assess the goodness of prediction of the above described model the input-output data
relative to the tested girder section LN20-5500 have been considered. Firstly, the com-
parison has been done in time domain, comparing the measured forces time history with
the aerodynamic forces calculated with the trained Laguerre model. This comparison
has been carried out with the help of the Matlab [23] comparing toolbox CompMet.m [7]
explained in detail in the following.
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3.5.1. Time series comparison toolbox

Considering the complexity of the identification is been decided to use a more quantitative
procedure to analyse and display the identification results in time domain. The CompMet.m
toolbox gives the possibility to compare time histories according to different metrics, the
one chosen for this study are the phase shift, the peak values, the Root Mean Square
(RMS) and the magnitude.
The phase shift Mϕ is considered because linked to the ability of the aerodynamic model
to capture the fluid memory effect. This specific indicator accounts for the mean phase
discrepancy between the compared signals. The phase metric is calculated according to a
user-defined parameter that represent a time that is considered to be a significant delay.
In the present work a significant delay between two time histories is considered to be the
one resulting in a phase lag of 5deg.
The peak value metric Mp gives a global indication of the amplitude discrepancy between
the signals. While, the RMS metric Mrms is related to the energy content of the signal,
and gives an indication about the average amplitude discrepancies between the signals.
The mean metrics Mmuw and Mmw, are time localized indicators for the difference of
amplitude of the two signals. The exact amplitude of the aerodynamic forces is relevant
as it is a design parameter for suspended bridges. The toolbox gives the possibility to
calculate two distinct magnitude metrics, the difference among them is the application
of the warping procedure. The not warped one (Mmuw) is simply the RMS deviation of
the two signals. This however, could give a very pessimistic result in case of phase shift
between the compared signals.
This can be solved with the use of the dynamic time warping between the compared
time histories to alleviate the local phase shifts at high frequency. This is done aligning
the peaks of the compared time histories non linearly by stretching and not scaling as is
shown, as an example, in Figure 3.9. This gives the possibility to give a good evaluation
of local amplitude differences even if is present a phase shift between the signals.
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Figure 3.9: Example from [7] of Dynamic Time Warping of two generic signals.

3.5.2. Results discussion in time domain

To have different metrics values for different excitation frequencies and also because of
the high computational burden to calculate the magnitude warped metric Mmw, the com-
parison between the measured and the modelled time histories is been separated into
intervals. The separation is been done according to the excitation frequencies, as shown
in Figure 3.11. The metrics values for the two considered input motions for the section
LN21-5200, with a mean wind velocity of 8.17 m/s, are shown in Figure 3.12 and 3.13.
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Figure 3.10: Laguerre filters used for the Langenuen data analysis.
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Figure 3.12: Values of goodness of fit metrics for vertical input motion and vertical and
torsional output motions.
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Figure 3.13: Values of goodness of fit metrics for torsional input motion and vertical and
torsional output motions.
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Overall the metrics values indicate a good fitting, specially for aerodynamic forces caused
by input torsional motion. In particular the model has good capability of capturing the
amplitude of the self-excited forces caused by a certain input motion. For some frequen-
cies however, some metrics are quite low: in the following some representative cases are
discussed to show if the low metrics values are attributable to limits of the comparing
toolbox or lacks in the identification capabilities.

For instance it can be considered the output prediction for vertical and torsional ex-
citation at 2.0 Hz, shown in Figures 3.14 and 3.15. Looking at the phase metric Mϕ for
the model of the self-excited torque in Figure 3.12 and Figure 3.13, at 2.0 Hz, it can
be seen that it is quite low for both input motions. This is caused by the fact that the
modelled time history is slightly out of phase compared to the measured one, as can be
seen in Figure 3.14. In this case the delay between the two time histories is of 0.015 s
that, at 2.0 Hz, corresponds to a phase difference of 10 deg. Because the sensitivity of
the metric is of 5 deg this is evaluated as a considerable delay, leading to a low metric.
The phase is instead better reconstructed for the lift model at the same frequency (Fig-
ure 3.14); as it is confirmed by a higher Mϕ metric, almost unitary.
For the same excitation frequency, it is interesting to notice the influence of the phase
shift on the unwarped magnitude metric Mmnw. Looking at Figure 3.12, for the torque
model at 2.0 Hz, it is visible how the Mmnw metric decreases together with the Mϕ metric,
even though the magnitude of the forces is quite correctly reconstructed (Figure 3.14, Mz

time history). The dynamic time warping instead avoids the magnitude metric to be
influenced by phase shifts, as can be seen from the Mmw metric, which remains high even
in case of low phase metric.
The correctness of the magnitude warped metric is further confirmed by the fact that it
mirrors the RMS metric (Mrms), showing that the model is capable of correctly reconstruct
the energy content of the signal, even in case of phase shift.
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Figure 3.14: Particular of time histories. Blue = experimental data, Red = Laguerre
model. Input vertical motion. Excitation frequency 2.0 Hz. Section LN21-5200. Good
Mmw metric but poor Mϕ due to phase shift.
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Figure 3.15: Particular of time histories. Blue = experimental data, Red = Laguerre
model. Input torsional motion. Excitation frequency 2.0 Hz. Section LN21-5200. Good
Mϕ metric.

It can be noted from the metrics in Figures 3.13-3.12 that some of them are lower for
low excitation frequencies, specially for the input vertical. This is mainly caused by low
frequency noise that was not filtered out, that has particular influence on the metrics if
the magnitude of the measured aerodynamic force is quite low, as it is the case of the lift
and torque for vertical imposed motion, for instance at 0.5 Hz in Figure 3.17. Indeed, for
the same frequency but with input torsional motion (Figure 3.16) the signals magnitude
is way higher and the signal is almost perfectly reconstructed. This leads to almost all
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unitary metrics for the torque model. Furthermore, during the experimental campaign
some external action hit the model causing a peak in the measured force. This causes the
peak metric Mp to drop for this frequency.
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Figure 3.16: Particular of time histories. Blue = experimental data, Red = Laguerre
model. Input torsional motion. Excitation frequency 0.5 Hz. Section LN21-5200.

At the same frequency with vertical imposed motion in Figure 3.17 it can be seen the
case of bad reconstruction of the magnitude of the force, in particular the modeled force
underestimates the real one. This is mirrored by a slight decrease in the magnitude metric,
specially for the lift model in Figure 3.12.
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Figure 3.17: Particular of time histories. Blue = experimental data, Red = Laguerre
model. Input vertical motion. Excitation frequency 0.5 Hz. Section LN21-5200. Model
underestimates the force, leading to poor Mmw.

In conclusion, the most representative metrics to evaluate the identification correctness
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can be reduced to a couple. The phase metric Mϕ to assess the mean phase difference
between the time histories. And the magnitude warped metric Mmw to assess the magni-
tude reconstruction independently from the phase. Also the peak metric Mp, however, is
useful to have a global indication of the capability of the model to capture the maximum
amplitude of the forces.

3.5.3. Experimental parameters identification

The model exposed in Section 2.4 depends on two parameters: the number of filters
considered L and the decay parameter α. In the present work is been investigated how
the goodness of the prediction model depends on the value of these two parameters. Since
the computational burden of training of the model is very low, the investigation is carried
out with a numerical method. This is done predicting the system output for different
values of the parameters and comparing the result with the actual measured output with
the help of the comparing toolbox CompMet.m [7] (Subsection 3.5.1). This analysis has
been carried out on the same section considered above, but considering just the portion
of time histories corresponding to the excitation frequency at 1.09 Hz. The results are
reported in the following figures.
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Figure 3.18: Vertical input motion at 1.09Hz parameters identification.
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Figure 3.19: Torsional input motion at 1.09Hz parameters identification.

Looking at Figures 3.18-3.19, the Magnitude Warped metric (Mmw) stays quite constant
for any value of α smaller than 0.9. The same holds for the Peak Metric (Mp). The Phase
Metric (Mϕ) instead seems to have some dependency on α specially for the vertical input
motion. In particular the results suggest that the model performs better for values of
α < 0.65. Which means faster decaying filters (Figure 2.4). Therefore, the optimal value
for the decay parameter in the present work is set to α = 0.60.

For what concerns the number of filters to consider, in general the goodness of the ap-
proximation with Laguerrian expansion basis increases with the number of terms included.
However, also the number of unknowns to determine has the same trend. The results ob-
tained show, in Figure 3.19, that for the torsional input good metrics are obtained already
with three filters, and the results become invariant respect to parameter L from L > 5.
The trend of the metrics for the vertical input in Figure 3.18 in function of L is less clear.
The peak and magnitude metrics stabilize after three filters, however the Phase metric
settles only for L > 8.
In the present work, it is concluded that three filters (L = 3) are an acceptable com-
promise between keeping very low computational burden and acceptable quality of the
results. Following what the experimental results suggest, the decay parameter is been set
to α = 0.60.
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3.5.4. Multiple section testing

To prove the independence of the Laguerre expansion basis model for self-excited forces
prediction on the girder geometry, it has been tested on different girder shapes. The pa-
rameters for the model have been selected, according to Subsection 3.5.3, as α = 0.6, L = 3

and the phase metric sensitivity is left on 5 deg. For this experimental test four section
geometries tested at 8m/s were considered among all the girder geometries in Table 3.1
tested by [1].
As shown in Section 3.5.2, the most representative metrics for results evaluation are
the phase metric (Mϕ), the peak metric (Mp) and the magnitude warped metric (Mmw).
Therefore only these three metrics were calculated for the different geometries model eval-
uation. An overview of the results with torsional motion as input is shown in Figure 3.20.
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Figure 3.20: Assessment of model performance on different girder geometries. The graphs
display values of goodness of fit metrics for torsional input motion to vertical and torsional
output motions, for different excitation frequencies. The average wind speed of the test
is 8m/s. Model parameters are L = 3 and α = 0.6.
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Overall, very similar indexes values are obtained for different geometries with small dis-
crepancies. Most of the deviations are observed in the lift model, in particular for section
LN21-6100 for the first and last excitation frequencies. In these cases the model overes-
timate or underestimate the real force. The plunging of the peak metric at 0.5 Hz for
sections LN21-6100 and LN21-5800 is caused by an error during the measurement cam-
paign and is not relevant for the present discussion.
In general the presented model is proved not to have specific dependency on the girder
geometry.

3.5.5. Results discussion in frequency domain

For a complete assessment of the model, a comparison also in frequency domain is been
carried out. In particular the system transfer functions from the two main inputs, vertical
and torsional, to the lift and torque, have been determined with aerodynamic derivatives
(Section 1.2) and Laguerre filters approximation. The comparison between the results
gives an interesting overview of the Laguerre identification model underlining strengths
and weaknesses.
The transfer functions between the different degrees of freedom can be expressed with
couples of aerodynamic derivatives as shown in Equation 1.17. Their values for discrete
reduced frequencies are found experimentally for the girder geometries considered in the
present work by Bergerud and Torød [1].
The transfer functions can be also expressed as linear combination of Laguerre filters in
frequency domain as shown in Equation (2.35).
The results are shown in Figures 3.21-3.22.
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Figure 3.21: Module and phase of the transfer functions linking the vertical motion to
the lift and the torque. Dashed lines show intervals of ±15% for the module and ±5deg

for the phase respect to the transfer function calculated with experimental aerodynamic
derivatives.
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Figure 3.22: Module and phase of the transfer functions linking the torsional motion to
the lift and the torque. Dashed lines show intervals of ±15% for the module and ±5deg

for the phase respect to the transfer function calculated with experimental aerodynamic
derivatives.

For what concerns the aerodynamic forces deriving from a vertical motion in input (Fig-
ure 3.21) the module is quite well caught, however, it is slightly overestimated for the lift
force at high frequency. Also the phase is well reconstructed for the vertical input motion
on the lift force: it never exceeds a phase difference of more than 5 deg from the aerody-
namic derivative model. For the torque model however the phase is badly reconstructed
for frequencies greater than 1.4 Hz.
This issue in the identification of the transfer function which links the vertical motion
to the torsional force will cause some uncertainty in the estimation of the bridge section
aeroelastic behavior by the Laguerre expansion model, exposed in Chapter 4.
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Regarding the forces caused by a torsional imposed motion, the module is inside the
±15% band for the whole tested frequency range. The phase is reconstructed better than
with the other input motion and fits in the band of ±5deg from the experimental data for
the whole tested excitation frequencies. Also in this case however, for the model of the
torque, the phase is slightly underestimated compared to the value of the aerodynamic
derivative.

3.5.6. Comparison with rational functions identification method

It is interesting to compare identification capabilities in time domain of the presented
method with methods commonly used to represent wind action on bridge decks. As
presented in Section 1.3, a rational function approximation is been frequently used in
literature [13, 18], to interpolate experimental wind tunnel data.
In this section rational functions have been fitted to the experimental aerodynamic deriva-
tives from wind tunnel tests. The curve fit is been done in two steps. First the coefficients
are determined with a first guess set of lag coefficients dn and linear least squares. Then
non linear least squares is performed to find a better set of lag coefficients [14]. In the
present work, only one lag coefficient d1 is been considered. Therefore it can be seen
from Equation (1.23a) that the rational function model has three unknown coefficients
(anm1 , anm2 , anm4 ) to be determined for each transfer function considered. Therefore, if three
filters (L = 3) for the Laguerre expansion model are considered, the computational burden
of the two models is comparable. However, the rational functions model might perform
better because of the presence of the two feed-through terms, anm1 and anm2 , which mul-
tiply the position and the velocity vector respectively, and are not present in the here
presented Laguerre expansion model.
The result of the fitting on the ADs relative to lift and torque is shown in Figures 3.25-3.24.
In the same figures, the rational functions fit is been compared with the approximation
of the aerodynamic derivative given by the Laguerre model.
Then, using the fitted rational functions coefficients and the state-space model shown in
Equation 1.29, the aerodynamic wind load is been represented.
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Figure 3.23: Aerodynamic derivatives in function of reduced frequency. Relative to lift
because of vertical motion. Comparison between Rational Function fit and Laguerre
model.
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Figure 3.24: Aerodynamic derivatives in function of reduced frequency. Relative to lift
because of torsional motion. Comparison between Rational Function fit and Laguerre
model.
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Figure 3.25: Aerodynamic derivatives in function of reduced frequency. Relative to torque
because of vertical motion. Comparison between Rational Function fit and Laguerre
model.
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Figure 3.26: Aerodynamic derivatives in function of reduced frequency. Relative to torque
because of torsional motion. Comparison between Rational Function fit and Laguerre
model.
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The comparison in frequency domain shows that both model perform well in the approx-
imation of transfer functions related to lift action, as can be seen from Figures 3.23-3.24.
Some discrepancies are shown in the aerodynamic derivatives relative to torque action
because of vertical motion as can be seen from Figure 3.25 and as was already shown by
the transfer functions in Figure 3.21.
In time domain instead, the aerodynamic forces approximation obtained with rational
functions has been compared both with the data collected in the wind tunnel and the
estimate obtained with the Laguerre expansion model. To evaluate numerically the sim-
ilarities the phase metric (Mϕ), the peak metric (Mp) and the magnitude warped metric
(Mmw) were evaluated between the two models and the measured forces (refer to Subsec-
tion 3.5.1 for details about the comparison toolbox). The results are shown in Figures 3.27
and 3.28.
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Figure 3.27: Assessment of model performance compared to rational function approxi-
mation. The graphs display values of goodness of fit metrics comparing rational function
model and Laguerre filters model to measured forces. This is done in case of torsional
input motion and for different excitation frequencies.
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Figure 3.28: Assessment of model performance compared to rational function approxi-
mation. The graphs display values of goodness of fit metrics comparing rational function
model and Laguerre filters model to measured forces. This is done in case of vertical input
motion and for different excitation frequencies.

Overall the results show that both models have really similar capability to foresee the
experimental results in time domain. In Figures 3.30-3.32 the same excitation frequencies
of Subsection 3.5.2 are displayed to have a visual comparison of the two models in time
domain.
For both the input motions at 0.5Hz the rational functions approximation is able to
guess slightly better the phase of the forces. However, both modelling methods give really
similar results, that differs from the measured one because of the presence of the above-
mentioned low frequency noise. Both model are evaluated with very low peak metric at
this frequency only because of an error during the measurement campaign that causes a
spike in the measured forces.
Also at 2.0 Hz the Laguerre model is proved to be as good as the rational functions model
to foresee the wind action. According to the metrics, for the lift model, the Laguerre
expansion method even outdoes the rational functions for what concerns the phase pre-
diction. However, the difference is small and it is not clearly visible from the plotted time
series.
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Figure 3.29: Particular of time histories. Input vertical motion. Excitation frequency
0.5 Hz. Section LN21-5200.Comparison between rational functions identification and
Laguerre model identification.
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Figure 3.30: Particular of time histories. Input torsional motion. Excitation frequency
0.5Hz. Section LN21-5200. Comparison between rational functions identification and
Laguerre model identification.
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Figure 3.31: Particular of time histories. Input vertical motion at 2.0 Hz. Section LN21-
5200. Comparison between rational functions and Laguerre model.
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Figure 3.32: Particular of time histories. Input torsional motion at 2.0Hz. Section LN21-
5200. Comparison between rational functions and Laguerre model.

It can be concluded that the presented model performs as good as the rational function
model to represent the self-excited forces on a bridge deck in time domain. Furthermore
this is done with only three unknown coefficients (L = 3) per transfer function to be
determined, because only three Laguerre filters are considered. This allows the Laguerre
model to have a comparable computational burden to the rational functions model, where
three coefficients need to be determined for each transfer function as can be seen from
Equation (1.23a).
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In the previous sections it has been proved that the Laguerre expansion model is able to
predict self-excited forces on a bridge deck with sufficient accuracy and low computational
burden if compared with other identification methods commonly used in literature.
The defined model is here introduced in a two degrees of freedom dynamic model of bridge
deck to test its capability to identify the girder dynamic behaviour.
Only vertical and torsional degrees of freedom are considered. This is because the most
problematic kind of instability in long span bridges is two degrees of freedom flutter
instability, which occurs because of the coupling of vertical and torsional motions.
A simplified scheme of the here considered two degrees of freedom model is shown in
Figure 4.1. It is then checked if the Laguerre identification gives stability limits similar
to other identification methods like rational functions.
To perform these checks a numerical simulation has been performed on a virtual model
of girder section. To effectively run the numerical simulation a state space-model of the
system has been developed.

Figure 4.1: Two degrees of freedom elastically suspended deck section.
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4.1. Laguerre State Space Model

As it has been shown for the rational functions method in Section 1.3, a state-space model
can be defined also for the Laguerre expansion model. This is achieved writing in matrix
form the recursive relation shown in Equation (2.33). This relation was used to construct
the regression matrix Sv which represent the input motion convoluted with the Laguerre
filters evaluated over the memory length. The obtained state-space model for self-excited
forces prediction with Laguerre expansion model is shown in Equation (4.1).

Sv(k + 1) = ALSv(k) +BLv(k + 1)

Fnv(k) = cnvSv(k)

(4.1a)

(4.1b)

Where v ∈ [y,x,θ] is the input motion time history and AL, BL are the Laguerre matrices
constructed as shown in Equation (4.2). While cnv are the identified filters coefficients
relative to the transfer function between the input along v ∈ [y, x, θ] and the output along
n ∈ [y, x, θ]. Finally, Fnv is the corresponding aerodynamic force.

AL =



√
α 0 0 . . . 0

α− 1
√
α 0 . . . 0

√
α(α− 1) α− 1

√
α . . . 0

... . . . 0

(
√
α)n−2(α− 1)

√
α


, BL =

√
1− α



1
√
α

(
√
α)2

...
(
√
α)n−1


(4.2)

With the system in Equation (4.1), given an input motion time history and a set of L
coefficients relative to the transfer function between that motion and an aerodynamic
action between lift, drag or torque, the specific force time history can be modelled.

4.2. 2 Dof Girder Section Laguerre Model

The aerodynamic action calculated with the state space Laguerre model has to be intro-
duced in a two degrees of freedom dynamic model to calculate the dynamic response of
the system in an in-wind condition. The equations of motion of the section in Figure 4.1
are shown in Equation (4.3). The equation can be rewritten in a compact form calling
the mass matrix M , the damping matrix R and the stiffness matrix K and the state
is defined as X = [y(t), θ(t), ẏ(t), θ̇(t)]T . This compact form is then reformulated in the
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state space form in Equation (4.4).[
my 0

0 J

][
ÿ(t)

θ̈(t)

]
+

[
ry 0

0 rθ

][
ẏ(t)

θ̇(t)

]
+

[
ky 0

0 kθ

][
y(t)

θ(t)

]
=

[
Fy(t)

Fθ(t)

]
= F (t) (4.3)

Ẋ(t) =

[
0 I

−M−1K −M−1R

]
X(t) +

[
0

M−1

]
F (t)

= AcX(t) +BcF (t)

(4.4)

A = eAc∆t, B = [A− I]A−1
c Bc (4.5)

Since the model presented in this work is a discrete model, the continuous time matri-
ces Ac and Bc, are discretised to the discrete time matrices A and B with time step
∆t = ∆sB

V
, where ∆s is the adimensional time step used in the training, B is the width

of the model and V is the wind speed. The time discretisation of the matrices is done as
it is shown in Equation (4.5).
The discrete Laguerre model to represent the aerodynamic forces F is shown in Equa-
tion (4.7) and it is obtained augmenting the model in Equation (4.1b). It is then inserted
in the equations of motion.

ÂL =


AL

AL

AL

AL

 , B̂L =


BL 0

0 BL

BL 0

0 BL

 (4.6)

Also the regression matrix Equation (4.1a) needs to be augmented and inserted in the
system. This is done expanding the Laguerre matrices as shown in Equation (4.6) and
then obtaining Equation (4.8b).

F (k) =

[
cyy cyθ 0 0

0 0 cθy cθθ

]
Sy(k)

Sθ(k)

Sy(k)

Sθ(k)

 = CŜ(k) (4.7)

X(k + 1) = AX(k) +BCŜ(k)

Ŝ(k + 1) = ÂLŜ(k) +
[
B̂L 0

]
X(k + 1)

(4.8a)

(4.8b)

Finally, the system in Equation (4.8) is rearranged to a correct discrete time state space
formulation shown in Equation (4.9). With the latter formulation the system response to
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a certain wind speed can be calculated and also the poles of the system, to assess stability,
can be easily calculated.[

X(k + 1)

Ŝ(k + 1)

]
=

[
A BC[

B̂L 0
]
A ÂL +

[
B̂L 0

]
BC

][
X(k)

Ŝ(k)

]
(4.9)

The system in Equation (4.1) calculates self-excited forces for the specific wind speed used
in the training to identify the coefficients cnv. In the present work, to identify a model
independent from the wind speed, the training has been carried out with adimensional
data. The dimensions are then given back at the end according to the specific wind
speed (see flow-chart Figure 3.8). Therefore the state-space model used in the Matlab
code written for this work is slightly different from the one shown in Equation (4.9). For
further details see Appendix B.

Width 0.50m fv 2Hz

Length 2.68m ft 5Hz

m 15Kg/m ρair 1.19Kg/m3

J 0.6Kgm2/m ξ 3 ‰
V ∈ [17, 18, 19, ..., 40] m/s

Table 4.1: Simulation data for 2 Dof aeroelastic model.

4.3. Critical Flutter Velocity Identification

As explained in Section 1.4 one of the most critical issues for long span bridges is rep-
resented by flutter instability. This kind of instability occurs when, with the increase of
the wind speed, the first torsional frequency of vibration decreases and gets nearer to the
vertical one. This causes the real part of the eigenvalues to became positive and hence
gives rise to instability [16]. The wind speed at which the instability occurs is called
flutter critical velocity.
In this work a numerical simulation on an example of bridge section, with data shown
in Table 4.1, has been performed to test the capability of the Laguerre expansion model
to foresee flutter critical speed. To have a comparison, the same dynamical simulation
has been performed with rational functions model using the state-space model in Equa-
tion (1.34). The system response has been evaluated for different values of wind speed,
until unstable behaviour has been observed. The transition to unstable behaviour can
be seen from the time histories in Figure 4.2. At each calculation step the eigenvalues of
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the problem have been calculated. Since the here presented model is been developed in
discrete time domain, the calculated poles are discrete-time poles. For clarity the system
eigenvalues corresponding to the first torsional and vertical modes have been converted
back to continuous time domain an plotted in Figure 4.3, for wind speeds range shown in
Table 4.1.
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Figure 4.2: The coupled dynamic model has been simulated for different speeds until
instability was observed. Flutter speed V = 37.6m/s.
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Functions model. Instability reached at 37.6 m/s.
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As the wind speed increases the poles of the system move towards the unstable region:
when they gain positive real part the system becomes unstable. From the simulation
results it is proved that the presented Laguerre model is able to foresee the system’s
dynamic behaviour as good as the rational function model.
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Figure 4.4: 2 Dof system first vertical and torsional vibration frequencies in function of
wind speed. Comparison between Laguerre and Rational Functions models.
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Figure 4.5: 2 Dof system vertical and torsional damping coefficient as function of wind
speed. Comparison between Laguerre and Rational Functions models.

From Figure 4.4 it can be seen that as the wind speed increases the first torsional vibration
frequency gets nearer to the vertical one and risks to cause flutter instability. Finally, the
simulation results in Figure 4.5 show how both models foresee the torsional damping
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coefficient to decrease and become negative as the wind speed increases. Instability is
reached when the torsional damping is not anymore able to dissipate energy, this happens
for both models around V = 37.6m/s. The Laguerre model is therefore proved to be able
to correctly depict the aeroelastic behaviour of a two degrees of freedom deck section.
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5| Conclusions and Future

Developments

The aim of the present work was to develop an effective linear model for suspended bridge
aerodynamic identification. The elaborated model proved to be effective for force iden-
tification and system dynamics modelling. The aerodynamic forces were approximated
using a linear combination of orthonormal functions with particular properties.
This work started as a derivation of the innovative work by Skyvulstad et al. [20] who
used a Volterra series model with parameterized kernels expanded with Laguerre basis
functions to approximate non linear drag force. Laguerre filters proved to be a well be-
haved basis for least squares identification. Moreover, they have low-pass filter properties
and an inbuilt exponential decay, ideal to approximate mechanical systems’ impulse re-
sponse functions.
In the present work, a linear Laguerre expansion model has been developed and a training
procedure has been established. First, it has been tested on a simple first order system,
showing good approximation capabilities and the possibility to optimize the calibration
of the parameters. Then the training procedure has been performed on state-of-the-art
wind tunnel data, collected in the wind tunnel of the Norwegian University of Science
and Technology (NTNU) in Trondheim. The identified Laguerre model has been used
to foresee the self-excited forces in time domain and they have been compared with the
measured data with the help of a time domain comparison toolbox by Kavrakov et al.[7].
The toolbox has been also used for a trial and error procedure for the calibration of the
model.
Once optimal parameter values have been found, the Laguerre model showed good mod-
elling performance in time domain. The goodness of the approximation has also been
tested in frequency domain showing small discrepancy from the experimental data.
The model performance has also been proved to be independent of small variations in the
geometry of the deck section tested.
The here identified model has been then compared to a well established bridge aerody-
namic model: the rational functions model. The two models have been compared both
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in time domain and in frequency domain and the Laguerre model proved to be able to
foresee wind induced forces on deck sections in time domain as good as rational functions
model. In frequency domain, some discrepancies have been observed for A1∗ and A4∗

aerodynamic derivatives approximation. Moreover, the Laguerre model has also a com-
parable computational burden in the training phase compared to the rational functions.
Finally, the identified model for wind induced lift and torque has been introduced in a
complete two degrees of freedom dynamic section model. A time series simulation has
been carried out for increasing wind speeds until unstable behaviour has been observed.
The model proved to be able to correctly model the dynamic of the section and to de-
termine the stability limits of the girder. The flutter critical speed calculated with the
Laguerre model coincides with the result found with rational function model.

The presented Laguerre model gave interesting results with low computational burden
and has room for further improvement. Possible future development is to improve the
impulse response approximation including two feed-through terms relative to speed and
displacement. The absence of these two terms is one of the main causes of the difference
in performances between the rational functions model and the Laguerre expansion model.
Furthermore, in the presented work the same value of the two parameters of the model
has been used for the approximation of all the identified transfer functions between the
forces and the deck degrees of freedom. The training of the model could be improved by
considering calibrating a different set of parameters for the identification of each transfer
function. This might solve the differences in performance observed between the approxi-
mation of the different aerodynamic derivatives.
A further alternative which is worth testing would be to reformulate the model starting
from a continuous time formulation of Laguerre filters instead of a discrete one. Finally, it
would be interesting to investigate the eventual differences in performances of the model
using white noise as training data instead of a single harmonic motion.



73

Bibliography

[1] J. P. Bergerud and H. M. Torød. Shape optimization of an aluminium girder for a
long-span suspension bridge. Master’s thesis, NTNU, 2021.

[2] B. Cao and P. P. Sarkar. Identification of Rational Functions using two-degree-of-
freedom model by forced vibration method. Engineering Structures, 43:21–30, oct
2012. ISSN 01410296. doi: 10.1016/J.ENGSTRUCT.2012.05.003.

[3] G. Diana, M. Falco, S. Bruni, A. Cigada, G. L. Larose, A. Darnsgaard, and A. Collina.
Comparisons between wind tunnel tests on a full aeroelastic model of the proposed
bridge over Stretto di Messina and numerical results. Journal of Wind Engineering
and Industrial Aerodynamics, 54-55(C):101–113, 1995. ISSN 01676105. doi: 10.1016/
0167-6105(94)00034-B.

[4] G. Diana, F. Resta, A. Zasso, M. Belloli, and D. Rocchi. Forced motion and free
motion aeroelastic tests on a new concept dynamometric section model of the Messina
suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 92(6):
441–462, may 2004. ISSN 01676105. doi: 10.1016/J.JWEIA.2004.01.005.

[5] E. Ekern and D. Bang. Aerodynamic Stability of a Suspension Bridge with an Alu-
minum Girder-Wind Tunnel Testing and Numerical Predictions. Master’s thesis,
Norwegian University of Science and Technology, 2020.

[6] W. H. Kautz. Transient Synthesis in the Time Domain. Transactions of the IRE
Professional Group on Circuit Theory, 1(3):29–39, 1952. ISSN 01976389. doi: 10.
1109/TCT.1954.1083588.

[7] I. Kavrakov, A. Kareem, and G. Morgenthal. Comparison Metrics for Time-Histories:
Application to Bridge Aerodynamics. Journal of Engineering Mechanics, 146(9):
04020093, 2020. ISSN 0733-9399. doi: 10.1061/(asce)em.1943-7889.0001811.

[8] Y. W. Lee. Statistical Theory of Communication. In L. John Wiley & Sons, editor,
Statistical Theory of Communication, chapter 18-19, pages 459–501. John Wiley &
Sons, Ltd, New York, 1960. doi: 10.2307/2282273.



74 | Bibliography

[9] V. Z. Marmarelis. Identification of Nonlinear Biological Systems Using Laguerre
Expansions of Kernels. Annals of Biomedical Engineering, 21:573–589, 1993.

[10] Norconsult AS. E39 Stord - Tysnes: Bru over Langenuen og Søreidsvika, Skissepros.
Technical report, Norconsult AS, 2015. URL https://www.norconsult.no/.

[11] Norwegian Pubblic Roads Administration. The E39 Coastal Highway Route |
Statens vegvesen, 2022. URL https://www.vegvesen.no/en/road-projects/

european-road/e39coastalhighwayroute/.

[12] H. Ogura. Estimation of Wiener kernels of a nonlinear system and a fast algorithm
using digital Laguerre filters. In 25th NIBB Conference, pages 14–62, 1986.

[13] O. Øiseth, A. Rönnquist, and R. Sigbjörnsson. Time domain modeling of self-excited
aerodynamic forces for cable-supported bridges: A comparative study. Comput-
ers and Structures, 89(13-14):1306–1322, 2011. ISSN 00457949. doi: 10.1016/j.
compstruc.2011.03.017.

[14] O. Øiseth, A. Rönnquist, and R. Sigbjörnsson. Finite element formulation of the
self-excited forces for time-domain assessment of wind-induced dynamic response
and flutter stability limit of cable-supported bridges. Finite Elements in Analysis
and Design, 50:173–183, 2012. ISSN 0168874X. doi: 10.1016/j.finel.2011.09.008.

[15] O. Olsen. Report Langenuen Suspension Bridge - Aluminium Bridge Girder Alter-
native. Technical report, Norwegian Public Roads Administration, 2020.

[16] D. Rocchi. Lecture notes in Wind Engineering. 2020.

[17] R. Scanlan and J. Tomko. Airfoil and bridge deck flutter derivatives. J. Eng.
Mech., 97:1717–37, 1971. URL https://www.scopus.com/record/display.uri?

eid=2-s2.0-2242449120{&}origin=inward.

[18] B. Siedziako and O. Øiseth. An enhanced identification procedure to determine the
rational functions and aerodynamic derivatives of bridge decks. Journal of Wind
Engineering and Industrial Aerodynamics, 176(November 2017):131–142, 2018. ISSN
01676105. doi: 10.1016/j.jweia.2018.03.025.

[19] B. Siedziako, O. Øiseth, and A. Rønnquist. An enhanced forced vibra-
tion rig for wind tunnel testing of bridge deck section models in arbi-
trary motion. Journal of Wind Engineering and Industrial Aerodynamics, 164
(December 2016):152–163, 2017. ISSN 01676105. doi: 10.1016/j.jweia.2017.02.
011. URL http://dx.doi.org/10.1016/j.jweia.2017.02.011https://sci-hub.

yncjkj.com/10.1016/j.jweia.2017.02.011.

https://www.norconsult.no/
https://www.vegvesen.no/en/road-projects/european-road/e39coastalhighwayroute/
https://www.vegvesen.no/en/road-projects/european-road/e39coastalhighwayroute/
https://www.scopus.com/record/display.uri?eid=2-s2.0-2242449120{&}origin=inward
https://www.scopus.com/record/display.uri?eid=2-s2.0-2242449120{&}origin=inward
http://dx.doi.org/10.1016/j.jweia.2017.02.011 https://sci-hub.yncjkj.com/10.1016/j.jweia.2017.02.011
http://dx.doi.org/10.1016/j.jweia.2017.02.011 https://sci-hub.yncjkj.com/10.1016/j.jweia.2017.02.011


5| BIBLIOGRAPHY 75

[20] H. Skyvulstad, Ø. W. Petersen, T. Argentini, A. Zasso, and O. Øiseth. The use of a
Laguerrian expansion basis as Volterra kernels for the efficient modeling of nonlinear
self-excited forces on bridge decks. Journal of Wind Engineering and Industrial Aero-
dynamics, 219(February), 2021. ISSN 01676105. doi: 10.1016/j.jweia.2021.104805.

[21] J. H. Son and Y. Kim. Parametric Estimation of Volterra Kernel for the Dynamic
Response of an Offshore Structure Using Laguerre Polynomials. Journal of Offshore
Mechanics and Arctic Engineering, 142(6):1–13, 2020. ISSN 1528896X. doi: 10.1115/
1.4046675.

[22] J. H. Son and Y. Kim. Probabilistic time series prediction of ship structural response
using Volterra series. Marine Structures, 76(November 2020):102928, 2021. ISSN
09518339. doi: 10.1016/j.marstruc.2020.102928. URL https://doi.org/10.1016/

j.marstruc.2020.102928.

[23] The Mathworks Inc. MATLAB, 2021.

[24] T. Theodorsen. General theory of aerodynamic instability and the mechanism of
flutter. Technical report, NACA report no. 496, Washington DC, 1934.

[25] V. Volterra and E. T. Whittaker. Theory of functionals and of integral and integro-
differential equations. Dover publications, 1959.

https://doi.org/10.1016/j.marstruc.2020.102928
https://doi.org/10.1016/j.marstruc.2020.102928




77

A| Linearisation of QST

To linearise different terms of the force components in Equations 1.6, 1.7 around x0, y0,
θ0. Some assumptions can be done. The mean wind velocity can be assumed larger than
the turbulence components: Vm >> w, Vm >> v. Also the horizontal velocity of the
structure can be considered smaller than the mean wind speed Vm >> ẋ. Finally, the
angle of attack of the relative wind speed is usually sufficiently small that tan(ψ) ≃ ψ.
With these assumptions the relations in Equation A.1 are obtained:

ψ =
w − ˙̄y −B1i

˙̄θ

Vm

ᾱ = α− α0

V 2
Rel = V 2

m + 2Vmv − 2Vmẋ

α = θ + ψ = θ̄ + θ0 +
w − ˙̄y −B1i

˙̄θ

Vm

CD(α) = CD0 +
∂CD

∂α

∣∣∣∣
0

α = CD0 + C ′
Dα

CL(α) = CL0 +
∂CL

∂α

∣∣∣∣
0

α = CL0 + C ′
Lα

CM(α) = CM0 +
∂CM

∂α

∣∣∣∣
0

α = CM0 + C ′
Mα

(A.1)

Where CD0, CL0, CM0 are the values of CD, CL, CM in α = α0. With the assumption of
small angle of attack it can be also assumed that sin(ψ) = ψ and cos(ψ) = 1. Then, the
expression of the self-excited forces from Equation 1.5 can be rewritten in a vector from:Fx

Fy

Fθ

 =

FD(α)− ψFL(α)

ψFD(α)− FL(α)

M(α)

 =

FD

FL

M

+ ψ

−FL

FD

0
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Substituting the linearised expression of FD,FL and M it can be obtained:Fx

Fy

Fθ

 =
1

2
ρBLV 2

Rel


 CD0

CL0

BCM0

+ α

 C ′
D

C ′
L

BC ′
M

+ ψ

−CL0

CD0

0

+ ψα

−C
′
L

C ′
D

0


 (A.2)

The product ψα is very small compared to the other terms, it can thus be neglected.
Substituting the linearised expression of VRel, α and ψ, Equation A.2 becomes:Fx

Fy

Fθ

 =
1

2
ρBL(V 2

m + 2Vmv − 2Vmẋ)

( CD0

CL0

BCM0



+


(θ̄ + w− ˙̄y−B1x

˙̄θ
Vm

)C ′
D

(θ̄ + w− ˙̄y−B1y
˙̄θ

Vm
)C ′

L

(θ̄ + w− ˙̄y−B1θ
˙̄θ

Vm
)BC ′

M

+
1

Vm

−(w − ˙̄y −B1x
˙̄θ)CL0

(w − ˙̄y −B1y
˙̄θ)CD0

0

)
(A.3)

Therefore, the linearised expression of the quasi-steady forces is rewritten in matrix form
as in Equation (A.4).

FQST = F st
QST +Rae

˙̄X +KaeX̄ +Amb (A.4)

Here the state vector X̄ = [x̄, ȳ, θ̄]T is defined. The matrices Rae, Kae and Am are
respectively the damping, stiffness and admittance matrices shown in Equation (A.5).

F st
QST =

1

2
ρBLV 2

m

 CD0

CL0

BCM0



Rae = −1

2
BLVm

 2CD0 C ′
D − CL0 B1x(C

′
D − CL0)

2CL0 C ′
L − CD0 B1y(C

′
L − CD0)

2CM0B BC ′
M B1θBC

′
M



Kae =
1

2
ρBLV 2

m

0 0 C ′
D

0 0 C ′
L

0 0 BC ′
M



Am =
1

2
ρBLVm

 2CD0 C ′
D − CL0

2CL0 C ′
L − CD0

2CM0B BC ′
M



(A.5a)

(A.5b)

(A.5c)

(A.5d)



79

B| Laguerre Expansion Model -

Training and Evaluation

The Laguerre expansion model shown in Equation (4.1) gives the aerodynamic forces for
the specific wind speed used during the training to identify the coefficients cnv. However,
in this way the model can foresee correct self-excited only for that specific wind velocity.
To build a model independent from the wind speed, in the present work all the training
input-output time histories have been adimensionalised, as shown in Section 3.3, respect
to the speed of the stream. Then, with the trained model, the adimensional forces can
be calculated and the dimensions are given back according to the specific wind speed. A
flow chart of the model is shown in Figure 3.8.
The training procedure is here reported for clarity:

1. To train the model a sinusoidal input motion is imposed for each degree of freedom
separately and the self-excited forces time histories are recorded.

2. Each input or output time history is adimensionalised with the used wind speed.
Also the time vector of the simulation is made dimensionless.

3. The Laguerre expansion model is trained with the dimensionless time histories and a
set of C coefficients is identified. These coefficients are specific of the girder section
tested.

4. With the identified coefficients dimensionless self-excited forces can be calculated.

5. The dimensionless forces are then made dimensional with the specific wind speed.

When the present model is converted to state-space to be coupled with the equations
of motion of the system (Section 4.1), the re-dimensioning part must be included. The
state-space model for the Laguerre expansion model shown in Equation (4.1) becomes, in
case of vertical motion input, like is shown in Equation (B.1) , where B is the width of
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the model, ρ is the air density and V is the wind speed.

Sv(k + 1) = ALSv(k) +BLy(k + 1)/B

Fnv(k) = cnvSv(k)(
1

2
ρBV 2)

(B.1a)

(B.1b)

To insert the Laguerre state-space in a complete two degrees of freedom dynamic system,
the matrices must be expanded as shown in Section 4.2. The system in Equation (B.2) is
therefore obtained, where the matrices U1 and U2 shown in Equation (B.3) are used to
give the correct dimensions to the forces.

X(k + 1) = AX(k) +BU1CŜ(k)

Ŝ(k + 1) = ÂLŜ(k) +
[
B̂LU2 0

]
X(k + 1)

(B.2a)

(B.2b)

U1 =
1

2
ρV 2

[
B 0

0 B2

]
,U2 =

[
1
B

0

0 1

]
(B.3)

Finally, the system in Equation (B.2) is rewritten in correct state-space form as in Equa-
tion (B.4). [

X(k + 1)

Ŝ(k + 1)

]
=

[
A BU1C[

B̂LU2 0
]
A ÂL +

[
B̂L 0

]
BC

][
X(k)

Ŝ(k)

]
(B.4)

With the obtained system, once the model is trained for a specific section, its dynamic
behaviour can be obtained for any wind velocity inside the identified range.



81

C| Aerodynamic Derivatives

Notation

Aerodynamic derivatives are used to express self-excited aerodynamic forces when the
reduced velocity V ∗ is to low to use the Quasi Steady Theory. They are also function of
the external geometry of the girder and need to be determined experimentally by wind
tunnel tests. There are different possible notations to give a theoretical formulation for
the ADs. Here it is presented the comparison between the Scanlan’s notation used in this
paper and another notation commonly used in Politecnico di Milano.

C.1. Scanlan’s notation

The self-excited forces per unit length, drag FD, lift FL and moment FM acting on bridge
decks are expressed through the use of flutter derivatives P ∗

1−6, H∗
1−6, A∗

1−6. Assuming
harmonic vibrations at a frequency f , and using the Scanlan’s notation (see [17]), the
self-excited wind loads on the structure are given by:

FL =
1

2
ρV 2B

(
(2πf)H∗

1

ż

V
+ (2πf)H∗

2

Bθ̇

V
+ (2πf)2H∗

3 θ + (2πf)2H∗
4

z

B
+ (2πf)H∗

5

ẏ

V
+ (2πf)2H∗

6

y

B

)

FM =
1

2
ρV 2B

(
(2πf)A∗

1

ż

V
+ (2πf)A∗

2

Bθ̇

V
+ (2πf)2A∗

3θ + (2πf)2A∗
4

z

B
+ (2πf)A∗

5

ẏ

V
+ (2πf)2A∗

6

y

B

)

FD =
1

2
ρV 2B

(
(2πf)P ∗

5

ż

V
+ (2πf)P ∗

2

Bθ̇

V
+ (2πf)2P ∗

3 θ + (2πf)2P ∗
6

z

B
+ (2πf)P ∗

1

ẏ

V
+ (2πf)2P ∗

4

y

B

)

(C.1)

Where H∗
i , A∗

i and P ∗
i with i ∈ [1− 6] are aerodynamic derivatives for lift force, pitching

moment and drag force respectively.
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C.2. Polimi notation

The self-excited forces per unit length, drag FD, lift FL and moment FM acting on bridge
decks are expressed through the use of flutter derivatives p∗1−6, h∗1−6, a∗1−6. Assuming
harmonic vibrations at a frequency f , the self-excited wind loads on the structure can be
given by:

FL =
1

2
ρV 2B

(
−h∗1

ż

V
− h∗2

Bθ̇

V
+ h∗3θ +

2π3

V ∗2h
∗
4

z

B
− h∗5

ẏ

V
+

2π3

V ∗2h
∗
6

y

B

)

FM =
1

2
ρV 2B

(
−a∗1

ż

V
− a∗2

Bθ̇

V
+ a∗3θ +

2π3

V ∗2a
∗
4

z

B
− a∗5

ẏ

V
+

2π3

V ∗2a
∗
6

y

B

)

FD =
1

2
ρV 2B

(
−p∗1

ż

V
− p∗2

Bθ̇

V
+ p∗3θ +

2π3

V ∗2p
∗
4

z

B
− p∗5

ẏ

V
+

2π3

V ∗2p
∗
6

y

B

) (C.2)

Where V is the mean wind velocity and V ∗ = V
ωB

is the reduced velocity of motion. Here
h∗i , a∗i and p∗i with i ∈ [1− 6] are aerodynamic derivatives for lift force, pitching moment
and drag force respectively.

C.3. Main differences between formulations

The two formulations are equivalent in practice. The first difference is how the ADs
relative to drag are associated to the velocity/displacement:
Polimi:

• p∗1 and p∗4 are referred to the vertical velocity/displacement

• p∗5 and p∗6 are referred to the lateral velocity/displacement

Scanlan:

• P ∗
1 and P ∗

4 are referred to the lateral velocity/displacement

• P ∗
5 and P ∗

6 are referred to the vertical velocity/displacement
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Furthermore, there is a difference of a factor function of the reduced velocity, as shown
in Equation (C.3), between the two formulations.

h∗1 = − 2π

V ∗H
∗
1 , h

∗
2 = − 2π

V ∗H
∗
2 , h

∗
5 = − 2π

V ∗H
∗
5 ,

h∗4 =
2

π
H∗

4 , h∗3 =

(
2π

V ∗

)2

H∗
3 , h∗6 =

2

π
H∗

6 ,

a∗1 = − 2π

V ∗A
∗
1, a∗2 = − 2π

V ∗A
∗
2, a∗5 = − 2π

V ∗A
∗
5,

a∗4 =
2

π
A∗

4, a∗3 =

(
2π

V ∗

)2

A∗
3, a∗6 =

2

π
A∗

6,

p∗1 = − 2π

V ∗P
∗
1 , p∗2 = − 2π

V ∗P
∗
2 , p∗5 = − 2π

V ∗P
∗
5 ,

p∗4 =
2

π
P ∗
4 , p∗3 =

(
2π

V ∗

)2

P ∗
3 , p∗6 =

2

π
P ∗
6

(C.3)
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