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Abstract

The discharge of water from the Adige-Garda tunnel into lake Garda was
simulated using a 3D hydrodynamic code. A set of global simulations were
run to assess tracer dispersion from the inflow and the corresponding thermal
effects. The obtained results are in good agreement with SAR images. An
analytical model for the propagation speed of an intrusion is presented. Its
predictions are compared with simulations of the region near the inflow point
on a fine grid, which enabled a closer analysis of the flow features. Local
simulations were also run considering river Sarca’s inflow to assess its impact
on tracer dispersion from the Adige-Garda tunnel. The mathematical and
numerical models used are described thoroughly and modelling hypotheses
and issues are discussed together with possible further developments.

Sommario

L’influsso di acqua dalla galleria Adige-Garda nel lago di Garda è stato
simulato utilizzando un codice idrodinamico 3D. Attraverso simulazioni glo-
bali è stata analizzata la dispersione di tracciante dalla galleria, insieme ai
corrispondenti effetti termici. I risultati mostrano un buon accordo con le
immagini SAR disponibili. È stato inoltre introdotto un modello analitico
per la velocità di propagazione di un’intrusione. I risultati del modello so-
no stati confrontati con quelli di simulazioni locali, effettuate nella regione
attorno al punto di influsso su una griglia di calcolo fine; queste simulazioni
permettono un’analisi più dettagliata della fisica del flusso. Nelle simulazio-
ni locali è stato considerato anche l’influsso del fiume Sarca per verificarne
l’impatto sulla dispersione di tracciante dalla galleria Adige-Garda. La tesi
comprende una descrizione dettagliata dei modelli matematici e numerici
utilizzati; vengono discusse le ipotesi e criticità modellistiche, insieme ai
possibili sviluppi futuri.
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Preface

This thesis work stems from two interests I have had for a long time: fluid dynamics
and environmental problems. It consists of numerical experiments on a lake, a system
much different from the ones usually considered in aerodynamics; and since I am a stu-
dent of aeronautical engineering, I had to change my point of view to try to understand
what are the aspects worth focusing on and what to expect from the results. This is
reflected in the structure and the content of the thesis: the first, and prominent, part is
a review of models, methods and existing research, and a collection of relatively simple
simulations that I ran to build confidence in my understanding of the physics and of the
modelling choices. The physics differ from the typical problems of aerodynamics with
regard to scales, lengths being larger and velocities lower, and the flow is governed by
an interplay of atmospheric forcing, internal density stratification and geometry. As in
aerodynamics, turbulence plays a major role and introduces large modelling difficulties
and uncertainties. Turbulence in environmental flows is influenced by stratification and
is typically patchy and intermittent; RANS models derived by slight modifications of
the ones used in aerodynamics and applied on very coarse grids (compared to aerody-
namic standards) have trouble reproducing this behaviour correctly and can sometimes
yield results that are very hard to interpret. The choice of the model is critical, dif-
ferent models giving sometimes quite different results. The lack of field measurements
as validation data means that at present the most reasonable solution is to resort to
standard choices of the limnology/oceanography community. This can be frustrating
and discouraging. What is the validity of the results? We should not expect extremely
accurate quantitative results as the ones expected for lift and drag coefficients for an
airfoil; we should rather accept uncertainty on the numerical results, but still expect to
be able to gain a valuable qualitative and order-of-magnitude picture of the phenomena
we are simulating. For instance, when simulating the thermal impact of inflowing water
into the lake, we try to get an idea of which areas will be most affected, and to about
which extent, rather than focusing on pointwise, instantaneous values. We will see that
order-of-magnitude considerations on the velocity fields will allow to clarify what the
main driving action is for the dispersion of inflowing water.

Due to the period in which this thesis was done, I spent almost all of the time working
alone. Nonetheless, there are many people I want to acknowledge for their help. Prof.
Edie Miglio proposed the problem and provided guidance throughout the work. Dr.
Marina Amadori, Dr. Giuseppe Bilotta, Dr. Francesca de Santi, Prof. Marco Toffolon
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and Prof. Lorenzo Valdettaro gave helpful suggestions and observations; Francesca de
Santi also provided and processed satellite data. Giuseppe Aloe and Luca Paglieri at
MOX were very kind and helpful in giving support on the use of the cluster. Matteo
Savatteri helped with software installation and Linux system administration advice.
Many helpful comments and discussions were shared with colleagues, especially the
people in BstTeam, and with users of the Telemac forum. Friends and family provided
much needed distraction - even though I can be quite hard to distract.
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Introduction

The aim of this work is to conduct numerical hydrodynamic simulations of lake Garda
in order to evaluate the effects of wind and inflows on thermal and mixing properties,
with particular emphasis on the discharge event from the Adige-Garda tunnel occurred
in October 2018.

Lake Garda is a subalpine lake in northern Italy; it is the largest in Italy, with an
area of 368 km2, and one of the deepest, with maximum depth of 350 m [49]. It has one
main tributary, river Sarca, which enters the lake at its northernmost extremity, and one
outflow, river Mincio, exiting at the southeast. A tunnel was built in mid 20th century
(started in 1939, completed in 1959) to discharge into the lake water from river Adige,
which runs in a valley parallel to the longitudinal direction of the lake, to mitigate
floods. The lake can be divided into two main parts based on the bottom morphology:
the northern trunk is elongated, with steep sides and a flat bottom, similarly to other
subalpine lakes such as lakes Como and Maggiore; the greatest depths are reached here.
In contrast, the southeastearn basin is shallow. The two are separated by a submerged
ridge than runs from the Sirmione peninsula to punta san Vigilio (see the map in Figure
1.2).

Simulations are run using the numerical hydrodynamic code Telemac3D1, solving the
Reynolds-averaged Navier-Stokes equations discretized with the finite element method.

Chapter 1 is devoted to giving a general introduction on limnology, the problems
it deals with and the ones among them that are relevant for lake Garda. A review of
research papers on the lake follows.

Chapter 2 presents the governing equations of the problem, the hypotheses they are
based on and some possible modelling choices. A mathematical model for intrusions is
also derived.

Chapter 3 shows how the equations presented in chapter 2 are solved, by discretizing
in space (building a mesh), and in time, with a proper treatment for each of the terms
in the equations (using the fractional step method). The way each step is solved is then
discussed by recalling the main ideas and properties of the finite element method and
of multidimensional upwind residual distribution (MURD) schemes.

Chapter 4 is a summary of some simple but relevant test cases that were devised
in order to experiment with the model setup and parameters, dealing with the most
important physical phenomena and modelling difficulties one at a time before starting

1http://opentelemac.org/
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the main simulations.
Chapter 5 describes the setup and results of discharge simulations. The effects of

wind-induced circulations, stratification and interaction with the Sarca river inflow on
the distribution of water discharged by the spillway are explored first on the entire lake,
and then at a local level using a finer mesh.

Chapter 6 contains a summary of the main results. The uncertainties and some
possible developments of the present analysis are discussed.
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Chapter 1

Review

1.1 Limnology

Limnology, the study of lakes, is motivated by biological interest and industrial necessity.
Understanding how life in lakes is affected by climate, polluted inflows and circulation
patterns helps in preserving it and planning corrective actions when needed. The study
of lake fluid dynamics is commonly called physical limnology [26] and it is of support
to chemical and biological studies; as a matter of fact, the coupling between fluid dy-
namics and biology is mainly one-way: the first influences the second. For example,
hydrodynamics determine the motion of plankton, organisms that are unable to move
autonomously and thus drift transported by currents (plankton literally means �wan-
derer�, from the greek) and that are the base of the food chain for fish. In particular,
phytoplankta depend on light to realize photosyntesis, and light is available only close
to the surface: so, vertical flows determine how much exposure to light such organisms
can get, how much nutrients are available in the different areas, and ultimately their
population dynamics. This means that a knowledge of flow patterns and of the way
they are influenced by external agents, mainly wind, air temperature and inflows, is im-
portant not only to determine the fate of pollutants released in the lake in the context
of water quality studies, but also to understand how nutrients are distributed in the
lake, which affects the health of its population. In particular, in lake hydrodynamics
mixing properties are of primary importance and they are typically strongly influenced
by stratification.

Stratification is the vertical variation of density and temperature in a fluid domain.
Stratifications can be classified as stable or unstable, depending on the stability of the
equilibrium of particles in the domain. If a particle displaced vertically from its equilib-
rium position tends to return to it, the stratification is stable; if the particle trajectory
diverges, the stratification is unstable; if there is no restoring action, the stratification is
neutral. In a stable stratification, vertical motions are inhibited. A simple stability con-
dition is that density must decrease from the bottom to the free surface; for water above
4◦C, this implies that temperature must increase. During summer, a typical stratifica-
tion is as depicted in Figure 1.1. Heat is mainly exchanged by conduction/convection

3



Figure 1.1: A typical summer stratification (from [26])

with the air above and by radiation. In summer, the upper layers get warmer than
the deep ones, which remain close to constant temperature for the whole year. This is
a stable stratification. Some terminology: the surface of maximum vertical tempera-
ture gradient is called thermocline and it separates the hypolimnion (deep lake) from
the epilimnion (surface layer); the layer around the thermocline is called metalimnion.
During autumn and winter, cold air makes the surface temperature decrease, so that the
stratification either becomes neutral or even unstable if temperatures are low enough.

Mixing requires energy, and kinetic energy is provided to the water in the lake by
wind: when wind blows over the surface, a shear layer is created in the lake. In a
shear layer, turbulence appears1; turbulence is affected by the stratification: as will be
discussed in section 2.5, in a stable stratification turbulent fluctuations are damped. So,
the degree of mixing in the lake depends on the interplay between wind, that provides
kinetic energy which drives turbulent mixing, and heat exchange, than can create stable
or unstable stratifications. Wind also induces internal waves, that can have amplitudes
much larger than surface waves, reaching tens of meters in lakes and even more in the
ocean. Internal waves interact with each other and with boundaries in complex, and not
yet completely understood, ways; it is believed that a large part in turbulent dissipation
and mixing is played by waves breaking over complex topographies, in particular regions
of steep bottom [29], [60].

Moreover, when a wind-generated current reaches the coast, water experiences down-
welling, that is, it sinks along the sloping boundary; the depth to which it can sink
depends on buoyancy forces: if the stratification is stable, water coming from the sur-
face is less dense then the one it is surrounded by while it descends, so it cannot sink
too deep. On the other hand, if the stratification is neutral or unstable, water can
sink to the bottom. Once it stops sinking, it starts spreading horizontally; a numerical

1The turbulent kinetic energy production rate is proportional to the mean flow velocity gradient, i.e.
the mean shear.
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experiment showing this effect is presented in section 4.2. This, again, is an effect of
global circulation and convective mixing, and it is the same effect experienced by water
inflowing from tributaries, which can reach different depths depending on its tempera-
ture. An additional effect is the differential cooling of water in lakes experienced during
autumn and winter: shallow areas are cooled more quickly and effectively than deep
ones. Water from such areas, then, will start sinking, as described above.

In addition to the direct mixing effect induced by the wind and to the influence
of topography, water can penetrate to depth in presence of hydrological fronts [26, p.
271], i.e. lines along which surface velocities converge and thus, for mass conservation,
water must move downwards. They can be generated, again, by the effect of inflows,
topography, or wind patterns.

Mixing is such an important phenomenon in lakes (for example, for oxygenation and
nutrient transport) that a classification of lakes based on it exists:

• Holomictic lakes mix completely (down to the bottom). If they mix once a year,
they are called monomictic; if they mix many times a year, they are called polymic-
tic; if they mix once every several years, they are called oligomictic.

• Meromictic lakes mix only down to a limited depth.

• Amictic lakes never mix (this is very rare, and it happens when there is no wind
forcing at all, for example for lakes buried below ice in Antarctica).

The mixing character of a lake is influenced by latitude, elevation, depth and exposition
to wind.

The water budget in a lake is a critical issue for agriculture and energy production:
the outflow of a lake is often used for irrigation of large regions; hydroelectrical plants
may exist both along the inflows (e.g. high elevation artificial lakes) and along the out-
flows. Moreover, thermoelectrical and industrial plants may need substantial amounts
of water for cooling. On the one hand, the presence of dams allows controlling the water
level in the lake and the outflow rate; on the other hand, dependable energy production
requires steady or at least predictable flow. The necessities of dependable outflow rates
and keeping the lake water level within certain limits for ecological reasons, to allow
navigation and to avoid flooding lakeside towns, may be in conflict, requiring careful
planning especially in view of climate change, with severe events of flooding and drought
becoming more frequent.

These matters are all present in the case of lake Garda: the level of the lake is
controlled by a dam situated in Salionze, on the outflowing river Mincio (see Figure
1.2). Levels and outflow rates are prescribed for different periods of the year [1]. Also
the inflow is partially controlled because of the presence of hydroelectrical plants on
lakes Ledro, Valvestino and Molveno, the latter of which flows into river Sarca. An
additional, sporadic inflow is the Mori-Torbole tunnel [14], built between 1939 and 1959
to discharge water from river Adige to lake Garda, in order to prevent floods along
the river during intense rains; its discharge point is shown in Figure 1.3. It has since
been used for this purpose in 1960, 1965, 1966, 1976, 1980, 1981, 1983, 2000, 2002 and
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Lake Garda

Adige

Mincio
*SD

LV

LL

Sarca

MT

*PSV

SP

(a) (b)

Figure 1.2: (a) lake Garda with main inflows and outflows. LL: lake Ledro, MT: Mori-
Torbole tunnel, LV: lake Valvestino, SD: Salionze dam, PSV: punta san Vigilio, SP:
Sirmione peninsula. Base map: Google Maps; edited by the author. (b) available
bathymetry, depths in meters; the bathymetry extends slightly beyond the boundary of
the lake, in order to enable flooding simulations

Figure 1.3: Discharge point of the Mori-Torbole tunnel. Picture taken by the author
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2018 [3], in addition to sporadic maintenance operations. Each utilization of the tunnel
is met with criticism because of the large mass of cold, silty water discharged into the
lake.

1.1.1 CFD models of lakes

Different models are available for numerical simulations of lakes, with different levels of
detail and complexity depending on the application.

One-dimensional (vertical) models are implemented in weather forecast codes to ac-
count for the role of lakes as heat reservoirs. This action is important both on timescales
of the order of a day, generating breezes, and of the order of seasons, accumulating heat
during the summer by forming a strong stable stratification and releasing it during au-
tumn. A comparison of some models is presented in [54]. 1D models have also been
used to forecast the impact of climate change on the mixing properties of lakes, as done
in the paper [21] for lake Maggiore.

Two-dimensional models are typically based on the shallow water equations and can
be used for shallow basins with limited depth variations.

Three-dimensional models, based on the incompressible Navier-Stokes equations and
using different modelling choices, are used for shorter simulations (with few exceptions
such as [12]) to identify currents and assess the impact of possible sources of pollution,
usually by performing scenario simulations.

1.2 Existing research on lake Garda

Research studies about the hydrothermodynamics of lake Garda can be divided into
two categories: long-term ones, spanning multiple years and examining global patterns,
and studies on scenarios, analyzing data from measurements and simulations over few
days or weeks with a focus on local features. Some of these studies are interdisciplinary,
focusing especially on biological processes that are influenced by fluid mechanics and
thermodynamics.

1.2.1 Long-term, statistical studies

In the 1990s, a series of measurements of temperature, pH, oxygen concentration and
other quantities of biological interest was carried out; the results are analyzed in [47].
The data reveal the oligomictic nature of the lake. Typically, oligomictic lakes undergo a
complete mixing event only during the coldest winters: the study confirms this behaviour
for lake Garda, as shown in Figure 1.4. When a mixing event is not complete, its extent
can be quantified by the mixing depth, defined as the lowest bound of the region where
transported scalars are almost uniform, a sign that in such region mixing occurred
effectively; below it, the concentration of scalars starts changing more rapidly. The
mean winter air temperature correlates very well with water temperature and mixing
depth: the winters of 1990/1991, 1998/1999 and 1999/2000 were the coldest of the time
series, and they correspond to complete early spring mixing events. Between two full
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Figure 1.4: (A) local water temperature at various depths; (B) depth-averaged water
temperature v. air temperature; (C) mixing depth (from [47])

circulations, the temperature in the deep lake keeps increasing gradually because of slow
thermal diffusion from the upper layers, even if the atmospheric temperature shows no
distinct upward trend. It is clear from the plots that the temperature history shows less
and less fluctuations as depth increases.

A general trend of increase in water temperature was shown in [49] when consider-
ing datasets from 1970 to 2009. A linear regression suggests a temperature increase of
0.015◦C/year; from the LOWESS (locally weighted scatterplot smoothing) regression,
the presence of cycles with period greater than about 20 years seems to emerge. De-
pending on which statistical test is considered, though, the significance of the upward
trend changes. The Mann-Kendall test, specifically devised to check whether a global
trend (increasing or decreasing) is present in a time series, is used in the paper. This
is done by estimating the probability that the data come from a trend-less time series,
that is saying that the observed trend is actually determined by noise. If this probability
is low enough, the null hypothesis (no trend) can be rejected. The result shows good
significance, with p < 0.01, but if the trend-free pre-whitening (TFPW) procedure is
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Figure 1.5: Time history of temperature at different depths in the lake. Red arrows
mark complete mixing events. From [48]

applied before it to remove the effect of correlation, the result is p < 0.10, corresponding
to a lower significance. In other words, to examine climate change trends it is necessary
to consider data sets that are longer than the above mentioned cycles, otherwise it is
hard to distinguish the upward phase of a cycle from long-term growth.

Updated data reported in paper [48], however, leave little doubt as to whether a
general temperature increase is happening, as is clear from Figure 1.5. Moreover, it is
shown that in the period 2006-2017 there were no full mixing events in the lake. The
phenomena analyzed in this and in the previously described works are of biological in-
terest because they determine to which extent algal nutrients are recycled from the deep
layers to the surface on a given year, impacting the ecosystem. The focus is in particular
on cyanobacteria, a family of phytoplankton, many species of which are toxigenic; the
toxic substances they produce compromise balneability in the lake and potability of its
water. Cyanobacterial blooms are favoured by warm water and availability of nutrients,
mainly nitrogen and phosphorus. Climate change then has two orders of effects on the
occurrence of such blooms: a direct influence, the water temperature increase, and an
indirect one, the modification of the frequency of full mixing events. As a matter of
fact, the highest concentration of phosphorus is typically found in the deepest layers;
so, when a full mixing episode happens, water close to the surface, where phytoplankta
mostly develop thanks to the presence of light, is enriched in nutrients.

The study [23], spanning about a year, helps clarify how mixing events are triggered
and which basic phenomena are involved. A vertical line was moored in the deepest
region of the lake, with an acoustic doppler velocity sensor at mid-depth and a chain
of temperature sensors. The obtained vertical temperature profiles, which may contain
overturns (areas of locally unstable stratification), are reordered to obtain monotonic,
stable profiles. From the comparison between measured and reordered profiles, the
displacements needed to obtain the latter from the former are calculated, and from these
turbulent dissipation and diffusivity are estimated using semi-empirical laws based on
the work of Thorpe and Osborn [42] (see section 2.5 and [15]). Wind and temperature
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data from the weather stations of Limone del Garda and Toscolano-Maderno were also
considered to check correlation of the measurements with the atmospheric conditions.

The main observations are the following:

• Wind generates circulations, so, while surface currents are directly influenced by it,
currents at mid-depth show a negative correlation. Wind also generates internal
waves, which are observed throughout the year, and whose mutual non-linear
interactions trigger intense local patches of turbulent dissipation and mixing.

• Water heated during the summer initially remains in the surface layers, confined
by the strong stable stratification. During the autumn, northerly winds induce
circulations and internal waves. The warm water from above is able to penetrate
to greater depth; mixing is enhanced where internal waves steepen and break.
The result of this action is the temperature profile in black in Figure 1.6(a): in
subsequent stages, the water column is homogeneized down to limited depths,
leaving a profile that is characterized by many steps and generally less stable than
the one typical of summer.

• Following several days of very low air temperature, a cold current is observed.
Its origin could not be determined in this study, because of the setup: it may
have come from the surface or from the lake sides. The cold current generates
turbulence by shear and because of the presence of unstably stratified regions.
The largest dissipation rates of the year are observed in this situation, and the
temperature in the deepest layers decreases by 0.1◦C in just about one day, as is
clear from Figure 1.6(b). This is the same order of magnitude of the temperature
variations shown in Figure 1.4 for late winter deep mixing events. The result is
the almost homogeneous temperature profile reported in blue in Figure 1.6(a).

1.2.2 Short-term, analyses and simulations

Until recent years, there have been very few 3D hydrodynamic studies of lake Garda;
they are all scenario simulations.

The paper [35] focused on a specific problem related to the sewage collector sys-
tem shared by some towns on the lake. After intense rainfall, there have been events
of sewage ending up in the lake, deteriorating the water quality in some areas to the
point of compromising balneability. Following a spin-up period of 24 h, a 48 h simu-
lation was done with a constant discharge of polluted water from the towns of Garda,
Desenzano, Sirmione and Riva del Garda. Even though extensive verification against
measurements was not possible, the study highlighted areas of the lake where circula-
tions develop, trapping pollutants for a longer period of time and thus with a stronger
negative effect on water quality. It was also observed that under strong winds, that is
with an intense power input feeding turbulent mixing, pollutants released from a deep
underwater pipeline were able to emerge to the surface, diffusing through the thermo-
cline.
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(a) (b)

Figure 1.6: Autumn and late winter temperature profiles (a); time histories of temper-
ature and dissipation during a late-winter mixing event (b) (from [23])

In [6], the effects of wind forcing, Earth rotation and stratification are simulated for
typical winter and summer daily scenarios. The model is one-way coupled: the results
of meteorological simulations are used as boundary conditions for the hydrodynamic
simulations. The lake is modelled as an adiabatic system, i.e. no heat transfer is al-
lowed at the free surface and on the bottom; inflow and outflow are neglected. Vertical
temperature profiles are obtained from measurements, and they show marked seasonal
differences: in summer, the surface temperature is about 24◦C, while in winter it is
about 9◦C; below about 50 m depth, temperature remains close to 8◦C all year round.
The stratification is thus much stronger and more stable in summer, leading to reduced
vertical transport of momentum. Two main scenarios are analyzed, averaging the results
over a day:

• On winter days with Föhn winds blowing from the north-east to the south-west
along the lake’s longitudinal axis, a circulation appears on the vertical longitudinal
plane at the northern trunk centerline: on the surface, currents are driven in
a direction that is slightly deviated to the west with respect to the one of the
wind due to the Coriolis effect, and in deeper layers water moves in the opposite
direction. A secondary circulation develops due to the deviation caused by the
Coriolis force: downwelling is generated at the western shore, and upwelling at
the eastern. Two additional vertical circulations are formed in the southern basin.
No gyres appear on the surface in the averaged velocity field.

• On typical summer days, and on winter days with local breezes, winds are more
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variable in space and time than during Föhn events. In particular, breezes are
more intense and more clearly alternating on summer days than on winter days. In
both cases, a complex surface flow pattern develops, with many gyres in different
regions of the lake. The computation of particle path lines shows two interesting
phenomena: particles released in the littoral area tend to travel farther than the
ones released far from the shore, because the latter get caught up in gyres; time-
averaged depths reached by particles are much larger in the winter scenarios,
consistently with the fact that the stronger summer stratification inhibits vertical
momentum transport.

The effect of Earth’s rotation was investigated in [43], considering in particular
its influence on ventilation (deep mixing) processes. This study refers to year 2017.
Vertical temperature profiles were measured at different stations along a transverse
sections of the northern lake. Hydrodynamic simulations were performed on periods of
4-15 days around strong wind events, distributing a tracer in the hypolymnion at the
initial time and computing the fraction of tracer ending up in the epilimnion at the end
of the simulation. It was shown that the secondary, transverse circulations induced by
the wind and the Coriolis effect were able to ventilate about 4% of the hypolimnetic
volume in four days of sustained wind. The presence of the secondary circulation is also
indicated by field measurements: temperatures in the western part of the considered
cross sections were higher than in the eastern part, consistently with downwelling at
the western shore and upwelling at the eastern. It is claimed that the presented mixing
events were triggered just by wind and Coriolis force, and not by the cooling of surface
water as most often happens, because at the time of the events, early to mid-spring, the
heat flux was positive, entering the lake.

In [37] the focus is on the effects of inflows and outflows, in particolar in the event
of a release of water from river Adige through the Mori-Torbole tunnel. The mod-
elling strategy is different from the previously cited paper: instead of employing a
weather simulation code, data about wind, precipitations and flowrates are gathered
from weather stations; then, precipitations are averaged, the wind field is recovered
by inverse-distance interpolation, flowrates are directly input where measurements are
available and obtained by sampling normal distributions of assigned mean and stan-
dard deviation in all other cases. Simulations are carried out using data from May and
June 2017, thus mainly under the effect of the daily cyclic pattern of Peler and Ora del
Garda winds: we should expect results that are reasonably close to the ones obtained
in the summer scenario of the previous study. It is not straightforward to make this
comparison, due to the way results are presented: daily averages in [6], instantaneous
values in [37]; what can be noted is that surface velocities are at least of the same order
of magnitude, of about 0.1 m/s or less, and that in both cases in the northernmost part
of the lake, where the Mori-Torbole tunnel discharges, particle paths are directed from
the eastern shore to the north, on average. Thus the effect of water flowing from the
tunnel is first felt on the northern shore, in the area of Torbole and Riva del Garda. An
observation of this study is that while the surface flow is mainly affected by the wind,
on the bottom the velocity is mostly south oriented. The authors interpret this as an
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effect of the main (weak) flow from the Sarca inlet to the Mincio outlet. This effect was
not observed in [6], because inflows were not considered: it would be interesting to un-
derstand if and how the main Sarca-Mincio flow interacts with the observed circulation
patterns.

The different modelling choices in the cited articles are compared in Table 1.1.

Lovato et
al.,
2012 [35]

Amadori et al.,
2018 [6]

Marzocchi et
al., 2020 [37]

Model TRIM3D
(FD), hy-
drostatic

DELFT3D (FD),
hydrostatic

TELEMAC3D
(FEM), non-
hydrostatic

Vertical layers 12 61 N.A.

Spin-up time 24 h 48 h 1 month

Wind modelled from weather
simulations

interpolated

Inflows/outflows yes no yes

Stratification yes yes N.A.

Turbulence model N.A. vertical: k − ε,
horizontal:
constant
viscosity

k − ε

Table 1.1: Modelling choices in presents hydrodynamic simulations. FD: finite difference
method, FEM: finite element method, N.A.: not specified in the paper

Up to now, no long-term hydrodynamic simulations of lake Garda have been done.
One was done for lake Maggiore, and it is described in the consecutive studies [12]
and [7]. They start from the consideration that the classical definition of residence time
as the ratio of total basin volume V to yearly volume rate Q through it

τ =
V

Q
(years) (1.1)

is not a very significant quantity. This is because only the mixed layer at the surface
actually participates in water renewal, while the hypolimnion can remain isolated for
long periods of time, as already discussed in section 1.2.1. Also, the topography of the
bottom and wind patterns can generate currents such that some regions of the lake may
mix with the rest of the water mass only to a very limited extent. So, to obtain a better
understanding of lake dynamics it is more appropriate to think of residence time as a
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local quantity, rather than a global one. In [7], particles were released at the mouths
of tributaries (tributary markers) and at different positions in the lake (environmental
markers) and they were tracked for 4 years, a time close to the global residence time
defined by eq. (1.1) and estimated to be 4.1 years for lake Maggiore [49]. The following
conclusions were drawn:

• Environmental markers starting at depths of 100 m or less exited the lake in times
between 1 and 4-5 years.

• Tributary markers exited the lake between 250 and 1000 days from release, depend-
ing on the distance between the mouth of the tributary and the outflow section.
Also, the initial dynamics of such markers depend on the tributary temperature:
markers from colder inflows reached greater depths.

• For the layers at depth greater than 100 m, the residence time is estimated to be
of the order of decades.

The much longer residence time of lake Garda, estimated to be 26.6 years [49], would
make such a study very complicated and computationally expensive. However, studies
on single portions of the lake over shorter time scales may be useful to characterize some
patterns; for example in relation to discharge events from the Mori-Torbole tunnel.

1.2.3 Studies on release from the Adige-Garda tunnel

During the progress of the work on this thesis, an article on the effects of an opening
of the Adige-Garda tunnel was published [22]. This study focused on a routine mainte-
nance opening of the spillway, which happened in early March 2020. Combining satellite
image analysis of suspended particle matter concentration and numerical simulation, it
was found that water from the tunnel first plunges down to some depth due to its den-
sity relative to the stratification, showing no immediate effect on the surface, and then
emerges close to the eastern shore after several hours.
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Chapter 2

Mathematical model

In this chapter, the incompressible Navier-Stokes equations are specialized for free-
surface flow in a rotating frame, with buoyancy effects and averaged turbulent fluc-
tuations. The aim is to provide an understanding of the models used in the project,
starting from basic fluid dynamics and scaling arguments. Possible simplifying choices
are presented and discussed.

2.1 Navier-Stokes equations

The general incompressible Navier-Stokes system is∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ f + µ∇2u

(2.1)

on a 3-dimensional domain. u is the velocity vector (m/s), ρ is the density (kg/m3),
p is the pressure (Pa), f is the volume force vector (N/m3) and µ is the dynamic
viscosity (Pa·s). In the following sections, volume forces and boundary conditions will
be specified, and the relative importance of the terms in the equations will be discussed.

2.2 Rotating frame

For domains that are small compared to the Earth radius, equations (2.1) can be written
on a local tangent plane in a rotating reference frame (this is typically called the f-plane
approximation). To account for rotation, the following non-inertial volume force needs
to be added:

fR = −ρ[Ω× (Ω× r) + 2Ω× u], (2.2)

where Ω is the angular velocity vector of Earth. The first term is the centrifugal force
(see Figure 2.1): it results in a small perturbation to gravity. Its magnitude per unit
mass is Ω2R sin θ ≈ 2.4 · 10−2 m/s2, with Ω ≈ 7.3 · 10−5 rad/s, R ≈ 6.4 · 103 m and
latitude θ ≈ 45◦ for lake Garda. This value amounts to a very small fraction of the
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Figure 2.1: Centrifugal force per unit mass and composition with gravity

magnitude of gravity, and the angle between g and g′ is about 0.1◦: this effect can be
considered negligible.

The second term is the Coriolis force: it acts on moving particles only, and it tends
to deviate their trajectories to the right in the northern emisphere and to the left in the
southern. Taking the x axis positive towards the east, the y axis positive towards the
north and the z axis positive upwards:

− 2Ω× u = −2Ω

cos θ w − sin θ v
sin θ u
− cos θ u

 . (2.3)

This contribution is not negligible for lake Garda: its magnitude relative to the advection
term is given by the inverse of the Rossby number

Ro =
U

fL
, (2.4)

where f = 2Ω sin θ is the Coriolis coefficient and U , L are some suitably defined velocity
and length scales of the problem. A related quantity is the Rossby radius LRo = U/f .
This is the radius of the trajectory of a body subject to the Coriolis force alone, on
the horizontal plane. Horizontal circulations governed by the Coriolis force can develop
only if the geometry and the scale of the domain allow it.1. For lake Garda, typical
speeds are of order 10−1 m/s (or less) and the Coriolis coefficient is of order 10−4, so the
Rossby radius is of the order of 103 m (or less), allowing in principle the development of
horizontal inertial circulations. As observed in previously cited studies [37] and [6], even
when full circulations do not develop, the Coriolis effect markedly deviates wind-driven
currents to the right.

2.3 Incompressibility and buoyancy

Variations of density in a fluid can be caused by different effects: temperature, pressure,
salinity and presence of sediments. Even though variations are present, in many cases

1The Rossby number for flow in a sink, for example, is much too high for the Coriolis force to be
effective: thus, it is not true that water going down the drain rotates in opposite directions in the two
hemispheres because of this effect.
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the incompressible form of the continuity equation ∇ · u = 0 can still be used as a very
good approximation [8, p.167]. The general (compressible) form of the mass conservation
equation is

Dρ

Dt
+ ρ∇ · u = 0. (2.5)

The first term can be rewritten by using a thermodynamic relation p = p(ρ, s), where s
is the entropy per unit volume. Then, by differentiating:

Dp

Dt
=

(
∂p

∂ρ

)
s

Dρ

Dt
+

(
∂p

∂s

)
ρ

Ds

Dt
= c2Dρ

Dt
+

(
∂p

∂s

)
ρ

Ds

Dt
, (2.6)

where c is the speed of sound. Equation (2.5) becomes

∇ · u =
1

ρc2

(
∂p

∂s

)
ρ

Ds

Dt
− 1

ρc2

Dp

Dt
. (2.7)

We will now estimate the ratio of the orders of magnitude of the right hand side terms
to the left hand side, the latter being of order U/L. U and L are, again, reference values
of velocity and length that are relevant to the problem; unless otherwise specified, we
will take U ∼ 10−1 m/s, coherent with the velocities found in previous studies on the
lake, and L ∼ 102 m as an order of magnitude of the average depth. For the entropy
part, a balance can be written [8, p. 156]:

T
Ds

Dt
= Υ +

1

ρ
∇ · q, (2.8)

which translates the fact that entropy is produced by viscous dissipation Υ and ex-
changed by heat transfer. We also have, by thermodynamic relations,

1

ρc2

(
∂p

∂s

)
ρ

=
βTT

cP
, (2.9)

where βT is the coefficient of thermal expansion at constant pressure:

βT = −1

ρ

(
∂ρ

∂T

)
p

. (2.10)

Then the first term on the right hand side of (2.7) can be shown to be formed by two
parts:

• A part due to viscous dissipation, whose ratio to ∇ · u is of order

βTµU

cPρL
∼ 10−6

by using the thermodynamic properties of water.
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• A part due to thermal effects, whose ratio to ∇ · u is of order

βTκ∆T

UL
∼ 10−10,

where κ is the thermal diffusivity κ = k/(ρcp), k the thermal conductivity and
∆T ∼ 10 K is the order of magnitude of expected temperature variations.

For the isoentropic part, the convective derivative of pressure can be written exploit-
ing the momentum conservation equation. Taking the scalar product of such equation
by u and using the definition of convective derivative for p, we have

Dp

Dt
=
∂p

∂t
− ρ

2

Du2

Dt
+ f · u + µ∇2u · u. (2.11)

• The first two terms, unsteadiness and kinetic energy transport, are negligible when
the Mach number

Ma =
U

c
, (2.12)

ratio of typical flow speed to the speed of sound in the fluid, is much less than
one, which is certainly the case since the speed of sound in water is c ≈ 1500 m/s
in standard conditions.

• The term due to volume forces is mainly due to gravity and its magnitude relative
to the divergence of velocity is

gH

c2
∼ 10−3

where H is the maximum depth, about 300 m. The ratio can be recast as

gH

c2
=
gH

U2

U2

c2
=

Ma2

Fr2 , Fr =
U√
gH

, (2.13)

where Fr is the Froude number, an important quantity in hydraulics: in the shallow
water approximation,

√
gH is the speed of gravity waves. In shallow water flow Fr

plays the same role as Ma in compressible gas flow: both are ratios of flow speed
to the speed of propagation of information; hydraulic jumps are the analogous
phenomenon to shock waves.

• The viscous term is of order
Ma2

Re
relative to the divergence term. Re is the Reynolds number

Re =
UL

ν
. (2.14)

With U ∼ 10−1 m/s and c ≈ 1500 m/s as above, Ma ∼ 10−4. Concerning Re, for
an order of magnitude estimate we may take L as the average depth: L ∼ 102 m,
U ∼ 10−1 m/s, ν ∼ 10−6 m2/s, so that Re ∼ 107. The ratio Ma2/Re is thus
certainly negligible.
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The evolution of density, which as just seen will not influence the mass conservation
equation in our case, can be taken into account using a linearized equation of state [59, p.
73]:

ρ = ρ0 + ∆ρ = ρ0

[
1 +

1

ρ0c2
(p− p0)− βT (T − T0) + βC(C − C0) + . . .

]
, (2.15)

where C is salinity (concentration). The order of magnitude of the density variation
due to hydrostatic pressure can be estimated, for the lake, by considering ∆ph ≈ ρ0gH,
which leads to ∆ρp/ρ0 = gH/c2 ∼ 10−3. This effect can thus be considered negligible.
On the other hand, the effect of temperature will depend strongly on local gradients
that may develop for instance close to inflow boundaries or at the free surface, so it
will need to be considered; moreover, this is a driving effect for intrusions (see section
2.9), an important feature for the numerical simulations considered in this thesis. More
general, non-linear laws can be used for the temperature dependence, since water density
reaches a maximum at about 4◦C. As a first approximation, we may neglect the action
of salinity: as reported in [23], it accounts for about 15% of the total density variations
in lake Garda, the primary effect being the thermal one.

Having defined ρ = ρ0 + ∆ρ as above, the Boussinesq approximation can be applied
to the momentum equation: density variations are neglected everywhere, except where
they are multiplied by the gravitational field. The resulting equation, with explicit
volume forces including the Coriolis contribution, is

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p− ρ0 + ∆ρ

ρ0
gk− 2Ω× u + ν∇2u, (2.16)

where k is the vertical upward unit vector.

2.4 Energy equation

For an incompressible flow with constant density, the energy equation is uncoupled
from the mass and momentum conservation equations. In our case we do allow density
variations, which, as described above, are mainly caused by temperature variations,
so the energy equation needs to be taken into account. When the effect of viscous
dissipation is neglected, and when the height scales of interest are much smaller than
cp/(βT g) ∼ 106 m [59, p. 29], the balance of internal energy for an incompressible flow
can be written as:

ρcP
DT

Dt
−∇ · (k∇T ) = qs. (2.17)

This is an advection-diffusion equation, with a distributed source term qs. It has the
same form as any evolution equation for a tracer in the fluid, e.g. salinity or in general
concentration of some advected scalar.

Boundary conditions must be specified to solve the equation. For temperature, the
heat flux at the free surface can be imposed as:

− k∇T · n = A(T − Tair) (2.18)

19



Conduction in the fluid matches convection, radiation and latent heat of evaporation;
the latter phenomena are modelled through coefficient A, which depends on water tem-
perature at the surface T and wind velocity uwind. This is a major simplification of
actually quite complex phenomena.

2.5 Turbulence

The flow field in a lake is typically characterized by length and velocity scales such
that turbulence can arise. Turbulence influences effective transport properties greatly,
thus it is important to take it into account properly. The main feature of turbulence is
the presence of structures (often called eddies) of different lengthscales interacting with
each other. Physically, the interactions can be interpreted in terms of vortex dynamics;
mathematically, they are explained by the presence of the non-linear advection term in
the equations. In this process, kinetic energy provided to the flow at large scale (e.g.
by wind forcing) is transferred to smaller structures and dissipated at small scales: this
is known as the inertial cascade. Large eddies can have dimensions of the order of the
length scale of the domain (L) and are influenced by the domain shape, so they can be
highly anisotropic. In the cascade process, anisotropy is reduced, and if the Reynolds
number (defined in eq. (2.14)) is large enough, then small scales can be considered
isotropic [46]. By dimensional analysis, in the hypothesis of homogeneous isotropic
turbulence, it can be shown that the sizes of large (L) and small, dissipation structures
(η) satisfy

η ∼ Re−3/4L (2.19)

For Lake Garda, Re was already estimated to be of order 107, so η ∼ 10−3 m. It is clear
that not only it would be computationally unfeasible to resolve such small structures; it
would also be quite useless, for our purpose, to obtain information about the flow with
such precision.

The most common procedure is then to use the unsteady Reynolds-averaged equa-
tions (URANS) in place of the Navier-Stokes equations. The flow variables are decom-
posed into a mean part u and a zero-mean fluctuating part u′ (and analogously for
pressure and tracers), and then averaged. For the unsteady form, the interpretation
of the averaging process is quite tricky, because in general there might not be a clear
separation of temporal scales between mean flow and turbulence. As observed in [27],
such a separation exists for atmosphere dynamics: the typical power spectrum of wind
shows a gap between about 10 minutes and 2 hours2, so that URANS averaging can
be interpreted, for instance, as a running average with a width of about one hour; but
no such separation exists in general for hydrodynamic systems. In this case URANS
equations are best viewed as the result of ensemble averaging, assuming that turbulent
fluctuations are a random perturbation to a repeatable mean field that is the solution
of the equations.

2This is known as the van der Hoven spectral gap.
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The result is a system of equations that is not closed: the Reynolds stresses, terms
of the form

R = −ρu′ ⊗ u′ (2.20)

appear; these terms cannot be written in general as functions of the flow variables
or their derivatives. A strategy for closing the system is based on the Boussinesq
hypothesis [44, p. 93]: the deviatoric part of the Reynolds stresses is approximated as

R− 1

3
Tr(R)I = ρνT (∇u +∇uT ) = 2ρνTD, (2.21)

where νT is a turbulent viscosity, to be specified or calculated in each point according to
some model (to be discussed later), and D is the symmetric part of the velocity gradient.
This closure is analogous to the Newtonian constitutive law for viscous stresses, but it
has no general justification, and as a matter of fact it is often not verified, even in
simple flows. The reason it is not justified is that the physical processes that determine
Reynolds stresses, that are the presence and evolution of turbulent structures, are not
analogous to the ones that determine viscous stresses, that are related to intermolecular
interactions [44, p. 359]. In particular:

• in a continuum, molecular phenomena happen at length and time scales that are
much smaller than the ones of the flow. Then the hypothesis of local equilibrium,
needed to assume that viscosity in a point depends only on local quantities, holds.
In contrast, there is no separation of scales between turbulence and the mean flow.
Large turbulent eddies may have sizes of the order of the scales of the mean flow.
Turbulence is thus not local, so it is not true in general that νt should depend on
local quantities only;

• the anisotropy of viscous stresses is very small, in the sense that the ratio of
anisotropic to isotropic molecular stress τ/p is typically a very small quantity, so
it is reasonable to assume that it depends linearly on the velocity gradients. On
the other hand, the ratio of anisotropic to isotropic Reynolds stresses is often not
negligible, so the assumption of a linear law is questionable.

Despite the fact that it is hardly justifiable, this model is the most commonly adopted
and works acceptably in many cases. For stratified flow, however, usually at least
anisotropy is assumed, defining two different values of viscosity for the horizontal and
vertical directions. In equation (2.21) the scalar νT is then substituted by a diagonal
tensor

νT =

νT,h 0 0
0 νT,h 0
0 0 νT,v

 (2.22)

where νT,h is the turbulent viscosity in the horizontal direction and νT,v the one in the
vertical direction.

The trace of R is connected to the kinetic energy of the fluctuations, known as the
turbulent kinetic energy k:

Tr(R) = ρ(u′2 + v′2 + w′2) = 2k, (2.23)
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so that the averaged momentum equation becomes

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇
(
p+

2

3
k

)
− ρ

ρ0
gk− 2Ω× u + (ν + νT )∆u. (2.24)

The same averaging process must be applied to the advection-diffusion equations for
the tracers, that are in general in the form

∂T

∂t
+ u · ∇T −∇ · (λ∇T ) = q. (2.25)

u is decomposed as above, T is decomposed as T + T ′; then the equation is averaged.
Fluctuations have zero average by definition, so the result is

∂T

∂t
+ u · ∇T +∇ · u′T ′ −∇ · (λ∇T ) = q. (2.26)

This equation is not closed due to the presence of the flux vector u′T ′, derived from the
advection term. The idea is that the effect of turbulence on tracers is to enhance their
effective diffusion by advection due to fluctuations; in the gradient-diffusion hypothesis,
the scalar flux is modelled as

u′T ′ = −λT∇T , (2.27)

and the equation becomes

∂T

∂t
+ u · ∇T −∇ · [(λ+ λT )∇T ] = q, (2.28)

where λT is the turbulent diffusion coefficient, which is usually taken to be proportional
to turbulent viscosity: λT = νT /σ, with σ the Prandtl number, usually taken as a
constant3. Just as the Boussinesq hypothesis, the gradient-diffusion hypothesis is not
true in general, but it is the most common and leads to an equation that has the same
form as the original one.

Turbulence in flows with density stratification is an active research field, with large
uncertaintites and controversies, as reported in the recent review [13]. Some under-
standing of its basic features can be gained by inspecting the turbulent kinetic energy
equation as in the paper by Osborn [42]. Such equation is derived by multiplying the
URANS momentum equation (without the Boussinesq approximation) by u′ and aver-
aging. In the steady state case, the leading terms in the result satisfy

− u′iu′j
∂ui
∂xj

= ε+
w′ρ′g

ρ0
. (2.29)

The term on the left hand side is the production of turbulent kinetic energy: it shows
that a non-zero mean shear generates turbulence. In neutrally or stably stratified con-
ditions, as we shall see, this is the only source of turbulent kinetic energy, so in such

3In Telemac, the constant is by default 1 [2].
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a condition if the flow were uniform turbulence would be damped. The first term on
the right hand side is loss by dissipation; the last term is the work of buoyancy forces.
Defining the Richardson number Ri as the ratio of loss to buoyancy to production

Ri =
g

ρ0

w′ρ′

u′iu
′
j

∂ui
∂xj

, (2.30)

it is clear that no steady state is possible for Ri > 1, since the viscous dissipation ε is
always positive. This means that buoyancy forces can dampen turbulent fluctuations;
in other words, part of the turbulent kinetic energy can be converted into gravitational
potential energy. This happens in presence of a stable stratification, while in an unsta-
ble one potential energy is converted into kinetic energy. The reason lies in the global
action of turbulence, that is of mixing, homogenizing: it tends to smooth out temper-
ature profiles [26, p. 274]. A stable temperature profile has lower density water above
higher density water, so the center of gravity of water in a basin with such stratifica-
tion generally lies below4 the half-depth, which would be its position if the temperature
profile were homogeneous. To homogenize the profile, the total potential energy of the
water mass must increase: the required energy comes from the turbulent kinetic energy.
The physical picture is that turbulent eddies will, on average, carry denser water up-
wards and less dense water downwards. Conversely, an unstably stratified water mass
has higher center of gravity than an homogeneous one, so potential energy is converted
into turbulent kinetic energy, producing intense dissipation rates like the ones observed
in [23].

Going back to the equations, using the gradient diffusion hypothesis on w′ρ′ and the
Boussinesq hypothesis on u′iu

′
j , if the Prandtl number is taken as ∼ 1, the Richardson

number can be approximated as

Ri = − g

ρ0

∂ρ

∂z
DijDij

, (2.31)

which shows that Ri is positive when the background (mean) density profile is decreasing
upwards, that is, in presence of stable stratification. In this last expression, the buoyancy
frequency or Brunt-Väisälä frequency, N , can be recognized:

N2 = − g

ρ0

∂ρ

∂z
. (2.32)

In a stable stratification, N is the frequency of vertical oscillation of particles displaced
from their equilibrium position. This quantity is important because it is an upper bound
to the frequencies of internal waves. In an unstable stratification, the trajectory of a
particle displaced from its equilibrium position would diverge, and N is undefined.

4This is true in most cases, though for particular situations the effect of thermal expansion may
produce a different result.
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Osborn’s paper has been very influential in experimental studies [15]: it provides
a simple way to estimate diffusivity from dissipation measurements. It starts from
noticing that experimental results indicate the value 0.15 as a maximum Richardson
number for steady state to be possible. From this, by defining the vertical diffusivity
Kρ and rearranging eq. (2.30), we have

Kρ = −w
′ρ′

∂ρ

∂z

=
Ri

1− Ri

ε

N2
≤ 0.2

ε

N2
. (2.33)

ε and N can be estimated by measuring the thermal profile: the latter from its def-
inition, the former using empirical relations. It has become common in experimental
studies to replace the last inequality with an equality. This approach has been debated
because it relies on the hypothesis of steady state conditions, which very seldom occur
in practice: turbulence in environmental flows is mostly patchy and intermittent, as
opposed to uniform and constant. Moreover, the model does not tend to the molecu-
lar diffusion coefficient as a limit for vanishing turbulent dissipation. Direct numerical
simulations (DNS) also reported in [29] show, indeed, that using Osborn’s parametriza-
tion gives a very good approximation of Kρ for intermediate turbulent intensity, but it
underestimates it for vanishing intensity, and overestimates it for high intensity. A dis-
cussion is ongoing [13] about the way patches of turbulence can be created by different
model instabilities, and about possible ways of distinguishing stirring from actual mix-
ing. Stirring is the production of small structures (or correspondingly high gradients)
in the flow, that is a non-viscous phenomenon and is in general reversible, while mixing
is the consequent viscous homogeneization, that is irreversible.

A remark about notation: from now on, where there is no ambiguity the overline
will be omitted when writing average (mean flow) quantities.

2.5.1 Turbulence models

The possible modelling choices for the turbulent viscosity νt are now discussed.
The simplest choice is taking a constant value, which is usually determined by cal-

ibration with measured data. This is sometimes done for large-scale oceanic problems
and, when anisotropy due to stratification is concerned, usually a constant value is taken
for the horizontal viscosity νT,h while a variable value is calculated for the vertical vis-
cosity νT,v, with one of the models described in the following.

A common algebraic model is Prandtl’s mixing length, based on writing the turbu-
lent viscosity, that has dimensions L2/T , as the product νT = Lmu

∗. Lm is interpreted
as the mixing length, that is the length along which eddies act in mixing momentum;
u∗ is a characteristic eddy velocity. In plane channel flow, with wall-normal coordinate
z, the model specification is

Lm(z) = κz, u∗ = Lm

∣∣∣∣∂u∂z
∣∣∣∣ (2.34)
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where κ is the von Karman constant, normally taken in the interval 0.38-0.41 depending
on authors5, so that the full expression is

νT = L2
m

∣∣∣∣∂u∂z
∣∣∣∣ . (2.35)

Some corrections and extensions from channel flow to general 3D flows are due:

• the expression for Lm holds in the logarithmic part of the boundary layer (de-
scribed in section 2.7). When wind is acting on the free surface, a boundary layer
appears at the surface, in addition to the one at the bottom [56]. To model this
situation properly, a logarithmic velocity profile should appear in both boundary
layers; so, close to the surface, the mixing length should behave as

Lm(z) ≈ κ(s− z), (2.36)

where s is the local elevation of the free surface, and close to the bottom it should
behave as

Lm(z) ≈ κz. (2.37)

In Telemac, two laws that produce a behaviour of this kind are implemented [2, p.
33]: Quetin’s law

Lm(z) =
1

1

κz
+

1

0.65(s− z)

(2.38)

and Tsanis’s law:

Lm(z) =


κz, z ≤ 0.2 s

0.2κz, 0.2 s ≤ z ≤ 0.8 s

κ(s− z), z ≥ 0.8 s;

(2.39)

• z needs to be substituted with the distance of each point from the wall, which
may not be horizontal in the general case. In place of |∂u/∂y|,

√
2DijDij is used;

• in presence of stratification, that as discussed before is a situation in which vertical
motions can be damped, the vertical viscosity needs to be corrected. We call the
vertical viscosity νT,v as in equation (2.22) and define it by correction of the base
turbulent viscosity νT as follows:

νT,v = f(Ri) νT,h = f(Ri) νT , (2.40)

where f(Ri) is a damping function that tends to zero for large positive Ri (strong
stable stratification, almost no vertical momentum flux), is equal to 1 for Ri = 0

5There is no general agreement on the value of κ: as a matter of fact there is not even agreement on
whether it is a universal constant or a flow-dependent value [36].
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(neutral stratification) and takes large values for negative Ri (unstable stratifi-
cation, enhanced vertical mixing). For example, the Munk-Anderson damping
function implemented in Telemac6 is of the form

f(Ri) = (1 + aRi)b. (2.41)

As shown in [24], in spite of being just a simple empirical law, this formulation
is able to predict the formation of the thermocline under the combined effect
of wind stress and heat input. Essentially, when the heat flux at the surface
is greater than a certain threshold, heat cannot be uniformly distributed in the
water column; this is ultimately due to the presence of a maximum diffusivity
value µmax for temperature, which occurs at a critical Richardson number Ri*. A
Poisson equation for Ri can be derived, and the corresponding diffusion coefficient
is negative for Ri>Ri*, implying that a peak forms: this is the thermocline.

The mixing length model relies on the hypothesis of local equilibrium [46]: the turbulent
viscosity is calculated simply from the local gradient of the mean velocity, and effects
of unsteadiness and advection of turbulent structures by the mean flow are neglected.
This means, for instance, that turbulent structures generated by a grid and advected
downstream are not taken into account.

A different approach to the mixing length idea is Smagorinsky’s model: it considers
as mixing length some measure of grid element size. The rationale behind this is that
using larger elements means being unable to resolve larger eddies; thus the coarser the
grid, the larger the value of turbulent viscosity that needs to be considered to model
the flow features that cannot be represented on the grid. This model was first used by
Smagorinsky for numerical simulation of atmosphere dynamics [52, p. 105].

Better accuracy can be achieved with 2-equation models, in which additional PDEs
are added to the system to compute the evolution of turbulent quantities from which
turbulent viscosity is obtained. In this case, since essentially advection-diffusion equa-
tions are solved, non-local effects can be taken into account to some extent. The most
popular model is the k− ε, where the computed quantities are turbulent kinetic energy
k as defined in equation (2.23) and its dissipation

ε = 2ν
∂u′i
∂xj

∂u′i
∂xj

. (2.42)

This is actually what is called pseudo-dissipation, but the two can be shown to be
practically equivalent [44, p.132]. Dimensional arguments yield

νt = Cµ
k2

ε
, (2.43)

where Cµ is one of many model coefficients, which are tuned by requiring that the
model behaves well on basic test cases (turbulence downstream of a grid, that is a good

6http://docs.opentelemac.org/dricv 8f source.html
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experimentally feasible approximation of homogeneous isotropic turbulence, and shear
flow). Equations for the exact evolution of k and ε can be obtained from the Navier-
Stokes equations, but they are not closed, because they contain higher order moments
of velocity; the equation for dissipation is particularly troublesome, because it contains
terms that would be very hard to interpret and model individually. The choice is then
to close the exact equation for k using the gradient diffusion hypothesis and to rewrite
completely the equation for ε, in such a way that it takes the same form as the one
for k, with additional model coefficients to be tuned. The result are two additional
advection-diffusion equations with production and destruction terms: k and ε behave
as active tracers, meaning that they influence the flow and are influenced by it. The
buoyancy term is already embedded in the k− ε equations, so no correction in the form
of damping functions is needed.

2.6 Free surface

In the case of free surface flow, the surface elevation becomes an additional unknown:
the domain changes in time, and its evolution is coupled with the evolution of other flow
variables. At first glance, for the case of a whole lake it may seem like an unnecessary
complication to bother calculating the motion of the free surface: there are no tidal
phenomena to be described, and the wavelengths of most waves are much smaller than
any reasonable grid size, so there is no possibility, nor necessity, of resolving them.
Actually, though, the free surface displacement, and in particular its inclination, is
important for the development of wind-induced currents: wind blowing over the surface
will tend to accumulate surface water downwind; but if the basin is closed, the total
mass flux on any cross section must be zero in steady conditions. What happens is
that, under the action of wind, the water level lowers upwind and rises downwind. This
tilting of the surface creates an hydrostatic pressure gradient: at any fixed elevation,
hydrostatic pressure is greater upwind than downwind. The effect of the wind shear
stress is damped with depth by viscosity, so that below a certain depth the hydrostatic
pressure gradient dominates on it and water moves in the direction opposite to that
at the surface, making a closed circulation possible. A detailed description of this
phenomenon and analytical solutions are developed in [26].

Since a new unknown appears, an additional equation should be written. There are
many possible choices; the one implemented in Telemac is presented here [30]. This
formulation is based on integrating the differential form of the continuity equation from
the bottom z = B(x, y) to the free surface z = S(x, y, t). This guarantees that mass
conservation is enforced. It should be noted that no time dependence is present in the
equation for the bottom surface, meaning that it is assumed that any variation due
to sediment transport happens on time scales much longer than the ones of the flow.
Another important point is that, since the free surface is described by a single-valued
function, the model is not capable of describing some flow features such as breaking
waves: see Figure 2.2 for an example.
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Figure 2.2: Surface shapes that can (above) and cannot (below) be represented by a
single-valued function S(x, y, t)

The starting point is the integration of the continuity equation:∫ S(x,y,t)

B(x,y)

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0. (2.44)

Integrals and derivatives can be interchanged by using the Leibniz theorem for the u
and v terms, and the fundamental theorem of calculus for the w term. The result is

∂

∂x

∫ S(x,y,t)

B(x,y)
u dz +

∂

∂y

∫ S(x,y,t)

B(x,y)
v dz

+ub
∂B

∂x
+ vb

∂B

∂y
− wb

−
(
us
∂S

∂x
+ vs

∂S

∂y
− ws

)
= 0, (2.45)

where us = (us, vs, ws) is the velocity at the surface and ub = (ub, vb, wb) is the one at
the bottom.

On the bottom, the impermeability condition has to be enforced:

ub · n = 0, (2.46)

where n can be defined as the vector product of two independent vectors tangent to the
surface z = B(x, y):

n =

(
1, 0,

∂B

∂x

)
×
(

1,
∂B

∂y
, 0

)
=

(
−∂B
∂x

,−∂B
∂y

, 1

)
. (2.47)

The condition can then be written as

ub
∂B

∂x
+ vb

∂B

∂y
− wb = 0, (2.48)

thus eliminating the second row of equation (2.45).
On the free surface, an analogous condition has to be enforced, taking into account

that the boundary is moving with a velocity vs:

us · n = vs · n. (2.49)
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n can be defined as the vector product of two independent vectors tangent to the surface
z = S(x, y, t):

n =

(
1, 0,

∂S

∂x

)
×
(

1,
∂S

∂y
, 0

)
=

(
−∂S
∂x

,−∂S
∂y
, 1

)
, (2.50)

and

vs =

(
0, 0,

∂S

∂t

)
. (2.51)

The result is

− us
∂S

∂x
− vs

∂S

∂y
+ ws =

∂S

∂t
, (2.52)

which substituted in equation (2.45), whose second row is zero because of the bottom
boundary condition, yields

∂S

∂t
+

∂

∂x

∫ S(x,y,t)

B(x,y)
u dz +

∂

∂y

∫ S(x,y,t)

B(x,y)
v dz = 0. (2.53)

The same result could be obtained by a volume balance on a region Ω: the time
variation of water volume is ∫

Ω

∂S

∂t
dA, (2.54)

that must be balanced by a boundary flow∮
∂Ω

U · n dl (2.55)

with

U =

∫ S

B
u dz. (2.56)

By using the divergence theorem, the equation can be put into differential form as

∂S

∂t
+∇ ·U = 0, (2.57)

which is the form obtained above.

2.7 Boundary conditions

Impermeability kinematic conditions are enforced at the bottom and at the free surface
in the forms of equations (2.48) and (2.52). In addition, the wind stress should be
imposed at the surface, and the no-slip condition at the bottom. However, the no-slip
condition implies a correct value of the bottom shear stress only if the first node away
from the boundary is inside the viscous sublayer of the turbulent boundary layer. To
understand why it is so, the main results for turbulent boundary layers are recalled.

The mean velocity profile close to a wall and its relation with wall shear stress in
a turbulent flow can be determined by dimensional analysis [16, p. 137]. The idea is
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Figure 2.3: Viscous, turbulent and combined stress for channel flow, channel width δ;
dashed line, Re=5,600; solid line, Re=17,500; from [44]

that the flow close to the wall is not influenced by the outer flow, so that the outer
velocity and length scales do not appear in the expression of the near-wall velocity
profile: in their place, the wall scaling velocity uτ =

√
τw/ρ and length δν = ν/uτ must

appear. By considering proper limits of the general expression, it can be proved that the
profile is linear close to the wall (viscous layer) and logarithmic in an intermediate layer
(inertial, or logarithmic layer). To obtain a correct representatiom of the wall shear
stress automatically in the momentum equation by imposing the no-slip condition, the
first node away from the wall should then be inside the viscous sublayer. There are
two observations worth pointing out. The first is that the obtained velocity profile
can be considered universal when expressed in wall units: velocity scaled with uτ and
non-dimensional distance from the wall y+ = y/δν . The second is that the ratio of the
outer lengthscale to the wall lengthscale L/δν grows with Re: at high Re, it becomes
computationally expensive to resolve the velocity profile, because it would require very
small elements in the boundary layer. But, since the near-wall velocity profile can be
considered universal, it can be modeled instead of calculated, so that the first grid point
away from the wall can be in the logarithmic layer, at maybe y+ ≈ 50, instead of at
about y+ = 1; and the stress can be directly imposed, instead of using the no-slip
condition. This is known as the wall function or high Reynolds approach.

Following the above discussion, the shear vector τ is imposed on both the bottom
and the free surface:

ρ(ν + νT )
∂u

∂n
= τ , (2.58)

meaning that the stress on the boundary must match the total (viscous and turbulent)
stress in the fluid. The reason why this is a good approximation can be seen in Figure
2.3: the total stress is linear, so, if the first grid points are close enough to the wall,
the calculated total stress is approximately equal to the viscous stress at the wall. The
figure refers to channel flow, but this behaviour is characteristic of boundary layers in
general. On the bottom, the condition is determined by the features of the turbulent
boundary layer, influenced by the wall roughness; on the surface, it describes the effect
of wind.

We start dealing with the bottom. In this case, the wall function approach leads to
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the adoption of an iterative scheme, since the velocity profile is given in terms of the
wall scales, which in turn depend on the solution through τw. In Telemac3D, the model
mean flow profile is given by the Reichard law [2, p. 38]

u(y)

uτ
=

1

κ
log(1 + κy+) + 7.8

(
1− e−y+/11

)
− y+

11
e−0.33y+ . (2.59)

In this equation, u(y) is known from the solution, y depends on the grid and ν is known:
the only unknown is uτ , which appears on both sides and can be determined iteratively;
then the wall stress is recovered as

τw = ρu2
τ . (2.60)

What has been discussed up to now holds for hydraulically smooth flow, meaning that
the length scale of the roughness elements is much smaller than the viscous layer thick-
ness, so that the effect of roughness can be neglected. When this is not true, and in
particular when the roughness scale ks is large in wall units (k+

s � 1), the Reynolds
number relative to the roughness elements ksuτ/ν becomes large: in the interaction
with the wall, inertial effects dominate over viscous effects, so the dependence on ν is
lost and δν is no more a relevant quantity. The only relevant length scale is then ks,
and the corresponding law for the mean flow in the hydraulically rough case becomes

u(y)

uτ
=

1

κ
log

(
y

ks

)
+ 8.5 . (2.61)

In this case there is no need of using an iterative scheme: uτ can be obtained simply by
inverting the equation. In alternative, a classical choice is to use empirical friction laws
based on the depth-averaged velocity components. The stress is written as

τ = −1

2
ρCf ‖u2D‖u2D, (2.62)

where u2D is the depth-averaged velocity and Cf depends on depth and roughness size
through empirical laws, different choices of which are possible (e.g. Chezy and Manning
laws, see [2, p. 39]).

The wind-surface interaction is quite a complex phenomenon [53, p. 157]. Let us
consider wind blowing over an initially flat surface: because of the presence of turbulent
eddies in the wind, different portions of the surface will be subjected to higher or lower
pressure. This will cause the formation of irregularly shaped waves: the surface will
tend to move downwards in the high pressure regions, and upwards in the low pressure
ones. Now the wind is no more blowing over a flat surface, but over a surface with a
distinct roughness, which is determined by the wind itself; and the presence of roughness
will modify the airflow, and in particular the shear stress exchanged at the air-water
interface. It would be complicated to model such phenomena in detail, so empirical
models are usually employed. In general, the stress is written as

τ = ρaircduwinduwind, (2.63)
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where the coefficient cd is provided by empirical laws as function of uwind; a number
of them are available, in the form of piecewise constant, piecewise linear, power-law,
exponential functions, and more. A selection of models is reported in Figure 2.4 (data
from [11]).

0 5 10 15 20 25
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

w (m/s)

c
d

Wilson 1960

Wu 1967

Flather 1976

Wu 1980

Figure 2.4: Some empirical laws for wind coefficient cd

The law implemented in Telemac3D is [2, p. 12]

cd =


0.565 · 10−3 uwind ≤ 5m/s

(−0.12 + 0.137uwind) · 10−3 5m/s ≤ uwind ≤ 19.22m/s

2.513 · 10−3 uwind ≥ 19.22m/s

(2.64)

2.8 Hydrostatic approximation

A common approximation adopted in free-surface hydrodynamics studies is to substitute
the vertical component of the momentum equation with an hydrostatic equilibrium
equation:

∂p

∂z
= −ρg. (2.65)

To understand in which cases this is reasonable, the non-dimensional form of the vertical
momentum equation can be examined [30, p. 19]:

H

L

W

U

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

)
+
W 2

U2
w
∂w

∂z

=− ∂p

∂z
− gH

U2

ρ

ρ0
+
fHH

U
u+

νH
LU

H

L

W

U

(
∂2w

∂x2
+
∂2w

∂y2

)
+
νV
LU

∂2w

∂z2
,
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where L and H are the horizontal and vertical lengthscales, U and W are the horizontal
and vertical velocity scales, fH is the horizontal Coriolis coefficient and νH and νV are
the horizontal and vertical effective kinematic viscosities (molecular and turbulent). For
the hydrostatic approximation to be acceptable, the coefficients of all terms except the
ones in equation (2.65) must be negligible, say at most of order 10−1. While this is true
for the vertical Coriolis term, that can be considered a small perturbation to gravity, and
for the viscous terms, which are scaled by Reynolds number that are assumed to be large,
it is hardly justifiable for the advection terms in the case of lake Garda: the northern
part of the lake is narrow, about 3.5 km wide on average, and deep, reaching about 350
m. We are evidently at the limit of applicability of the hydrostatic approximation, and
maybe beyond it if we consider local regions of steep bottom where both ratios H/L
and W/H cannot be considered negligible: as shown in Figure 2.5, in the northern part
of the lake the bed descends very steeply close to the coastline and then becomes almost
flat near the center.

Figure 2.5: A portion of bathymetry in the northern lake

In addition employing the approximation would imply losing the ability to simulate
buoyancy effects correctly. This is shown for instance in the lock exchange test case
presented in [30, p.143]. This case consists of two volumes of fluid of different density
initially separated by a vertical wall; the wall is then removed. This can be considered
a simple model of local phenomena arising when cold water enters the lake and starts
sinking. The result is that the shape of the interface between the two fluids changes when
using the hydrostatic model instead of the non-hydrostatic one, and, more importantly
for tracer transport, vertical velocities differ greatly, as shown in Figure 2.6. For all these
reasons, for lake Garda the hydrostatic model does not seem to be a good approximation,
especially when concerned with vertical circulations.

Even though the hydrostatic approximation cannot be used, it can still be conve-
nient to split pressure into an hydrostatic part and a dynamic part. The former is due
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Figure 2.6: Lock exchange test case: velocity vectors for the non-hydrostatic (left) and
hydrostatic (right) model; the solid line is the interface. From [30]

to the weight of the column of fluid above a point (possibly taking into account also
atmospheric pressure), and it is the solution of equation (2.65); the latter can be inter-
preted mathematically as the lagrangian multiplier needed to enforce incompressibility.
We can write

p = phyd + pdyn (2.66)

and

phyd(x, y, z, t) = patm(x, y, t) +

∫ S(x,y)

z
ρg dζ

= patm(x, y, t) + ρ0g(S(x, y)− z) +

∫ S(x,y)

z
∆ρ g dζ.

(2.67)

Then, the hydrostatic pressure gradient terms can be treated as source terms in the mo-
mentum equations, being split from the dynamic pressure, which remains an unknown.
This splitting is exploited in the numerical scheme discussed in the next chapter; more-
over, the treatment of horizontal hydrostatic pressure gradients on the mesh is not
trivial: it can lead to dramatic errors if not handled properly, as will be discussed in
section 4.3.

2.9 Analytical treatment of intrusions

When water from a river or a channel enters a lake or the sea, it propagates as a
current. After a possible initial jet-like behaviour, in which the flow is driven by inertia
and influenced by viscous or turbulent effects depending on the regime, the current’s
behaviour will be mostly driven by hydrostatic pressure differences due to the density
difference between the inflowing water and the ambient.
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The aim of this section is to present an analytical model for currents in stratified
flow. This presentation is based on the 1968 paper by Benjamin [9] and the 2009 book
by Ungarish [58], but the derivation proposed here differs from these references: we
consider the limit of depth much larger than current thickness. To be able to compute
such limit, an assumption about the downstream velocity profile has to be changed with
respect to the one adopted in the references above: this point will be clarified later.

Currents that are characterized by a density difference with the ambient are classified
into gravity currents and intrusions:

• Gravity currents have a density that is greater than the largest one in the ambient
or less than the smallest one, so they propagate along the bottom or along the
surface;

• Intrusions have an intermediate density, so they propagate at intermediate depths,
without interfering with the bottom or the surface.

The scenario simulated in this thesis is classifiable as an intrusion. The results of this
chapter are specialized to intrusions. The driving force in both cases is given by the
hydrostatic pressure difference between the inside and the outside of the current.

x

z

H

h(x)

ρc

ρa(z)

xFA

B C

D

uF

uL(z)

Figure 2.7: Half-domain schematic for the derivation. The reference system is attached
to the front.

Consider an intrusion propagating in a stratified ambient. Figure 2.7 shows the half
domain, assuming geometrical symmetry around z = 0. For the derivation, consider a
reference frame attached to the front. In this reference frame, the ambient fluid travels
towards the front, whose position is xF , with velocity uF . Just downstream of xF , the
outer velocity has a profile uL(z), in general not uniform. The intrusion half-thickness
is h(x) and the half-depth of the domain is H. Density inside the intrusion is constant
and equal to ρc, while the density profile in the ambient is ρa(z). We make the following
assumptions:
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• The depth is much greater than the intrusion thickness: H � h.

• The Boussinesq approximation is valid: density variations about a reference value
are neglibile except in the buoyancy (gravity) term.

• The ambient density is assumed equal to ρc on the plane z = 0: ρa(0) = ρc; this
is taken as reference density for the Boussinesq approximation.

• The hydrostatic approximation is valid.

• Outside the boundary of the front, identified by the line h(x) and the vertical dis-
continuity at xF , viscous effects are neglibile, i.e. the flow field evolves according to
the Euler equations (with the aforementioned Boussinesq and hydrostatic approx-
imations). This is analogous to the approach used in aerodynamics of subdividing
the flow around an airfoil into the boundary layer, where viscous effects are im-
portant, and the outer flow, where they are negligible and the Euler equations are
an appropriate model.

The velocity of the front with respect to the ambient, uF , can be computed as
function of the half-thickness of the intrusion at the front, hF = h(xF ), by considering
the hydrostatic balance and integral balances of mass and x-momentum over the control
volume ABCD in Figure 2.7, in the limits |xD − xA| → 0 and H � h.

Mass conservation requires

uFH =

∫ H

h
uL(z) dz. (2.68)

Since H � h, most of the ambient above the intrusion will be almost unperturbed by
the obstacle below, so we will take

uL(z) ' uF . (2.69)

In the original work by Benjamin, uL was taken as uniform and equal to uFH/(H −h).
This a reasonable approximation for finite H, but not for H � h, and it can be verified
that in this case it leads to unphysical results.

The general integral momentum balance reads∫
V

∂

∂t
(ρcu) dV +

∫
∂V
ρcu u · n dS =

∫
V
ρ(x, z, t)g dV −

∫
∂V
pn dS. (2.70)

For vanishing volume V , the volume integrals vanish, while the surface integrals remain
finite. In the horizontal direction, for the control volume ABCD, the balance reduces
to ∫

AB
(ρcu

2 + p) dS =

∫
CD

(ρcu
2 + p) dS, (2.71)

while, in the vertical direction,

∂p

∂z
= −ρ(x, z, t)g. (2.72)
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The density stratification is approximated by a linear function around z = 0:

ρ(z) ' ρc + αz, (2.73)

where ρ(0) = ρc, as assumed, and α < 0 for a stable stratification. The evaluation of the
pressure integrals in equation (2.71) is simplified by observing that the pressure fields
are the same on sections AB and CD for z > hN : we have∫

AB
p dS−

∫
CD

p dS =

∫ H

0
(pAB(z)− pCD(z)) dz =

∫ hN

0
(pAB(z)− pCD(z)) dz (2.74)

The pressure profiles are computed in [0, hF ] from eq. (2.72):

pAB(z) =ρcg(hF − z) + pa(hF )

pCD(z) =ρcg(hF − z) +
α

2
g(h2

F − z2) + pa(hF )
(2.75)

It follows that ∫
AB

p dS −
∫
CD

p dS =

∫ hF

0
−α

2
g(h2

F − z2) dz = −α
3
gh3

F . (2.76)

Notice that this approach did not require any assumption on the ambient density profile
outside the interval [−hF , hF ]: it only required enough smoothness to approximate it
with a linear function in such interval. The momentum flux integrals in equation (2.71)
can be computed, remembering that the reference system is attached to the front and
using equation (2.69), as∫

AB
ρcu

2 dS −
∫
CD

ρcu
2 dS = ρc

∫ H

0
(u2
AB(z)− u2

CD(z)) dz = −ρcu2
FhF . (2.77)

The momentum balance requires the sum of the last two expressions to be zero, so an
expression relating uN and hN is obtained:

uF =

√
1

3
g′hF , (2.78)

where g′ is called reduced gravity and defined by

g′ = −αhF
ρc

g ' −ρa(hF )− ρa(0)

ρa(0)
g. (2.79)

As pointed out by Ungarish, eq. (2.78) is a single equation in two unknowns. For the
purposes of this work, the equation will suffice for comparison with the numerical results,
but for prediction purposes it is incomplete. For a complete description, [58] suggests
using relations of the form uF = uF (hF ), like the one derived here, as boundary condi-
tions for a system of shallow water equations obtained by averaging the Navier-Stokes
continuity and momentum equations over the thickness of the intrusion. The result is
an hyperbolic system which can be solved exactly using the method of characteristics in
simple cases such as the dam break problem, or solved approximately for more general
cases using numerical methods (e.g. finite volumes, smoothed particle hydrodynamics).
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Chapter 3

Numerical model

In Telemac3D, the model equations are solved using the finite element method (FEM).
The mesh is formed by stacking layers of 2D, unstructured meshes, and moves according
to the free surface evolution. Equations are discretized using a fractional step method.

3.1 Mesh

In Telemac3D, the 3D mesh is made of layers of prisms (see Figure 3.1), built from the
bottom to the free surface by replicating a 2D unstructured triangulation of the domain.
All lateral faces of prisms are vertical. Thus the mesh can be considered horizontally
unstructured and vertically structured. A vertical section of the lake mesh is shown in
Figure 3.2.

3.1.1 Sigma transform

Because the free surface moves, all the equations described in the previous chapter need
to be solved in a variable domain. Accounting for this is not trivial when using a mesh-
based method, like the finite element method used in Telemac3D. The adopted solution

1

2

3

4

5

6

Figure 3.1: A prism element
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Figure 3.2: Vertical section of the lake mesh, 36 planes (35 layers)

Figure 3.3: A Telemac3D mesh at two different timesteps of test case gouttedo (gaussian
initial surface)

is to let the mesh points move vertically (so that prism lateral faces remain vertical) to
adjust to the surface (see Figure 3.3) and to define a new vertical coordinate z∗ in such
a way that the points at the bottom are at z∗ = 0 and the ones at the free surface at
z∗ = 1.1

This requires rewriting the equations in a new set of coordinates [25, p. 18]:

x∗ = x

y∗ = y

z∗ =
z −B(x, y, t)

S(x, y, t)−B(x, y, t)
=
z −B(x, y, t)

h(x, y, t)

t∗ = t

(3.1)

Now, to transform the equations we need the expression of partial derivatives for a
given quantity f(x, y, z, t) in terms of derivatives in the system (x∗, y∗, z∗, t∗). We write
f(x, y, z, t) = f∗(x∗, y∗, z∗, t∗): in this case it pays to be a little pedantic and to point out
that, even though the physical quantity f is always the same, its functional expression

1Other vertical transforms are possible: for example, every vertical layer of the mesh could be
stretched to a specific extent. The one presented here is the most simple case.
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changes if coordinates change. By using the chain rule we can write

∂f

∂x
=
∂f∗

∂x∗
∂x∗

∂x
+
∂f∗

∂y∗
∂y∗

∂x
+
∂f∗

∂z∗
∂z∗

∂x
+
∂f∗

∂t∗
∂t∗

∂x

=
∂f∗

∂x∗
+
∂f∗

∂z∗
∂z∗

∂x
∂f

∂y
=
∂f∗

∂y∗
+
∂f∗

∂z∗
∂z∗

∂y

∂f

∂z
=
∂f∗

∂z∗
∂z∗

∂z
∂f

∂t
=
∂f∗

∂t∗
+
∂f∗

∂z∗
∂z∗

∂t
.

(3.2)

The last step is to find the transformation of velocities. Velocities are changed in the
new system because the z∗ axis gets stretched as the free surface deforms. There is no
stretching along x and y, so

u∗ = u, v∗ = v. (3.3)

To find the transformation of w, we follow the path of a particle whose coordinates are
(xp(t), yp(t), zp(t)):

w∗ =
dz∗p
dt

= lim
∆t→0

z∗[xp(t+ ∆t), yp(t+ ∆t), zp(t+ ∆t), t+ ∆t]− z∗[xp(t), yp(t), zp(t), t]
∆t

=
∂z∗

∂x
u+

∂z∗

∂y
v +

∂z∗

∂z
w +

∂z∗

∂t
.

(3.4)

We now have all the elements to understand how the terms in the equations are trans-
formed. As an example, we transform the material derivative: first we substitute equa-
tions (3.2)

Df

Dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z

=
∂f∗

∂t∗
+
∂f∗

∂z∗
∂z∗

∂t
+ u

(
∂f∗

∂x∗
+
∂f∗

∂z∗
∂z∗

∂x

)
+ v

(
∂f∗

∂y∗
+
∂f∗

∂z∗
∂z∗

∂y

)
+ w

∂f∗

∂z∗
∂z∗

∂z
.

(3.5)

Then we recognize the expression (3.4) of w∗ multiplied by ∂f∗/∂z∗ in the last result,
so we can write

Df

Dt
=
∂f∗

∂t∗
+ u∗

∂f∗

∂x∗
+ v∗

∂f∗

∂y∗
+ w∗

∂f∗

∂z∗
(3.6)

The transformations of other terms in the equations are more elaborate, but they still
rely on the expressions derived here.
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Using the described mesh and the sigma trasform is advantageous because it sim-
plifies the application of the impermeability boundary condition at the bottom and the
kinematic condition at the surface: they both become [30, p. 83]

w∗ = 0 (3.7)

This can be verified by taking partial derivatives of z∗ from eqs. (3.1), substituting them
in (3.4) and evaluating the result on the bottom and on the surface. Some computations
for matrix elements of the FEM are also simplified. Some disadvantages are the difficulty
of treating diffusion terms and possible inaccuracies in representing the effects of density
stratification [18]. The issues that emerge while using the sigma transform are presented
in section 4.3, along with the results of some test simulations.

3.2 Fractional step method

The Navier-Stokes equation contain different operators, with different mathematical
properties and physical meanings: advection, diffusion and mass conservation. It would
be desirable to deal with each one of them separately, dividing the original complex
problem into several simpler ones and solving each with a suitable technique. This is
the idea behind the fractional step method. In the following, function f can be velocity
or a transported tracer.

The first step is the advection one, treating the hyperbolic part of the equations:

fa − fn

∆t
+ (u · ∇)f = 0. (3.8)

Owing to its hyperbolic nature, this step can be solved using the method of characteris-
tics, which in this case means following streamlines. At every node of the discretization
we need to calculate fa, the value obtained from fn through a time-step ∆t under the
action of advection alone. The value of fa at a node in position r is then the same value
that f had at time tn in (approximate) position

r′ = r− u(r, tn) ∆t. (3.9)

In general, r′ will not be the exact position of a mesh node: then fa(r) = fn(r′)
will need to be calculated by interpolation. This step can be implemented in the sigma-
transformed domain, because the advection term has the same form in the sigma domain
as in the physical domain (see equation (3.6)).

Next, the diffusion step is performed:

fd − fa

∆t
−∇ · (ν∇f) = Sf . (3.10)

If f = u, ν has the meaning of kinematic viscosity and Sf are volume forces, including
hydrostatic pressure gradients as discussed in section 2.8. If f is a tracer, ν is a diffusivity
and Sf is a generic source term. The equation to be solved is parabolic and it can be
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discretized using the finite element method. Alternatively, this step can be solved
together with the advection step as an advection-diffusion equation using the FEM,
with the SUPG formulation for stability, or with a multidimensional upwind residual
distribution method (MURD); both will be described in following sections.

At this point, the time stepping for tracer equations is complete. For the Navier-
Stokes equations, we are still missing the (dynamic) pressure gradient in the momentum
equation and the enforcement of the solenoidality of the velocity field:

un+1 − ud

∆t
= − 1

ρ0
∇pn+1

∇ · un+1 = 0

(3.11)

These corrections are done in the pressure-continuity step. By taking the divergence of
the first equation and using the second to eliminate ∇ · un+1, the Poisson equation for
pressure is obtained:

∇2pn+1 =
ρ0

∆t
∇ · ud. (3.12)

(notice that the right hand side is known from the diffusion step). This is an elliptic
equation, and it can be solved using the FEM. Once the pressure has been calculated,
the velocity can be corrected (or �projected�):

un+1 = ud − ∆t

ρ0
∇pn+1. (3.13)

This last step is omitted when solving the equations under the hypothesis of hydro-
static pressure, leading to a substantial decrease in the computational time; however, as
already discussed in section 2.8, the hydrostatic model is not suitable for all purposes.

The one described above is a quite general procedure for the solution of the Navier-
Stokes equations together with equations for tracers in a 3D domain. In the case of a
free surface problem, at each time step the surface position and, accordingly, the mesh,
must evolve. In Telemac3D, this is done in the so-called wave equation or propagation
step: equation (2.57) is solved together with a depth-averaged momentum equation
(see [2, p. 78]). The propagation step and the consequent mesh update are performed
between the diffusion step and the pressure-continuity step. A non-trivial modelling
choice that was not discussed here are boundary conditions to be imposed at each step:
see [25], [30] for details.

3.3 Finite element method

Given a problem in strong (differential) form

Lu− f = 0 on Ω, (3.14)

the finite element method (FEM) searches for a solution in the form of a linear combina-
tion of known shape functions, where the unknowns are the coefficients of the combina-
tion and correspond to the values at the nodes. Since the shape functions can be chosen
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arbitrarily, in general the exact solution cannot be obtained; but a good approximation
of it is produced by solving a weak discretized form of the problem.

The problem in weak form corresponding to equation (3.14) is derived by multiplying
the equation Lu = f by a test function v and integrating over the domain Ω:

find u ∈ U :

∫
Ω
Lu v dΩ =

∫
Ω
f v dΩ ∀v ∈ V, (3.15)

where U , V are appropriate infinite-dimensional function spaces, to be defined specif-
ically for each problem. The key of the above statement is that it must hold for any
function in V . In the FEM, the infinite-dimensional spaces U and V are replaced by
finite-dimensional spaces Uh and Vh, of dimensions Nh; in particular, in the standard
Galerkin formulation, Uh and Vh are chosen to be the same space. We call ϕi(x),
i = 1 . . . Nh, the basis function of space Uh. This means that any function uh in Uh is
a linear combination of the functions ϕi

uh(r) =

Nh∑
i=1

uiϕi(r), (3.16)

where the coefficients ui are the values of u at the nodes of the mesh, and the same
holds for any function vh in Vh:

vh(r) =

Nh∑
i=1

viϕi(r). (3.17)

The discretized weak form is then

find uh ∈ Uh :

∫
Ω
Luh vh dΩ =

∫
Ω
f vh dΩ ∀vh ∈ Uh. (3.18)

Each function vh is identified by the coefficients vi in eq. (3.17). An arbitrary choice of
vh then translates to an arbitrary choice of coefficients: so, by linearity, the only way
the integral can be zero for any vh is that it is zero for any ϕi. The problem can thus
be written as

find uh ∈ Uh :

∫
Ω
Luh ϕi dΩ =

∫
Ω
f ϕi dΩ ∀i = 1 . . . Nh. (3.19)

This is a system of Nh equations.
The shape functions ϕi have compact support: the support Ti of ϕi is the union of

all elements sharing node i, and the value of ϕi is 1 in node i, 0 in all other nodes. This
particular choice implies that each of the Nh equations in problem statement (3.19)
involves only a small subset of coefficients ui. If operator L is linear, the solution of the
problem is found by solving a linear system with a sparse matrix; in the general case,
the system may be non-linear.

For a prism element (Figure 3.1) the basis functions are defined on a reference
element, one in which coordinates are P1 = (1, 0,−1), P2 = (0, 1,−1), P3 = (0, 0,−1),
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P4 = (1, 0, 1), P5 = (0, 1, 1), P6 = (0, 0, 1). For node 1, the corresponding function
must be zero on the plane x′ = 0 and on the plane z′ = 1, so

ϕ1 = −1

2
x′ (z′ − 1); (3.20)

φ3 must be zero on planes y′ = 1− x′ and z′ = 1, so

ϕ3 = −1

2
(x′ + y′ − 1)(z′ − 1). (3.21)

The other basis functions are built by analogous considerations:

ϕ2 = −1

2
y′ (z′ − 1) ϕ4 =

1

2
x′ (z′ + 1)

ϕ5 =
1

2
y′ (z′ + 1) ϕ6 =

1

2
(x′ + y′ − 1)(z′ + 1).

(3.22)

All the basis functions ϕi can be split into two factors: one depending on the horizontal
coordinates x′ and y′, ϕHi , and one depending on the vertical coordinate z′, ϕVi :

ϕi(x
′, y′, z′) = ϕHi (x′, y′)ϕVi (z′) (3.23)

This observation will be useful in section 3.5.2.3 when building 3D MURD schemes.
The transformation from reference coordinates (x′, y′, z′) to physical coordinates

(x, y, z) is defined as

x(x′) =

6∑
i=1

xi ϕi(x
′) (3.24)

and analogously for other components. When such transformation is given as a linear
combination of the shape functions, like in this case, elements are called iso-parametric.

3.3.1 FEM formulation of the pressure Poisson equation

To describe how the weak formulation of a problem turns into a linear system, we
consider the Poisson pressure equation (3.12), which can be written as

∇2p = R. (3.25)

The formulation in (3.19) becomes

find p :

∫
Ω
∇2pϕi dΩ =

∫
Ω
RϕidΩ ∀i = 1 . . . Nh (3.26)

and, integrating by parts the first term,

find p : −
∫

Ω
∇p · ∇ϕi dΩ +

∫
∂Ω
∇p · nϕi d∂Ω =

∫
Ω
RϕidΩ ∀i = 1 . . . Nh, (3.27)
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where n is the outer normal at the boundary. The solution p is written as linear
combination of the shape functions:

p(r) =
∑
j

pjϕj(r) (3.28)

and the surface flux, which is imposed as a Neumann boundary condition, is approxi-
mated in Telemac as [30, p. 89]

∇p · n = c1p+ c0, (3.29)

where c0, c1 are functions of the position along the boundary. Substituting eq. (3.29)
and (3.28) into (3.27)

−
∑
j

pj

∫
Ω
∇ϕj · ∇ϕi dΩ +

∑
j

pj

∫
∂Ω
c1ϕjϕi d∂Ω +

∫
∂Ω
c0ϕi d∂Ω =

∫
Ω
Rϕi dΩ (3.30)

The unknowns are now the Nh nodal values of pressure pj , and Nh equations have to
be solved (one for each value of i). The values of pj can be gathered into column vector
p; then matrices D and C1 can be defined: their generic elements are

Dij = −
∫

Ω
∇ϕj · ∇ϕi dΩ, C1,ij =

∫
∂Ω
c1ϕjϕi d∂Ω (3.31)

and vectors r and c0, with generic elements

ri =

∫
Ω
Rϕi dΩ, c0,i =

∫
∂Ω
c0ϕi d∂Ω. (3.32)

The problem has then been transformed into a linear system:

Ap = b (3.33)

with A = D+C1, b = r+c0. Dirichlet boundary conditions are enforced by modifying
matrix A and vector b: if the pressure value in node k has to be imposed, then the k-th
row of A becomes all zeroes except for the term on the diagonal, equal to 1, and the
k-th element of b is substituted with the value of pressure to be imposed. Notice that
A is symmetric by definition.

3.4 Krylov methods for linear systems

The linear system matrices resulting from the finite element method are usually sparse,
i.e. most of their elements are zero, because of the mesh connectivity. Very efficient
iterative schemes are available for solving linear systems with sparse matrices: some
of them are the conjugate gradient method, for symmetric positive definite matrices,
and the GMRES (generalized minimal residual) for more generic matrices. They both
belong to the class of Krylov subspace methods (see [28] for an introduction). It is
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important to have at least an idea of how they work, because in some instances their
parameters need to be tweaked in order to obtain the desired accuracy. Krylov methods
search for the solution of system Ax = b in the Krylov subspace of order n

Kn(A, b) = span(b, Ab,A2b, . . . An−1b) (3.34)

The following theorems hold:

Theorem 1. Consider a matrix A and its Jordan canonical form C. The polynomial

q(t) =

Neig∏
j=1

(t− λj)mj

is the monic2 polynomial of minimum order such that q(A) = 0 and it is called minimal
polynomial of A. Neig is the number of distinct eigenvalues of A and mj is the maximum
order among the ones of all Jordan blocks associated to eigenvalue λj in C.

Theorem 2. Consider the linear system Ax = b. Suppose A is non-singular. If m is
the degree of the minimal polynomial of A, then

x ∈ Km(A, b)

For more details about canonical forms and the minimal polynomial see [50]. The
degree of the minimal polynomial depends on the eigenstructure of A: in particular, it
depends on the number of eigenvalues and on the maximum sizes of their associated
Jordan blocks. If the minimal polynomial of A has low order m, then the solution can
be searched for in a subspace of dimension m � n (A ∈ Rn×n), thus potentially with
few iterations: this is the strength of Krylov methods. Often, a matrix arising from
discretization may not have a favourable structure in such sense; then preconditioning
can be used: the original system is premultiplied by preconditioner P

PAx = Pb (3.35)

with P chosen such that matrix PA is as close as possible to having the desired eigen-
structure.

To sum up, for the practical purposes of code users, if linear system solvers do not
converge or have trouble converging within the prescribed tolerance, the parameters to
be modified are maximum number of iterations, dimension of the Krylov subspace and
choice of preconditioner.

3.5 Solution of the advection-diffusion step

The main issue in the numerical solution of an advection-diffusion problem with the
finite element method is the appearance of non-physical oscillations. Two strategies
will be presented here: the SUPG formulation and MURD schemes; in both cases, the
idea is to evolve the solution using information from upwind.

2A monic polynomial has coefficient 1 for the term of highest order.
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3.5.1 FEM-SUPG formulation

For 1D problems, non-physical oscillations appear in the FEM solution when the Pèclet
number

Pe =
uh

2ν
, (3.36)

where h is a characteristic dimension of the grid, is greater than 1. This can be consid-
ered a sort of Reynolds number, and what happens is that when advection dominates
over diffusion, or when the mesh element size is large, spurious numerical oscillations ap-
pear. A possible, but costly, solution could be to use a more refined mesh; another one is
the SUPG method [45, p. 321], that is the Streamline-Upwind Petrov-Galerkin method.
Streamline-upwind means that the physics of the problem can be exploited to obtain
a more fitting approximation of derivatives, where information coming from upwind is
weighted more than information coming from downwind, and Petrov-Galerkin refers to
the fact that this weighting is obtained by using different functions as shape functions
and test functions (in contrast to the above cited standard Galerkin formulation). The
modification to the test functions is

ϕSUPG
i = ϕi + α

u

‖u‖
· ∇ϕi (3.37)

and the result is that the upstream part is weighted more than the downstream.

3.5.2 MURD schemes

To present MURD (Multidimensional Upwind Residual Distribution) schemes, we start
by writing a generic conservation law in conservation form:

∂u

∂t
+∇ · f(u) = q(x, t), (3.38)

where f(u) is called flux. Neglecting for now the source term q (its effect will be discussed
later) and defining the advection speed λ(u) = f ′(u), the equation can be rewritten in
quasi-linear form as

∂u

∂t
+ λ(u) · ∇u = 0 (3.39)

The residual φT on an element T of the discretization, that is the total flux balance on
T , is defined as

φT =

∫
T
∇ · f dT =

∫
T
λ · ∇u dT (3.40)

MURD schemes [19] have a philosophy that is hybrid between finite elements and
finite volumes. The motivation for building them is to obtain methods that apply proper
upwinding while adding just the needed amount of numerical dissipation.

The finite element method, as already described, is based on a discretization of the
weak form of the equations. The solution is computed at each node of the discretization,
and (in the standard implementation) it is interpolated as a continuous function on the
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i

Figure 3.4: Triangles sharing node i and dual cell Si (blue region)

domain. This is an intrinsically multidimensional method. A drawback is that the
dissipation, added through the term α in eq. (3.37) to obtain numerical stability, must
be tuned properly.

The finite volume (FV) method is based on a discretization of the integral form of
the equations. The solution is computed cell by cell by evaluating a flux balance, and
it is considered discontinuous at the interfaces between cells: the cell-average solution
in cell T is computed as

un+1
T = unT −

∆t

ST
φT , (3.41)

where ST is the total area (or volume, in 3D) of cell T . The FV method, being based
on the integral form, can be made to ensure conservation in a natural way. Extending
finite volume schemes to multiple dimensions without introducting spurious directional
biases is not straightforward, though.

Residual-distributing schemes combine the FEM piecewise linear approximation
with the flux balance typical of FV methods. As the name of the scheme suggests,
the residual on a cell is distributed among the cell nodes: we will now see how. For
simplicity, an inconsistent formulation, equivalent to mass lumping, is presented here.
Mass-lumping consists in approximating matrix M in definitions (3.31) by a diagonal
matrix in which every element on the diagonal is the sum of all elements of the corre-
sponding row. The evolution in time is then

un+1
i = uni −

∆t

Si

∑
T

βTi φ
T , (3.42)

where Si is the area of the dual cell corresponding to node i, that is one third of the
sum of the areas of all triangles meeting in node i (see Figure 3.4). Coefficients βTi
determine how the distribution is done, or how much of the residual in cell T has to be
attributed to node i: the idea is that at every point the solution must evolve according
to data coming from upwind. The sum of all coefficients β for a triangle must be one
for consistency.
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The actual form of residual φT will now be derived for 2D elements (triangles); then,
two desirable properties of methods will be introduced together with the conditions for
obtaining them and the resulting choices for schemes; lastly, the extension of such
schemes to 3D will be briefly described. With linear shape functions on triangles,
deriving eq. (3.16) we have

∇u =

3∑
i=1

ui∇ϕi. (3.43)

Shape function ϕi is equal to one in node i and is zero an all of the opposite edge. The
direction of the gradient of a function is the one of maximum growth, and its magnitude
is the corresponding directional derivative. Then∇ϕi must be perpendicular to the edge
opposite node i, and its magnitude must be the inverse of the distance between the cited
node and edge: this distance is the height of the triangle with respect to base ljk (for
example node 3 and edge vector l12 in Figure 3.5), equal to twice the area ST divided
by the norm of ljk. By defining the unit vector ẑ, normal to the plane of the triangle
and pointing out of the page, and vectors ni = ẑ × ljk, normal to the edge opposite
node i, we have

∇ϕi =
ni

2ST
. (3.44)

The gradient of u becomes

∇u =
1

2ST

3∑
i=1

uini, (3.45)

that is constant on T . We can thus take the gradient out of the integral in equation (3.40)
and consider the average of λ over T , that we will call λT . The resulting expression for
the residual is

φT = ST λT · ∇u =
1

2

3∑
i=1

ui λT · ni =
3∑
i=1

ui ki, (3.46)

with

ki =
1

2
λT · ni. (3.47)

Figure 3.5 shows that ki determines whether a node is an upstream or a downstream
one: nodes 1 and 2 are downstream, and k1 > 0, k2 > 0; node 3 is upstream, and
k3 < 0. To obtain an upwind scheme, the residual on the cell should be distributed to
the downstream nodes, so that the solution in those points evolves based on information
coming from upstream.

In addition to being truly upwind, there are two additional good properties that a
scheme can have: positivity, related to stability, and linearity preservation, related to
accuracy.

A scheme is called positive if the result of time-stepping on a node can be expressed
as

un+1
i =

∑
k

cku
n
k (3.48)
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Figure 3.5: Normals (left) and edge vectors lij (right) on a 2D element. Vectors are
scaled by a factor 3 for drawing convenience: actual length is as much as the opposite
edge’s

with non-negative coefficients ck. This ensures that no new maxima or minima will
appear in the solution, which means that non-physical oscillations will not be generated
by the numerical scheme. Here we are considering an homogeneous equation: for a
general equation with non-zero source term, the source term may generate physical
oscillations that the scheme will be able to capture. The point is avoiding spurious
oscillations. By putting together eqs. (3.42) and (3.46), the time step can be recast in
the above form:

un+1
i = uni −

∆t

Si

∑
T

βTi

3∑
j=1

unj kj (3.49)

that is, as a linear combination of the values in the stencil at the previous time step. An
easy to check, sufficient condition for positivity is local positivity, where the summation
is restricted to the nodes of a single triangle, and the obtained coefficients are all required
to be positive:

un+1,T
i = uni −

∆t

Si
βTi (kiu

n
i + kju

n
j + kku

n
k)

=

(
1− ∆t

Si
βTi ki

)
uni +

(
−∆t

Si
βTi kj

)
unj +

(
−∆t

Si
βTi kk

)
unk

= ciu
n
i + cju

n
j + cku

n
k

(3.50)

The condition is fulfilled by careful choices of time-step and of coefficient βTi . For
example, consider node 3 in Figure 3.5. As already observed, k3 < 0, while k1 and k2

are positive. Then the only way of obtaining positivity is to choose βT3 = 0: this is a

reasonable choice, because node 3 is upwind with respect to λT , so no information will
reach node 3 from the inside of this triangle during the time step. If the direction of
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λT were the opposite, then we would have k1 < 0, k2 < 0 and k3 > 0: node 3 would be
a downstream one, and the only condition required for positivity would be on the time
step.

A scheme is linearity-preserving if, given an exact steady state solution that is linear,
it is able to obtain it exactly. A linearity-preserving scheme allows to reach second order
accuracy. The condition to be fulfilled to obtain this property is

βTi φ
T → 0 ∀i as φT → 0, (3.51)

which requires coefficients βTi to be bounded by a finite constant:

∃C : max
T

max
j∈T
|βTj | < C. (3.52)

Both properties are very desirable, but the following theorem from Godunov [34, p.
174] holds:

Theorem 3. A linear scheme cannot be both positive and linearity-preserving.

A scheme is linear if the quantity βTi φ
T depends linearly on the values unj in eq.

(3.42).

3.5.2.1 MURD-N scheme, 2D

We start by noting that since the vector identity l12 + l23 + l31 = 0 holds for the edges
of a triangle, by linearity of the vector product and of the scalar product by a constant
we also have

3∑
i=1

ki = 0. (3.53)

Then, by exploiting k3 = −k1 − k2:

φT = k1u1 + k2u2 + k3u3

= k1(u1 − u3) + k2(u2 − u3) = −k1(u3 − u1)− k2(u3 − u2) = . . .

=

3∑
i=1

3∑
j=1

γij(ui − uj)
(3.54)

where the equivalent, alternative expressions on the second line can be used (selected
by switches in the code) in such a way that coefficients γij are all non-negative. In the
MURD-N scheme the choice is to split the residual by taking only the part containing
the contributions of node i in the last expression:

βTi =

∑3
j=1 γij(ui − uj)

φT
,

βTi φ
T =

3∑
j=1

γij(ui − uj).
(3.55)
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The second expression is the one actually used in codes: it saves operations and avoids
possible divisions by zero; the first is useful to understand what happens to coefficients
βTi .

To help clarify how the scheme works, we can consider an example based again on
Figure 3.5. Since k1 > 0, k2 > 0 and k3 < 0, the correct form of equation (3.54) in this
case is

φT = k1(u1 − u3) + k2(u2 − u3) (3.56)

or, collecting coefficients γij in a matrix γ,

γ =

0 0 k1

0 0 k2

0 0 0

 (3.57)

all the elements of matrix γ being non-negative. We can now apply equations (3.55):

βT1 φ
T = k1(u1 − u3)

βT2 φ
T = k2(u2 − u3)

βT3 φ
T = 0

(3.58)

confirming that βT3 must be equal to zero for proper upwinding. The contribution of
triangle T to the mass-lumped evolution of u1 is then (3.50)

un+1,T
1 = un1 −

∆t

Si
k1(un1 − un3 )

=

(
1− ∆t

Si
k1

)
un1 +

∆t

Si
k1 u

n
3 ,

(3.59)

so that the scheme is locally positive under a condition on the time step; the same could
be verified for the evolution of u2 and (trivially) u3.

The scheme is then conditionally positive [25, p. 189]. Being linear and positive,
though, it cannot be linearity-preserving, owing to Godunov’s theorem. This can be
understood from the first equation in (3.55): even when φT is zero, the single terms in
the summation on index i that form φT can be non-zero, leading to infinite values of
βTi . Thus such coefficients are not bounded.

The N scheme is known as optimum first order scheme, being the least diffusive first
order scheme [2, p. 114].

3.5.2.2 MURD-PSI scheme, 2D

The MURD-PSI scheme [2, p. 118] is a modification of the MURD-N scheme done in
order to make it linearity-preserving. It consists in applying a limiter to coefficients βTi :

βT,PSIi = max(min(βT,Ni , 1), 0) (3.60)

This way the coefficients are bounded, and the scheme is no more linear.
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3.5.2.3 Extension to 3D

The extension to 3D of the schemes described above is discussed in [2, p. 116]. Es-
sentially, when dealing with prisms instead of triangles, the calculation of the gradient
changes, and the possibility of splitting shape functions into horizontal and vertical
parts (see eq. (3.23)) is exploited:

φP =

∫
P
λ · ∇u dP =

∫
P

(
λx
∂u

∂x
+ λy

∂u

∂y
+ λz

∂u

∂z

)
dP

=
6∑
i=1

∂ϕHi
∂x

ui

∫
P
λxϕ

V
i dP +

6∑
i=1

∂ϕHi
∂y

ui

∫
P
λyϕ

V
i dP +

6∑
i=1

∂ϕVi
∂z

ui

∫
P
λzϕ

H
i dP

=
6∑
i=1

ui(k
H
i + kVi ),

(3.61)

with

kHi =
∂ϕHi
∂x

∫
P
λxϕ

V
i dP +

∂ϕHi
∂y

∫
P
λyϕ

V
i dP, kVi =

∂ϕVi
∂z

∫
P
λzϕ

H
i dP

The expression is then recast, as in the 2D case, in the form

φP =
6∑
i=1

6∑
j=1

γij(ui − uj) (3.62)

where coefficients γij are chosen from the values kHi + kVi in such a way that positivity
is guaranteed. This way, the 3D N scheme is obtained; then, the PSI scheme follows by
limiting coefficients βPi .
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Chapter 4

Preliminary tests

In this chapter, the basic setup of simulations is described. Some simple test cases are
run to verify expected qualitative behaviours and to make specific modelling choices in
view of the subsequent steps.

4.1 Setup

Meshes are made using the software BlueKenue1. Simulations are run in Telemac 3D2;
in most cases, some small modifications are needed to adapt the standard Fortran sub-
routines of the code to the case at hand, especially for defining the mesh vertical layers
and for setting up initial conditions on temperature profiles and particles. ParaView3

is used for post-processing and visualization of data. The conversion of solution files to
.vtk files is done using a Python script4; files from simulations with particles are con-
verted using a script written by the author5. Unless otherwise specified, the MURD-PSI
scheme is used for advection-diffusion (as recommended in the Telemac documentation)
and the κ− ε model for turbulence.

4.2 Effects of stratification on wind-induced mixing

In this test case, a constant and uniform wind blows over a rectangular closed domain of
uniform depth. An initial thermal stratification is imposed: stable (lower temperatures
on the bottom) in the first simulation and unstable in the second; see Figure 4.1. They
are idealized, piecewise linear functions: the stable one models a typical summer situa-
tion, with small temperature gradients in the lower layers and a quite sharp variation
close to the surface; the unstable one is chosen with same magnitudes of temperature

1https://nrc.canada.ca/en/research-development/products-services/software-application

s/blue-kenuetm-software-tool-hydraulic-modellers
2http://opentelemac.org/
3https://www.paraview.org/
4sel2vtk.py and sel2vtk bin.py by Pat Prodanovic: https://github.com/pprodano/pputils
5tecplot2csv.py: https://github.com/marcogambarini/particles-telemac
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variation, for comparison. The k − ε turbulence model is employed. Zero velocity is
imposed at time zero. It is verified that the action of wind is to induce mixing, by in-
troducing kinetic energy in the domain, and that a stable thermal stratification inhibits
vertical mass transport, while an unstable one promotes it. Particle paths are followed
from the initial distribution shown in Figure 4.2(a).
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(a) Stable stratification
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(b) Unstable stratification

Figure 4.1: Initial temperature profiles

The dimensions of the domain are 1000 m × 200 m, with depth 40 m; the typical
edge length of triangles is 20 m. Wind blows along the x direction at 10 m/s. A
total of 50 particles are introduced in the domain. 20 vertical surfaces (19 layers) are
used, positioned by a quadratic law so that layers on the bottom are thicker than at
the surface, in order to be able to better represent the wind interaction. This implies
a slight modification to the sigma transform as described in section 3.1: surfaces are
not equally spaced, but they are placed at constant sigma coordinates. In this case all
surfaces are (initially)6 horizontal planes because the bottom is flat; the more general
case of variable bathymetry will be treated in the following test cases. 3600 time steps
of 45 seconds each are performed, for a total simulated time of 45 hours. This time
period was chosen as long enough to contain the time needed to reach a steady state
wind-induced circulation. In numerical experiments on the stable configuration, the
time history of ∫

Syz,u>0
u dS (4.1)

was observed to tend to a steady state after about one day. Syz is a slice of the domain in
the y−z plane, and, as reported in the equation, only positive velocities are considered:
the value can be interpreted as a measure of internal mass transport when circulations
generate, and this definition is analogous to the one of lateral transport defined in [6].
The idea is thus to make the simulation at least long enough to have fully developed
circulations. The computational time is about 6 minutes on a single core.

6After some time, the surfaces are subjected to a slight tilting because of wind set-up.
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In the stable case, an almost closed clockwise circulation appears in the layers close
to the surface, while in the lower layers particles move more erratically and at lower
velocity. Particles released on the surface are dragged to the right by the wind, then
experience downwelling at the right wall and descend to a limited depth due to buoyancy,
being warmer and less dense than the surrounding fluid; they then start travelling
towards the left until they either go back to the surface or reach the left wall. As seen
in Figure 4.2(b), particles starting close to the surface (in red) and particles starting
close to the bottom (in blue) do not mix: there is some mixing in the upper layer, but
no particle travels from the surface to the bottom, nor vice versa. This is clear from
the vertical lines marking the total vertical displacement, which are all very short. The
final temperature profile, shown in Figure 4.3, is much smoother than the initial one,
showing that some mixing has happened.

(a) Initial particle positions

(b) Final particle positions, stable stratification

(c) Final particle positions, unstable stratification

Figure 4.2: Particle positions, projected onto the x − z plane (portions of domain).
In (b) and (c), lines represent the vertical components of particle displacements; the
horizontal components are not drawn for clarity of visualization

In the unstable case, a full overturn happens: particles travel in the whole domain
and through the whole depth, as seen in Figure 4.2(c), where vertical displacements
are much larger than in the previous case. After about 2 hours, the initially unstable
stratification becomes a neutral one and then a stable one, until the final temperature
profile is reached (Figure 4.3). The overturning in the basin is quite fast compared to
the timescale of the simulation. To better investigate this an additional, more detailed
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Figure 4.3: Final temperature profiles

simulation, was carried out for the first 2.5 hours with a time step of 5 seconds. Also
in this case, particles on the surface are trasported by the wind and reach the right
boundary, but they are now able to immediately reach the bottom: because of the
temperature profile, they are denser than the surrounding water. A pattern of vertical
circulations appears in the domain (pathlines shown in Figure 4.4), and the temperature
profile is correspondingly overturned. Note that, for analyzing transport patterns in
unsteady flows, pathlines, i.e. particle trajectories, are usually more significant that
streamlines, that are integral curves of the instantaneous velocity field; this is the reason
why only the former are shown here.

Figure 4.4: Pathlines from t=0 to t=1.2 h, unstable stratification; central portion of
the domain. Particles are drawn at their final position

As a comparison, this test case was also run using the hydrostatic model, all other
parameters being exactly the same. While qualitatively the same patterns are obtained,
velocities close to the right wall, where downwelling takes place, are markedly different:
in particular, the absolute value of the vertical component is larger, leading also to a
larger circulation. A comparison is shown in Figure 4.5. The difference is due to the
fact that the hydrostatic model does not take into account vertical accelerations: so,
where vertical motions are important the results can be very different from the ones
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Figure 4.5: Colormap for the vertical component of velocity at the right (downwind)
wall: non-hydrostatic (above) and hydrostatic (below) models

obtained using the non-hydrostatic model.
This test case proves the ability to simulate stratified flows obtaining results that

are at least qualitatively reasonable with regards to mixing. Quantitative data can be
extracted from the results of simulations: the extent of mixing can be quantified by
analyzing statistically the behaviour of particles; as an alternative, a fictitious passive
tracer can be introduced, as done in [40] and [43]. If the tracer is set to 1 in a region of
the domain, e.g. the hypolimnion, and 0 elsewhere, then the time evolution of the tracer
concentration is an indicator of how much hypolimnetic water mixes with epilimnetic
water. Some relevant integral quantities are the first and second moment of the tracer
distribution c(x, y, z, t) along the vertical:

zb =

∫
Ω c z dΩ∫
Ω c dΩ

,

dz =

√∫
Ω c (z − zb)2 dΩ∫

Ω c dΩ
,

(4.2)

and the fraction of the total mass (or volume) of tracer that was advected through the
thermocline, or some otherwise defined separation surface: this last indicator was used,
for instance, in [43].
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Figure 4.6: Evolution in time of first and second moment of the fictitious tracer distri-
bution. Solid line: stable initial stratification; dashed line: unstable initial stratification

4.3 Mesh layers and hydrostatic inconsistency

Using a mesh coherent with the sigma transformation, i.e. made up of layers that adapt
to the bottom and free surface shapes, can lead to an error in the computation of
horizontal hydrostatic pressure gradients. Interpolation errors on the density field are
amplified when the gradient is computed [18]: spurious gradients can appear even in
presence of a density (or, correspondingly, temperature) profile that depends only on
z. In this section, an explanation of this problem is presented along with some ways to
mitigate it.

Hydrostatic pressure was derived in equation (2.67). Its gradients appear in the
momentum equations; we will focus on the horizontal ones. Neglecting the gradient of
atmospheric pressure and focusing on the x component:

∂phyd

∂x
= ρ0g

∂S

∂x
+

∂

∂x

∫ S(x,y)

z
∆ρ g dζ. (4.3)

The first term does not create particular problems; the second is rewritten using the
Leibniz theorem:

∂

∂x

∫ S(x,y)

z
∆ρ g dζ =

∫ S(x,y)

z

∂∆ρ

∂x
g dζ + ∆ρ(x, y, S(x, y), t) g

∂S

∂x
. (4.4)

In presence of a density field that varies only along z, the exact value of the first
term in the last expression would be zero and, unless gradients of the free surface are
present, there would be no horizontal pressure gradient at all. But when the first term
is computed on the mesh, complications arise. The difficulty is not in the evaluation
of the integral, that is straightforward once ∂∆ρ/∂x is known at each point because
grid points are aligned vertically, but rather in the evaluation of the derivative. To
understand this, we need to look at how derivatives are computed on finite elements.
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A generic quantity f has definite values fj at the mesh nodes, and its value in other
points is obtained by interpolation using shape functions ϕj :

f(r) =

Np∑
j=1

fj ϕj(r), (4.5)

where ϕj is the shape function whose value is 1 in node i and 0 in all other nodes. Its
support is Ti, the set of all elements to which node i belongs (see section 3.3). With
elementwise linear shape functions, partial derivatives are not well defined at the nodes,
because the same derivative may in general have different values depending on the
element in which it is evaluated (in 1D this would simply mean that the left derivative
does not in general coincide with the right derivative). Partial derivatives at node i can
then be estimated by weighting their values on the elements of Ti [30, p. 91]:

∂f

∂x
(ri) =

∫
Ω

∂f

∂x
ϕi dΩ∫

Ω ϕidΩ
=

∑
T∈Ti

∫
T

∂f

∂x
ϕi dΩ∫

Ω ϕidΩ
(4.6)

where the sum is over all elements T in Ti. In each element, f is differentiable: the
partial derivative of eq. (4.5) can be computed as

∂f

∂x

∣∣∣∣
T

=

Np,T∑
j=1

fj
∂ϕj
∂x

, (4.7)

where Np,T is the number of points of element T (6 for a prism, 3 for a triangle). Then
eq. (4.6) can be rewritten as

∂f

∂x
(ri) =

∑
T∈Ti

Np,T∑
j=1

fj

∫
T

∂ϕj
∂x

ϕi dΩ∫
Ω ϕidΩ

(4.8)

The point is that the computational stencil for the derivative at a node B (see Figure
4.7, which depicts a side of the stencil in a 2D case) includes all, and only, the nodes
of elements that B belongs to. The most natural way to calculate a derivative along
the horizontal direction would be by finite differences: after obtaining the value of the
function in B’ by interpolation of values in E, F and possibly D, the value in B can
be subtracted from it and the result divided by the distance BB’. What happens inside
the FEM is quite similar to this, because the derivative in B is calculated as a linear
combination of the values of the function in all nodes of elements B belongs to. For a
function varying only along z, linear finite element approximations are exact only for
linear functions [18]; for all other functions, spurious gradients appear. The error on
calculating these gradients, anyway, goes to zero if the mesh is refined, so the method
is still consistent, unless there are elements with at least one point on the lower plane
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Figure 4.8: Geometry of the hydrodynamic inconsistency test case

at higher elevation than one on the higher plane7 (see Figure 4.7 on the right). In this
case, the value of the function in B’ has to be obtained by extrapolation, as opposed
to interpolation, and the method is inconsistent in the sense that the error does not
decrease as the resolution is increased. In the opposite limit case in which mesh planes
are horizontal, horizontal derivatives can potentially be calculated exactly, provided
that the density field was interpolated properly.

Some numerical experiments in Telemac3D are presented in [18]. The geometry is
a basin with a bottom elevation varying quadratically in the x direction and constant
in y, as in Figure 4.8. When a standard sigma mesh is used, the main results are the
following:

• From a linear initial stratification, no spurious velocities appear and the density
profile does not change.

7In the context of sigma meshes, the term �plane� is used loosely to refer to surfaces between layers,
which in general are not planes.
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• From a parabolic initial stratification, the density profile is unchanged, but spuri-
ous velocities of order 10−3 m/s appear.

• From a discontinuous initial stratification, the density profile is smeared and spu-
rious velocities of order 10−1 m/s appear. Once the vertical profile becomes
smoother, spurious velocity decrease to about 10−2 m/s.

When the mesh layers are modified such that a plane coincides exactly with the density
discontinuity surface, and the sigma transform is used from the bottom to the plane
and from the plane to the free surface separately, no spurious velocity appear and the
density profile does not change.

The magnitudes of the spurious velocities appearing in the simulations of the article
cited above are of the order of the flow velocities expected in the lake. This means that if
no action is taken to mitigate this issue, results of simulations would be hard to interpret
at best (because one would have to distinguish between physical and spurious velocities)
and completely wrong at worst. Then, it was decided to perform some simulations on
a similar geometry, with dimensions close to the characteristic ones of the northern
trunk of lake Garda, and with a temperature/density profile that varies linearly over a
distance equal to a mesh layer thickness, in order to quantify the extent of the problem
for the case at hand, eventually extending the analysis to the entire lake geometry. The
geometry is as depicted in Figure 4.8: a rectangle of dimensions 4000 m × 800 m and
depth varying quadratically between 100 m and 350 m along the longest edge. This is
a simplified model of the bathymetry reported in Figure 2.5. The initial condition is
zero velocity with a sharp temperature variation from 8◦C to 24◦C between 30 m and
20 m depth; 100 time steps of 10 s each are simulated. With 35 layers (36 planes) and
a standard sigma transform, the error, evaluated as the maximum (spurious) velocity,
is ‖u‖max = 0.025 m/s. When an horizontal plane is positioned at depth 50 m with
the sigma transform applied above and below it (5 layers above and 30 layers below,
thus with 10 m average layer thickness), the error is of order ‖u‖max ∼ 10−9 m/s. The
results are thus promising; but, when the same stratification is applied to the lake, the
situation gets more complicated.

During an early test on the uniform grid of the lake with double sigma transform, it
became clear that spurious velocities appear because of the presence of a large number
of elements that do not satisfy the consistency condition (see Figure 4.9). It was then
decided to try and build a new 2D grid to avoid the presence of inconsistent elements as
much as possible. This implies that element sizes should decrease where the bottom is
steep and that they may increase in regions of flat bottom8. The consistency conditions
for two nodes of the same element separated by a distance L on the horizontal and on
two consecutive vertical levels i and i+ 1 reads

zi(x+ L) < zi+1(x) (4.9)

8Of course making 2D elements smaller everywhere while keeping the same vertical discretization
would solve the problem, but it would also increase the computational time in an unacceptable way.

62



Figure 4.9: Inconsistent elements and spurious velocities, uniform grid, double sigma
transform (early test)

For simplicity, we will now work on a vertical plane x − z. Using the same notation
as in section 3.1, the physical elevation zi(x) of plane i in position x can be written in
terms of the sigma elevation z∗i , that is independent of x, as

zi(x) = B(x) (1− z∗i ) (4.10)

Using a linear approximation for the bottom, we have

zi(x+ L) = B(x+ L)(1− z∗i ) ≈
[
B(x) +

dB

dx
L

]
(1− z∗i ) (4.11)

Putting everything together and substituting the derivative along x with the gradient,
the condition becomes

L <
|B|
‖∇B‖

z∗i+1 − z∗i
1− z∗i

(4.12)

For the layer at the free surface, z∗i+1 = z∗N = 1 and the condition is L < |B|/‖∇B‖,
always verified. For the layer at the bottom, z∗i = z∗0 = 0 and we have the condition
L < z∗1 |B|/‖∇B‖. For equally spaced vertical planes, z∗i = i/N and

L <
|B|
‖∇B‖

1

N − i
(4.13)

Thus we may accept inconsistent elements (or use a filter) close to the bottom, and
choose L such that the levels above a certain one are consistent. This is the choice
that was made in the present case: N − i = 15 was considered; the target element edge
length Ltarget was chosen as

Ltarget = min

(
max

(
1

15

|B|
‖∇B‖

, 75

)
, 300

)
(4.14)

with lengths in meters. Lengths were limited between 75 m and 300 m to avoid in-
creasing too much the number of elements. Calculations were performed by building
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Figure 4.10: A portion of the mesh obtained by adaptation to the bathymetry

a Delaunay triangulation from the bathymetry sampling points and then computing
the gradient on triangles; this was done in ParaView. The target edge length field was
then fed into BlueKenue and a portion of the resulting mesh is reported in Figure 4.3.
It consists of 84443 triangles. The uniform grid was built with typical edge length of
150 m and consists of 34947 triangles. With the adapted mesh, computational times
will be significantly longer, so its adoption would have to be justified by a reasonable
improvement in the solution. In both cases, the vertical discretization is the same as
for the rectangular domain: 36 planes (35 layers) with either standard sigma trasnform
or double sigma transform above and below a fixed plane at 50 m depth. The initial
thermal stratification is also the same.

The first simulations were run for just 2 time steps of 10 s each to understand
the initial evolution of spurious velocities. Two indicators are used: the maximum
velocity magnitude and the integral average of velocity magnitude. The performance
of Telemac3D’s hydrostatic inconsistency filters is tested: filter 1 simply eliminates
horizontal hydrostatic pressure gradients from inconsistent elements; filters 2 and 3 are
more refined and are based on the idea of guessing the possibility that an horizontal
surface of constant density crosses an element. They are described in more detail in [2, p.
135].

Uniform grid,
sigma transform

Uniform grid,
double sigma transform

Adapted grid,
double sigma transform

No filter 2.5 · 10−2 1.9 · 10−2 1.7 · 10−2

Filter 1 1.3 · 10−3 2.2 · 10−3 4.2 · 10−3

Filter 2 6.1 · 10−4 7.5 · 10−4 1.5 · 10−3

Filter 3 6.0 · 10−4 1.1 · 10−3 2.5 · 10−3

Table 4.1: ‖u‖max (m/s) with different choices of mesh and filters
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Uniform grid,
sigma transform

Uniform grid,
double sigma transform

Adapted grid,
double sigma transform

No filter 2.0 · 10−4 5.4 · 10−5 4.9 · 10−5

Filter 1 8.2 · 10−5 4.1 · 10−5 5.2 · 10−5

Filter 2 1.3 · 10−5 1.1 · 10−6 1.3 · 10−6

Filter 3 1.9 · 10−5 1.2 · 10−5 1.1 · 10−5

Table 4.2: ‖u‖ave (m/s) with different choices of mesh and filters

(a) Colormap of log10(‖u‖) (b) Cumulative distribution function

Figure 4.11: Distribution of spurious velocities, 1000 s test

The results are shown in tables 4.1 and 4.2. When no filter is used, the improvement
in using a double sigma transform or the adapted grid is visible, but not very significant.
With filters, the results in terms of ‖u‖max are surprisingly better with the uniform grid
and the standard sigma transform than in other cases, but ‖u‖ave tells a whole different
story: using a double sigma transform either on the uniform or on the adapted grid is
a better global choice, as expected. The best results are obtained with filter 2. The
reason why the adapted grid does not perform better than the uniform grid may be
that the refinement was not enough, that is, the lower bound of 75 m may be too
high to actually reduce the number of inconsistent elements. Already with this bound,
though, the number of elements doubles with respect to the uniform grid: this means
that it would be very expensive to compute the solution on a grid that actually avoids
inconsistent elements entirely. These results also show that it would be good to gain a
better understanding of the different actions of the filters on different grids.

After verifying that the best results were obtained using the uniform grid and the
double sigma transform, a longer test, 100 time steps of 10 s each, was performed with
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the same setup. The results are shown in Figure 4.11. The maximum velocity magnitude
is 0.022 m/s, but the colormap and the cumulative distribution function of velocities
show that spurious velocities appear in small patches, while in 95% of the nodes velocity
magnitudes are below 2.2 · 10−4 m/s. As a matter of fact, ‖u‖ave = 2.5 · 10−5 m/s. This
suggested trying to refine the mesh based on the error, rather than on the bathymetry
gradients. Target element edge lengths were defined as

Ltarget = min

(
max

(
75− (150− 75) log10

(
‖u‖
10−3

)
, 75

)
, 150

)
(4.15)

with lengths in meters and velocities in m/s. Essentially, the target size is kept at
150 m where the velocity is less than 10−4 m/s and gradually reduced for increasing
velocity till the minimum size of 75 m is reached at 10−3 m/s. The resulting mesh has
35874 elements, a small increase over the uniform mesh, leading to only slightly more
expensive computations. The results, however, are disappointing: on 100 time steps
of 10 s each, as before, ‖u‖max = 3.2 · 10−5 m/s and ‖u‖ave = 5.3 · 10−5 m/s. It was
observed that the areas where the mesh was refined are no more critical with respect
to spurious velocities, but additional patches appear elsewhere in the domain, and, in
some instances, close to refined areas, which may indicate that the refinement procedure
was not optimal.

Up to now, 5 layers were placed above the fixed plane and 30 below it, with two
uniform sigma transforms: layers have all the same thickness of about 10 m in the
deepest parts of the lake. This was done to check if an extension of the results obtained
in the case of the rectangle applies. In practice, it would be more appropriate to place
thinner layers close to the surface, in order to obtain a better description of wind
influence. Two non-uniform sigma transforms are applied, above and below the fixed
plane, with a quadratic distribution of layers such that, in the deepest regions, the
bottom layer is about 30 m thick and the surface one is about 2 m thick. Now, if
layers close to the bottom are thicker, there is a better chance of being able to fulfill the
consistency condition (equation (4.12)). This is confirmed in simulations: using filter 2
on a 1000 s simulation, a maximum velocity ‖u‖max = 7.0 · 10−3 m/s and an average
velocity magnitude ‖u‖ave = 1.8 · 10−5 m/s are obtained. These are significantly better
results than the ones obtained using an uniform vertical discretization.

The analyses presented in this section aimed at understanding hydrostatic inconsis-
tencies and checking and adapting to the present case the results of paper [18]. While
for a simple rectangular geometry with quadratically varying bottom the conclusions
were the same, the situation became much more complicated on the complete mesh of
the lake: it appears that there is no way of eliminating hydrostatic inconsistencies with-
out refining the mesh to the point that computations become too expensive. The best
that can be done, according to the results obtained here, is to keep using an uniform
grid, to adopt a double sigma transform to better represent stratifications in the upper
layers where their effects are more important, and to apply an appropriate filter. The
solutions of subsequent simulations will need to be considered with care, especially when
velocities are low, to understand whether the observed flow structures are physical or
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spurious: the average error on the domain will remain low, but patches of higher error
have to be expected.

4.4 Inflow effects

The combined effect of inflow and stratification is now simulated: a pollutant is intro-
duced in the inflow continuosly for a period of time that is short compared to the global
residence time. Inflowing water will sink more or less deep and disperse to different
extents depending on its temperature in relation to the temperature stratification of
the lake. Simulating such process helps in predicting how polluting substances from
tributaries disperse in the lake, which regions (horizontally and vertically) are more
affected by pollution, and how long it takes for the substances to leave the basin. The
aim of this section is to obtain this kind of information for a simple test case, discussing
general behaviours, definitions of relevant quantities and methods for calculating them.

The domain is shown in Figure 4.12: it is a rectangle with inflow close to the north-
west corner and an open boundary with prescribed constant elevation on the east side.
The bottom elevation varies linearly along the north-south direction, with minimum
depth on the inflow side, and it is constant along the east-west direction. The 2D mesh
is made up of 1000 elements, with 18 layers (19 planes). Following the results about hy-
drostatic inconsistency, a fixed elevation plane was positioned at 25 m depth; above it, a
standard (uniformly spaced) sigma transform was adopted, and below it a non-uniform
transform with thicker layers close to the bottom was used.
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Figure 4.12: Geometry and depth for the inflow test case. Drawing not to scale for
readability; all lengths in meters

The inflow mass rate is 100 m3/s, constant in time. The fictitious tracer technique
used in [40] and already mentioned in section 4.2 is employed: in the first part of
the simulation, a tracer with unity concentration is introduced in the inflow. After
some time, the tracer concentration is set to zero in the inflow, and the simulation is
continued for 60000 seconds, which is the estimated global residence time according to
eq. (1.1): since the full volume of the domain is 6 · 106 m3, τ = 6 · 10−6/100 s = 60000
s. The temperature profile was defined as piecewise linear: increasing from 8◦C to 10◦C
between the bottom and 30 m depth, and from 10◦C to 20◦C between 30 m depth and
the surface.
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Figure 4.13: Evolution in time of first and second moment of the inflow fictitious tracer
distribution (step 2). Solid line: inflow temperature 6◦C; dashed line: 10◦C; dash-dotted
line: 15◦C; dotted line: 22◦C

A careful choice of parameters had to be made in order to have stability and con-
servation of tracers. It was observed that the results in terms of conservation were
improved by adding a spin-up period with the inflow rate growing linearly from zero to
the final, constant value. The setup is:

1. Spin-up: 45 steps of 10 s, inflow ramp in the first 300 s, then constant inflow, with
zero concentration of fictitious tracer.

2. 200 steps of 15 s, constant inflow rate with unity concentration of tracer. Total
mass of tracer at the end: 300000 kg (negligible outflow of tracer because of the
significant distance between inflow and outflow sections).

3. 4000 steps of 15 s, constant inflow rate with zero tracer concentration.

Results in terms of the moments defined in eq. (4.2) computed for the inflow tracer
are shown in Figure 4.13 for the first 3000 s after the spin-up (when the tracer is intro-
duced in the inflow). As the inflow temperature increases, the average depth reached
by inflowing water decreases, and so does the standard deviation of the concentration.

In the last step of the simulation, when no tracer is present in the inflow, the total
mass of tracer in the domain decays as shown in Figure 4.14. After some time in which
it remains constant, mass starts decreasing with a law that is close to an exponential,
so that globally the ratio of mass at time t to mass at time 0, M0, can be approximated
as

M

M0
(t) = min

(
1, exp

(
− t− t0

τ

))
(4.16)

This law was fit to the obtained time series by numerically minimizing the sum of square
deviations; the results are shown in Table 4.3.
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Figure 4.14: Time history of ratio of total tracer mass in the domain to initial tracer
mass. Time from end of tracer release in the inflow (step 3). Solid line: inflow temper-
ature 6◦C; dashed line: 10◦C; dash-dotted line: 15◦C; dotted line: 22◦C

Inflow
temperature (◦C)

τ (h) t0 (h)

6 7.67 1.41
10 11.49 4.46
15 15.94 2.27
22 10.82 1.37

Table 4.3: Parameters of function (4.16) fit to the time series

The appearance of an exponential decay is consistent with the continuously stirred
tank reactor (CSTR) model [38], [40]. Consider a basin, or a portion of a basin (e.g. a
bay, or a layer along the vertical, such as the epilimnion). Suppose that such domain is
continuosly stirred, so that the concentration C(t) of a tracer is always uniform in space:
C(t) = M(t)/V , where M(t) is the total mass of tracer in the domain. In the present
case, stirring is operated by inflowing water, that displaces water that was already there
in different manners at the different temperatures; also, behaving, at least initially, as
a jet, it entrains fluid. In a more general case, wind would act as a stirring agent too,
as already seen in section 4.2. Then, if there is no tracer in the inflow and there is
neglibigle return flow (like in step 3 of the present simulation), the tracer can only exit
the domain. This consideration and the hypothesis of uniform concentration imply that
the time variation of total tracer mass is proportional to the outflow rate Q (which, in
steady state, will be equal to the inflow rate):

Ṁ(t) = −QC(t) = −Q
V
M(t) = −1

τ
M(t) (4.17)

where the definition of global residence time (eq. (1.1)) was used in the last equality.
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Integration yields the exponential expression

M

M0
(t) = exp

(
− t
τ

)
(4.18)

In light of this definition, τ can be interpreted as the e-folding time, that is the time
taken by the tracer mass to reach about 36.8% of its initial value.

Two corrections are needed to apply the CSTR model to the present case. The first
is that exponential decay does not start right after the tracer stops being introduced.
This is because the first tracer particles take a finite time to reach the outflow section
(or, equivalently, mixing is not instantaneous). The delay before exponential decay
starts is represented by the term t0 in equation (4.16). The second correction stems
from the observation that the value of τ obtained by fitting the model to the data does
not correspond to the theoretical value τ = V/Q = 16.7 h: all estimated times are less
than this. The reason is that not all of the water volume takes part in the mixing; in
other words, the tracer mixes well only in a limited portion of the domain (and even
there, mixing is partial): so the volume V in the expression of τ should be more correctly
called stirred volume, and in general it does not correspond to the total volume.

4.5 Turbulence model comparison

Some initial tests on the lake mesh revealed difficulties in the use of the k−εmodel, which
would show convergence problems and unrealistic values in some areas (in particular
the shallow ones). The adoption of the mixing model was then considered, in view of it
being simple while still being able to account for stratification9. The aim of this section
is to compare the two on a very simple geometry, under the effect of wind.

A reference solution for turbulent mixing induced by surface stress in a stratified
flow was elaborated in 1981 by Kundu [32] using similarity arguments, that is assuming
that the solution can be expressed as

f(z, t) = F

(
z

h(t)

)
, (4.19)

f being any flow variable in the solution (velocity, density, tracer concentration, averaged
turbulent fluxes) and h being the depth of the mixed layer at the surface.

For high-Reynolds, statistically one-dimensional flow with linear initial density strat-
ification and zero initial velocity, the depth of the mixed layer at the surface is found
to evolve as

h(t) = Cuτ

√
t

N0
, (4.20)

where uτ is the friction velocity at the surface, N0 is the buoyancy frequency related
to the initial density stratification and C is a constant to be determined. The constant

9For stratified flows, the mixing length model is still a recommended option in Telemac3D, according
to the user manual.
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Figure 4.15: k − ε (red circles) and mixing length (blue triangles) numerical solutions
obtained with Telemac v. reference solution (black dashed line)

was estimated to be 1.047 from 1D numerical simulations, and 1.136 from experimental
data of Kato and Phillips (1969) [31]. The experiments were conducted in an annular
tank filled with water, with a rotating screen driving the fluid.

To test the turbulence models available in Telemac against the law (4.20), simu-
lations were performed on a rectangular domain of dimensions 1000 × 200 × 10 m
with constant and uniform wind and an initially linear vertical density profile, with a
variation of 12.5 kg/m3 from the bottom to the surface. Zero friction was imposed at
the walls and bottom to realize ideal conditions. Periodic boundary conditions were
imposed on the boundaries perpendicular to the wind direction, while no-penetration
conditions were set on the two remaining sides. This setup was devised in order to
reproduce the ideal conditions sought by Kato and Phillips in their initial experiment.
A passive tracer was positioned with initial concentration 1 in the surface layer and 0
below. The value of h was obtained from the solution at each time by selecting the
depth corresponding to the maximum derivative of passive tracer concentration. The
vertical mesh was made of 40 layers placed uniformly, yielding an average thickness of
about 0.25 m. 2000 steps of 5 seconds each were simulated. In the vertical direction, the
k− ε and mixing length models were employed in the two tests, while in the horizontal
direction a constant, uniform viscosity value was imposed. Results and comparison with
the reference solution are reported in Figure 4.15.

It can be observed that the slope of the mixing length numerical solution is closer
to the reference solution than the k − ε one. As a matter of fact, both models yield
reasonable results with respect to tracer distribution, while results differ largely for
velocity and turbulent viscosity (see Figure 4.16).
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Figure 4.16: Vertical profiles for the mixing length (solid line) and the k − ε (dashed
line) model at the end of the simulation

In [57] it is argued that the behaviour of 2-equation turbulence models on problems
such as this is largely determined by the value of the buoyancy constant Cε3 in the
equation for dissipation. The value used in Telemac, which is 1 for stable stratification
and 0 for unstable stratification, is nowhere close to any of the proposed ones. This
matter deserves further consideration, but such additional analysis was beyond the scope
of this project.

4.6 Parallelization

To investigate the effect of using the parallel version of the code on the computational
time, the last test of section 4.3 was shortened to 25 time steps of 10 s each and re-
peated with different numbers of cores. In Telemac, parallelization is handled using the
message passing interface (MPI), which allows working on distributed memory clusters.
Computations were run on a cluster on which the user is allowed to launch jobs on at
most 2 nodes at a time. Each node has an Intel Xeon E5-2640 v4 CPU, with 20 phys-
ical cores and 2 threads per core. The results are reported in Table 4.4. In particular,
speedup and efficiency are calculated as defined in [33, p. 20]:

Sp =
T1

Tp
, (4.21)

Ep =
T1

p Tp
=
Sp
p
, (4.22)

where p is the number of cores used.
This indicates that, as usual when parallelizing computations, increasing the number

of cores is beneficial only up to a certain point, as the time taken for communication
becomes the limiting factor, especially when multiple nodes are involved. It should be
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Cores Nodes Walltime Speedup Efficiency

1 1 5’53”
2 1 3’9” 1.87 0.93
4 1 1’39” 3.57 0.89
8 1 58” 6.09 0.76
16 1 45” 7.84 0.49
20 1 44” 8.02 0.40
32 2 45” 7.84 0.25
40 2 44” 8.02 0.20

Table 4.4: Speedup and efficiency for different numbers of cores. The walltime is the
actual physical time, as opposed to CPU time, which is the cumulative working time of
all cores

noted that the model computation used for this test is very simple, since it does not
include inflows or wind forcing. It may be expected that by including those effects the
workload of single cores will increase and the relative incidence of communication time
will decrease, thus leading to better speed-ups for larger numbers of cores than observed
here. Simulations with 32 and 40 cores were also run by using the corresponding number
of virtual cores on a single node, and the same results regarding walltime as the ones
reported in the table were obtained.

4.7 Remarks on the preliminary tests

In this section, some basic test cases investigating single phenomena that are relevant to
the whole lake and the possible choices and issues in modeling them were discussed. It
was shown that both pathlines and statistics based on fictitious tracers can be useful for
characterizing mixing both qualitatively and quantitatively. The importance of building
the mesh properly was underlined: in particular, it was found that the best choice for
this case is a uniform 2D grid on the horizontal, and a vertical discretization with a
fixed horizontal plane (its position depending on stratification) and non-uniform sigma
transforms above and below it. This choice yields reasonably controllable spurious
velocities and the ability to simulate wind interaction well, having very thin elements
at the free surface. The inflow test case confirmed the validity of the common practice
of increasing inflow rates gradually when they need to be introduced in the simulation.
In the last section, the behaviours of two different turbulence models were compared to
each other and to a reference solution, highlighting the need for further discussion.
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Chapter 5

Numerical simulations

This chapter presents the simulations done to assess the impact of the 2018 discharge
event of the Adige-Garda tunnel on the lake. First, computations on a rather coarse
mesh of the whole lake were run; then, a more refined mesh was built for the northern
part of the lake only. These simulations are used to better understand the flow field
features close to the inflow point.

5.1 Geometry and external forcing data

The boundary shape for simulations on the full lake was obtained as a shapefile from
the Regione Lombardia website1. In 2018, an high-resolution bathymetry survey was
started, but the relative data were incomplete at the time of working on the compu-
tations for this thesis, so the bathymetry from the 1966 survey of the Italian Military
Geographic Institute was used for simulations on the whole lake instead. The digital
version of the 1966 bathymetry data set consists of about 170000 points, while the
(incomplete) 2018 data consists of about 6000000 points. For the simulations on the
northern part of the lake it was possible to use the new 2018 bathymetry, since it
was complete in that area; the outline was drawn manually in BlueKenue before mesh
generation.

Wind data was obtained by inverse distance interpolation (see subsection 5.1.1 for
details) from values measured at the weather stations of Nago-Torbole (Meteotrentino2),
Limone sul Garda, Toscolano Maderno, and Manerba del Garda (ARPA Lombardia3).
These stations are the closest available to the lake, and are all situated within 30 m
height above the lake surface. Thermal stratification data were provided by APPA
Trento4; the approximate measuring point location is shown in Figure 5.1. Measure-
ments are taken at irregular intervals, about once a month. For the present project,
the profile measured on October 23, 2018 was used, taken as uniform over the lake.

1https://www.dati.lombardia.it/Territorio/Lago-10000-CT10/qm9t-uzst
2https://www.meteotrentino.it/
3https://www.arpalombardia.it/Pages/ARPA Home Page.aspx
4http://www.appa.provincia.tn.it/
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The inflow temperature was taken at the closest available measuring point, which is
the APPA station at canale Biffis, about 20 km downstream of the Mori-Torbole tunnel
derivation from river Adige. Because of the lack of data in the time interval of inter-
est (presumably due to the effects of the concomitant severe weather events), the time
series was first reconstructed using an autoregressive model, then averaged over the
inflow time, obtaining a value of 10.5 ◦C. Temperature change was considered the only
effect on density variations. As already discussed in section 2.3, this is the main effect.
The total inflown volume was about 17.500.000 m3, starting gradually at about 22:30
on October 29, peaking at 350 m3/s and decreasing until the end of the discharge at
about 16:00 on October 30. The time history of inflow was approximated as piecewise
linear according to the aforementioned known values. Inflow rate data for river Sarca
were obtained from Ufficio Dighe - Protezione Civile Trento5, while the corresponding
temperatures were provided by APPA Trento (private communication).

NT

LG

TM

MG

* S

Figure 5.1: Position of weather stations. NT: Nago-Torbole; LG: Limone sul Garda;
TM: Toscolano Maderno; MG: Manerba del Garda. S: thermal stratification measuring
point

5.1.1 Wind data interpolation

For wind variable in space and time, the Telemac3D user manual suggests the use of
subroutines based on inverse distance interpolation. However, these have some issues:

• Wind data is updated from the atmospheric data file only if the time reached in
the simulation is exactly equal to one of the times at which data is provided. Not
only does this lead to a zero order (piecewise constant) interpolation in time; it

5https://www.floods.it/public/DatiStorici.php
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also means that unfortunate combinations of time steps can lead to the wind data
never being updated.

• The inverse distance interpolation subroutine divides the space around each mesh
point into four quadrants and uses the nearest data point (weather station) in
each quadrant for interpolation. This leads to artifacts in the wind field: areas
of sharp variation along vertical or horizontal lines, as two adjacent mesh points
may have different weather stations as closest one in each quadrant. Moreover,
the interpolated value in points close to a station is not close to the value at the
station. These problems are shown in Figure 5.2(a), where weather stations are
marked by black squares.

(a) Default interpolator

(b) Modified interpolator

Figure 5.2: Wind speed norm from default and modified inverse distance interpolators.
Black squares: weather stations

These issues have been solved by modifying functions meteo.f and idwm t2d.f.
In the former, a linear interpolation in time was implemented before calling the latter
for interpolation in space. idwm t2d.f was rewritten with the same method (inverse
distance), but in a much simpler way, without using quadrants, and considering all
weather stations for interpolation in each point. This is motivated by the small number
of weather stations and by the fact that stations far from a given mesh point will be
automatically assigned a very small weight relative to the closer ones. The result of
these modification is reported in Figure 5.2(b). In most areas the result is the same,
but the field is much smoother in the second case, especially close to stations.

The inverse distance algorithm with exponent m is as follows:

f(x) =

∑N
i=1 fiwi(x)∑N
i=1wi(x)

, (5.1)
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where N is the number of stations and the weights wi(x) are defined as

wi(x) =
1

‖x− xi‖m
. (5.2)

fi is the known value at station xi. The method consists essentially in a weighted average
of the known values, where the values at the closest stations are assigned greater weights.
If implemented exactly this way, weights would be infinite at the stations, which is not
acceptable; there are two ways to solve this issue:

1. limiting weights;

2. defining f(x) = fi any time ‖x − xi‖ < dmin, where dmin is some minimum
distance.

The second choice has been implemented, to keep the code structure similar to the
original one. It was decided to use an exponent m=2; an higher exponent would yield a
less smooth field, with values almost identical to the ones at the closest station and sharp
variations between the areas of influence of the different stations. It can be proved [51]
that using this method the partial derivatives of f are zero at x = xi, for each i. This is
quite arbitrary and may not be desirable; corrections are possible, but were not explored
in this context.

An alternative method was considered and implemented, based on radial basis func-
tions (RBF) [55]. A radial function centered in xi is one of the form

φi(x) = φ(‖x− xi‖). (5.3)

For example, the inverse distance weights seen above are a possible choice of radial
functions; but the RBF method works in a radically different way. The interpolated
field is still written as a linear combination of the basis functions:

f(x) =
N∑
i=1

αi φi(x) = φ(r), (5.4)

but this time coefficients αi have to be determined by imposing

f(xi) = fi ∀i. (5.5)

This is done by solving a linear system of N equations. For the case of interest, the
number of stations is very low: less than 10 for the purposes of this project, and
in general typically much less than the number of mesh nodes. A direct method is
then a reasonable choice for solving the system; the Gauss elimination method was
implemented from scratch in the Fortran routine, avoiding the use of external libraries
which would have required recompiling the whole Telemac package. The basis function
was chosen as

φ(r) = exp(−k r2). (5.6)
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k can be taken as the inverse of some measure of the typical distance between stations,
squared. The choice of this parameter is critical because it determines the effective
support of the basis function: if not chosen properly, it can lead to the interpolated
value being zero or close to zero far from any station. This problem does not occur
when using the inverse distance method, since in that case the value at each point is
a weighted average of the known ones. On the other hand, the RBF method does not
require a special treatment close to the stations. A balance of these consideration lead
to the choice of using the inverse distance method, modified as described above.

Fortran source codes for both methods are available on GitHub6.

5.1.2 Extreme value analysis on Sarca flowrate

After a short review of extreme value theory, the generalized extreme value distribution
(GEVD) for the flow rates of river Sarca will be estimated, together with the expected
return period of the peak value observed in this scenario. This review is based on [10]
and [17].

Consider n independent and identically distributed (iid) random variables X1, X2,
. . . , Xn with cumulative distribution function F (x):

F (x) = P (X < x), (5.7)

where P stands for probability. The variables represent, in our case, measures of flow
rate at different times over a year. We look for the distribution of the maximum value
of the variables, which will be the distribution of annual maxima:

G(x) = P (max(X1, X2, . . . , Xn) < x). (5.8)

For the maximum value to be less than x, all variables must be less than x. Since
independence is assumed, this can be expressed as

G(x) =P [(X1 < x) ∩ (X2 < x) ∩ · · · ∩ (Xn < x)]

=P (X1 < x)P (X2 < x) . . . P (Xn < x)

=[F (x)]n
. (5.9)

For n → ∞, and under suitable assumptions that will be introduced shortly, the
distributions of maxima G tend to a universal form for a very broad class of underlying
functions F . This is analogous to what happens for the distribution of the sum of iid
random variables, which tends to a Gaussian according to the central limit theorem.
We define the right endpoint of the underlying distribution

x∗ = sup{x : F (x) < 1} (5.10)

which can be either finite or infinity. If it is finite, then G(x) = [F (x)]n for n→∞ is a
step in position x∗, while the corresponding probability distribution function is a Dirac

6https://github.com/marcogambarini/interpolation-telemac
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delta centered in x∗. If it is infinity, then G(x)→ 0 for any real value of x. In both cases,
the result is a degenerate distribution. It turns out that a non-degenerate distribution
of universal form can be obtained by a linear change of variables (normalization). This
result is formalized in the following theorem, known as the Fisher-Tippett-Gnedenko
theorem:

Theorem 4. Consider the iid random variables X1, X2, . . . , Xn with cumulative
distribution function F (x). If there exist two sequences an > 0, bn such that

lim
n→∞

P [max(X1, X2, . . . , Xn) < anx+ bn] = lim
n→∞

[F (anx+ bn)]n = G(x) (5.11)

where G(x) is a non-degenerate distribution function, then

G(x) = exp

[
−
(

1 + γ
x− µ
σ

)−1/γ
]

(5.12)

which is the GEVD (generalized extreme value distribution). µ is the location parameter,
σ is the scale parameter and γ is the shape parameter.

Equation (5.11) is a condition on the underlying function F . For our purposes,
we are not directly interested in the implications of this condition, but rather in the
fact that function G(x) exists. As a matter of fact, it is possible to apply the so-
called block maxima sampling, by fitting expression (5.12) directly on the sequence of
maximum yearly flowrates extracted from the dataset. This was done in Matlab using
the function gevfit7, that returns a maximum likelihood estimate of the parameters γ,
σ and µ.

An interesting information that can be extracted from the distribution after fitting is
the return period Tx0 , which is the mean time between events corresponding to a value
X ≥ x0. In other words, we can estimate how often we should expect an event at least
as strong as a given one to happen. The probability w(m) that the value is exceeded
only at the mth extraction, after not happening in the m− 1 extractions before that, is

w(m) = [F (x0)]m−1(1− F (x0)) (5.13)

since (1− F (x0)) is the probability of exceeding x0 and F (x0) is the probability of not
exceeding it. The return period is the expected value of m:

Tx0 = E[m] =
∞∑
m=1

mw(m) (5.14)

It can be proved, using the expression for the sum of an infinite geometric progression,
that

Tx0 =
1

1− F (x0)
(5.15)

7https://mathworks.com/help/stats/gevfit.html
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Figure 5.3: Probability plot with sample data (circles) and fitted distribution (line) (a),
pdf (blue dotted line, left vertical axis) and cdf (red solid line, right vertical axis) (b)
for the GEVD fit
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Figure 5.4: Flow rates for river Sarca (solid line) and Adige-Garda tunnel (dashed line),
year 2018
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For the present case, data were available from 1994 until 2020, so 27 samples could
be extracted. The estimates for the parameters are γ̂ = 0.3156, σ̂ = 100.33 m3/s,
µ̂ = 131.21 m3/s. The probability plot, showing how well the distribution fits the data,
and the probability and cumulative distribution functions are shown in Figure 5.3. The
maximum value of flowrate in the scenario analyzed in this thesis was Q0 = 461.9 m3/s,
recorded on October 30th 2018 at 02:30. The corresponding return period is estimated
using equation (5.15) to be about 10 years. In the available time series, this value was
exceeded on September 20th, 1999 (675.09 m3/s), October 3rd, 2020 (622.07 m3/s) and
June 28th, 1997 (473.79 m3/s). The Sarca river flowrate in the present scenario is then
a very large value compared to the average, but not an historically exceptional event.

The temperature data for Sarca were quite sparse: among the available measure-
ments, the closest in time to the tunnel opening were taken on October 8th and Novem-
ber 19th. The average value of the two was taken, equal to 11.6◦C. Flowrate data for
the Sarca river (measured) and the Adige-Garda tunnel (modelled) are shown in figure
5.4 for the timeframe of interest.

5.2 Global simulations

The mesh used for simulations on the entire lake was uniform horizontally, with typical
edge length of 150 m, and was composed of 50 layers in the vertical direction (51
planes). The mixing length model was used in the vertical direction with Quetin’s profile
(equation (2.38)) and the Munk-Anderson damping function (equation (2.41)), while a
constant viscosity was imposed in the horizontal one, with a value of 2 × 10−2m2/s,
obtained by calibration in [4]. The Nikuradse model was used for bottom and lateral
wall stresses. The simulation was divided into the following phases:

1. A 7-day spinup period, from 22:00, 22/10/2018 to 22:00, 29/10/2018, with wind
forcing and no heat transport/diffusion (frozen stratification); 30 seconds time
step.

2. A 19-hour simulation corresponding to inflow from the tunnel, with wind forcing
and heat transport/diffusion; 10 seconds time step.

3. A 4-day simulation after the end of inflow from the tunnel, thus ending at 17:00,
3/11/2018, with wind forcing and heat transport/diffusion; 30 seconds time step.

During phases 2 and 3, a tracer was introduced in the inflow with unity concentration
to track the evolution of incoming water. The inflow was distributed on 3 boundary
elements for numerical reasons; this has an impact on the correct representation of
inertia, as will be discussed later. Heat transfer at the lake surface was neglected; this
has an impact on mixing phenomena, but it was not considered an issue because of
the relatively short time frame of the simulation. Taking it into account would require
using more advanced assimilation or simulation techniques for weather data, because
radiation plays a major role, and the radiation heat flux is influenced by the surrounding
orography and by cloud cover. Using a simple formula based on air temperature data
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Tunnel inflow

River Sarca inflow

(a)

(b)

Figure 5.5: Inflow tracer distribution at 17:00, 30/10/2018: view (a) from above, slice
at 44 m depth, and (b) from south, slice at the inflow point latitude. The dashed line
corresponds to the section cutout. Figures out of scale for better visualization

obtained by interpolation from values at few stations would probably be a quite limited
improvement. Floating particles were released at the discharge point of the tunnel in
order to generate pathlines. A first group was released during the inflow, proportionally
to the flow rate, and another after the end of the inflow.

During the inflow time, water coming from the tunnel travelled horizontally behaving
as a jet for a limited distance before starting to plunge to depth: this happens when
buoyancy forces start dominating on inertia. In the following phase, water descended
to a depth of about 44 m on average due to its density relative to the ambient one, and
started propagating as an intrusion (see section 2.9). The intrusion rolled up horizontally
(see Figure 5.5): this can be due to the Coriolis effect. This statement was confirmed by
repeating phase 2 of the simulation without a spinup period and without the action of
wind, but with the Coriolis force: the structure of the solution is qualitatively the same,
confirming that in this phase non-inertial effects dominate on wind-induced currents
and mixing. It can be noted that part of the inflown water travels towards the mouth
of river Sarca. Such observation can lead to a reasonable suspect that the Sarca inflow
may influence the dispersion of tracer from the tunnel: this will be investigated in the
next section. Particles released during the inflow time remained close to the release
point, suggesting the presence of an hydrologic front corresponding to the downwelling
of inflowing water and the convergence of surface currents in front of the inflow section.
This result is confirmed by videos shot during the opening8 and is commonly observed

8https://www.youtube.com/watch?v=C2JNK83eldc
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(a) Inflow tracer vertical distribution: first moment (thick solid
line), first moment ± second moment (filled area); vertical dashed
line: end of inflow time
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(b) Ratio of water volume inflown from the Adige-Garda tunnel to total
lake volume, computed for the region north of the section in Figure 5.5.
Solid line: data from the simulation; dashed line: exponential fit

Figure 5.6: Inflow tracer statistics for the global simulation
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in estuaries [41].
In the following days, due to wind-induced currents and turbulent mixing, the

barycenter of the tracer distribution moved closer to the surface, while the second
moment of the distribution increased as shown in Figure 5.6(a). The first and sec-
ond moments are computed according to their definitions, reported in equation (4.2).
Accordingly, the concentration of tracer increased at the surface, in particular at the
northern shore (close to the town of Riva del Garda) and at the eastern (Veneto) shore.
This is due to upwelling: as already observed in [6], the predominance of strong north-
ern winds together with the Coriolis effect generates a secondary circulation with down-
welling at the western shore and upwelling at the eastern; a similar result is reported
in [22], relative to a different opening event of the tunnel. Floating particles released
after the end of the inflow travelled about 3 km south along the eastern shore in 24
hours, suggesting that such area is the most influenced by possible presence of floating
debris from the tunnel. As done in section 4.4, the flushing time of inflown water from
any given section of interest can be estimated. For instance, Figure 5.6(b) reports the
result obtained considering the portion of lake north of the tunnel inflow latitude (see
Figure 5.5): the e-folding time is 44 hours, which can give an idea of the time scale of
the dispersion.

Since a large part of the debate about the impact of water released from the tunnel is
about thermal effects, an additional simulation was run without the inflow. A close-up
analysis of absolute temperatures would be of limited validity because of the lack of
surface heat exchange in the model; but since both runs were done with this hypothesis,
a mutual comparison can provide insight. Figure 5.8 shows the surface temperature
anomaly in the area interested by the presence of inflow tracer on November 3rd, 2018,
four days after the discharge ended. The anomaly is computed as the temperature
difference between the cases with and without inflow. The largest negative temperature
anomaly is obtained in the northern part of the lake and it exceeds -2◦C. More to the
south, the western shore is almost unaffected, while on the eastern shore the temperature
anomaly is still negative and generally less (in absolute value) than -1◦C. A patch of
positive temperature anomaly appears in the northern region, which can be attributed
to water being displaced by the intrusion and the currents it generates. On the days
before November 3rd, a small temperature anomaly emerged, mainly concentrated at
the northernmost shores. It should be noted that the simulations showed temperature
differences also farther from the inflow section, in the southern basin, which can be
assumed to be due to convergence problems in the shallow part of the lake. This
fact had been a concern from the start, and leaves doubts about the use of the sigma
transform in a lake with such large depth variations, even when all the precautions
described in section 4.3 are taken. However, the results in the northern trunk have the
clear pattern described above.

This analysis focused on the surface temperature because this is the layer in which
most biological phenomena happen, and since it is the most important for human activi-
ties. A detailed discussion of the biological effects of this temperature change is beyond
the scope of this work, but the results presented here can be an important premise
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Inflow tracer distribution in the region of lake surface shown in (a) at 17:00,
30/10/2018 (b); 17:00, 30/10/2018 (c); 17:00, 1/11/2018 (d); 17:00, 2/11/2018 (e);
17:00, 3/11/2018 (f). Data from the global simulation
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(a) Temperature difference between sim-
ulations with and without inflow

(b) Inflow tracer distribution

Figure 5.8: Surface maps at 17:00, 3/11/2018. Data from the global simulations

for hydrological analyses, as they provide a first assessment of the actual impact of an
intense discharge event on the lake.

5.3 Local simulations

Simulations were repeated on a finer mesh of the northernmost region of the lake for
better resolution of the flow structure. The southern boundary was chosen far enough
from the tunnel inflow section that no amount of tracer reaches it in the first 24 hours
after the tunnel opening, and the water level was imposed as equal to its reference value
on this boundary; this choice is justified by the distance of the boundary from the area
of interest. The target element edge length was set to 5 m in a region of radius ∼ 300
m around the inflow point, then smoothly transitioning to a target edge length of 50
m in the rest of the domain. The much smaller element size with respect to the global
simulation required reducing the time step, to ensure stability of the numerical schemes
(see section 3.5.2). Adequate time steps had to be found by trial and error, and the
final setup was as follows:

1. A 2-day spinup period, from 22:00, 27/10/2018 to 22:00, 29/10/2018, with wind
forcing and no heat transport/diffusion (frozen stratification); 10 seconds time
step.

2. A 19-hour simulation corresponding to inflow from the tunnel, with wind forcing
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and heat transport/diffusion; 5 seconds time step for the first 5 hours, 2 seconds
time step for the remaining time. The required reduction of the time step is due
to the inflow rate increasing to its maximum value, leading to a velocity increase
near the inflow section.

The same settings with respect to turbulence models were used as in the global simula-
tions. In this case too, the inflow was distributed on multiple boundary elements; this
time, the modelled inflow width amounted to about 50 m, as can be seen in Figure 5.9,
thus still larger than the actual one, but much closer to it than in the global simulation.
This is reflected, as already mentioned, on the modelled initial inertia of the inflow,
which is slightly less than the one in the real conditions, hence the extent of the surface
layer of tracer at the mouth of the tunnel is probably underestimated. Moreover, Figure
5.9 clearly shows a convergence of velocities at the edge of the area where the tracer
concentration is high: this is where downwelling occurs.

0.56 m/s

10 m

Figure 5.9: Surface velocity map at the tunnel inflow point at 03:00, 30/10/2018. Back-
ground colour: surface concentration of inflow tracer

Figure 5.11(a) shows flow velocities and tracer concentration on an horizontal slice at
49 m depth, while Figure 5.11(b) shows a vertical slice. Close to the inflow point, the flow
behaves as a jet. The velocity gradually decreases as the jet section increases and some of
the surrounding water is entrained, mixing with the inflowing water and thus changing
its temperature. In the region far from the inflow point, the flow shows the typical
behaviour of an intrusion. This was verified by comparing the velocity of the front
relative to the current along the section cutout line calculated in the simulation with
the one predicted by equation (2.79). The greatest difficulty in doing this comparison
is in defining the boundary of the intrusion properly. The orders of magnitude match
for any reasonable choice anyway. For example, subtracting velocity vectors from the
numerical solution just upstream and downstream of the front along the cutout line (at
point marked F in the horizontal section) and taking the norm, a value of 0.085 m/s is
obtained; on the other hand, a theoretical estimate computed by sampling density and
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intrusion thickness in the points marked F1 and F2 in the vertical section yields a value
of uF = 0.089 m/s. This fact shows that the main driver of the tracer propagation is
indeed the hydrostatic pressure gradient, as assumed in section 2.9, and not turbulent
or molecular diffusion as one might have reasonably suspected.

The simulation was repeated including the inflow from river Sarca. Since the river
had a very large flow rate in the days before the discharge from the Adige-Garda tunnel
(see figure 5.4), it was important to simulate the effects of its inflow during the spinup
phase, in order to obtain a realistic velocity field after the initialization. This required
avoiding the frozen stratification assumption: heat advection-diffusion needed to be
activated from the start so that the thermal effects of the inflow of relatively cold water
from the river could be taken into account.

Tunnel inflow

River Sarca inflow

Figure 5.10: Surface velocity map with inflow from river Sarca at 06:00, 30/10/2018. A
counterclockwise gyre is clearly visible

The inflow of river Sarca generated an intrusion, but the most evident feature of
interest for the present study is that it created a surface counterclockwise gyre (see
Figure 5.10) that was not apparent in the simulations without the Sarca inflow. It is
interesting to notice that such flow feature had been observed in interviews with people
who work or practice sports on the lake (see [5]), but in the rather different context
of summer conditions, characterized by daily breezes and flowrates of river Sarca much
smaller than the ones considered in this scenario. This current, having an impact also
at depth, influenced the transport of the tracer from the Adige-Garda tunnel, leading
to higher concentrations of such tracers close to the northern shore than compared to
the case in which the effect of Sarca is not taken into account. While this effect cannot
be expected to influence the global tracer dispersion pattern, it indicates that global
simulations without the Sarca inflow may underestimate the tracer distribution along
the northeastern shore.
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Figure 5.11: Detail of the jet-intrusion dynamics close to the tunnel inflow; horizontal
(a) and vertical (b) sections. Red dashed lines: projection of the vertical section on the
horizontal section and vice versa. Background colour: concentration of inflow tracer.
Data sampled at 03:00, 30/10/2018
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5.4 Comparison with SAR data

In this section, the results of the global simulations are compared with data from
satellite-mounted SAR. Because of cloud cover, optical images were not available for
the interval of interest.

SAR is the acronym of Synthetic Aperture Radar. To understand how this remote
sensing system works, we first recall how a radar works. The core of a radar system is a
transmitting/receiving antenna, which emits coherent electromagnetic wave trains and
listens for their echo. The echo can be produced by reflection of the wave on an object
or surface; in general, a target. The delay and phase shift of the received pulse with
respect to the sent pulse depend on the distance between the radar and the target. The
ratio of the received pulse amplitude (backscatter) to the sent pulse amplitude depends
on many properties:

• the target size and distance;

• the target electromagnetic properties, which determine the relative amplitude of
the reflected and transmitted waves at its interface;

• the surface roughness of the target. Indeed, while the wave reflected by a smooth
surface has maximum amplitude for a reflection angle equal to the incidence angle,
and negligible amplitude in all other directions, a rough surface scatters incident
waves in all directions randomly. A surface can have a smooth or rough be-
haviour depending on the ratio of its typical roughness scale k to the incident
electromagnetic wavelength λ: if k is larger than, or comparable to, λ, we have a
rough-surface behaviour.

Radar resolution can be improved by using wide-band signals, and 2D mapping of targets
is made possible by the adoption of long arrays of antennas, instead of a single antenna.
The SAR technology is a modification of the antenna-array setup which exploits the
motion of the radar antenna over a target region. A single antenna travels along a
trajectory, sending and receiving pulses at predetermined intervals. The antenna can
be mounted on a rail, aircraft, or satellite.

Satellite-mounted SAR data can be used to estimate the wind field over a body of
water by detecting the surface roughness with lengthscale comparable with the elec-
tromagnetic wavelength. Such lengthscale, indeed, depends on wind forces, and semi-
empirical relationships have been formulated to retrieve wind speed from SAR [61].
SAR data can also be relevant to water-quality assessments [62], in particular for oil
spill detection and turbidity estimation. Some advantages of SAR data over optical
images are the possibility of observing at night and a less marked influence of weather.

While the use of SAR data for marine applications is quite common, it is much
less widespread in limnology, so that not many references or semi-empirical models are
available. However, it is still possible to compare the available images with the results of
simulations in terms of surface tracer distribution. Since at the time of data acquisition
the wind field over the lake was smooth, with a northern wind of moderate intensity
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at all stations, then its effect on backscatter can be considered approximately uniform;
this means that the dominant cause of backscatter variation must be a change of the
electromagnetic properties of the surface water. Thus, a change in backscatter could
be attributed to the presence of turbidity or temperature variations and, ultimately, a
possible signature of the presence of water from the Adige-Garda spillway.

Figure 5.12: SAR backscatter map at 17:06, November 3rd 2018 (full map and detail of
the northern region with comparison with numerical simulations)

SAR data are obtained from the Sentinel 1 mission9. For the present scenario,
the most reliable image was the one taken at 17:06 on November 3rd, because it was
the only available time with no precipitations. Precipitations influence the backscatter
value, so in presence of rain the interpretation of the images becomes more critical. The
backscatter map is reported in Figure 5.12. Comparing the data with the results of
numerical simulation, we can see that the extension of the surface tracer concentration

9https://sentinel.esa.int/web/sentinel/missions/sentinel-1
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Figure 5.13: Scatterplot of SAR backscatter v. tracer concentration from the simula-
tions. Black solid line: polinomial regression of order 3

along the lake’s longitudinal axis in the northern region is reasonably consistent with the
backscatter anomaly in the SAR image: this corroborates the results of the numerical
simulations, showing that the spreading of the tracer was predicted correctly. The two
distributions, though, do not match except for their similar spatial extent along the
northern trunk. Moreover, the SAR image shows a high backscatter anomaly along the
western shore, that is due to the terrain slope. This is an effect called foreshortening [20]
[39]: slopes directly facing the radar (fore-slopes) appear more illuminated and smaller
than their actual extent, while back-slopes appear dark and larger than they actually
are. Once the foreshortening effect is removed, the presence of correlation between the
observed SAR data and the results in terms of tracer concentration can be investigated
objectively using a scatter plot, shown in Figure 5.13. The plot is obtained by first
interpolating the SAR data over the grid of the numerical simulations and then using
the Matlab function scatter kde10. The colour of each point depends on the density of
other points in its neighbourhood. For tracer volume fractions less than about 0.008, a
correlation emerges; the correlation is lost for greater values of tracer volume fraction,
also because of the low number of data points in such region.

We can thus conclude that, although there are some interpretation difficulties and
the literature in this field is still quite scarse, the analysis of SAR images can be used
to validate the results of simulations. More data would be needed to obtain statistics
with better significance, but the other satellite images available for the present scenario
could not be used because of the weather conditions.

10https://it.mathworks.com/matlabcentral/fileexchange/65728-scatter-plot-colored-by-

kernel-density-estimate

92

https://it.mathworks.com/matlabcentral/fileexchange/ 65728-scatter-plot-colored-by-kernel-density-estimate
https://it.mathworks.com/matlabcentral/fileexchange/ 65728-scatter-plot-colored-by-kernel-density-estimate


Chapter 6

Conclusions

In this thesis, CFD simulations on lake Garda were carried out in order to understand the
effects of a release of water from the Adige-Garda tunnel on the lake and to describe the
relevant flow features. The main and most characterizing results obtained are summed
up here, concerning both water quality properties and flow physics.

Since inflowing water is colder, and thus denser than the surface water (salinity
being regarded as a secondary effect), it plunges to depth propagating first as a jet, and
later as an intrusion. The main driver is thus the hydrostatic pressure gradient due to
the density difference between the water discharged from the tunnel and the ambient
stratification, rather than turbulent or viscous diffusion as might have been expected
for such a scenario. This was confirmed by comparison between the numerical solution
and an analytical model obtained by an extension of models available in the literature
on intrusions. The Coriolis effect was also observed to have a relevant influence. On
the surface, an hydrologic front forms close to the inflow point, meaning that surface
velocities converge close to the lines of plunging of the inflowing water; the presence
of a clear color demarcation on the surface is confirmed by eyewitnesses (videos taken
during the event). The water from the tunnel starts slowly reemerging to the surface
in significant quantities only hours after the opening event is over; this was observed
also in a previous paper on the subject [22]. The eastern shore is the most affected
by the arrival of the inflown water as the current travels southwards, thus affecting
temperature and pollutant concentration in such area. This effect is consistent with
the fact, established in previous research [43], that under prevalent northern winds a
circulation develops on transverse planes due to the Coriolis effect, with downwelling at
the western shore and upwelling at the eastern. The extent of the surface distribution of
tracer at the end of the simulation is also in good qualitative agreement with satellite-
mounted SAR images. It was possible to estimate the temperature anomaly distribution
on the surface with respect to an idealized case in which the tunnel does not discharge
water.

This work also highlighted many modelling criticalities and uncertainties. The lack
of hydrodynamic measurements in the lake limits the possibility of calibrating the model
properly or validating the results. In particular, this is reflected by the difficulty in set-
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ting the turbulence models. The model choice proved very doubtful in itself, since
different models lead to quite different solutions even on very simple domains. Indeed,
the research about the possible modelling choices, and even about the underlying basic
physical phenomena of turbulence in stratified flows, still has many open questions.
Concerning boundary conditions, imposing atmospheric forcing data correctly is not
trivial, and a more refined choice would have been coupling the hydrodynamic simula-
tions with weather simulation, but this was not possible in the time frame of a master’s
thesis. The most important possible improvements and developments are thus related
to turbulence models and external forcing.

I am hopeful that the discussions reported here may be helpful for a future devel-
opment of studies such as this, and that the results obtained in this project may be
expanded further. Also, I hope that this thesis can be useful for other people with the
same background as mine, aerodynamics, who are interested in working on this kind of
problems.
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Appendice A

Estratto in italiano

A.1 Introduzione

Lo scopo di questo lavoro di tesi è valutare, tramite simulazioni idrodinamiche, gli effetti
del vento e degli influssi sulle proprietà termiche e di miscelamento del lago di Garda,
con particolare attenzione all’evento di apertura della galleria Adige-Garda avvenuto
nel mese di ottobre 2018.

Il lago di Garda è il più grande lago italiano, con una superficie di 368 km2, e uno dei
più profondi, con una profondità massima di circa 350 m. Il suo immissario principale è
il fiume Sarca, che entra nel lago a nord, e l’unico emissario è il fiume Mincio, che esce
dal lago a sudest. A metà del XX secolo (i lavori di costruzione sono stati svolti tra il
1939 e il 1959) fu costruita una galleria in modo da poter scaricare nel lago l’acqua del
fiume Adige in caso di piena. Il lago si può considerare diviso in due regioni in base alla
batimetria: il ramo settentrionale, allungato e profondo, con fondale ripido vicino alla
riva e pressoché piatto lungo l’asse longitudinale, simile ad altri laghi subalpini come
il Lario e il Maggiore, e il bacino sudorientale, relativamente poco profondo. Le due
regioni sono separate da una cresta sommersa che si estende dalla penisola di Sirmione
alla punta san Vigilio (mostrate nella mappa in Figura 1.2).

Le simulazioni sono state effettuate utilizzando il codice idrodinamico Telemac3D1

per la soluzione numerica delle equazioni di Navier-Stokes con media di Reynolds
(RANS) discretizzate tramite il metodo degli elementi finiti.

Nel capitolo 1 viene data un’introduzione generale alla limnologia, ai problemi che
affronta e in particolare, tra questi, ai più rilevanti per il Garda; segue una revisione
degli articoli di ricerca a riguardo.

Nel capitolo 2 vengono presentate le equazioni di governo del problema, le ipotesi su
cui sono basate e alcune possibili scelte modellistiche. Viene inoltre derivato un modello
analitico per le intrusioni.

Il capitolo 3 mostra i metodi numerici per la soluzione delle equazioni descritte nel
capitolo 2: la discretizzazione dello spazio (generazione della griglia di calcolo) e del
tempo e il trattamento separato dei diversi termini delle equazioni (metodo a passi

1http://opentelemac.org/
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frazionari). Vengono richiamate le principali proprietà del metodo degli elementi finiti
e dei metodi a distribuzione del residuo (MURD).

Nel capitolo 4 vengono descritte alcune semplici, ma rilevanti, simulazioni prelimi-
nari, effettuate introducendo gradualmente fenomeni fisici e difficoltà modellistiche in
modo da comprendere la fisica di base e poter scegliere in modo appropriato modelli e
parametri.

Il capitolo 5 riporta i parametri e l’organizzazione delle simulazioni dell’apertura
della galleria. Vengono investigati gli effetti delle circolazioni indotte dal vento, della
stratificazione e dell’influsso del fiume Sarca sulla dispersione dell’acqua scaricata nel
lago, prima a livello globale (intero lago) e poi a livello locale, su una griglia più fine.

Il capitolo 6 è un sommario dei principali risultati. Vengono discusse le incertezze e
i possibili sviluppi dell’analisi presentata.

A.2 Conclusioni

I principali risultati di questa tesi riguardano due aspetti principali: la fisica della
corrente indotta dall’influsso dalla galleria e le sue conseguenze in termini di dispersione
di eventuali sostanze inquinanti in soluzione.

L’acqua scaricata dalla galleria, essendo più fredda e quindi più densa rispetto al-
l’acqua del lago alla superficie, tende a scendere in profondità. In seguito a un compor-
tamento inizialmente simile a quello di un getto, la corrente assume le caratteristiche di
un’intrusione, cioè una corrente governata principalmente dalla differenza di densità tra
il suo interno e la stratificazione dell’ambiente. Questa affermazione è supportata dal
confronto tra la soluzione numerica e un modello analitico sviluppato a partire da un’e-
stensione di modelli disponibili in letteratura. Anche l’effetto di Coriolis si è dimostrato
avere un’influenza rilevante. In superficie, si osserva la formazione di un fronte idrolo-
gico attorno al punto di scarico: le velocità superficiali convergono in corrispondenza
delle linee lungo cui l’acqua in ingresso si inabissa; tali linee sono ben visibili a causa
della differenza di turbidità, e quindi di colore, tra l’acqua dell’Adige e quella del lago,
e la loro presenza è confermata da testimonianze video dell’evento. L’acqua immessa
dalla galleria, evidenziata da uno scalare passivo nelle simulazioni, inizia a riemergere
in quantità significative ore dopo la chiusura della galleria; questo effetto è stato os-
servato anche in un precedente studio del problema [22]. La riva est del lago risulta
la più interessata dall’arrivo dell’acqua dalla galleria, con conseguenti effetti termici e
di concentrazione di inquinanti. Questo effetto è consistente con il fatto, osservato in
lavori di ricerca precedenti [43], che in condizioni di vento prevalente da nord si creino
circolazioni su piani trasversali a causa della rotazione terrestre, con downwelling alla
riva ovest e upwelling alla riva est. I risultati in termini di distribuzione di tracciante in
superficie al termine della simulazione sono in buon accordo qualitativo con i dati SAR
disponibili. È stato possibile stimare la distribuzione dell’anomalia di temperatura in
superficie rispetto al caso ideale in cui la galleria non fosse stata aperta.

Questo lavoro di tesi ha evidenziato diverse criticità e incertezze modellistiche. La
carenza di misure idrodinamiche nel lago limita la possibilità di calibrare adeguata-
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mente il modello e validarne i risultati. In particolare, questo problema si riflette sulla
difficoltà di impostazione dei modelli di turbolenza. La scelta dei modelli si rivela di
per sè critica, dato che diversi modelli portano a risultati diversi anche su domini molto
semplici. In effetti, la ricerca sulle scelte modellistiche e sulla fisica di base della tur-
bolenza in ambienti stratificati presenta molte questioni aperte. Rispetto, inoltre, alle
condizioni al contorno, imporre correttamente le forzanti atmosferiche non è banale, e
una scelta più accurata sarebbe stata accoppiare le simulazioni idrodinamiche con simu-
lazioni meteorologiche, ma questo non è stato possibile per motivi di tempo. Pertanto,
i principali miglioramenti dell’analisi presentata riguardano i modelli di turbolenza e le
forzanti atmosferiche.

Spero che i risultati e le discussioni riportate in questa tesi possano essere utili per
lo sviluppo ulteriore di studi come questo, e che questo testo possa essere utile ad altri
studenti di aerodinamica che, come me, siano interessati a problemi di fluidodinamica
ambientale.
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