
Politecnico di Milano
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science – Aeronautical Engineering

Enhanced General Procedures for
Optimal Design of Aircraft

Propellers

Supervisor
Prof. Lorenzo Trainelli

Co-Supervisor
Prof. Carlo E. D. Riboldi

Candidate
Sergio Stefanelli – 900057

Academic Year 2019 – 2020





Gutta cavat lapidem non vi, sed saepe cadendo
— Tito Lucrezio Caro

iii





Ringraziamenti

Essere arrivato fin qui vuol dire per me essere giunto all’apice di un percorso lungo, faticoso
e, allo stesso tempo, gratificante. Prima di procedere con la trattazione, vorrei dedicare
qualche riga a tutti coloro che hanno contribuito, per via diretta o indiretta, alla stesura
di questa tesi.

Innanzitutto, sono profondamente grato ai miei due relatori, prof. Trainelli e prof.
Riboldi, per avermi seguito sin dai primi giorni di lavoro e per i loro preziosi consigli.

Il ringraziamento più sincero va poi alla mia famiglia, ai miei genitori e le mie sorelle,
per il loro sostegno costante e instancabile in tutti questi anni e per aver sempre creduto
in me, soprattutto nei momenti in cui persino a me risultava difficile farlo. Senza di voi
non ce l’avrei mai fatta.

Come non menzionare poi tutti gli amici che hanno riempito questi anni universitari
di esperienze indimenticabili che porterò sempre con me.

Seba, Lollo, Macchia, Memma, Marti, Rocco, Pietro, Aldous, Virtu, Jonny, Vitto,
Nicco e tutti gli altri sparsi per l’Italia: grazie per tutte le feste, cene, serate al Nepentha,
i viaggi, i capodanni, le risate fino alle lacrime... Siete stati la mia seconda famiglia per
un fuori sede come me.

Quisiera agradecer también a Jaime De Zubeldia por haber estado tan atento y disponible
y cuyos consejos fueron fundamentales para coger el camino correcto desde el principio del
estudio.

Asimismo, quisiera dedicar unas palabras a mio tío Toni, quien siempre ha estado a mi
lado apoyándome infatigablemente.

Infine, una dedica va al mio amico ed ex compagno di studi Pit, che ora non c’è più
ma sarà sempre presente nei cuori di tutti noi.

v





Sommario

In tempi recenti, gran parte della comunità scientifica ha mostrato sempre più interesse nello
sviluppo di modelli e metodi per progettare correttamente, a seconda dei requisiti, uno dei principali
- nonché uno dei primi - strumenti usati nella propulsione aeronautica: l’elica.

In questo senso, il presente elaborato ha come oggetto lo sviluppo di una metodologia che
permette di svolgere un progetto ottimo e analisi di prestazione di eliche, prendendo le mosse da
quella precedentemente sviluppata da De Zubeldia all’interno della sua tesi di laurea magistrale,
nell’intento - andato in seguito a buon fine - di migliorarla ed ampliarne le possibilità. Il calcolo
delle prestazioni viene svolto applicando la teoria del momento dell’elemento di pala (BEMT),
la quale richiede la disponibilità dei coefficienti aerodinamici bidimensionali del profilo adottato
in funzione dell’angolo di incidenza, numero di Reynolds e numero di Mach. Ciò è stato svolto
utilizzando il software XFOIL e dati sperimentali.

Rispetto allo sviluppo precedente, il database aerodinamico, inizialmente contenente solo i dati
relativi al profilo NACA0012, è stato esteso anche ai profili NACA16-012, RAF-6 e Clark-Y. Inoltre,
grazie ad uno studio di affidabilità di XFOIL tramite il confronto con i risultati provenienti da CFD
per mezzo delle librerie di OpenFOAM, è stato possibile utilizzare il software di M. Drela fino a
un numero di Mach pari a 0.6, rispetto al limite usato da De Zubeldia di 0.5.

In aggiunta, la formulazione è stata modificata in modo tale da includere gli effetti rotazionali
nei coefficienti aerodinamici, i quali, specie ad alti angoli di incidenza, risentono molto di tali effetti
e possono variare in maniera considerevole. Per far ciò, dopo aver compiuto una scrupolosa analisi
sullo stato dell’arte, è stata applicata la correzione proposta da P. Chaviaropoulos e M. Hansen.

In seguito, questa nuova formulazione è stata implementata in ambiente MATLAB® presen-
tando due modalità principali di funzionamento: (i) calcolo delle prestazioni per una geometria
data e (ii) ottimizzazione della geometria. In questo modo, è stato possibile svolgere diversi tipi
di studi numerici. Innanzitutto, è stata svolta un’analisi parametrica delle costanti usate nel so-
pracitato modello correttivo, che si è dimostrato essere molto preciso nel rettificare gli andamenti
non fisici nei grafici delle prestazioni presenti nello studio di De Zubeldia soprattutto nella zona
a basso rapporto di avanzamento dell’elica (J), che corrisponde per l’appunto ad alti angoli di
incidenza ed effetti rotazionali elevati. Successivamente, sono stati compiuti svariati cicli di ot-
timizzazione che hanno dimostrato come, a parità di guess iniziali e funzioni costo, il software
derivante dalla nuova formulazione ottenga in generale delle corde minori lungo l’apertura rispetto
alla sua versione precedente. Inoltre, è stata simulata la presenza di un meccanismo di regolazione
del passo dell’elica, dimostrando che, grazie ad esso, l’efficienza dell’elica supera una certa soglia
in un intervallo di J molto più ampio.

Nel complesso, il presente studio si è rivelato un successo. Tutti gli obiettivi iniziali sono stati
raggiunti, rappresentando un grosso passo in avanti: la formulazione è più completa e il software
che ne deriva è diventato più versatile e preciso. Potenziali miglioramenti vanno dall’espansione
del database aerodinamico ad altri profili allo sviluppo di sub-routines strutturali e acustiche.
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Abstract

Scientific community has shown, in the last years, more and more interest on developing models
and methods to design, basing on the project requirements, one of the most important - as well as
one of the first - aeronautical propulsion devices: the propeller.

In this sense, the objective of the present analysis is to develop a formulation that would help in
the early design phase of a propeller, starting from a previous research performed by De Zubeldia
in his M.Sc. thesis, in an attempt - which proved to be successful - to improve it and expand its
possibilities. Propeller’s performance is computed applying the Blade Element Momentum Theory
(BEMT), which requires the knowledge of the two-dimensional airfoil data in function of the angle
of attack and Reynolds and Mach numbers. This has been carried out through the software XFOIL
and experimental data.

Compared to the old methodology, the aerodynamic database, which initially included only
NACA0012 airfoil data, has been also extended to airfoil NACA16-012, RAF-6 and Clark-Y.
Additionally, thanks to a reliability study of XFOIL performed through a comparison with results
coming from CFD simulations within OpenFOAM libraries, it was possible to adopt M. Drela’s
software up to a Mach number of 0.6, whereas De Zubeldia’s limit was 0.5.

In addition, the formulation has been further modified to take into account rotational effects in
aerodynamic coefficients, which, particularly for high angles of attack, are greatly affected by those
effects and can vary considerably. In order to achieve this, after a scrupulous literature survey,
correction proposed by P. Chaviaropoulos and M. Hansen has been applied.

Thereafter, this new formulation has been implemented in MATLAB® environment presenting
two principal work modalities: (i) performance computation for a given geometry and (ii) geometry
optimization. In this way, several numerical studies have been performed. Firstly, a parametric
analysis of the aforementioned corrective model constants has been carried out. This correction
turned to be very effective in rectifying the non-physical behavior of performance curves found in De
Zubeldia’s analysis, particularly at low advance ratio (J) regions to which correspond, indeed, high
angles of attack, separated flow and hence considerable rotational effects. Subsequently, various
optimizations loops have been carried out and it has been shown how, starting with the same initial
guesses and cost functions, the software derived from the new formulation gives as a result generally
smaller chord values along the span compared to the previous one. Furthermore, variable pitch
mechanism presence has been simulated and it has proven that efficiency is over a given threshold
for a much higher J range with a Constant Speed Unit (CSU). Finally, a preliminary attempt to
introduce in the program the possibility of having different airfoil sections along the span has been
performed.

All in all, this work was a success. All its objectives were met, constituting a consistent
improvement: the formulation is now more complete and the resulting code is more versatile,
precise and leads to more physically convincing results. Potential future enhancements of this
work might include, among others, the expansion of the aerodynamic database to other airfoils
families or the development of a structural and acoustic sub-routines.
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Chapter 1

Introduction

Nowadays, renewed attention is being focused on the first aeronautical propulsion device:
the propeller. This is due to the increased use of unmanned air vehicles (UAVs), the
growing market of general aviation, the increasing interest in ultralight categories or light
sport air vehicles, and the growing importance of environmental issues that have led to
the development of all-electric emission-less aircraft which make use of propeller engines
[1].

In this sense, the objective of the present analysis is to the develop a formulation that
would help in the early design phase of a propeller, starting from a previous research
performed by De Zubeldia in his M.Sc. thesis [2], in an attempt - which proved to be
successful - to improve it and expand its possibilities. Propeller’s aerodynamic performance
is computed applying the Blade Element Momentum Theory (BEMT), a very efficient
method that requires very small computer resources as compared to detailed vortex models
or computational-fluid-dynamic models. The efficiency comes at the price of having to
know the two-dimensional airfoil data, namely, Cl(α, Ma, Re) and Cd(α, Ma, Re), over a
wide range of angles of attack, Mach and Reynolds numbers. This has been performed,
as previously pointed out, through XFOIL and experimental data for high subsonic Mach
numbers.

The new formulation has been finally implemented in a software, presenting two princi-
pal working modalities: (i) performance computation for a given geometry and (ii) geome-
try optimizations. In this fashion, several numerical studies have been performed, showing
that the new methodology leads to more precise and physically convincing results.

1.1 Objectives
As already stated, the present work intends to be the natural continuation of the afore-
mentioned thesis research which, at the present stage, presents some limitations.

Firstly, in the previous formulation the aerodynamic database included data relative
to the sole NACA0012 section, which is intrinsically not suitable for a propeller because
of its relatively advanced position (with respect to the leading edge) of the maximum
thickness. As a matter of fact, one of the most used geometry for propeller airfoils is that
of NACA16 family, which, thanks to a minimum-pressure point unusually far aft on both
surfaces and - consequently - a small continuously favorable pressure gradient from the
leading edge to the position of minimum pressure, are low-drag high-critical-speed wing
sections [3] (Chapter 6, page 118).
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Chapter 1. Introduction

This choice of working only with NACA0012, despite of not being optimal for the
purpose, was pursed by De Zubeldia due to the large amount of experimental data obtained
using the latter airfoil. In particular, XFOIL was used to retrieve aerodynamic coefficients
only up to 0.5 Mach while for high subsonic regimes, often encountered in the outer blade
sections for high advance ratios (J), his methodology relied on the previous mentioned
experimental data. The extension to other profiles was hence limited by this lack of reliable
aerodynamic data in that part of the flight envelope. In the present study attention has
been posed to this aspect in order to expand the possibilities of the formulation and to
obtain more reasonable results in terms of geometry of the blade. In particular, the goal
was to understand exactly up to which Mach number was possible to rely on XFOIL for
the creation of the aerodynamic database, avoiding the need of relying on experimental
data for high subsonic Ma, often non-existent for most airfoils.

The second enhancement applied to the original formulation consists in a refinement
of aerodynamic coefficients computation at low advance ratios. At the present stage, the
code derived from De Zubeldia’s methodology presented, for particular geometries, some
irregularities in the calculations at low J . An attempt to use classical methods - namely
the BEMT - to calculate the performance of propellers in this part of the flight envelope
exhibits large differences between the calculated and measured thrust, while the same
methods exhibit excellent agreement at higher advance ratios. The differences between the
calculations and measurements increase as larger portions of the blades experience high
cross-sectional angles of attack, beyond the stall limit. Thus, it becomes clear that there are
problems in modeling the stall characteristics of cross sections of propellers’ blades. It turns
out that the measured propeller’s thrust is higher (sometimes much higher) than the thrust
predicted by calculations where the two-dimensional stall characteristics of a non-rotating
airfoil are used [4]. The effect was attributed in various studies ([5],[6],[7],[8],[9],[10]) to
the presence of a Coriolis force, having the same effect as a favorable pressure gradient. In
addition, the centrifugal force causes an outward displacement of fluid particles, through
which the boundary layer becomes thinner compared to a non-rotating boundary layer.
This phenomenon is often known as stall-delay.

For the sake of truth, 3D post stall effects are beneficial to propellers and helicopter
rotors (more thrust and less power) and consequently have not been studied in any great
detail, whereas most of the recent analyses have been focused on wind turbines. In fact,
when contrasting propellers and helicopter rotors with wind turbine rotors, it is important
to keep in mind that for wind turbines the lift is directed to produce torque or power;
whereas, for propellers it is directed to produce thrust. Thus, a 3D lift enhancement
produces more power for a wind turbine and more thrust for a propeller. This means that
not considering 3D effects on a propeller would cause in the worst case an underestimation
of the thrust, which is not, safety speaking, negative. On the other hand, in the case of
stall regulated wind turbines, still widely used for small and medium wind turbines because
of its ease in manufacturing and low operational costs, stall condition is encountered on
a regular basis. Therefore, the accuracy in load prediction under the aforementioned
condition is very important. Despite this aspect, the goal of the present analysis was
then to overcome this limitation, through a correct description of the stall phenomenon
expressing appropriate correction laws for airfoil data that would improve the reliability of
the simulations as will be shown later in detail. In this fashion, the formulation results more
complete and the resulting code more versatile and precise, in particular when dealing with
those kinds of propeller-driven aircraft which can not rely on variable pitch (e.g. ultralight,
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low price general aviation aircraft or UAVs) and can experience high AoA in large portions
of the blade in certain flight conditions.

1.2 Literature survey
In light of what has been exposed in the previous section, the analysis started with a
scrupulous inspection of De Zubeldia’s formulation [2] and derived software.

In the presentation of his software XFOIL [11], Mark Drela shows its main features and
limitations. The code combines a potential flow panel method and an integral boundary
layer formulation for the analysis of the flow around airfoils. It was developed to rapidly
predict the airfoil performance and its convergence is achieved through the iteration be-
tween the outer and inner flow solutions on the boundary layer displacement thickness.
Thus, the XFOIL code calculates the viscous pressure distribution and captures the influ-
ence of limited trailing edge separation and laminar separation bubbles.

An approximate eN envelope method is used to calculate transition. With this method
the code tracks only the most amplified frequency at a given point on the airfoil down-
stream from the point of instability to obtain the amplitude of that disturbance. Transition
is assumed when this integrated amplitude reaches an empirically determined value. The
procedure requires the user-specified parameter Ncrit, which is the log of the amplification
factor of the most-amplified frequency which triggers transition. A suitable value of this
parameter depends on the ambient disturbance level in which the airfoil operates, and
mimics the effect of such disturbances on transition. In Table 1.1 are reported typical
values of Ncrit for various situations.

Table 1.1: Typical values of Ncrit for various situations [12].

Situation Ncrit

Sailplane 12-14
Motorglider 11-13
Clean wind tunnel 10-12
Average wind tunnel 9†
Dirty wind tunnel 4-8

†Standard “e9 method”.

A Karman-Tsien compressibility correction is incorporated, allowing good compressible
predictions all the way to sonic conditions. In particular, compressible speed q and pressure
coefficient CP can be approximately determined from their incompressible flow values qinc
and CPinc by

CP = CPinc
β + λ(1 + β)CPinc/2

(1.1a)

q = qinc(1− λ)
1− λ(q/q∞)2

inc

(1.1b)

where β =
√

1−Ma2
∞ and λ = Ma2

∞/(1 + β2).
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In the same article [11], the author reports a visual comparison between a viscous
calculation of a RAE 2822 airfoil with experimental data at Mach 0.676. Reasonable
agreement is obtained, despite the fact that, as noticeable from equations 1.1, the Karman-
Tsien correction formally breaks down in supersonic flow.

These evidences legitimately questioned the constraint used in De Zubeldia’s methodol-
ogy [2] when creating the aerodynamic database. In particular, the limit of 0.5Ma seemed
too stringent.

J. Morgado et al. [13] completed a performance prediction comparison between XFOIL
and CFD for high lift, low Reynolds number airfoils. A similar study has been conducted
by O Günel et al. [14]. Both analyses gave compatible results until stall angle, utilizing
OpenFOAM with κ-ω SST (Shear Stress Transport) turbulence model.

Hence the decision of performing an analogous investigation in order to assess up to
which Mach number is XFOIL reliable in terms of aerodynamic coefficient computation.
This procedure passed from an initial validation of the two-dimensional steady CFD case,
which will be discussed thoroughly in the next chapters.

As already pointed out, despite being quite simple, the BEMT method yields sur-
prisingly accurate predictions of the aerodynamic loads provided that “proper” lift and
drag-incidence curves are used for the airfoils mounted on the rotor blade. The evident
question is how these proper data are obtained, especially for stall conditions (namely low
J).

Himmelskamp [5], who was the first to address the three-dimensional effects of rotation,
found lift coefficients as high as 3 near the hub of a fan blade.

Introducing for the first time a quasi-3D approach, based on the viscous-inviscid in-
teraction method, Snel et al. [6] proposed a semi-empirical law for the correction of the
2D lift curve, identifying the local chord to radii (c/r) ratio of the blade section as the
main parameter of influence. Chaviaropoulos and Hansen [7] followed the same path and
once again three-dimensional and rotational viscous effects are investigated by means of a
quasi-3D Navier-Stokes model for stall controlled wind turbines, whose physics are com-
parable to those of propellers. The governing equations of the model are derived from
the 3D primitive variable incompressible Navier-Stokes equations written in cylindrical
coordinates in the rotating frame of reference. The resulting quasi-3D model suggests
that three-dimensional and rotational effects are strongly related to the local chord by
radii ratio and the twist angle, which was not taken into consideration by Snel et al.
[6]. Hence, the 3D stall delay model consisted of two key parameters (the ratio of local
chord to local radius c/r and the twist angle) and three empirical correction factors. Also,
both laminar and turbulent flow simulations are performed using the κ-ω model with wall
functions, assuming fully turbulent flow conditions. The former is used for identifying
the physical mechanism associated with the 3D and rotational effects, while the latter for
establishing semi-empirical correction laws for the load coefficients, based on 2D airfoil
data. Comparing calculated and measured power curves of a stall controlled wind turbine,
it is shown that the suggested correction laws may improve significantly the accuracy of
the predictions.

Similar observations have been made by Gur and Rosen [4], who proposed a simple
correction model to better depict the propeller’s aerodynamic performance at low advance
ratios. The model includes unknown constants that are determined after applying a least-
squares procedure of matching between calculated results and test data. According to the
authors, this correction model is probably a function of the specific airfoil, Mach number
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of the cross-sectional flow, and speed of rotation. Yet it was shown that a correction model
that was obtained for a certain propeller also gave good results for another propeller that
uses the same airfoils.

An analogous path was followed by Du Z. and Selig M. S. [10], who started with a
description and analysis of the fundamental flow phenomena that characterize the bound-
ary layer on rotating blades, investigating the 3D integral boundary-layer equations for
a reference system rotating with the blade and describing the effects of rotor rotation on
the separation point and its causes. Consequently, basing on the developed theory, they
continued determining a simple correction formula to obtain rotating rotor lift coefficient
Cl(α) and drag coefficient Cd(α) data from 2D airfoil data. As for [7], the preliminary 3D
stall delay model consisted of two key parameters and three empirical correction factors.
This time twist was not taken into account and, apart from the local chord to local radius
ratio (c/r) which is in common between the two theories, the ratio of rotation speed to
free stream velocity was considered.

In this study, a procedure inspired first to Du and Selig [10] and second to Chaviaropou-
los and Hansen [7] - whose works showed the most promising results - has been performed
as will be later shown in depth.

1.3 Structure of the thesis
This thesis consists in four chapters, considering the introductory present one. In Chapter
2, after a brief recapitulation of De Zubeldia’s formulation and derived software working
principles (for a more detailed explanation refer to his work [2]), the improvements pre-
sented in 1.1 are analyzed in depth. Firstly, the process of aerodynamic database extension
is shown, along with the CFD simulations needed to obtain it and its implications. Par-
ticular attention is paid to the simulation part, where XFOIL predictions are compared
to those of OpenFoam. Thereafter, how rotational effects are taken into account in the
present formulation when computing aerodynamic coefficients is exposed. In particular,
two different models are considered, that of Chaviaropoulos and Hansen and of Selig and
Du. Both of them are analyzed and the one that worked better for the present analysis
is chosen. Thereafter, the new formulation has been implemented in MATLAB® envi-
ronment and several numerical studies have been performed. Corresponding results are
shown in Chapter 3. Initially, a parametric study of the a, h and n coefficients effect on the
correction law (eq. 2.31) have been carried out for all the database airfoils. In particular,
given a certain twist and chord distribution, performance outputs were computed varying
the aforementioned coefficients and reported in the same plot, where is also shown the
curve relative to the old methodology. Thereafter, optimization loops with the software
derived from the enhanced formulation (both in terms of database and rotational effects)
have been performed, focusing on the differences with respect to the old one starting with
the same initial guesses. In addition to this, the presence of a variable pitch mechanism
has been simulated changing by a (positive or negative) constant value the optimized twist
distribution and computing the performance output for each resulting case. Furthermore,
in Section 3.4 a preliminary attempt of introducing in the software the possibility of having
different airfoil sections along the span has been performed. This constituted only an ini-
tial study and had more a demonstrative purpose but gave an idea of what would actually
be to use more than one airfoil for a single blade. Finally, Chapter 4 contains conclusions
suggested by the present work and its possible future developments. This thesis includes
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also three Appendices. In Appendix A details about meshing procedure for the 2D case
are given. In Appendix B theoretical aspects behind the corrective models that take into
account three-dimensional effects on a rotating propeller are extensively reported. Lastly,
in Appendix C a comprehensive list of all non-reported plots (for brevity reasons) in the
main corpus is given.
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Chapter 2

Formulation

The present formulation is an extension of the already existent one presented by De Zubel-
dia in [2], which, as already said, suffers from some limitations. After a brief summary
of the aforementioned thesis work - which represents the starting point of this analysis -
given in section 2.1, nature of the improvements is given in sections 2.2 and 2.3.

2.1 Baseline formulation

2.1.1 Background theory
The objective of De Zubeldia’s project [2] was to develop a methodology which allows the
user to do the calculations necessary in the preliminary design of aircraft propellers. After-
wards, the author implemented it in a software. The chosen environment was MATLAB®,
due to its ease of use. BEMT has been used to obtain propeller characteristics in the soft-
ware. The aforementioned model is the union of two simpler models: momentum theory,
which uses a control-volume analysis, and blade element theory, which is based on known
airfoil data at each section. In particular, momentum theory applies conservation laws on
a control volume extending far upstream and downstream of the propeller, modeled as a
disc. Assuming known induced velocities, momentum theory predicts [15]

dT = CT
1
2ρV

2
x dA (2.1a)

dQ = CQ
1
2ρV

2
x dAr (2.1b)

With

CT = 4Fax(1 + ax) (2.2a)

CQ = 4Fay(1 + ax)
Vy
Vx

(2.2b)

Where dT and dQ are the differential thrust and torque, CT and CQ are the thrust and
torque coefficients, Vx and Vy are the normal and circumferential velocity components seen
by the propeller, dA is the area for a radial slice of the propeller, ρ is air density, F is the
loss factor, and r is the radial position.
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Blade element theory uses specified airfoil polars to compute the forces on a blade-by-
blade basis given their local angles of attack at radial sections. The differential thrust and
torque predicted at a radial section are [15]

dT = BCx
1
2ρV

2cdr (2.3a)

dQ = BCy
1
2ρV

2crdr (2.3b)

Where B is the number of blades, c is the chord, dr is the differential radial width, and
V is the magnitude of the velocity seen by the section, which depends on the axial and
circumferential induction factors (ax and ay, respectively). Cx and Cy are found projecting
aerodynamic coefficients Cl and Cd in the axial and circumferential directions

[
Cx
Cy

]
=
[
cosφ − sinφ
sinφ cosφ

] [
Cl
Cd

]
(2.4)

With the local inflow angle φ computed from φ = θ - α, where θ is the local twist angle.
Now, equating torque and thrust predicted by momentum theory and blade element

theory at each radial section it is possible to compute the axial and tangential induced
velocities, ax and ay

ax = Cxσ

4F sin2 φ− Cxσ
(2.5a)

ay = Cyσ

2F sin 2φ+ Cyσ
(2.5b)

Where σ is the blade solidity, given by σ = Bc
2πr . Since the right-hand sides of the above

equations depend on φ and V , which in turn depend on ax and ay, this is a coupled
system of equations. However, V appears only in the Reynolds number, and is only
weakly dependent on the induction factors, so this system can be approximated as a single
equation in φ only, which allows to use a bracketed search method that has been proven
to be convergent by A. Ning [16]. The residual function, rearranged to avoid singularities,
is given by

Vy
(
4F sin2(φ)− Cxσ

)
− Vx (2F sin 2φ+ Cyσ) = 0 (2.6)

Valid for Vx > 0 and Vy > 0.
Other quantities useful to assess performance or make a comparison of propellers of

different size are of advance ratio (J), thrust coefficient (CT ), torque coefficient (CQ)1

and power coefficient (Cp). The definition of the aforementioned coefficients is given in
equations 2.7.

1Differently from the case of momentum theory shown above, CT and CQ expressions given hereby
come from a dimensional analysis [17] and are more useful to assess a generic propeller performance.

8



2.1. Baseline formulation

J = V

nsD
(2.7a)

CT = T

ρn2
sD

4 (2.7b)

CQ = Q

ρn2
sD

5 (2.7c)

Cp = Pin
ρn3

sD
5 (2.7d)

For what concerns the practical part, De Zubeldia’s software works in the following
manner. As already mentioned in the initial part of Chapter 1, the program is divided into
two main “routines”: the single computation one (function SinglePerformance) and the
optimization one (function Optimizer).

2.1.2 SinglePerformance
For this function, required input arguments are:

• number of blades;

• diameter of the propeller;

• chord and twist distribution along the span;

• airfoil of the section;

• rotational speed;

• free stream speed;

Once all this data is known, the blade is divided into several stations following a cosine
law:

ξi = cos
(

(1− i− 1
n− 1) sin−1 ξhub

)
(2.8)

Where ξi represents the non-dimensional ratio r/R corresponding to the i-th station, equal
to ξhub when computed at r = rhub.

This distribution has been proven to be remarkably more effective than a uniform
distribution. In particular, De Zubeldia’s [2] showed how the same percentage error2 was
achieved with less than one third of stations if they were spaced according to cosine law
distribution instead of the uniform one.

For each station, the residual function (eq. 2.6) is solved, giving φ, which, substituted
in eq. 2.4, gives Cx and Cy needed to obtain the induction factors through eqs. 2.5.
Having done that, the program proceeds to compute forces per unit span through eqs.
2.3. Afterwards, a spatial integration is performed, resulting in the total forces (thrust and
torque) and corresponding coefficients, through which input power Pin and output power

2The error was computed as the difference between a certain parameter obtained with a number n of
stations and the same parameter obtained with 150 stations, in percentage.
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Pout and, consequently, propeller efficiency η are computed. Repeating this procedure for
different free stream velocities (which correspond, for fixed Ω, to different J) as input, one
can obtain the aforementioned quantities for all the envelope.

2.1.3 Optimizer

To this function the user is required to give as input an initial guess of the blade geometry,
that is chord and twist distribution. In addition to this, also initial indication of the
propeller diameter and rotational speed must be provided. Thereafter, one can choose the
objective function and the constraints. In [2] the author defines the objective function
as −η in cruise condition and nine constraints involving thrust at take-off and cruise
conditions, Mach and Reynolds numbers along the span and Bezier coefficients3. With
all these parameters defined, Optimizer calls the built-in MATLAB function fmincon,
which evaluates the objective function varying the input parameters at each iteration until
the best solution, satisfying all the constraints, is found. It is obvious that, at every loop,
the objective function evaluation involves a call to SinglePerformance, which, as shown
in section 2.1.2, can return the efficiency value for a given propeller geometry. For this
reason SinglePerformance can be considered a sub-routine of Optimizer.

2.1.4 Database

As deducible from the previous subsections, both functions have to go through the com-
putation of Cx and Cy, needed to obtain the induction factors. As noticeable from eq.
2.4, knowledge of Cd and Cl of each section’s airfoil is required. This represented one
of the major challenges in De Zubeldia’s work and the main reason why airfoil geometry
parametrization in optimization routine was not included. In fact, as reported by both
Tarraran [18] and De Zubeldia [2], this would imply a call to an external aerodynamic soft-
ware to compute Cd and Cl basing on AoA, Mach and Reynolds numbers at every BEMT
iteration. Even utilizing a light panel method software, such as XFOIL, would cause an
exponential increase in CPU time, since the call to an external program forces MATLAB
to wait for it to be launched, run and terminated, before going on with the optimization.
Hence, even if the program itself is very fast, these dead times make airfoil geometry
parametrization impractical (if not unfeasible). Therefore, the author followed another
path, consisting in a pre-computed aerodynamic database. This database comprises a
series of text files in which the aerodynamic coefficients of a fixed airfoil are stored. These
text files were then transformed into .mat files, that, once loaded, are directly accessible
from the current folder.

As already introduced, the database was created for the sole NACA 0012 airfoil exploit-
ing XFOIL [11]. Angles of attack ranged from −7° to around 17°. Outside of this range of
AoA, in order to obtain full-range polars, the data is extended post-stall using the Viterna
method, which uses an inviscid flat plate assumption. Details about this procedure can
be found in [2], Chapter 2, Section 1. For negative angles (less than −10°) the following
approximation was applied:

3Bezier curves were used for the definition of chord and twist distributions.
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Cl = 0 (2.9a)
Cd = 0.13 (2.9b)

Text files that form the polar database consist in columns of data containing lift and
drag coefficients in function of the angle of attack. Such text files are obtained for different
couples of Reynolds and Mach numbers, which take discrete values from 5 ·104 to 1 ·106 in
steps of 5 · 104 and from 0 to 0.5 in steps of 0.05, respectively. For higher Mach numbers,
since it was not known exactly when XFOIL became inaccurate, De Zubeldia relied on
other sources. Data coming from “NASAmemorandum 81927” [19], where NACA 0012 was
tested in wind tunnels up to high subsonic Mach numbers, was added to the database to
cover also that part of the envelope. During each BEMT iteration, the program computes
Reynolds, Mach number and α at every station. It then proceeds to scroll the aerodynamic
database looking for the two closest Re, Ma and α available. At this point, an interpolation
is performed and the corresponding aerodynamic coefficients obtained.

2.2 Extension to multiple airfoils
The structure of the software as designed by De Zubeldia is pretty robust and the rate of
failure is very low4. For this reason, the decision in the present study was to maintain its
main framework unaltered, when implementing the new formulation. Nonetheless, some
limitations were present, which have been already introduced in section 1.1.

In this section, it will be shown how the first modification was carried out, that is the
aerodynamic database extension to other airfoils.

2.2.1 Implications
Having at disposal only one airfoil in the aerodynamic database, limits intrinsically the
methodology and, consequently, the derived software in its calculations. In particular,
during the optimization routine it can only operate with that particular airfoil which,
has already mentioned, is far from being the optimal choice for an aeronautical propeller.
As a matter of fact, looking at the optimizations results in [2], Chapter 4, section 4, to
obtain feasible chord values while satisfying thrust constraints during take-off and cruise,
an extra blade had to be added compared to similar aircraft’s engines, such as that of
Beech 1900, which was taken as reference by De Zubeldia in his study. Despite adopting
this solution, chord dimensions reached values as high as 0.72 m after both optimizations
were performed5, as noticeable in Figure 2.1:

Taking into account the considerations on impracticality of including airfoil geometry
as a variable parameter during propeller optimization made by both Tarraran [18] and De
Zubeldia [2], the choice was to expand the database, pre-computing aerodynamic polars
for different airfoils. Once created and loaded as a local variables in .mat format, the
user has to choose between the airfoils present in the database, which will be then fed to
the program and kept as a constant during both Optimizer and SinglePermormance

4If the database contains some NaN due to XFOIL crashing, resolution of eq. 2.6 is not possible
through MATLAB built in function fsolve.

5Linear chord and twist distribution and constant chord and linear twist distribution as initial guess.
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Figure 2.1: Cruise-optimized propeller chord distribution for different initial guesses [2].

routines. In this fashion, the advantages for the derived software are twofold. If the user is
trying to compute the performance of an existent geometrically defined propeller, having
more than one airfoil in the database increases the possibility that one of them matches
the one used in the propeller under study. On the other hand, it is possible to perform the
same optimization in terms of goal function and constraints but repeating it with different
airfoils (among the available ones) and compare the different outcomes in order to choose
the one that better suits the desired characteristics.

2.2.2 XFOIL vs CFD
The tool used to expand the aerodynamic database was once again XFOIL due to its
capacity of dealing with different geometry airfoils, as long as their coordinates are cor-
rectly passed to the program through the LOAD command. LOAD recognizes four airfoil
file formats: Plain, Labeled, ISES, MSES. In the present work the chosen one was the
Labeled, since it was deemed the best format to use as suggested by M. Drela in [12].
Hence, each file contained only the X,Y coordinates, which run from the trailing edge,
round the leading edge, back to the trailing edge in either direction plus the airfoil name
string on the first line.

As already introduced in section 1.2, basing on existing evidences [11], the limit of
Ma = 0.5 used by De Zubeldia seemed legitimately too stringent. An investigation,
analogous to those of J. Morgado et al. [13] and O. Günel et al. [14], was conducted
in order to assess up to which Mach number is XFOIL reliable in terms of aerodynamic
coefficient computation. This procedure was performed comparing XFOIL outcomes with
CFD results, obtained through OpenFOAM libraries.

OpenFOAM Pre-Processing

Before proceeding to the comparison, it is necessary to validate the CFD two-dimensional
case in order to consider it as a reliable source at higher Mach numbers, where XFOIL has
to be tested. In order to do this, consolidated data for low Mach numbers coming from
XFOIL, I. H. Abbot book [3] and NASA technical memorandum 4073 [20] were taken as
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reference to perform a fine tune of the CFD case.
Turbulent flows are an omnipresent phenomenon in CFD and are significantly affected

by the presence of walls, where the viscosity-affected regions have large gradients in the
solution variables. An accurate representation of the near wall region determines a suc-
cessful prediction of wall bounded turbulent flows. In order to deal with the near wall
region, two ways are usually proposed [21].

1. One way is to integrate the turbulence to the wall. Turbulence models are modified
to enable the viscosity-affected region to be resolved with all the mesh down to
the wall, including the viscous sub-layer. When using a modified low Reynolds
turbulence model to solve the near-wall region, the first cell center must be placed
in the viscous sub-layer (preferably y+ = 1) leading to the requirement of abundant
mesh cells. Thus, substantial computational resources are required.

2. Another way is to use the so-called wall functions, which can model the near wall
region. Wall functions are equations empirically derived and used to satisfy the
physics in the near wall region. The first cell center needs to be placed in the log-law
region (30 < y+ < 300) to ensure the accuracy of the results. Wall functions are used
to bridge the inner region between the wall and the turbulence fully developed region.
When using the wall functions approach, there is no need to resolve the boundary
layer causing a significant reduction of the mesh size and the computational domain.

The path followed in this study was that of point 2.
One of the most prominent parameters when judging the applicability of wall functions

is the so-called dimensionless wall distance y+ denoted by:

y+ = yuτ
ν

(2.10)

Where uτ is the so called friction velocity, y is the absolute distance from the wall and ν
is the kinematic viscosity.

It is possible interpret y+ as a local Reynolds number, which means that its magnitude
can be expected to determine the relative importance of viscous and turbulent processes.
Figure 2.2 shows the fractional contributions to the total stress from the viscous and
Reynolds stresses in the near wall region of channel flow.

One can easily see that if are in the viscous wall region with y+ < 50, there is a direct
effect of the viscosity on the shear stress. Conversely, in the outer layer with y+ > 50, the
effect of viscosity is negligible.

For the sake of completeness, friction velocity uτ is briefly introduced. It should be
evident that the viscosity ν and wall shear stress τw are important parameters. From these
quantities and ρ it is possible to define it:

uτ =
√
τw
ρ

(2.11)

With:
τw = ρν

(
dU

dy

)
y=0

(2.12)

At this point, the dimensionless velocity is given by:

u+ = u

uτ
(2.13)
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Figure 2.2: Fractional contributions to the total stress from the viscous and Reynolds
stresses in the near wall region [22].

Wall functions rely on the universal law of the wall, which basically states that the
velocity distribution very near to a wall is similar for almost all turbulent flows. Its
graphical representation is given in Figure 2.3.

Figure 2.3: Law of the wall representation [22].

As noticeable from Figure 2.3, three zones are distinguishable:

• The viscous sub-layer (y+ < 5): In the viscous layer, the fluid is dominated by
the viscous effect, so it can be assumed that the Reynolds shear stress is negligible.
The “linear velocity law” is given by:

u+ = y+ (2.14)
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• The logarithmic area (y+ > 30): In the logarithmic layer, turbulence stress
dominate the flow and velocity profile varies very slowly with a logarithmic function
along the distance y. That is:

u+ = 1
K

ln y+ + C (2.15)

Where K represents the Von Karman constant.

• The buffer layer (5 < y+ < 30): The buffer layer is the transition region between
the viscosity-dominated region and turbulence-dominated part of the flow. Viscous
and turbulent stresses are of similar magnitude and since it is complex, the velocity
profile is not well defined and the original wall functions avoid the first cell center
located in this region.

In the pre-processing stage of the simulation it is important to make sure that y+ is
in the desired range. Following path 2 requires, as already said, 30 < y+ < 300. This is a
rather general guideline. In fact, for very high Re, y+ can be higher if still in logarithmic
layer and for very low (but still turbulent) Re, the logarithmic layer may not extend far
enough away from the wall for the use of wall functions to be valid.

That being said, it necessary to know a suitable size for the first layer of grid cells
(inflation layer) so that y+ falls in that range. Unfortunately, the actual flow-field will not
be known until the solution has been computed (and indeed it is sometimes unavoidable
to have to go back and re-mesh the model on account of the computed y+ values), hence
it is not possible to invert eq. 2.10 to find the height of the first cell. In fact, this would
require the knowledge of uτ and, consequently, τw, which can not be computed in advance
since the velocity profile at the wall (see eq. 2.12) is undetermined before starting the
simulation.

To overcome this problem, the following well-known procedure has been performed.

• After having rearranged eq. 2.10:

y+ = yuτ
ν
⇒ y = y+ν

uτ
(2.16)

• uτ is computed through eq. 2.11.

• The wall shear stress τw is now calculated from the skin frcition coefficient Cf :

τw = 1
2CfρU

2
∞ (2.17)

• Skin friction coefficient is computed through the flat plate case:

Cf = 0.0576Re− 1
5 (2.18)

Since Re is known, it is possible to compute eqs. 2.18 and 2.17 and insert everything in
2.10, obtaining the looked first cell height.

The chosen turbulent model was the κ − ω SST (Shear Stress Transport), a two-
equation eddy-viscosity closure. This formulation, first developed by Menter [23], effec-
tively blends the robust and accurate formulation of the standard κ−ω turbulence model
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in the near wall region with the κ− ε model behavior as the model switches to the latter
away from the wall. In fact, the former performs much better than the latter for boundary
layer flows, but is overly sensitive to the freestream value of ω, which is not the case for
κ− ε model. This makes κ− ω SST suitable for a wide range of Reynolds number flows.

The κ− ω SST model has similar formulation to the standard κ− ω model developed
by Wilcox [24]. The transport equations are defined as presented in eqs. 2.19:

∂

∂t
(ρκ) + ∂

∂xi
(ρκui) = ∂

∂xj

(
Γκ

∂κ

∂xj

)
+Gκ − Yκ + Sκ (2.19a)

∂

∂t
(ρω) + ∂

∂xi
(ρωui) = ∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω +Dω + Sω (2.19b)

Gκ represents the generation of turbulence kinetic energy due to the mean velocity gradi-
ents, calculated according eq. 2.20.

Gκ = −ρu′iu′j
∂uj
∂xi

(2.20)

The effective diffusivities for the κ− ω model are given by eqs. 2.21.

Γκ = µ+ µt
σκ

(2.21a)

Γω = µ+ µt
σω

(2.21b)

Where σκ and σω are the turbulent Prandtl numbers for κ and ω respectively and they
are calculated as:

σκ = 1
F1
σκ,1

+ (1−F1)
σκ,2

(2.22a)

σω = 1
F1
σω,1

+ (1−F1)
σω,2

(2.22b)

The turbulent viscosity µt in eq. 2.21 is computed as in eq. 2.23.

µt = ρκ

ω

1
max

(
1
α∗ ,

SF2
a1ω

) (2.23)

Where S represents the strain rate magnitude .
For more details about the model refer to [23].

OpenFOAM Meshing

Keeping in mind y+ considerations made above, meshing procedure was performed.
In OpenFOAM this is done acting in the meshdict file inside the case system directory.

Two different meshing strategies have been tried in this study:
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2.2. Extension to multiple airfoils

1. snappyHexMesh: The snappyHexMesh utility generates 3-dimensional meshes
containing hexahedra (hex) and split-hexahedra (split-hex) automatically from tri-
angulated surface geometries, or tri-surfaces, in Stereolithography (STL) or Wave-
front Object (OBJ) format. The mesh approximately conforms to the surface by
iteratively refining a starting mesh and morphing the resulting split-hex mesh to the
surface. An optional phase will shrink back the resulting mesh and insert cell layers.
The specification of mesh refinement level is very flexible and the surface handling
is robust with a pre-specified final mesh quality. It runs in parallel with a load
balancing step every iteration. It is rapid, simple to use, able to depict complicate
geometries with ease.

2. blockMesh: The blockMesh utility creates parametric meshes with grading and
curved edges. The principle behind blockMesh is to decompose the domain geom-
etry into a set of one or more three dimensional, hexahedral blocks. Edges of the
blocks can be straight lines, arcs or splines. The mesh is ostensibly specified as a
number of cells in each direction of the block, sufficient information for blockMesh
to generate the mesh data. Each block of the geometry is defined by 8 vertices, one
at each corner of a hexahedron. The vertices are written in a list so that each vertex
can be accessed using its label, remembering that OpenFOAM always uses the C++
convention that the first element of the list has label ‘0’. An example block is shown
in Figure 2.4.

Figure 2.4: Example of a single blockMesh block [25].

Each block has a local coordinate system (x1, x2, x3) that must be right-handed.
A right-handed set of axes is defined such that to an observer looking down the Oz

axis, with O nearest them, the arc from a point on the Ox axis to a point on the Oy

axis is in a clockwise sense.
Results of the two meshings are shown in Figure 2.5.
After various attempts, despite being trickier to implement, blockMesh was chosen

in favor of snappyHexMesh utility. In fact, for simple geometries such as an airfoil, the
former is much more ordered and neater and, for a given number of cells, works better
than the latter (i.e. smaller y+ are obtained).
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(a) snappyHexMesh. (b) blockMesh.

Figure 2.5: snappyHexMesh vs blockMesh utility meshing.

Chord was set equal to 1 m (see Figure 2.6), while air properties used in the simulations
are listed in Table 2.1.

Figure 2.6: Airfoil dimensions.

Table 2.1: Air properties during CFD simulations.

Property Value

γ 1.4
R 287.05 J kg−1 K−1

T 288.15 K
ρ 1.255 kg m−3

µ 1.82× 10−5 Pa s

The domain had to be extended enough to capture wake effects, as noticeable in Figure
2.7, which is shown again for the sake of clarity. Its dimensions are reported in Table 2.2.

To give an idea of the refinement needed close to the object, an example of the
zGrading6 needed to have y+ in the desired range for Ma = 0.75 (which translates into a
Re ≈ 16.5 · 106) is hereby reported:

zg = 559⇒ hwall = 0.000373m⇒ y+ = 100 (2.24)

This means that a conspicuous number of cells is needed to correctly run the simulation
(in the case presented approximately 66000), which entailed some hours of computing time

6zGrading represents how many times the most external cell has to halved to obtain the height of
the first wall cell.
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2.2. Extension to multiple airfoils

Figure 2.7: Final meshed domain.

Table 2.2: Domain dimensions.

Coordinate Value

xmin −5 m
xmax 15 m
zmin −5 m
zmax 5 m
ymin −0.1 m
ymax 0.1 m

in the Portable Computer used to perform the study. A magnification of the mesh is given
in Figure 2.8.

More details about meshing and the 2D case in general can be found in Appendix A.

Comparative plots

After numerous refinements, CFD case has been validated at a low Mach number (0.15),
comparing it to consolidated data. The outcome is depicted in Figure 2.9.

As noticeable from Figure 2.9(b), Cl trend confirms a very fine tune of the CFD case.
On the other hand, the same can not be said about Cd in Figure 2.9(a) where consistent
difference exists between OpenFOAM calculations and Abbot and XFOIL data. Never-
theless, this is not unexpected, since in the CFD the BL (Boundary Layer) is considered
turbulent along all the chord, while XFOIL does not force transition. In fact, it is enough
to look at the plot corresponding to Ladson experimental data with the roughest carborun-
dum strips at 5% of the chord - which translates into a forced transition from that point on
- to notice that the results are more similar. The still existent differences between the cyan
and black plots are considered acceptable and caused by the inevitable use of wall func-
tions, (instead of solving the BL with y+ < 1, as suggested in [21] to better depict drag,
almost impossible to achieve with a normal Portable Computer for such Mach numbers)
and because of the applied turbulence model not being transitional but, as already said,
turbulent along all the chord. In addition to that, the comparison has been performed at
higher Mach numbers only between lift coefficients, for which the CFD has been proven
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Figure 2.8: Mesh magnification.
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(a) Cd vs α (Ma = 0.15, Re = 3.5 · 106).
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(b) Cl vs α (Ma = 0.15, Re = 3.5 · 106).

Figure 2.9: Cl vs α and Cd vs α at Ma = 0.15.

to work greatly.
RhoSimpleFoam solver has been used without Transonic Correction (TC) until Ma =

0.55, which is a steady-state solver for turbulent flows of compressible fluids. From that
point on, RhoSimpleFoam solver with TC on plus RhoPimpleFoam solver (with TC ap-
plied as well) results were used as reference for the comparison with XFOIL. The latter
is a transient solver for turbulent flow of compressible fluids based on OpenFOAM PIM-
PLE algorithm, which is a blending between PISO (Pressure Implicit with Splitting of
Operators) and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations).

When higher than 0.4 Mach numbers are reached, Abbot and Ladson data are no
longer shown in the plots, since their experiments were performed under incompressible
conditions.

In Figure 2.10 comparison at Ma = 0.25 and Ma = 0.35 is shown. As expected, all
methods give similar outputs. It is worth to mention how close to experimental sources
([3], [20]) is the CFD solver RhoSimpleFoam.

In Figure 2.11 comparison at Ma = 0.45 and Ma = 0.55 is reported. As already
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(a) Cd vs α (Ma = 0.25, Re = 5.5 · 106).
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(b) Cl vs α (Ma = 0.35, Re = 7.5 · 106).

Figure 2.10: Cl vs α at Ma = 0.25 and Ma = 0.35.
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(a) Cl vs α (Ma = 0.45, Re = 10 · 106).

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

(b) Cl vs α (Ma = 0.55, Re = 12.5 · 106).

Figure 2.11: Cl vs α at Ma = 0.45 and Ma = 0.55.

mentioned, plots corresponding to experimental data are no longer shown. It is noticeable
how XFOIL is still capable of obtaining valid results even over the Ma = 0.5 threshold
used in [2].

The same can not be said for Figure 2.12, where comparison at Ma = 0.65 and
Ma = 0.75 is displayed. It is clear that XFOIL starts to depart from the calculations of
the two solvers RhoSimpleFoam and RhoPimpleFoam with TC on. In particular, it over-
estimates the aerodynamic coefficient values. This is due probably to the Karman-Tsien
compressibility correction applied by the software [11], reported in eqs. 1.1. Inspecting its
expression, it is possible to notice that it formally breaks down in supersonic conditions.
This is even more clear when looking at much simpler correction models, such as the
Prandtl-Glauert one, according to which compressible flow field coefficients can be found
by scaling the incompressible flow field coefficients by the factor reported in eq. 2.25.

1
β

= 1√
1−Ma2

∞

(2.25)
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(a) Cl vs α (Ma = 0.65, Re = 14.5 · 106).
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(b) Cl vs α (Ma = 0.75, Re = 16.5 · 106).

Figure 2.12: Cl vs α at Ma = 0.65 and Ma = 0.75.

These compressible flow correction theories work reasonably well up to the point where
supersonic flow starts to appear near the surface of the airfoil section. This will happen
before the free-stream becomes supersonic due to the acceleration of the air in the vicinity
of the airfoil.

The free-stream Mach number for which supersonic flow first occurs on the wing or
section is called the low critical Mach number. Not only is this an important limit for
theory but also marks the start of transonic flow and the likelihood of a significant drag
rise for the section. This phenomenon is reported in Figure 2.13.

It is clearly visible in Figure 2.13(a) how in certain points of the airfoil surface, Mach
values as high as 1.1 are reached. This is even more evident for higher AoA, like in Figure
2.13(b), or higher Mach numbers, like in Figure 2.13(c). From these images it is possible
to deduce that, at α = 0°, critical Mach number must be around 0.7.

For the sake of completeness, corresponding pressure field is reported in Figure 2.14,
from which similar considerations can be made.
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2.2. Extension to multiple airfoils

(a) Airflow Mach number for Ma∞ = 0.75 and α =
0°.

(b) Airflow Mach number for Ma∞ = 0.75 and α =
2°.

(c) Airflow Mach number for Ma∞ = 0.85 and α =
0°.

Figure 2.13: Airflow Mach number around the airfoil for different angles and Ma∞.

(a) Pressure field for Ma∞ = 0.75 and α = 0°. (b) Pressure field for Ma∞ = 0.75 and α = 2°.

(c) Pressure field for Ma∞ = 0.85 and α = 0°.

Figure 2.14: Pressure field around the airfoil for different angles and Ma∞.

23



Chapter 2. Formulation

In conclusion, it can be stated that, after numerous initial refinements, CFD yielded
satisfactory results compared to experimental data and XFOIL at low Mach, so it could be
used as reference for higher Mach numbers. At Ma ≈ 0.6 XFOIL results started to depart
from those of the CFD, particularly at high AoA, where the flux began to reach sound
speed. For this reason, aerodynamic database by De Zubeldia has been enhanced using
as limit Ma = 0.6 and extended to other airfoils since the XFOIL “limit of reliability”
had been found. From that point on, experimental data gathered by Harris [19] for the
NACA0012 section have been used, as it was in the old version. In first approximation,
this procedure has been considered satisfactory, since only in small (external) portions of
the blade and for few values of V∞ Mach number was over 0.6. Re an Ma discretization
adopted was the one used by De Zubeldia described in Section 2.1.4.

Currently, NACA16, Clark, RAF and ARA-D series are the most common airfoil used
in propellers [26]. Database extension was intended to make the program more versatile,
hence it started including the aforementioned airfoils. Thanks to the online database
Airfoil Tools [27] it was possible to retrieve .dat files containing the X,Y coordinates, as
mentioned at the start of Section 2.2.2.

In Table 2.3 are reported the exact airfoils chosen to enhance the database, along with
their main characteristics.

Table 2.3: Database airfoil list.

Airfoil Symmetric Max Chamber Max Thickness

NACA 0012† Yes 0% 12%
NACA16-012 Yes 0% 12%
Clark-Y No 3.4% 11.7%
RAF-6 No 4.6% 10%

†Already present in De Zubeldia’s database.

In Figure 2.15 are shown the contours of their sections.
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(a) NACA0012 airfoil contour.
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(b) NACA16-012 airfoil contour.
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(c) Clark-Y airfoil contour.
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(d) RAF-6 airfoil contour.

Figure 2.15: Database airfoil contours.

2.3 Rotational effects
As introduced in Sections 1.1 and 1.2, it is a known fact that, due to rotation of the blade,
lift coefficients on inboard sections may exceed the 2D maximum lift coefficient. Therefore,
there is a need for correction of the airfoil characteristics in the new formulation to include
the 3D flow effects. In this Section, two different approaches are reported, that of Du and
Selig [10] and Chaviaropoulos and Hansen [7]. Both of them have been implemented in
the code and had different outcomes, as will be soon shown.

2.3.1 Du and Selig method
In their analysis [10], the authors aimed to describe and analyze the fundamental flow
phenomena that characterize the boundary layer on rotating blades, and to develop a
preliminary stall delay model that modifies the 2D airfoil data so as to simulate the 3D
stall-delay effects. The following steps were taken in the development of the model:

1. Analysis of the 3D integral boundary layer equations for a reference system rotating
with the blade.
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2. Description of the effects of rotor rotation on the separation point and its causes.

3. Determination of a simple correction formula - based on theory developed in points
1, 2 - to obtain rotating rotor lift coefficient Cl(α) and drag coefficient Cl(α) from
2D airfoil data.

Passages of points 1, 2 are rather lengthy and can be found reported in detail in
Appendix B.1. It is clear from this theory that boundary layer separation is postponed
because of rotation, which implies that the stall angle of attack with rotation effects is
larger than that in the 2D flow. Therefore, the stall delay model should account for these
changes in the 2D Cl and Cd airfoil data. Moreover, to be readily implemented in BEMT
methods, such as that used in the presented code, a simple correction to 2D airfoil data
for 3D rotation effects is the most advantageous. It is assumed that the 3D airfoil data are
approximately equal to that in 2D conditions, obtained through XFOIL, plus an increment
in Cl and a decrement in Cd so as to simulate rotation effects on each radial station of the
wind turbine blade. If the ∆Cl and ∆Cd denote the increments and the decrements, the
3D airfoil data can be expressed as reported in eq. 2.26.

Cl,3D = Cl,2D + ∆Cl (2.26a)
Cd,3D = Cd,2D −∆Cd (2.26b)

Based on the stall-delay principle described in Appendix B.1, the correction formula
takes the form reported in eqs. 2.27.

∆Cl = fl (Cl,p − Cl,2D) (2.27a)
∆Cd = fd (Cd,2D − Cd,0) (2.27b)

Where Cl,p = 2π (α− α0) is the potential theory lift coefficient and Cd,0 = Cd,2D for α = 0.
The functions fl and fd are modeled after the separation factor showed in eq. B.11.

Their expression is reported in eqs. 2.28.

fl = 1
2π

1.6
(
c
r

)
0.1267

a′ −
(
c
r

) d
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r
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 (2.28a)

fd = 1
2π

1.6
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0.1267

a′ −
(
c
r

) d
2Λ

R
r

b+
(
c
r

) d
2Λ

R
r
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 (2.28b)

where a′, b, and d are empirical correction factors. In this study, a′, b, and d were initially
set to unity, as suggested by Du and Selig. Also, the parameter λ has been modified and
replaced by a modified tip speed ratio Λ, whose expression is reported in eq. 2.29.

Λ = ΩR√
V 2
∞ + (ΩR)2

(2.29)

Furthermore, in fd, a factor of 2 was introduced multiplying Λ, not present in fl. According
to [10], these changes fitted best the experimental data used in the study.
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To summarize, the 3-D stall-delay model final relations are expressed in eqs. 2.30.

Cl = Cl,2D + fl (Cl,p − Cl,2D) (2.30a)
Cd = Cd,2D − fd (Cd,2D − Cd,0) (2.30b)

The model was tested by the authors applying it to existing data sets and proved to
be in good agreement with measurements.

2.3.2 Chaviaropoulos and Hansen method
The path pursued by the authors in [7] is pretty similar to what described in the previous
Section 2.3.1. In particular, the following steps were taken:

1. Three-dimensional and rotational viscous effects on wind turbine blades were investi-
gated by means of a quasi-3D Navier-Stokes model, whose governing equations of the
model are derived from the 3D primitive variable Navier-Stokes equations written in
cylindrical coordinates in the rotating frame of reference.

2. Validity of the assumptions made in the construction of the model were cross-checked
through fully 3D Navier-Stokes calculations.

3. Equations of the model were numerically integrated by means of a pressure correc-
tion algorithm for identifying the physical mechanism associated with the 3D and
rotational effects and for establishing semi empirical correction laws for the load
coefficients, based on 2D airfoil data.

Again, for the sake of brevity, details about points 1, 2 can be found in B.2.
The resulting quasi-3D model suggested that the two most important parameters that

trigger three-dimensional and rotational effects are the local chord by radii ratio and the
twist angle. Looking for a semi empirical correction law for the load coefficients, the idea
of Snel et al. [6] of expressing the 3D correction of the lift coefficient as a fraction of
the difference ∆Cl between the inviscid value Cl,inv and the corresponding 2D value Cl,2D
was adopted by the authors. This is similar to what done by Selig and Du, as shown in
previous Section 2.3.1 and Cl,inv is nothing but Cl,p of eq. 2.27a.

The obtained results for Cd from the quasi-3D model induced the authors to believe
that a similar correction law could be used for the 3D effect on the drag coefficient as well.
In addition, the influence of the twist angle θ, not present in the analysis of Selig and Du
seen in the previous Section 2.3.1, could be introduced through the ∆Cl multiplier. In
light of the analysis conducted, Chaviaropoulos and Hansen proposed the correction law
reported in eq. 2.31.

Cx,3D = Cx,2D + a
(
c

r

)h
cosnθ∆Cx; x = l, d (2.31)

Where

∆Cl = Cl,inv − Cl,2D (2.32a)
∆Cd = Cd,2D − Cd,2Dmin (2.32b)
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The three constants of the model a, h, and n were calibrated by the authors using a
best-fit procedure based on the turbulent flow simulations run with the quasi-3D model
described in Appendix B.2 for NACA 63-2-15 airfoil. The results of this fitting procedure
are reported in Table 2.4.

Table 2.4: Fitted coefficients of Chaviaropoulos and Hansen model [7].

Coefficient Value

a 2.2
h 1
n 4

Correction formulas 2.31 and 2.32 were tested through a comparison between calcu-
lated and measured power curves on a Bonus 300 Combi stall regulated wind turbine,
whose blade is based on NACA63-4XX and NACA63-2XX airfoils. It was shown that the
suggested 3D corrections may improve considerably the accuracy of the predictions, in
particular when the flow is separated.

2.3.3 Adopted method
In both studies, the proposed methods showed promising results in the correction of the
two-dimensional aerodynamic data. For this reason, the two of them have been applied to
the present methodology and consequently implemented in the code, where their applica-
bility was assessed.

Despite being less modern and not considering the local twist angle β as an additional
parameter, Selig and Du method was the first one to be undertaken. From a software point
of view, it was rather simple to apply but on the other hand it slowed down considerably the
subroutine SinglePerformance already described in Section 2.1.2. In fact, the general
strategy - for both cases - was, before performing an optimization loop (which entails a
considerable amount of time even without modifications to the original code), to execute
the single computation subroutine with a given geometry, radius and angular velocity and
then compare the results given by the modified program and the original one.

This procedure showed on one hand that the code with Selig and Du model took almost
one order of magnitude more in time compared to the unmodified one. This aspect alone
would be already enough to question its applicability since normally one optimization run
lasts around 2÷3 hours which would become 20÷30. On the other hand, the decisive
factor that triggered its discard was the veracity of the outcomes. In particular, thrust
and torque curves were irregular in a non-physical way. In addition to this, it happened
in more than one simulation that thrust became zero for a higher advance ratio than the
torque, consequently giving negative values of efficiency. This is obviously not possible
in real conditions. In fact, decomposing the components of the aerodynamic force acting
on the blades it is possible to notice that, keeping Ω constant, increasing the flight speed
and, hence, the advance ratio, the force vector moves downwards until it aligns itself to
the z-axis. In this condition no thrust is generated but a positive torque is still absorbed
by the propeller. To reach the zero-torque condition, flight speed (and consequently the
advance ratio) should be increased until the force vector is aligned to the x-axis and
directed towards the tail of the aircraft. These are among the basic principles of propeller
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theory and can be found even in the most basic texts (e.g [28]). In Figure 2.16 it is shown
a comparison between De Zubeldia’s, Chaviaropoulos and Selig-Du methods in terms of
performance outputs for a blade composed by Clark-Y airfoils. The geometry was the
same in all cases, in particular chord distribution was linear - 0.85 m at the hub and 0 m
at the tip - and twist distribution as well - 60° at the hub and 20° at the tip. Radius and
angular velocity were kept constant too, measuring 2.5 m and 2000 rpm, respectively.
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Figure 2.16: Selig-Du method outputs compared to old and new code - Clark-Y airfoil.

Non-physical oscillations in Selig-Du method are clearly visible in all the sub-figures.
In addition to this, its thrust and torque curves numerical values are considerably different
compared to the other two methods, which in turn are in accordance (expect in the low
J region, where the new model has to supposedly improve the old code). These evident
aspects make Selig-Du model non suitable for the subsequent analysis.

Chaviaropoulos and Hansen method was just as simple to implement from a software
point of view yet it did not entailed a considerable slowdown in the code. As a matter
of fact, given the geometry, radius and angular velocity of the propeller, the modified
code computes its performance along the whole J envelope in almost the same time of the
original one (the difference is of the order of seconds). In addition to this, the curves were
smooth and the differences with respect to the ones computed through the unmodified code
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respected the theoretical considerations of the model (in particular point B.2 in Appendix
B.2). In fact, for high J , where the AoA is low along all the blade and the flow is expected
to be attached, the curves almost overlapped; on the other hand, in lower J regions,
differences were more consistent as the flow is more likely to be detached and hence the
3D effects are bigger. This behavior is clearly visible in Figure 2.16 (black line) and is
shown extensively during the parametric study of Section 3.1. Lastly, the blade twist angle
influence is taken into account in the model, which is, as a consequence, intrinsically more
complete.

In light of what just stated, the chosen model for the present formulation was that of
Chaviaropoulos and Hansen. As noticeable from eq. 2.31, the correction depends on three
constants. Since, for obvious reasons, it was not possible to perform a proper physical
experiment and obtain reliable data to be used for constants tuning, it was decided to
carry out a parametric study to investigate their effect on the correction law mentioned
above. Results of this procedure are shown in Section 3.1.
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Numerical studies

After having defined the theoretical aspects of the model in Chapter 2, the new formulation
has been implemented in MATLAB® environment. In this Chapter the outcomes of the
numerical studies carried out with the software are presented. In the first part a parametric
study of the a, h and n coefficients effect on the correction law (eq. 2.31) is carried
out for all the database airfoils. Secondly, optimization loops with the enhanced code
are performed and compared to the old one for the same initial guess in terms of blade
geometry (twist and chord distributions) and diameter (D) and angular velocity (Ω). In
addition to this, the presence of a variable pitch mechanism has been simulated changing
by a (positive or negative) constant value the optimized twist distribution and computing
the performance output for each resulting case. Lastly, a preliminary attempt to introduce
in the program the possibility of having more than one airfoil section along the span has
been performed.

3.1 Parametric study

Keeping in mind the suggested values of Chaviaropoulos and Hansen (Table 2.4), a, h and
n have been varied one at a time around their recommended value to see the effect of their
change in terms of performance outcomes. During this procedure, when one coefficient was
changed the other two remained constant and equal to the suggested values of Table 2.4.
Geometrical parameters, diameter and angular velocity remained constant throughout all
the tests. In particular, D =2.5 m, Ω =2000 rpm and c =0.5 m. Twist distribution on the
other hand was linear, ranging from 60 to 20 degrees at the tip.

In Figures 3.1, 3.2 and 3.3 is presented the case of RAF-6 airfoil.
In general, it is possible to affirm that coefficients variation has little effect on the

outcome. On the other hand, it is worth to notice that with respect to the unmodified
case (black dashed line) sensible differences can be found for J < 0.25, while for higher J
those differences become negligible. In particular, it is evident how the unmodified code
underestimates both thrust (Figure 3.2) and torque (Figure 3.3) for low values of J , while
afterwards results are pretty similar. This is in full accordance to “3D effects” theory,
which states that rotational effects (hence differences between the two models) are bigger
when the flow is more likely to be detached (i.e. low J regions to which correspond higher
AoA).

For what concerns η, both models behave practically in the same manner. The reason
is quite simple and is easily understandable looking at the mathematical expression of the
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(a) η variation for different a values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) η variation for different n values.
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(c) η variation for different h values.

Figure 3.1: RAF-6 airfoil: η variation for different corrective coefficients values.

efficiency:

η = 1
2π

CT
CQ

J (3.1)

Where CT and CQ are the thrust and torque coefficients, respectively.
This means that if both Q and T are overestimated (or underestimated) at a given J ,

their ratio cancels out this difference and hence the plots are practically identical between
the two models.

In the case of NACA16-012 airfoil (Figures 3.4, 3.5, 3.6), the considerations that can
be made are roughly the same. This time, however, differences in terms of performance
between the two models are more considerable, particularly for low J values.
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(a) Thrust variation for different a values.
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(b) Thrust variation for different n values.
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(c) Thrust variation for different h values.

Figure 3.2: RAF-6 airfoil: T variation for different corrective coefficients values.
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(a) Torque variation for different a values.
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(b) Torque variation for different n values.
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(c) Torque variation for different h values.

Figure 3.3: RAF-6 airfoil: Q variation for different corrective coefficients values.
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(b) η variation for different n values.
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Figure 3.4: NACA16-012 airfoil: η variation for different corrective coefficients values.
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(a) Thrust variation for different a values.
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(b) Thrust variation for different n values.
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(c) Thrust variation for different h values.

Figure 3.5: NACA16-012 airfoil: T variation for different corrective coefficients values.
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Figure 3.6: NACA16-012 airfoil: Q variation for different corrective coefficients values.
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It is possible to notice how, this time, the two models start to depart from each other
at a much higher J (roughly 0.7). Inspecting the AoA along the blade for each J , it
is noticeable that until an advance ratio of 0.7 their values exceed by far the 2D stall
condition which entails an approximately constant power output. On the other hand,
thanks to the rotational effects, it is known that stall occurs at a much higher value when
the blade is rotating, causing the big gap in the plots in Figures 3.6 and 3.5. When, for
higher J , AoA decreases under 2D stall condition, the adherence between the two codes is
regained. This is again a confirmation of what stated by the theory.

For what concerns the efficiency, what stated before in the RAF-6 case still stands: the
ratio between thrust and torque cancels out the difference between the two models and
the result is pretty much equal (see Figure 3.4).

Again it is possible to affirm that coefficients variation has little effect on the outcome,
but in this case difference at low J are more sensible, probably due to higher AoA reached
with respect to RAF-6 case. This happens in particular for a and h coefficients (see Figures
3.5(a), 3.5(c), 3.6(a), 3.6(c)). In fact, looking to eq. 2.31 - which represents the correction
introduced by the model - it is evident that their contribution is much higher than that of n
since the latter is the exponent of a cosine, which can in turn assume values between [-1,1].
Raising to a power of something a number between [-1,1] gives again a number comprised
in the same interval1. From here the reason of a minor influence of n coefficient. Despite
this small discrepancies, the corrective model seems to work well.

For what concerns the Clark-Y airfoil case, the same considerations given for the RAF-6
apply. Graphical results are reported in Appendix C for the sake of brevity.

To summarize, the parametric study leads to the following considerations:

• The new code depicts thrust and torque behavior for low J values much better than
the old one.

• For high J regions, where the AoA along the blade are lower and the flow is more
likely to be attached, the two codes behave similarly, in accordance to theory.

• a, h and n coefficients variation does not change considerably the output given by
the new code.

• The enhanced code can be used for the subsequent optimization studies and values
of the corrective coefficients will be those of Table 2.4.

3.2 Design optimizations
Now that the modified program has been proven to be efficiently working in terms of perfor-
mance estimation for a given geometry, diameter and angular velocity (SinglePerformance
subroutine), it is worth analyzing what the differences with respect to the old code would
be when performing optimization loops starting from identical initial guesses.

It is reminded that during the optimization the generated propeller must satisfy the
following thrust constraints:

1. TTO > 27000N at 31 m/s
1Except in the case of an even raising power. In that case the result assume values between [0,1].
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2. Tc > 6600N at 115 m/s

3. Matip < Malim

4. Remin < Rei

5. Bx0c < ξhub

6. Bx0t < ξhub

7. 1 < Bx3c

8. 1 < Bx3t

9. D <3 m

Limitations 1 and 2 represent thrust constraints during take-off and cruise conditions2.
Constraint number 3 limits the maximum value of the Mach number at the blade tip to
that of the maximum Mach number available in the database of polars. This constraint
is directly limiting the diameter D of the propeller or, alternatively, the rotational speed
Ω, as higher speeds are encountered in the tip due to high distance from the center of
rotation or rotational speed. For what concerns point 4, it actually represents a group of
n constraints, being n the number of stations. Reynolds number at each station is forced
to be higher than the minimum Reynolds number present in the database. This constraint
is particularly important as the curve that defines chord distribution may take lower than
zero values along the iterations of the optimization routine, leading to negative chords.
Since Reynolds number is a function of the chord, negative chords would result in negative
Reynolds number at the section and the routine would utilize the polars (according to the
procedure described in [2], Section 2.1.3) corresponding to the lowest Reynolds number
available to compute aerodynamic coefficients, and therefore, the results obtained would
not be realistic as they come from unfeasible chords. Constraints from 5 to 8 are related to
the abscissa coordinate of the Bezier control points for both twist and chord distributions.
They require that the first control point must be to the left of the first station (represented
by the dimensionless hub coordinate ξhub) and the last one to the right of the blade end,
in order to have a single value of twist or chord at each station. Constraint 9 is rather
intuitive and has been posed considering the dimensions of an aircraft similar to the
Beechcraft 1900.

The optimization variables are eight Bezier coefficients for each twist and chord distri-
butions, plus propeller diameter and rotational speed. The value of the cost function is
computed as follows:

• Bezier control points are transformed into curves (for more details refer to [2], Section
4.1).

• Performance is calculated in cruise conditions.

• Cost function value is computed through Equation 3.2.
2Numerical values come from [2], where the author states that the propeller is intended for a commuter

aircraft similar to Beechcraft 1900.
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CF = −ηc (3.2)
With the minus in front since fmincon searches the minimum of a given function.

For what concerns the optimization algorithm, it was decided to use a gradient-descent
sequential quadratic programming (SQP), which has been proven to be effective for this
kind of optimization problems by De Zubeldia [2] and Sartori [29].

Note that - for all airfoils and different initial guesses - efficiency, thrust and torque
outputs coming from the resulting optimized geometry were obtained using the subroutine
SinglePerformance of the new code, since, as already shown, it is more precise and in
this fashion it is possible to compare the results in the same plot. SinglePerfomance

of the old code was called during the optimization routine performed through De Zubel-
dia’s program to see how that would affect the geometrical distributions outputs. Once
obtained the aforementioned outputs, there was no reason to evaluate their correspond-
ing performance (η, T and Q) with the old subroutine, which has been proven to be less
effective.

Considering the performance restrictions of points 1 and 2, it is expected that opti-
mizations performed through the old code will result in a higher chord distribution since,
neglecting rotational effects, it has been shown how it underestimates thrust output par-
ticularly at low J regions (which is a very likely condition during a take-off). In particular
for NACA16-012 airfoil (see Figure 3.5). In addition to this, given the parametric analysis
performed in Section 3.1, smaller differences in the optimization loops outputs between
the old and new code are awaited for RAF-6 and Clark-Y airfoils.

3.2.1 Linear chord - linear twist initial guesses
The first optimization loop was performed starting with initial guess values reported in
Table 3.1.

Table 3.1: First optimization: initial guess.

Variable Value

D 2.5 m
Ω 2000 rpm
Chord distribution Linear
Twist distribution Linear

Exact values of geometrical distributions are displayed along with the results of the
optimization in the following (Figures 3.7(b) and 3.7(a)).

In Figure 3.7 the results for NACA16-012 propeller3 are displayed. Performance out-
puts are shown in Figure 3.8.

As expected, the optimization performed with the old code led to a much higher chord
distribution (Figure 3.7(b)). In particular, at around half of the span the chord reaches
values as high as 1.3 m, pretty unrealistic - or at least of questionable feasibility - for an
aircraft of the size of Beech1900. Conversely, with the enhanced code the maximum chord
section results almost halved (around 0.7 m). The thrust and torque outputs (Figures

3By “airfoil type propeller” it is meant a propeller made of sections corresponding to airfoil type airfoils.
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(a) Twist distribution.
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(b) Chord distribution.

Figure 3.7: NACA16-012 airfoil geometrical optimization results - linear chord initial
guess: old code vs new code.

3.8(b) and 3.8(c)) resulting from that geometry are slightly higher than those obtained from
the solution obtained with the new code, which, nonetheless, verifies thrust constraints and
presents a better efficiency throughout all J envelope (Figure 3.8(a)). Twist distributions
assumed rather similar values for both codes and did not diverge particularly from the
initial guess.

It is interesting to notice how the initial guess presents a good efficiency for almost
every J but its thrust output is far from being sufficient to satisfy the constraints (in
particular the take-off 1). In addition to this it is worth mentioning how its maximum
J reached is slightly inferior to those coming from the optimizations through both codes,
in accordance to the fact that higher twist distributions are more suitable for higher J
regimes. In fact, looking at Figure 3.7(a), both the optimization outputs present a fairly
increased twist along all the span, hence null thrust and efficiency values are reached at a
higher J .

Finally, for what concerns the resulting D and Ω they are, likewise to twist distribution
case, pretty similar for both codes and close to the initial guess. The results are listed in
Table 3.2.

Table 3.2: First optimization-NACA16-012: D and Ω results.

Version D Ω
Old 2.5584 m 2000 rpm
Enhanced 2.5586 m 1999 rpm

In Figure 3.9 the results for RAF-6 propeller are displayed. Performance outputs are
shown in Figure 3.10.

41



Chapter 3. Numerical studies

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.5

0

0.5

1

(a) Efficiency.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
10

4

(b) Thrust.
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(c) Torque.

Figure 3.8: NACA16-012 airfoil performance optimization results - linear chord initial
guess: old code vs new code.
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(a) Twist distribution.
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(b) Chord distribution.

Figure 3.9: RAF-6 airfoil geometrical optimization results - linear chord initial guess:
old code vs new code.
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(b) Thrust.
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(c) Torque.

Figure 3.10: RAF-6 airfoil performance optimization results - linear chord initial guess:
old code vs new code.
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As anticipated at the start of the Section, this time differences between the two codes
are less pronounced. In particular the two twist distributions (Figure 3.9(a)) are pretty
much alike and they differ very little from the initial guess, with the exception of the
external part of the blade. Chord distribution on the other hand changes a lot from the
initial guess for both programs and their trend is similar excluding the inner sections of
the blade (i.e. close to the hub). Here the enhanced code gives a much more feasible
and regular distribution, as noticeable from Figure 3.9(b). Again the smaller overall value
of the chord is due to the aerodynamic coefficients underestimation by the old code, as
discussed in Section 3.1. Regarding the efficiency, it assumes again very similar values in
both cases (although according to the new one, the blade performs slightly better). This
time the initial guess η is smaller in the majority of J envelope.

In addition to this, it is worth noticing how, despite a much bigger blade area (Figure
3.9(b)), the un-optimized geometry provides less thrust and torque and, indeed, it would
not be able to satisfy none of the thrust constraints (Figure 3.10(b)). This aspect highlights
how important a proper chord distribution design is for an aeronautical propeller.

Finally, for what concerns the resulting D and Ω, they are exactly the same for both
codes and close to the initial guess. The results are listed in Table 3.3.

Table 3.3: First optimization-RAF-6: D and Ω results.

Version D Ω
Old 2.5584 m 1999 rpm
Enhanced 2.5584 m 1999 rpm

The same procedure, starting from the same initial guess of Table 3.1, has been carried
out for Clark-Y propeller. Similar considerations to the RAF-6 case apply. Results are
displayed in Appendix C, Figure C.4.

3.2.2 Constant chord - linear twist initial guesses
Another group of optimization loops was performed starting with initial guess values re-
ported in Table 3.4.

Table 3.4: Second optimization: initial guess.

Variable Value

D 2.5 m
Ω 2000 rpm
Chord distribution Constant-0.75 m
Twist distribution Linear

Exact values of geometrical distributions are displayed along with the results of the
optimization in the following (Figures 3.11(a) and 3.11(b)).

In Figure 3.11 the results for NACA16-012 propeller are displayed. Performance out-
puts are shown in Figure 3.12.
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(a) Twist distribution.
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(b) Chord distribution.

Figure 3.11: NACA16-012 airfoil geometrical optimization results - constant chord initial
guess: old code vs new code.

As in the case of linear chord initial guess (Section 3.2.1), chord distribution is par-
ticularly reduced when the optimization is performed through the new code (3.11(b)).
The probable reason has already been discussed and relies in the underestimation of aero-
dynamic coefficients from the old version of the code, particularly at low J (see Figure
3.5).

For what concerns the other performance parameters coming from the optimized ge-
ometries, similar consideration to what stated in the previous Section apply. The major
difference is given by the initial guess geometry which presents this time similar thrust
and torque values. Nonetheless, the maximum J reached by the un-optimized propeller
is still minor compared to the optimized cases. The same can be said for the apex in the
efficiency curve. This means that the initial guess propeller is a “slower” one compared to
the optimized geometries, which have been obtained with the intention of maximizing η
in cruise conditions (hence, sustained speed).

In Figure 3.13 the geometrical results for RAF-6 propeller are displayed. Performance
outputs are shown in Figure 3.14.
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(a) Efficiency.
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(b) Thrust.
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(c) Torque.

Figure 3.12: NACA16-012 airfoil performance optimization results - constant chord
initial guess: old code vs new code.
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(a) Twist distribution.
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Figure 3.13: RAF-6 airfoil geometrical optimization results - constant chord initial guess:
old code vs new code.
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(b) Thrust.
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(c) Torque.

Figure 3.14: RAF-6 airfoil performance optimization results - constant chord initial
guess: old code vs new code.
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Again, optimized results are very similar to what obtained in the previous Section 3.2.1
with different initial guess hence what stated before still stands. Nonetheless, it is worth
mentioning the chord distribution (Figure 3.13(b)), which is almost identical between the
two codes along all the span, including the internal part. Conversely, in the previous
Section 3.2.1 it was shown how in this part of the blade the two versions of the program
led to different chord values (see Figure 3.9(b)).

Same procedure has been performed for Clark-Y propeller, whose results are, again for
the sake of brevity, reported in Appendix C.

It is interesting to notice that, even starting with quite different initial guesses, the
geometrical outputs (particularly those coming from the enhanced code) are pretty similar,
meaning that the condition found is actually the optimal one to maximize efficiency in
cruise.

3.2.3 Optimized performance for the different airfoils
After having performed the optimization loops for every airfoil in the database, it is worth
comparing the optimized performance given by the different propellers (each one obtained
adopting one airfoil or another) to investigate what are the differences.

In Figure 3.15 the performance and geometrical outputs of the - linear-twist and linear-
chord initial guess - optimization relative to NACA16-012, RAF-6 and Clark-Y propellers
are displayed.

As noticeable, Clark-Y and RAF-6 propellers are almost identical in terms of perfor-
mance and very similar in terms of chord and twist distributions. NACA16-012 propeller
on the other hand, needs a considerably higher chord to meet all the requirements of thrust
and also performance speaking behaves slightly differently from the other two airfoils. In
particular both power and thrust coefficients are sensibly higher for small J regions and
smaller for higher J regions. This means that mounting a propeller that adopts NACA16-
012 sections would result in a minor maximum horizontal speed reachable by the aircraft.
As a matter of fact null Ct is reached at around J = 1.55 while for a propeller mounting
either RAF-6 or Clark-Y airfoils the same happens at J = 1.65.

For what concerns the efficiency, with the exception of the central part of the J enve-
lope, RAF-6 and Clark-Y propellers show a better behavior and reach a maximum value
that is respectively 0.5% and 1% higher than that of NACA16-012. At take-off advance
ratio this difference arrives at almost 3%.

In Figure 3.16 the performance and geometrical outputs of the - linear-twist and
constant-chord initial guess - optimization relative to NACA16-012, RAF-6 and Clark-
Y propellers are displayed.
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(a) Twist distribution.
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(b) Chord distribution.
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(c) Efficiency.
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(d) Thrust coefficient.
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(e) Power coefficient.

Figure 3.15: Optimization results - linear chord and linear twist initial guess: different
airfoil comparison.
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(b) Chord distribution.
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(c) Efficiency.
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(e) Power coefficient.

Figure 3.16: Optimization results - constant chord and linear twist initial guess: different
airfoil comparison.
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This time optimized propellers coming from the adoption of the various airfoils dif-
ferentiate more in terms of chord distribution with respect to the previous case. Again,
the biggest blade area is obtained adopting NACA16-012 airfoil and after that Clark-Y
and RAF-6, in descending order. Thrust coefficient is similar among all the three pro-
pellers, with the one adopting the RAF-6 airfoil reaching a null value at a J of 1.65 versus
1.55÷1.6 of the Clark-Y and NACA16-012, respectively. This means that this time the
fastest propeller is still that of RAF-6, but that of Clark-Y is the slowest. As before, at low
J values NACA16-012 propeller presents the highest power coefficient followed by RAF-6
one. From J > 1 the situation turns around. In turn, Clark-Y propeller presents a lower
Cp throughout all the envelope

For what concerns the efficiency, until J = 1.3 Clark-Y propeller has a slight edge over
the other two (around 0.5÷1%) but from that point on RAF-6 behaves better and reaches
the highest maximum value (81.6%).

In Table 3.5 find the summary of the most interesting performance indicators regarding
all the optimized propellers that have been discussed above.

Table 3.5: Optimized propellers performance.

Optimized Initial guess geometry Optimized Optimized Optimized
propeller distribution max η max Ct max Cp

RAF-6 Constant chord & linear twist 0.816 0.468 0.537
Linear chord & linear twist 0.817 0.464 0.536

Clark-Y Constant chord & linear twist 0.810 0.464 0.494
Linear chord & linear twist 0.822 0.466 0.531

NACA16-012 Constant chord & linear twist 0.807 0.494 0.575
Linear chord & linear twist 0.812 0.503 0.574

3.3 Variable pitch case
Most engines produce their maximum power in a narrow rotational speed band. This is
especially true for a turboprop engine, such as the Pratt & Whitney Canada PT6A-67D
mounted on the Beech 1900.

Supposing that the optimal rounds per minute (RPM) of this engine correspond to
the value obtained after the optimization performed in the previous Section (≈ 2000 rpm)
and that the adopted airfoil is the RAF-6, for the optimized twist and chord distributions
(Figures 3.13(a), 3.13(b)) the efficiency outcome (Figure 3.14(a)) shows that satisfactory
(i.e. higher than 0.6) values of η are reached only for a small interval of J (0.85÷ 1.55).

To overcome such problem a Variable Pitch Propeller (VPP) can be introduced. This
kind of propeller can be efficient for the full range of rotational speeds and load conditions,
since its pitch will be varied to absorb the maximum power that the engine is capable
of producing. In the case of a constant speed propeller, the blade pitch is designed to
automatically change to allow to maintain a constant RPM, irrespective of the amount of
engine torque being produced or the airspeed or altitude at which the aircraft is flying.
This is accomplished by means of a Constant Speed Unit (CSU), or governor, integrated
into the propeller design.
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Most constant speed units work on the principle of centrifugal force and incorporate a
speeder spring and a set of fly weights. The speeder spring is tensioned to balance the fly
weights at a specific propeller RPM and, in some installations, is pilot adjustable allowing
more than one target RPM to be selected. Should the propeller exceed the pre-selected
RPM, the fly weights will be forced outward whereas a propeller under-speed would cause
the fly weights to swing inward. In both cases, this changes the tension on the speeder
spring. In early constant speed propellers, the movement of the weights would drive a
mechanism to mechanically change the pitch of the propeller - increasing it in response to
an over-speed and decreasing it in response to an under-speed. In newer propeller models,
the blade pitch change is accomplished by porting oil, under pressure, through a pilot
valve in response to an under or over speed condition. The oil, which might either be from
the engine or integral to the propeller itself, causes the propeller blade angle to change
as required to maintain the selected RPM. An example of a centrifugal constant speed
propeller hub is given in Figure 3.17.

Figure 3.17: Constant speed propeller hub [30].

In this fashion, it is possible to operate the propeller and engine at the most efficient
RPM and torque for the phase of flight. RPM is controlled automatically by varying the
pitch of the propeller blades – that is, the angle of the blades with relation to the plane of
rotation. For any given power setting, as the blade angle is reduced, the torque required
to spin the propeller is reduced and RPM of the engine will tend to increase. Conversely, if
the blade angle is increased, the torque requirement to maintain a constant RPM increases.
If the power is not changed, then the engine and the propeller will tend to slow down. In
essence, this relationship allows both the propeller and the engine to be set to maintain
their respective optimum RPM. Adding fuel (by moving the power lever forward) increases
the power output of the engine and would tend to increase the engine RPM - however, to
maintain the selected propeller RPM, the blade angle increases to absorb the additional
torque that the engine is now producing allowing the engine RPM to remain at its original
value. The converse is true for a reduction in power lever position where, as less torque is
available, the propeller RPM decreases allowing the engine RPM to remain more or less
constant.
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3.3. Variable pitch case

Such pitch control has been simulated adding or subtracting a constant value to the
twist distribution - just as the CSU would do - and computing the performance for each
resulting distribution. Now, the optimization outcome gave a non-zero thrust until J ≈
1.6 for both initial guesses and airfoils, which corresponds, for Ω =2000 rpm, to roughly
140 m/s. Maximum Beech 1900 airspeed is around 135 m/s, so the twist has been varied
adding a constant value ranging from 5° to −25° with a step of 5°. In fact, for what stated
above, to higher twist distributions correspond higher reachable maximum speeds so there
was no need to investigate performance for much increased values of twist.

In Figure 3.18 it is shown what would be like to adopt the optimized RAF-6 propeller
coming from the optimization case of Section 3.2.2, that is constant chord and linear twist
initial guess.
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(b) Thrust coefficient.
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(c) Power coefficient.

Figure 3.18: Optimized propeller - constant chord and linear twist initial guess - variable
pitch performance. RAF-6 airfoil.

As noticeable, decreasing propeller’s pitch allows to obtain a fair value of η even at low J
regions. Compared to the unmodified optimized case (orange curve in Figure 3.18(a)), for
which the efficiency is higher than 0.6 only for 0.85 < J < 1.55, CSU expands this interval
considerably (roughly 0.5 < J < 1.9). This means, in practice, that if the optimized
propellers were to be used in a commuter aircraft similar to Beech 1900 equipped with a
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variable pitch mechanism it would perform well also far from cruise condition (which was
the point where the optimization was performed).

Similar considerations can be made for a propeller mounting the same airfoil with a
geometry distribution coming from initial guess of Section 3.2.1 (linear chord and linear
twist). Results are shown in Appendix C.

In Figure 3.19 it is shown would be like to adopt the optimized Clark-Y propeller
coming from the optimization case of Section 3.2.2, that is constant chord and linear twist
initial guess.
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(c) Power coefficient.

Figure 3.19: Optimized propeller - constant chord and linear twist initial guess - variable
pitch performance. Clark-Y airfoil.

Again, decreasing propeller’s pitch allows to obtain a fair value of η even at low J
regions. Compared to the unmodified optimized case (orange curve in Figure 3.19(a)), for
which the efficiency is higher than 0.6 only for 0.75 < J < 1.55, CSU expands this interval
considerably (roughly 0.45 < J < 1.8). With respect to RAF-6 blade, in this case the
optimized-for-cruise twist distribution works better, that is the interval for which η > 0.6
is wider. Nonetheless, it is evident how the situation improves with the adoption of a CSU.

Results for Clark-Y propeller with a geometry distribution coming from initial guess
of Section 3.2.1 (linear chord and linear twist) and the for NACA16-012 propeller com-
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ing from both optimization cases of Sections 3.2.1 and 3.2.2, for which almost identical
considerations apply, are reported in Appendix C.

In Table 3.6 is shown the improvement introduced by the CSU in terms of J interval
where efficiency exceeds 60%.

Table 3.6: Advance ratio interval where η > 0.6.

Airfoil Initial guess geometry J interval J interval
distribution with CSU no CSU

RAF-6 Constant chord & linear twist 0.5÷ 1.9 0.85÷ 1.55
Linear chord & linear twist 0.5÷ 1.9 0.8÷ 1.6

Clark-Y Constant chord & linear twist 0.5÷ 1.8 0.75÷ 1.5
Linear chord & linear twist 0.45÷ 1.9 0.8÷ 1.6

NACA16-012 Constant chord & linear twist 0.5÷ 1.85 0.8÷ 1.55
Linear chord & linear twist 0.5÷ 1.85 0.8÷ 1.55

In each case the advance ratio interval almost doubles, showing the great effectiveness
of having a variable pitch propeller.

3.4 Variable airfoil propeller
A preliminary attempt of introducing in the program the possibility of having different
airfoil sections along the span has been made. In this fashion, if the designer wants to
adopt more than one airfoil for his propeller, the tool is able to give an estimation of its
effect, as long as the airfoils used are among the ones of the database.

In practical terms, the subroutine SinglePerformance has been changed in order to
accept two different databases (each one corresponding to the two airfoils to be used along
the span) and to draw on the correct one in accordance to the division of the blade sections
decided by the user. Indeed, the latter has to choose from the main at which percentage of
the span wants to change airfoil and the program behaves consequently, treating the first
part of the blade as composed by one airfoil and the last one as composed by the other
airfoil.

RAF-6 and Clark-Y propellers resulting from the optimizations loops performed in the
previous subsections have been used as “geometrical base” on which the two airfoils were
mixed in various ways. In Figure 3.20 is represented the performance output of a propeller
with geometry of Figures C.4(a) and C.4(b) with the first half (without considering the
hub) of the blade composed by Clark-Y sections, the remaining part composed by RAF-6
sections.

Regarding thrust and power coefficients combining the airfoils exhibits some effects for
low advance ratios, where the mixed blade provides higher values of both Cp and Ct. The
efficiency in turn, is pretty much unchanged.

As already said, this modification of the program was only a preliminary study and, as
such, suffers from some limitations. Firstly, the user has to manually change the percentage
of the span at which the airfoil has to change. Secondly, only two different airfoils are
admitted along the span. In addition to this, taking into account the actual realization
of the propeller, having an abrupt change of airfoil would introduce a discontinuity in the
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Figure 3.20: Performance output obtained with a mixed blade - half Clark-Y and half
RAF-6 airfoil. Geometry of the blade is that of the optimized Clark-Y propeller.

blade shape at the point where the section changes. Of course, this solution could not
be accepted in practice, where some sort of blending between the two airfoil in order to
guarantee geometrical compatibility would be necessary. Nonetheless, it is still worth to
have shown the results to have an idea of what would actually be to use more than one
airfoil for a single blade. In addition to this, it opens the way to further investigations in
this sense in eventual future developments of the program.
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Chapter 4

Conclusions

As a natural continuation of De Zubeldia’s work [2], this study aimed to develop a for-
mulation that would help in the early design phases of a propeller. With respect to
the previous, the present formulation has been successfully improved and its possibili-
ties expanded. Description of this process is given thoroughly in Chapter 2. Firstly, the
aerodynamic database, which initially included only NACA0012 airfoil data, has been ex-
tended to three of the most used airfoil in propeller design, that is NACA16-012, RAF-6
and Clark-Y. This has been possible thanks to the successful XFOIL reliability study,
where its predictions were compared to those of OpenFoam. In the CFD simulations the
turbulence model adopted was the κ-ω SST developed by Menter [23] with the use of wall
functions. To validate the two-dimensional CFD case, low Mach number simulations have
been performed first and confronted with XFOIL and consolidated results coming from
Abbot [3] and Ladson experiments [20]. From here, Mach number has been increased to
assess at which point the outcomes started to diverge. Results in terms of Cl have been
used in this phase. In Section 2.2.2, it is shown that major differences appeared from a
Mach number of 0.65. In light of this, the limit used in the expansion of the aerodynamic
database through the use of XFOIL was 0.6. From that point on, experimental data
gathered by Harris [19] for the NACA0012 section have been used, as it was in the old
version. In first approximation, this procedure has been considered satisfactory, since only
in small (external) portions of the blade and for few values of V∞ Mach number was over
0.6. In Section 2.3 the second enhancement applied is discussed, that is the refinement of
aerodynamic coefficients computation at low advance ratios, where the code derived from
De Zubeldia’s methodology presented, for particular geometries, irregularities and non
physical behavior in the curves. It is a known fact that, due to rotation of the blade, lift
coefficients on inboard sections may exceed the 2D maximum lift coefficient. Therefore,
there was a need for correction of the airfoil characteristics to include the 3D flow effects.
The differences between the calculations applying the classical1 BEMT and actual mea-
surements increase as larger portions of the blades experience high cross-sectional angles
of attack, beyond the stall limit. In particular, it turns out that the measured propeller’s
thrust is higher (sometimes much higher) than the thrust predicted by calculations where
the two-dimensional stall characteristics of a non-rotating airfoil are used [4]. The effect
was attributed in various studies to the presence of a Coriolis force, having the same ef-
fect as a favorable pressure gradient. In addition, the centrifugal force causes an outward
displacement of fluid particles, through which the boundary layer becomes thinner com-

1By classical is intended the one where the 2D aerodynamic coefficients are used.
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pared to a non-rotating boundary layer. Two different approaches were inspected in this
analysis, that of Du and Selig [10] and Chaviaropoulos and Hansen [7]. Both of them have
been implemented in a software to assess their applicability. The theory and the rationale
behind each model is reported in Sections 2.3.1, 2.3.2 and Appendix B. In Section 2.3.3 it
is shown how Chaviaropoulos and Hansen method suited better the case of study in terms
of CPU efficiency and results veracity, which is why it was finally chosen for the present
formulation.

After having defined the theoretical aspects of the model in Chapter 2, the new formula-
tion has been implemented in MATLAB® environment, presenting two principal working
modalities: performance computation for a given geometry and geometry optimization
starting from a generic initial guess and cost function to minimize. In Chapter 3 the out-
comes of the numerical studies carried out with the software are presented. In the first
part a parametric study of the a, h and n coefficients effect on the correction law (eq.
2.31) is carried out for all the database airfoils. Secondly, optimization loops with the
enhanced software are performed and compared to the old one for the same initial guess in
terms of blade geometry (twist and chord distributions), diameter (D) and angular veloc-
ity (Ω). In addition to this, the presence of a variable pitch mechanism has been simulated
changing by a (positive or negative) constant value the optimized twist distribution and
computing the performance output for each resulting case. Finally, a preliminary attempt
to introduce in the program the possibility of having more than one airfoil section along
the span has been performed. In Section 3.1 the parametric study reveals that, firstly,
the new code depicts thrust and torque behavior for low J values much better than the
old one, which underestimated them considerably. On the other hand, for high J regions,
where the AoA along the blade are lower and the flow is more likely to be attached, the
two codes behave similarly, in accordance to theory. Secondly, it is evident that a, h and
n coefficients variation does not change considerably the output given by the new code.
In view of this aspect, corrective coefficients adopted in new version of the code will be
that of Table 2.4. Thereafter, in Section 3.2 it is analyzed what are the differences with
respect to the old code when performing optimization loops starting from identical ini-
tial guesses. The first optimization loop was performed starting with initial guess values
reported in Table 3.1; the second with initial guess values reported in Table 3.4. This
procedure has been carried out for all the database airfoil. It turned out that the old code,
given its limitations in performance computation at low J where it underestimates forces
acting on the blade, obtained bigger optimized chord values along the span in order to
satisfy thrust constraints. In other words, not considering three-dimensional effects leads,
as shown in Section 3.1, to an underestimation of aerodynamic forces acting on the blade
which, inserted in a optimization loop, causes a over-sizing of the chord along the span
in order to satisfy the constraints, particularly that of take-off thrust. In this fashion,
it has been demonstrated that adopting the new code a much more feasible and regular
chord distribution is obtained as well as a more precise output, without resulting in use-
less over-sizing of the blade. Comparing the optimized propellers, the RAF-6 presented a
more “manufacturable” chord distribution and slightly better efficiency. The comparison
is treated in depth in Section 3.2.3. Furthermore, in Section 3.3 it is displayed the variable
pitch mechanism simulation. It is a known fact that most engines produce their maximum
power in a narrow rotational speed band, especially turboprop ones, such as the Pratt &
Whitney Canada PT6A-67D mounted on the Beech 1900. To overcome such limitation
a Variable Pitch Propeller (VPP) is usually introduced to make propeller pitch vary to
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absorb the maximum power that the engine is capable of producing. In order to depict this
mechanism, the resulting optimized twist from Sections 3.2.1 and 3.2.2 has been varied
adding a constant value ranging from +5◦ to −25◦ with a step of 5◦. Compared to the
unmodified optimized case, for which the efficiency is higher than 60% only for a rather
narrow J interval, Constant Speed Unit (CSU) expands it considerably. Table 3.6 shows
that the J interval where efficiency exceeds 60% is practically doubled for all the optimized
propellers adopting a CSU. This means, in practice, that if the optimized propellers were
to be used in a commuter aircraft similar to Beech 1900 equipped with a variable pitch
mechanism it would perform well also far from cruise condition (which was the point where
the optimization was performed).

Finally, a preliminary attempt of introducing in the program the possibility of having
different airfoil sections along the span has been made. In Figure 3.20 is shown that
combining two airfoils can achieve higher values of both Cp and Ct at low J regions.
Again, this constituted only an initial study and had more a demonstrative purpose. As a
matter of fact, it suffered from some limitations that can be found in Section 3.4 but gave
an idea of what would actually be to use more than one airfoil for a single blade.

In light of the analysis conducted in Chapter 3, RAF-6 propeller is considered the
best in both “manufacturability” and performance, including when CSU was simulated.
Nonetheless, also propellers adopting Clark-Y and NACA16-012 airfoils performed well
and could constitute a more than satisfactory design. As a matter of fact, since the
differences are not that pronounced (between RAF-6 and Clark-Y in particular), the final
choice could rely also on other aspects than performance indicators.

4.1 Further studies
On the whole, this analysis was a success. All the objectives that had been posed at the
start of the study were met and constituted a consistent improvement with respect to De
Zubeldia’s analysis. In particular, the formulation is now more complete and the resulting
code is more versatile, precise and, consequently, leads to more physically convincing
results.

Nonetheless, there are some aspects that could be analyzed in order to further develop
the present work and make the formulation one more step closer to reality.

• Aerodynamic database could be further expanded to other airfoils in order to cover
a bigger family of sections. From there, it could be useful to perform the reliability
study for each airfoil, since the Mach number limit up to which XFOIL is precise
might vary from one to another.

• In Section 2.2.2 it has been pointed out as, for Ma > 0.6, data coming from exper-
iments on NACA0012 airfoil have been used. An additional improvement could be
adopting aerodynamic coefficients of the airfoil that is actually being used also in
this Ma range, after having obtained them via experiments or CFD.

• In Section 3.1, it has been said that the corrective constants a, h and n used in the
3D correction (eq. 2.31) are that of Table 2.4, namely those used by Chaviaropoulos
and Hansen in [7], obtained through a comparison between calculated and mea-
sured power curves on a Bonus 300 Combi stall regulated wind turbine, whose blade
is based on NACA63-4XX and NACA63-2XX airfoils. It could be interesting to
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perform a similar study for each database airfoil and fine tune the coefficients con-
sequently. Nonetheless, in the same Section it has been shown that results change
slightly even for considerable variations of the corrective constants, hence an effort in
this sense might be time consuming compared to the effective change in the program
output.

• With respect to the preliminary study performed in 3.4, it would be worth to im-
prove the procedure of multiple airfoil implementation along the span. For instance,
automatizing the process would open the path of optimizing the disposition of the
two (or more) airfoils in order to minimize some cost function. Also, a sort of blend-
ing in correspondence of the point of section change would be necessary, for the sake
of geometrical compatibility without discontinuities in the blade shape.

• Another possible enhancement to be applied is the development of a structural and
acoustic sub-routines. The former in order to structurally verify the final blade shape
to the expected loads (e.g. centrifugal axial force, bending moment, etc.), while the
latter to compute the Sound Pressure Level (SPL) emitted by a blade of a given
shape. In the last case, it could be interesting to perform optimizations where the
SPL is also taken into account, in order to obtain a quiet but still efficient propeller.
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Appendix A

OpenFOAM detailed meshing
procedure

OpenFOAM is an open source set of libraries written in C++, first developed at the Imperial
College of London in the 80s. It is intended mainly to termo-fluidodynamic applications
but also comprehends structural and financial solvers.

The standard case organization is structured in folders which may contain in turn
other folders or files. The case must include at least three folders: 0, constant and system.
Figure A.1 shows how this analysis case was organized.

0

❶ k

❷ nut

❸ omega

❹ p

❺ U

constant

❶ transportProperties

❷ turbulenceProperties

❸ dynamicMeshDict

system

❶ controlDict

❷ fvSchemes

❸ fvSolution

❹ blockMeshDict

❺ extrudeMeshDict

❻ decomposeParDict

geometry

polyMesh

Figure A.1: Case organization.

The whole case folder is then launched directly from the terminal.
As discussed in Section 2.2.2, in the present analysis blockMesh utility was adopted

during the meshing procedure. This is done in practice going inside the system folder and
acting on blockMeshDict file. blockMeshDict has five mandatory sub-dictionaries:

• Geometry

• Vertices

• Blocks

• Edges
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• Boundary

Two other sub-dictionaries were added to further simplify the set up:

• Domain

• Aerofoil

The use of blockMesh requires a careful design of the background mesh. First, the
domain dimensions were defined; for this study dimensions were those of Table 2.2. Sim-
ilarly was done for Aerofoil sub-dictionary which was defined by (x,z) coordinates of its
lead, upper, trail and lower points. Graphical representation is given in Figure A.2.

lead
trail

upper

lower

Figure A.2: Aerofoil dimensions.

Thereafter, vertices of the whole domain are defined through the function project.
In this study, 24 vertices were defined. A graphical representation is given in Figure A.3.
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Figure A.3: Domain vertices.

The next step consisted in defining the so-called blocks from the above presented
vertices. Each of them was defined, as already discussed in Section 2.2.2, in a local
coordinate system (x1, x2, x3) that must be right-handed. The edges of every block are
straight by default, to obtain curved edges it was necessary to use again function project

to project a generic edge defined by two vertices onto airfoil or cylinder. This procedure
is better understood looking at Figure A.4.
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project 3 0 (cylinder)

Figure A.4: Curved edges.

Boundaries were then defined from vertices. Vertices defining the boundary must be
numbered in a clockwise sense looking from inside the block. A graphical example on how
the inlet and outlet were defined is given in Figure A.5.

P0 P1

P3

P9
P10

P4

P5

P6

P11

P8

P7

P23

P22

P21

P15

P12 P13

P14

P18

P20

P19
P16

P17

P2

inlet

{

type patch;

faces

(

(0 3 15 12)

(0 12 13 1)

(1 13 14 2)

(10 11 23 22)

(9 10 22 21)

(3 0 21 15)

);

}

outlet

{

type patch;

faces

(

(2 14 18 6)

(6 18 23 11)

);

}

Figure A.5: Inlet and outlet definition.

Another important aspect to pay attention to within blockMeshDicct is grading. In
particular, when a block is defined each of its edges grading must be specified. In this
fashion, it is possible to obtain different cell spacings (more coarse or finer).
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Appendix B

Stall-delay principle theory

B.1 Du and Selig model

In [10], for the analysis of the flow over rotating blades, a cylindrical coordinate system
attached to the blade is used, with the origin in the center of rotation as shown in Figure
B.1.

Ω

w

r

s=r∙θ

v

u

z

Figure B.1: Coordinate system attached to rotating blade.

The velocity components are u, v and w in directions θ, r and z, respectively. Undis-
turbed free stream streamlines are circular arcs with constant radius. The 3D incom-
pressible steady boundary layer equations (continuity, r-momentum, and θ-momentum
equations) in cylindrical coordinates are given by eqs. B.1.
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1
r

∂u

∂θ
+ v

r
+ ∂v

∂r
+ ∂w

∂z
= 0 (B.1a)

u

r

∂v

∂θ
+ v

∂v

∂r
+ w

∂v

∂z
= −1

ρ

∂p

∂r
+ 1
ρ

∂τ2

∂z
+ (u− Ωr)2

r
(B.1b)

u

r

∂u

∂θ
+ v

∂u

∂r
+ w

∂u

∂z
= − 1

ρr

∂p

∂θ
+ 1
ρ

∂τ1

∂z
+ 2Ωv − uv

r
(B.1c)

The authors assumed that the surface on which the boundary layer develops is in the
plane of rotation z = 0. Thus, surface curvature in chord wise direction has been neglected
with respect to the boundary layer thickness. Ω is the rotational velocity (about the z-
axis) with respect to an inertial system, while r is the distance to the center of rotation.
τ1 and τ2 are the shear stresses in θ- and r- direction respectively, which can be either
laminar (viscous) or turbulent (Reynolds) stresses.

The momentum equations contain a number of inertia force type terms. The θ-
momentum equation contains the Coriolis-force term 2Ωv and coordinate curvature term
uv/r. The r-momentum equation only contains the “total” centrifugal-force term resulting
from the total circumpolar velocity (u− Ωr) in the inertial frame. This term is composed
however of what formally are a coordinate curvature term (u2/r), a Coriolis-force com-
ponent (−2uΩr) and the formal centrifugal force (Ω2r) resulting from the rotating of
coordinate system.

The integral boundary-layer equations for a three dimensional boundary layer in an
incompressible flow have been developed by many researchers. The technique presented in
[10] is an extension of the model developed by Snel [6] for a rotating system. It includes an
order of magnitude analysis of the 3D boundary layer equations, which gives rise to a set
of equations that is much simpler than the full 3D ones. In the formulation, the nonlinear
convective terms were used in their 2D form, while the important 3D effects of centrifugal
and Coriolis forces were retained. The simplified integral boundary-layer equations in θ-
and r- directions in the rotating coordinate system are expressed as shown in eqs. B.2.

∂θ1

∂s
+ (2 +H) θ1

ue

∂ue
∂s

= Cf
2 + 2Ω δ2

ue
(B.2a)

∂θ2

∂s
+ 2 θ2

ue

∂ue
∂s

= Cf
2 tan βw + 1

r

(
θ1 + δ1 − δ −

2Ωrδ1

ue
+ 2Ωrδ

ue

)
− δ

ue

∂ue
∂r

(B.2b)
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B.1. Du and Selig model

Where the integral boundary layer parameters are defined as follows:

δ1 =
∫ δ

0

(
1− u

ue

)
dz (B.3a)

δ2 = −
∫ δ

0

v

ue
dz (B.3b)

θ1 =
∫ δ

0

(
1− u

ue

)
u

ue
dz (B.3c)

θ2 = −
∫ δ

0

uv

u2
e

dz (B.3d)

H = δ1

θ1
(B.3e)

Cf = 2τw
ρu2

e

(B.3f)

At this point, given the complexity of the problem, the authors assumed a laminar
boundary layer distribution on the surface of the blade. The widely used Pohlhausen
velocity profiles (eq. B.4) and associated closure relations were then introduced to solve
the integral boundary-layer equations for θ- direction.

u

ue
=
(
2η′ − 2η′3 + η′4

)
+ Γ

6
(
η − 3η′2 + 3η′3 − η′4

)
(B.4)

While the cross-flow velocity profiles are given in eq. B.5.

v

u
= tan βw (1− η′)2 (B.5)

Where η is the non-dimensional boundary layer height (η′ = z/δ), Γ is the Pohlhausen
shape parameter and βw is the limiting stream angle.

From these assumed velocity profiles, the integral boundary layer parameters (eqs. B.3)
can be expressed as shown in eqs. B.6.

δ1

δ
= 3

10 −
Γ

120 (B.6a)

θ1

δ
= 1

63

(
37
5 −

Γ
15 −

Γ2

144

)
(B.6b)

τwδ

ue
= 2 + Γ

6 (B.6c)

δ2

δ
= − tan βw

(
1
7 + Γ

252

)
(B.6d)

θ2

δ
= − tan βw

(
304
3465 + 756Γ

10395 + Γ2

17820

)
(B.6e)

While the boundary conditions are given by eqs. B.7.

z = 0; u = v = 0 (B.7a)
z =∞; ue = u∞ (1− ks) (B.7b)
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Appendix B. Stall-delay principle theory

Where k is a constant representing the velocity gradient and s is the arc length measured
from the leading edge of the blade. This means that an external flow with a linear adverse
velocity distribution is assumed.

Integration of the integral boundary layer equations up to the point of laminar sepa-
ration (Cf = 0) yields an equation of the form:

ks = f (λ, s/r) (B.8)
Where λ = Ωr/U∞ and ks is the separation factor corresponding to the point of laminar
separation.

Equation B.8 represents the relation between the separation factor ks which determines
the separation point on the rotating surface and the two key parameters, the ratio of local
arc length to local radius s/r, and the ratio of the local rotation speed to free stream
velocity λ. The authors computed the separation factor ks for different λ and s/r values,
representing the outcomes in the same plot. Basing on these trends, in the development
of the post-stall delay model, the ks-curves were approximated by Selig and Du with an
equation of the form:

ks = 1.6 (s/r) a
′ − (s/r)d/λ

b+ (s/r)d/λ
(B.9)

Where a′, b and d are correction factors, whose values have been retrieved tuning eq. B.9
in order to fit the numerical solution of eq. B.8. a′ and b in particular have been found to
vary from approximately 0.8 to 1.2, while d from 0.4 to 1.

For a 2D flow without rotation, the separation factor is ks = 0.1267; whereas, for
a 3D blade in rotation, the separation factor becomes ks > 0.1267 and asymptotes to
ks = 0.1267. Thus, for a 3D flow with rotation, the increase in ks as compared with the
2D case without rotation is given by

∆ks = 1.6 (s/r)
0.1267

a′ − (s/r)d/λ

b+ (s/r)d/λ
− 1 (B.10)

In light of the empirical and approximate nature of the correction, the authors replaced
distance parameter s/r by the blade geometry parameter c/r, that is:

∆k = 1.6 (c/r)
0.1267

a′ − (c/r)d/λ

b+ (c/r)d/λ
− 1 (B.11)

As shown in Section 2.3.1, formula in eq. B.11 forms the basis of the key function that
is used to empirically correct 2D airfoil data for rotation effects that are present in the 3D
rotating flow.

B.2 Chiaviaropoulos and Hansen model
In [7] a simplified quasi-3D model has been devised in order to identify the influence of
the three-dimensional and rotational effects on the blade section characteristics. Firstly,
the governing equations have been derived from incompressible Navier-Stokes equations
written in conservative form in the cylindrical coordinate system (Θ, z, r) which rotates
with the blade with a constant rotational speed Ω. Θ denotes the peripheral, z the axial
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B.2. Chiaviaropoulos and Hansen model

and r the radial (i.e. blade spanwise) direction. The infinitesimal length in the peripheral
direction is ds = rdΘ. For simplicity the - continuity, Θ-, z- and r- component, respectively
- equations are presented in their laminar form:

∂WΘ

∂Θ + ∂ (rWz)
∂z

+ ∂ (rWr)
∂r

= 0 (B.12a)
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Where W stands for the velocity vector, ρ for the fluid density, p is the static pressure
and ν the kinematic viscosity. Φ is a pressure-like term including the centrifugal effect:

Φ = p

ρ
− 1

2 (Ωr)2 (B.13)

The authors then proceeded to integrate eqs. B.12 along the radial direction and the
mean radial values were obtained. The mean value operator reads:

() = 1
∆r

∫ r+∆r

r
() dr (B.14)

Consequently: (
∂ ()
∂t

)
= ∂()

∂t
,

(
∂ ()
∂Θ

)
= ∂()
∂Θ ,

(
∂ ()
∂z

)
= ∂()
∂z

(B.15)

Thereafter, the resulting system of equations was subjected to the following assump-
tions:

(
∂ (WΘ/r)

∂r

)
=
(
∂Wz

∂r

)
=
(
∂Wr

∂r

)
(B.16a)(

∂2 (WΘ/r)
∂r2

)
=
(
∂2Wz

∂r2

)
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(
∂2Wr

∂r2

)
(B.16b)(

∂ (pt/ρ)
∂r

)
= q ⇒

(
∂ (p/ρ)
∂r

)
= q − 1

r

(
WΘ + Ωr

)2
(B.16c)

ab ≈ ab (B.16d)

That is:
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Appendix B. Stall-delay principle theory

• The mean value of the radial derivatives (first and second) of the contra variant
relative velocity components are small and can be neglected.

• The radial derivative of the total pressure (related to the specific work) is a section-
depending constant, called q.

• Mean values of products can be approximated with products of mean values.

Far from the airfoil the velocities are WΘ = −Ωr, Wz = const and Wr = 0, which directly
satisfy the above quasi-3D assumptions.

The outcome of this analysis is then presented by the authors with eqs. B.17. They
include the modified continuity equation (eq. B.17a) and the momentum balance in Θ-,
z- and r- directions respectively (eqs. B.17b,B.17c,B.17d).

∇2D ·W2D + Wr

r
= 0 (B.17a)

N2D
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r2Wr
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Where subscript 2D denotes equivalent two-dimensional properties on the (Θ, z) plane
and N stands for the Navier-Stokes scalar operator, namely:

W2D ≡
[
WΘ,Wz

]
, ∇2D ≡

[
1
r

∂

∂Θ ,
∂

∂z

]
(B.18a)

Φ = p

ρ
− 1

2 (Ωr)2 (B.18b)

N2D = ∂

∂t
+ W2D · ∇2D −

1
Re
∇2

2D (B.18c)

The authors then proceed to adimensionalize the set of eqs. B.17 using the local blade
section c. Finally, the initial conditions needed for the solution of the quasi-3D problem
are provided under the assumption that the far-field flow is uniform at the absolute frame,
having a nonzero axial velocity component (Vz = Wz) only.

Chaviaropoulos and Hansen shared at this point some interesting considerations to
better understand the consequences of their model.

• Compared to the 2D problem, the quasi-3D one includes an additional momentum
equation, eq. B.17d, for the radial velocity component, while two source terms
involving this radial component are added into the continuity and the peripheral
momentum equations. All the extra terms are weighted with the 1/r factor, or the
c/r ratio in dimensional quantities. This implies that the quasi-3D effects become
stronger as c/r increases (inner part of the blade), which is in full accordance with
the experimental observations. The 3D and rotational effects are mainly due to the
Coriolis force and not to the centrifugal force. The effect of the latter is well-hidden in
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B.2. Chiaviaropoulos and Hansen model

the pressure-like term Φ (eq.B.13) which replaces the static pressure in the governing
equations. Clearly, eqs. B.17 degenerate to the 2D Navier-Stokes equations when
c/r → 0 and q = 0 (“work distribution” parameter).

• The influence of the twist angle is implicitly taken into account in the above anal-
ysis. Actually, β along with α define the equivalent rotational speed Ω affecting
the strength of the source terms appearing in the peripheral and radial momentum
equations (B.17b,B.17d).

• The main production term appearing in eq. B.17b, i.e. the first RHS term, is always
positive leading to the generation of a radial velocity field of positive sign (hub to
tip). The production is larger as c/r increases and WΘ decreases. WΘ takes small
values within the wall shear layer, the thickness of which depends on the Reynolds
number. Thus, a Reynolds number effect should be expected. When the flow is
detached, radial velocity is generated in the separation bubble. The above remarks
imply that even for large c/r ratios the solutions of the 2D and the quasi-3D problem
are rather identical at low angles of attack and high Reynolds numbers, where the
flow remains fully attached and the boundary layer is thin, while larger differences,
depending on the extent of the separation bubble, should be expected for detached
flows.
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Appendix C

Comprehensive graphical results

In this Chapter, a comprehensive list of all non-reported plots (for the sake of brevity) in
the main corpus is given.

In Figures C.1, C.2 and C.3, the parametric study of the influence of a, h and n
coefficients in the 3D model for the Clark-Y airfoil is reported.

In Figures C.4 and C.5 are reported the results of the two optimizations performed
adopting Clark-Y airfoil. The first starting with both chord and twist linear distributions,
the second starting with constant chord and linear twist distributions.

In Figures C.6 and C.7 performance outputs obtained adopting the optimized - from
linear chord and linear twist distributions as initial guess - propeller mounting RAF-6
and Clark-Y airfoil with variable pitch are shown. In Figures C.8 and C.9 are reported
the performance outputs obtained adopting the optimized - from both initial guesses -
propeller mounting NACA16-012 airfoil with variable pitch.
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Appendix C. Comprehensive graphical results
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(a) η variation for different a values.
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(b) η variation for different n values.
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(c) η variation for different h values.

Figure C.1: Clark-Y airfoil: η variation for different corrective coefficients values.
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(a) Thrust variation for different a values.
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(b) Thrust variation for different n values.
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(c) Thrust variation for different h values.

Figure C.2: Clark-Y airfoil: T variation for different corrective coefficients values.
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(a) Torque variation for different a values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

2000

4000

6000

8000

10000

12000

14000

16000

(b) Torque variation for different n values.
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(c) Torque variation for different h values.

Figure C.3: Clark-Y airfoil: Q variation for different corrective coefficients values.
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(a) Twist distribution.
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(b) Chord distribution.
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(c) Efficiency.
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(d) Thrust.
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Figure C.4: Clark-Y airfoil optimization results - linear chord initial guess: old code vs
new code.
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(a) Twist distribution.
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(b) Chord distribution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Efficiency.
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(d) Thrust.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

4

(e) Torque.

Figure C.5: Clark-Y airfoil optimization results - constant chord initial guess: old code
vs new code.
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(a) Efficiency.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) Thrust coefficient.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Power coefficient.

Figure C.6: Optimized propeller - linear chord and linear twist initial guess - variable
pitch performance. RAF-6 airfoil.
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(a) Efficiency.
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(b) Thrust coefficient.
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(c) Power coefficient.

Figure C.7: Optimized propeller - linear chord and linear twist initial guess - variable
pitch performance. Clark-Y airfoil.
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(a) Efficiency.
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(b) Thrust coefficient.
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(c) Power coefficient.

Figure C.8: Optimized propeller - constant chord and linear twist initial guess - variable
pitch performance. NACA16-012 airfoil.
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(b) Thrust coefficient.
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(c) Power coefficient.

Figure C.9: Optimized propeller - linear chord and linear twist initial guess - variable
pitch performance. NACA16-012 airfoil.
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