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Abstract

This work explores the Bayesian persuasion framework, where a player, called Sender, by
having an informational advantage towards another player, called Receiver, influences her
by transmitting strategic signals. This framework, initially studied in its basic form, by
Kamenica [26], has gained significant interest for its possible applications in a wide range
of fields. Indeed there are present various studies, which analyze distinct variants of the
original problem. Consequently, this work focus its attention on a different variant of the
original problem. More precisely in this thesis we relax the constraint of the original prob-
lem for which the Sender knows exactly the Receiver’s payoff. This factor of uncertainty
brings the Receiver from the Sender perspective to have an unpredictable behaviour. The
core of this study lies in finding a signaling scheme for the Sender that is robust enough
to overcome the Receiver unpredictability. We propose an algorithm able to solve exactly
this problem. The final phase of our research involves a comprehensive evaluation of this
algorithm. We rigorously test it in various simulated environments to assess its practical
performance. Key performance metrics include the algorithm’s execution time and its ef-
ficiency in terms of achieving expected utility under different scenarios. This multifaceted
analysis not only benchmarks the algorithm’s effectiveness but also provides insights into
potential areas for further refinement and application in real-world settings.

Keywords: Bayesian Persuasion, Uncertainty, Signaling Scheme.





Abstract in lingua italiana

Questo lavoro esplora il framework della persuasione bayesiana, in cui un giocatore, chiam-
ato Mittente, avendo un vantaggio informativo nei confronti di un altro giocatore, chiam-
ato Ricevente, lo influenza trasmettendo segnali strategici. Questo framework, inizial-
mente studiato nella sua forma base, da Kamenica [26], ha suscitato notevole interesse
per le sue possibili applicazioni in una vasta gamma di settori. Infatti, sono presenti
vari studi che analizzano diverse varianti del problema originale. Di conseguenza, questo
lavoro focalizza la sua attenzione su una variante diversa del problema originale. Più
precisamente, in questa tesi rilassiamo il vincolo del problema originale per cui il Mit-
tente conosce esattamente il payoff del Ricevente. Questo fattore di incertezza porta il
Ricevente, dal punto di vista del Mittente, a comportarsi in modo imprevedibile. Il nucleo
di questo studio consiste nel trovare uno schema di segnalazione per il Mittente che sia ab-
bastanza robusto da superare l’imprevedibilità del Ricevente. Proponiamo un algoritmo
in grado di risolvere questo problema in modo esatto. La fase finale della nostra ricerca
coinvolge una valutazione approfondita di questo algoritmo. Lo testiamo rigorosamente
in vari ambienti simulati per valutarne le prestazioni pratiche. Le metriche chiave delle
prestazioni includono il tempo di esecuzione dell’algoritmo e la sua efficienza nel rag-
giungere l’utilità attesa in diverse situazioni. Questa analisi sfaccettata non solo misura
l’efficacia dell’algoritmo, ma fornisce anche spunti per eventuali ulteriori perfezionamenti
e applicazioni in contesti reali.

Parole chiave: Persuasione Bayesiana, Incertezza, Schema di Segnali.
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1| Introduction

1.1. General overview

In recent years, the value of information, and consequently of data, has grown exponen-
tially. Indeed not only companies but also people in general became aware of the incredible
potential of the value that there is behind owning personal data and information. Owned
data can be utilized in numerous ways to enhance wealth. For instance, in a business
context, data are crucial for evaluating performance and understanding what strategies
are effective. In other contexts having an informational advantage, namely having access
to information that others lack, can be a significant asset. Consider the example of an
investor and a financial adviser in the economic realm, such as the stock market. Here,
informational advantage is often leveraged to persuade and maximize potential gains.
Persuasion is the ability of inducing another player to perform an action that is the bet-
ter for the one who is persuading. This specific form of persuasion, which capitalizes on
an informational advantage, is known as Bayesian persuasion, and it is rising a lot in
popularity.

The Bayesian Persuasion model is a game of two players, the first is called Sender, who
wishes to persuade the other player called Receiver. Both players have a common knowl-
edge called prior. However, the Sender has an informational edge, which is strategically
utilized to influence the Receiver’s decisions through signaling. The Receiver processes
these signals and updates their beliefs according to the Bayesian rule, leading to actions
that are intended to benefit both parties. Dughmi and Xu [18] affirm that since the first
model of Bayesian persuasion was published by Kamenica [26] persuasion as a share of
economic activity appears to be growing −¯ a more recent estimate places the figure at 30
percent. Consequently it is of real interest to study this category of problem in different
scenarios by varying some aspects of the basic model. In this thesis we study the Bayesian
Persuasion problem in the context where the Sender does not know the actual utilities of
the Receiver but has an uncertainty (δ-knowledge) of them.

In this thesis we define a functioning model able to face this scenario using the worst-
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case analysis approach. This approach avoid explicitly modelling the Receiver’s irrational
behavior and instead considers the worst possible Receiver’s behavior for the Sender. This
model is particularly relevant in cases where the Sender has only a rough estimate of the
Receiver’s utilities and, therefore, only a general idea of the actions the Receiver is likely
to prefer. Consequently, our model aims to find a solution that is more robust to the
Receiver’s behavior, which may be less than optimal.

1.2. Related works

Various works have explored the Bayesian Persuasion framework. The first work is the one
of Kamenica et al. [25], that defined this kind of problem and created a model to address
it. After this work, the Bayesian Persuasion framework has been studied in its application
in many different areas, such as online advertising [4, 20, 31], voting [1, 13, 15, 16], traffic
routing [11, 15, 35], recommendation systems [30], security [34, 37], and product marketing
[2, 12]. However one of the main lines of research emerged has been the one aiming at the
construction of models able to guarantee the robustness of persuasion, when the Sender
is unaware of the Receiver’s goals. Our work follows this research field and consequently
is related to various works like [3, 17, 24], which have, as a point of contact, the search
for robust solutions in this type of framework or similar ones.

For example the work done by Dworczak [19] focuses in finding a robust signaling scheme.
Indeed it challenges the case in which the Sender is uncertain about the exogenous sources
of information of the Receiver, which means that the Sender may be concerned that his
beliefs are wrong. For this reason they focus on finding a policy that is not optimal under
the Sender conjecture but that protects him well in the case the conjectures are wrong.
This scenario is modeled with the state of nature that may send an additional signal to
the Receiver. The main result shown in this work identifies states that can not appear
together in the support of any of the posterior beliefs induced by a robust solution. Indeed
to obtain worst-case optimality such separation of states is both necessary and sufficient.

Another noteworthy work is the one done by Zu et al. [40]. In their work it is addressed
the case in which neither the Sender nor the Receiver knows the distribution of the payoff
relevant state. Indeed the Sender does not know the prior distribution and consequently
he learns this distribution over time by observing the state realizations. Subsequently,
the problem of learning the prior in Bayesian Persuasion was studied in [7] extending it
to sequential games [6, 10, 21]. Persuasion was studied also in Markov Decision Processes
in [22, 36] for myopic receiver and by Bernasconi et al. [9] for farsighted receivers.

This type of problem can find its immediate application in the recommender systems field,
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where the recommender, which is the Sender, has to suggest to the user, the Receiver,
some type of item and does not know if it will be liked or not by the user. The solution
proposed consists in an algorithm, which proceeds by mantaining at each time a set
of candidate priors, based on the observed state realization in the past. The proposed
solution includes an algorithm that maintains a set of candidate priors based on past
state realizations. This algorithm aims to offset the ignorance of the prior distribution
by focusing on robustness, achieving a sub-linear regret of O(

√
T log T ) under certain

conditions.

In the Bayesian persuasion research field another work, which is related to this thesis is
the work done by Castiglioni et al. [14] and subsequently extended by Bernasconi et al.
[8]. In their work they relax the assumption of the Sender, who must know exactly the
Receiver’s utility function to compute an optimal signaling scheme. In order to perform
such task, they study a repeated Bayesian persuasion problem where, at each round, the
Receiver’s type is adversarially chosen from a finite set of types. The goal of the study
is to find a model able to reccomend a signaling scheme at each round, guaranteeing an
expected utility to the Sender. The study is done in the full information scenario, where
the Sender selects a signaling scheme and later observes the type of the best-responding
Receiver, and the partial information scenario, where the Sender only observes the actions
taken by the Receiver. They show the impossibility of finding a no-regret algorithm with
polynomial per-round running time. However, by relaxing the running time constraint,
they find that is possible to achieve a regret polynomial in the size of the problem instance
and sub-linear in the number of rounds T under both full with a complexity of O(T−1/2)

and in the partial feedback with a complexity of O(T−1/5)).

Another work that discuss a similar problem as the one described in this thesis is done by
Gan et al. [23] and is related to [27, 33, 39]. This work studies the Stackelberg equilibrium
framework, where we have two players a Leader and a Follower. In this problem setting
the Leader, who has a similar role of the Sender, has incomplete information on the
utilities of the Follower, who is similar to the Receiver. Consequently the Follower, acts
in a sub-optimal manner in respect to the Leader knowledge which brings to the Leader
unpredictability of the Follower actions. Similarly to our case, in their work they analyze
the problem using a worst-case scenario approach. Indeed they suppose that the Follower
not only plays sub-optimally, but also picks the worst possible action for the Leader. So
the Leader commits to a mixed strategy, to which the Follower responds by choosing an
action that maximizes his expected utility. The solution found to their problem is NP-
Hard. Indeed assuming P ̸= NP, it is not possible to find an approximate solution that is
polynomial (FPTAS). However, they present a quasi-polynomial approximation scheme
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(QPTAS).

1.3. Original Contributions

In this work, we begin with an in-depth analysis of the problem structure, adopting a
worst-case scenario approach. The primary objective is to develop a robust solution,
that effectively withstands scenarios where the Receiver engages in sub-optimal decision-
making.

We start by presenting a negative result. Specifically, the Best Response set that is induced
by the posteriors is not a convex set. This lack of convexity means that it’s not feasible
to find the optimal solution within polynomial time, thereby classifying the problem as
NP-Hard. To address this, we define a convex set starting from the Best Response with
the aim of finding a viable solution. Consequently, by using this newly defined set, we
propose a solution and create an algorithm capable of identifying the optimal one for our
problem setting. This algorithm works by determining all potential robust solutions and
selecting the most advantageous one for the Sender.

Then we proceed to explain in depth how the algorithm operates, including its implemen-
tation and the functionalities of the utilized libraries. Additionally, we present the results
of our experiments, which were designed to fully comprehend the algorithm’s behavior.
Indeed we analyzed the execution time to better comprehend how the NP-Hardness in-
fluences the algorithm and so its usability by evaluating all the execution times of the
algorithm parts. Furthermore, we examine the impact of the δ parameter which repre-
sents the uncertainty of the Sender, in order to evaluate the robustness of the algorithm
solution.

1.4. Thesis structure

The thesis is structured as follows:

• In chapter 2 we show theoretical basics in order to frame better and give context
to our work. In particular we discuss key concepts as: The Bayesian Game, the
Bayesian Persuasion Game, Computational complexity and Convexity;

• In chapter 3 we introduce and propose the problem of finding an optimal signaling
scheme with the presence of uncertainty;

• In chapter 4 we proceed to explain in detail the functioning of our algorithm;
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• In chapter 5 we show our experimentation done to test the algorithm, discussing the
results obtained, regarding the time experimentation and the uncertainty impact in
the problem;

• In chapter 6, we draw the conclusions of this work and we propose new research
direction that could enrich this type of setting.
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2| Preliminaries

In this section we will define all the components and models that are useful to understand
the context of this work and so to facilitate its comprehension.

2.1. Bayesian games

In game theory a Bayesian game is a generalization of a complete-information game.
In addition to the common knowledge of the classical complete-information game, in
this setting the players could have private information. In such case is present some
uncertainty for one or more players, which is captured by the notion of an epistemic
type. An epistemic type describes the player’s knowledge. An example of this uncertainty
coming from private information could be a player, who does not know exactly the utilities
of the opponents. Then the Bayesian game could be represented in the epistemic-form as
a tuple(N,A,Θ,Ω,U) where:

• N={1,2,...,n} is the set of players;

• A={A1, A2, ..., Am} is the set of actions of all the players and Ai={a1, a2, ..., am} is
the set of player i’s actions;

• Θ = Θ1 ×Θ2 × ...×Θn is the set of all the players and Θi = {θi,1, θi,2, .., θi,n} is the
set of the types of player i;

• Ω : Θ −→ ∆(Θ) returns the probability associated with each (θ1, θ2, .., θn) where
θi ∈ Θi;

• U={U1, U2, ..., Un} is the set of the utility functions of all the players Ui : A1×A2×
...× An ×Θ −→ R is the utility function of player i.

In a Bayesian game the uncertainty about the opponent’s utilities is captured by the
concept of the type. Specifically, if a player p is uncertain about the payoffs of her
opponent p’, we model it as if player p is uncertain over the different types of the other
player, each with different payoffs values. Then the private information affects only the
utilities. Every player maintain their beliefs in the utilities in the form of a probability
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distribution over the types, which is common knowledge and is called prior. The players
are rational and so they maximize their utilities. This type of game is called Bayesian
game, because after the players receive private information, they update their knowledge
using the Bayes rule. Similar to complete-information games, it is presupposed that all
the information mentioned is shared knowledge among the players [28]. Moreover, the
assumption is made that each player p eventually becomes aware of their own type. This
implies that an agent’s strategy is a function of its type and so:

θi −→ Ai , ∀ p i, si

The Bayesian game can be divided in three phases :

• ex-ante phase

• interim phase

• ex-post phase

In the first phase, called ex-ante phase, each player is unaware of their own type or the
types of other players. When analyzing a strategy during this phase, we employ the
following expected utility function:

Eθ∼F [ui(si, s−i; θi, θ−i)]

In the second phase, called interim phase, each player is aware of their own type, but do
not know the types of the other players. To find a strategy in this phase, we adopt the
following expected utility function:

Eθ−i∼F−i|θi [ui(si, s−i; θi, θ−i)]

Finally in the ex-post phase, each player is aware of their type and of the types of every
other player. Then to find a strategy in this kind of phase we adopt the following utility
function:

ui(si, s−i; θi, θ−i)

Then because there are three possible phases, we have three possible types of equilibria in
a Bayesian game and consequently three types of strategies. The first type of equilibrium
is called ex-ante Bayes-Nash equilibrium.

Definition 2.1. A strategy profile s = (si, s−i) ∈ S is an ex-ante Bayes-Nash equilib-
rium if no player can increase their ex-ante expected utility by unilaterally changing their
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strategy:

Eθ∼F [ui(si, s−i; θi, θ−i)] ≥ Eθ∼F [ui(s
′
i, s−i; θi, θ−i)], ∀i ∈ [n],∀s′i ∈ Si

The second type of equilibrium is called interim Bayes-Nash equilibrium.

Definition 2.2. A strategy profile s = (si, s−i) ∈ S is an interim Bayes-Nash equilib-
rium if no player can increase their interim expected utility by unilaterally changing their
strategy:

Eθ−i∼F−i|θi [ui(si, s−i; θi, θ−i)] ≥ Eθ−i∼F−i|θi [ui(s
′
i, s−i; θi, θ−i)], ∀i ∈ [n],∀s′i ∈ Si

Consequently the third type of equilibrium is called ex-post Nash equilibrium and is
defined as follows:

Definition 2.3. A strategy profile s = (si, s−i) ∈ S is an ex-post Nash equilibrium if no
player can increase their ex-post expected utility by unilaterally changing their strategy:

ui(si, s−i; θi, θ−i) ≥ ui(s
′
i, s−i; θi, θ−i), ∀i ∈ [n],∀θ ∈ Θ,∀s′i ∈ Si

However ex-ante and interim equilibria are equivalent and so they are referred as Bayes-
Nash equilibria. Obviously an interim equilibrium is always an ex-ante equilibrium, be-
cause the interim equilibrium condition is stronger than the ex-ante one. However an
ex-ante equilibrium is an interim one because if we take the expected utility function ??
of player i and we restated it as:

si∗ ∈ max
si∈Si

Eθi∼F [Eθ−i∼F−i|θi [ui(si, s−i; θi, θ−i)]]

then by using the Jensen’s inequality we obtain:

max
si∈Si

Eθi∼F [Eθ−i∼F−i|θi [ui(si, s−i; θi, θ−i)]] ≤ Eθi∼F [max
si∈Si

Eθ−i∼F−i|θi [ui(si, s−i; θi, θ−i)]]

This implies that whenever the player i is optimizing in the ex-ante phase for all strategies
s′i ∈ Si, the player i is also interim optimizing. Finally because the Bayes-Nash equilibria
are Nash equilibria, this implies that Nash’s theorem guarantees their existence.
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2.2. Bayesian Battle of Sexes

We show an example to clarify the working of this kind of game. As an example we
propose the so-called Battle of Sexes. This game was introduced in 1957 by Luce [29]. In
this book the game is described as follows: Consider a scenario where a man and a woman
intend to meet in the evening but face a dilemma between two events: a prize fight and
a ballet. The man leans towards attending the prize fight, while the woman prefers the
ballet. Both would rather attend the same event than different ones. In the absence of
communication how they decide where to go?

From the classical setting we extend the game, inspired by [38], to study the Bayesian
case of the Battle of Sexes case. Then we consider the scenario were the players can
have two possible types. The first type indicates that the player is interested(I) in the
other player, while the second type indicates that the player is not interested(U) in the
other. Consequently by adding this kind of typification we obtain a Bayesian version of
the Battle of Sexes game. Indeed we consider in our example the case were the woman
has only one type, which is the first type, while the man can be of both types with equally
probability. Consequently in the epistemic form we could have such a setting:

• N= {1,2};

• A= {A1, A2} with A1={B,S},A2={B,S};

• Θ= {Θ1,Θ2} with Θ1={θ1,1},Θ2={θ2,1, θ2,2};

• Ω= {Ω1,Ω2}

Ω1={1 for θ1,1} and Ω2={0.5 for θ2,1, 0.5 for θ2,2}. Then the utility functions are repre-
sented with the following bi-matrices:

θ2,1

S B

θ 1
,1

S 10,5 0.0
B 0.0 5,10

θ2,2

S B

θ 1
,1

S 10,0 0,0
B 0,0 5,10

Table 2.1: The payoff matrices based on the types of the two players

The first table represent the payoff values where the man is interested and this happens
with a pr(I) = 1

2
, while the other table represent the payoff values where the man is

uninterested, which also happens with a pr(U) = 1
2
. By using the ex-ante equation

?? defined in the previous section we can represent the game in the normal form, by



2| Preliminaries 15

computing all the possible expected utilities. For example the woman expected utility is:

E[uw(S, SB)] =
∑
θ∈Θ

pr(θ)uw(S(θ1), SB(θ2); θ) =
1

2
(10) +

1

2
(0) = 5

While the man expected utility would be:

E[um(SB, S)] =
∑
θ∈Θ

pr(θ)um(SB(θ1), S(θ2); θ) =
1

2
(5) +

1

2
(10) =

15

2

Consequently by computing all the ex-ante expected utilities we obtain the following
representation in the normal form game of the Bayesian Battle of Sexes:

SS SB BS BB
S 10, 5/2 5, 15/2 5, 0 0, 5
B 0, 5/2 5/2, 0 5/2, 15/2 5, 0

Table 2.2: The expected payoffs in Bayesian Battle of the Sexes

By analyzing the table representing the expected utilities of the game, it can be noted
that there are no dominant strategies in this game, but there is still one pure-strategy
Nash equilibrium identified by (S,SB), which gives to the women a payoff of 5 and to
the man a payoff of 15

2
. However, except the pure-strategy equilibrium, we can find more

equilibria, which are called mixed-strategy Nash equilibria. Indeed by using such kind
of strategies, we consider the probability of our opponent selecting one strategy over the
other and balance our payoff accordingly. Then let p be the probability that the woman
plays S, let qi be the probability that the man plays S, if the man is interested in the
woman and let qu be the probability that the man plays S, if the man is uninterested in
the woman. If the woman plays the mixed strategy p the man will respond depending on
its type. So if the man is interested in the woman, his payoff for playing S is:

5p+ 0(1− p) = 5p

While if he plays B is:
0p+ 10(1− p) = 10− 10p

Given such payoffs we can find the strategy of the woman that makes the men indifferent
between the two actions. Such probability p is 2

3
. Therefore we obtain the mixed strategy

(2
3
,1
3
). While if the man is not interested on the woman we have the payoff of the man

playing S that is:
0p+ 5(1− p) = 5(1− p)
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While if he plays B is:
10p+ 0(1− p) = 10p

In the scenario were the man is uninterested, and the woman uses the previous strategy,
he obtains a payoff of 5

3
for playing S and of 20

3
for playing B. Therefore the man payoff

for playing B is strictly greater than the other when he his of the uninterested type and
so qu = 0. For this reason the woman payoff, when qu = 0 is:

pr(I)[10qi + 0(1− qi)] + pr(U)[10qu + 0(1− qu)] = 5qi

While her payoff for playing B, when qu = 0 is:

pr(I)[0qi + 5(1− qi)] + pr(U)[0qu + 5(1− qu)] =
5

2
qi +

5

2

Then the value of qi, which makes the woman indifferent between the two actions is qi = 2
3
.

Finally we obtain the following results:

• The woman plays S with probability p = 2
3

and B with probability 1− p = 1
3

• The man when has the type θ2.1=I, plays S with probability qi =
2
3
, and B with

probability 1− qi =
1
3

• The man when has the type θ2.2=U, plays S with probability qu = 0, and B with
probability 1− qu = 1

So at this equilibrium we have that the woman utility is 30
9
, while the man utility is 35

9
.

Finally we can describe by the following table the joint distribution over the woman and
the man strategies at this equilibrium:

SS SB BS BB
S 0 4/9 0 2/9
B 0 2/9 0 1/9

Table 2.3: Joint probabilities at the mixed strategy Nash equilibrium.

As we can see the Bayesian game is a dynamic game with Nature, represented by all the
possible combinations of types, in which the first player to move is Nature. The standard
case of the Bayesian game presented before, does not include any form of communication
between players. Indeed every player acts without exchanging any information with the
opponents. This type of games is also known as simultaneous-moves game, in which every
player cannot receive any information before an outcome is reached. In the following
sections we will extend the standard case by taking in analysis the Bayesian persuasion
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framework, which extend the standard Bayesian game by adding the possibility to one
player, called Sender, to exchange some type of information called signal.

2.3. The Bayesian Persuasion framework

In this section we start by analyzing the Bayesian Persuasion framework. It was first
introduced by Kamenica [26] and it is a game of two players, the first is called Sender,
who wishes to persuade the other player called Receiver. The Receiver is considered,
like in all sorts of Bayesian Game frameworks, as a rational Bayesian player.

In the simplest model of this type of framework we have that the Receiver has to choose
one between multiple actions, which are associated with an a-priori unknown payoff for
both players. The payoffs do not depend only on the action that is chosen but also on
the realization of the state of nature belonging to a finite set of possible states of nature.
Both players have the same prior probability distribution of the next realization of the
state of nature.

The Sender however, unlike the Receiver, knows the realization of the next state of nature
and after it is observed, the Sender sends a signal to the Receiver, who given the prior
and the signal, updates her beliefs using the Bayesian rule computing the posterior, and
chooses an action. So the Sender, by committing to a policy and so by sending a signal,
tries to persuade the Receiver to take the most favorable action for him. This policy is
called signaling scheme and it is a randomized mapping from states of nature to signals
being sent to the Receiver.

In this part we discuss thoroughly the problem defining the model in a rigorous way by
mathematical means, which is inspired by [18],[5]. The Receiver has to choose an action
a from [n] = 1, ...n, with an a-priori-unknown payoff to each of the Sender and Receiver.
The payoffs depend on an unknown state of nature θ, that is drawn from a set of potential
states of nature Θ. We assume that the set Θ is finite and has a dimension of m. So
the Sender and Receiver payoffs are functions ur, us : Θ × [n] −→ R. Then us(θ) ∈ Rn

denotes the Sender’s payoff vector as a function of the state of nature and consequently
us(θ, a) indicates the payoff of the Sender given the state of nature and the action that
the Receiver chose. Consequently ur(θ) ∈ Rn indicates the Receiver’s payoff vector as a
function of the state of nature and so ur(θ, a) denotes the payoff of the Receiver given
the state of nature and the action chosen by her. The state of nature, that is a-priori
unknown to the Receiver, is drawn from a prior distribution µ supported on Θ.

The Sender commits to a signaling scheme called ϕ ∈ Φm, where Φm is the space of all
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the signaling schemes, mapping randomly states of nature Θ to a family of signals Σ, so
formally we will have ϕ : θ −→ ∆Σ, where Σ is a finite set of signals. Given θ ∈ Θ, we use
ϕ(θ) to signify the random signal selected when the state of nature is θ. Indeed, we use
ϕ(θ, σ) to indicate the probability of selecting the signal σ given a state of nature θ. So
we can say that an algorithm implements a signaling scheme ϕ, if it takes as input a state
of nature θ, and samples the random variable ϕ(θ) (See Figure 2.1 for an illustration).

Sender
ϕ

ϕ(θ, σ)

Nature

Receiver

θ

s a
Sender:

ur(a, θ)

us(a, θ)
Receiver:

Figure 2.1: The Bayesian persuasion framework

Given a signaling scheme ϕ with signals Σ, each signal σ ∈ Σ is realized with probability:

xs =
∑
θ∈Θ

µθϕ(θ, σ).

Then, given the signal σ the expected payoff of the Receiver are described by the vector
ur(σ) = 1

xr

∑
θ∈Θ µθϕθ,σur(θ). Consequently for the Sender we will have the expected

payoffs described by the vector us(σ) =
1
xs

∑
θ∈Θ µθϕθ,σus(θ).

After the signal σ is sent by the Sender, the Receiver observes it and performs a rational
update of her beliefs using the Bayes rule. We define Ξ := ∆Θ as the set of Receiver’s
posterior beliefs over the states of nature Θ, then the Bayesian update infers a posterior
belief ξ ∈ Ξ over the states of nature such that the component of ξ corresponding to state
of nature θ ∈ Θ is:

ξθ =
µθϕ(θ, σ)∑
θ′∈Θ µθ′ϕθ′

(2.1)

The Receiver, after computing ξ, selects the action ai such that ai(σ) ∈ maxur,i(σ), which
will induce to the Receiver an utility of maxi ur,i(σ), which will induce to the Sender the
utility us,i(σ).

The Sender objective is to compute a signaling scheme ϕ such that will maximize his
expected utility obtaining then an optimal signaling scheme ϕ∗. In the classical setting
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we can adopt a simple revelation-principle style argument that shows that an optimal
signaling scheme need not use more than n signals, with one recommending each action.
Such a direct scheme ϕ has signals Σ = σ1, ..., σn, and satisfies

ur,i(σi) ≥ ur,j(σi), ∀ i, j ∈ [n].

The signals in order to be followed by the Receiver, need to be persuasive. Consequently
We think of σi as a signal recommending action i, and we introduce the requirement
ur,i(σi) ≥ maxj ur,j(σi) as an incentive-compatibility (IC) constraint on our signaling
scheme. More formally this constraint is defined as:

∑
θ∈Θ

µθϕ(θ, σi)ur,i ≥
∑
θ∈Θ

µθϕ(θ, σi)ur,j, for i, j ∈ [n] (2.2)

2.4. Defining the standard problem

2.5. Analyzing the problem in the posterior space

In this section we will focus in the relationship between the signaling scheme and the
posterior space, representing the signaling schemes as convex combinations of posterior
beliefs, inspired by [14].

Given a signaling scheme ϕ each signal σ ∈ Σ induces a posterior probability ξσ ∈ Ξ,
whose components are defined in equation (2.1). Because every signal σ has a probability
ϕ(θ, σ) of being drawn when the next realization is θ, we have that the signaling scheme ϕ

induces a probability distribution over the posteriors beliefs. This posterior distribution
is denoted by x ∈ ∆x. We say that a signaling scheme ϕ : θ −→ ∆Σ induces x ∈ ∆x if,
for every ξσ ∈ Ξ, the component of x corresponding to ξ is defined as:

xξ :=
∑

σ∈S:ξσ=ξ

∑
θ∈Θ

µθϕ(θ, σ)

Then if the signaling scheme ϕ induces x, xξ represent the probability that ϕ induces
the posterior probability ξ ∈ Ξ. We define the set of posteriors supp(x) := ξ ∈ Ξ, xξ > 0

that can be induced by ϕ with strictly positive probability xξ. We can affirm that the
probability distribution over the set of posteriors is consistent if:∑

ξ∈supp(x)

xξξθ = µθ, ∀ θ ∈ Θ
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Finally given a feasible probability distribution over the signaling scheme x, the set of
posteriors supp(x) and the prior distribution µ we have that:

ϕ(θ, σ) =
xξξθ
µθ

, ∀ θ ∈ Θ

Consequently, given the posterior ξ induced by the Sender signal σ, the Receiver will chose
the action, that maximizes the expected utility. Then we can define the best response set
denoted as BRset. This set can be interpreted as the function BR := ξ −→ [n] and can
be defined as:

BR(ξ) = max
a∈A

∑
θ∈Θ

ξθur(a, θ) (2.3)

When given a posterior ξ if there are multiple actions that maximize the Receiver expected
utility, we assume that the Receiver breaks ties in favor of the Sender and so chooses the
action a ∈ maxa∈[n]

∑
θ∈Θ ξθur(a, θ).

2.6. The judge and persecutor example

To better understand how the Bayesian persuasion framework works we consider a simple
example inspired by Kamenica [26]. In their work they bring as an example the case in
which the Sender is a prosecutor, the Receiver is a judge, and the state of nature is the
guilt or innocence of a defendant.

The Receiver (judge) has two actions, conviction and acquittal, and wishes to maximize
the probability of rendering the correct verdict. On the other hand, the Sender (prosecu-
tor) is interested in maximizing the probability of conviction. There are two states of the
world: the defendant is either guilty or innocent. The judge gets utility 1 for choosing the
correct action (convict when guilty and acquit when innocent) and utility 0 for choosing
the wrong action (convict when innocent and acquit when guilty). While the prosecutor
gets utility 1 if the judge convicts the defendant and 0 otherwise. The prosecutor and
the judge share a prior belief of the next state being guilt of µg = 0.3 and consequently a
prior belief of the next state being innocent of µi = 0.7. The prosecutor being the Sender
gets to observe the realized state of nature, so gets to observe if the defendant is guilty
or innocent. Giving this informational advantage the prosecutor can exploit it by sending
to the judge a signal from the set S = {s1, s2}.

The problem setting can be then summarized by the following tables:

As they demonstrate, it is possible to create scenarios in which the optimal signaling
scheme for the Sender provides noisy partial information regarding the guilt or innocence
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State G State I
(µG = .3) (µG = .7)

A A 0 0 0 1
C 1 1 1 0

(a)

Realized state
State G State I

S s1 0 4/7
s2 1 3/7

(b)

State of nature
State G State I w*

supp(w*) ξ1 0 1 2/5
ξ2 1/2 1/2 3/5

(c)

Table 2.4: (a) us and ur payoff matrices; (b) Optimal signaling scheme ϕ∗; (c) Posteriors
generated by the optimal signaling scheme ϕ∗.

of the defendant. For instance, if the defendant is guilty with a probability of 0.3, the
prosecutor’s best strategy is to declare ’guilt’ whenever the defendant is truly guilty, and
also to claim ’guilt’ just under half the time when the defendant is innocent. With this
signaling scheme represented in the tables 2.4 it will induce the posterior ξ1 and ξ2 with
a probability of x1 = 2/5 and x2 = 3/5. Then the Sender expected utility will be:

Eus =
∑

ξ∈supp(x)

xξus(ξ) =
2

5
(
∑
θ∈Θ

ξ1us(θ)) +
3

5
(
∑
θ∈Θ

ξ2us(θ)) =
2

5
(0) +

3

5
(1) =

3

5
= 0.6

Consequently, the defendant will be convicted whenever the prosecutor asserts ’guilt’ (with
a probability just under 0.7), assuming that the judge is fully aware of the prosecutor’s
signaling scheme. It’s worth noting that it’s not in the prosecutor’s best interest to
unconditionally claim ’guilt,’ as a rational judge who is aware of such a policy would
assign no significance to such a signal. Such a judge would render a verdict based solely
on prior beliefs, which, in this case, would consistently result in acquittal.

2.7. Technical preliminaries

In this section we show the mathematical preliminaries that can be useful to better un-
derstand the study done in this work. Indeed we disclose the notion of convexity, because
it can be handy to better understand the analysis that has been done of the problem and
also the computational complexity, which can be useful to understand better the meaning
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of the result found in this thesis.

2.7.1. Convexity

In this part we show the various definitions regarding the property of convexity regarding
a set. Indeed a set can be:

• Convex;

• Strictly convex;

• Non convex.

Definition 2.4. A set of points S is convex if, ∀ x, y ∈ S and ∀ α ∈ [0, 1], the point z

originated as the convex combination z = αx+ (1− α)y belongs also to S.

Then a set of points S is defined as convex if for every pair of points within the set S,
the line segment connecting those points is also entirely within the set S. So a convex
set or region is a subset that, when intersected with any line, forms a single line segment.
The boundary of a convex set is always a convex curve. The intersection of all the convex
sets that contain a given subset A of Euclidean space is called the convex hull of A. It is
the smallest convex set containing A. A more close type of convex set can is the strictly
convex set, which has the following definition:

Definition 2.5. A set S is strictly convex if every point on the line segment connecting
x and y other than the endpoints is inside the topological interior of S.

The topological interior of a subset C of a topological space X is the union of all subsets
of S that are open in X. A point that is in the interior of C is an interior point of
X. Consequently a closed convex subset is strictly convex if and only if every one of
its boundary points is an extreme point. Finally, if a set does not satisfy the first two
definitions, is called a non convex set. Often a polygon originated by a non convex set of
points can be called concave.

The importance of a set being convex is the fact that it can be implemented the convex
optimization. The convex optimization is the procedure that permits to maximize or
minimize a convex function over a convex set. Indeed many classes of convex optimization
admits polynomial-time algorithm solutions. Consequently if the set that need to be
optimize and so if the set where the solution lies on is convex ti means that the problem
can be solved in polynomial time and so it is not an NP-Hard problem.
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convex strictly convex non-convex

Figure 2.2: Convexity of a set of points.

2.7.2. Computational complexity

In this part we present some theoretical basis, inspired by [32], in order to better under-
stand how computational complexity works, its role and its meaning.

Computational complexity theory is a computer science field that focuses on understand-
ing the inherent difficulty of solving computational problems. It involves classifying prob-
lems based on the resources required to solve them, such as time, memory, or other
computational resources.

Computational complexity of a problem is measured within two possible dimensions; The
space complexity and the time complexity. The space complexity measures the amount
of space that is allocated by the memory to solve the problem, while the time complexity
measures the number of computational steps needed to solve the problem. The complexity
of an algorithm is often defined with a dependency over the input size. Indeed often
the input size determines the number of computational steps that the algorithm needs to
perform. Consequently, in order to obtain a valid esteem of the computational complexity
of a problem we rely on an asymptotic evaluation giving an upper bound measure of the
time complexity.

Definition 2.6. The function f(n) is asymptotically upper-bounded by g(n), we write it
as f(n) = O(g(n)), if there exist two positive constants c and n0 such that:

0 ≤ f(n) ≤ cg(n), ∀n ≥ n0

We can distinguish between the two main complexity classes: the polynomial time class
and the exponential time class. The polynomial time class can be defined as:

Definition 2.7. An algorithm belongs to the polynomial time class if for some k > 0, its
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running time on inputs of size n is O(nk).

While we can define the exponential time class as:

Definition 2.8. An algorithm belongs to the exponential time class if its running time on
inputs of size n is of O(2n).

Indeed any problem can be classified based on its time complexity, which classifies the
problem to specific classes. Problems that are usually analyzed in such manner are deci-
sion problems and functional problem. A decision problem is a computational problem
where the answer is either "yes" or "no" based on a set of inputs. In other words, the task
is to decide whether a particular property holds for the given inputs. While a functional
problem involves computing a function rather than making a yes/no decision. Indeed
instead of asking whether a certain property holds, functional problems ask for the value
of a particular function given certain inputs.

For what regards the decision problem category we can identify three major classes:

• P class, which identifies the class of decision problems that can be solved by a
polynomial time algorithm.

• NP class, which identifies all the decision problems such that for every "yes"-
instance there is a proof which allows to verify, in polynomial time, that the instance
really admits a "yes" answer.

• Co-NP class, which identifies all the decision problems whose complements are in
NP.

While the functional problem class has only two major classes. This is because it is a more
straightforward type of problem where given an input inevitably you obtain an output.
The classes are:

• FP class, which identifies the class of functional problems that can be solved in
polynomial time.

• FNP class, which identifies the class of functional problems that admit a polynomial
time algorithm able to verify given a problem instance I and a solution y, whether
y is a solution of I.

For what regards the NP type problems there are some distinctions to be made. Indeed
there can be identified principally in NP-Hard problems and NP-complete problems.
In order to do that we have to first introduce the concept of reduction of a problem.



2| Preliminaries 25

Definition 2.9. A problem π can be reduced in polynomial time to another problem π′,
written as π ≤ pπ′, if there exists a transformation that allows to build an instance I ′

of π′ from an instance I of π in polynomial time, and such that a solution of I can be
derived, in polynomial time, from one of I ′.

Then for the reduction property if a problem π is reducible to another problem π′ in
polynomial time, then π′ is at least as complex as π. Given the definition of reduction we
can introduce the notion of NP-hard problems and NP-complete problems.

Definition 2.10. A problem π is NP-Hard if every problem π′ ∈ NP is such that π′ ≤ Pπ.

Definition 2.11. A problem π is NP-Complete if it is in NP and it is NP-Hard.

Finally another fundamental aspect in the computational complexity theory is the P
vs NP problem. Indeed in the computational complexity field there is still the open
question whether P = NP or P ̸= NP . If the first scenario would be verified then it
would mean that every problem, where a potential solution can be verified quickly, could
also be solved quickly. Essentially, every "easy to check" problem would be also "easy to
solve". However, if the second scenario would be verified then it would mean that there
are problems, where even if a potential solution could be verified quickly, the process of
finding the solution itself would be inherently more difficult. In this case, it would exist
the case where "easy to check" problems are not "easy to solve." In order to demonstrate
that P = NP , it would be necessary to prove that there exists a polynomial algorithm
for a NP-Complete problem. The solution to this dilemma still exists because it is still
not proven that P ̸= NP . This because it is complex to demonstrate that it does not
exist a polynomial algorithm for a NP-Complete problem and so that P ⊂ NP and then
that some problem in NP cannot be solved in polynomial time.
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problem

In this thesis we address the Bayesian persuasion problem from a different perspective.
Starting from the standard case, we take in analysis the problem of finding an optimal
signaling scheme ϕ∗ where the Sender does not know perfectly the ur payoff matrix. Con-
sequently from the Sender perspective the Receiver plays with an unpredictable manner.
From the ideal situation, where the Receiver picks always an optimal response without
any error, here we have that the Receiver may pick sub-optimal responses.

In order to represent this concept, we introduce a parameter δ, which indicates the uncer-
tainty on the knowledge of the Sender. Consequently the Receiver could play committing
a small error δ > 0 from the Sender perspective. For this reason we have to define a new
best response set of the Receiver, when the Receiver decides to play with δ-optimality.
Thus δ-optimality is the case where the Receiver plays the action that from the Sender
observation is not the optimal one but it is sub-optimal in a quantity of δ. The new Best
Response set that we define is an extension of the concept of BR set, and so given a δ

value and a posterior probability ξ, we obtain a subset of [n], called BRδ(ξ) that is defined
as follows:

BRδ (ξ) =

{
a′ ∈ [n] :

∑
θ∈Θ

ξθur (θ, a
′) > max

a∈[n]

∑
θ∈Θ

ξθur (θ, a)− δ

}
(3.1)

This new set includes not only the action that we perceive as the one with maximum
utility for the Receiver, but also it includes all the actions which have a Receiver utility
value which differs at most from the maximum utility of a quantity of δ.

Our analysis aims at minimizing the Receiver sub-optimality by finding a robust solution.
In order to do that we define a new set that starting from the BRδ(ξ) set finds the action
that is worst for the Sender. Namely, by using this new set we want to find the action a

that minimizes the Sender utility in order to find the minimum utility that the Sender will
receive if the Receiver plays with δ-optimality. Then given the BRδ (ξ) set, we define the
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function Bδ (ξ), that given as input the posterior probability returns the action a, that
corresponds to the action from the BRδ(ξ) set with the minimum utility for the Sender:

Bδ (ξ) = min
a∈BRδ

∑
θ∈Θ

ξ (θ)us (a, θ) (3.2)

Consequently by the above equation we obtain the inverse function ξ = B−1
δ (a). This

function is used to associate to the posterior ξ ∈ Ξ the action returned by the Bδ set.
This function will be used to study the convexity of the set which include the solution
that we want to find.

In this problem setting the Sender objective is to find a robust signaling scheme ϕ. The
signaling scheme needs to induce the BRδ set, which maximizes the minimum sender
utility. Indeed this solution guarantees to the Sender the maximum expected utility
achievable when the Receiver plays in the worst possible manner for him.

3.1. Analysis on the convexity of the BRδ(ξ) set

In this section we present our negative result. We prove that the BRδ(ξ) set is not
convex. Then we provide an alternative set, starting from the original one, that assures
the convexity. Namely we show that the function Bδ (ξ) is not convex as a consequence
of the non convexity of the BRδ(ξ) set. Then after showing that the standard definition
of the BRδ(ξ) set bring to a non convex set, we introduce the concept of a* regions to
re-define the BRδ(ξ) set around them.

Theorem 3.1. The function ξ 7→ Bδ(ξ) is not convex.

Proof. To prove the statement, we have to demonstrate that ∀a, ∀ξ′, ξ′′ ∈ B−1
δ (a) and

∀ξ with ξ = αξ′ + (1− α)ξ′′, where α ∈ (0, 1), then Bδ(ξ) ̸= a. We start by analyzing the
BRδ(ξ) set given the BRδ(ξ

′) and the BRδ(ξ
′′) sets. In fact two posteriors can generate

two different BRδ sets while satisfying the condition that both include the action a which is
the one with the minimum utility for the Sender. In the case in which BRδ(ξ

′) ̸= BRδ(ξ
′′)

we can assert that the convexity property does not hold. This happens for example if
we take a setting where we have two actions a1 and a2, a δ = 1 and two possibles state
of natures θ1 and θ2, with the Sender’s and Receiver’s payoffs shown in the Table(3.1).
If we take as posteriors ξ′ = (0.7, 0.3) and ξ′′ = (0.2, 0.8) we obtain the following BRδ

sets: BRδ(ξ1) = (a2, a1) and BRδ(ξ
′′) = (a1). Both the posteriors induce as the action

with minimum utility a1. We choose as our α = 0.2 to construct the posterior ξ as linear
combination of the former two, which produces the following set BRδ(ξ) = (a2, a1). In
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θ1 θ2
a1 5,3 2,1
a2 3,2 4,4

Table 3.1: Example of non convexity of Bδ(ξ)

this case given the utilities for the Sender, the action with the minimum utility is a2 and
not a1 as for ξ′ and ξ′′.

The following theorem prove that the BRδ(ξ) set is not convex.

Theorem 3.2. The set BRδ(ξ) is not convex.

Proof. Similarly to Theorem(3.1) we want to demonstrate that ∀ξ′, ξ′′ where BRδ (ξ
′) =

BRδ (ξ
′′), ∀ξ with ξ = αξ′ + (1 − α)ξ′′, where α ∈ (0, 1), then BRδ(ξ) ̸= BRδ (ξ

′) =

BRδ (ξ
′′). This can be proven by a different example. We consider the case in which

we have: δ = 1; Three states of nature θ1, θ2 and θ3; Three actions a1, a2 and a3; Two
posteriors ξ′ and ξ”. ξ′ is (0.4,0.3,0.3) and ξ” is (0.3,0.4,0.3). The utilities for the Sender
and the Receiver are written in the Table(3.2).

θ1 θ2 θ3
a1 5,3 5,3 0,1
a2 3,2 5,3 0,4
a3 0,0 0,0 5,0

Table 3.2: Example of non convexity of the BRδ(ξ) set

In this case we have BRδ(ξ
′) = (a1, a2) and BRδ(ξ

′′) = (a1, a2). By picking α = 0.5 we
have that ξ = αξ′+(1−α)ξ” = (0.35, 0.35, 0.3) and so the BRδ(ξ) set is (a1,a2,a3), which
causes the non convexity.

3.2. An algorithm for the optimal signaling scheme

ϕ∗

In this section we show that always exists an optimal signaling (ϕ*) scheme known a
value of δ > 0, a prior µ and the utilities of the Sender and the Receiver. As said before
the signaling scheme induces a probability distribution of the posteriors ξ. Then the
optimal signaling scheme ϕ* induces the optimal posterior ξ*. For this reason we define
the BRδ(ϕ) set, which represents the set of actions that are δ-optimal given a signaling
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scheme ϕ:

BRδ (ϕ) =

{
a′ ∈ [n] :

∑
θ∈Θ

µθϕθur (θ, a
′) > max

a∈[n]

∑
θ∈Θ

µθϕθur (θ, a)− δ

}

Consequently the Sender objective function can be expressed by the following equation,
where us(ϕ, a) indicates the sender utility induced by the signaling scheme ϕ and the
action a:

ϕ∗ = max
ϕ∈Φ

min
a∈BRδ(ϕ)

us(ϕ, a)

Theorem 3.3. An optimal signaling scheme ϕ∗ exists in every game for any δ > 0 and
can be computed in O(2npoly(m,n))

Proof. Given that the set BRδ(ξ) is not convex, by the demonstration 3.2, we create a
convex set, starting from the original definition of the BRδ(ξ) set, that satisfy specific
properties. Because we are search the optimal signaling scheme ϕ* we define this convex
set depending on the signaling scheme variable ϕ. This convex set is defined as the
intersection of convex sets. Namely we start from the Sender strategy space and we
divide it in convex sub-regions. Each sub-region, called a∗ region is characterized by a
set of actions A and the action with the maximum Receiver utility called a∗ ∈ A. Then
for any possible set of action A∈ 2n and any a∗ ∈ A:

χ(A,a∗) = {ϕ ∈ Φm| BRδ(ϕ) = A, ur(ϕ, a
∗) > ur(ϕ, a) ∀a ∈ A} (3.3)

We have that Ua∗∈A,A∈2nχ(A,a∗) = Φm. Indeed any ϕ ∈ Φm must induce some Receiver
δ-optimal response set A and an optimal Receiver response a∗. Then we can affirm
that χ(A,a∗) is a convex set, because it is a polytope. Indeed it is described by linear
constraints, which are linear in the variable ϕ, where ϕ = (ϕ1, ...., ϕm). The constraints
are the following:

(C1 )
∑

θ µθϕθuθ (a
∗) ≥

∑
θ µθϕθuθ (a

′) + δ, a∗ ∈ A, ∀a′ /∈ A

(C2 )
∑

θ µθϕθuθ (a
∗) ≥

∑
θ µθϕθuθ (a), ∀a ∈ A, a∗ ∈ A

(C3 )
∑

θ µθϕθuθ (a
∗) ≤

∑
θ µθϕθuθ (a)− δ, ∀a ∈ A

The constraints C1 and C2 derive directly from the definition of BRδ(ϕ) = A, while
constraint C3 is derived by the other part of the definition of χ(A,a∗). The same convex
polytope can be defined in the posterior space. The linear constraints (3.2) become:

(P1 )
∑

θ ξθuθ (a
∗) ≥

∑
θ ξθuθ (a

′) + δ, a∗ ∈ A, ∀a′ /∈ A
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(P2 )
∑

θ ξθuθ (a∗) ≥
∑

θ ξθuθ (a), ∀a ∈ A, a∗ ∈ A

(P3 )
∑

θ ξθuθ (a∗) ≤
∑

θ ξθuθ (a) + δ, ∀a ∈ A

The constraints are linear in the variable ξ ∈ ∆m, where ξ = (ξ1, . . . , ξm). To find
the optimal Sender signaling scheme ϕ∗, we use Algorithm 3.1 to solve multiple linear
programs. The algorithm correctness relies on the fact that it always exists starting from
any signaling scheme ϕ ∈ Φm a set A and an action a∗. The algorithm for any possible
sub-region identified by the tuple (A, a∗) enumerates all possible vertices of the polytope
in the posterior space, breaking ties in favour of the Sender. Then it finds the optimal
signaling scheme for the subset of actions A called ϕA. This is done by using a Linear
Program, which finds a feasible probability distribution, that represents the probability
of the signaling scheme to induce the posteriors, which maximizes the Sender utility in
the vertices. Finally the algorithm picks the optimal signaling scheme ϕ∗ as the one that
brings the maximum Sender utility between all the signaling schemes found. Algorithm
(3.1) always outputs a valid signaling scheme ϕ∗. Now it is important to understand if
the output signaling scheme ϕ∗ brings to the Sender at least the utility of the action a
of the Bδ set(3.2). Since Ua∗∈A,A∈2nχ(A,a∗) = Φm and the LP finds the feasible signaling
scheme, that maximizes the minimum utility of the Sender, then the utility is at least the
one of the action a of the Bδ set. Also the Sender utility, derived by the optimal signaling
scheme ϕ∗, is at least the optimal objective of LP(A∗, a∗). This is true because, a∗ ∈ A∗
and the LP maximizes the Leader utility for the sub-regions identified by the subset A*.

3.3. Algorithm complexity

The algorithm (3.1) to find the optimal solution ϕ∗ has to compute all the possible robust
signaling schemes and then has to pick the optimal one. In order to find a feasible robust
signaling scheme, given a possible BRδ(ξ) set called in the proof A, the algorithm has
to iterate for every action a ∈ A. In each iteration the algorithm computes all the
vertices creating the sub-regions such that the action a is the maximum. The algorithm
computes all the vertices with a time complexity of O(n3). After the algorithm finds all
the possible vertices it solves an LP in order to find a feasible probability distribution,
which maximizes the Sender utility. The LP is solved in O(mn). If a feasible distribution
is found the algorithm computes the signaling scheme ϕA, where A indicates the signaling
scheme of the partition A. Then given a partition A, the computation of the signaling
scheme ϕA has a time complexity of O(mn4), which is polynomial. However, the algorithm
has to iterate this process for every possible partition derived by the set of actions [n].
Consequently the algorithm iterates for every possible subset of A. This process implies a
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Algorithm 3.1 Compute the optimal signaling scheme for the Sender
1: Input: Receiver utilities ur, Sender utilities us, parameter δ > 0 and the prior distri-

bution µ.
2: Output: optimal signaling scheme ϕ∗ for the Sender.
3: phiTot=[]
4: for any non-empty A ⊆ [n] do
5: V =[]
6: uSender=[]
7: for a ∈ A do
8: a*=a
9: csiTemp=[]

10: Append all the vertices of the polytope derived by the following constraints
11: to the vertices set in csiTemp:
12:

∑
θ∈Θ ξθur,θ (a

∗) ≥
∑

θ∈Θ ξθur,θ (a
′) + δ, a′ /∈ A

13:
∑

θ∈Θ ξθur,θ (a
∗) ≤

∑
θ∈Θ ξθur,θ (a)− δ, a ∈ A

14:
∑

θ∈Θ ξθur,θ (a
∗) ≥

∑
θ∈Θ ξθur,θ (a), a′ ∈ A

15: ξ ∈ ∆m

16: for ξ in csiTemp do
17: V.append(ξ)
18: uSender.append(argmina∈A(ξus(a))
19: vertices=set(V)
20: uFinal=[len(vertices)]
21: for i in range(vertices) do
22: uFinal[i]=-inf
23: for v in range(V) do
24: if (V[v]==vertices[i] and uFinal[i] < uSender[v]) then
25: uFinal[i] = uSender[v]
26: Solve the following LP, to obtain the signaling scheme of A.
27: maximize: utot =

∑
k∈vertices xkuFinal(k)

28: subject to:
29:

∑
k∈vertices xA(k)vk(ξθ) = µθ, θ ∈ Θ

30: xk ≥ 0
31:

∑
k∈vertices xk = 1

32: if (LP.status=="Optimal") then
33: ϕA(θ, s) =

xkvk(θ)
µθ

, for all θ in Θ

34: phiTot.append(ϕA, utot)
35:
36: ϕ∗ = maxutot(phiTot)
37: return(ϕ∗)

complexity of O(2n), which is exponential. Finally the time complexity of the algorithm
is O(2npoly(m,n)), which confirms the statement of the theorem 3.3.
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In this chapter we focus in the algorithm proposed in the proof of the theorem (3.3)
and we discuss in detail its functioning. Then we proceed to describe its implementation
giving all the details.

4.1. Algorithm functioning

The algorithm described in (3.1) is used to find the optimum signaling scheme for the
Sender, in this particular case of the Bayesian Persuasion framework. We can divide the
algorithm functioning in three phases, where the first two are performed for every possible
partition and the last one is performed as the final stage of the algorithm. The phases
are the following:

1. Enumeration of all the vertices

2. Finding a feasible signaling scheme

3. Computing the optimal signaling scheme

The algorithm receives as input: both the utility matrices of the Sender and the Receiver,
respectively us and ur, the uncertainty value δ and the prior distribution µ. The first thing
that is done by the algorithm is to find all the possible partitions given the number of
possible actions. A possible partition is a binary partition between the set of actions, which
originates two sets, where the first one represents the actions belonging to the BRδ set
and the second one represents all the actions not belonging to the BRδ set. Consequently
all the possible partitions are all the possible BRδ sets which can be induced by some
posterior ξ ∈ Ξ. After this step is done it performs the first two phases for every partition
and in the end it performs the final phase.

4.1.1. Enumeration of the vertices

The first phase is the enumeration of all the vertices of a partition. This process is done
multiple times, one for each action belonging to the BRδ set of the partition considered.
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Consequently each time, one of the actions of the BRδ set is defined as the a∗ action.
The vertices are enumerated in the polytope originated by the inequalities described in
the proof of correctness of the theorem (3.3). Then, after the algorithm finds, for all the
actions (considered one at a time the a∗ action) belonging to the BRδ set, all the possible
vertices, it performs an analysis considering all the vertices found. The algorithm for each
vertex found, which represents a feasible posterior, computes the Sender utility for each
action belonging to the BRδ set, keeping only the one with minimum utility. This is done
because we are creating a robust algorithm, which can guarantee to the Sender the best
utility for him in the worst case scenario.

After the algorithm associates each vertex to an utility value, it proceeds to eliminate
all the duplicate vertices, maintaining between all the possible duplicates only the vertex
with the most utility for the Sender. Indeed when the posterior is associated with multiple
Sender utilities we have to consider only the utility with the most value for the Sender by
breaking ties in favour of him. This is done to guarantee the existence of the equilibrium.
Consequently after such steps are performed we obtain for the partition, and so for the
BRδ set taken in examination, the posterior probabilities that we would induce via our
signaling scheme. To find the signaling scheme that could generate such posteriors, the
algorithm enters in the second phase.

4.1.2. Finding a feasible signaling scheme

In such phase the algorithm perform a LP optimization problem, where there is only
a variable to be optimize. This variable is a probability distribution called x, which
represents the probability of inducing a specific posterior. So for every vertex vk ∈ V ,
where V represents the vertices set, we will have a probability xk ∈ x associated to
it. The objective function to maximize is the product between the utility associated
to the vertices and x, consequently we will have max

∑
k∈K xkvk. For what regards the

constraints, we need to be assured that the variable x represents a feasible probability
distribution implying that all the components xk need to be non-negative and have to add
up to 1. Another constraint is used to guarantee that the posterior generated is feasible
in respect to the prior distribution µ. In order to be assured of this aspect, we introduced
the following constraint:

∑
k∈vertices

xk(θ)vk(θ) = µθ, ∀ θ ∈ Θ.

Then the algorithm solves the LP and if a solution is found, it stores the resulting prob-
ability distribution, the vertices set and the objective function value.
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4.1.3. Computing the optimal signaling scheme

After the algorithm performs the previous two phases for every partition, we enter in its
final phase. In this phase the algorithm selects, between all the feasible solutions found,
the one with the most utility for the Sender. Indeed the solution with the most utility
is the optimal one. Then the algorithm ends by computing the optimal signaling scheme
ϕ∗, where ϕ∗(θ, k) = xk(θ)vk(θ)

µθ
.

4.2. Algorithm implementation

In this section we describe in which environment the algorithm was implemented describ-
ing in detail the libraries used.

We decided to adopt python as our programming language. This decision permitted us
to use some specific libraries able to perform precise and vital tasks in the algorithm
process. The environment we chose for the implementation was Google Colab. Other
than the classic python libraries that were used to manage data such as Pandas and
Numpy, we used the Pypoman and PuLP library. The first one was used to find the
vertices, while the other one was used to perform the linear programming maximization.
Pypoman is a library that was created in order to allow common operations over convex
polyhedra such as polytope projection and vertex enumeration. The libray requires a
python version of at least 3.7. For what regards PuLP , it is used to model Linear
Programs and can solve them using various type of optimizers such as GLPK, COIN-OR
CLP/CBC, CPLEX, GUROBI, MOSEK, XPRESS, CHOCO, MIPCL, SCIP optimizers.
For our implementation, because the linear programs that the algorithm needed to solve
were simple, we opted for the default optimizer of the library which is CPLEX.

4.3. A running example of the algorithm

In this section we show how the implementation of the algorithm 3.1 solves a problem
instance of the Bayesian persuasion framework when a δ value is added to the ur payoff
matrix.

We consider the following setting:

• the number of states of nature is 3

• the number of actions is 3

• the prior is defined as µ = (0.19, 0.25, 0.56)
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• the δ value is 0.5

We define the payoffs for the Sender and the Receiver described in the following tables.
The right table shows the payoffs of the Sender, while the left one shows the payoffs of
the Receiver.

a1 a2 a3

θ1 0.92 0.85 0.82
θ2 0.21 0.21 0.19
θ3 0.51 0.85 0.64

a1 a2 a3

θ1 0.23 0.43 0.97
θ2 0.01 0.92 0.90
θ3 0.17 0.92 0.78

Table 4.1: Payoff matrices of the Sender and the Receiver in function of the state of nature
and action

The algorithm starts by creating all the possible action combinations of the BRδ set and
then identifies all the possible vertices of the polytope. By observing the Receiver utilities
and because the δ is 0.5, the algorithm finds a set of vertices for two possible BRδ sets;
The first is composed only by the action a3, while the second is the set of actions (a2, a3).
While for the first set the LP does not find a feasible distribution x able to generate the
posterior found, for the second BRδ set the LP finds a feasible solution, which is also the
optimal signaling scheme ϕ∗. The signals found by the algorithm are expressed in the
following table:

θ1 θ2 θ3

s1 0.16 0 0
s2 0.05 1 0
s3 0.79 0 1

θ1 θ2 θ3

ξ1 1 0 0
ξ2 0.04 0.96 0
ξ3 0.21 0 0.79

Table 4.2: Optimal signaling scheme ϕ∗ and the posterior induced

This signaling scheme guarantees the Sender in this scenario of uncertainty an utility of
0.56. The utility value and the incidence of the δ value in the problem instance depends
deeply from the utility matrices.
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In this chapter, we describe how the algorithm was tested, detailing the specific aspects
considered to gain insights into its workings and effectiveness. To achieve this, we con-
ducted two types of experiments. The first focused on identifying and analyzing disparities
in execution time and assessing the feasibility across various settings. The second experi-
ment concentrated specifically on the δ parameter, aiming to illustrate how this parameter
impacts the expected utility for the Sender.

5.1. Execution time

In this section, we present the methodology of the first type of experiment, which was
designed to analyze the execution time of the algorithm. From now on we name the
execution time as CPU time.

Test suite and parameters. To accomplish this, we computed the CPU time across
multiple settings. The settings were based on two parameters: the number of states of
nature m and the number of actions n, with both parameters capped at a maximum value
of 7. We then generated a range of problem settings, encompassing every possible combi-
nation of actions and states of nature, varying from 2 to 7. This resulted in the analysis
of 36 distinct problem settings. For each setting, in order to find a good approximation
of the CPU time, we created 20 different samples. Each sample contained all necessary
inputs for the algorithm’s operation. Specifically we set the δ value at 0.1 and randomly
generated the prior and utility matrices for both the Sender and the Receiver. The utility
value for a specific state of nature and a specific action was fixed in a range from 0 to 1.
In each setting we measured:

• Average CPU time of a single partition;

• Average CPU time to compute the vertices;

• Average CPU time of the LP process;

• Total CPU time for all samples.
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All the time measures were done using the python library time and the code was executed
using the Google colab CPU. The average CPU time of every component of the setting
was computed by summing up all the registered times and then by dividing by the number
of measures registered. We decided to keep track of these particular metrics in order to
monitor the performance of the algorithm in the most crucial and most computational
intensive parts. As previously mentioned, the algorithm is divided into several phases.
Therefore, we measured the CPU time of each phase to identify the algorithm’s key
component.

Figure 5.1: The relationship between the average CPU time of a sample and the number
of states of nature and actions

Results. The results of this type of experiment are the following: The chart 5.1 describes
the relationship between the CPU time and the dimension of the problem. To represent at
best this relationship, we used a box plot. Indeed the box plot describes how much time on
average the algorithm needs to solve a single sample. As we can see, the time needed grows
in an exponential manner. Notably, the required time increases exponentially, aligning
with our theoretical expectations. Interestingly, solving a problem with seven states of
nature and seven actions takes, on average, only 14 seconds.

We further analyzed the CPU time of individual phases of the algorithm to understand
the source of the exponential increase in execution time. The figure 5.2, a line plot,
displays the averages CPU times for the algorithm’s main parts. The red line represents
the average time for vertices calculation, the green for the linear programming (LP)
calculation, and the orange for the execution of a partition. As the problem’s complexity
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Figure 5.2: CPU time of each phase

increases, all three metrics rise. However, the first two exhibit polynomial growth, while
the exponential increase is primarily due to the partition execution, represented by the
orange line. This growth is attributed to the computation of all possible vertices in
each partition and the subsequent LP solution to find a feasible signaling scheme. As the
number of actions and states of nature increases, the frequency of vertex calculations grows
exponentially, thereby increasing the LP CPU time. This empirical finding corroborates
the theoretical discussion about the algorithm’s complexity, pinpointing the analysis of
all possible partitions as the cause of its exponential nature.

A final analysis was done to understand better which of the two parameters impacted
more in the CPU time. To find this out, we computed the average CPU time per sample
grouped by the number of actions (n) and the average CPU time per sample grouped by
the number of states of nature (m).

From Figure ?? we can observe the trend of the average CPU time in relationship with the
number of actions and the average CPU time in relationship with the number of states of
nature. It can be observed that the actions chart has a trend, which is dominated by the
states of nature chart. Indeed we have that, from point to point, the increase in values is
bigger for the parameter m rather than for the parameter n and so the number of states
of nature have a bigger impact on the CPU time rather than the number of actions.
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(a) Relationship between the average exe-
cution time and n

(b) Relationship between the average exe-
cution time and n

5.2. Relationship between utility and uncertainty

In this section, we show the second type of experiment conducted to assess the expected
utility of the Sender when the δ parameter varies. The influence of the δ parameter is
strongly contingent to the problem setting. Indeed the ur payoff matrix plays a big role
in this aspect. When uncertainty is high, relative to payoff values, the δ value has a more
significant impact on the Sender’s strategy than in scenarios with a lower δ value. A key
observation is that the presence of uncertainty, rather than its magnitude, primarily affects
the Sender’s utility. Indeed if there is uncertainty the Sender has to find a robust signaling
scheme rather than a signaling scheme that simply maximizes his expected utility.

Therefore, our analysis focuses on cases where the utility values in the ur payoff matrix
is such that the utility values are relatively uniform, allowing the uncertainty factor to
introduce greater variability into the Sender’s signaling scheme and, consequently, his
expected utility. Indeed in this scenario the degree of uncertainty is a key component.
We hypothesize that a smaller δ parameter parameter will yield a higher utility value
compared to scenarios with a larger δ value.

Test suite and parameters. In order to better understand the relationship between
the δ value and the problem itself, we structured the experiment as follows: Like the
first experiment, we set the maximum values for the number of states of nature m and
actions n to 7. Then we proceeded to create a setting for all the possible combinations
of states of nature and actions, generating 17 samples for each scenario. However, the
creation of samples was done differently. Unlike the first experiment, we standardized the
prior distribution and utility matrices across all settings, with utility values ranging from
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(a) Difference in expected utility as the δ

varies ordered by the number of actions
(b) Difference in expected utility as a func-
tion of δ and number of states of nature

Figure 5.4: The relationship between the difference in the Sender’s expected utility and
the number of states of nature and actions

0 (minimum) to 0.5 (maximum). While, for the δ value, we selected a different value for
every sample, ranging from 0.1 to 0.9.

The aim of this experiment was to discern if there was a relationship between the δ value
and the setting and also to determine if, for each type of setting the increase of the δ

value comported in a non increase of the Sender expected utility. For this purposes we
decided to measure the expected utility of each sample and then analyze the difference
between the Sender expected utility with a δ of 0.1 and a δ of 0.9.

Finally we did the following plots:

• A plot describing the relationship between the δ and the number of actions;

• A plot depicting the correlation between the δ parameter and the states of nature;

• A plot showcasing the relationship between the Sender’s expected utility and the δ

parameter.

Results. As previously mentioned, the amount of uncertainty present may not always
significantly impact the Sender’s expected utility. However, when the δ is comparable in
value respect to the Receiver payoffs, then the difference in the Sender expected utility
between the setting with 0.1 δ and the one with 0.9 δ is often present. Moreover, as
expected, a bigger uncertainty does not bring a better utility value for the Sender, but
at most it results in an equal utility value. We used the difference metric in order to
evaluate how the δ value impacted in the result to understand how much is the distance
between the maximum possible utility value and the minimum one in a robust context.
The following two plots, where the first one describes the relationship between the δ and
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Figure 5.5: Sender expected utility based on the quantity of uncertainty

the number of actions and the second one describes the relationship between the δ and
the number of state of nature.

As it can be noted by the Charts 5.4, there is no direct correlation between changes in the
Sender’s expected utility and the complexity of the problem setting. Indeed an increase of
the number of actions or the number of states of nature does not correspondingly increase
the variation in the Sender’s expected utility between δ values of 0.1 and 0.9. However,
when the uncertainty value is close to the utility value of the Receiver, we have that
almost every time the Sender’s expected utility changes based on the δ value. Also as the
uncertainty increases there is not a solution that turns out to be better in terms of utility
than the solution found when the uncertainty is minimum.

Subsequently, we direct attention to a specific experiment, such as the one conducted for a
setting with 2 states of nature and 3 actions, to examine how the Sender’s expected utility
shifts with varying δ values. From the plot described in the Image 5.5, it can be seen the
typical decreasing trend. Indeed at lower uncertainty levels, the Sender’s expected utility
peaks, but it diminishes as the δ value rises. For instance, in this particular scenario,
we have a big change in the Sender expected utility, which starts with a big value and
decreases drastically to an almost minimum utility.
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In this thesis we studied the Bayesian persuasion framework. We extended the existing
knowledge regarding this type of problem, by exploring scenarios where the Sender faces
uncertainty about the Receiver’s behavior. To address this unpredictability we decided
to face the problem in a robust manner to safeguard the sender’s expected utility.

Our approach, centered around robustness, was pivotal in navigating the unpredictability
inherent in the sender-Receiver dynamic. We modeled the problem with a focus on the
worst-case scenario, where the Receiver invariably opts for the action most detrimental
to the Sender. This is despite the fact that, from the sender’s perspective, the Receiver’s
choice is sub-optimal. This approach led to a novel definition of the Best Response set,
and we demonstrated that this set is not convex. This finding resulted in the problem not
being able to be solved in polynomial time. Indeed to find the solution it is mandatory to
divide the not convex set in all the possible convex partitions, which lead to an exponential
time solution, unless P = NP .

We then proceeded to analyze the usability of the algorithm through an in depth ex-
perimentation. The time experimentation lead to the conclusion that, even though the
problem is NP-Hard, it can be a useful resource in vast majority of cases where the
number of states of nature and of actions, which come in play are limited. While the
experimentation on the uncertainty, lead to the conclusion that the main discrimen for
the Sender expected utility is the presence or absence of uncertainty, because it would
lead to a completely different approach to the problem. However, when the uncertainty
factor is present and the Receiver payoffs esteems are close to the δ value, then the Sender
expected utility could suffer from greater variability depending on the δ value.

Our research primarily concentrated on scenarios involving a single Receiver. Then as
a new possible research direction could be interesting the case where there are multiple
Receivers and each one has a different δ value. Indeed could be interesting to find out
the different approach of the Sender in the case of a public signaling scheme and in the
case of a private signaling scheme. Although the Bayesian persuasion has already been
studied in contexts with multiple Receivers both when the Sender adopts a public or a
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private signaling scheme, we think that the presence of uncertainty for the Sender could
lead him to adopt a completely different approach to the problem.

Also one key assumption of our case study is that the degree of uncertainty expressed
by the δ value is already known and never changes. Could be interesting to investigate
scenarios where at the beginning there is absence of uncertainty and only in at a later
time the uncertainty element appears. This would lead the Sender to learn in an online
fashion the presence of the δ value. Even though the Bayesian persuasion problem has
already being discussed in the online occurrence, this variation of the standard problem
could result in the problem to be viewed with a different perspective. Consequently
another scenario could be represented by the setting where the uncertainty changes in
value overtime. While in this scenario the Sender may create a test to evaluate if the δ

value changed.

Lastly, it could be relaxed the assumption of the Receiver getting signals only by the
Sender. Indeed allowing for multiple sources of information for the Receiver could sig-
nificantly complicate the sender’s task of persuasion, especially in situations where the
sender does not fully understand the Receiver’s utilities, thus posing a greater challenge
in enhancing his expected utility.
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