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Abstract 

In the agricultural framework, autonomous vehicles represent a disruptive solution to 
face the exponentially increasing demand of resources from the field while the 
working power is steadily decreasing. In this context, where innovation meets one of 
the hardest working environments for a robot, this work proposes an innovative 
solution to perform 3D outdoor mapping deploying uniquely a radar sensor. Radars’ 
characteristics, with respect to other similar sensors’, typically lack in performances as 
they suffer of multi-path reflection noise, but they have few not negligible advantages: 
being invariant to weather condition, great operating range of measures and, 
ultimately, good capacity in detecting moving objects. The developed algorithm aims 
at dramatically rising the measuring quality of the original radar, in terms of reliability, 
noisiness and density, while retaining all the good properties mentioned. The 
improvement attained through this methodology is reached thanks to two subsequent 
phases: an analytical one of denoising and clustering, and an upsampling one. The 
latter is obtained through a machine learning algorithm trained with coherent lidar’s 
ground truth data. The dataset for the training and validation has been sampled using 
the Irus autonomous vehicle at the ATB institute in Potsdam (Germany).  
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Abstract in lingua italiana 

I veicoli autonomi rappresentano, nel quadro dell’agricoltura, una soluzione 
rivoluzionaria per fronteggiare la richiesta sempre più alta di risorse provenienti dai 
campi, mentre la forza lavoro continua a diminuire. In questo contesto, dove 
l’innovazione incontra uno degli ambienti di lavoro più duri per un robot, questo 
lavoro propone una soluzione innovativa per fare mappatura 3D all’aperto con il 
solo utilizzo di un sensore radar. Le caratteristiche dei radar, rispetto a quelle di altri 
sensori simili, tipicamente hanno prestazioni scarse poiché soffrono di rumorosità 
dovuta a riflessioni multiple, ma possiedono anche alcuni vantaggi non trascurabili: 
sono invarianti alle condizioni metereologiche, hanno una ottima portata di 
misurazione e buone capacità di rilevare oggetti in movimento. L’algoritmo 
sviluppato ha come obiettivo quello di migliorare drasticamente la qualità della 
misurazione del radar originale, in termini di affidabilità, rumorosità e densità, 
mentre tutte le buone proprietà menzionate vengono mantenute. Il miglioramento 
ottenuto dall’algoritmo è raggiunto grazie a due fasi principali: una fase analitica di 
rimozione del rumore e raggruppamento, e una fase di addensamento ottenuta 
grazie ad un algoritmo di apprendimento automatico allenato utilizzando dati 
coerenti di un sensore lidar, considerati come verità assoluta. L’insieme dei campioni 
per l’allenamento e la validazione è stato raccolto utilizzando il veicolo autonomo 
Irus all’istituto di ricerca ATB di Potsdam (Germania). 
 
Parole chiave: Radar, Mappatura, Agricoltura, Veicoli Autonomi, Rete Neurale 
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Introduction 

In the context of agriculture, autonomous vehicles (Figure 0.1) represent a disruptive 
solution to face the exponential increasing demand of resources from the field while 
the working power steadily decreases, mainly due to the hardness of the farming tasks 
on the human body. 
Therefore, during the past it has been seen an evolution in the methods and tools used 
for cultivating, leaving the most difficult and heavy tasks more and more to the 
machines. The complexity of such a hostile environment as the crop fields makes the 
designers’ job very hard in terms of finding feasible and cheap solution while 
guaranteeing proper functioning in presence of soil, mud, humidity, leaves etc. 
 

 
Figure 0.1: Example of autonomous vehicle in the agricultural framework 

Moreover, intensive agriculture is not an available option anymore. The latest research 
showed how this method is neither the most efficient nor preserves biodiversity, 
instead it introduces in the environment imbalances that cannot be naturally corrected. 
This fuels the use of other substances that in turns increase the final costs of production 
propagating to the final consumer while making the final products less natural. 
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The answer might be in the concept of agroforestry (Figure 2): before moving to the 
intensive fields, this idea was implicitly applied, and it basically consists of having 
more complex areas within forests used for farming. The ecosystem is completely 
capable of sustaining itself by its own, without any addition (thus any added cost), 
providing not only the cultivated product, but also a vast quantity of biomass such as 
wood, that can be sold or used for domestic heating by the farmer as well. The natural 
context of this idea permits the stabilization of the imbalances and the protection of 
the biodiversity now at risk. 
It is obvious then, that the machines performing in these environments have to be 
highly technologically developed, small enough to operate, with several degrees of 
freedom in the movement of their parts for meticulous operations and checking, a 
stable navigation module, equipped with various sensors either for agricultural 
purposes or for assessing their own proper functioning, positioning etc. 
 

 
Figure 0.2: Agroforestry 

From this perspective, the goal is to maximize the number of performable tasks while 
keeping at the minimum the resources used. The concept developed by this work 
stands out inside this idea. The algorithm developed provides an innovative way of 
performing supervised mapping.  On the other hand, the latest works in the literature 
provide navigation algorithms for global path planning, for obstacle avoidance logics, 
for object recognition, etc. which are compatible with the a priori knowledge of a map. 
Moreover, the intrinsic capability of radars to well perform in dynamic environments 
makes it theoretically ideal to accomplish by itself all these complicated tasks. 
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Performing environmental mapping means to scan the surroundings in order to collect 
the necessary data to reproduce its structure and shape digitally. To perform this 
procedure, it is necessary to use distance measuring sensors that make use of TOF 
(Time-Of-Flight) principle and/or cameras, and then handle the data through a process 
that makes the signal useful and available to the vehicle. Based on this information, 
the vehicle can take better and more accurate decisions. 
Moreover, one can classify different types of mapping based on the type of information 
gathered, on the number of spatial dimensions considered (2D or 3D), and on the 
application which the map is built for. This work aims at generating a 3D map of the 
surrounding area of an outdoor path in an agricultural context through an off-the-shelf 
radar sensor coupled with its own evaluation board. 
 
Nowadays, mapping in all its variants is hardly ever performed by radars. Indeed, 
typically this operation is left to lidars and/or depth-cameras. Considering sensors 
belonging to the same relative market segment, the latest are more accurate, cleaner in 
their measurements and the output information is more complete with respect to 
radars. Radars are noisy, and capable of sensing only specific structure of the 
environment, but they have many relevant and useful properties, like being invariant 
to weather conditions, having great capability of sensing moving objects, which is 
something fundamental when dealing with dynamic ambience, and in most cases, they 
are also cheaper. Therefore, the task can be looked at from a different perspective: is 
there a way to join the best characteristics of the two sensors?  
This merging capabilities idea could be thought in two distinctive ways: either a radar 
takes the ability of the lidar, becoming more precise while overcoming data sparsity, 
or conversely, a lidar can preserve its own great measuring accuracy while working in 
different weather condition and working in a dynamic environment. This work goes 
in the direction of the first hypothesis, which is what is considered to be the most 
feasible approach. In order to increase the radar’s performances, the data coming from 
a lidar are taken as ground truth information on which the algorithm is trained.  
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1. Literature Review 

1.1 State of the Art 
The goal of this chapter is to describe the current state of the art concerning the field 
of outdoor radar-based mapping. Since the affinity with the topic, some space will be 
given also to other typical tasks related with autonomous navigation such as pose 
estimation, object detection and recognition, and also to the most innovative methods 
applied to carry out those tasks. 
 
First of all, let’s make a distinction between indoor and outdoor mapping. 
Indoor mapping considers most of the times small robotic innovative vehicles, and 
the research are carried out within buildings. Typically, the structure of this 
environment is vertical and thus it well suits the use of occupancy grids (Elfes, 1989) 
, which are top view 2D image representations of the environment, where each pixel 
is associated with the probability of being occupied by an object (Figure 3).  
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Figure 1.1: 2D Occupancy Grid Mapping 

On the other hand, the vast majority of literature reviewed in case of outdoor related 
analysis revolves around automotive applications. In this field, the use of radars 
begun in the 90’s with the ACC (Adaptive Cruise Control) and collision warning 
application (M. Schneider, 2005). Thus, it should not be surprising the vastity of 
research made in this industry.  
 
The Manhattan world assumption (Coughlan et al., 1970) provides structural 
hypothesis in terms of structure regularities that can be exploited (Figure 3). This 
work shows that the assumption is made mainly for indoor application, but it finds 
validity even for certain outdoor environment, including rural scenes. Thus, because 
of this similarity, to some extent, also the literature providing results of autonomous 
navigation behavior in indoor environment are considered. 
 

 
Figure 1.2: Manhattan World Assumption  
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As already mentioned in the Introduction, radars lack of most of the skills to well 
perform mapping. Therefore, during the past years, researchers have looked for the 
possibility to overcome this issue instead of making the hardware extremely 
complicated and expensive, by moving the complexity towards the algorithm and the 
processing. From this perspective came the idea of using, in the automotive context, 
processing-based coherent evaluation, by exploiting only two radars (Gottinger et al., 
2021). 
In a similar manner, a radar-based occupancy grid mapping technique was developed 
by exploiting random forest classifiers and in general techniques from the computer 
vision field, with the intent of mapping parking lots to spot parked vehicles (Dubé et 
al., 2014). Other radar mapping algorithm developed in the literature uses various 
algorithm strategies to reduce all kinds of radars side effects (Dogru & Marques, 2019; 
Lee et al., 2021; Marck et al., 2013). 
 

 
Figure 1.3: R Dubé et al., 2014, Detection of parked vehicles  

The innovative theories in the computer vision field had a very strong impact on the 
mapping framework. Exploiting the use of 2D occupancy grids or 3D voxels, the 
applicability of those algorithms comes naturally. One clear example of this are cGANs 
(Mirza & Osindero, 2014) or autoencoders, which are fairly complex Machine Learning 
algorithm applied in a wide range of related tasks like high resolution imaging 
through mmWave radars (Guan et al., 2020), object enhancement through cloud 
upsampling (Yifan et al., 2019), object reconstruction (Lin et al., 2018), or 
transformation from cloud data to pixel images (Milz et al., 2019). 
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Figure 1.4: Yifan et al., 2019. Patch based upsampling  

 
Figure 1.5: Lin et al., 2018. 3D Object Reconstruction  

In more recent years, radar applications concerning the autonomous navigation have 
considered the fusion with different sensors in order to join their best characteristics 
and provide superior results. In particular, radars have been matched with IMUs (Lu 
et al., 2020), Cameras (Nobis et al., 2019), Laser scanners (Bouzouraa & Hofmann, 
2010), other radars (Diehl et al.., 2020) and Lidars.  
 
In the fusion perspective just introduced, considering radar and lidar characteristics, 
the goal is to improve the radar sampling performances with the help of a coherent 
information provided by the better performing sensor. This data can be provided in 
many ways: for instance, as prior knowledge to perform SLAM in indoor disaster 
environment (Park et al., 2019). Further, many researchers have experimented linking 
the information for online applications through neural networks, by producing 
occupancy grid (Weston et al., 2019; Lu et al., 2020). All these works are characterized 
by 2D occupancy grid indoor mapping, aiming at autonomous motion of safety robots 
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into buildings where the presence of smoke or other factors is impeding normal 
visibility (Figure 8).  
 

 
Figure 1.6: Visibility hindered by smoke or snow  

Differently from what can be found in the literature, this work yearns at providing a 
unique interpretation of the mapping problem, avoiding complex and 
computationally expensive Machine Learning algorithm and by using a different kind 
of map representing data, lighter and easier to understand, which are marker 
coordinates. Moreover, neither segmentation algorithms have been used nor object 
recognition of any kind, but rather it has been proposed another way of shaping 
different object through union of multiple clusters. 
This thesis aims at finding a solution in a structured outdoor environment, where 
either strongly geometrical obstacles (like walls of buildings) and less structured 
objects (like trees, loaders of various shape and dimensions etc.) can be found on the 
walkthrough. 

1.2 Research Questions 
In this paragraph, there will be defined in detail the research questions, in terms of 
what the goals of this project are and how they are meant to be achieved. 
 
This Master Thesis aims at building an algorithm to perform the complex task of 3D 
outdoor mapping. The hardware framework on which this work relies on, is an 
autonomous vehicle for agricultural purposes called Irus. The vehicle is equipped with 
a radar sensor for frontal distance measurements. Starting from the original signal of 
this sensor, the complete algorithm developed has the purpose of transforming this 
data into something more complex and useful. 
First of all, the task that this newly proposed system aims at solving is supervised 
mapping, i.e., the procedure of mapping is performed while a user is driving the 
vehicle into the environment. In the specific case of this thesis, the driving directions 
are sent to the robot through a radio waves remote control. 
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Figure 1.7: Vehicle remote controller  

Then, the output has to be visually appealing: by looking at the final map, a human 
should be able to recognize the presence of objects, obstacles but also the path that the 
vehicle has followed. Furthermore, in a perspective of full automation, the resulting 
map generated should be used as source of a priori knowledge of the environment 
structure. The system will use this information in logics like path planning or self-
localization. 
As it will be described later in this document, the radar sensor presents some issues 
when it comes to mapping, because of its intrinsic performances. However, many 
other aspects of radars are extremely appreciable. Therefore, the goal is to improve the 
radar mapping characteristics in terms of reliability, noise and cloud sparsity, without 
compromising the other good capabilities. 
Overall, the final objective is to provide an algorithm capable of handling the signal 
coming from the radar, passing the original information through specific 
transformations (which will be developed into details in future chapters), to finally 
obtain a map which is better than the original. 
Since the algorithm is a pure data manipulation, it is expected to provide the results 
without any extra element, thus without any further cost.
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2. Fundamentals 

In this chapter, the reader will get an understanding of what are the most relevant 
topics on which this work is based on. Those concepts, when developing the core 
part of the Master Thesis will be taken for granted. 

2.1 TOF Sensor 
State of the art regarding the techniques performing mapping involves, most of the 
times, the use of cameras and TOF (Time-of-Flight) sensors, like lidars, sonars, radars 
etc. 
Time of Flight sensors working principle (Figure 10) relies on the phase shift of the 
illuminating radiation that has been emitted with respect to the reflected one measured 
by a receiver. The phase shift translates into distance knowing the frequency of the 
radiation. An imaging sensor designed to respond to the same spectrum receives the 
light and converts the photonic energy to electrical current. Note that the light entering 
the sensor has an ambient component and the reflected component. Distance (depth) 
information is only embedded in the second. Therefore, high ambient component 
reduces the signal to noise ratio (SNR). (Li, 2014) 
 

 
Figure 2.1: TOF working principle 
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In order to select the proper sensors for a certain application, there are many drivers 
to take into consideration: the environment in which it will act, the performances the 
designer wants to achieve, the costs, the compactness are just few examples. 
Each sensor typology has pros and cons that may limits its usage and its applicability. 
However, the huge variety of these sensors in many cases gives the possibility to select 
a tool that properly match the requirements. 

2.1.1  Lidars 
The lidar is a Time-of-Flight sensor typically used to perform indoor mapping. The 
emitted radiation belongs to the infrared spectrum, with light wavelength in the range 
between 850nm and 1050nm. 
There are several kinds of lidars (Figure 11), depending for instance on the technology 
of light emitters like VCSEL (Vertical Cavity Surface Emitting Laser) or LEDs. The first 
case is the most common, the laser technology permits a more focused impulse that 
well clarify the reading of the sensor making it the most precise. The LEDs on the other 
hand outputs an overall power which is greater than the VCSEL for lower current 
intensity values, but the wave is spatially spread over a bigger angle: this makes it 
suffer against misreading due to wave reflections and lowers its range since the higher 
power level is spread over a bigger angle. 
Sticking then with VCSEL technology, the aim would be to obtain several 
measurements for slightly different positions in order to generate a more complex 
three-dimensional image or point cloud representing the world in front of the sensor. 
One way to do this, is to have a moving mirror and only one emitter whose light is 
selectively reflected depending on the position of the mirror. This way the light is 
always directed towards a new direction and the high speed of this process makes it 
possible to be used for online application.  
 

 
Figure 2.2: Examples of lidars 

The matrix lidar, on the other hand, is a multi-VCSEL lidar. Each laser is a pixel of the 
image/point cloud generated. Those kind of lidars are very popular, and one example 
of it is the Sick Lidar. 



2. Fundamentals 13 
 

 

Finally, the Velodyne Lidar is a very commonly used lidar, especially in the 
automotive industry as it grants a 360° cover of the surroundings thanks to its column 
of VCSEL which are then put in rotation. This provides sampling from all around the 
vehicle on which it is installed. (C. Rablau, 2019)  

2.1.2 Radars 
Radars have the same working principle of lidars. The difference stands in the 
frequency of the emitted light, which is in the range of radio waves, around 80MHz of 
frequency. 
Radars are not usually employed to perform mapping. Their usual application is 
rather related to object detection and environmental monitoring. The reasons are 
many: standard commercial radars are not very accurate: they suffer of multi-path 
noise related to their huge wavelength generating a lot of outliers; they typically suffer 
of point sparsity as they are not capable to sample enough points and also 
shortcomings such as a large footprint, sidelobes, specularity effects and limited range 
resolution, all of which result in poor maps (Bunting et al., 2000). The higher frequency 
of the radiation drastically increases their range up to 200m but the field of view is 
normally lower compared to lidars (Rablau, 2019). 
One of the main advantages of radars is their behavior in dynamically changing 
environments. Furthermore, the installation of multiple receiver antennas gives the 
capability of computing the radial velocity of the object visualized, their direction and 
thus their overall motion. Therefore, radars are widely use in the automotive industry 
as a base sensor for many applications. 
 

 
Figure 2.3: Examples of radars 

2.2 ROS framework 
ROS is an open-source robot operating system. It is not an operating system in the 
traditional sense of process management and scheduling; rather, it provides a 
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structured communications layer above the host operating systems of a heterogenous 
compute cluster. 
 
Writing software for robots is difficult, particularly as the scale and scope of robotics 
continues to grow. Different types of robots can have wildly varying hardware, 
making code reuse nontrivial. ROS has been developed in this perspective, focusing 
on a specific set of challenges to produce an architecture which is more generally 
exploitable in a huge variety of application. Among those challenges, two has to be 
mentioned for their relevance for this work: first of all the multi-lingual flexibility, as 
guarantees supports whether the coding language is Python, C++, Octave or LISP; 
second of all, it is completely free and open source, which in turns means huge 
support, either through a wide variety of downloadable content but also through help 
from experts in forums and other websites and finally many free tutorials or online 
lectures for fast learning. 
 
The fundamental concepts and building blocks of this framework are nodes, messages, 
topics and services. Nodes are processes that perform computation. ROS is designed 
to be modular at a fine-grained scale: a system is typically comprised of many nodes. 
In this context, the term “node” is interchangeable with “software module”.  
Nodes communicate with each other by passing messages. A message is a strictly 
typed data structure. Standard primitive types (integer, floating point, boolean, etc.) 
are supported, as are arrays of primitive types and constants. Messages can be 
composed of other messages, and arrays of other messages, nested arbitrarily deep.  
A node sends a message by publishing it to a given topic, which is simply a string such 
as “/odometry” or “/map.” A node that is interested in a certain kind of data will 
subscribe to the appropriate topic. There may be multiple concurrent publishers and 
subscribers for a single topic, and a single node may publish and/or subscribe to 
multiple topics. In general, publishers and subscribers are not aware of each other’s 
existence. 
 
Although the topic-based publish-subscribe model is a flexible communications 
paradigm, its “broadcast” routing scheme is not appropriate for synchronous 
transactions, which can simplify the design of some nodes. In ROS, we call this a 
service, defined by a string name and a pair of strictly typed messages: one for the 
request and one for the response. This is analogous to web services, which are defined 
by Urls and have request and response documents of well-defined types. (Quigley et 
al., 2009) 
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2.2.1  Relevant ROS Packages and Library 
Among the thousands packages available for ROS, three have extraordinary 
importance for this work. The first one is the TF (TransFer) library, designed to provide 
a standard way to keep track of coordinate frames and transform data within an entire 
system such that individual component users can be confident that the data is in the 
coordinate frame that they want, without requiring knowledge of all the coordinate 
frame in the system (Figure 13) (Foote, 2013). The way the frames can be depicted is in 
form of trees (Figure 14), as each frame either is the fixed frame, or has a relationship 
with another defined frame. The handling of different movement given by this library 
comes with easiness in terms of concept, but also in the practical coding side. 
 

 
Figure 2.4: Frames from TF library 

 

 
Figure 2.5: TF tree 
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OctoMap is an integrated framework based on octrees for the representation of three- 
dimensional environments. Most robotics applications require a probabilistic 
representation, modeling of free, occupied, and unmapped areas, and additionally 
efficiency with respect to runtime and memory usage. To this extent, this package 
deals with three fundamental requirements: probabilistic representation, thus taking 
into account the uncertainties related with the sensor measurements; modeling of 
unmapped areas, as a robot is able to plan collision-free paths only for those areas that 
have been covered by sensor measurements and detected to be free; efficiency, in terms 
of memory usage and access time, as those two are considered to be the majors bottle-
necks of 3D mapping systems. (Hornung et al., 2013) 
The working principle of Octomap is based on Octrees, which are a simple and 
efficient way for space representation. Given a certain value of depth of the tree, the 
space is divided in cubes of cubes. This encapsulation reaches the resolution limit 
when the number of layers of the octree is equal to the depth parameter defined 
(Figure 15). 
In any case, this work makes use of this package as a black box: the input to the 
octomap node lauched at start are the online pointcloud information coming from the 
sensor as PointCloud2 message and the pose of the sensor itself with respect to a fixed 
frame, estimated by the GPS module, and published on ROS as Pose message. The 
output of the node is the generated map as arrays of coordinates. The type of message 
defined by the ROS framework is MarkerArray, each Marker representing a single 
point of the map. 
 

 
Figure 2.6: Example of an octree 

RViz is a 3D visualization environment. It permits to view what the robot is seeing, 
thinking, and doing. The project was born from the necessity to provide a tool that 
could model the data coming from the real world. It is very hard to do debugging by 
looking at pure numbers, conversely visualizing the situation throughout this tool 
simplify the comprehension of what is happening in the whole system. In other words, 
it gives the possibility to see the world through the robot’s eyes.  
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This environment is capable of handling sensors and state information, like laser scans, 
point clouds, cameras and coordinate frames. The tool has many built in parameters 
to select the best way to view at one’s data. RViz is a powerful tool to develop robot’s 
and autonomous vehicle’s capabilities and perform research. Finally, just like ROS, it 
is free and open source. (Figure 2.7)  
 

 
Figure 2.7: Standard interface of RViz tool 

2.3 Machine Learning/Neural Network concepts. 
Machine learning (ML) is the scientific study of algorithms and statistical models that 
computer systems use to perform a specific task without being explicitly programmed 
(Mahesh, 2020). In other words, it is the field of study of all those algorithms that make 
use of databases to learn how to model certain problems that would be too hard to 
solve deterministically. Machine Learning algorithm can be classified into three 
categories: Supervised, Unsupervised and Reinforcement learning. This brief 
introduction to the topic will focus on the first kind.  
 
Supervised models provide mathematical frameworks aiming at finding statistically 
valid solutions by looking at real inputs and outputs.  
The typical example made to clarify one of the many use cases of supervised learning 
algorithms is to label pictures of animals or objects. Thus, given a matrix of pixels (out 
of which a human would instantly recognize what is the subject), the aim is to find an 
algorithm capable of identifying the object as a human would do (Figure 2.8). Clearly, 
there is no deterministic way to assess this task as all the pictures are unique and the 
possible patterns are too various. Rather, the approach proposed by this science is to 
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take a high number of pictures with their correct labels and “train” an algorithm such 
that at a certain point the algorithm is capable of providing with low uncertainty the 
probability that a picture contains a certain subject. 
 

 
Figure 2.8: Classic didactic example of Machine Learning classification problem 

What does it mean to train? Training means updating the value of weights which are 
part of the algorithm, based on the result of each comparison. In practical terms, those 
weights are initiated randomly, but the more the algorithm look at new samples, the 
more their value changes accordingly. Obviously, the way the update is done depends 
surely on the comparison, but also on a minimization error principle. This latest 
considers a function of “loss” that has to be minimized in order to converge to the set 
of weights providing the minimum error.  

2.3.1 Neural Networks 
Neural Networks are a subcategory of supervised learning algorithms. The 
mathematical base of those networks is the “Perceptron” that had the goal at that time 
to be a profusion of brain models which amount simply to logical contrivances for 
performing particular algorithms (representing "recall", stimulus comparison, 
transformation, and various kinds of analysis) in response to sequences of stimuli 
(Rosenblatt, 1958). 
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Figure 2.9: Neural Network analogy with cerebral neuron 

The perceptron is indeed a biologically inspired programming paradigm, composed 
by artificial neurons that will be called nodes here. Mathematically, the perceptron 
node receives several inputs and put them together through a simple weighted sum. 
Those weights are real numbers expressing the importance of the respective inputs to 
the output. The neuron's output, 0 or 1, is determined by whether the result is less than 
or greater than some threshold value. Just like the weights, the threshold is a real 
number which is a parameter of the neuron. 
This simple algorithm by itself is not capable of solving highly complex problems. 
What it rather shows is the possibility to weigh up different kinds of evidence in order 
to make decisions. Therefore, increasing the capacity of such algorithm by increasing 
the amount of nodes and the layers between input and output (Figure 2.10), it should 
seem plausible that a network of perceptrons is able to make quite subtle decisions. 
 

 
Figure 2.10: Example of Multilayer Perceptron structure 

In the picture above, each column of nodes is commonly called layer. The first layer 
thus represents the inputs (input layer), whereas the last one contains the values of the 
outputs (output layer). The layers in between are hidden inside the algorithm and are 



20 2. Fundamentals 
 

 

used to increase the abstraction level of the network and so its capability to model 
mathematical problems of higher and higher complexity. 
The main issue of the perceptron is the output, as it can assume only values 0 and 1. 
This means that in certain situation small variation of the parameters could drastically 
modify the output. This makes it difficult to see how to gradually modify the weights 
and biases so that the network gets closer to the desired behavior. The required 
development to achieve this flexibility brought to light the sigmoid neuron (Figure 
2.11). 
 

 
Figure 2.11: Flexibility through sigmoid neuron adoption 

Basically, whatever results is provided by the weighted sum, the sigmoid function is 
capable of mapping it to be between 0 and 1. The sigmoid function is just a smoothed 
version of the step function which is the one used by the perceptron: the analogy 
between the two models lays here (Figure 2.12). 
 

 
Figure 2.12: Similarity between step and sigmoid activation function 

The sigmoid function is an activation function, as it defines how much a neuron is 
activated by the provided inputs. Later research provided newer, more stable and 
efficient activation functions like ReLu, Tanh and many others (Figure 2.13). 
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Figure 2.13: Most common activation function and derivatives 

Everything described up until now considers only how the network processes the 
inputs to provide an output. Now, the training procedure will be briefly described 
below. 
Basically, a cost function (also called loss function) has to be defined, measuring how 
well the algorithm performs in the problem. The objective is to minimize that function 
that can assume the shape of a mean squared error like the following: 
 

 𝐶 =
1
2𝑤(

‖𝑦(𝑥) − 𝑎‖)! ( 2.1 ) 

 
such that the model provides the best answers possible. 
There are several possible functions nowadays that can be used to be minimized, 
depending on the application some might be more efficient than others. Some other 
examples are Poisson class, Crossentropy function, Cosine Similarity function etc. 
The complexity due to the great dimensionality of the problem unfortunately makes it 
impossible to define an analytical solution. Rather, the most convenient possibility to 
find the minimum is to consider an optimization algorithm. The first algorithms used 
in this model worked by analyzing the loss function gradient and taking small steps 
in the opposite direction (Gradient Descend algorithm). 
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Figure 2.14: Optimization principle 

 
Even in this case there are currently many possible algorithms that can be adopted: 
Adam is the most popular, but also Adagrad, Adadelta or SDG (stochastic gradient 
descent) which is a more stable variation of the algorithm just explained.  
Operatively then, the optimizer considers the loss function and by taking as input the 
differences between the output layer values and the ground truth values it computes 
all the deltas to be applied to the weights of the network such that the new model is 
one step closer to the minimum of the loss function. The weights are thus updated, 
and the next sample is considered. (Nielsen, 2015)
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3. Tools and Methods 

This chapter represents the core part of this work. After the analysis of the tools, the 
methods section will present into details the developed algorithm by going into 
details of each step, considering accurately all the decision taken, relevant issues 
encountered and so on. 

3.1 Tools 
In this section will be described brefly the tools employed for all the real operations 
required to carry out this work. Specifically, the description of the hardware 
(including the vehicle, the radar and the lidar), the software and the description of 
the environment where the data is sampled. 

3.1.1 Hardware 
The ATB institute that supported this project made available for research purposes 
the Irus vehicle (Figure 3.1). 
This is an automated vehicle, with the possibility to switch to remote control at will. 
The motion is provided by an internal combustion engine and the steering dynamics 
relies on the four wheels steering principle. 
The electronic network through which the signal moves on the vehicle is the CAN 
bus. The CAN bus is a multi-master protocol, and at each communication is 
associated a level of priority (the lower the level, the higher the priority). During the 
initial phase of the transmission, the peripheral sending the message with the highest 
priority gets the control over the whole network, in this way the possible conflicts 
occurring when two peripherals are trying to send two signals simultaneously are 
solved. The protocol also defines how the information must be sent between two 
interfaces, how it has to be structured and what should be contained aside from the 
actual data to be delivered. This protocol is very common in the automotive industry 
and also for automated vehicles, it is low cost and does not require long and complex 
wiring. 
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Figure 3.1: Irus vehicle 

 
The vehicle is equipped with two computers, one exclusively dedicated at solving 
machine learning tasks, comprehensive with gpu modules for fast computation, and 
the other one considered the main computer on which the linux operative system is 
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installed together with the ROS libraries. As one can see from the picture below (Figure 
3.2), the presence of sensors and related wiring is massive all around the vehicle.  
 
 

 
Figure 3.2: Irus hardware and connections 

The millimeter-wave sensor device AWR1843BOOST is an off-the-shelf radar 
produced by Texas Instruments. in the User’s Guide one can find the operating the 
operating frequency range as 76 - 81 GHz. This radar is considered to be a right 
solution for medium range radar applications, thanks to its small form factor, low 
power and highly performing range resolution (less than 4 cm). It also has 150 meters 
of detection range. The drivers necessary to work in the ROS framework are 
developed by Dr. Leo Zhang from the University of Arizona and are available for 
free on GitHub. 
Finally, the official price for AWR1843BOOST is 299 USD.  
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Figure 3.3: AWR1843BOOST Texas Instruments radar 

The Velodyne Lidar’s Puck is a small and compact lidar that is performance and 
power optimized for usage across a variety of applications ranging from automotive, 
mapping, robotics, security, smart cities and more. The Puck has a range of 100 m 
and generates up to ~600,000 points/second, across a 360° horizontal field of view 
and a 30° vertical field of view. It uses proven, Class 1 eye-safe 905 nm technology 
with substantial autonomous fleet validation, making the Puck a sensor of choice for 
lower speed autonomous vehicle (AV) applications. The Puck has best-in-class 
power, which enables operation over a wide temperature range. It's use of off-the-
shelf components enables enhanced scalability and attractive volume pricing.  
Like for the radar, all the drivers permitting the compatibility of the sensors with the 
ROS environment are available for free on GitHub. 
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Figure 3.4: Velodyne Radar Puck 

The ROS packages for both sensors provide all the necessary node (written in Python) 
and nodelets (written in C++) to output the signal data to a higher level corresponding 
to the PointCloud2 message. The frequency at which the two sensors output their 
respective messages is slightly different by few milliseconds, but because of the way 
the algorithm is structure, this will not affect its performances. 
It has to be noticed that since the lidar sensor is a rotary sensor, the cloud generated 
has a horizontal field of view of 360°. Thanks to its ROS package though, it is possible 
to change through dynamically reconfiguration its field of view to the desired angle. 
In the specific case, 120° (±60), which is coherent with the radar’s FOV angle. On the 
vertical direction, both systems have ±30° field of view angle. 
 
The two sensors are mounted on the vehicle as shown in the picture down below 
(Figure 3.5). This positioning information is coded inside the TF package that will be 
presented later, in order to have complete spatial consistency between the distances 
computed by the two. 
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Figure 3.5: Setup arrangement 

3.1.2 Software 
On the IRUS vehicle the operative system is Linux Ubuntu 18.04, on which it has been 
installed the version of ROS called Melodic Morenia. This version is currently more 
developed, supported and stable with respect to the newer Noetic Ninjemys released 
for Ubuntu 20.04. This is the main reason why an older version was chosen.  
The vehicle network is accessible through either Wifi connection or SSH ethernet 
protocol. For this work, the second one has been used. The code editor used has been 
Visual Studio Code while the supporting drivers were already present and working 
on the machine.  
The development of the algorithm is divided between Python code and MATLAB 
mainly depending on the easiness of implementation. The parts related with ROS and 
the robots were entirely written in Python as it guarantees the full support. Also, all 
the algorithm related with the machine learning algorithm and the clustering were 
entirely written in Python. The Keras package of Tensorflow available in Python 
provides user-friendly tools and functions to set up and run a multitude of machine 
learning algorithm with easiness. 
Then, the relevant data were then moved from there to MATLAB using bagfiles which 
are native ROS files. The principles of the bag file are recording and playback: a bag 
file is generated by recording the value published by topics; the playback feature given 
an existing bagfile can also be reproduced by time simulation i.e., the file publishes the 
same value on the same topic as during the recording.   
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On MATLAB it is performed all the rest, in particular related with data handling, in 
terms of variables creation and organization, all the phases of normalization, 
standardization and reconstruction, the lidar side of the dataset generation and finally, 
the largest part of the plots.  

3.1.3 Environment Description 
The specific outdoor environment on which this model is trained and developed for, 
is related with the agricultural context. In particular, this work focuses on the typical 
paths between the storage, where a loader might be kept at rest, and the field in which 
it solves its farming tasks when deployed.  
The places in which the loader has to move are typically outdoor and full of obstacles 
(Figures 3.6). Obviously, the type of structure is different either compared with the 
open crop field, in which the trajectory planning is sometimes supported by GPS or a 
system for triangulation with fixed antennas because of lacking in visual reference for 
sensors like radar and lidar and the major characteristics distances of it, and compared 
with an indoor environment, because of the closeness of the walls, the presence of a 
ceiling etc. In some ways, the world structure in which this thesis is focusing on can 
be considered a mid-way between the two, where features and shapes are recurrent, 
especially from the indoor side: indeed, this kind of ambience, is compliant with the 
Manhattan assumption (Coughlan et al.., 2000), which has been developed to perform 
Bayesian interference indoor, but it can be nonetheless applied to a lot of different 
environments, even outdoor as long as the environment scanned keeps having a 
structure characterized by objects with geometric rigidity like buildings and walls. 
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Figure 3.6 (a-b-c): Training and testing environment 
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Anyway, the solution proposed is not entirely dependent on the environment for 
which it was developed, but also on the characteristics of the vehicle itself. One main 
limitation is in the system’s performances as they depend on the object enlightening 
by the sensors:  the algorithm is not developed to build information where there is no 
information, if a certain object is not sampled at all or sufficiently, it will not be present 
in the final map. 
 
From the algorithm perspective there is effectively no difference between the various 
environments. Even if this hypothesis was not properly tested, in this way it would be 
possible to keep the same functionality in many other environments. In support of this 
theory, the typical obstacles or features sampled within the map, can be considered 
similar to many other contexts, as explained in the Manhattan assumption, 
guaranteeing proper functioning even outside of a rural context. 

3.2 Methods  
In this chapter the developed algorithm will be described into details. The code 
related to the most relevant phases is available in the Annex section at the end of this 
document. 

3.2.1 Map transformation 
The package octomap_server is used here as a black box to generate the initial map. It 
takes as input the PointCloud2 messages coming from the sensors’ ROS packages 
distributed by the respective vendors, and the pose of the vehicle provided by the GPS 
already installed on the vehicle. There are many parameters that can be tuned for this 
tool, but the ones used are:  

§ the dimension of the voxels composing the map, therefore the map resolution 
which has been kept as low as computationally possible in order to get enough 
details of the map. 

§ the upper and lower bounds for the map generation: in this case it was 
necessary to cut off all the lidar points composing the ground, as the radar is 
not able to sample any points out of it. On the other side, the upper bound was 
set to 2.7 meters considering the maximum height of the vehicle to be 1.5 meters  

It has to be noticed that Octomap outputs the map in various possible formats. The 
one used for this work is through MarkerArrays. In brief, for each point of the map, a 
Marker containing the three coordinates of the point is generated. This solution is far 
less memory consuming that using voxel grids. In case of 2D representations, this 
works very well: the dimension of the map is limited and works nicely with very 
advanced imaging techniques that can be applied.  



32 3. Tools and Methods 
 

 

Another relevant factor to always keep in mind is that Octomap outputs the entire 
message of the map at each iteration. In turns, this causes the size of the information 
to be monotonically increasing, growing at each step. 
The whole management of the frame’s relationship is handled by the TF library in ROS 
(Figure 3.7). In this project, the most relevant frames are: 

§ map: fixed absolute frame; 
§ base_link: base frame of the vehicle, positioned at ground level; 
§ gps_link: the frame corresponding with the GPS antenna, the information 

provided by this system refers to the position of this frame; 
§ velodyne: frame associated with the Velodyne Lidar position;  
§ ti_mmwave: frame associated with the TI Radar position; 
 

 
Figure 3.7: TF representation of the vehicle 

 
All the relations intra-robots are completely static. The only one that is time dependent 
is the one between the map frame and the base_link frame. This transformation is 
computed through the GPS data, directly acting on the gps_link. The TF library can 
however perform this frame transformation easily and provide the correct robot 
motion with no delay. 
 
In order to visualize what is happening and how the map is been built, RViz 
visualization tool is used. As already explained in the Fundamentals section, this 
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framework is key for proper understanding of all the complex dynamics of 3D 
mapping (Figure 3.8). 
 

 
Figure 3.8: RViz visualization for easy understanding and debugging 

3.2.2 Denoising 
As previously said during the analysis of radar sensors, those are typically very noisy. 
Moreover, in this particular case, the sensors deployed is an off-the-shelf commercial 
radar, not intended to have high performances. Therefore, it is crucial to deal as soon 
as possible with this noise aspect. 
When analyzing the raw data from the radar and the lidar, it is immediately noticeable 
the different level of noise characterizing the two maps (Figures 3.9 and 3.10). As one 
can see, it is very hard to clearly recognize which is the structure of the environment 
sampled during the whole experiment. Conversely, the map produced by the lidar is 
very neat and understandable. 
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Figure 3.9: Radar original map 

 
Figure 3.10: Lidar original map (Ground Truth) 

First of all, focusing on the radar side, it is immediately noticeable the very dense 
curved line of points laying on the plane 𝑧 = 0, perfectly following the trajectory of the 
vehicle. Even though this phenomenon has not been analyzed into details, the signal 
should be caused by an object reflecting the radio wave at null distance from the 
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sensor. Initially, once observed this phenomenon, the sensors have been mounted in 
another position in order to try to avoid any kind of close reflection as such, but even 
with this setup the issue remained still. The most probable cause of this issue is auto-
detection: in brief, the sensor is always sampling itself and this marker is unavoidable 
using only the octomap_server settings. As showed in the section describing this 
package, no minimum radius for the cloud transformation can be set. 
Moreover, comparing the two maps (radar and lidar), one can notice another region 
characterized by strong noise which is surrounding the trajectory of the vehicle. With 
respect to the previous case, those points are sparse and randomly positioned. Apart 
from those, it can be seen that the radar seems to model the shape of the environment 
overall, capturing the main element of the map even if still characterized by various 
outliers. 
 
This algorithm focuses on the first two main sources of noise. Luckily, removing those 
points from the raw map as first data processing operation, is simple: as 
aforementioned, all this noise sources are focused close to the radar trajectory.  
During this work, no algorithm for full automation was coded, but rather a concept 
for further development and actual implementation. For this phase therefore, in this 
work the noise has been manually removed using MATLAB (Figure 3.11). 
 

 
Figure 3.11: Denoising segmentation algorithm 
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Furthermore, a final note on this outliers’ removal. Of course, all the points that has 
been removed are certainly noise. As we will later see in the results sections, almost 
the 40% of the radar original data are thus classified as noise, leaving after this 
processing a cloud a sparser cloud. 

3.2.3 Single-linkage clustering, fclusterdata and Silhouette Score 
Before entering the main cluster phase, it is necessary to introduce two algorithms 
which of fundamental relevance to understand the following paragraph: the Single-
linkage algorithm and the Silhouette Score. 
 
The Single Linkage algorithm, which is a type of agglomerative hierarchical clustering. 
Basically, the aim is to start considering each point (also called singleton) of the original 
set as a separate cluster and at each iteration merge the two closest clusters existing at 
that moment. The distance between two clusters is defined by the minimum Euclidian 
distance between the points belonging to different sets. 
Once all the singletons have been merged into one cluster, the algorithm creates a 
hierarchical tree based on the joining sequence. This tree graph is more commonly 
called dendrogram (Figures 3.12 and 3.13) and it plots the cluster singletons (on the x-
axis) versus the cluster distance (on the y-axis).  
 

 
Figure 3.12: Full dendrogram 
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Figure 3.13: Detail of found clusters of Figure 3.12 

The chart is ideally cut with a straight line on the value of the distance parameter, 
which is 0.3 in this work. The clusters beneath that cut are the final clusters. 
However, considering what has been said up until now, it is clear to see, as the 
iterations continues, the minimum distance between clusters computed is 
monotonically increasing with the iterations. Therefore, it is more computationally 
efficient if, when the algorithm finds that the distance between the two closest clusters 
is higher than the distance parameter, the algorithm just stops and output the final 
clusters as it does exist no other possibility of another merge between two sets 
sufficiently close to each other. In practical terms, the check is performed at each 
iteration, therefore the algorithm never computes the full dendrogram. The name of 
the function performing  
 
The Silhouette Score is calculated using the mean intra-cluster distance 𝑎(𝑖) and the 
mean nearest extra-cluster distance 𝑏(𝑖) for each sample. The Silhouette Coefficient for a 
single sample 𝑖, is given by: 
 

 𝑆(𝑖) = 	
(𝑏(𝑖) − 𝑎(𝑖))
max	(𝑎(𝑖), 𝑏(𝑖)) ( 3.1 ) 

 
To clarify, 𝑎(𝑖) is the intra-cluster average distance. On the other hand, 𝑏(𝑖) is the 
average distance between a sample and the elements of the nearest cluster that the 
sample is not a part of. Note that Silhouette Coefficient is only defined if the number of 
labels is: 
 

 
The best value of the score is 1, while the worst is -1. Values near 0 indicate overlapping 
clusters. Negative values generally indicate that a sample has been assigned to the 

 2 ≤ 𝑛"#$%"& ≤ 𝑛&#'("%& − 1 ( 3.2 ) 
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wrong cluster, as a different cluster is more similar. In our case, thanks to the Single 
Linkage clustering, all the points will have positive score. 
When the silhouette score is at its largest (that is, close to 1) this implies that the 
‘within’ dissimilarity (which is 𝑎(𝑖)) is much smaller than the smallest ‘between’ 
dissimilarity (which is 𝑏(𝑖)). Therefore, we can say that the single point assessed is 
‘well-clustered’, as there appears to be little doubt that it has been assigned to a very 
appropriate cluster: the second-best choice (the not-currently-belonging cluster B) is 
not nearly as close as the actual choice (A) (Figure 3.14). (Rousseeuw, 1987) 
 

 
Figure 3.14: Silhouette Score distance computations 

3.2.4 Clustering 
The clustering algorithm aims at gathering points which are sufficiently close to each 
other, dividing the full point cloud into smaller sets. It has to be recalled here that in 
the context of this work, differently with respect to what has been done in the past 
research (see Chapter (1): Literature Review), no object recognition method will be 
applied.  The first hypothesis made, regards the dimensionality of the problem. Even 
though the goal of this work is to perform mapping in three dimensions, it makes sense 
to consider only the top view, thus projecting the points against the x-y plane and 
performing clustering consequently (Figures 3.15). 
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Figure 3.15: Radar and lidar 2D map from top view 

Firstly, this simplification reduces the computational weight of the processes overall, 
as each time a single point is considered, the values used in the calculations are only 
two instead of three; the second and most relevant aspect, relates considerations on 
the average shape of a cluster with respect to the one of the objects most likely present 
within the map.  As described previously, the environment on which this algorithm 
acts, is considerable compliant with the Manhattan assumption, but it is also filled with 
more natural objects. Typically, those objects have a softer geometry, like trees, shrubs, 
branches etc.  
 
Another very relevant thing is that the algorithm considers only those points behind 
the vehicle. Having the robot’s pose message from the GPS that also contains the 
orientation quaternion, it is possible to compute the plane orthogonal to the trajectory 
at every instant. All the points lying in the half space behind the robot are taken into 
consideration by the algorithm. The reason for this particular choice stands in the fact 
that in this way, the objects sampled cannot be shaped any better, as the vehicle has 
already overcome the object position. On the contrary, all the points still in front of the 
vehicle (and thus in front of the sensors) are not included, because there may be the 
chance that few other points, belonging to the same objects, will be sampled in future 
step iterations. In order not to miss any relevant detail before performing clustering, 
those frontal points are completely avoided. They will be considered once included 
into the rear half-space defined as a consequence of the robot’s motion as no other 
information can be added. The only way to add further information would be to scan 
the same region of the map twice: this case though, will not be considered in this 
analysis. 
 
The only parameter to be tuned for this algorithm is the maximum distance allowed 
for two points to be part of the same cluster. This distance was set to be 0.3m, much 
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less than the average dimension of an object. The main reason for this choice is that the 
final number of clusters found, that also respects the threshold of at least 30 points, is 
the highest. As one can imagine, the more clusters are collected, the more points the 
algorithm is modelling, the better the map is capable of properly follow the shape of 
the original environment (Figure 3.16). 
 

 
Figure 3.16: Clusters found against the original map 

This parameter distance is indeed that one value maximizing the level of clusters 
found. In this way, the cluster is made on one piece of an object from which one has 
already gathered the maximum possible number of points that the radar was capable 
of sampling. 
Once the correct points are passed to the clustering algorithm, it executes the 
fclusterdata function building the clusters up until the distance parameter is exceeded. 
Then the algorithm goes through the different clusters counting how many points they 
have. Only those with 30 or more points will be taken into account. Out of all the points 
belonging to each selected cluster, exactly 30 are extracted, due to the constraint 
imposed by the later processes. In order to remove the excess of points inside a cluster, 
the Silhouette Score is computed for each point and based on it the points are sorted 
from the highest to the lowest. The algorithm then retains only the first points, which 
are those with the greatest coherency within the set itself. Considering how the 
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clustering algorithm has been proposed, the final resulting set forming a single cluster 
are, very compact and dense. (Figures 3.17) 
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Figure 3.17 (a-b-c-d-e-f): Various radar clusters generated 

Moreover, as we have already said, in order to best approximate the shape of the map 
without performing any object recognition (as proposed in other works present in the 
literature), it was necessary to build clusters as narrow as possible. In this way, another 
consideration can be made in contrast with the high level of noise typical of radar 
sensors. The presence of a high number of points enclosed into a small region of space, 
suggest that the modeled object is product of the observation of a real object. Normally, 
noisy observations are sparse, and, in many cases, they appear as outliers with respect 
to real samples. The algorithm implicitly does not consider these points, simply 
because of their position and sparsity. Hence, in addiction with the central noise 
removal operation made beforehand, it can be stated that all the cluster generated by 
this algorithm are parts of real object with very high probability. To better show this, 
we plot here the cluster radar map together with the lidar original map (Figure 3.18): 
 



3. Tools and Methods 43 
 

 

 
Figure 3.18: Clusters found compared with the lidar map 

 
Unfortunately, as one can clearly see from the picture, the clustering algorithm may 
be severe enough to avoid generating sets where the radar is not able to sample 
sufficiently certain objects. Therefore, those are not contained inside the final set of 
clusters, and likewise before, treated as pure noise.  
In order to solve this issue, it might be a solution considering slowing down the speed 
of the radar, therefore the level of points collected increases and permits an even more 
accurate shaping of the original map. 
 
As detailed just above explaining the Silhouette Score, when this method is applied, not 
as a metric, but as cutting off threshold, it can be stated that it gives higher importance 
at those points which are closer to the center of the cluster, such that it produces 
circular 2D clusters with higher probability. 
In three dimensions, this circular shape evolves into a cylinder, which can be 
considered a representative shape to approximate the objects contained in the context 
depicted above. The overall shape of the surroundings (from a top view perspective) 
is approximated using circular and very dense clusters, while on the z axis the different 
sets follow the vertical mold of the map (Figure 3.19). 
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Figure 3.19: 3D cluster map 

Finally, the presence of the neural network as subsequent phase imposes a not 
negligible aspect that is one of the main issues with which this work struggled. Indeed, 
the choices to retain only a very specific number of points for each cluster (30 in this 
case), has been made as a response to this problem. Basically, as will be later better 
explained, the perceptron does not have the flexibility to take as input a different 
number of values than exactly the dimension of the first layer of the perceptron. Hence, 
once decided this design parameter, it affects the whole algorithm chain. 
 

3.2.5 Normalization 
Given the trajectory and the points belonging to the cluster to be transformed, firstly 
the position of the centroid cluster point is computed. The radius of the frame rotation 
is obtained as difference between the centroid and its closest point to the trajectory of 
the vehicle. Now all the points belonging to the cluster are rotated in order to bring 
that radius line horizontal. The rotation center is the point belonging to the trajectory 
and the rotation angle is computed from the derivative of the trajectory curve (Figures 
3.20). 
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Figure 3.20 (a-b): Principle of frame rotation 

Now that all the clusters are oriented the same way, a patch is generated keeping the 
trajectory point considered even before as center point. The patch has the following 
dimensions: 27 meters orthogonally with respect to the trajectory direction, 20m 
longitudinally and 2.7 meters vertically along z. This box is normalized into a cube of 
dimensions 1x1x1 having the trajectory point positioned as (0.5,0.5,0) (Figure 3.21). 
This normalization overall permits to keep both the coherency of the shape and the 
position with respect to the robot perspective. This information, even if implicitly 
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stored inside the values of the coordinates of the clusters, provides more capability for 
a best modeling by the Neural Network Perceptron. 
 

 
Figure 3.21: Principle of Normalization 

To keep the data to rebuild the map afterwards, an array preserving the centroid 
positions and the trajectory derivative is generated and stored into a .mat file. 

3.2.6 Dataset Generation 
Unfortunately, the literature does not provide any pre-trained perceptron for 
coordinates transformation or upscaling. Thus, in order to train the Neural Network, 
it was necessary to build beforehand a database of values. Various testing campaigns 
have been carried out with the setup described in the Tools section. To have the 
maximum consistency between the learning and the actual implementation, the 
procedure for the data collection and handling of the radar are the same. Also, the 
samples collected by the radar and the lidar are taken simultaneously and thanks to 
the TF package in ROS they are also coherent in space. 
On the other hand, the lidar signal is treated in the same way with some slight 
variation: its raw PointCloud2 message passes through the octomap_server node and 
it is transformed into map.  
Now, this map does not present any noise to be removed as we consider it to be the 
ground truth map, but also the accuracy of the lidar is such that there is no need to 
apply any denoising algorithm. Nonetheless, a couple of notes on the final map 
obtained: first, the ground has been completely filtered out because the radar is not 
capable of sampling any point of it; second, at the beginning of each session, the 
parameters of the lidar has been reconfigured such that the horizontal angle of field of 
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view was reduced to a value more similar to the one of the radar sensors. This is better 
explained in the Fundamentals section. 
 
Now, it has to be said that there is no easy way at this point to proceed: given the radar 
clusters, producing other point sets from the lidar data which are representative of the 
radar cluster is not straightforward. Each set does not represent a finite object, but a 
part of it. Thus, the most reasonable way to produce those lidar samples is manually, 
by comparing the whole lidar cloud of a map and a single radar cluster.  
Using the brush tool present in the MATLAB plot, only the lidar points representative 
of the clusters are kept and stored (Figures 3.22).  
 

 

 
Figure 3.22 (a-b-c-d): Steps of lidar cluster generation with brush tool 

Notice here that the two pictures above represent the same two clusters scaled in 
different ways. 
In this particular case, the lidar cluster produce contains 2172 points. The algorithm 
from this point set produces a final cluster of 400 points (Figures 3.23): 
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Figure 3.23 (a-b): Final clusters 

Now, applying the normalization algorithm to both radars and lidar patches, the 
clusters are ready to be used as training samples for the Neural Network (Figures 3.24). 
It has to be noticed here, the differences in the X, Y and Z values: 
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Figure 3.24 (a-b-c-d-e-f-g-h): Examples of training clusters 

3.2.7 Neural Network Training and Up-Sampling 
The neural network is a Multilayer Perceptron. It is composed of an input layer made 
of 90 nodes, three hidden layer of 1200 nodes and an output layer of 1200 (Figure 3.25). 
The information propagates from the input layer thanks to linear transformations and 
the result of this operation at each node is passed through an activation function that 
activates the node giving that nonlinearity property to the model. Once the values on 
the output layer are found, those values are compared with the ground truth values 
i.e., the coordinates of the point of the lidar cloud which are the same number of the 
output layer nodes. The comparison generates the delta differences that is then 
backpropagated through all the network to update each node weight. 
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Figure 3.25: Neural Network structure 

The 90 nodes of the input layer are given by the 30 points by 3 coordinates. The same 
applies for the output layer that has 1200 values composed by 400 points with 3 
coordinates each. 
The Multilayer Perceptron make use of the Mean Squared Error function as loss 
function to be minimized, which is widely used in this sector. Moreover, the optimizer 
chosen is Adam, also very commonly employed and considered one of the most stable 
optimizers available. The optimizer takes as input the value of the learning rate, which 
is 5e-5 in this case, while all the rest is left to its default value. 
As additional source of stability, the initial weights have been randomly initialized 
considering a uniform distribution with the Xavier Golorot Method (Golorot & Bengio, 
2010). 

3.2.8 The GPS issue and dataset enhancement 
During the samples collection arose an issue related with the GPS module. As 
previously mentioned, the localization signal provides the pose information at the 
octomap_server package for the cloud conversion into map. Unfortunately, due to the 
presence of trees, walls, and more in general disturbing factors, often the localization 
signal dropped or was completely misplaced. In turn, this caused the loss of several 
parts of the experimental campaign. 
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Figure 3.26: GPS module issue 

The picture above (Figure 3.26) is representative of a case in which the GPS signal is 
poor: the robot is moving in the real world following a straight line, but the produced 
lidar map misses several parts of the real environment, and the few regions collected 
are also badly modeled, as the orientation quaternion defining the view direction of 
the robot keeps changing due to the signal instability.  Considering few minutes of 
sampling at a time, among all the different sessions started, many of them contains 
only few seconds of actual useful sampling. Those had to be thrown away, as there is 
no way to recover missing data. Additionally, many others had minor issue, with just 
little missing spots, causing the lack of uniformity of the information and thus the 
necessity to manually intervene from time to time on the process.  
As a consequence, when all the radar points samplings have been ultimately 
transformed into clusters for the training dataset, the final total amount was only 167 
samples. 
 
Moving now to the lidar cluster generation, this was performed through the procedure 
explained in the last paragraph: in brief, the procedure is based on manual 
extrapolation through visual overlapping using the brush feature available in the 
MATLAB plot environment. In this way, the coherent lidar cluster of each of those 167 
radar clusters can be extrapolated. In that specific moment though, the cluster is not 
yet ready to be integrated into the dataset because it does not have a standardized 
number of points. Therefore here, it is possible to take advantage of the high density 
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of the lidar cluster, and by reducing multiple times the lidar clusters with a sufficiently 
large number of points, the result is a multiplication of the total number of samples. 
The performance of this procedure brought the dataset dimension up to 1263 unique 
samples couple. 
Below we show the same radar cluster matched with the different combination of the 
same reduced lidar cluster (Figures 3.27): 
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Figure 3.27 (a-b-c-d-e-f-g-h-i-j): Different normalized clusters from a single lidar 

cloud 

 

3.2.9 Training 
The training presented in this paragraph concerns the same multilayer perceptron 
model presented beforehand, but in two different contexts: in one, the model was 
trained using the complete dataset, thus 1263 points; the other makes use of only the 
original 167 radar samples at which only one coherent lidar cluster gets associated. 
The training curves are displayed below (Figure 3.28): 
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Figure 3.28 (a-b): Training curves of small and enhanced dataset 

It is possible to notice that the optimal validation error of the dataset trained with the 
enhanced dataset is lower than the other. Aside from the performances highlighted by 
the evaluating metrics of the Neural Network, it is better to visually check the actual 
clouds, to see if this optimum is effectively coherent with our problem. Therefore, to 
assess the quality of the predicted clusters it is necessary a test set, different from the 
training set. The radar samples of this set are inputted inside the trained model to 
output their predicted clusters. Below, input and output data are plotted together 
(Figures 3.29): 
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Figure 3.29 (a-b-c-d-e-f): Enhanced dataset network results 

 
As one can notice, even if the validation error is lower for the first model, the actual 
cluster transformation for both models provide similar results. Unfortunately, the 
predicted clusters are completely concentrated around the centroid and does not make 
a good job in shaping the original cluster. 
 
Something noticeable when looking at the training curve is the different shape of the 
two cases. The one that considers the smaller but unique set is a more natural shape 
with respect to the other. As explained in the Fundamental section, the typical training 
curve features a common descending trend at the very beginning up until the optimal 
solution, then the two curves separate as the training loss keeps decreasing and the 
validation loss start increasing, victim of the overfitting issue. This is fully coherent 
with the small set training, but it is not entirely true with the augmented dataset. With 
this latest, well beyond the optimum point, the curve flattens, and the network lies 
steadily, independently on how long the training keeps going. This behavior shows 
that this perceptron will never perform any different from the optimal performances, 
as the curve flattens immediately after.  
Considering now the model trained with the unique dataset, its curve clearly shows 
that, after the optimal solution, it keeps learning from the training set, losing 
generalization capabilities. However, having in mind the last results obtained with the 
optimal networks, it is possible that the optimization task solved by the Adam 
optimizer does not represent the problem with effectiveness: in other terms, finding 
the minimum loss in the validation set does not finally provide a model capable of 
performing well in cluster transformation. It is rather possible that the algorithm is 
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learning to solve a problem somewhat slightly different, providing thus solutions that 
are numerically optimized but that are not visually satisfactory. Therefore, considering 
the strong visual component of the data that the algorithm tries to model, it is worth 
to try to forget about the evaluation of the machine learning training module, letting 
in such way the model be overtrained and directly check how the final clusters look 
like. In order to properly test different levels of training, the same identical model has 
been trained at: minimum validation error (Figures 3.30), 500 (Figures 3.31), 700 
(Figures 3.32), 900 (Figures 3.33) and 1000 epochs (Figures 3.34). 
Here are reported some clusters for comparisons purposes from each of these five nets: 
 

 
Figure 3.30 (a-b-c): Minimum validation error training results 

 
Figure 3.31 (a-b-c): 500 epochs training results 
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Figure 3.32 (a-b-c): 700 epochs training results 

 

 
Figure 3.33 (a-b-c): 900 epochs training results 

 
Figure 3.34 (a-b-c): 1000 epochs training results 

Analyzing the results, one can easily understand how the model operation is changing 
along the training. From the clusters generated by the optimal model, occurring at the 
ninetieth epoch, the overtraining helps the predicted cluster in gaining more and more 
variance, especially along the z direction. Visually the overfitting seems to be capable 
of improving the quality of the predictions up to a certain training level. After that, 
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they become too sparse as effectively the problem is overfitting. The best solution 
found here is the model trained at 700 epochs, as it represents the right tradeoff of 
what has been explained up to now. 
It is important also to notice that the model is very accurate in collocating the points in 
the right portion of space without moving them elsewhere. This implicit learning was 
made possible only by the normalization algorithm, generating those large patches 
previously discussed. 

3.2.10  Map Reconstruction 
Once the cluster is transformed, the map needs to be assembled back into its full shape. 
In order to do so, we need all the final clusters produced and the array containing the 
position coordinates and the derivatives of the clusters centroid that we have created 
and saved beforehand, during the cluster normalization. The reconstruction works 
exactly like the reverse of the normalization as there is no need for any adjustment to 
be made in terms of cluster position. The final reconstructed map is shown in the 
following pictures (Figures 3.35): 
 

 
Figure 3.35 (a-b): Final predicted map
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4. Results 

In this chapter, the analysis of the developed algorithm described in the previous 
chapter will be carried out. This fourth chapter is divided into two sections, one 
introducing the metrics and the other one providing the numerical results and the 
comments associated. 

4.1 Introduction to the metrics 
In order to properly evaluate the final results, it is necessary to introduce an evaluation 
metric. This score aims at evaluating the similarity between two clouds, taking the first 
one as a reference cloud and making the evaluation on the second one. In this case, the 
reference cloud will be in all cases the lidar map. As already said, in this work the lidar 
is considered the ground truth because of its performances in terms of accuracy and 
density. Therefore, it is the most suitable candidate as reference cloud for the metrics. 
 
The evaluation metric (Lethola et al., 2017) takes as input the point cloud to be 
evaluated, the reference point cloud and a parameter 𝑟).  The working principle is to 
further consider one point 𝑝* of the cloud to be evaluated at each time and find its 
closest point 𝑝++(*) belonging to the reference cloud. Once the two are found, the 
algorithm computes the distance and compare it with the 𝑟) value. If this distance is 
higher than the parameter, the point is completely discarded (thus 𝜔* takes value 0). 
In the other scenario, the point 𝑖 is considered inside the metric, thus being part of the 
summation of the L2 defined norm and belonging to the 𝑁 points value: 
 

 𝐶 =
1
2𝑤(

‖𝑦(𝑥) − 𝑎‖)! ( 4.1 ) 

 
 

𝐸>𝐿(@ = A
1
𝑁B𝜔*C𝑝* − 𝑝++(*)C

(
.

*/0

D

0 (1

 ( 4.2 ) 

 



62 4. Results 
 

 

 𝑝 = 2 ( 4.3 ) 
 
 

𝜔* = E0, 𝑖𝑓	𝑑* > 𝑟) 	
1,								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ( 4.4 ) 

 
 
The algorithm proceeds until it has evaluated all the points of the cloud. 
This procedure is carried out for different values of 𝑟), such that it is possible to see the 
evolution of the metric depending on this threshold value and draw conclusion based 
on it. 
 
The other metric considered is the evaluation of the coverage, or how the evaluated 
map is able to occupy the same space of the reference map. 
To compute this metric, the algorithm proposed takes into consideration the clusters 
of the predicted map, and for each of those it creates a box perfectly enclosing the 
cluster and counting how many lidar map points are within the box. At each iteration, 
the lidar points already considered are removed from the map such that it is not 
possible to consider them twice. Finally, all the points counted are summed together 
and this value is divided by the total amount of initial lidar points 
 
The third metrics is instead related with another issue that is considerably improved, 
which is map sparsity. A comparison between the number of points composing the 
maps along the different steps of the algorithm is provided to shown how the final 
predicted map behave with respect also to the reference ground truth map. 

4.2 Metric results 
 
Here the actual results of the evaluation introduced in the previous section are shown. 
In the figure below are displayed the plots of the evaluation metric (Figure 4.1): 
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Figure 4.1: Evaluation metric result 

As one can see from the picture, the curve associated with the original radar map (in 
blue) is the one having the highest value. Not only that, but it is also the only curve 
characterized by two strong positive slopes: this has to be related with the high 
presence of outliers in the cloud, as they are taken more and more into consideration 
through the increasing 𝑟) value. 
Here one can appreciate the quality of the job made by the denoising phase, as the 
metric shows how the plot of the denoised map curve is the one having the lowest 
metric value, highlighting thus the elimination of the greatest part of the outliers of the 
original map (in orange). 
Moving now to the predicted map curves of the different model, one can notice how 
the evaluation metric favors the model trained at minimum validation loss instead of 
any other net. The reasons for this are made clear by observing the two maps directly 
compared below (Figure 4.2): 
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Figure 4.2 (a-b): Comparison between minimum validation loss and 700 epochs 

training model 

The minimum validation model (on the left) generates clusters very dense and 
concentrated around the centroid of its respective input. This is numerically 
advantageous for what concerns this metric, especially considering the map aside that 
have a much higher variance, because of the actual proximity to the points of the lidar 
map in the same region. Visually though, it is clear how the performances of the first 
model are not at all acceptable and the proper metric to prove this incapability is the 
map coverage. 
 
Indeed, in the table below (Table 4.1). are provided the results of the coverage metric 
applied to the network trained at minimum validation loss and to the one trained at 
700 epochs: 
 

MinValLoss Network Coverage 700_Epochs Network Coverage 
13,7 % 68,2% 

Table 4.1: Coverage metric results 

As predicted, the model trained at optimum performed very poorly, by only covering 
the 13% of the lidar map, while the 700 epochs training model took a score of 68%, 
highlighting thus what was previously said. The 700 epochs training model is the one 
that has the best tradeoff between the evaluation metric, the map coverage metric, and 
the visual similarity validation. 
 
Another fundamental thing to be evaluated is how the algorithm performs against the 
initial sparsity. From this perspective, the final amount of point belonging to the 
predicted map is high. In average, the denoised map loses around 30% of the initial 
points, and in turns the predicted map increases directly the denoised map by a factor 
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slightly higher than 7. Compared to the original on the other hand, the factor is around 
5.  Conversely compared to the Lidar Map, there exist a factor difference of less than 5 
(Table 4.2).  
 

Lidar Map 
Radar Original 

Map 
Radar Denoised 

Map 
Predicted Map 

135666 5409 3764 28800 

Table 4.2: Sparsity Metric 

Lastly, below are depicted the final 3D maps, comparing the original Radar, the 
Predicted one and the Lidar Ground Truth map. This comparison is shown here only 
to visually appreciate the quality of the algorithm (Figures 4.3): 
 

 
 

 
Figure 4.3 (a-b-c-d): Comparison of final map and original radar and lidar maps 
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5. Commercial radar analysis 

Here is proposed a brief discussion about the radar that was used to carry out this 
project, possible alternatives and, in consideration of the behavior of the algorithm, 
what could be the consequences generated by making a different choice.  

5.1 Commercial Radars 
As previously stated, the original performances of the radar are poor either in terms 
of accuracy, noise production and sparsity. In particular, by making reference to 
Figure 3.9, the objects that the AWR1843BOOST sensor tries to model are not even 
recognizable by humans. Only by looking at the equivalent lidar map underneath 
(Figure 3.10), one can effectively tell which points model real structures of the 
environment and which are associated with complete noise. This level of scarcity of 
the information is not that common among commercial radars, but can be considered 
standard for cheaper off-the-shelf model like this one.  
For this reason, it is worth to carry out a brief analysis of other employable radar 
sensors, accounting also for their price as one of the goals of this work is to improve 
sensor’s quality without bringing heavy financial commitments. 

5.1.1 ARS408 

 
Figure 5.1: Millimeter wave sensor device ARS408-21 
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The ARS408 (Figure 5.1) is a long-distance radar working at 77GHz frequency.  
The sensor range of operation begins at 0.2 meters up to 250 meters The 
downloadable software distributed with the hardware is built for automotive 
industry: the main application is for detections of different objects like trucks, 
pedestrians etc. The sensor azimuth field of view is ±60 degrees and ±20 degrees in 
vertical for close to medium range application. The official price for this sensor is 844 
USD. 

5.1.2 The Sensor Fusion kit 
 

 
Figure 5.2: Millimeter wave radar integration Sensor Fusion Kit 

The Sensor Fusion Kit (Figure 5.2) is a combination of camera and millimeter wave 
radar integrated which uses Texas Instruments single chip 77 GHz millimeter wave 
sensors like the AWR1843BOOST exploited in this work. Its frequency bandwidth 
ranges from 76 to 81 GHz. Released software for the kit offers classification and 
identification of sampled objects and streams radars data as video clip. Also, 
different customization services are provided in order to properly set the parameters 
of millimeter wave radar and camera’s video. The official price for the Sensor Fusion 
Kit is 1499 USD. 
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5.1.3 IWR6843ISK with platform MMWAVEICBOOST 

 
Figure 5.3: IWR6843ISK millimeter wave sensor on its carrier platform 

MMWAVEICBOOST 

IWR6843ISK (Figure 5.3) is a millimeter wave sensor with a long-range antenna 
enabling direct connectivity to its carrier MMWAVEICBOOST. The sensor enables 
pointcloud data through a USB and raw ADC data through a 60-pin connector. The 
radar has 4 RX and 3 TX antenna with 108 degrees azimuth field of view angle and 
44 degrees on elevation. The operating frequency ranges from 60 to 64 GHz 
millimeter wave sensor. The max range for vehicle detection is 114.43 meters. The 
price for the sensor module is 125 USD while the carrier platform is sold for 199 USD 
for a total of 324 USD. There exists a unified software platform mmWave SDK for TI 
radars which supports evaluation and development of the device. 

5.2 Possible algorithm behavior  
Those three radars have been chosen because they are considered to have better 
performances compared to the AWR1843BOOST. Even though it was not possible to 
carry out any experiment with such radars, one can imagine that if the quality of the 
initial information rises, then the quality of all transformations and consequently of 
the output, increases as well. The denoising phase becomes useless as all the central 
noise does not appear in the first place, while all the rest is kept as before.  
During the clustering phase, if the information is more packed, the outcome of 
clustering, densification and reconstruction will surely better approximate the overall 
map, because the density of the clusters would be higher and more accurate. It is 
indeed expected that the overall number of clusters that would move to the subsequent 
normalization phase is much higher. This effect, in turn, makes the upsampler work 
on a higher number of provided clusters and thus the final map has an even larger 
number of points. 
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6. Conclusions 

 
In this chapter are presented the conclusions of this Master Thesis, in terms of what 
has been achieved through the algorithm developed, what are its limitations and 
finally the possible future developments. 
 
First of all, in comparison with the original radar, it is clear that, as shown in the final 
plots of the Results chapter, that the algorithm dramatically improves the mapping 
capabilities. In particular, the performances improve in terms of reliability, as the 
algorithm retains only very packed clusters, related, with very high probability, to real 
object observed. This guarantees the consistency of the data transformed with respect 
to the world structure, avoiding noise transformation. 
 
Furthermore, another relevant aspect greatly improved is the noise reduction: in the 
Results chapter, the metric shows how the evaluation greatly improves thanks to the 
denoising phase of the algorithm. Even though in the latest cluster transformation 
some variance is added into the clouds, the typical noise associated with the radar 
signal has been correctly removed. 
 
Finally, another key point that received major improvement is related with the cloud 
sparsity issue. As already stated, the lidar cloud on which this algorithm tries to learn 
from has more than 20 times the level of points of the original radar sampling. 
Moreover, the denoising phase removes almost the 40% of the original radar points. 
The final up-sampling phase increases the number of points composing a map up to 
having more than 5 times the radar original points, thus only 4 times less than the 
original lidar map on average. 
 
Other than improving the capabilities of its mapping, it is very important to remember 
that the radar keeps unaltered its intrinsic properties. As mentioned in the 
Fundamentals section, those are being invariant with respect to weather and well 
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performing in dynamically changing environment without losing relevant 
information. Both those characteristics are of fundamental importance for outdoor 
autonomous navigation.  
 

6.1 Limitations and Future development 
In this paragraph are presented the limitations that this work faces and most 
importantly what are the future research areas where to focus the attention for further 
development. 
 
Firstly, about the training, the choices made were based on the direct evaluation of the 
results, rather than on the learning loss function. This is clearly problematic, as the aim 
of the optimization algorithm is to minimize the loss function. In this case, the loss 
function applied is not fully representative of the problem, and the converging 
solutions are not satisfying from that perspective. In this context, the final algorithm 
takes into consideration the model providing the best visual results, thus with a sub-
optimal goal-oriented approach.  The perceptron model is used as a way of achieving 
what is considered to be a sufficiently good result. The limitation here stands 
obviously in the lack of comprehension of this problem. The need is to define a 
different and more precise loss function, capable of finding a solution which is 
consistent with the problem to be solved.  
 
Connected to this last point, the second relevant issue to be risen here is the too small 
training dataset. The one employed for the training contains only 167 samples, not 
enough for a proper training. Generally, this level strictly depends on the type of 
problem one aims at solving. In this case even more importantly, the complexity of the 
task is huge, the combinations of the various cluster shapes are many, even in terms of 
implicitly understandable semantic. Also, one should consider that different point 
combinations might be modelling the same object, and vice versa same point sets 
shaping different objects. In this context, the higher the number of collected samples, 
the more generalization capability can be provided to the model with effectiveness. 
 
Always referring to the multilayer perceptron, which has been the most critical part of 
the work, one should consider the possibility to move towards different models. As 
already stated, this work makes use of a Neural Network in an exclusively goal-
oriented manner. It was thus without the scope of this work try and assess other more 
complex models. Nevertheless, the multilayer perceptron, as well as many other 
models, has the constraints on the dimensionality of input and output information, 
which has been driver of many relevant choices in the algorithm. There are not many 
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models capable of providing such flexibility, and the few existing require a certain 
level of expertise because of their complexity. One example of those Machine Learning 
models is the class of seq2seq algorithms (Sustkever et al., 2014): those kind of 
algorithms are mainly employed to perform languages translations, as they are 
capable of taking one input at time, in that case each word would be an input, and 
transform this data into a new one considering the past transformations.  
 
By using this kind of model, many phases of the algorithm in this case could be 
simplified and even more importantly, the cluster passed to the net would have a 
certain dimensionality depending on the characteristic of the sampled object, giving 
thus further information to improve the densification. This strategy could be matched 
with those algorithms present in the literature performing object recognition based on 
its radar signature. 
 
Some concerns, on the sampling procedure: the dimensions of the map sampled is 
always relatively limited in this work, therefore this has no major implication and 
negligible effects. It has to be noticed that, if this algorithm is ever used for creating 
larger maps, it definitely should be considered a modification in order to deal with this 
unrestrained memory resource allocation issue. Python and MATLAB are very strong 
and high-level programming tool, but especially for this reason, the user always has 
to keep in mind the dimensions of the data collected. 
 
Another limitation to be mentioned in this paragraph refers to the idea that this work 
is a union of separated pieces of code, ran on different platforms, with few manual 
operations inside, mainly linked with data movement cross-platform. With the aim of 
providing something useful for the autonomous navigation, all the algorithms should 
be fully automated. Certain phases of the algorithm are already implemented with a 
good level of automation and could be just integrated, for instance the clustering 
algorithm, the normalization or the up-sampling phase. On the other hand, the 
denoising phase and the dataset generation are mainly user defined: the denoising 
consists in a segmentation algorithm, but its parameters depend on the map, and each 
map has different parameters because of its spatial orientation, the dimensions of the 
environment etc. In the same fashion, the dataset generation is almost fully manual, as 
the lidar cluster is cutted out of the whole lidar map around the associated radar 
cluster. A possible solution for the automation of the denoising phase is the ROS node 
called crop_box. It is stored into the extensive library called pcl born to provide support 
for 3D pointcloud operations (Rusu et al., 2011). This takes the PointCloud2 message as 
input and it outputs the same cloud out of which the points laying inside a user 
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defined box are removed. Correctly tuning the dimensions and the position of this box, 
the noise could be removed before the generation of the map.  
 
Finally, we highlight an issue on which further research should be considered, which 
is map coverage. As already said, the algorithm is reliable, as the clusters that are 
found and transformed are highly packed and thus representing with high probability 
parts of real obstacles. It is clear, on the other hand, that to obtain this level of safety, 
the clustering algorithm is unable to model those regions where some points have been 
collected properly, but not enough to generate a cluster. The cluster thus considers all 
these points as outliers incorrectly. Future research should try to instruct the cluster 
algorithm to look for more than only the point density, such that the shaping can 
improve and thus start being reliable even in the reversed direction i.e., not only 
providing certainty in what is brought to be transformed but also, certainty in the 
reconstruction of the complete environment. 
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Appendix 

Below, one can find the most relevant parts of the source code used for this work. In 
this appendix, the Python code will be shown first, then the MATLAB code. Before 
each part, a brief comment on its behavior will be given. 

Python codes 
1) Firstly, below it is shown one of the ROS nodes launched in the phase of map 
transformation. Basically, Octomap is not capable of working with a Pointcloud 
message which has been registered and stored. In brief, the reason is related with the 
time stamp inside the header of each message that is not coherent with the current 
time stamp when the messages are played back.  
Thus, this node subscribes to the topic providing the input cloud message 
(/velodyne_points for the lidarar, /ti_mmwave/radar_scan_pcl topic for the radar) 
and it modifies it such that the header now contains the current time information. 
This transformation occurs in the callback function, which is called whenever a new 
message on the topic. The new cloud (which is completely identical to the input one, 
header stamp aside) is then published to a new topic called /rebroadcast_pcl. 
Octomap will then take this cloud, subscribing to this topic, and transform it into a 
map. 
#! /usr/bin/env python 
 
import rospy 
from sensor_msgs.msg import PointCloud2 
rospy.init_node("rebroadcaster_pcl") 
 
rebroad_pub = rospy.Publisher("/rebroadcast_pcl", PointCloud2, 
queue_size=1) 
rate = rospy.Rate(10) 
 
def pcl_callback(input_pcl): 
    input_pcl.header.stamp = rospy.Time.now() 
 
    rebroad_pub.publish(input_pcl) 
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        # type depends on your data type, first three entries are 
probably x,y,z 
 
# velodyne_sub = rospy.Subscriber("/ti_mmwave/radar_scan_pcl", 
PointCloud2, pcl_callback) 
velodyne_sub = rospy.Subscriber("/velodyne_points", PointCloud2, 
pcl_callback) 
 
rospy.spin() 

 

2) This code represents the full clustering phase. The input value here are Xr_3d 
which is a 3d numpy array. As specified in the Map Transformation paragraph, 
octomap always outputs the full map, and in this variable the first dimension 
represents the time step. Since the map grows at each step, to keep dimension 
coherency the 2d layers above the new one is filled with zeros that are removed with: 
X = Xr_3d[i,:-count,:]. The other two dimensions contains the coordinates of the 
points of the map. The other input necessary for the code to work is the trajectory 
matrix pose, having in the first 2 column the X and Y position of the points 
composing the trajectory and the third column the values of the first derivative of the 
trajectory curve. 
thresh = 0.3 
n_samp = 30 
def_clus = np.empty((0,3)) 
mat_clus = np.empty((0,n_samp,3)) 
pbar = tqdm(total=iterat) 
 
for i in range(iterat): 
    pbar.update(n=1) 
    count = sum (Xr_3d[i,:,1]==0) 
    X = Xr_3d[i,:-count,:] 
    m = - 1 / np.tan(pose[2,i]) 
    X_beh = X[X[:,1] > m * (X[:,0]-pose[0,i]) + pose[1,i],:] 
    # X = np.array(list(set(tuple(map(tuple, X)))^set(tuple(map(tuple, X_beh))))) 
    X_beh = np.array(list(set(tuple(map(tuple, X_beh)))^set(tuple(map(tuple, 
def_clus))))) 
 
    if len(X_beh) <= 50: 
        continue 
 
    clusters = hcluster.fclusterdata(X_beh[:,:2], thresh, criterion="distance") 
    num_clus = list(set(clusters)) 
 
    sample_silhouette_values = silhouette_samples(X_beh[:,:2], clusters) 
    if len(num_clus) == 1: 
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        if len(X_beh) >= n_samp: 
            ind = np.argpartition(sample_silhouette_values, -n_samp)[-n_samp:] 
            X_clus = X_beh[ind,:] 
            mat_clus = np.concatenate((mat_clus,X_clus.reshape((1,n_samp,-1))), 
axis = 0) 
            def_clus = np.concatenate((def_clus,X_clus), axis = 0) 
 

    for num in num_clus: 
        if sum (num == clusters) >= n_samp: 
            clu_sample_silhouette_values = sample_silhouette_values[num == 
clusters] 
            X_clu_samp = X_beh [num == clusters,:] 
            ind = np.argpartition(clu_sample_silhouette_values, -n_samp)[-n_samp:] 
            X_clus = X_clu_samp[ind,:] 
            mat_clus = np.concatenate((mat_clus,X_clus.reshape((1,n_samp,-1))), 
axis = 0) 
            def_clus = np.concatenate((def_clus,X_beh), axis = 0) 
 

3) This is the coded machine learning model. The Keras toolbox, now part of 
Tensorflow, provides all the necessary functions to create and customize a network 
and train it. input_shape and output_shape are problem defined and they take values 
90 and 1200 respectively. This is explained in the Upsampling section. 
The variable mat_clus_norm contains the test set to be predicted in order to evaluate 
the model capabilities. 
def tesinn_xyz (input_shape,output_shape): 
 
    input_layer = tf.keras.layers.Input(shape=input_shape, name='input') 
 
    hidden_layer1 = tf.keras.layers.Dense(units=1200, activation='relu', 
name='Hidden1', 
kernel_initializer=tfk.initializers.GlorotUniform(seed=seed))(input_layer) 
 
    hidden_layer2 = tf.keras.layers.Dense(units=1200, activation='relu', 
name='Hidden2', 
kernel_initializer=tfk.initializers.GlorotUniform(seed=seed))(hidden_layer1) 
 
    hidden_layer3 = tf.keras.layers.Dense(units=1200, activation='relu', 
name='Hidden3', 
kernel_initializer=tfk.initializers.GlorotUniform(seed=seed))(hidden_layer2) 
 
    output_layer = tf.keras.layers.Dense(units=output_shape, activation='linear', 
name='Output')(hidden_layer3) 
 
    model = tf.keras.Model(inputs=input_layer, outputs=output_layer) 
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    learning_rate = 5e-5 
    opt = tfk.optimizers.Adam(learning_rate) 
    loss = tfk.losses.MeanSquaredError() 
    metrics=['mse', 'mae'] 
    model.compile(loss=loss, optimizer=opt, metrics=metrics) 
 
    return model 
 
tesi_nn_xyz = tesinn_xyz(input_shape, output_shape) 
tesi_nn_xyz.summary() 
 
tfk.utils.plot_model(tesi_nn_xyz, show_shapes=True, expand_nested=True) 
 
history_yz = tesi_nn_xyz.fit( 
    X_xyz, 
    Y_xyz, 
    batch_size=30, 
    epochs=700, 
    validation_split=0.1, 
    callbacks=[ 
        tfk.callbacks.EarlyStopping(monitor='loss', patience=50, 
restore_best_weights=True), 
        tfk.callbacks.ReduceLROnPlateau(monitor='loss', patience=10, factor=0.5, 
min_lr=1e-5), 
    ] 
).history 
 
predictions = tesi_nn_xyz.predict(mat_clus_norm) 
 
 

MATLAB codes: 
 
1) Below, the code for the patch normalization described in the Normalization 
section. cluster_map_csv is the input variable containing all the clusters found of a 
certain map (map 5 in this case). For this example, the trajectory has been 
approximated to a straight line defined by starting point (x1_discr, y1_discr) and 
ending point (x2_discr, y2_discr). Within the for-loop, iteratively considering a 
different patch, the procedures of frame rotation and the scaling are carried out as 
described. Commented also the code related to the lidar patch normalization, which 
is anyway completely equivalent to the radar patch. 
 
cluster_map_csv = readmatrix("csv/rad_cluster_5.csv"); 
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x_dist = 27; 
y_dist = 20; 
z_dist = 2.7; 
z_min = -0.7; 
x_traj = linspace(x1_discr,x2_discr,1000); 
y_traj = linspace(y1_discr,y2_discr,1000); 
 
% cluster_mat_sc = zeros(1,400,3); 
% rcluster_mat_sc = zeros(1,30,3); 
 
for i = 1:length(cluster_map_csv(:,1)) 
    x = cluster_map_csv(i,1:30); 
    y = cluster_map_csv(i,31:60); 
    z = cluster_map_csv(i,61:end); 
    x0=mean(x); 
    y0=mean(y); 
     
    [min_dist,pos] = min(sqrt((x_traj-x0).^2+(y_traj-y0).^2)); 
    xcent = x_traj(pos); 
    ycent = y_traj(pos); 
 
    der = (y_traj(pos)-y_traj(pos+1))/(x_traj(pos)-x_traj(pos+1));  
    cluster_pos(i,:) = [xcent, ycent, der]; 
 
    alpha = pi/2-atan(der); 
     
    x_sc = [cos(alpha) -sin(alpha)]*[x-xcent;y-ycent]+xcent; 
    y_sc = [sin(alpha) cos(alpha)]*[x-xcent;y-ycent]+ycent; 
%     x_velo_sc = [cos(alpha) -sin(alpha)]*[x_velo-xcent;y_velo-
ycent]+xcent; 
%     y_velo_sc = [sin(alpha) cos(alpha)]*[x_velo-xcent;y_velo-
ycent]+ycent; 
     
    % x_ntraj = [cos(alpha) -sin(alpha)]*[x_traj-xcent;y_traj-
ycent]+xcent; 
    % y_ntraj = [sin(alpha) cos(alpha)]*[x_traj-xcent;y_traj-
ycent]+ycent; 
     
    x_fin_sc = (x_sc-xcent)/x_dist + 0.5; 
    y_fin_sc = (y_sc-ycent)/y_dist + 0.5; 
    z_fin_sc = (z-z_min)/z_dist; 
%     x_velo_fin_sc = (x_velo_sc-xcent)/x_dist + 0.5; 
%     y_velo_fin_sc = (y_velo_sc-ycent)/y_dist + 0.5; 
%     z_velo_fin_sc = (z_velo-z_min)/z_dist; 
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    cluster_map_norm(i,:,1) = x_fin_sc; 
    cluster_map_norm(i,:,2) = y_fin_sc; 
    cluster_map_norm(i,:,3) = z_fin_sc; 
%     cluster_mat_sc(i,:,1) = x_velo_fin_sc; 
%     cluster_mat_sc(i,:,2) = y_velo_fin_sc; 
%     cluster_mat_sc(i,:,3) = z_velo_fin_sc; 
end  
 
cluster_map_norm_csv = []; 
cluster_map_norm_csv(:,1:length(cluster_map_norm(1,:,1))) = 
cluster_map_norm(:,:,1); 
cluster_map_norm_csv(:,end+1:length(cluster_map_norm(1,:,1))*2) = 
cluster_map_norm(:,:,2); 
cluster_map_norm_csv(:,end+1:length(cluster_map_norm(1,:,1))*3) = 
cluster_map_norm(:,:,3); 
cluster_map_norm_csv(cluster_map_norm_csv(end,:,:)==0,:,:) =  []; 
 
The code for the computation of the evaluation metric, as described in the Results 
chapter is shown below: 
for t = 1:length(rc) 
    E = 0; 
    N = 0; 
    pos = randperm(length(lidar_map),length(lidar_map)/2); 
    lidar_map_mod = lidar_map(pos,:); 
    for j = 1:length(pred_map) 
        d0 = 1000; 
%         posx = lidar_map(:,1) < pred_map(j,1)+4 & lidar_map(:,1) > 
pred_map(j,1)-4; 
%         posy = lidar_map(:,2) < pred_map(j,2)+4 & lidar_map(:,2) > 
pred_map(j,2)-4; 
%         posz = lidar_map(:,3) < pred_map(j,3)+4 & lidar_map(:,3) > 
pred_map(j,3)-4; 
%         pos = posx & posy & posz; 
%         lid_filtered = lidar_map(pos,:); 
        for i=1:length(lidar_map_mod(:,1)) 
            %minimum distance S(j) to R 
            d1 = sqrt((pred_map(j,1)-lidar_map_mod(i,1))^2 + 
(pred_map(j,2)-lidar_map_mod(i,2))^2 + (pred_map(j,3)-
lidar_map_mod(i,3))^2); 
            if d1 < d0 
                d0 = d1; 
                k = i; 
            end 
        end 
        lidar_map_mod(k,:) = []; 
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        if d0 < rc(t) 
            E = E + d0; 
            N = N + 1; 
        end 
    end 
    Etot_pred_minValLoss_half(t) = sqrt(E/N); 
end 
 

2) Finally, described below the code related with the computation of the coverage 
metric also described in the Results section. 
total = 0; 
lidar_map_new = lidar_map; 
for i = 1:length(pred_map_fin(:,1,1)) 
    pos = ((lidar_map_new(:,1) <= max(pred_map_fin(i,:,1))) & 
(lidar_map_new(:,1) >= min(pred_map_fin(i,:,1))) &... 
            (lidar_map_new(:,2) <= max(pred_map_fin(i,:,2))) & 
(lidar_map_new(:,2) >= min(pred_map_fin(i,:,2))) &... 
            (lidar_map_new(:,3) <= max(pred_map_fin(i,:,3))) & 
(lidar_map_new(:,3) >= min(pred_map_fin(i,:,3)))); 
    lidar_map_new(pos,:) = []; 
    total = total + sum(pos); 
end 
 
coverage = total / length(lidar_map) * 100;  
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