
Executive Summary of the Thesis

Convex neural networks and Finite Element approximation of non-
Newtonian fluids

Laurea Magistrale in Mathematical Engineering - Computational Science and Computa-
tional Learning

Author: Julian Vené

Advisor: Prof. M. Verani

Co-advisor: Prof. N. Parolini

Academic year: 2022-2023

1. Introduction
This article is concerned with the integration
of neural networks inside a partial differential
equation system. Within the framework of
PDEs, artificial neural networks have increas-
ingly become integrated into research. Exam-
ples of application can be found in [8] where
a Physics-Informed Neural Network (PINN) is
used to estimate the viscosity of polymer melts;
or again in [6] where a neural network is used
to model from data the anisotropy of materi-
als with microstructure. Our focus will be de-
voted to the Stokes equations for non-Newtonian
fluids, following the theory and Finite Element
approximation results provided in [3]. Along
with that, we will merge this theory with In-
put Convex Neural Networks (also called ICNN
or IOCNN in the literature), developing the ap-
plications of such architecture firstly proposed
in [9] [1].

1.1. Our contribution
In this research, our focus is on a novel approach
to model non-Newtonian fluids using neural net-
works; specifically, we concentrate on modifying
the Stokes equation for non-Newtonian fluids by

employing an Input Convex Neural Network in
place of the conventional viscous term. This
modification is noteworthy for two reason: the
first, because the ICNN architecture satisfies (as
numerically verified later in the article) certain
mathematical prerequisites that are crucial for
obtaining a unique solution to the Stokes equa-
tions; secondly, this approach allows for more
adaptable and data-driven modeling of fluid be-
haviors as opposed to the traditional reliance on
mathematical models, such as the Carreau law
or power law.
To assess the efficacy of our innovative Stokes-
ICNN equation, we undertook an exhaustive
analysis that entailed comparing its solutions
with the exact solution, derived from the Stokes
equation employing the Carreau law as the vis-
cous term.

1.2. Guidelines
In Section 2, the Input Convex Neural Network
(ICNN) is introduced and explained, highlight-
ing its unique properties and strengths through
theory and experiments.
Section 3 dives into the Stokes equation for non-
Newtonian fluids, providing theoretical results

1



Executive summary Julian Vené

and numerical experiments for the validation of
our Finite Element approximation method.
Section 4 incorporates ICNN into the Stokes
equation, forming an innovative model for non-
Newtonian fluids. The section establishes the
ICNN’s fulfillment of necessary conditions for
the Stokes equation and confirms its effective-
ness through comparison with exact solutions.

2. Input Convex Neural Net-
works

Let us first recall the definition of convex func-
tion, which is necessary to understand the pro-
prieties of an Input Convex Neural Network:

Definition 2.1 (Convex function). A function
f : X ⊆ Rn → R is convex if its domain is a
convex set and for all x,y ∈ X and all λ ∈ [0, 1],
we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Consider now a feed-forward fully connected
neural network NN : Rd → R, where d ≥ 1 is
the dimension of the input, and L hidden lay-
ers. We will make use of the following notations:

• w
(l)
ij → weight connecting neuron j in layer

l − 1 to neuron i in layer l;
• b

(l)
i → bias of neuron i in layer l;

• h
(l)
i → output of neuron i in layer

l, explicitly defined as: h
(l)
i =

σl(
∑

j w
(l)
ij h

(l−1)
j + b

(l)
i ).

The first and last layers correspond to the in-
puts and outputs of the neural network. Indeed,
defining yj as the jth output, we have:

h
(0)
j = xj (j = 1, ..., d)

h
(L+1)
j = yj .

The feed-forward neural network NN turns into
a Input Convex Neural Network (ICNN) if the
following theorem is satisfied:
Theorem 2.1. Consider a feed-forward fully
connected neural network with L hidden layers,
and activation function σl in layer l. The final
output y is convex with respect to the input x if
the following conditions hold:
• w

(2:L+1)
ij ≥ 0;

• σl is convex and non-decreasing ∀l ∈ {1 :
L+ 1}.

For the proof see [4]. It is important to under-
line that under this condition the artificial neu-
ral network becomes convex in the sense of def-
inition 2.1. In Figure 1 a direct comparison be-
tween ICNN and stantard NN is presented, and
it is easy to see how the constraint of convexity
is preventing the ICNN to overfit the data.

Figure 1: Comparison of prediction between
ICNN and standard NN with same architecture,
same training procedure.

Let us now consider a function f : Rd → R such
that there exist K > 0 for which:

|f(x1)− f(x2)| ≤ K∥x1 − x2∥ ∀x1,x2 ∈ Rd

where ∥ · ∥ is the euclidean norm in Rd. A func-
tion f that satifies the above propriety is said to
be Lipschitz continous. It follows an important
representation theorem for ICNNs:
Theorem 2.2 (Representation power of ICNN).
Let f be a Lipschitz convex function over a com-
pact domain X ⊂ Rd. For any ε > 0 there ex-
ist a Input Convex Neural Network fICNN with
ReLU activation functions such that:

|f(x)− fICNN (x)| ≤ ε ∀x ∈ X.

This theorem is stated and proved in [5]. What
follows is that, when dealing with systems that
can be effectively approximated by convex func-
tions, ICNNs are able to approximate arbitrarily
well the provided data.
Considering Theorem 2.1, it becomes important
to regulate the sign of each weight w(2:L+1)

ij dur-
ing the neural network training to maintain the

2



Executive summary Julian Vené

convexity. If a weight w ∈ {w(k)
ij }i,j,k, where

k ∈ {1 : L + 1}, becomes negative during the
training process, it must be made positive be-
fore the next training iteration. Various algo-
rithms exist, such as nullifying negative weights
by setting them to 0. However, the most effec-
tive method, as per our findings and [9], is the
exponentiation algorithm.

Algorithm 1 Exponentiation
1: constant ϵ
2: while training in progress do
3: do training
4: for layer ∈ 2 : L+ 1 do
5: if w < 0 then
6: w ← ew−ϵ

7: end if
8: end for
9: end while

The parameter ϵ serves the purpose of con-
straining the updated weights, ensuring their
proximity to zero after exponentiation.
In order to assess the robustness of Input
Convex Neural Networks (ICNNs), tests were
conducted in a two-dimensional (2D) envi-
ronment. These numerical results aimed to
evaluate the ICNN’s convex constraint over
more complex scenario.

(a) y(x, y) = |x|+ |y|+ sin(x+ y) — fig. 1

(b) y(x, y) = |x|+ |y|+ sin(x+ y) — fig. 2

Figure 2: Two perspective of the same test. In
red the data surface, in viridis the prediction of
the ICNN.

In Figures 2a and 2b, different perspectives of
the same dataset are presented, demonstrating
that the ICNN effectively captured the function
while disregarding the oscillations induced by
the sin(x+y) term, producing this way a convex
output.

3. Finite Element approxi-
mation of non-Newtonian
Stokes flows

Let us consider an incompressible fluid inside a
domain Ω ⊂ R2, with Lipschitz boundary ∂Ω.
We denote by u : Ω → R

2 its velocity field and
by p : Ω → R its pressure. We suppose that
(u, p) satisfies the following equation:{
−∇ · [τ(x, ε(u))] +∇p = f in Ω

∇ · u = 0 in Ω
(1)

coupled with the homogeneous Dirichelet
boundary condition for u and zero mean con-
dition for the pressure p:

u = 0 on ∂Ω,

∫
Ω
p = 0.

Here τ denotes the stress tensor, which is a suit-
able function of the strain rate tensor ε(u) de-
fined as:

εij(u) :=
1

2
(∂xiuj + ∂xjui)

and the term f is a given body force. Regard-
ing the stress tensor, we assume τ(x, ε(u)) =

3



Executive summary Julian Vené

τ(ε(u)), in particular :

τ(ε(u)) = k(∥ε(u)∥)ε(u).

The norm ∥·∥2 represents the squared Frobenius
norm, i.e. for K ∈ Rn×n real matrix, ∥K∥2 =
∥K∥2FRO =

∑n
i,j=1K

2
ij .

The function k(·) represents the viscosity of the
fluid, which results to be a constant in case of
a Newtonian fluid. A popular choice for k(·),
which will be considered in the sequel, is the
Carreau law:

k(t) = k∞ + (k0 − k∞)(1 + λt2)(r−2)/2 (2)

where k0 > k∞ ≥ 0, λ > 0 and r ∈ (1, 2].
Before introducing the weak formulation of (1),
we first state an important set of assumptions
for k(·) which are necessary for the existence
and uniqueness of the solution to (1):

Assumptions (A): We assume that k ∈
C(0,∞) and that there exist constants r ∈
(1,∞), α ∈ [0, 1] and ε, C,M > 0 such that:

k(t) ≤ C[tα(1 + t)1−α]r−2 ∀t ≥ 0

|k(t)t− k(s)s| ≤
C|t− s|[(t+ s)α(1 + t+ s)1−α]r−2

∀t, s > 0 such that |s/t− 1| ≤ ε

k(t)t− k(s)s ≥
M(t− s)[(t+ s)α(1 + t+ s)1−α]r−2

∀t ≥ s ≥ 0.

These assumptions are satisfied by the Carreau
law.

3.1. Weak formulation of the problem
Let us assume that k(t) satisfies the assumptions
(A). Let v ∈ [W 1,r(Ω)]2, we define:

J(v) :=

∫
Ω

[ ∫ ∥ε(v)∥

0
k(t)tdt

]
− ⟨f ,v⟩ . (3)

We set X = [W 1,r(Ω)]2, and let ⟨·, ·⟩X∗ be the
duality pairing between the dual space X∗ and
X. It is easy to check that J(·) is Gateaux dif-
ferentiable on X with:〈

J ′(w1),w2

〉
X∗ = ⟨Aw1,w2⟩X∗ − ⟨f ,w2⟩

∀w1,w2 ∈ X

where A : X→ X∗ is such that

⟨Aw1,w2⟩X∗ =

∫
Ω
⟨k(∥ε(w1)∥)ε(w1), ε(w2)⟩ .

It is proved in [4] that:

k(·) satisfies assumptions (A)
=⇒ J(v) is strictly convex on X.

From this result we have the following:
Proposition 3.1. Let V := {v ∈ X : ∇ · v =
0 in Ω}. The problem:

J(u) ≤ J(v) ∀v ∈ V

or equivalently:

⟨Au,v⟩X∗ = ⟨f ,v⟩ ∀v ∈ V (4)

admits a unique solution.
Let us now define M = Lr′

0 (Ω), where r′ is the
conjugate exponent of r; we proceed to state the
weak formulation of (1):
find (u, p) ∈ X×M such that:{
⟨Au,w⟩X∗ − ⟨p,∇ ·w⟩ = ⟨f ,w⟩ ∀w ∈ X

⟨∇ · u, q⟩ = 0 ∀q ∈M.

(5)

The unique solution u coincide with the solu-
tion of (4) by restricing w ∈ V ⊂ X in (5).
For the well-posedness of p in (5) we require the
Babuska/Brezzi inf-sup condition:

inf
q∈M

sup
w∈X

⟨q,∇ ·w⟩
∥q∥M∥w∥X

≥ β > 0 (6)

to hold. Amrouche and Girault (1990) proved in
[2] that when taking X = [W 1,r(Ω)]2 and M =
Lr′
0 (Ω), with r and r′ conjugate exponents, there

exist a constant β(r) such that:

inf
q∈M

sup
w∈X

⟨q,∇ ·w⟩
∥q∥M∥w∥X

≥ β(r) > 0.

Hence (6) holds, and therefore the existence of
a unique solution (u, p) in (5) is implied.

3.2. Finite Element approximation
Let Xh and Mh be two finite dimensional spaces
such that

Xh ⊂ X ∩ [W 1,∞(Ω)]2 , Mh ⊂M ∩ L∞(Ω).

4



Executive summary Julian Vené

The discretized version of (5) becomes:
find (uh, ph) ∈ Xh ×Mh such that{
⟨Auh,wh⟩X∗ − ⟨ph,∇ ·wh⟩ = ⟨f ,wh⟩
⟨∇ · uh, qh⟩ = 0

(7)

holds ∀wh ∈ Xh,∀qh ∈Mh.
We further introduce two hypothesis which are
met when choosing Xh and Mh as continuous
piece-wise polynomials, with a degree of m and
m− 1 respectively:
• (H1) Approximation property of Xh.

There is a continous linear operator πh :
[W 1,r

0 ]2 → Xh such that for j = 0, ...,m we
have

∥w − πhw∥W j+1,r(Ω) ≤ Chj∥w∥W j+1,r(Ω)

∀w ∈ [W 1,r
0 ∩W j+1,r(Ω)]2

• (H2) Approximation property of Mh.
There is a continous linear operator ρh :
Lr′(Ω) → Mh such that for all j = 0, ...,m
we have

∥q − ρhq∥Lr′ (Ω) ≤ Chj∥q∥Lr′ (Ω)

∀q ∈ Lr′(Ω).

Under those assumptions we now provide an er-
ror bound Theorem which is going to be cen-
tral for evaluating the numerical results provided
later:
Theorem 3.1. Assume that k(·) satisfies as-
sumptions (A). Let (u, p) be the unique solution
of (5). Then if r ∈ (1, 2] and (H1), (H2) hold,
for j = 1, ...,m we have that the unique solution
of (7) (uh, ph) ∈ Xh ×Mh is such that

∥u− uh∥W 1,r(Ω) + (∥p− ph∥Lr′(Ω))
r/[2(r−1)]

≤ C1h
rj/2

(8)

where C1 = C(∥u∥W j+1,r(Ω) , ∥p∥Lr′ (Ω) ,

βh(r)
−1, β−1

h ).
For the proof see [3]. Equation (8) yields the
following essential results:

∥u− uh∥W 1,r(Ω) ≤ Chrj/2,

∥p− ph∥Lr′ (Ω) ≤ Chj(r−1).
(9)

These two convergence results will serve as the
criteria for evaluating the performance of the Fi-
nite Element approximation later implemented.

3.3. Numerical results
We now solve numerically the system of equation
(7) with Carreau law (2) with parameters k0 =
2, k∞ = 0, λ = 2 and r = 1.2, 1.6, 2, inside the
domain Ω = (−0.5, 0.5)2. The source term f is
manufactured so that the exact solution (u, p) is
given by:

u(x, y) =

[
5y sin(x2 + y2) + 4y sin(x2 − y2)
−5x sin(x2 + y2) + 4x sin(x2 − y2)

]
p(x, y) = sin(x+ y).

Dirichlet boundary conditions for velocity given
by the exact solution are imposed on the domain
boundary: u|∂Ω = u|∂Ω. Our function spaces
will be:

Xh := {wh ∈ [C(Ω)]2 : wh|τ ∈ P2 ∀τ ∈ T h,

and wh = u on ∂Ω }
Mh := { qh ∈ L2

0(Ω) : qh|τ ∈ P1 ∀τ ∈ T h }

where Pm is the space of all polynomials of de-
gree less than or equal to m, and T h is a col-
lection of disjoint open regular triangles τ such
that

⋃
τ∈Th τ = Ω. In order to determine the

solution (uh, ph) of (7) the Line Search Newton
Method [7] was used.
In Table 1 the convergence orders are presented
for different values of the parameter r, when
choosing polynomial approximator of degree 2
for u and degree 1 for p.

Conv. ord. ∥u− uh∥W 1,r(Ω) ∥p− ph∥Lr′ (Ω)

r = 1.2 2.0 2.03

r = 1.6 2.0 2.02

r = 2.0 2.0 2.03

Table 1: Convergence rates for different value of
r, with polynomial approximator of degree 2 for
u and degree 1 for p.

Same results were carried out when increasing
the polynomial approximators of u and p by one:

5



Executive summary Julian Vené

Conv. ord. ∥u− uh∥W 1,r(Ω) ∥p− ph∥Lr′ (Ω)

r = 1.2 3.01 3.08

r = 1.6 3.01 3.24

r = 2.0 3.01 3.45

Table 2: Convergence rates for different value of
r, with polynomial approximator of degree 3 for
u and degree 2 for p.

To provide an example, in Figure 3 we show-
case the convergence of the errors when choosing
polynomial approximator of degree 2 for u and
degree 1 for p, in the scenario r = 1.2.

(a) Convergence of uh.

(b) Convergence of ph.

Figure 3: r = 1.2, polynomial approximator of
degree 2 for u and 1 for p.

Data in Tables 1 and 2 demonstrates that the
computational results are in line with theoretical
predictions reported in Theorem 3.1. Notably, in
every scenario, the observed convergence order
agree with the theoretical expectations (show-
ing a better order of convergence). The same
pattern is evident as the value of r increases.
As anticipated by the theory, higher values of r
correspond to improved convergence results.

4. Non-Newtonian Stokes equa-
tions with neural networks

In this section we replace the Carreau law k(·)
inside (5) with an Input Convex Neural Net-
work, ICNNθ : R → R, obtaining the new de-
scription of the stress tensor as:

τ(ε(u)) = ICNNθ(∥ε(u)∥)ε(u)

where θ is the set of parameters that uniquely
identify our neural network (obtained through
the process of training). In particular, we define
the ICNN-Stokes equations to be:


∫
Ω ICNNθ(∥ε(u)∥FRO)ε(u) : ε(w)

−
∫
Ω p∇ ·w =

∫
Ω f ·w∫

Ω q∇ · u = 0.

(10)

In Figure 4, we present the output of the ICNN
when trained on data sampled from the Carreau
law with the inclusion of a noise source. This
test allows us to benchmark the performance
of the ICNN in simulating real measurements,
where the presence of noise cannot be neglected.

Figure 4: ICNN tested on Carreau law with pa-
rameters: k∞ = 0, k0 = 2, λ = 2, r = 1.6.

In order to verify that the trained ICNN sat-
isfies the assumptions (A) and hence the ex-
istence and uniqueness of the solution of the

6



Executive summary Julian Vené

ICNN-Stokes equations (10) is guaranteed, the
minimization Algorithm 2, coded for this task,
was used. Algorithm 2 is not only a validation
tool for the assumptions; it serves a dual pur-
pose. Firstly, it rigorously verify whether the
trained ICNN is in compliance with the assump-
tions (A). Secondly, it fine-tunes the values of
costants r ∈ (1, 2), α ∈ [0, 1], and C,M > 0, in
such a way that C and α are minimized, while
M is maximized.

Algorithm 2 Assumption verification algorithm
1: initial guess C = C0, α = α0, r = r0, M =

M0; t1, ..., tN ∈ (0,∞)
2: k = 0, max iterations N1, N2 > 0
3: while k ≤ N1 do
4: Compute f =

∑N
j=1Ck[t

αk
j (1 +

tj)
1−αk ]rk−2 − ICNNθ(tj)

5: minimize |f | with respect to
Ck, αk, rk imposing the con-
straint Ck[t

αk
j (1 + tj)

1−αk ]rk−2 ≥
ICNNθ(tj) ∀j = 1, ..., N

6: k = k + 1
7: end while
8: k = 0, s1, ..., sN ∈ (0,∞)
9: while k ≤ N2 do

10: Compute f =∑N
j=1

∑N
i=1,si≤tj

ICNNθ(tj)tj −
ICNNθ(si)si−Mk(tj−si)[(tj+si)

αN1 (1+
tj + si)

1−αN1 ]rN1
−2

11: Minimize |f | with respect to Mk im-
posing the constraint ICNNθ(tj)tj −
ICNNθ(si)si ≥Mk(tj−si)[(tj+si)

αN1 (1+
tj + si)

1−αN1 ]rN1
−2 ∀tj ≥ si

12: k = k + 1
13: end while

Numerical results were carried on noisy-free Car-
reau law (2) data samples, with parameters
k0 = 2, k∞ = 0, λ = 2 and r = 1.2, 1.6, 2. For
each value of r, a distinct convex neural network
(ICNN) was created and trained using a separate
training set. The subsequent table presents the
outcomes of the training process conducted on
these convex neural networks, which were sub-
sequently tested.

L2-error MSE error

ICNNr=1.2 6.7e-4 3.4e-7

ICNNr=1.6 1.5e-4 7.7e-8

ICNNr=2.0 2.5e-8 1.8e-12

Table 3: L2 and MSE errors obtained on the
validation set.

Algorithm 2 was used on each neural network to
verify that they satisfies Assumption (A), ob-
taining the following results:

ICNNr=1.2 ICNNr=1.6 ICNNr=2.0

C 11.577 4.692 4.742

α 0.100 0.102 0.499

r 1.170 1.590 1.917

M 2.192 3.019 2.021

Table 4: Optimized constants that ensure the
ICNNs satisfy the assumptions (A) and hence
the existence and uniqueness of the solution to
(10) is guaranteed.

4.1. Convergence results
Let (uh,ICNN , ph,ICNN ) be the unique solution
of the discretized ICNN-Stokes equations (10).
In Figures 4 and 5 we show the convergence
results of this solution towards the exact so-
lution (u, p) of (5) as the mesh is refined, for
r = 1.2, 1.6, 2.

(a) Case r = 1.2.

7



Executive summary Julian Vené

(b) Case r = 1.6.

(c) Case r = 2.

Figure 4: Errors ∥u − uh,ICNN∥W 1,r(Ω) for r =
1.2, 1.6, 2.

(d) Case r = 1.2.

(e) Case r = 1.6.

(f) Case r = 2.

Figure 5: Errors ∥p − ph,ICNN∥W 1,r(Ω) for r =
1.2, 1.6, 2.

Examining the plots in Figure 4 and 5 reveals
two key findings. First, the errors in uh,ICNN

and ph,ICNN steadily decrease to a minimum in
all different scenarios (apart the trivial case r =
2 where the function k(·) reduces to a constant).
Secondly, the value of the plateau is related to
the validation error of ICNN when trained to
approximate the Carreau law k(·) (see Table 3).
More precisely, denoting εICNN,u and εICNN,p as

lim
h→0
∥u− uh,ICNN∥W 1,r(Ω) = εICNN,u

lim
h→0
∥p− ph,ICNN∥Lr(Ω) = εICNN,p

we note a correlation between εICNN,u, εICNN,p

and the L2 error in Table 3, as it is evident from
Figure 6. In particular, we note that an improve-
ment of the accuracy of ICNN (i.e. reduction of

8



Executive summary Julian Vené

L2 validation error) corresponds with lower val-
ues of εICNN,u and εICNN,p.

Figure 6: εICNN,u and εICNN,p computed with
ICNN increasing performace.

These results stress the importance of validating
the ICNN’s performance over a validation set
and highlight the potential use of ICNN inside
the non-Newtonian Stokes problem.

Along with this findings, we propose a new theo-
retical result through which we are able to bound
the error εICNN,u:
Proposition 4.1. Let X = [W 1,r(Ω)]2, M =
Lr′(Ω). Let Ai : X → X∗ be defined as:
⟨Aiv,w⟩X∗ :=

∫
Ω ki(∥ε(v)∥)ε(v) : ε(w). Let

(ui, pi) be the solutions of:

{
⟨Aiu,w⟩X∗ − ⟨p,∇ ·w⟩ = ⟨f ,w⟩ ∀w ∈ X

⟨∇ · u, q⟩ = 0 ∀q ∈M

for i = 1, 2. Then the following inequality hold:

∥u1 − u2∥W 1,r(Ω)

≤ C∥k1 − k2∥L∞(0,∞)∥ε(u2)∥Lr′ (Ω)

(11)

where C > 0 is a constant.

Proof. From [3]:

∥u1 − u2∥W 1,r(Ω) ≤ ⟨A1u1 −A1u2,u1 − u2⟩X∗

= ⟨A1u1 −A2u2,u1 − u2⟩X∗︸ ︷︷ ︸
(i)

+

+ ⟨A2u2 −A1u2,u1 − u2⟩X∗︸ ︷︷ ︸
(ii)

.

We than have:

(i) = ⟨p2,∇ · (u1 − u2)⟩ − ⟨p1,∇ · (u1 − u2)⟩
= 0

as ∇ · u1 = 0. Regarding the second expression
(ii) =∫

Ω
(k2(∥ε(u2)∥)− k1(∥ε(u2)∥))ε(u2) : ε(u1 − u2)

≤ ∥k1 − k2∥L∞(0,∞)

∫
Ω
ε(u2) : ε(u1 − u2).

Using the Hölder inequality we then obtain
(ii) ≤

∥k1 − k2∥L∞(0,∞)∥ε(u2)∥Lr′∥ε(u1 − u2)∥Lr

≤ C∥k1 − k2∥L∞(0,∞)∥ε(u2)∥Lr′∥u1 − u2∥W 1,r .

where C > 0 is a constant. Inserting the results
on (i) and (ii) into the first equation we obtain:

∥u1 − u2∥W 1,r ≤ C∥k1 − k2∥L∞(0,∞)∥ε(u2)∥Lr′ .

Remark. If we assume ∥ε(u2)∥Lr′ (Ω) < ∞,
equation (11) can be further improved to:

∥u1 − u2∥W 1,r(Ω) ≤ C∥k1 − k2∥L∞(0,∞) (12)

where C = C(∥ε(u2)∥Lr′ (Ω)).

In order to understand the importance of this
result, let’s first introduce (uICNN , pICNN ), for-
mally defined as:

lim
h→0

uh,ICNN = uICNN

lim
h→0

ph,ICNN = pICNN .

Using Proposition 4.1 with k1(t) = k(t),
which is the explicit viscous law of the fluid
(in our case the Carreau law) and setting
k2(t) = ICNNθ(t), and taking into account that
∥ε(uICNN )∥Lr′ (Ω) < ∞, we then obtain the
bound for εICNN,u:

εICNN,u = ∥u− uICNN∥W 1,r(Ω)

≤ C∥k − ICNNθ∥L∞(0,∞)

(13)

where C = C(∥ε(uICNN )∥Lr′ (Ω)). This result
implies an important fact: the better the ICNN
approximate the viscous law (under the L∞

norm), the better our ICNN-Stokes system is
able to reconstruct the expected solution for
the velocity u.

Indeed, from Table 5, where we approximated
(uICNN , pICNN ) with (uh,ICNN , ph,ICNN ),

9



Executive summary Julian Vené

where h represents an infinitesimal value for h
(in particular h = 0.0027), we are able to see
how the L∞-error between the viscous law and
the Input Convex Neural Network is related to
εICNN,u:

εICNN,u ∥k − ICNNθ∥L∞(0,∞)

r = 1.2 0.001094 0.0202
r = 1.6 0.000662 0.0155
r = 2.0 0.0000316 0.00001

Table 5: Relationship between εICNN,u and the
L∞-error between Carreau law and ICNN, for
different r.

We now turn our attention to demonstrating the
convergence of (uh,ICNN , ph,ICNN ) towards the
solution (uICNN , pICNN ), approximated with
(uh,ICNN , ph,ICNN ) previously introduced. The
obtained convergence orders are reported in in
Tables 6 and 7.

∥uICNN − uh,ICNN∥W 1,r(Ω) Exp(u)
r = 1.2 2.54 1.2
r = 1.6 2.59 1.6
r = 2.0 2.0 2.0

Table 6: Convergence rates of uh,ICNN towards
solution uICNN , compared with expected theo-
retical results.

∥pICNN − ph,ICNN∥Lr′ (Ω) Exp(p)

r = 1.2 2.09 0.4
r = 1.6 2.52 1.2
r = 2.0 2.2 2.0

Table 7: Convergence rates of ph,ICNN towards
solution pICNN , compared with expected theo-
retical results.

In line with the theoretical convergence or-
ders obtained using (9), the data provides
evidence that the computational results align
with the theoretical predictions; indeed, across
all scenarios, the observed convergence order
consistently matches or exceeds the expected
theoretical results.

In light of these findings, Figure 4 can be further

commented. Indeed we have:

∥u− uh,ICNN∥W 1,r

≤ ∥uICNN − uh,ICNN∥W 1,r + ∥u− uICNN∥W 1,r

≤ hjr/2 + ∥k − ICNNθ∥L∞(0,∞)

where j is the degree of the polynomial approx-
imator of the u. In fact, from Figure 4 we can
see how the error ∥u − uh,ICNN∥W 1,r decreases
with the expected rate, till it reaches a plateau
generated by ∥k − ICNNθ∥L∞(0,∞).

5. Conclusions
Having verified the numerical solver’s consis-
tency in Section 3, we integrated the Input Con-
vex Neural Network (ICNN) into the Stokes
equation for non-Newtonian fluids, forming a
new ICNN-Stokes system of equations.
We proceeded to prove numerically that the In-
put Convex Neural Networks satisfy Assump-
tions (A) which are a key condition in order
for the Stokes equations to admit a unique so-
lution. Section 4 proved that the ICNN-Stokes
system accurately recreates the toy problem pre-
sented in Section 3, bolstering our belief in using
ICNN for representing the fluid’s viscous law,
and new theoretical results regarding the capa-
bility of approximation of the velocity obtained
from ICNN-Stokes, were provided.

References
[1] Brandon Amos, Lei Xu, and J. Zico

Kolter. Input convex neural networks, 2017.
arXiv:1609.07152.

[2] Chérif Amrouche and Vivette Girault. De-
composition of vector spaces and application
to the stokes problem in arbitrary dimen-
sion. Czechoslovak Mathematical Journal,
44(1):109–140, 1994.

[3] John W. Barrett and W.B. Liu. Quasi-norm
error bounds for the finite element approxi-
mation of a non-newtonian flow. Numerische
Mathematik, 68(4):437–456, 1994.

[4] Stephen Boyd and Lieven Vandenberghe.
Convex optimization. Cambridge university
press, 2004.

[5] Yize Chen, Yuanyuan Shi, and Baosen
Zhang. Optimal control via neural networks:
A convex approach, 2019. arXiv:1805.11835.

10



Executive summary Julian Vené

[6] J.N. Fuhg, N. Bouklas, and R.E. Jones.
Learning hyperelastic anisotropy from data
via a tensor basis neural network. Jour-
nal of the Mechanics and Physics of Solids,
168:105022, 2022.

[7] Jorge Nocedal and Stephen J. Wright. Nu-
merical Optimization. Springer, New York,
NY, USA, 2e edition, 2006.

[8] Brandon Reyes, Amanda A. Howard, Paris
Perdikaris, and Alexandre M. Tartakovsky.
Learning unknown physics of non-newtonian
fluids. Physical Review Fluids, 6:073301, Jul
2021.

[9] Sarath Sivaprasad, Ankur Singh, Naresh
Manwani, and Vineet Gandhi. The curi-
ous case of convex neural networks, 2021.
arXiv:2006.05103.

11


	Introduction
	Our contribution
	Guidelines

	Input Convex Neural Networks
	Finite Element approximation of non-Newtonian Stokes flows
	Weak formulation of the problem
	Finite Element approximation
	Numerical results

	Non-Newtonian Stokes equations with neural networks
	Convergence results

	Conclusions

