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1. Introduction
In the early months of 2020, COVID-19 swept
the world, causing massive disruptive effects
in our societies. The virus circulated in Italy
quickly, and the government was forced to take
drastic measures to slow its transmission. These
measures resulted in a sharp reduction in peo-
ple leaving their homes and travelling within
cities and across regions. Consequently, travel
demand fell, and usage of private vehicles and
public transportation dropped dramatically. Lo-
cal public transit was much affected by restric-
tions, fear of the disease, and lifestyle changes.
However, while there are multiple shreds of evi-
dence about the role of mobility in the spread of
the disease, the public transport impact still has
to be assessed as past research came to different
(and sometimes contrasting) conclusions.
This work aims to assess the role of mobility
in disease diffusion, focusing on public railway
transport in Lombardia during the year 2020.
Investigating this matter is key to take active
interventions in future outbreaks, not only of
COVID-19 but of other diseases. The hypoth-
esis that public transport did not have such a
prevalent role in epidemic spread should be anal-
ysed in detail. If confirmed, it calls for a review

of some restrictions on its usage for future out-
breaks.
To reach this goal, we investigate the link be-
tween epidemic and mobility data by applying
spatial data analysis techniques. We select one
areal epidemic indicator (mortality rates) and
define a spatial description derived from mobil-
ity flows. We aim to detect periods of positive
spatial autocorrelation in the epidemic feature
according to the mobility-based spatial descrip-
tion to show the influence of mobility in the
epidemic phenomenon. Then, we identify areas
showing clustered behaviour (similar mortality
rates in nearby areas, according to the mobility-
induced notion of nearby) to highlight epidemic
hotspots. We need mobility data accurately de-
scribing trends in 2020 concerning both overall
mobility (i.e., by all means of transportation)
and railway one. To estimate dynamic mobility
data describing weekly railway mobility flows,
we define a pipeline taking in input data pro-
vided by Trenord, the local railway company.
This paper is organised as follows: Section 2
presents the epidemic and mobility data used
in the study, Section 3 develops the pipeline to
estimate the dynamic mobility data needed to
address our research goal, and Section 4 details
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the framework to analyse the relationship be-
tween mobility flows and epidemic spread and
applies it, first in the entire Lombardia region
and then in the limited area covered by Trenord
data. Finally, Section 5 discusses the implica-
tions and conclusions of our findings.

2. Data
In analogy to what was done in [1], we model
the epidemic response with the weekly mortality
rate m of people aged 70 years or older.
To derive mobility-based spatial descriptions, we
need data about mobility flows in the form of
Origin-Destination (OD) matrices (i.e., matri-
ces describing mobility in a transportation net-
work, whose cells tij represent the number of
trips starting from zone i and ending in zone j
in a specific time frame). We first consider the
movements of the OD matrix released by the
Regione Lombardia (RL) Open Data program.
The advantage of this dataset is its description
of a wide area (Lombardia) and fine spatial gran-
ularity (municipalities), dividing movements by
reason and means of transportation. However,
the disadvantage is its static description derived
from projections of past data. Thus, it is not a
reliable description of mobility trends after the
COVID-19 outbreak since it is not based on data
collected in 2020.
The necessity of deriving real dynamic mobil-
ity data led us to develop a pipeline to esti-
mate weekly OD matrices representing actual
movements by train in a limited portion of the
Trenord railway network. We were provided
with two datasets to reach this goal, describing
tickets purchased in 2020 and passengers board-
ing and dropping train rides for six train lines
collected through trains equipped with the Au-
tomatic Passenger Counting (APC) system.

3. Estimation of Origin-
Destination Matrices

We now detail the pipeline to estimate the
Trenord dynamic OD matrices based on the Fur-
ness method for trip distribution modelling.

3.1. Furness method for trip distribu-
tion modelling

Trip distribution modelling predicts the number
of trips between origins and destinations in a

transportation network. The Furness method [2]
is a technique used in this framework.
Fixing the time unit, we start with an origin and
destination survey producing a seed matrix. In
our case, we derive the seed matrix from ticket
data. The cells of the seed matrix t∗ij repre-
sent the number of survey-estimated trips be-
ginning in zone i and ending in zone j, while
qi =

∑J
j=1 t

∗
ij is the number of trips beginning

in zone i and bj =
∑I

i=1 t
∗
ij is the number of

trips ending at zone j. Since the seed matrix is
generated through a survey, its row and column
totals qi and bj do not generally equal the esti-
mates of the trips starting and ending in each
zone. Let estimates of the actual number of
trips beginning in each zone be p1, . . . , pI and
let a1, . . . , aJ be the estimates for the number
of trips ending in each zone. In our application,
we derive estimates of real trips from the APC
passenger count data.
The trip distribution problem is to derive from
matrix t∗ij a forecasting matrix tij whose row
and column totals are respectively p1, . . . , pI and
a1, . . . , aJ . To derive matrix tij , we need to iter-
atively find constants by which to multiply the
original matrix t∗ij elements.
The Furness method provides an answer to the
trip distribution problem. At each passage, a
matrix t

(n)
ij is obtained by multiplying the pre-

vious matrix t
(n−1)
ij by a suitable constant x

(n)
ij .

It can be proven that the limiting matrix tij =

limn→∞ t
(n)
ij satisfies the required properties.

3.2. Estimation pipeline
We now define a four-step pipeline to estimate
movements by train in 8 months (37 weeks)
of 2020. We consider a limited portion of the
Trenord railway network covering six train lines
and 46 stations.

1. Tickets’ conversion into estimated
trips: we introduced assumptions to trans-
late each ticket and subscription type into
one or more ticket-estimated trips in 37
weekly seed OD matrices.

2. Estimation of missing counter data:
we developed a model to estimate the num-
ber of boarded and dropped passengers for
each station and week. The model uses
data about the partial passenger counts and
then corrects them to account for train rides
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with missing counter data through a com-
bination of linear regression models and a
rescaling procedure.

3. Aggregation of the Milan area: because
we do not possess data about all the train
lines moving in the area surrounding Milan
and because of the absence of a consider-
able number of tickets internal to the city
of Milan, we aggregate the 15 stations of
this area into a single zone.

4. Application of Furness method: finally,
we apply the Furness method to the 37
ticket seed OD matrices and margin vectors
of boarded and dropped passengers. We use
a procedure to correct the cells having no
estimated trips from the ticket conversion
process based on a posteriori binomial test
since the Furness method can not correct
zero values.

The final estimated OD matrices after Furness
show coherency with some reality-induced prin-
ciples, displaying many movements around ma-
jor centres and on paths belonging to the same
train line, revealing decreasing trips during the
two lockdowns and increases in periods of lesser
restrictions. The margin errors, which measure
the concordance between the estimated matrices
and the margin vectors, are low (in the order of
units) for all the matrices.
The purpose of this kind of mobility data in the
following analysis is twofold: they describe ac-
tual mobility trends through 2020 and allow us
to consider the role of a specific kind of pub-
lic transport believed to be a primary carrier in
epidemic diffusion and strongly impacted by re-
strictions.

4. Spatial analysis of mobility
and epidemics

To address our research goal, we define a spa-
tial description based on mobility data and em-
ploy global and local Moran indexes to analyse
global and local spatial autocorrelation in mor-
tality rates. The underlying hypothesis is that
no spatial autocorrelation in the mortality rates
would exist without an epidemic phenomenon.
We consider two areas, first the entire Lombar-
dia region and then the area covered by the
Trenord data derived in the previous Section.
Moreover, we compare the mobility-based spa-
tial description with a purely geographical one

in the form of zones’ contiguity.

4.1. Spatial analysis methods
We define a novel type of spatial weights to infer
a spatial description derived from mobility data.
Starting from an OD matrix describing the num-
ber of movements tij from area i to area j in a
specific time frame, we define spatial weights δij
as

δij =
tij∑
j ̸=i tij

Thanks to the mobility-derived spatial descrip-
tion, we can test for positive spatial autocorre-
lation through weekly global Moran indexes [3]
computed considering the weekly mortality rate
m:

I =
n∑n

i,j=1 δij

∑n
i,j=1 δij(mi − m̄)(mj − m̄)∑n

k=1(mk − m̄)2

Where m̄ is the mean of the weekly mortality
rates and n is the number of data areas.
While global Moran indexes capture the de-
gree of geographical clustering, we employ lo-
cal Moran indexes to detect spatial clusters -
observations with very similar neighbours - and
spatial outliers - observations with very differ-
ent neighbours. In this framework, Anselin [4]
defines the local Moran index as:

Ii =
n∑n

i,j=1 δij

(mi − m̄)
∑n

j=1 δij(mj − m̄)∑n
k=1(mk − m̄)2

These indexes, coupled with the values of the
mortality rates (mi−m̄) in the area and the spa-
tially lagged values

∑n
j=1 δij(mj − m̄) in nearby

areas, allow us to classify the nature of spa-
tial autocorrelation into four categories. Posi-
tive spatial autocorrelation corresponds to high-
high or low-low spatial clusters (similar values in
nearby locations). In contrast, negative spatial
autocorrelation (dissimilar values at neighbour-
ing locations) identifies high-low and low-high
spatial outliers.

4.2. Analysis of Lombardia area
To evaluate the role of mobility in epidemic dif-
fusion, we first consider the RL mobility data
released in 2019. While this kind of data does
not offer information about movements that ac-
tually happened, it describes a wide area (all of
Lombardia) at a fine spatial granularity.
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(a) Contiguity-based spatial weights

(b) Mobility-based spatial weights

Figure 1: Global Moran indexes at Lombardia
level based on RL mobility data

We employ global and local Moran indexes to
investigate the spatial association between the
weekly mortality rates for each week of 2020 and
area and a spatial description based on mobility,
compared with a purely geographical one based
on contiguity, where zones influence each other
if they share a border or vertex. Figure 1 com-
pares the global Moran indexes computed with
the two kinds of spatial weights. The mobility-
derived spatial description shows a period of sig-
nificantly positive spatial autocorrelation in the
epidemic phenomenon corresponding to the first
wave in the same period as contiguity-based spa-
tial weights. Moreover, the same mobility-based
weights still show positive autocorrelation dur-
ing the second wave period, even if the projected
RL data are no more reliable to provide an accu-
rate mobility description after the end of Febru-
ary. We can also notice the effect of the first
national lockdown in extinguishing the link be-
tween mobility and contiguity spatial descrip-
tions and the epidemic. Moreover, we observed
no spatial autocorrelation in periods outside the
first and second wave outbreaks. We can thus

confirm our initial assumption: periods of no
exponential epidemic phenomena do not display
global or local spatial patterns.

(a) Contiguity-based spatial weights

(b) Mobility-based spatial weights

Figure 2: Spatial clusters and outliers identified
in the third week of March

However, the higher power in describing the epi-
demic of mobility weights compared to conti-
guity ones comes out in detecting spatial clus-
ters through local Moran indexes. During the
first wave, the mobility weights always reveal
more extensive high-high areas (i.e., areas with
higher-than-average values of the mortality rates
whose neighbours also show higher-than-average
values) compared to contiguity-based spatial
weights. Figure 2 compares the local analysis
derived by the two spatial weights in the third
week of March. We detect high-high areas from
March 2 to April 5, and the zones correspond
to regions known to be strongly hit by the dis-
ease, such as the surroundings of Codogno or
the Val Seriana area. The red zones disappear
sometime after the implementation of the first
lockdown. No spatial cluster is detected during
the second wave period, suggesting that the epi-
demic may have spread homogeneously during
the second outbreak without a characterisation
in hotspots.
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(a) Overall mobility-based spatial
weights

(b) Railway mobility-based spatial
weights

Figure 3: Global Moran indexes at BreBeMi
level based on RL mobility data

4.3. Analysis of BreBeMi area
Because of the characteristics of the Trenord
data, we repeat the spatial analysis in a lim-
ited area of Lombardia (named BreBeMi area
because the majority of its territory belongs to
the provinces of Brescia, Bergamo and Milano)
and spatial granularity based on 28 areas iden-
tified by the stations. First, we retrace the spa-
tial analysis of the RL mobility data, comparing
spatial weights based on overall mobility with
railway mobility. We notice how the results are
much less interpretable in this area and gran-
ularity than those referring to the Lombardia
area. However, we notice positive spatial au-
tocorrelation in the spatial mobility description
through global Moran indexes. Overall mobility
identifies two weeks of March (during the epi-
demic outbreak) of positive spatial autocorrela-
tion, while railway mobility identifies only one
week of the two as significant. Thus, we can still
infer a connection between mobility and the epi-
demic during the first wave, which loosens dur-

ing the first lockdown. Figure 3 compares global
Moran indexes computed according to overall
mobility spatial weights and railway mobility
ones.
We then consider the available Trenord esti-
mated OD matrices describing real movements
by train in the BreBeMi area through 2020 and
repeat the spatial analysis. In this case, the spa-
tial weights vary weekly, so we consider a lag in
the interval [0,10] between spatial weights and
mortality rates. In this framework, we have to
underline that we miss Trenord data describing
January and February’s mobility, which is be-
lieved to have had the strongest impact on the
first epidemic spread.

Figure 4: Global Moran indexes at BreBeMi
level based on Trenord mobility data

The global Moran indexes show only one week
with significantly positive spatial autocorrela-
tion, corresponding to week 11 (in the mid of
March) with the mobility-based spatial weights
of week 9. Figure 4 shows the global Moran in-
dexes computed through the available Trenord
mobility data, with a two-week lag between mo-
bility weights and the weekly mortality rates.
No interesting area is detected in the local spa-
tial analysis, likely because of the limited area
and wide spatial granularity, which make the
identification of significant local Moran indexes
challenging.

5. Conclusion
This work was motivated by the interest in
analysing mobility data to assess the role of mo-
bility in the pandemic diffusion through 2020,
focusing on evaluating if a particular kind of
public transport (public railway transport) had
a prevalent role in the COVID-19 spread. We
analysed two mobility datasets, one provided by
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Regione Lombardia and the other derived by
Trenord’s ticket and passenger count datasets,
to assess if spatial descriptions based on mobil-
ity could identify positive spatial autocorrelation
in mortality rates and detect spatial clusters and
outliers.
To derive the Trenord dynamic OD matrices,
we defined a pipeline taking in input tickets
bought and partial passenger count data. The
four-step pipeline presents some innovative fea-
tures compared to other works in trip distri-
bution modelling, like the conversion of tickets
into estimated trips and the model developed
to correct partial count data. The final esti-
mated OD matrices demonstrate coherence with
reality-induced principles and attain low margin
errors. They provide a valuable tool for under-
standing actual mobility trends in 2020 and the
impact of public railway transport on epidemic
diffusion. The pipeline could be used in other ar-
eas and networks to estimate public transporta-
tion movements.
Coming to our research goal, we found that a
strong relationship exists between mobility flows
and the epidemic spread in Lombardia during
2020. Indeed, all our analyses through global
Moran indexes highlighted periods of signifi-
cantly positive spatial autocorrelation in mor-
tality rates, according to all the mobility-based
spatial descriptions employed. Moreover, we ob-
served that mobility-based spatial weights could
identify larger high-high spatial clusters than the
contiguity-based spatial description in the Lom-
bardia area during the first wave period. These
areas warrant further investigation into their po-
tential role in the epidemic’s spread.
Then, we compared overall and railway mo-
bility as described by the static RL OD ma-
trix or by the Trenord-derived dynamical ones.
We observed that railway mobility-based spa-
tial weights show positive spatial autocorrelation
with the mortality rates in two weeks of March,
the period of strongest epidemic spread. Cou-
pling these findings with the analysis of over-
all mobility-based spatial weights from RL data
in the BreBeMi area, which identified the same
weeks as showing significantly positive spatial
autocorrelation, we can assert that railway mo-
bility does have a link with epidemic diffusion.
Still, this link is weaker than the one shown
by overall mobility because of the lower global

Moran indexes than the overall mobility case.
There is no evidence of railway mobility being a
more prominent disease carrier than overall mo-
bility in any period of 2020. Indeed, we never
found a positive spatial autocorrelation with the
railway mobility-based spatial description in pe-
riods of no correlation with overall mobility.
Limitations of our methodology include the lim-
ited focus on the Lombardia and BreBeMi ar-
eas and the consideration of only two mobility
data sources, Trenord and Regione Lombardia.
The missing Trenord data describing January
and February mobility could be recovered to
deepen the analysis of dynamical railway mobil-
ity flows. Further investigation is needed to as-
sess if mobility-based spatial descriptions could
describe the epidemic diffusion’s dynamic, as-
sessing if two nearby areas’ mortality rates in-
fluence each other through time-series causality
tests. If this hypothesis is confirmed, our anal-
ysis might be the starting point for developing
decision tools for policymakers to react to epi-
demic phenomena. Again, the role of different
kinds of mobility, related or not to public trans-
port, should be considered for future analysis to
assess their contribution to the pandemic devel-
opment.
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