
i
i

“output” — 2020/11/24 — 16:31 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

COMPUTER SCIENCE AND ENGINEERING

MASTER’S THESIS

QOS-AWARE RUN-TIME TASK ALLOCATION IN

HETEROGENEOUS FOG ARCHITECTURE: A VIDEO

SURVEILLANCE SCENARIO

Author:

dott. Filippo Sciamanna

Student ID (Matricola):

898515

Supervisor (Relatore):

Prof. William Fornaciari

Co-Supervisor (Correlatore):

Dott. Michele Zanella

A.Y. 2019/2020



i
i

“output” — 2020/11/24 — 16:31 — page 2 — #2 i
i

i
i

i
i



i
i

“output” — 2020/11/24 — 16:31 — page I — #3 i
i

i
i

i
i

Contents

List of Figures III

List of Tables IV

Acknowledgment V

Abstract (Italian version) IX

Abstract IX

1 Introduction 1
1.1 Evolution of computing . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Distributed systems . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Fog computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 State of the Art 15
2.1 Programming and Management Frameworks . . . . . . . . . . . 15
2.2 Applications and Resources Management . . . . . . . . . . . . . 20
2.3 Our solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The BarMan Framework Overview 27
3.1 The MANGO Project . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The BarbequeRTRM . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 The libmango Programming Model . . . . . . . . . . . . . . . 30
3.4 The BeeR Framework . . . . . . . . . . . . . . . . . . . . . . . 35

I



i
i

“output” — 2020/11/24 — 16:31 — page II — #4 i
i

i
i

i
i

Contents

4 The Use-Case Application 37
4.1 Smart Surveillance use case . . . . . . . . . . . . . . . . . . . . 37
4.2 Application model and development workflow . . . . . . . . . . 38
4.3 Application kernels . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Kernels communications . . . . . . . . . . . . . . . . . . . . . . 48

5 Tasks Allocation Policies 51
5.1 The LAVA Policy . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The LAVAnet Policy . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Proposed solutions . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Experimental Results 65
6.1 Experimental Setup: the SmokyGrill . . . . . . . . . . . . . . . 65
6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusions and Future Works 79
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendices 81

A OpenCV Library 81
A.1 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Core module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 imgproc module . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.4 video module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.5 dnn module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B YOLO Neural Network 87
B.1 YOLO: you only look once . . . . . . . . . . . . . . . . . . . . 87
B.2 Net structure and operation principles . . . . . . . . . . . . . . . 88
B.3 YOLOv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.4 YOLOv3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C MobileNets 91
C.1 MobileNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.2 Net structure and operation principles . . . . . . . . . . . . . . . 91
C.3 MobileNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95

II



i
i

“output” — 2020/11/24 — 16:31 — page III — #5 i
i

i
i

i
i

List of Figures

1.1 Grid computing architecture . . . . . . . . . . . . . . . . . . . . 4
1.2 Cloud Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 IoT layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Fog hierarchical architecture . . . . . . . . . . . . . . . . . . . . 11

2.1 Sample DDF application . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The RTLib Abstract Execution Model . . . . . . . . . . . . . . . 30
3.2 Example of the Task Graph of a complex application . . . . . . . 31
3.3 libmango integration with BarbequeRTRM . . . . . . . . . . . 34
3.4 Beer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Original smart surveillance application . . . . . . . . . . . . . . 39
4.2 Sequential smart surveillance application . . . . . . . . . . . . . 40
4.3 Parallel smart surveillance application . . . . . . . . . . . . . . . 41
4.4 Detailed operation of parallel version . . . . . . . . . . . . . . . 42
4.5 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Background subtraction and mask denoising . . . . . . . . . . . 44
4.7 Intersect over Union (IoU) is a metric that allows us to evaluate

how similar two bounding boxes are . . . . . . . . . . . . . . . . 45
4.8 Multi-Object tracking example . . . . . . . . . . . . . . . . . . 46
4.9 Frame that is displayed to the user . . . . . . . . . . . . . . . . . 47

6.1 Picture of the SmokyGrill Fog cluster . . . . . . . . . . . . . . . 66
6.2 Scheme of the connected boards of the SmokyGrill cluster . . . . 66
6.3 Some frames from the video used . . . . . . . . . . . . . . . . . 67

III



i
i

“output” — 2020/11/24 — 16:31 — page IV — #6 i
i

i
i

i
i

List of Figures

6.4 Application latency of both sequential and parallel implementa-
tions using libmango . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Kernels latency of both sequential and parallel implementations
using libmango . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Latency of single kernels on SmokyGrill boards . . . . . . . . . 70
6.7 Latency of YOLO V3 and Mobilenet V2 on SmokyGrill boards

(Classifier kernel) . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.8 Latency of Classifier kernel and Tracker kernel on single Smoky-

Grill boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.9 Comparison of pipeline execution times . . . . . . . . . . . . . . 77

A.1 OpenCV modules . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Results of dilation, erosion and closing on a binary image . . . . 85
A.3 Background subtraction [1] . . . . . . . . . . . . . . . . . . . . 86

B.1 YOLO net architecture [2] . . . . . . . . . . . . . . . . . . . . . 88
B.2 YOLOv2 net architecture [3] . . . . . . . . . . . . . . . . . . . 89

C.1 MobileNet architecture [4] . . . . . . . . . . . . . . . . . . . . . 92
C.2 MobileNetV2 architecture [5] where t is the expansion factor, c

the number of output channels, n the repeating number and s the
stride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

IV



i
i

“output” — 2020/11/24 — 16:31 — page V — #7 i
i

i
i

i
i

List of Tables

2.1 Summary of Fog management frameworks . . . . . . . . . . . . 20

5.1 Values of the tasks parameters . . . . . . . . . . . . . . . . . . . 62
5.2 Values of the devices parameters . . . . . . . . . . . . . . . . . 62
5.3 eαd

t,d for each board and task (in ms) . . . . . . . . . . . . . . . . 63
5.4 Values of resource requirements for each task and device . . . . . 63

6.1 Mean latencies in libmango emulation mode . . . . . . . . . . 68
6.2 Amount of data exchanged by the kernels for each frame . . . . . 73
6.3 Max input/output data expressed in Bytes . . . . . . . . . . . . . 73
6.4 Values of the devices,tasks and DNNs parameters . . . . . . . . 74
6.5 LAVA Scenarios description . . . . . . . . . . . . . . . . . . . . 75
6.6 LAVA Scheduling results . . . . . . . . . . . . . . . . . . . . . 75
6.7 LAVAnet Scenarios description . . . . . . . . . . . . . . . . . . 76
6.8 LAVAnet Scheduling results . . . . . . . . . . . . . . . . . . . . 76

V



i
i

“output” — 2020/11/24 — 16:31 — page VI — #8 i
i

i
i

i
i



i
i

“output” — 2020/11/24 — 16:31 — page VII — #9 i
i

i
i

i
i

Acknowledgments

I would like to thank Professor William Fornaciari for his help and availability in
the last crucial phases of our work and Michele Zanella for his patience and for
the valuable advice given both during the development and during the writing of
this thesis.

I am grateful to my parents Antonella and Marco, for giving me the opportunity
to follow this path and for having been there every time it was needed. A sincere
thanks also to my sister Elisa, always ready to make me laugh.

A heartfelt thanks to Alberto and Andrea. Without you, these years of study
would not have been so pleasant. I must also thank all my dearest friends, your
support has been essential.

Finally, I want to thank my Mimmi. You have always been there ready to listen
to me in the most difficult moments. What is certain is that without having you
by my side I would never have made it.

VII



i
i

“output” — 2020/11/24 — 16:31 — page VIII — #10 i
i

i
i

i
i



i
i

“output” — 2020/11/24 — 16:31 — page IX — #11 i
i

i
i

i
i

Sommario

Negli ultimi anni il numero di dispositivi IoT è cresciuto in maniera espo-
nenziale, evidenziando le limitazioni dell’attuale infrastruttura Cloud,
non progettata per gestire un così grande volume di dati né per suppor-

tare i requisiti delle applicazioni emergenti. In questo contesto, nuovi paradigmi
di computazione hanno cominciato ad esplorare la possibilità di estendere i ser-
vizi offerti dal Cloud verso l’esterno della rete, utilizzando dispositivi geografi-
camente più vicini a dove i dati vengono generati. Ciò richiede l’esecuzione di
calcoli aggiuntivi per distribuire il carico tra i dispositivi mobili e gli oggetti in-
terconnessi, tenendo conto di eventuali vincoli sulle risorse. A questo proposito,
diventa impellente la necessità di un nuovo modello di programmazione, nonché
di nuovi approcci di gestione delle risorse e di distribuzione delle singole parti di
un’applicazione, in grado di affrontare l’eterogeneità dei dispositivi coinvolti.

Questa tesi presenta l’analisi e l’implementazione di un’applicazione di vi-
deosorveglianza in uno scenario sperimentale di Fog computing. Sfruttando il
modello di programmazione sviluppato all’interno del progetto europeo MAN-
GO, l’applicazione è scomposta in moduli che possano essere distribuiti sui di-
spositivi disponibili in rete, tramite l’utilizzo del software BarbequeRTRM. A
tal proposito, proponiamo due differenti politiche di distribuzione dei moduli
con l’obiettivo di massimizzare le prestazioni dell’applicazione, considerando
alcuni aspetti, quali carico e connettività, dei dispositivi disponibili al momento
dell’esecuzione. Successivamente, una valutazione sperimentale eseguita su un
sistema reale, fornirà diversi scenari di esecuzione mostrando come con le fun-
zionalità offerte dall’adozione del framework e l’utilizzo delle politiche proposte
si ottenga un miglioramento fino al 66% della latenza di elaborazione.
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Abstract

Over the last years, the number of IoT devices has grown exponentially.
This trend highlights the limitations of the current Cloud infrastructure,
not designed neither to deal with the volume of data generated by IoT

devices nor to support the real-time requirements of emerging applications. In
this context, new computing paradigms like Fog and Edge computing began to
explore the possibility of extending the services offered by the Cloud to be closer
to the source of data. This requires additional computations to distribute the load
between interconnected mobile devices and smart objects, taking into account
their resource constraints. In this regard, it becomes compelling the need for a
novel programming model, as well as resource management and tasks scheduling
approaches able to deal with the heterogeneity of the involved devices.

This thesis presents the analysis and the implementation of a video surveil-
lance use-case application in a Fog computing scenario. By leveraging the MAN-
GO programming model, the application is decomposed into tasks that can be de-
ployed on the available devices on the network, guided by the BarbequeRTRM
resource manager. In this regard, we propose two different scheduling poli-
cies, LAVA and LAVAnet, to maximize application performance, considering
run-time aspects, such as load and connectivity, of the time-varying available de-
vices. Through an experimental evaluation performed on a real cluster equipped
with heterogeneous embedded boards, we will provide different execution sce-
narios to show the functionality of the framework and the benefit of a distributed
approach, leading up to an improvement of 66% on the frame processing latency.
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CHAPTER1
Introduction

1.1 Evolution of computing

At the beginning of 1960s computers were large and expensive so that very few
organizations could afford them. Moreover, those machines had to run one pro-
gram at a time, spending most of the time in waiting state. In order to solve this
problem and make full use of the available resources, the first time-sharing main-
frames was developed. This approach allowed a central computer to be shared
by many users connected through terminals. The central processor was used by
each process for a fixed period of time. When the time was over, the program has
been interrupted and the next one could resume the execution. In the following
years, one of the main goal of computer industries was to make computing power
accessible to a large set of people. At the same time, various researches started
to investigate the possibility to interconnect different machines and distribute the
computation between them.

In this context, the first network protocols, like Token Ring, ARCNET and
Ethernet, were born allowing universities and private companies to create local
networks. Between the late 60s and early 70s in the USA, the ARPANET project
began with the goal of create the first wide packet-switching network that would
connect the various university networks with each other. The ARPANET used

1
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Chapter 1. Introduction

nodes interface message processors (IMPs) connected by 56 Kb/s telephone lines
to allow the communication between devices of the network. The first IMP was
installed in University of California at Los Angeles(UCLA) in 1969 and, by the
end of that year, another three nodes were installed in Augmentation Research
Center at Stanford Research Institute, University of California at Santa Barbara
(UCSB) and University of Utah School of Computing.

In the 80s, thanks to the advances in the production of electronic compo-
nents, computers became small and inexpensive enough to be purchased by indi-
viduals, inaugurating the personal computer era and raising the interest in inter-
networking. In the late 90s, with the birth of the Internet and the possibility of
having a unique global network, new computing paradigms has been adopted.
At this regard, the following Sections will briefly introduce some key concepts.

1.2 Distributed systems

In the literature there have been several attempts to define a distributed system.
Tanenbaum and Van Steen [6] have provided the following definition:

Definition 1.2.1. A distributed system is a collection of autonomous computing
elements that appears to its users as a single coherent system.

From that definition we can infer that the most important characteristic of
a distributed system is transparency, both the users and applications should per-
ceive the distributed as a unique system rather than as a collection of cooperating
components. In addition to transparency, a well-designed distributed system has
to meet the following requirements:

• Accessibility: resources must be accessed and shared easily and efficiently;

• Openness: components can be used by or integrated into other systems;

• Scalability: ability to adapt the size according to the number of resources
or users, as well as in term of geographic and administrative span;

• Reliability: the system must be designed in such a way that it is available
all the time even after some component fails.

1.2.1 Architecture and middleware

The architecture of a distributed systems is very complex due to the nature of
the devices (called nodes) that compose them. Distributed systems may count up
to millions of heterogeneous devices that could be geographically dispersed and
be interconnected using different network technologies, both wired and wireless.

2
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1.2. Distributed systems

Moreover, distributed systems are often highly dynamic: the number of devices,
the topology and performance of the underlying network can change over time.

Those architecture and nodes characteristics, combined with the transparency
requirement, make complex the development of distributed applications capable
of dealing with such heterogeneous systems. In order to simplify the develop-
ment of distributed applications, the devices that are part of the distributed sys-
tems are often organized to have a separate layer of software, called middleware,
that is logically placed on top of the respective operating systems. This layer
enables interoperability between applications by supplying services to exchange
data.

1.2.2 Types of distributed systems

Among the different topologies of distributed systems we will only focus on grid
computing and pervasive systems since are related to our topic.

Grid computing systems, unlike other high performance distributed systems,
integrate heterogeneous devices, typically servers, storage facilities and data-
bases, from different organizations into a federation of systems creating a form
of virtual organization. Given this characteristic, the main focus during the de-
velopment of a grid system is to find the correct software architecture that is able
to provide access to resources belonging to different domains and only for users
of a specific virtual organization. An architecture that still form the basis of many
grid computing systems consists of the following four layers [6]. At the bottom,
we find the fabric layer that provides interfaces to local resources at a specific
site, typically providing functions for inquiring resources states and capabilities.
Above that, there are the connectivity and resource layers. The former consists
of communication protocols for supporting secure communications between re-
sources and between these and users, while the latter is responsible for managing
a single resource. The next layer is the collective layer that manages the access
to multiple resources. This layer typically consists of services for resource dis-
covery, allocation and scheduling of tasks onto multiple resources. Lastly, on top
of the architecture, the application layer consists of the applications that works
with distributed systems.

Unlike grid computing systems, which are characterized by nodes that are
fixed and have a more or less permanent connection to a network, pervasive sys-
tems, instead, should encompass every device worldwide that has any type of
resource, many of which are characterized by being small, battery-powered, mo-
bile, and wireless connected. An important feature is that a pervasive system
is intended to be part of the surrounding with limited administrative control by

3
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Applications

Collective layer

Connectivity layer Resource layer

Fabric layer

Figure 1.1: Grid computing architecture

human. Devices can be configured by their owners but they have to be able to au-
tomatically integrate with the environment in which they are located discovering
services and reacting accordingly.

1.3 Cloud computing

As mentioned in Section 1.1, Cloud computing is a concept that has evolved
through a number of phases that cover about fifty years. The first time that a
concept amenable to Cloud computing came to light was in the 1961 when, dur-
ing MIT centennial ceremony, John McCarthy said [7]:

“Computing may someday be organized as a public utility just as the tele-
phone system is a public utility. Each subscriber needs to pay only for the ca-
pacity he actually uses, but he has access to all programming languages charac-
teristic of a very large system. Certain subscribers might offer service to other
subscribers. The computer utility could become the basis of a new and important
industry".

Only after decades, with the birth of the World Wide Web we finally had com-
puters and network infrastructures able to realize “computing utility delivered as
a public utility”. From 2000, the growth of the Cloud services was exponential
and a lot of companies started to provide any sort of service through the web,
reaching in around ten years a market value of more than 200 billions USD.

In 2012 the National Institute of Standards and Technology (NIST) gave a
formal definition of Cloud computing [8]. They defined it as “a model for en-
abling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal manage-

4
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Client

Application

Platform

Infrastructure

Data centers

Infrastructure as a
Service(IaaS)

Platform as a
Service(PaaS)

Software as a
Service(SaaS)

Figure 1.2: Cloud Layers

ment effort or service provider interaction.”. We can clearly see that the defini-
tion provided by NIST is very similar to John McCarty’s concept.

1.3.1 Cloud computing architecture

The standard Cloud computing architecture is formed by four layers: [9]:

• Data centers layer: this layer provides the hardware on which the Cloud
runs. Modern data centers usually consist of thousands of inter-connected
servers;

• Infrastructure layer: this layer is built on top of hardware layer and it has
the task of virtualizing computing power, storage and network connectiv-
ity of the data centers, and offers it as provisioned services to consumers.
Users can dynamically scale up and down these computing resources on
demand;

• Platform layer: it provides a development platform with a set of services
to assist application design, development, testing, deployment, monitoring
and hosting on the Cloud. Google App Engine and Microsoft Azure are
examples of this layer;

• Application layer: software is presented to the end users as services on
demand, usually in a browser saving the users from the troubles of software
deployment and maintenance. The software is often shared by multiple
users and automatically updated from the Clouds;

• Client Layer: it consists of computer hardware or software used to the user
to access a particular Cloud service through the internet network.

5
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The dividing lines for the four layers are not distinctive. Components and fea-
tures of one layer can also be considered to be in another layer. Moreover, even
if the Figure 1.2 suggest a hierarchical relationship, there’s no guarantee that the
upper layer has to be built on top of its immediate lower layer. For example, a
SaaS application can be built directly over IaaS, instead of PaaS.

1.3.2 Benefits and issues

Cloud computing has emerged as a computing infrastructure that enables rapid
delivery of computing resources as a utility in a dynamic, scalable and virtualized
manner. The advantages of Cloud computing over traditional computing are:

• Easy Management: users can access data, applications or any other services
with the help of a browser regardless of the device used and the user’s
location;

• Cost reduction: owning a server to run application has direct and indirect
costs regardless of the workload. Instead, Cloud-based solutions allow to
scale the resources available according to various needs;

• Green Computing: harmful emissions due to extensive use of systems in
organizations, generated electronic wastes and energy consumption are the
main disadvantages of the actual computing systems. This can be reduced
to some extent by using Cloud computing services, leading to environment
preserving and minimum e-waste generation.

Although the Cloud is widely recognized as a revolutionary IT concept with
clear advantages, enterprises can expect to face many trade-offs when they move
IT into the Cloud. Main problems are:

• Security: in the Cloud, data is stored with a third-party provider and ac-
cessed over the internet. This means that visibility and control over data is
limited;

• Interoperability: in an on-premise model, enterprises control their infras-
tructure and platforms at any time. In the Cloud, they’re locked into a
provider and no longer control their own IT. Moreover, due to different
technologies adopted by Cloud providers, users can face severe constraints
or impossibilities in moving their data from one Cloud provider to another;

• Performance instability: Cloud services can suffered from variations in
performance and availability due to loads;

6
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• Latency and network limits: As applications make ever-more intense use
of large volumes of data, data transfer poses an increasing bottleneck pre-
venting to exploit the Cloud services for applications that need to meet
strict time requirements.

1.4 Internet of Things

The advancements of micro-electro-mechanical-systems (MEMS) technology,
wireless communications, and digital electronics has resulted in the develop-
ment of miniature devices having the ability to sense, compute, and communicate
wirelessly in short distances, opening the doors to the “Internet of Things”. Since
the birth of the internet there were a lot of attempts to connect any sort of object.
In 1999 Kevin Ashton, executive director of the MIT Auto-IDCentre, coined the
term Internet of things (IoT) [10]. His thought was driven by the idea that all the
data available on the Internet was captured and created by human directly. How-
ever, humans limitations in the capability of capturing data, could be overcome
by computers that are able to automatically gather data from things and process
them, reducing errors, time and costs. Starting from this concept, IoT has been
defined as a network of physical objects (i.e., devices of all type and sizes) all
connected and communicating between each other, sharing information in order
to achieve given objectives.

1.4.1 IoT devices and embedded systems

IoT devices are heterogeneous embedded systems equipped with sensors and
network interfaces.

Definition 1.4.1. An embedded system is the support structure for the functioning
of applications with a high level of interaction with the surrounding environment
and which behaviour depends on data or signal that comes from the outer world.

Unlike to general purpose computing systems that are designed to run lot
of different applications, embedded systems are dedicated to the execution of
a specific task or class of tasks. Consequently, leveraging in-depth knowledge
of the application, the hardware can be strongly optimized correctly sizing the
resources [11]. Due to the application dependency it is very difficult to find
a standard architecture, moreover non-functional requirements (strict time-to-
market and production volume for example) can lead to very different solutions
even starting from the same functional requirements. Although it is not possible
to search for a common architecture, some common features can be highlighted
[12]:

7
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• Physical characteristics: the physical footprint of the system is often cru-
cial, especially for devices that do not have a fixed location;

• Energy consumption: more systems are becoming portable so it is essential
that the systems are designed taking into account energy efficiency both as
regards hardware and software development;

• Code size: embedded systems has often their software stored in the same
chip or board. This constraint is reflected, especially for cost and reasons
footprint, on the size of the code that must be as contained as possible;

• Performance: performance is not a generic goal but it depends on the ap-
plication. In general, the key aspects are: the reaction time to a event
and the event management time by executing the associated code. These
constraints will result in architectural solutions aimed at meeting these re-
quirements while maintaining a limited cost;

• Real-time requirements: unlike general purpose solutions, embedded sys-
tems are often real-time systems. This means that the whole system, or
parts of it, has to start or complete some of the operations within a fixed
and precise time. Based on the consequences of non-compliance with the
constraints, we identify soft-real time, where the failure to satisfy time con-
straints leads to a degradation of system performance, and hard real-time
systems, where the failure to satisfy time constraints leads to catastrophic
effects on the system and/or on the surrounding environment;

• Reliability: an accurate analysis of potential failures must be conducted.
Reliability can be a constraint in itself;

• Safety: it indicates a measure of the possibility that in the event of a fault,
the system does not cause serious consequences for people or things with
which it interacts with;

• Security: is the capacity of a system to protect and verify information
authenticity;

• Price: it is a determining factor especially for the large volume produc-
tions;

• Flexibility and time-to-market: the methodologies and technologies cho-
sen for the project must be chosen so allow you to get to the product within
strict time, so as to seize the maximum market opportunities.
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1.4.2 IoT architecture

There is no single consensus on architecture for IoT and during the years, due to
enhancement in the field and the arise of new challenges multiple architectures
have been proposed [13] and shown in Figure 1.3.

The first proposed IoT architecture consisted of three layers [14, 15]:

• Perception layer: it is responsible for perceiving the physical properties of
things using sensors. Data collected by sensors is pre-processed in order to
be transmitted;

• Network layer: it is responsible for processing the received data from the
perception layer and transmitting data to the application layer using various
network technologies;

• Application layer: it uses the processed data to deliver application specific
services to the user.

This architecture defines the main idea of the Internet of Things but is not
sufficient to detail finer aspects of IoT. For this reasons four-layers [16] and five-
layers [17] architectures were proposed. The four-layers architectures adds a
support layers between network and application layers. This layer consists of
services and actions related to the control, security and management of the ap-
plication. Differently, the five-layers architectures maintains only perception and
application layers and introduces the processing, transport and business layers.
The perception and application layers maintain the same roles of the previous ar-
chitectures. The transport layer has the task of transferring the sensor data from
the perception layer to the processing layer and vice versa using wired and/or
wireless networks. The processing layer stores, analyzes and processes the huge
amounts of data that comes from the underlying layer. Lastly, the business layer
manages and controls applications, business and profits model of IoT.

1.5 Fog computing

Although the success of IoT has witnessed the possibilities and potentials of that
technology, we have to face some issues. In fact, it is estimated that there will
be more than 65 billion IoT devices by the year 2025. The problem with this
growth is that IoT devices are able to generate enormous amount of data that are
mainly transfer to Cloud for processing, risking to saturate the capability of the
current network infrastructure. Another problem is that current IoT infrastruc-
ture, relying on internet connection, is not suitable for real-time applications. As

9



i
i

“output” — 2020/11/24 — 16:31 — page 10 — #24 i
i

i
i

i
i

Chapter 1. Introduction

Application Layer
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Three-layers Four-layers Five-layers

Figure 1.3: IoT layers

a solution to these problems, in 2015 Cisco proposed the concept of Fog comput-
ing, which consists in an additional layer between the IoT/Edge frontier of the
network and the remote Cloud. Its objectives is to bring Cloud services closer
to the IoT devices that generate the data. Thus, decongesting the network and
decreasing latency due to the fact that Fog devices locally perform all or part of
the pre-processing workload and send only the useful data to Cloud services for
further processing. This computing model has the following advantages:

• Low latency: the close location of Fog nodes to the source of data and
the processing capabilities of Fog nodes enables low latency and opens the
doors to real time applications;

• Avoid network saturation: performing data processing and data storing at
node level significantly reduces data movement across the Internet due to
the fact that only useful data is forwarded to the Cloud.

• Security: Fog nodes provide access control policy, encryption, integrity
check and isolation measures;

• Low energy consumption: using short range communication mode and
optimal energy management policies, Fog nodes are able to reduce their
power consumption leading to a decrease in cost.

1.5.1 Architecture of Fog computing

The reference model of Fog computing architecture is a significant research topic
and many architectures have been proposed through the years mostly derived
from a three-layer structure. In particular, we consider a multi-dimensional ar-
chitecture, based on the OpenFog reference architecture [18], that has been pre-
sented by Zanella et al. [19]. According to this work, it is possible to consider
two dimensions on the resource space.
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Cloud

Fog nodes Fog nodes Fog nodes

Terminals

Figure 1.4: Fog hierarchical architecture

Through the vertical dimension it is possible to interconnect devices with
high different paradigms, performance, energy efficiency characteristics and ge-
ographical proximity. At the bottom, the Edge layer consists of various IoT
devices geographically distributed. These devices are responsible for sensing
data from the environment and transmitting the data gathered to the upper layers.
In the middle, the Fog layer is composed of a large number of devices spanning
from gateways to high-end embedded, desktops, micro-server or even mobile
devices. On top of that, there is the Cloud layer, which consists of multiple
high-performance servers and storage devices and it provides various applica-
tion services

The horizontal dimension, instead, introduces the possibility to distribute and
balance the workloads on nearby or federated devices in the same layers in order
increase scalability and redundancy.

1.5.2 Fog nodes characteristics

The Fog nodes are the core components of the Fog computing architecture. Fog
nodes, as seen for embedded systems and IoT devices, can be devices of any
sort, both physical and virtual, and have different capabilities in terms of pro-
cessing power and storage. As mentioned before, Fog nodes process and store
data generated by sensors and Edge devices. To deploy a given Fog computing
capability, Fog nodes operate in a centralized or decentralized manner. In fact,
they can work as stand-alone nodes that communicate among them to deliver the
service or can be federated to form clusters that provide horizontal scalability
over disperse locations. Fog nodes are strongly characterized by heterogeneity
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in terms of both connectivity and resources within the Fog level and compared to
Cloud and IoT devices. Regarding nodes communications, inside and between
the levels, nodes use various technologies, both wired and wireless. Fog nodes
are connected with end devices and users mainly by a wireless connection such
as 4G/5G, Bluetooth, or WiFi. Otherwise, Fog nodes can also be connected with
the Cloud using a classic wired connection to exploit Cloud services.

For what concerns resources, we can identify three types of heterogeneity:

1. Inter-level heterogeinity: we can have computing devices with very differ-
ent capabilities in different levels;

2. Intra-level heterogeinity: we can have computing devices with very differ-
ent capabilities at the same level;

3. Intra-node heterogenity: we can have different type of resources available
in the same node.

1.5.3 Challenges

As any other new technology, Fog computing, in addition to the aforementioned
advantages, brings some problems that must be addressed and solved in order
to take full advantage from this new computing paradigm. The first aspect to
consider is that Fog computing devices may face serious security problems due
to the fact that these devices, being geographically dispersed, could be deployed
in places out of strict surveillance becoming potentially vulnerable to any sort of
malicious attacks. Solutions to similar problems for Cloud computing have been
found, but they don’t necessarily work for Fog computing.

Although the security aspect is very important, the biggest challenge of Fog
computing is the control and management of such a distributed and heteroge-
neous system. In particular, in order to fully exploit the workload distribution
features and the heterogeneity advantages of the aforementioned architecture,
the first step is the development of a suitable programming models that allow the
decomposition of applications into execution units that can exchange data among
them. Secondly, there is the need of a run-time management system that is able
to: (a) efficiently discover and organize nodes and (b) map application execution
units to the available resources in order to meet the application requirements.
At this regard, proper task mapping and resource allocation strategies have to
consider optimizations at both distributed system (e.g., performance, balancing,
energy consumption, reliability. . . ) and device level (e.g., load, utilization, en-
ergy budgeting, temperature. . . ). At experimental stand point, there are many
synthetic benchmarks and simulation software. However, in the research field
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there is an high demand also for real-world use-case application that can be used
in experimental settings, as well as accessible and physical hardware test-bed to
perform measurements, improving simulation models.

1.5.4 Thesis structure and contribution

The work described in this thesis has the purpose of presenting the design and
implementation of a real-world multi-task application and its porting to a full-
stack Fog management and deployment framework. The focus of our work is to
be able to distribute the workload of the application according to the character-
istics and availability of heterogeneous devices and to the application and tasks
requirements. For these purposes, we will leverage the BarMan framework and
propose two different task-allocation policies.

The thesis is organized as follows. In Chapter 2 the state-of-the-art related to
Fog programming frameworks and the approaches to dealing with the resource
management problem are presented. The Chapter 3 presents the BarMan frame-
work, used in our work to develop a Fog distributed application. Then, in Chapter
4 we analyze a Fog computing use-case and then present its implementation. In
Chapter 5.1, we present two tasks allocation policies, LAVA and LAVAnet, for
low-latency applications. Then, in Chapter 6 we will analyze the performances
of the application and the allocation policies on a real test-bed Fog cluster made
with heterogeneous embedded boards. Finally, Chapter 7 concludes the thesis
and highlights the future improvements.
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CHAPTER2
State of the Art

This chapter introduces the state of the art for related to the main challenges
in Fog computing field mentioned in Chapter 1: suitable programming models
and resource management. In Section 2.1, we analyze some of the programming
and management frameworks that has been proposed, considering both academic
and commercial solutions. Instead, in Section 2.2 we present the main problems
in the applications and resource management fields and some of the approaches
used to deal with them.

2.1 Programming and Management Frameworks

As stated in Chapter 1, one of the biggest challenge in Fog computing is the
development of a suitable programming model that allows to fully exploit the
overall architecture. In the literature, research focused on the architectural as-
pects of Fog systems [20]. However, not many solutions presents complete and
available frameworks to implement such architectures. In this Section, we will
analyze some of the state-of-the-art solutions basing on the following character-
istics, as reported in Table 2.1:

• Scalability: handling a large number of applications and IoT devices at the
Fog layer while satisfying each application requirements needs to scale ser-
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vices elastically. Thus, Fog managers should provide modules to support
scalability;

• Device mobility support: Fog services may be hosted on mobile devices
that are connected to the network through unreliable wireless connection
and often they could change their points of attachment to the network.
Therefore, mobility support is critical and management systems have to
provide modules to solve this issue;

• Resource heterogeneity support: Fog devices are highly heterogeneous, a
programming framework should provide tools for designing services and
tasks according to the different capacities of the devices. Moreover, it
needs to be able to decide which application components should be de-
ployed on the different nodes transparently with respect to the user;

• Providing energy awareness: Fog services may be hosted on battery-pow-
ered mobile devices, it is essential that a management framework offers the
possibility to manage applications taking care of power consumption;

• Quality-of-Services management: each application has QoS requirements,
therefore Fog programming frameworks should provide mechanisms to
support that;

• Openness: Fog programming framework should be standardized and open
in order to guarantee the interoperability among different systems.

2.1.1 MobileFog

MobileFog was developed by Hong et al. [21] in 2013 with the purpose of pro-
viding an high–level programming model that could simplify the development
of Fog applications and allow dynamic scaling of the resources allocated to the
applications. In this work, the authors consider the network as formed by hetero-
geneous physical devices, called Fog computing nodes, placed at different lay-
ers of the network hierarchy and associated with a certain geophysical location.
Moreover, they assume that the Fog system provides a programming interface
to create and terminate computing instances, each one characterized by certain
system resource capabilities that could be used to execute application code.

In the proposed programming model, application is formed by MobileFog
processes that are mapped onto distributed computing instances in the Fog and
Cloud. Each process runs application code and performs specific tasks with re-
spect to its geographical location and level in the network hierarchy and can com-
municate with other processes running on different devices using both point-to-
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point and hierarchical communication API. Moreover, each process has a unique
identifier called appkey that can be used by developer to manage the application
through the management interfaces.

To exploit Fog devices hetereogeneity, MobileFog allows to run the same ap-
plication code on various devices available in the system. Moreover, it is possible
to dynamically scale resources depending on application’s workload. At this re-
gard, users have to provide a scaling policy that consists of a set of metrics (e.g.,
CPU and RAM utilization) and conditions that triggers the dynamic scaling.

The approach presented has some drawbacks. First of all, due to the lack of
a QoS management module, the framework does not allows to define and mon-
itor application requirements and, thus, configure the application’s parameters
accordingly. This, together with the limited metrics that can be monitored in
the scaling policies, does not allow the creation of energy-aware applications.
Finally, MobileFog, is not open source nor standardized, so it has a limited inter-
operability with devices from different systems.

2.1.2 Distributed DataFlow

Giang et al. [22] proposed the Distributed Data Flow (DDF), a distributed version
of the well-known Dataflow [23].

Dataflow is a well-known programming paradigm born for parallel execution
of tasks using multiprocessors, in which, unlike traditional procedural program-
ming that focuses on commands, the focus is the movement of data and programs
are seen as a directed graph where each node can have inputs, outputs and runs as
an independent processing units, as shown in Figure 2.1. With DDF the Dataflow
program is deployed on multiple physical devices. Each device executes one or
more node in the flow, forming sub-flows able to communicate with each other.

According to the authors, this approach offers some advantages. First of
all, it raise the abstraction level of the underlying IoT hardware simplifying the
application development. Secondly, it allows IoT applications to exploit Fog ver-
tical heterogeneity by differentiating devices on their computing resource, while
constraining the deployment of nodes in the flow considering only devices with
appropriate resources. Moreover, it is possible to strategically deploy nodes of
the flow to Edge servers and physical devices in order to meet the QoS require-
ments of the applications. Moreover, by replicating a node in the flow on more
than one physical device, the system is even able to handle the movement of
devices through the network at the cost of using extra resources. Furthermore,
due to the fact that a DDF applications does not rely on a centralised manage-
ment system, scaling is supported. Finally, DDF is open and standardized thus it
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Figure 2.1: Sample DDF application

guarantees the interoperability among different Fog devices.
However, this solution does not take into account energy management and

power issues of Fog devices, limiting the possibility to develop energy-aware
applications. Moreover, it does not consider the possibility to configure at run-
time application’s specific parameters.

2.1.3 FogFlow

In 2018 Cheng et al. [24] proposed a new computing framework called FogFlow
with the aim of creating a standard-based programming model that would sim-
plify the development of applications for IoT smart city platforms over Fog and
would increase interoperability between heterogeneous devices.

The FogFlow framework extends the Dataflow programming model with
declarative hints with Next Generation Service Interface (NGSI). IoT services
are represented by a service topology which consists of multiple operators, that
receives certain input streams, performs data processing, and then publishes the
generated results as output streams. The framework operates on Fog heteroge-
neous resources with three logically separated divisions: service management,
data processing and context management.

The service management division, typically deployed in the Cloud, includes
task designer, topology master, and docker image repository. The task designer
provides the interfaces to manage all deployed IoT services, as well as to design
and submit new services. A Docker image repository manages the docker images
of all dockerized operators. While the topology master (TM) is responsible for
service orchestration, i.e. it translates a service requirement and the processing
topology into a concrete task deployment plan.

The data processing division is formed by set of workers that perform data
processing tasks assigned by the topology master. Each worker is associated with
a computation resource in the cloud or on an edge node and can launch multiple
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tasks. The number of supported tasks is limited by the computation capability
of the compute node. The internal communication between TM and the workers
rely on message queuing protocol-based message bus to achieve high throughput
and low latency.

Finally, the context management division is usually deployed in the Cloud
and includes a set of IoT Brokers, a centralized IoT Discovery and a Federated
Broker. These modules decide the data flow across tasks using NGSI and manage
the system contextual data, such as the available resources of devices.

The proposed framework supports heterogeneity and QoS through the pro-
cessing requirements submitted to the topology master. Openness is guaranteed
by the use of the open programming model Dataflow and the NGSI standard.
Moreover, the introduction of a distributed context management approach allows
to support scalability. The only flaws of the proposed solution are the lack of
modules to support device mobility and the impossibility to create energy-aware
strategies. Furthermore, the framework does not allow to configure application’s
parameters at run-time.

2.1.4 Commercial Solutions

Some companies have independently propose their Fog computing platforms ex-
tending Cloud platform to support edge services. The first company to work
in this area was Cisco. After they proposed the Fog computing concept in 2012,
they started to work on their framework and release some products, such as Cisco
Fog Data Services, Cisco Fog Director and Cisco Fog Fabric, that allow to par-
tially exploit Fog capabilities using only Cisco devices.

In 2017 Amazon released AWS IoT Greengrass to extend Cloud capabilities
to local devices. Their goals were: (a)enabling devices to collect and analyze
data closer to the source information and (b) bringing a development technology
that can be used both on Cloud and Iot devices. With Greengrass, users can
develop the code in the Cloud and deploy it directly to the IoT devices using
AWS Lambda. The most important module of their framework is AWS IoT
Greengrass Core that, acting as a communication hub between the Cloud and
devices that run Amazon FreeRTOS or AWS IoT Device SDK, enables local
execution of AWS Lambda code, messaging, data caching, and security. Despite
the easy of use of their solution, it guarantees only support for scalability and
QoS management.

Lastly, Microsoft proposed Azure IoT Edge a complete edge management
service built on Azure IoT Hub. Their solution enables the deployment of ser-
vices on IoT Edge devices through standard containers. Azure IoT Edge is made
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Scalability
Device

Mobility
Resource

Heterogeneity
Energy

Awareness
QoS

Management
Openness

App run-time
configuration

MobileFog
Distribuited Dataflow

FogFlow
AWS Greengrass
Azure IoT Edge

Our Solution

Table 2.1: Summary of Fog management frameworks

up of three components: IoT Edge Modules, IoT Edge runtime and a Cloud-
based interface. The IoT Edge modules are units of execution, implemented as
Docker compatible containers, that run Azure services, users’ code or third-party
services. Multiple modules can be configured to communicate with each other,
creating a pipeline of data processing. The IoT Edge runtime is located on the
IoT Edge device and performs management and communication operations. Fi-
nally, the Cloud-based interface allows the user to monitor and manage all the
IoT Edge devices remotely. Azure IoT Edge is open and guarantees support for
scalability and QoS management.

2.2 Applications and Resources Management

Due to the dynamicity, heterogeneity and uncertainty of Fog environment, it is
essential to have a robust resource management system. As pointed out by M.
Ghobaei-Arani et al. [25], the resource management issue cannot be considered
as a single problem but as formed by multiple sub-problems. In our work we
will split the resource management approaches into the following categories:

• Application placement

• Resource scheduling

• Resource provisioning

• Resource allocation

• Task offloading

We will analyze each of the aforementioned problems and present some of the
approaches proposed in the literature.

2.2.1 Application placement

The application placement problem consists in defining an optimal placement
plan between IoT services and Fog nodes to maximize Fog resource utilization
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while meeting application requirements. A correct deployment is crucial because
a not optimal placement plan could result in non-compliance with the applica-
tion requirements, or cause malfunctions to other Fog services. For example, an
incoherent application deployment solution for a big volume of data may cause
network congestion and affect hard real-time services.

Normally, application placement involves one or more management nodes
that, after searching for all the resources available that satisfy application re-
quirements, try to optimize the application placement. The approaches to solve
this problem can be divided into three categories: centralized, decentralized and
hierarchical.

The centralized approach requires the existence of a central node whose job
is to make global optimization decisions on the placement of applications and
services based on the available resources. To do that, the central node needs in-
formation from all the entities available in the Fog layer. This approach, having
one node responsible for decisions, is more vulnerable to failures than the oth-
ers. Moreover, due to the need of receiving data from Fog nodes, the network
overhead becomes problematic as the number of fog nodes increases, resulting
in a limit on scalability.

The decentralized approach, instead of using one central node to take global
optimization decision, make use of multiple nodes each of which takes local
optimization decisions. This approach adds communication overhead between
management cores but it solves the scalability and reliability problems of the
centralized one. Finally, the hierarchical solution combines the previous two
approaches in order to take their advantage. In addition to the architectural dif-
ferences, the solutions proposed in the literature differ from each other in the
metrics taken into consideration while searching for the optimal placement. Most
of the studies consider the delay network metric while the energy consumption
metric is less considered.

Skarlat, Nardelli, Schulte et al. [26] proposed a hierarchical approach based
on a genetic algorithm to find a suitable service placement solution into Fog
landscape. Their approach take into account Fog devices capabilities, cost of the
solution and latency. Brogi et al. [27], instead, proposed a centralized approach
QoS-aware deployment approach able to find eligible deployments of IoT appli-
cations over a Fog infrastructure in a context-aware manner considering latency
and bandwidth usage during optimization. Both the approaches could be not
optimal if Fog devices are battery powered or in scenarios where there are con-
strains on device’s power/energy availability. At this regard, Taneja et al. [28]
proposed a hierarchical heuristic-based approach that uses a low computational
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complexity algorithm that considers as performance metrics network usage, ap-
plication latency and energy consumption (allowing energy-aware placement).
Finally, Selimi et al. [29] proposed a decentralized approach based on a fast ser-
vice placement heuristic algorithm, called BAST, for community network micro-
cloud infrastructures. Their approach allocates services taking into account the
bandwidth of the network and the node availability executing the algorithm ev-
ery single time a new service deployment is about to be made. However, latency
is not evaluated during the placement evaluation, potentially leading to a not
optimal placement for real-time Fog application.

2.2.2 Resource scheduling

Services requested from IoT devices could be divided into a set of tasks and
served by several Fog nodes. The resource scheduling problem determines an
optimal assignment of different tasks to be executed on the Fog nodes in order to
meet the IoT application requirements. This problem is an NP-hard optimization
problem. Generally, resource scheduling is solved by using meta-heuristic al-
gorithms to find feasible and near-optimal solutions in linear time. Between the
various approaches presented in the literature, we can identify three main class:
static, dynamic and hybrid scheduling.

In static scheduling approaches, tasks arrive concurrently at the Fog nodes
and scheduling decisions are made before tasks are submitted. So, they need
to know in advance all the necessary information about received demands and
available resources before scheduling. Clearly, in heterogeneous and dynamic
systems like Fog, it is not always possible to have all necessary knowledge before
resource scheduling. Thus, static approaches can be limited in achieving optimal
scheduling and in supporting scalability.

In dynamic scheduling approaches the arrival times of the tasks are not known
before submission so task scheduling is done when they arrive in the system.

Hybrid scheduling approaches mix both dynamic and static criteria to cover
different types of applications.

Most of the research studies proposed dynamic approaches that aim to mini-
mize latency and response time while increasing dynamic efficiency. For exam-
ple, Sun et al. [30] proposed a two-level dynamic resource scheduling algorithm.
Their approach perform the resource scheduling a first time among various Fog
clusters to determine the cluster designated to perform the task when it arrives
and a second time among Fog nodes in the same cluster to specify the node on
which execute the task. The scheduling is made in order to reduce the service la-
tency and improve the stability of the task execution. Deng et al. [31] proposed a
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dynamic approximate solution considering the energy consumption-delay trade-
off into Fog computing, the energy consumption-delay trade-off into Cloud com-
puting and the minimization of communication delay. Rodopoulus et al. [32] and
Massari et al. [33], within the HARPA project, proposed the HARPA-OS, a soft-
ware run-time resource manage able to manage the system resource allocation
while taking into account both the status of the system resources and the appli-
cation requirements. A peculiarity of the proposed system is that the resource
management is done combining both pro-active and reactive strategies in order
to always allocate the minimum amount of resources that satisfy the application
requirements. The allocation is performed collecting the deviation in percent-
age between the current monitored performance and the expected one [33] for
each application. Then, the system estimates the desired performance value and
searches for the allocation that allows to obtain the closest performance value
possible.

Due to the fact that scalability is a very important factor in the resource man-
agement, few static solutions were proposed. Pham et al. [34] presented a two-
phases static heuristic-based algorithm with the aim of providing a good tradeoff
between the makespan and the cost of task execution. The first phase of the algo-
rithm consist of determining the task priority and the second phase of selecting
the most appropriate node based on the Earliest Start Time and Earliest Finish
Time. This approach is computational expensive and limits system scalability.

2.2.3 Resource provisioning

IoT services workload changes over time. This may result in over-provisioning
or under-provisioning problems. In under-provisioning problem the resources
allocated for a IoT service are less than the ones required by the service to meet
its performance requirement. Conversely, in over-provisioning problem the re-
sources allocated for a IoT service are more than the ones needed. While the
second problem has the only drawback of incurring into an unnecessary cost, the
first problem could lead to application or system level malfunctions. Therefore,
it is important to dynamically provide the appropriate number of Fog nodes re-
quired to handle the application’s workload in order to reduce system cost while
meeting the QoS constraints. To solve this problems we need to use dynamic
resource provisioning to scale-in/out Fog nodes according to the incoming de-
mand. The resource provisioning approaches autonomously manage resources
allocation and release in order to satisfy the IoT devices resource demand and to
avoid resource wastage. The resource provisioning approaches can be classified
into three policy: reactive, proactive, and hybrid.
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The reactive policy does not perform any kind of prediction on system state,
just respond only when workload change has already happened.

The proactive policy utilizes prediction techniques, such as time series and
neural network, to estimate future demands of IoT applications and react with
enough anticipation.

In hybrid policies both policy are used. Typically, the reactive policy is uti-
lized for scaling out decisions and the proactive policy for scaling in decisions.

The various resource provisioning approaches presented in the literature do
not consider all the QoS parameters simultaneously. Some approaches focus on
latency, delay and cost while others focus on throughput, CPU utilization and
energy consumption. Dos Santos et al. [35] proposed a resource provisioning
approach based on Integer Linear Programming to optimize multiple objectives,
such as latency, service migrations and energy consumption. Instead, Zanni et al.
[36] proposed a dynamic scaling solution using geometric monitoring to reduce
latency.

2.2.4 Resource allocation

The resource allocation problem consist of efficiently allocate a set of geograph-
ically distributed and heterogeneous Fog nodes to execute IoT services with dif-
ferent QoS requirements. Resource allocation approaches can be divided into
two classes: auction-based and optimization-based.

The auction-based resource allocation methods are market-driven approaches
where IoT devices applied their needs for Fog nodes with bids, then, according
to a specified auction mechanism, nodes are assigned to the best bidder. These
methods are evaluated using formal Petri nets, approximate algorithm, and game
theory to decrease the cost and time factors based on user requests. For ex-
ample, Jiao et al. [37] proposed an auction-based model using an approximate
algorithm for cost-effective resource allocation to allow the service providers
to make practical and efficient computing resource trading mechanisms on the
blockchain network. Moreover, Nguyen et al. [38] proposed an approach based
on the market equilibrium technique for resource allocation.

In optimization-based methods, the resource allocation is modelled as a dou-
ble matching problem where Cloud servers and Fog nodes are coupled to IoT
devices while Fog nodes and IoT devices are coupled to Cloud servers. Anglano
et al. [39] presented an efficient profit maximization method using an approxima-
tion algorithm. The aim of the approach is to increase the profit of edge providers
despite of the workload fluctuations while the applications requirements are sat-
isfied.
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2.2.5 Task offloading

IoT and mobile devices are often resource-limited and it could become necessary
to outsource some of their resource-intensive tasks to the Fog or Cloud for im-
proving their performance and/or saving battery [40–42]. When the other entity
has executed the tasks, it has to return the result to the original IoT device. This
process is called task offloading and it can occur for different reasons such as
load balancing, data management, energy efficiency and so on. The task offload-
ing approaches based on the number of offloading destinations can be divided
into two main categories:single and multiple.

In single-type offloading approaches, computation tasks can be offloaded to
only one Fog node for sequential processing. In multi-type offloading approaches
instead, the tasks can be offloaded to more than one destination. This type of
approaches is more suitable for IoT applications with repetitive processing and
parallelized parts.

Most of the research studies proposed approaches that investigate the appli-
cation energy consumption and latency. For example, Tran et al. [43] proposed
a service that allows to offload computing intensive task to Fog nodes with free
resources, naming it "Offload as a Service" (OaaS). The algorithm is able to
compute the energy utilized by each Fog node and select one of them to offload
computing dynamically.

2.3 Our solution

Basing on the aforementioned works, our solution involves the use of the Barman
framework to analyze and implement a video surveillance use-case application
in a Fog computing scenario. A key feature of the proposed use-case real-world
application is the possibility of being executed on real hardware for experimen-
tal purposes, being easy to inspect and measure, and provides heterogeneity of
the tasks’ workload performed: i.e., execution of Neural networks, image pro-
cessing, simple mathematical calculation, GUI management.

As summarized in Table 2.1, our work enables the exploitation of the frame-
work to pursue the following goals:

• having a resource-aware task-based programming model that allows us to
easily divide applications into tasks and that is deeply integrated with a
complex and complete resource manager;

• making the application run-time configurable bu the resource manager
based on the available and assigned resources;
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• deploying the application’s module to different devices of the system trans-
parently with respect to the user;

• managing a distributed system that is variable both in the number of the
devices and in their availability over time, thus supporting scalability and
mobility;

• performing low-level management of computational resources, including
heterogeneous ones;

• considering QoS requirements of an application and also allowing to de-
velop dedicated allocation strategies on the metrics of interest to the type
of applications, addressing both QoS-Management and openness, as well
as enabling the possibility to consider future energy-aware tasks allocation.

In the implementation of the use-case application we will consider a central-
ized execution of the resource manager. This choice is based on two reasons.
First of all, we want to start from the exploration of a single aspect, in order
to investigate the limits and benefits of such approach. Secondly, the hardware
characteristics of Fog nodes do not always allow to run a resource manager on
multiple nodes. Despite our decision, in case of multiple nodes compatible with
the resource manager, it is possible to have multiple instances of the resource
manager collaborating in the resource allocation decision.

Regarding the allocation strategies, we will present an initial strategy that
takes into consideration the QoS of the application with information at run-time
such as the load of the device and its connectivity.

The structure of the framework, the process of the design and implementation
of both the application, the allocation policies and the analysis of the execution
results on real hardware will be presented in detail in the following chapters.
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CHAPTER3
The BarMan Framework Overview

In this chapter we will introduce the framework used in this thesis to develop a
Fog distributed application. Starting from Section 3.1, we will briefly present
an overview of the MANGO project. Through Sections 3.2 and 3.3 we will
analyze the main components of the framework: the BarbequeRTRM and the
libmango. Finally, in Section 3.4 we will cover the BeeR extension.

3.1 The MANGO Project

High-Performance Computing (HPC) is quickly evolving and new application
requirements, such as power efficiency and QoS support, are emerging. At this
regard, the MANGO project [44] aims to extend the traditional optimization
space to power, performance and predictability in order to keep up with the
aforementioned requirements. The project investigates the architectural implica-
tions of the emerging constraints and aims at the definition of a new generation
of high-performance, power-efficient, deeply heterogeneous architectures that
are able to comply with QoS. To achieve resource efficiency, when dealing with
QoS-sensitive applications, resources cannot be managed by the application de-
veloper. In fact, this would lead to a limitation on the ability of the system to
balance resource usage. To this purpose, MANGO provides a hierarchical re-

27



i
i

“output” — 2020/11/24 — 16:31 — page 28 — #42 i
i

i
i

i
i

Chapter 3. The BarMan Framework Overview

source management strategy made of a global resource manager (GRM) and a
local resource manager (LRM). The former is in charge of workload balancing
and thermal control of the system, while the latter, in charge of the allocation
of node resources, allowing multiple applications to share resources located on
a single node. To achieve those results a software stack including a new pro-
gramming model for heterogeneous multi-processor systems and a run-time re-
source management solution were developed. Finally, the heterogeneous con-
text of the MANGO project leverages on a multiprocessor CPU-based system
to which are interconnected boards containing a set of different accelerators and
memory nodes. In the following sections we will present the different modules
of the overall framework, since they have been extended to operate also in a
distributed Fog context, laying a base for our work.

3.2 The BarbequeRTRM

The Barbeque Run-Time Resource Manager (BarbequeRTRM) is a modular and
extensible run-time resource manager developed by Barbeque Open Source Proj-
ect team [45] at Politecnico di Milano. The aim of this framework is to trans-
parently manage the allocation of computing resources to multiple concurrent
applications while taking care of both applications QoS requirements and dy-
namic resource availability. Moreover, the framework has been designed to be
highly modular and portable. Currently, the BarbequeRTRM supports several
types of hardware platforms (e.g., HPC, embedded, mobile. . . ), both homoge-
neous and heterogeneous architecture, thanks to the Platform Proxy modules
which handles the communication with the platform. Finally, BarbequeRTRM
offers a distributed and hierarchical control scheme, where each controller is in
charge of a specific subsystem. This approach allows to scale better with system
complexity.

The principal feature of the framework is the support for application that
could reconfigure themselves during the execution. To accomplish this, the ap-
plications must integrate an execution model, as detailed in Section 3.2.1, pro-
vided by the framework library and that defines a finite set of possible run-time
configurations [46]. In particular, two different levels of reconfiguration and
configuration information have been identified.

The first level identifies the Application Working Modes (AWMs) which de-
fine the resource requirements for the achievement of a certain QoS level. Usu-
ally, AWMs are provided by the developers through a file, known as Recipe,
that contains a finite set of configurations that has been identified as optimal at
design-time. Thus, AWMs are later assigned to the application by the resource
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manager following a selected policy. Over the years, different policies have been
proposed. For example:

• Tempura [32]: resources assignment aims to minimize power consumption
and avoid thermal hotspots;

• Contrex [47]: resources assignment is focus on finding optimal configura-
tions that minimize cost, size, weight and power consumption of the system
without compromising its safety or overall performance;

• PerdeTemp [33]: as well as Tempura, the resource management has the
aim of optimizing the resource usages according to the real requirements,
saving power consumption and limiting the occurrence of thermal hotspots.
Thus, reducing of the aging effects affecting the computing resources and
increasing the system reliability;

• Manga [48]: the resource assignment is done with the purpose of find-
ing the best allocation of application modules on deeply heterogeneous
resources in order to meet application QoS in HPC scenario.

The second level is represented by the set of tunable parameters called Op-
erating Points(OPs). These parameters are chosen by the application itself, de-
pending on the assigned AWM, in order to meet the QoS expected by the end
user. Normally a single AWM can support multiple OPs.

3.2.1 Abstract Execution Model

Application reconfigurability requires that the execution can be controlled by
the resource manager. In particular, it must be able to start, stop, suspend or
reconfigure the application.

To accomplish that, the Application Run-Time Library (RTlib) provides the
Abstract Execution Model (AEM), a callback-based API similar to the Android
programming model. Each application must integrate the AEM deriving a class
from the base class BbqueEXC and implementing some callbacks functions.
The main ones are the following:

• OnSetup: this method is called by the base class after the constructor and
should contain application initialization code;

• OnConfigure: this method is called every time the BarbequeRTRM as-
signs a new AWM and should contain the code related to application re-
configuration;
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Figure 3.1: The RTLib Abstract Execution Model

• OnRun: it is the main method of the class and contains all the code to
execute the application computational task;

• OnMonitor: this method is called after the onRun to check if the level
of QoS or performance has been achieved. If there are no more data to be
processed the onRelease method is called, otherwise application calls
onConfigure or onRun depending on whether resources have changed
or not;

• OnRelease: once the application has terminated, this method is called in
order to clear memory allocations, data structures or references.

At run-time, the instance of the class created will spawn a control thread
which will call the methods, as shown in Figure 3.1.

3.3 The libmango Programming Model

One of the goal of MANGO project is to provide a resource-aware parallel pro-
gramming model for heterogeneous architectures that allows programmers to
easily develop application compatible with different types of nodes. Moreover,
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Figure 3.2: Example of the Task Graph of a complex
application

since applications may be developed by domain experts with limited knowledge
of parallel computing, the programming model needs to be simple and hide all
the complexities of shared memory management and resources management. To
this intent, the libmango library has been proposed to achieve the aforemen-
tioned challenges [49].

MANGO applications are made up of different tasks, called kernels, com-
piled to be executed on heterogeneous nodes that are characterized by different
architecture and specifics. This tasks can exchange data between each others
through shared memory. To represent the application and all the dependencies
between the tasks, libmango uses Task graphs, that are directed acyclic graphs
where the vertices are the tasks while the directed edges indicates the execution
dependencies between operations. In Figure 3.2 we can see an example of an
application formed by 5 tasks. Each task is a separate unit of work which is able
to pass the result of its execution to one or more dependent tasks. In the figure
we represent with rectangles the buffers through which the data exchange takes
place.

The creation of kernel and the synchronization is obtained through two ab-
straction layers: one placed at the host-side and one at the device-side. We will
present the two layers while showing two samples from the Mangolibs reposi-
tory: GIF_ANIMATION for the host-side layer and GIF_FIFO for the device-
side one.
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3.3.1 Host-side layer

The host-side low-level runtime (HLR) provides an interface to access the func-
tionality of the accelerators from code running on a general purpose node (GN),
normally CPU-based. Moreover, the HLR provides functionalities and data
structures that can be used to represent and manipulate kernels. The layer is
in charge of initialize all the service to allow kernel communication and deploy-
ment. Programming wise, the initialization routine is provided by the BBQCon-
text that instantiates the Application controller and initializes the communi-
cation with the HN library. Once initialized the context, it is possible to create
for each application task a KernelFunction object that allows to load an
executable for a specific target architecture, as shown in Listing 3.1.

Listing 3.1: Initialization

1 mango_rt = new mango::BBQContext("gif_animation", "gif_animation") ;
2 auto kf_scale = new mango::KernelFunction() ;
3 auto kf_copy = new mango::KernelFunction() ;
4 ...
5 # ifdef GNEMU
6 kf_scale−>load( scale_kernel_file_path ,mango::UnitType::GN, mango::FileType::BINARY);
7 kf_copy−>load(copy_kernel_file_path , mango::UnitType::GN, mango::FileType::BINARY);
8 #else
9 kf_scale−>load( scale_kernel_file_path ,mango::UnitType::PEAK, mango::FileType::BINARY);

10 kf_copy−>load(copy_kernel_file_path , mango::UnitType::PEAK, mango::FileType::BINARY);
11 #endif

After having initialized the BBQContext and the KernelFunction objects,
the Task Graph of the application needs to be created, as shown in Listing 3.2.
In order to do that, all the buffers and kernels should be registered through the
context. Once registered all these elements, it is possible to generate the Task
Graph of the application and pass it to the resource allocation command, which
is the novelty core of the library. In fact, when the resource_allocation
function returns, the Task Graph contains all the information about the resource
allocation without the intervention of the developer. At this point the application
is almost ready to start.

Listing 3.2: Kernels and buffers registration

1 auto kscale = mango_rt−>register_kernel(KSCALE, kf_scale, {B1}, {B2});
2 auto kcopy = mango_rt−>register_kernel(KCOPY, kf_copy, {B2}, {B3});
3 ...
4 auto b1 = mango_rt−>register_buffer (B1, SX∗SY∗3∗sizeof(Byte), {HOST}, {KSCALE});
5 auto b2 = mango_rt−>register_buffer (B2, SX∗2∗SY∗2∗3∗sizeof(Byte), {KSCALE}, {KCOPY,

KSMOOTH});
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6 auto b3 = mango_rt−>register_buffer (B3, SX∗2∗SY∗2∗3∗sizeof(Byte), {KCOPY, KSMOOTH},
{HOST});

7

8 tg = new mango::TaskGraph({kscale, kcopy, ksmooth}, { b1, b2, b3 }) ;
9 mango_rt−>resource_allocation(∗ tg ) ;

As last step before launching the application, the list of the kernel argu-
ments needs to be defined and the input buffers initializated. Once done that,
the start_kernel method triggers the execution of the task and it returns a
completion event that can be used to wait for the end of kernel execution (see
Listing 3.3).

Listing 3.3: Initialization

1 argB1 = new mango::BufferArg(b1);
2 argB2 = new mango::BufferArg(b2);
3 argB3 = new mango::BufferArg(b3);
4 argSX = new mango::ScalarArg<int>(SX);
5 argSY = new mango::ScalarArg<int>(SY);
6 argSX2 = new mango::ScalarArg<int>(SX∗2);
7 argSY2 = new mango::ScalarArg<int>(SY∗2);
8

9 auto argsKSCALE = new mango::KernelArguments({argB2, argB1, argSX, argSY }, kscale);
10 auto argsKCOPY = new mango::KernelArguments({argB3, argB2, argSX2, argSY2}, kcopy);
11 auto argsKSMOOTH = new mango::KernelArguments({argB3, argB2, argSX2, argSY2}, ksmooth);
12

13 b1−>write(in);
14

15 auto e1=mango_rt−>start_kernel(kscale , ∗argsKSCALE);
16 e1−>wait();
17

18 auto e2=mango_rt−>start_kernel(kcopy, ∗argsKCOPY);
19 e2−>wait();
20

21 auto e3=mango_rt−>start_kernel(ksmooth, ∗argsKSMOOTH);
22 e3−>wait();

3.3.2 Device-side layer

At device (e.g., acceleratiors. . . ) stand point, the device-side low-level runtime
support (DLR) provides synchronization mechanisms and allows the device to
perform memory mapping of buffers that are allocated in the shared memory
generating virtual addresses [49]. In particular, the synchronization is obtained
through the functions mango_wait and mango_write_synchronization.
The former allows the kernel to wait for a specific event value while the latter
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Figure 3.3: libmango integration with BarbequeRTRM

allows to write to an event a value. In the Listing 3.4, the kernel_function
waits that input buffer is ready to be read and output buffer ready to be written,
makes the computation and notify the host that the buffers contain the result of
the kernel execution.

Listing 3.4: Kernel function and synchronization

1

2 void kernel_function ( uint8_t ∗out , uint8_t ∗in , int X, int Y, mango_event_t e1, mango_event_t
e2){

3 for ( int i=0; i<4; i++) {
4 mango_wait(&e1, READ);
5 mango_wait(&e2, WRITE);
6 scale_frame(out , in , X, Y);
7 mango_write_synchronization(&e1, WRITE);
8 mango_write_synchronization(&e2, READ);
9 }

10 }
11

12 void scale_frame( uint8_t ∗out , uint8_t ∗in , int X, int Y){
13 // perform computation
14 }
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3.3.3 Integration with BarbequeRTRM

In order to integrate libmango programming model with the BarbequeRTRM
daemon, the Programming Model Synchronization Layer (PMSL) was built. This
layer provides functionalities to synchronize the execution of the application, and
its tasks, with the management actions of the BarbequeRTRM daemon. More-
over, it provides an abstraction of the resource assignment problem.

As shown in Figure 3.3, the MANGO application is interfaced with the PSML
through the Application Controller. This controller, initialized by the BBQCon-
text class, is in charge of providing a bridge between the two frameworks.
During initialization of the application controller, an instance of the Execution
Synchronizer class is created providing an execution context for the AWM. The
execution synchronizer will wait on the onSetup until the initialization is com-
pleted and the MANGO application has provided the task graph description, so
that the PMSL can forward it to the BarbequeRTRM daemon to make the re-
source allocation. After that, the daemon executes the allocation policy and then
returns the task graph object, enriched with all information needed for alloca-
tion, to the PMSL. The PSML forwards the task graph generated to the appli-
cation and the execution synchronizer enters the onConfigure phase waiting
for kernel execution. Once received the mapping information, the application
can initialize buffers, load the kernels and it is able to start the kernels with
the start_kernel method. The onConfigure function starts a thread for
each kernel executed to monitor its execution time and throughput, then the
execution synchronizer enters the execution phase with the onRun function.
The onMonitor function will collect data retrieved from the control thread
spawned in the onConfigure and send it to the resource manager for profil-
ing purposes. Finally, the onRelease function, when all kernels terminate,
releases all the assigned resources.

3.4 The BeeR Framework

The Beer Framework [50] extends the libmango capabilities to allow dis-
tributed embedded devices, connected together through the network, to partic-
ipate in the execution of an application. The framework allows a client appli-
cation to choose where to execute his tasks both leveraging the resources of the
nodes distributed across the network or launching tasks on heterogeneous nodes
connected through PCI express link. In order to do that, a simple client-server
architecture (Figure 3.4) is adopted. One of the strengths of BeeR is that the
server does not need to link the MANGO library, thus, the user does not need to
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build the MANGO framework for each device architecture. This allows to save
time but also simplifies portability because MANGO library may not be easy to
port to different architectures due to the long list of dependencies.

3.4.1 Framework architecture

Client and server are connected via TCP and exchange messages through a sim-
ple protocol. The client sends a message to the server and receives a response
containing the result of the operation and optional messages regarding the exe-
cution of the command.

The BeeR server is the component in charge of managing the execution of a
kernel on a device and it is executed as a daemon on the device itself. As soon
as the server receive a new connection, it instantiates a new Task object that
will manage all the incoming request assigning a separated thread for each con-
nection. Inside the thread, the kernel execution is handled by the Subprocess
class. This object takes the binary sent by the client and runs the binary code on
a separate process. Moreover, as we seen in the previous section, the MANGO
programming model exchanges data between different kernels running on dif-
ferent nodes through buffers allocated on a shared memory. The BeeR server
instantiate a Buffer object for each kernel buffer. This class manages a shared
memory reference for a specific buffer, identified by an id and a size, accessing
memory through the POSIX shared memory API. The data is saved using C++
string class in order to be easily serialized and transferred using BeeR mes-
sages. About the client, libmango was extended with a new Device class
that represents a remote instance of the BeeR daemon and provides functions to
communicate with remote kernel. The remote device object is initialized by pro-
viding the host and port of the remote endpoint. Finally, a dedicated DLR library
has been developed in order to implement base synchronization mechanism be-
tween tasks.
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CHAPTER4
The Use-Case Application

This chapter presents the design and implementation of the use-case Fog appli-
cation, which leverages the BarMan framework described in the previous chapter
and the OpenCV library. Section 4.1 presents the use-case application. In Sec-
tion 4.2, we present the application structure and the workflow followed during
the development. Then, in Section 4.3 we analyze in depth the MANGO kernels
developed, presenting some code snippet of the most important parts. Finally, in
Section 4.4 we present how the kernels share data between each others.

4.1 Smart Surveillance use case

We decided to realize an application that could fully exploit the potentials of
the BarMan framework, starting from one of the Fog simulated use cases pro-
posed by Gupta et al. in the iFogSim presentation paper [51]. In their work,
they have analyzed two possible application scenarios: a human-vs-human on-
line game and an intelligent surveillance system through distributed camera net-
works. These examples aim at showing the potential benefits introduced by a
distributed and cooperative infrastructure in real-world scenarios.

The human-vs-human game runs as a smartphone application and involves
augmented brain-computer interaction. To this purpose, each player needs to
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wear a EEG headset that is connected to its smartphone. The application per-
forms real-time processing of the EEG signals sensed and calculates the brain
state of the user. On the smartphone display, the game shows all the players on
a ring surrounding a target object. Each player can exert an attractive force onto
the target in proportion to his level of concentration. To win the game, a player
should try to pull the target toward himself.

Instead, the intelligent surveillance system aims at coordinating multiple cam-
eras to supervise a given area. Furthermore, the system alerts the user in case of
events, which may demand attention. When the smart camera detects motion
in its view, it starts sending a video stream to the application. The application
locates the moving object in the video stream and initiates the tracking. Tracking
of moving objects is done by constantly tuning the Pan-Tilt-Zoom (PTZ) param-
eters of the cameras to obtain the best view of all the tracked objects. Moreover,
in the event of detection of an event of interest, the application notifies the system
user and sends captured video streams to him.

While the former scenario has the only requirement of real-time processing, a
situation similar to the latter use case presents multiple requirements and allows
us to fully exploit the capabilities of our framework such as:

• Low-latency computation: for an effective surveillance parameters of the
application need to be tuned in real-time. This requires low-latency com-
putation on the captured image;

• High bandwidth usage: security cameras continuously send captured video
frames for processing. It is necessary to handle such a large amount of data
basing on the network capability of the devices;

• Heavy processing: being image analysis a computationally intensive it’s
important to correctly choose where deploy the intensive tasks.

4.2 Application model and development workflow

Gupta et al. in their work identified the surveillance system as formed by the
following modules, as schematized in Figure 4.1:

• Motion detection: this module is embedded inside the smart cameras used
in the case study. It reads the raw video streams captured by the camera
to find motion of an object. If motion is detected, the video stream is
forwarded to the object detection module;

• Object detection: this module receives video streams in which motion has
been detected. The module extracts the moving object from the video
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Figure 4.1: Original smart surveillance application

streams and compares them with previously discovered objects. In case
the detected object has not been in the area before, tracking is activated
and object coordinates are calculated;

• Object tracker: this module receives the last calculated coordinates of the
currently tracked objects and computes an optimal PTZ configuration of
all the cameras in order to capture the objects in the most effective manner.
Once the computation is completed, PTZ informations are send to PTZ
module;

• PTZ control: this module runs on each smart camera and adjusts the phys-
ical camera to conform to the optimal PTZ parameters;

• User interface: the application presents a user interface by showing the
video streams containing each tracked object.

Starting from this application model, we have decided to tailor the use case to
our needs and make some changes. First of all, we have considered the surveil-
lance system as formed by only one camera. Secondly, we have also removed
the PTZ control module and made some modifications on modules behaviour.
Lastly, we have removed the constraint on where the module has to physically
be placed. With that in mind, after having developed a multi-threaded version to
test the feasibility of the application, we develop a task-based application using
OpenCV library for all the image processing tasks. The resulting application is
formed by the following kernels as shown in Figure 4.2:
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Video
stream

Motion
detector

Object
classifier

User 
interface

Object 
tracker

Figure 4.2: Sequential smart surveillance application

• Motion kernel: this module reads the video streams to find motion of an
object. The video stream and the bounding boxes of object found in motion
are forwarded to the Classifier kernel;

• Classifier kernel: this module receives video streams and motion informa-
tion and performs object classification over the current frame. After the
classification task is completed, motion information are compared with the
results of classification in order to determine which objects are in motion.
After that, bounding boxes and class information of each object are sent to
the Tracker kernel.

• Tracker kernel: this module is in charge of tracking the moving object in
the scene. It receives a series of object detections from the Classifier kernel
and use that to track the objects;

• GUI kernel: the application presents a simple user interface where the
video stream is shown and the tracked objects are enclosed in rectangles
showing their id and class.

During the development, we noticed that most of the time needed to complete
a computation on a single frame was spent in the Object classifier kernel. For this
reason we started to think how to speed up the process. In the implementation,
the Motion detection kernel generates bounding boxes around the areas of the
image that are in motion and the Object classifier kernel uses these information
only to check which objects of the ones detected and classified are in motion.
Analyzing the surveillance problem, we can notice that obtaining a fast detection
of something that is moving is more important than knowing what the moving
object is. Moreover, the information about the type of an object is not relevant in
the tracking problem. For that reasons, as summarized in Figure 4.3, we decided
to develop a second version, which we will refer to as parallel version, where
the kernels were modified as follows:

• Motion kernel: this module works as in the sequential version but the result
of the computation is forwarded to the Tracker kernel;
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Figure 4.3: Parallel smart surveillance application

• Tracker kernel: it receives a series of bounding boxes from the Motion ker-
nel and use that to track the objects. If the Classifier kernel is available, the
Tracker kernel sends to it the current frame and the objects that are being
tracked with their id number. Then, also in case the Classifier kernel is
busy, the current frame and the objects tracked are send to the GUI kernel;

• Classifier kernel: this module receives current frame and objects informa-
tion and performs object classification over the current frame. After the
classification task is completed, motion information are confronted with
the tracked object in order to generate the pair < trackid, objectclass >.
Once done that, the pairs are sent to the GUI kernel;

• GUI kernel: the application presents a simple user interface where the
video stream is shown and the tracked objects are enclosed in rectangles
and their id and class are shown. The bounding boxes and ids are re-
ceived from the Tracker kernel while the class information are received,
once available, from the Classifier kernel.

4.3 Application kernels

4.3.1 Motion Kernel

The Motion kernel is in charge of reading the video stream and detect motion,
then it has to initialize the video stream reader and the background segmentation
model. To do that, we create an instance of cv::VideoCapture class pass-
ing the address of the video source, then we initialize a background subtractor
model. In our case we choose to use the Counting BackgroundSubtractor due
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Figure 4.4: Detailed operation of parallel version

to its performance with low spec hardware. Once the initialization is over, the
kernel is ready to process the frame of the video source, as reported in Listing
4.1.

Listing 4.1: Image pre-processing

1 cv :: VideoCapture video_in(video_stream) ;
2 float fps=video_in. get (cv :: CAP_PROP_FPS);
3 cv :: Ptr<cv::BackgroundSubtractor>

p_back_sub=cv::bgsegm::createBackgroundSubtractorCNT(fps∗1,true , fps∗60);

While in the sequential implementation the accuracy of this step is not really
important, in the parallel one we need that the kernel has to be able to correctly
identify objects that are moving, rejecting all the noise determined by light con-
dition and wind. For those reasons, it is important to adequately pre-process the
images before operating any motion detection techniques.

First of all, we resize the image in order to both reduce the duration and size
of image transfers and the time needed to operate over the image. Then, we apply
a bilateral filter, using cv::bilateralFilter function (details in Appendix
A.3.1), to the image in order to remove noise and enhance object border. Once
done that, we obtain a version of the image where all the object contours are very
sharp while the content is blurred, as we can see in Figure 4.5. Then we use that
image to update our background model through the apply method, obtaining a
mask of the foreground. All the steps are reported in Listing 4.2.
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Resized image Blurred image

Figure 4.5: Image preprocessing

Listing 4.2: Image pre-processing

1 cv :: resize (frame, frame_resized , cv :: Size(416,416) ) ;
2 cv :: bilateralFilter ( frame_resized ,frame_smoothed,9,200,200,cv :: BORDER_DEFAULT);
3 p_back_sub−>apply(frame_smoothed, mask);

Once obtained the foreground mask, we have to determine the bounding
boxes of the object detected as in motion. To do that, we need to firstly re-
move any possible noise from the mask created, then find the contours of the
objects and finally transform those contours into bounding boxes. The noise is
removed through some morphological operations like erosion and closure (for
details see Appendix A.3.2). An example of the obtainable results can be seen in
Figure 4.6. On the obtained mask we apply the function cv::findContours
in order to get sets of points that identifies the contours of the objects present in
the mask. Then we transform the sets of points into bounding boxes, discarding
all the rectangles that have area lower than the limit set by the user. At the end of
these operations, the bounding boxes and the resized frame are ready to be sent
to the next kernel (see Listing 4.3).

Listing 4.3: Generating rectangles around moving objects

1 cv :: erode(mask,mask,cv::Mat()) ;
2 cv :: morphologyEx(mask,mask,cv::MORPH_CLOSE,cv::Mat());
3 std :: vector<std :: vector<cv:: Point> > contours ;
4 std :: vector<cv::Vec4i> hierarchy ;
5

6 cv :: findContours (mask, contours , hierarchy , cv :: RETR_EXTERNAL,
cv::CHAIN_APPROX_SIMPLE);
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Resized frame Backgroud subtraction result Final mask

Figure 4.6: Background subtraction and mask denoising

7

8

9 // build rectangles around moving objects
10 std :: vector<std :: vector<cv:: Point> > contours_poly ( contours . size () ) ;
11 std :: vector<cv::Rect> filtered_rects ;
12 for ( size_t i = 0; i < contours . size () ; i++ ){
13 cv :: approxPolyDP( contours[ i ], contours_poly [ i ], 7, true ) ;
14 cv :: Rect bb=boundingRect( contours_poly[ i ] ) ;
15 if (bb.area ()>min_area)
16 filtered_rects .push_back(bb);
17 }

4.3.2 Classifier Kernel

The Classifier kernel is in charge of taking the current frame and classify all the
object contained in it. The kernel behavior differs, based on the version of the
application, only in how the results of the neural network are treated and in what
the kernel receive/send and from/to who.

During kernel initialization, both version loads a pre-trained neural network
using the OpenCV dnn module(for details see Appendix A), where the weights
and configuration files are provided by the user. We decided to make the applica-
tion compatible with YOLO (Appendix B) and MobileNetV2(Appendix C) with
the aim of allowing to load different networks depending on the performances
desired and the hardware limitations. Moreover being the OpenCV Net object
wrapped inside our abstract class NeuralNetwork, it is possible to easily add
support to various neural networks, even custom ones, without touching the ker-
nel code.

Once initialized the net object, in the sequential version of the application, the
kernel waits for frame and bounding boxes of moving objects from the Motion
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IOU =
Intersection

Union

Figure 4.7: Intersect over Union (IoU) is a metric that
allows us to evaluate how similar two bounding boxes are

kernel. Otherwise, in the parallel version it waits for the frame and pair formed
by track id and the bounding box of the object tracked from Tracker kernel.
In both cases, then it processes the frame with the neural network. Once the
frame is passed through the neural network the results are interpreted depending
on the output format of the neural network, in order to obtain a sequence of
pairs < bounding_box, class_id >. After that, the sequential version simply
iterates over the results calculating the Intersection-Over-Union (IOU) with each
bounding box of moving objects. If the IOU is greater of a threshold decided by
the user, the object is marked as in motion and forwarded to the Tracker kernel.
Instead, the parallel version takes the results and the bounding boxes received by
the Tracker kernel and applies to them the Hungarian algorithm [52], also known
as Kuhn–Munkres algorithm, in order to create the pairs< track_id, class_id >.
Those pairs are then forwarded to the GUI kernel.

4.3.3 Tracker Kernel

The Tracker kernel is in charge of tracking the objects that are in motion using a
tracking-by-detection approach inspired to the SORT algorithm [53]. The track-
ing is based on the assumption that if we apply an object detector to a high frame-
rate video stream, detections of the same object in subsequent frames overlap
almost perfectly. So, to track an object we just have to solve the assignment
problem between old detections and new detections, updating the position of the
tracked objects accordingly. We can see an example in Figure 4.8, in frame (a)
we are tracking three objects, each one characterized by a bounding box and an
id. As soon as we process a new frame, new detections, identified in frame (b)
by red rectangles, are generated. We can see that there are detections that almost
overlap perfectly with the objects that we are tracking: those new detections are
most likely the new position of the tracked objects. The detections that does not
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Figure 4.8: Multi-Object tracking example

overlap with any of the already tracked objects are most likely new objects, so
we have to assign to each of them an id and start to follow it. As result of those
two steps, in (c) we update the positions for objects 1, 2 and 3 and start to track,
assigning id 4, the unpaired detection. In our solution, we associate a Kalman
filter to each tracked object in order to further increase the IOU value between
new detection and old position. Morover, the presence of the Kalman filter helps
us to manage the situation in which the object is still in the scene but the object
detector fails to detect it.

Considering the kernel operations, for each frame we predict the position of
the already tracked objects, if any, using the Kalman filter. Then, we apply the
Hungarian algorithm to make the associations between the object tracked and the
new detection, generated by Motion kernel in parallel version and by Classifier
kernel in the sequential one, using IOU as a cost function.

Once the assignment is completed we update the tracks positions for each
new detection that has been paired. For each unpaired new detection, we create a
new track object with a new id and we initialize a new Kernel filter (Listing 4.4).
Then, for each unpaired track we update it with its Kalman filter prediction. If
the track has not been updated for 10 times in a row, the track is deleted and the
object is no more tracked.

Listing 4.4: Tracks update

1 Result result =makeBoundingBoxesPair(tracks, inputRects ,minIOU);
2 for (auto pair : result . getPairs () ){
3 tracks [ pair . first ]. update( inputRects [ pair .second]) ;
4 }
5

6 for (auto i : result . getUnPairedObjects () ){
7 tracks .push_back(Tracker( inputRects [ i ]) ) ;
8 }
9 for (auto i : result .getUnPairedTracks() ){

10 if (! tracks [ i ]. update () )

46



i
i

“output” — 2020/11/24 — 16:31 — page 47 — #61 i
i

i
i

i
i

4.3. Application kernels

Figure 4.9: Frame that is displayed to the user

11 tracks . erase ( tracks .begin ()+i) ;
12 }

Once the track update process is terminated, in both the application versions
the kernel sends the results to the GUI kernel. In the parallel version, the kernel
checks if the Classifier kernel is available and in that case it forwards the current
frame and objects positions and ids to it, in order to classify the objects that are
being tracked.

4.3.4 GUI Kernel

The GUI Kernel simply receives the information from the previous kernels and
shows the result of the whole application computation to the user, as reported in
Listing 4.5. The information are shown to the users in a very basic way. The
current frame is displayed in a window, rectangles of different colors are drawn
around the object and the pair < objectid, objecttype > is shown in the upper
side of the rectangle. In the parallel version it is possible that an object it is
currently tracked but not classified yet, in this case a question mark is shown
near the object id. All those elements are displayed using the methods offered
by OpenCV library as can be seen in the following piece of code. This module
can be adapted to run on different devices, smartphones included. In Figure 4.9
we can see an example of the image shown to the user.
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Listing 4.5: GUI drawing parallel version

1 for (auto t : tracks ){
2 int track_id =t . id ;
3 cv :: Rect boundingBox=t.rect ;
4

5 std :: string label ;
6 if ( class_ids . find ( track_id ) == class_ids .end() ){
7 class_ids . insert ( std :: pair<int , std :: string >( track_id , "?") ) ;
8 label =std :: to_string ( track_id )+" ?" ;
9 }else{

10 label =std :: to_string ( track_id )+" "+ class_ids . at ( track_id ) ;
11 }
12

13 cv :: Scalar color=colors [ t . id%20];
14

15 cv :: rectangle (frame,boundingBox,color,2) ;
16 cv :: putText (frame, label ,
17 cv :: Point (boundingBox.x,boundingBox.y+15,
18 cv :: FONT_HERSHEY_SIMPLEX,1,cv::Scalar(0,0,255));
19 }
20 cv :: imshow("Out",frame);

4.4 Kernels communications

The communications between kernels are managed by the BeeR framework. As
seen in Section 3.4, once the kernel is loaded on a device, the host node and the
device can communicate through BeeR-messages. For each pair of task that need
to communicate, the host will spawn a thread that will manage the communica-
tion, exploiting BeeR buffers and the possibility to wait and trigger state change
on events. In Listings 4.6 and 4.7, we can see an example of synchronization and
data exchange between the Motion kernel and Tracker kernel.

When the Motion kernel has finished to process the frame, it starts to wait for
Host on a shared event. When the Host is ready, it writes the state READY on
the shared events and starts to wait for the data. Then, the Motion kernel writes
on the buffer the frame and waits for the reception confirmation from the Host
and so on. Supporting the Beer framework only fixed size buffers, the exchange
of objects like dynamic containers is performed sending the total number of the
objects and then sending one object at a time.

Once the communication between the Motion kernel and the Host is com-
pleted, the Host starts to forward the data received to the Tracker kernel using
the same communication pattern.
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Listing 4.6: Kernel side communication

1 // Motion kernel ready , wait for Host
2 mango_wait(&img_out_e,READY);
3

4 // Send frame to Host and wait for reception confirmation
5 memcpy(image_out,frame_resized.data,3∗416∗416);
6 mango_write_synchronization(&img_out_e,FRAME_SENT);
7 mango_wait(&img_out_e,FRAME_RECEIVED);
8

9 // Send number of detections that will be sent to Host
10 ∗num_objs= filtered_rects . size () ;
11 mango_write_synchronization(&nob_e,ARRAY_LENGHT);
12

13 for ( size_t i = 0; i < filtered_rects . size () ; i++ ){
14 // Send one detection to Host and wait for reception confirmation
15 memcpy(obj_out,& filtered_rects [ i ], sizeof (cv :: Rect)) ;
16 mango_write_synchronization(&obj_e,OBJ_SENT);
17 mango_wait(&obj_e,OBJ_RECEIVED);
18 }

Listing 4.7: Host side communication

1 // Host ready to receive frame
2 mat_out_event−>write(READY);
3

4 // Receive frame from Motion kernel and send reception confirmation
5 mat_out_event−>wait_state(FRAME_SENT);
6 (mat_out_buffer−>read(mat))−>wait();
7 mat_in_event−>wait_state(FRAME_RECEIVED);
8

9 // Receive number of detections that will be sent by Motion kernel
10 num_out_event−>wait_state(ARRAY_LENGHT);
11 (num_out_buffer−>read(&num_rect))−>wait();
12

13 for ( int i = 0; i < num_rect; i++ ){
14 // Receive one detection and send reception confirmation
15 rect_out_event −>wait_state(OBJ_SENT);
16 ( rect_out_buffer −>read(&obj))−>wait();
17 rect_out_event −>write(OBJ_RECEIVED);
18 }
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CHAPTER5
Tasks Allocation Policies

This chapter presents two variants of the LAtency Versus Accuracy (LAVA) pol-
icy. While the first one is a basic implementation that considers a wired network
scenario, the second implementation is enhanced taking into account the possi-
bility of wireless links between the devices.

5.1 The LAVA Policy

This Section presents the design and implementation of the LAtency Versus Ac-
curacy (LAVA) policy. In the following parts of the section the task scheduling
problem for our application is analyzed and formally defined. Then, in Section
5.3 we present the LAVA policy to solve the previously defined problem.

5.1.1 Problem statement

Analyzing the parallel version of our application, we can identify three main
QoS metrics: detection accuracy, detection latency and tracking latency.

The nature of the application’s structure makes complex to find an optimiza-
tion problem that could take into account all the metrics at once. This rea-
son combined with the fact that detection accuracy and latency are exclusively
bounded to the DNN chosen, lead us to split the tasks scheduling problem in two
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steps. Firstly, we choose a DNN that meets and balance the accuracy and latency
requirements. Then, we solve the task allocation problem aiming to minimum
latency. In the following subsections we will formally define the two problems
and explain our design choices.

DNN choice

As aforementioned, the first problem that we need to solve is the choice of a
DNN that meets the QoS desired by the user. We decided to characterize each
DNN with two parameters: an, βn,r. The former indicates the accuracy of the
DNN n registered on the COCO dataset, while the latter is used as latency in-
dicator of the DNN n when executed on a resource type r. This parameter is
defined as 1 − Latencyn,r

maxx∈N Latencyx,r
for each resource type available on the devices.

For simplicity, we assumed that the value βn,r does not depend on the device
used for the latencies measurements.

Depending on the usage scenario, it may be more important to achieve mini-
mal latency rather than high accuracy in classifying objects in the video stream.
For that reason we introduce the weight γ (defined in 5.2), whose value is be-
tween 0 and 1, that allows to balance the latency and the accuracy of the DNN
depending on the requirements.

All the parameters are then inserted in the objective function 5.1 where yn is
the optimization variable that indicates if the n−DNN is selected. The function
takes into account both DNN mean latency and accuracy in order to select the
best DNNs available depending on the desired behaviour expressed by the value
of γ. In particular, with γ = 0 we will obtain the DNN with maximum accuracy,
while with γ = 1 we will obtain the once with minimum latency.

We can see that in our objective function we have considered only the param-
eter βn,CPU . This choice was driven by the fact that we wanted to consider the
worst possible scenario regarding latency.
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minimize
∑
n∈N

(1− (γ × βn,CPU + (1− γ)× an))× yn (5.1)

subject to
∑
n∈N

yn = 1

yn ∈ {0, 1} ∀n ∈ N
γ ∈ [0, 1] (5.2)

an ∈ [0, 1] ∀n ∈ N
(5.3)

βn,r ∈ [0, 1] ∀n ∈ N,∀r ∈ R
(5.4)

N = Set of DNNs available

R = {CPU,ACC}

Tasks allocation

Once we have identified the best DNN n̂, we can find the tasks placement that
guarantees minimum application’s latency. First of all we introduced some pa-
rameters to characterized each task and device. As far as concerns tasks, we
introduced the followings:

• init: assumes value 1 if task t needs input of type i ∈ I, 0 otherwise;

• outot : assumes value 1 if task t needs output of type o ∈ O, 0 otherwise;

• st: assumes value 1 if task t can be accelerated, 0 otherwise;

• creqt,d,r: quantity of CPU’s resources needed by task t when executed on de-
vice d using resource type r. The parameter concerns exclusively require-
ments on CPU resources due to two main reasons. Firstly, we assumed that
the accelerator present on a device can only accelerate one task at a time,
then representing requirements on ACC type resources would be redundant
due to the presence of st. Secondly, in our tests we found that even if a task
is executed on an accelerator, some of the workload may still be supported
by the CPU;

• nt: assumes value 1 if task t needs to use a DNN, 0 otherwise.

• eαd
t,d,r: is the latency of task t on device d with load αd using resource type

r. The latencies are computed at design time, while the αd term is chosen
at run-time based on the actual load of the device.
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Instead, each devices is characterized by:

• in′i
d : assumes value 1 if device d has the possibility to provide input of type

i ∈ I to tasks, 0 otherwise;

• out′od : assumes value 1 if device d has the possibility to provide output of
type o ∈ O to tasks, 0 otherwise;

• s′d: assumes value 1 if device d has an accelerator available, 0 otherwise;

• ctotald : total number of cores of resource of CPU type on device d;

• cfreed : number of free cores of resource of CPU type on device d;

Then, we introduced Lt,d,r(5.6) that is the estimated latency for task t on device
d considering resource type r and the load to which the device d is subjected.
The load on device d is computed as shown in equation 5.7 considering the ratio
between the free resources of type CPU and the total number of them. Finally,
we introduced the variable xt,d,r that represents if the task t is executed using
resource type r on device d. The cost function to be minimized (5.5) is simply
the sum of all the Lt,d,r.
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minimize
∑
t∈T

∑
d∈D

∑
r∈R

Lt,d,r × xt,d,r (5.5)

subject to
∑
d∈D

∑
r∈R

xt,d,r = 1 ∀t ∈ T

cfreed ≤ ctotald −
∑
t∈T

∑
r∈R

(xt,d,r × creqt,d,r) ∀d ∈ D

xt,d,r × init ≤ xt,d,r × in′i
d ∀t ∈ T, ∀d ∈ D,∀r ∈ R,∀i ∈ I

xt,d,r × outit ≤ xt,d,r × out′id ∀t ∈ T, ∀d ∈ D,∀r ∈ R,∀i ∈ I
xt,d,ACC × st × s′d = xt,d,ACC ∀t ∈ T, ∀d ∈ D∑
t∈T

xt,d,ACC ≤ s′d ∀d ∈ D

Lt,d,r = eαd
t,d,r × (1− nt × βn̂,r) (5.6)

αd = ceiling((1− cfreed

ctotald

)× 100) ∀d ∈ D

(5.7)

cfreed ≥ 0 ∀d ∈ D, ∀r ∈ R
xt,d,r ∈ {0, 1} ∀t ∈ T,∀d ∈ D, ∀r ∈ R
nt ∈ {0, 1} ∀t ∈ T
vt ∈ {0, 1} ∀t ∈ T
v′d ∈ {0, 1} ∀d ∈ D
gt ∈ {0, 1} ∀t ∈ T
g′d ∈ {0, 1} ∀d ∈ D
st ∈ {0, 1} ∀t ∈ D
s′d ∈ {0, 1} ∀d ∈ D
αd ∈ {0, 10, 25, 50, 75, 100} ∀d ∈ D
T = Tasks of the application

D = Devices available

I = Types of input

O = Types of output

R = {CPU,ACC}
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5.2 The LAVAnet Policy

The total execution time of a task is composed of its execution, reception of the
input data and transmission of the result. While the time needed for communi-
cation can be neglected in homogeneous wired networks, the presence of both
wireless and wired connections with different bandwidths makes it necessary to
estimate the input/output transfer times of tasks during scheduling to achieve la-
tency minimization. For that reason we proposed a second version of the policy
that can manage the presence of heterogeneous connections directly attached to
the host node.

5.2.1 Network characterization

As explained in Section 4.4, devices communicates between each other through
the node, called host, where the BarbequeRTRM instance is running. Due to the
fact that applications may needs to transfer relatively important amount of data
while achieving low latency, we consider only wireless connections where the
devices and the host are directly connected. The overhead of multi-hop com-
munication between the host and a wireless device could not be compatible with
strict requirements on latency while dealing with large ammounts of data. At this
regard, Chanho Jin et al. [54] investigated the possibility of real-time data trans-
mission of high-definition images for wireless medical, comparing the through-
put performance of Wi-Fi Direct to the conventional WLAN architecture. Their
work showed that data-rate transmission of WLAN architecture was not reli-
able due to the presence of multiple devices that could generate network load.
Instead, a dedicated solution as the Wi-Fi Direct was able to meet the latency
requirements of the real-time transmission.

To take into account the possibility of wireless links between the devices,
the host node can measure, for each wireless device, the available bandwidth
of the connection using network analysis tools like Iperf 1. Those measures are
repeated at regular time intervals and the estimates are updated using an expo-
nential average formula. In particular, for each wireless device we have:

Bup
d,n+1 = α×BW up

d,n + (1− α)×Bup
d,n

Bdown
d,n+1 = α×BW down

d,n + (1− α)×Bdown
d,n

Where BW up
d,n and BW down

d,n are the measured bandwidth of the link between the
host and device d at time n in both directions, while Bup

d,n+1, B
down
d,n+1 and Bup

d,n,

1https://iperf.fr/
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5.2. The LAVAnet Policy

Bdown
d,n are respectively bandwidth estimates at time n and n+1. The weight α ∈

[0, 1] controls the balancing between recent and past history in our prediction.
For what concerns wired connection delay, we decided to not consider them
because they are negligible if compared to the delays of wireless links.

5.2.2 Problem definition

Given the considerations of the previous paragraphs, the optimization problem
presented in Section 5.1.1 needs some adjustments. First of all, we need to add
the following parameters:

• dataint : maximum quantity of input data that the task t receives at each
iteration;

• dataoutt : maximum quantity of output data that the task t sends at each
iteration;

• wd: 1 if the device is wirelessly attached to the host node, 0 otherwise;

• Bup
d : bandwidth estimation of the communication link at schedule time

between host node and the device d;

• Bdown
d : bandwidth estimation of the communication link at schedule time

between the device d host node.

The parameters Bup
d , Bdown

d can be updated regularly by BarbequeRTRM as ex-
plained in Section 5.2.1.

Then, we need to modify the task latency function 5.6, obtaining the equation
5.8.

Lt,d,r = eαd
t,d,r×(1−nt×βn̂,r)+wd×[(

∑
t′∈T

∑
r∈R

xt′,d,r)×(
dataint
Bup
d

+
dataoutt

Bdown
d

)] (5.8)
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Chapter 5. Tasks Allocation Policies

5.3 Proposed solutions

We proposed a greedy policy to solve both the problems formally defined in the
previous section. The LAtency Versus Accuracy (LAVA) policy takes a list of
application tasks, a list of devices available, a list of DNNs and a QoS weight
and returns a sub-optimal solution. In Algorithm 1 we can see the pseudocode
of the LAVA base version policy. First of all, we select the optimal DNN based
on γ value and 5.1 cost function. Then, from line 10, we iterate over tasks
list that has been ordered in descending order depending on the value t.res ×
(1 + t.screen + t.video). For each task we search for the device and resource
that will minimize latency, also taking into account the slowdown that the task
could lead to tasks, if any, that have already been scheduled on that device. We
decided to not discard devices on which the available resources are not enough
to satisfy task requirements. Doing so, we will be able to schedule all the tasks.
However, in the search for the best placement for the task, the fulfillment of its
requirements on resources is taken into account in order to make the best choice
possible. Once we have found an assignment for each task, the algorithm ends
and the scheduling informations are returned. In Algorithm 2, we can see the
pseudocode of the LAVAnet policy that differs from the wired version only for
the device cost solution.
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5.3. Proposed solutions

Algorithm 1 Choice of the best task placement depending on the resources available
LAVA (Tasks,Devices,Nets, γ)

inputs : Tasks list of application tasks; Devices list of available devices;
Nets non-empty lists of DNNs; γ QoS weight;

/* Find best DNN according to requirements */
1 min_cost← 1
2 n̂← 0
3 foreach net ∈ Nets do
4 dnn_cost← 1− (γ × net.latency_multiplier + (1− γ)× net.accuracy)
5 if dnn_cost ≤ min_cost then
6 min_cost← dnn_cost
7 n̂← net

8 end
9 end

/* After dnn choice we search for best tasks
assignments */

10 schedule← {}
/* Sort tasks in descending order according to t.res× (1 +

t.screen+ t.video) */
11 sort_tasks(task)
12 foreach t ∈ Tasks do
13 assignment← {}
14 min_d_cost← −1
15 foreach d ∈ Devices do
16 if d.is_compatible(task) then
17 foreach r ∈ device.resources do
18 if r.available then
19 r_cost← t.latency(d, r, n̂)
20 if (min_d_cost ≤ 0)or(r_cost ≤ min_d_cost) then
21 min_d_cost← r_cost
22 assignment← create_assignment(t, d, r, t.req(r.type));
23 end
24 end
25 end
26 end
27 end
28 if min_d_cost < 0 then
29 return ERROR
30 else
31 allocate(assignment)
32 schedule.push(assignment)

33 end
34 end
35 return schedule
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Chapter 5. Tasks Allocation Policies

Algorithm 2 Choice of the best task placement depending on the resources available
LAVAnet (Tasks,Devices,Nets, γ)

inputs : Tasks list of application tasks; Devices list of available devices;
Nets non-empty lists of DNNs; γ QoS weight;

/* Find best DNN according to requirements */
36 min_cost← 1
37 n̂← 0
38 foreach net ∈ Nets do
39 dnn_cost← 1− (γ × net.latency_multiplier + (1− γ)× net.accuracy)
40 if dnn_cost ≤ min_cost then
41 min_cost← dnn_cost
42 n̂← net

43 end
44 end

/* After dnn choice we search for best tasks
assignments */

45 schedule← {}
/* Sort tasks in descending order according to t.res × (1 +

t.screen+ t.video) */
46 sort_tasks(task)
47 foreach t ∈ Tasks do
48 assignment← {}
49 min_d_cost← −1
50 foreach d ∈ Devices do
51 if d.is_compatible(task) then
52 foreach r ∈ device.resources do
53 if r.available then
54 r_cost← t.latency(d, r, n̂)
55 if d.iswireless() then
56 r_cost← r_cost+ d.linkdelay(t.dataup, t.datadown)
57 end
58 if (min_d_cost ≤ 0)or(r_cost ≤ min_d_cost) then
59 min_d_cost← r_cost
60 assignment← create_assignment(t, d, r, t.req(r.type))
61 end
62 end
63 end
64 end
65 end
66 if min_d_cost < 0 then
67 return ERROR
68 else
69 allocate(assignment)
70 schedule.push(assignment)

71 end
72 end
73 return schedule
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5.3. Proposed solutions

5.3.1 Tasks and devices characterization

To use LAVA policy with our application we need to compute and set the value
of the parameters defined in Section 5.1.1 for tasks and devices. Fist of all, we
define the sets:

• T = {Motion, Classifier, T racker,GUI};

• N = {Y OLO,MobileNetV 2};

• D = {Odroid, Jetson, Freescale1, F reescale2};

• I = {V IDEO};

• O = {SCREEN}.

Then, we define DNN parameters:

• aY OLO = 0.55;

• aMobileNetV 2 = 0.22;

• βY OLO,CPU = 0 and βY OLO,ACC = 0;

• βMobileNetV 2,CPU = 0.9 and βMobileNetV 2,ACC = 0.65;

Instead, as far as concerns tasks we have:

• inV IDEOMotion = 1, inV IDEOt = 0 for all other tasks t ∈ T;

• outSCREENGUI = 1, outSCREENt = 0 for all other tasks t ∈ T;

• sClassifier = 1, sMotion = 1 and st = 0 for all other tasks t ∈ T;

• nClassifier = 1, nt = 0 for all other tasks t ∈ T;

• dataint and dataoutt are shown for all tasks as in Table 6.3. The explanation
of how we obtained those values is reported in Section 6.2.3;

• eαd
t,d are computed for all tasks on all devices and resources as reported in

Table 5.3.

• creqt,d,r are computed from the results in Table 5.3 as the quantity of resources
needed by a task t on device d and resource type r, in order to have an
estimated latency that is less the 1.5 times the estimated latency when the
device d load is 0% with a minimum assignable value of 50. The values
are shown in Table 5.4.

Finally, as far as concerns devices we have:
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Chapter 5. Tasks Allocation Policies

Task vt gt st nt
Motion 1 0 1 0

Classifier 0 0 1 1

Tracker 0 0 0 0

GUI 0 1 0 0

Table 5.1: Values of the tasks parameters

Device v′d g′d s′d ctotald,CPU

Freescale1 1 1 0 400

Freescale2 1 0 0 400

Odroid 0 1 0 400

Jetson 0 0 1 400

Table 5.2: Values of the devices parameters

• in′V IDEO
d = 1, for d ∈ {Freescale1, F reescale2}, in′V IDEO

d = 0 for all
other devices d ∈ D;

• out′SCREENd = 1, for d ∈ {Freescale1, Odroid}, out′SCREENd = 0 for all
other devices d ∈ D;

• sJetson = 1, sd = 0 for all other devices d ∈ D;

• ctotald,CPU = 400 for all the devices d ∈ D.
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5.3. Proposed solutions

Odroid 0% 10% 25% 50% 75% 100%

Motion kernel 54.04 54.66 56.33 62.90 88.80 189.781

Classifier kernel 2022.62 2292.45 3034.47 3984.49 7764.74 9687.35

Tracker kernel 0.13 0.1229 0.10 0.10 0.10 0.17

GUI kernel 5.19 5.14 4.96 6.2604 15.09 23.74

Jetson 0% 10% 25% 50% 75% 100%

Motion kernel (CPU) 19.18 22.50 30.61 36.54 41.20 42.141

Motion kernel (GPU) 10.01 10.70 10.80 12.4 17.8 23

Classifier kernel (CPU) 2932.62 3310.68 4130.79 5001.77 5933.91 5770.17

Classifier kernel (GPU) 287 215.22 208 208 210 226.80

Tracker kernel 0.14 0.14 0.14 0.14 0.14 0.16

GUI kernel 6.75 6.78 6.85 7.23 7.79 16.08

Freescale 0% 10% 25% 50% 75% 100%

Motion kernel 210.18 222.95 242.29 347.76 678.24 846.09

Classifier kernel 38881.97 44136.19 54469.3 79937.4 166112 184479

Tracker kernel 0.47 0.47 0.47 0.49 0.51 0.91

GUI kernel 24.05 24.47 25.23 27.12 36.66 50.31

Table 5.3: eαd
t,d for each board and task (in ms)

Device Motion kernel Classifier kernel Tracker kernel GUI kernel
Freescale, CPU 250 250 50 150

Jetson, CPU 350 250 50 50

Jetson, GPU 150 50 − −
Odroid, CPU 150 350 50 150

Table 5.4: Values of resource requirements for each task and device
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CHAPTER6
Experimental Results

In this section, we will present the experiments carried out on our applications.
First of all, in Section 6.1, we introduce the Fog Nodes cluster used during ex-
perimental evaluation. Then, in Section 6.2 we present the tests’ organization
and we discuss the results.

6.1 Experimental Setup: the SmokyGrill

The experimental evaluation has been performed on the SmokyGrill, a real clus-
ter equipped with different embedded boards, in order to reproduce an heteroge-
neous distributed hardware setup, as shown in Figure 6.1 and Figure 6.2. First of
all, we deployed and run the BarbequeRTRM on a Banana Pi BPI-R1, that acts as
the starting node of the test application. It is equipped with a 1.0 GHz A20 ARM
Cortex A7 dual-core processor and 1 GB DDR3 of RAM. Then, we deployed the
BeeR daemons on the interconnected boards to distribute the application’s tasks.
In particular, we used the following devices:

A) two NXP Freescale i.MX6Q SABRE development boards, featuring an
ARM 32 bit Cortex A9 1.2 GHz quad-core CPU and 1 GB DDR3 SDRAM;
the default cpu_freq governor is set to performance with boosting
disabled;
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Chapter 6. Experimental Results

Figure 6.1: Picture of the SmokyGrill Fog cluster

BananaPI

freescale1

192.168.4.101

freescale2

192.168.4.102

jetson

192.168.4.103

odroid-h2

192.168.4.107

embers.deib.polimi.it

Figure 6.2: Scheme of the connected boards of the SmokyGrill cluster

B) one Jetson TX2 module with a 2.0 GHz quad-core ARM 64 bit Cortex A57

and 8GB LPDDR4 memory; it is also equipped with 256 CUDA cores; the
default cpu_freq governor is set to schedutil;

C) one x86 Odroid-H2, equipped with an Intel 2.5 Ghz quad-core processor
and 4GB of dual-channel DDR4 memory; the default cpu_freq governor
is set to powersave with Intel boost enabled.

We decided to maintain the default CPU governors to simulate a real world
scenario in which different boards can have proper power settings.

From the networking point of view, the boards has been interconnected with
a Gigabit Ethernet switch.

6.2 Experimental Evaluation

The experimental evaluation of our application consisted of three main steps.
At first, we tested the application on a desktop computer exploiting libmango
emulation mode with the purpose of measuring application latency and under-
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Figure 6.3: Some frames from the video used

standing how to improve the performances. Then, after some optimizations on
the application workflow, we analyzed the execution latency of the kernels on the
three cluster boards. Finally, we executed the distributed application leveraging
BarbequeRTRM and Beer frameworks, testing the policy on multiple configura-
tions. In this regard, we compared the performance improvements with respect
to the monolithic execution considering only a single low-end node. For all the
tests, we used a short video taken from the VIRAT dataset [55], simulating the
stream coming from a surveillance camera. The video used, recorded at 30 FPS
and 1920x1080 pixels resolution, was taken by a security camera placed above a
parking lot. In the segment used in our tests, that counts a total number of 506
frames, we can see two small groups of standing people in the bottom left corner
of the image. As soon as a car enters the scene from the top right corner, two
people break away from one group and start walking towards the approaching
car. After some seconds, one person of the other group starts to follow the two
walking people. The video ends with the car stopping. In Figure 6.3, we can see
some frames taken from the video.

6.2.1 Local execution and application speedup

As aforementioned, we fed our application with the test video. We executed
the application 10 times using libmango emulation mode, annotating for each
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Motion Kernel Classifier Kernel Tracker Kernel GUI Kernel Application
Mean latency sequential version(ms) 13.91 381.47 0.05 3.88 384.12

Mean latency parallel version(ms) 15.05 655.89 0.07 2.52 22.41

Table 6.1: Mean latencies in libmango emulation mode

iteration the mean processing times of both single kernels and the whole appli-
cation. To analyze the worst case, we decided to use YOLO as the back-end
neural network since it is the computationally heaviest network supported by our
application.

As anticipated in Section 4.2, the first version of the application was very
slow and it was only able to process 2.6 FPS by mean. As we can see from the
results reported in Table 6.1, the application latency is dominated by the Clas-
sifier Kernel. Thus, we decided to detach the Classifier Kernel from the main
computation flow to reduce the application execution time, as explained in Sec-
tions 4.2 and 4.3. This new approach produced better results for what concerns
application latency, allowing us to reduce it by more than 20 times, as we can see
from the comparison in Figure 6.4. Regarding the kernel-level performance, as
we can notice in Figure 6.5, the kernels’ execution times are almost the same in
the two versions except for the Classifier Kernel whose latency has almost dou-
bled in parallel version. This increment is due to the fact that OpenCV by default
automatically parallelizes the neural network execution according to the number
of CPU’s threads. Considering the local execution, this behavior could reduce la-
tency in the sequential version, where the Classifier Kernel is performing its task
when all the other processes are waiting. However, it could be counterproductive
in the parallel one where all the kernels are performing their tasks at the same
time. However, this latency difference between the two version is due only to
the execution of all the kernels on the same machine. Moreover, OpenCV offers
the function cv::setNumThreads(int nthreads) in order to manually
limit the maximum number of threads that can be spawned by library functions.
Future versions of the application could expose this function to allow the re-
source manager to configure threads available to the tasks scheduled on the same
device.

Regarding the functional behaviour, this optimization have two main draw-
backs. Although both versions perform multiple object tracking using the track-
ing-by-detection approach, the detections used by the optimized version are pro-
duced in the Motion Kernel using a background subtractor and detect portions of
pixels of the scene that are in motion. On the contrary, the detections produced
by the neural network in Classifier Kernel are the objects recognized by the clas-
sifier. Consequently, the first method could be sensible to lighting noise and lead
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Figure 6.4: Application latency of both sequential and
parallel implementations using libmango

Sequential Parallel0

2

4

6

8

10

12

14

16

La
te

nc
y 

(m
s)

13.91
15.05

Motion Kernel

Sequential Parallel0

100

200

300

400

500

600

700

381.47

655.89

Classifier Kernel

Sequential Parallel0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.05

0.07

Tracker Kernel

Sequential Parallel0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 3.88

2.52

GUI Kernel
Average kernels processing times

Figure 6.5: Kernels latency of both sequential and parallel
implementations using libmango

to poor performance in scenarios where there are a lot of overlapped moving
objects, which would be seen as a single object. However, thanks to the image
pre-processing steps presented in Section 4.3, the empirical results are however
acceptable. Moreover, due to the fact that the Classifier Kernel does not process
all the frames, the object classification results are available only seconds after
the object detection. This could be a problem in some very small environments
where it is important to immediately identify moving objects.

6.2.2 Execution on the SmokyGrill

In the next step, we focused on profiling the execution times of the kernels on the
cluster’s boards processing the same video used in the libmango experiment.
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Figure 6.6: Latency of single kernels on SmokyGrill boards

In Figure 6.6, we can see the results of the execution of the Motion kernel,
Tracker kernel and GUI kernel. The Freescale board, due to its low computing
resources, registered the worst execution times in all the kernels. Instead, Odroid
board showed the best performances in Tracker and GUI kernels. Finally, Jetson
registered the best performance in the execution of Motion kernel, either by using
only the CPU or by taking advantage of GPU acceleration, and slightly worse
performance than Odroid in the Tracker and GUI kernels.

For what concerns Classifier kernel, as explained in Section 4.3.2, we decided
to make the application compatible with YOLO and MobileNetV2. The choice
of these two particular neural networks was dictated by the fact that we want
to have the possibility, considering the available resources, to launch the kernel
with networks that are more or less computationally demanding. In particular,
although YOLO is more precise than MobileNet, we chose the MobileNet because
is the state-of-the-art for mobile object classification and require less resources.
Indeed, the former DNN obtains a mean Average Precision(mAP) of 0.55 on
COCO Dataset while the latter scores 0.22 on the same dataset.

We decided to run some tests to evaluate the latency of the two neural net-
works on the three cluster boards obtaining the results showed in Figure 6.7. As
we expected, MobileNetV2 obtained better results in terms of latency than YOLO
on all boards. However, the mean number of objects detected, over the 7 actually
present in the scene, was 1.18 by the MobileNetV2 and 4.33 by YOLO.

For the Jetson board, we evaluated both the utilization of the CPU and GPU
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Figure 6.7: Latency of YOLO V3 and Mobilenet V2 on
SmokyGrill boards (Classifier kernel)

separately. At this regarding, the GPU accelerated execution on Jetson of both
DNN registered the best latencies, recording a 10 times reduction for YOLO and
2 for MobileNetV2 with respect to the CPU execution. Moreover, we can see that
the Freescale board, due to its limited resources, performed poorly with both the
DNN while the Odroid board showed similar performances to the ones of the
Jetson when not accelerated.

After the collection and analysis of the Classifier kernel performances, we ran
some more test to see how much the concurrent execution of the Classifier Kernel
with another kernel would affect its performance on the Jetson and Odroid boards
(the Freescale boards were excluded due to the poor performances detected in the
previous tests). For this purpose, in order to see how sensible is the Classifier
Kernel to the presence of another kernel, we ran as second kernel the Tracker
kernel, that is the least resource demanding between the other kernels. This
choice was made in order to put us in the best case scenario and see the minimum
slowdown expected when running multiple tasks on a single board. As we can
see from Figure 6.8, despite the modest resource usage of the Tracker kernel,
the execution time of the Classifier kernel got worse as happened in the local
tests. In particular, the execution times of both the boards are slower of about
50% with respect to the single kernel execution. This shows the importance
of considering the device’s current load during tasks allocation and expected
latency computation. Thus, as previously reported in Chapter 5.1, we measured
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Figure 6.8: Latency of Classifier kernel and Tracker kernel
on single SmokyGrill boards

the latencies of the tasks executed on the various boards at different CPU load
levels. The results are visible in Table 5.3.

6.2.3 Network and Framework overheads

In order to evaluate the LAVAnet policy, we need to know the maximum amount
of data that the kernels exchange between each others. The size of the exchanged
data, except for the classifier kernel, depends on the contribution of three terms.
The first term is fixed and it depends on the size of the frame used by the applica-
tion, while the second term depends on the maximum amount of objects present
and tracked on the frame and the data structures that contain them. Finally, the
third term has a fixed size and consist of an integer number representing the num-
ber of the objects present and tracked on the frame. This last term is required by
the BarMan framework in order to allow sending multiple objects. Therefore
once annotated the size of all the data structures, we run the application to de-
termine the maximum quantity of tracking related objects exchanged for frame
processed, obtaining the results reported in Table 6.2. After that, we used the data
collected to determine dataint and dataoutt parameters for each task t as reported
in Table 6.3.
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Sender Receiver Data sent Max
Motion kernel Tracker kernel frame+ detections× 16B + int_size 519168B + 5× 16B + 4B = 519252B

Tracker kernel Classifier kernel frame+ tracks_info× 28B + int_size 519168B + 7× 28B + 4B = 519368B

Tracker kernel GUI kernel frame+ tracks_info× 20B + int_size 519168B + 8× 20B + 4B = 519332B

Classifier kernel GUI kernel class_info× 8B + int_size 5× 5B + 4B = 44B

Table 6.2: Amount of data exchanged by the kernels for each frame

Motion Classifier Tracker GUI
dataint 0 519368 519252 519376

dataoutt 519252 44 1038700 0

Table 6.3: Max input/output data expressed in Bytes

6.2.4 Policies execution

After the presentation of the LAVA policies in Chapter 5.1, we decided to test
the task allocation in multiple scenarios with different device load levels and
availability. In detail, for each combinations we annotated the type of resources,
their initial load level and the presence of accelerators. Moreover, the devices
has the input and output capabilities described in Section 5.3.

Preliminary considerations

As mentioned in Sections 4.3.2 and 6.2.2, our application supports two DNNs:
YOLO and MobileNet. The former is more precise than the latter at the expense
of higher detection latency. Consequently, using MobileNet will minimize the
detection latency while using YOLO will maximize the detection accuracy. As
explained in the Chapter 5.1, the choice of the DNN is governed by the weight
γ ∈ [0, 1]. A value of γ = 1 selects the net that will minimize the latency and
a value of γ = 0 the net that will maximize the detection accuracy, intermediate
values will choose the DNN with the desired trade-off between accuracy and
latency. Having only two DNNs, we decided to use only integer values of the γ
weight in the policy evaluation, given the fact that using fractional values would
have been meaningless in a binary decision problem.

For what concerns devices availability, the choice of those devices config-
urations aims at covering the following three categories of scenarios, that are
characterized by:

• the availability of multiple low-end and multiple high-end devices with
accelerators;

• the availability of multiple low-end and some high-end devices with possi-
bly accelerators;

• the availability of only multiple low-end devices.
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Chapter 6. Experimental Results

Devices
D0 Freescale1

D1 Freescale2

D2 Jetson

D3 Odroid

Tasks
T0 Motion

T1 Classifier

T2 Tracker

T3 GUI

DNNs
N0 Y OLOv3

N1 MobilenetV 2

Table 6.4: Values of the devices,tasks and DNNs parameters

Table 6.4 shows the different values of devices, tasks and DNNS name con-
vention used in the results visualization.

The LAVA policy execution

Considering the base version of the LAVA policy, we selected for the first sce-
nario’s category the configurations S0 and S1. As shown in Table 6.5, those
represents the best possible scenarios where computational heavy tasks can be
executed on high-end devices. In those two configurations, all the boards are
available and with low load levels, moreover in S0 the Jetson board has the GPU
accelerator available. From the scheduling results in Table 6.6, we can see that in
both the scenarios, the policy scheduled the Motion task on one Frescale board
(due to the Camera constraints), the Classifier task on the Jetson (leveraging the
accelerator in S0) and the remaining two tasks on the Odroid board.

The second category includes the configurations S2, S3 and S4 and repre-
sents more realistic scenarios where multiple low-end devices are available while
the high-end devices may be unavailable. The execution of the policy produced
the same schedule for S2 and S4 scenarios due to the similar configuration. Hav-
ing the policy the latency minimization as goal, only the Motion task is scheduled
on a Freescale board while all the other tasks are placed on the more computa-
tionally powerful Odroid. Instead, in scenario S4, we can see that due to the lack
of input and output capabilities of the Jetson board, the GUI task and Motion
tasks were scheduled on the Freescale while the Classifier and Tracker on the
Jetson.

Finally, the last category includes the scenarios where only low-end devices
are available, like S5. In those scenarios is important that the policy is able to
evenly distribute the load across the devices. As we can see in the results, the
policy distributed the tasks between the two Freescale boards.

The LAVAnet policy execution

Considering the extended version of the LAVA policy, we decided to test the
task allocation adding the possibility of also having wireless connections. We
selected, among the various scenarios, the results of those reported in Table 6.7,
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6.2. Experimental Evaluation

γ D0 D1 D2 D3

S0 0 {0%, CPU} {0%, CPU} {0%, CPU}, {GPU} {0%, CPU}
S1 0 {50%, CPU} {25%, CPU} {25%, CPU} {50%, CPU}
S2 1 {25%, CPU} {10%, CPU} N/A {25%, CPU}
S3 0 {50%, CPU} N/A {10%, CPU}, {GPU} N/A

S4 1 {50%, CPU} {25%, CPU} N/A {25%, CPU}
S5 1 {10%, CPU} {50%, CPU} N/A N/A

Table 6.5: LAVA Scenarios description

DNN D0 D1 D2 D3
Pipeline

Latency(ms)
Classification
Latency(ms)

S0 N0 {} {T0, 0} {T1, 1} {T2, 0}, {T3, 0} 215.44 287.00

S1 N0 {} {T0, 0} {T1, 0} {T2, 0}, {T3, 0} 228.31 3310.68

S2 N1 {} {T0, 0} N/A
{T1, 0}, {T2, 0}
{T3, 0} 246.86 247.89

S3 N0 {T0, 0}, {T3, 0} N/A {T1, 1}, {T2, 0} N/A 922.38 215.22

S4 N1 {} {T0, 0} N/A
{T1, 0}, {T2, 0}
{T3, 0} 246.86 247.89

S5 N1 {T0, 0}, {T3, 0} {T1, 0}, {T2, 0} N/A N/A 248.77 4413.62

Table 6.6: LAVA Scheduling results

annotating the type of resources and their initial load level and the presence of
accelerators. Moreover, the devices, as well as the input and output capabilities
described in Section 5.3, can be connected to the host through a wired connec-
tion or through 802.11n or 802.11ac interface. Given the fact that the cluster
boards do not have wireless capabilities yet, we simulated a symmetric wireless
connection assuming as maximum bandwidth, for each type of interface, the one
used by Kaewkiriya [56], so a total bandwidth of 145 Mbits for 802.11n interface
and 870 Mbits for 802.11ac interface.

As we can see in Table 6.7, the devices availability configurations considered
for the LAVAnet policy are similar to the ones used for the base version but with
the addition of the interfaces used by the devices to connect to the host. The
choice of the connections aims at covering both scenarios where connections are
only wireless and where connections are both wired and wireless. For the first
category we have configurations S0, S1 and S5, in which all the devices are
connected through a wireless connection but with different device availability
and load levels. In particular, configurations S0 and S2 consider scenarios where
there are both high-end and low-end devices, while S5 consider the situation
where only low-end devices are available. Instead, the remaining configurations
shows heterogeneous scenarios for what concerns both processing capabilities
and network connections.

Considering the task scheduling results in Table 6.8, we can see that we ob-
tained results similar to the base version except for the configuration S1. In this
configuration, we can see that task T0 was placed on device D0, although D1
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Chapter 6. Experimental Results

γ D0 D1 D2 D3

S0 0
{0%, CPU}
802.11n

{0%, CPU}
802.11n

{0%, CPU}, {GPU}
802.11ac

{0%, CPU}
802.11ac

S1 0
{75%, CPU}
802.11ac

{50%, CPU}
802.11n

{10%, CPU}
802.11n

{50%, CPU}
802.11n

S2 1
{10%, CPU}

802.11n
{10%, CPU}

Wired
N/A

{10%, CPU}
Wired

S3 0
{10%, CPU}
802.11ac

N/A
{10%, CPU}, {GPU}

Wired
N/A

S4 1
{10%, CPU}

Wired
N/A

{75%, CPU}, {GPU}
802.11ac

N/A

S5 1
{10%, CPU}
802.11ac

{25%, CPU}
802.11n

N/A N/A

Table 6.7: LAVAnet Scenarios description

DNN D0 D1 D2 D3
Pipeline

Latency(ms)
Classification
Latency(ms)

S0 N0 {} {T0, 0} {T1, 1} {T2, 0}, {T3, 0} 215.68 287.07

S1 N0 {T0, 0} {} {T1, 0} {T2, 0}, {T3, 0} 228.57 3310.78

S2 N1 {} {T0, 0} N/A
{T1, 0}, {T2, 0}
{T3, 0} 246.86 247.89

S3 N0 {T0, 0}, {T3, 0} N/A {T1, 1}, {T2, 0} N/A 247.71 215.22

S4 N1 {T0, 0},{T3, 0} N/A {T1, 1}, {T2, 0} N/A 247.58 79.55

S5 N1
{T0, 0}, {T2, 0}
{T3, 0} {T1, 0} N/A N/A 300.82 4413.72

Table 6.8: LAVAnet Scheduling results

has more resources available, thanks to the faster wireless connection. In a sim-
ilar situation, the basic version, would have chosen device D0 as we can see
from S1 configuration in Table 6.6. Instead, similar results of the other config-
urations could depend on the difference in terms of computing power between
the boards or due to the lack of computing power of the Freescale boards, that
makes scheduling preferable on more performing devices, even if those devices
are connected wireless, as we can see in S4.

Monolithic vs Distributed comparison

Finally, to show the benefits of the distributed application execution, we mea-
sured the frame processing time of the multi-threaded entire application executed
only on the Freescale board. Measurements have been taken considering the best
scenarios possible, where the board does not have any external load and DNN
MobileNetV2 selected.

In Figure 6.9, we can see a comparison between the obtained results and
some distributed configurations analyzed during policies evaluation. As we can
see, distributed execution can reduce the times compared to running all mod-
ules in parallel on a single board, unless the boards present have few resources
available or can not fulfill task requirements, as in the configuration S3. Instead,
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6.2. Experimental Evaluation

Monolithic S5 LAVAnet S0 LAVA0
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Figure 6.9: Comparison of pipeline execution times

in configurations with multiple boards available, such as S5 (LAVAnet) and S0
(LAVA), our approach can improve the execution time by 53% and 66% respec-
tively.
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CHAPTER7
Conclusions and Future Works

In this chapter we discuss some final points about the work done and how our
solution could be improved. In Section 7.1, we present some general consider-
ations about the results obtained. Finally, Section 7.2 describes some improve-
ments that could be the subject of future works.

7.1 Conclusions

In this work, we explored the design and implementation of a video surveillance
use-case application and the relative allocation policies in a Fog computing sce-
nario, using the BarMan framework.

We evaluated the implementation of the application both by exploiting the
emulation capabilities of the BarMan framework and through the SmokyGrill
cluster, analyzing the performance differences of the single tasks executed on
the various devices.

Regarding the proposed policies, we investigated the results of their execu-
tion in multiple scenarios characterized by available devices and differences in
their initial load. The results showed that the policies are able to correctly find
the best task placement considering the constraints of the application and the
resources availability.
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Chapter 7. Conclusions and Future Works

Finally, we evaluated the differences between the monolithic and the dis-
tributed execution of the application. The results obtained showed that the dis-
tributed execution can improve the execution times even by 66%, when multiple
devices are available and application requirements do not force tasks to run on
devices with high initial load percentages.

7.2 Future Works

Fog environment is characterized by the presence of multiple heterogeneous de-
vices, some of which may be battery-powered. Right now, our proposed policies
search for the tasks scheduling that would minimize latency without consider-
ing that some devices could have limitation on the power consumption. Future
implementations of those policies could address the problem through the intro-
duction of models able to estimates the energy-related cost of the task-device
mappings, leveraging tasks and devices frequency profiles. Moreover, tasks and
devices profiles could be used to estimate the execution time of the various tasks
for each device, thus eliminating the need for them to be calculated at design-
time.

Another problem that needs to be addressed is the run-time application re-
configurability. In the current state, we have to restart the application each time
that we need to reschedule the tasks on the available devices, losing the current
objects tracking state. In future works, the application task graph needs to be
dynamic, thus allowing the resource manager to reschedule the tasks to meet the
specified QoS levels without any discontinuity of application operation. Finally,
it would be interesting to investigate the impact of tuning application’s specific
parameters according to the status and the constraints of the devices.
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APPENDIXA
OpenCV Library

A.1 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vi-
sion and machine learning software library officially launched by Intel Research
in 1999. The first public alpha was released in 2000 during the IEEE Conference
on Computer Vision and Pattern Recognition and the first version was released
in 2006. Nowadays, the OpenCV library contains more than 2500 optimized al-
gorithms, which includes a comprehensive set of both classic and state-of-the-art
computer vision and machine learning algorithms. It has C++, Python, Java and
MATLAB interfaces and supports Windows, Linux, Android and Mac OS [57].
Since OpenCV 2.0, the library is divided into several modules dedicated to a
specific task or set of problems. In the following sections we will briefly discuss
the modules used in this thesis.

A.2 Core module

The core module contains all the basic data structures and basic functions used
by all the other modules in the library.
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Appendix A. OpenCV Library

OpenCV

core imgproc

video

dnn

stitching

calib3d

ml

shape

imgcodecs

features2d

flann

highgui

objdetect

photo

superres videostab

viz

Figure A.1: OpenCV modules

A.2.1 Mat

The fundamental structure in computer vision is images. which are a two dimen-
sional view of a three-dimensional world. A digital image is a numeric repre-
sentation of a 2-D image as a finite set of digital values, which are called pixels.
In turn, pixels consist of numeric values that represents measurements of the
light intensity for the considered wavelength or for its range depending on the
color space used. To store images inside computers memory, OpenCV provides
the Mat class, an n-dimensional numerical single-channel or multi-channel ar-
ray. The class is basically divided into two parts: matrix header (that contains
information about the matrix such as size, storing method and pointer to ma-
trix content) and the actual matrix content. The matrix header has a constant
size while the matrix dimension may vary from image to image. To avoid of
making unnecessary copies of potentially large images OpenCV uses a reference
counting system. Each Mat object has its own header, when a matrix is shared
between two Mat objects their matrix field simply point to the same address.
Moreover, the copy operators will only copy the headers and the matrix pointer,
not the data itself.
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A.3. imgproc module

A.3 imgproc module

The imgprocmodule contains image-processing functions such as image filter-
ing, geometrical image transformations, color space conversion and histograms.

A.3.1 Image filtering

The goal of using filters is to modify or enhance image properties and/or extract
valuable information from the pictures, such as edges, corners, and blobs. Filter-
ing of an image is accomplished through an operation called convolution. Con-
volution is a neighborhood operation in which each output pixel is the weighted
sum of neighboring input pixels. The matrix of weights is called kernel, also
known as the filter. Characteristics of the kernel will determine the type of filter-
ing.

Image blurring

Image blurring is achieved by convolving the image with a low-pass filter kernel.
It is useful for removing noise. Blurring actually removes high frequency con-
tent from the image resulting in edges being blurred when this filter is applied.
OpenCV provides mainly four types of blurring techniques: average filtering,
gaussian filtering, median filtering and bilateral filtering.

Average filtering: this is done by convolving the image with a normalized box
filter. It simply takes the average of all the pixels under kernel area and replaces
the central element with this average;

Gaussian filtering: differently from a box filter, which consists of equal filter
coefficients, this type uses a Gaussian kernel. It results to be highly effective in
removing Gaussian noise from the input image;

Median filtering: it computes the median of all the pixels under the kernel
window and the central pixel is replaced with this median value. This is highly
effective in removing the so called "salt-and-pepper" noise. The kernel size must
be a positive odd integer;

Bilateral filtering: all the aforementioned types of filter have the tendency to
blur edges. Instead, bilateral filter combines a Gaussian filter in the space do-
main, with one Gaussian filter component which is a function of pixel intensity
differences. The Gaussian function of space makes sure that only the pixels that
are "spatial neighbors" are considered for filtering. Instead, the Gaussian compo-
nent applied in the intensity domain ensures that only those pixels with intensities
similar to that of the central pixel are included. As a result, this method preserves
edges while blurring the remaining parts of the image.
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Appendix A. OpenCV Library

A.3.2 Morphological operations

Morphology is a broad set of image processing operations based on shapes. In a
morphological operation, each pixel in the image is adjusted based on the value
of other pixels in its neighborhood. [58] This behaviour is obtained convolving
a structuring element, that is a matrix that identifies the pixel in the image being
processed and defines its neighborhood. The choice of the structuring element
and its anchor pixel determines the result of the transformation. Dilation and
erosion are the two basic operators in the area of morphological transformations
and, together with closing operation, they are the transformations used inside the
motion tracking kernel.

Dilation

The main effect of a dilation operation on a binary image is to expand the bound-
ary regions of the foreground object. Given an image and a kernel, the latter is
scanned through the image and the maximal pixel value overlapped by the kernel
is computed. Then, the image pixel in the anchor point position is replaced with
that maximal value. The operation is synthesizable with the following formula:

dst(x, y) = max
(x′,y′):element(x′,y′) 6=0

src(x+ x′, y + y′)

Erosion

The basic idea of this operation is like soil erosion: it erodes away the boundaries
of foreground object. Like dilation, erosion operation is obtained scanning the
kernel over the image, with the difference that in this case the operator takes
into account the minimal pixel value overlapped by the kernel. The operation is
synthesizable with the following formula:

dst(x, y) = min
(x′,y′):element(x′,y′) 6=0

src(x+ x′, y + y′)

Closing

The two aforementioned basic morphological operations can be combined to
obtain different results. One possibility is to use dilation followed by erosion,
operation known as closing, with the result of removing holes or gaps present
in the object while keeping unchanged the initial object size. The operation is
synthesizable with the following formula:

dst = close(src, element) = erode(dilate(src, element))
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A.4. video module

Original image

Closed image Eroded imageDilated image

Figure A.2: Results of dilation, erosion and closing on a
binary image

A.4 video module

Video module contains all the necessary tools for video-analysis including back-
ground subtraction, motion estimation and object-tracking algorithms.

A.4.1 Background subtraction

Background subtraction is a common technique for generating a foreground
mask by using the images gathered by a static camera. This method calculates
the foreground mask by performing a subtraction between the current frame and
a background model. The background model, once initialized, is updated at each
new frame in order to adapt to any possible changes in the scene. OpenCV li-
brary offers various types of background subtractor methods.

A.5 dnn module

Since OpenCV 3.1, a Deep Neural Network(DNN) module is included in the
library. This module contains API to: (a) create new neural networks layers, (b)
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Appendix A. OpenCV Library

Figure A.3: Background subtraction [1]

construct and modify comprehensive neural networks from layers and (c) load
serialized networks models from various frameworks (e.g. Caffe, TensorFlow,
Torch and Darknet). The application described in this thesis makes use of only
the last functionality, in fact, dnn module utilities are used to load a pre-trained
network, those presented in Appendix B and C, and read the results of the net
forward pass.
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APPENDIXB
YOLO Neural Network

B.1 YOLO: you only look once

YOLO (You Only Look Once), is a neural network for object detection presented
in 2015 [2]. The object detection task consists in determining the location on
the image where certain objects are present, as well as classifying those objects.
While this task is performed instantly and without too much effort by humans,
it is not simple to obtain similar results using computers. The object detection
problem can be solved using either machine learning-based approaches or deep
learning-based approaches. Regarding machine learning approaches, firstly it is
necessary to define image features, then using some technique to do the classifi-
cation. Instead, deep learning techniques are able to perform detection without
defining features and they are typically based on convolutional neural networks
(CNN).

More recently, deep-learning based approaches, like recursive convolution-
ary neural network(R-CNN), use region proposal methods to first generate po-
tential bounding boxes in an image and then run a classifier on these proposed
boxes. After that, bounding boxes are refined eliminating duplicate detections
and rescoring the boxes based on other objects in the scene. These approach is
slow and hard to optimize because each individual component of the pipeline
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Appendix B. YOLO Neural Network
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Figure B.1: YOLO net architecture [2]

must be trained separately.
Conversely, YOLO network reduces object detection to a single regression

problem. It takes the image pixels and returns bounding boxes coordinates and
class probabilities, by processing the image only once and using a single convo-
lutional network. This unified model has the following benefits over traditional
methods of object detection:

• Velocity: YOLO, considering the detection as a regression problem, is ex-
tremely fast. The first version of YOLO was able to process 45 frames per
second on a Titan X GPU allowing process real-time video processing;

• Global view: unlike sliding window and region proposal-based techniques,
YOLO takes into account the entire image during training and test time so
it implicitly encodes contextual information about classes;

• Generalization; YOLO learns general representations of objects so it is less
likely to make errors when applied to new domains or unexpected inputs.

B.2 Net structure and operation principles

The net architecture is inspired by the GoogLeNet [59] model for image clas-
sification. The first version of YOLO was formed by 24 convolutional layers
followed by 2 fully connected layers.

As mentioned above, the object detection is performed through a single pass
of the image inside the neural network. First of all, the input image is divided
into a S × S grid of cells, if the center of an object falls into a grid cell, that cell
is responsible for detecting that object. Each cell predicts B bounding boxes,
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B.3. YOLOv2

Figure B.2: YOLOv2 net architecture [3]

which consist of components: (x, y, width, height, confidence). The (x, y) co-
ordinates represent the center of the box relative to the grid cell location while
the width and height are predicted relative to the whole image. Confidence,
instead, is a score that reflects how confident is the model about the presence
of an object inside of the considered bounding box. Moreover, each cell also
compute C conditional class probabilities P (Classi|Object confidence). All the
predictions will be encoded as a S × S × (B × 5 + C) tensor. The first YOLO
version was evaluated on PASCAL VOC [60] with S = 7, B = 2, C = 20.

It is worth to be mentioned that this approach has three main problems. First
of all, the network can detect a maximum of S × S = 49 objects due to the
fact that each grid cell can predict only one object. This lead to difficulties in
identifying small object or group of objects. Secondly, an object can be located
in more than one grid so the model may detect the same object multiple times.
Lastly, YOLO struggles to generalize to objects in new or unusual aspect ratios
or configurations since it learns to predict bounding boxes from data.

While the second problem can be solved using non-max suppression to re-
move redundant results, the first and last problem cannot be faced without chang-
ing how the network works.

B.3 YOLOv2

Due to the aforementioned problems the second version of YOLO was released
in 2016 [61] with the name of YOLO9000. The main upgrades consisted in:

• High resolution classifier: the original YOLO trains the classifier network
at 224 × 224 and increases the resolution to 448 × 448 for detection. In
YOLOv2 the classification network is trained with images at the full 448×
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Appendix B. YOLO Neural Network

448 resolution for 10 epochs on ImageNet [62];

• Anchor boxes: YOLO predicts the coordinates of bounding boxes directly
using fully connected layers. In YOLOv2 the fully connected layers are
removed and anchor boxes are used instead;

• Multi-scale training: training phase uses multiple image scales randomly
choosed every 10 batches;

• Fine-grained feature: YOLOv2 predicts detections on a 13 × 13 feature
map, helping localizing small objects while being efficient even for large
objects;

• New network architecture: with YOLOv2 the previous network architec-
ture is substituted by Darknet-19. The new network has 19 convolutional
layers and 5 maxpooling layers.

This YOLO revision using multi-scale training, solves the object generaliza-
tion problem and, including fine grained features, increases also average preci-
sion for small object.

B.4 YOLOv3

In 2018 the third version of YOLO was released [63] with the aim of increase
accuracy. At this regard, the following changes have been made:

• Improved bounding box prediction: YOLOv3 uses independent logistic
classifiers for each class instead of a regular softmax layer like in previ-
ous versions. This allows to multi-label classification;

• New underlying network: a new network called Darknet-53 is used for
performing feature extraction is used. It is formed by 53 convolutional
layers and is more accurate but slower than Darknet-19;

• Improved abilities at different scales: YOLOv3 predicts boxes at 3 differ-
ent scales. The features are extracted from each scale by using a method
similar to that of feature pyramid networks.
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APPENDIXC
MobileNets

C.1 MobileNet

MobileNet is a class of efficient neural networks presented in 2017 by Howard
et al. [4] and intended to be used for mobile and embedded vision applications.
As outlined in Appendix B, the general trend has been to make deeper and more
complicated networks in order to achieve higher accuracy at the cost of network
size and speed. However, in many real world applications such as robotics and
self-driving car the recognition tasks need to be carried out within reasonable
times and often on a computationally limited device. For these reasons, the work
of Howard primarily focuses on optimizing for latency but also yield small net-
works, allowing a model developer to choose a network that matches the resource
restrictions of their application.

C.2 Net structure and operation principles

The MobileNet structure is built on depthwise separable convolutions except for
the first layer which is a full convolution. All layers are followed by a batch-
norm and ReLU nonlinearity with the exception of the final fully connected layer
which has no nonlinearity and feeds into a softmax layer for classification, the
full architecture can be seen in Figure C.1.
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Appendix C. MobileNets

Figure C.1: MobileNet architecture [4]

The depthwise convolutions are made up of two layers: depthwise convolu-
tions and pointwise convolutions. The depthwise convolutions are used to apply a
single filter for each input channel (input depth) while the pointwise convolution,
that is a simple 1× 1 convolution, is then used to create a linear combination of
the output of the depthwise layer. Depthwise convolution is extremely efficient
and requires about 10 times less computation than standard convolutions at only
a small reduction in accuracy [4].

Even if the base MobileNet architecture is already small and low latency, a
specific use case or application may require the model to be smaller and faster.
In order to comply with stricter requirements two parameters were introduced.
The first parameter α is called width multiplier and it has the task of reducing
a network uniformly at each layer, for a given layer and width multiplier α, the
number of input channelsM becomes αM and the number of output channelsN
becomes αN , reducing computational cost and the number of parameters by α.
Width multiplier can be applied to any model structure to define a new untrained
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C.3. MobileNetV2

Figure C.2: MobileNetV2 architecture [5] where t is the
expansion factor, c the number of output channels, n the

repeating number and s the stride

smaller model with a reasonable accuracy, latency and size trade off. The second
hyper-parameter introduced to reduce the computational cost of a neural network
is a resolution multiplier ρ that is applied to the input image and subsequently the
internal representation of every layer is reduced by the same multiplier with the
effect of reducing computational cost by ρ2. In practice, the ρ value is implicitly
set through the input resolution.

C.3 MobileNetV2

MobileNetV2 [5] builds upon the ideas from MobileNet, using depthwise separa-
ble convolution as efficient building blocks. However, the new version introduces
two new features to the architecture: linear bottlenecks between the layers and
shortcut connections between the bottlenecks. Overall, the MobileNetV2 models
are faster for the same accuracy across the entire latency spectrum. In partic-
ular, the new models use half operations, need 30% fewer parameters and are
about 40%faster on a Google Pixel phone than MobileNetV1 models, all while
achieving higher accuracy.
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