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Abstract

In this thesis, a theoretical analysis of the causes and e�ects of charge
density waves (CDW) in metals is presented, focusing on 1D systems.
CDWs are the periodic spatial modulation of the charge density that oc-
curs in some metals at T = 0 K. The origin of CDWs varies depending on
the dimensionality of the metal itself. In 1D, it is mainly due to the Fermi
surface nesting, while in 2D and 3D, the origin ought to be found in the
electron-phonon coupling, which anyway plays a role in 1D systems as
well. Furthermore, CDWs induce instabilities in the lattice too. As men-
tioned, the ions might redistribute following di�erent processes. Firstly,
a Peierls transition may take place: the unit cell dimension doubles, the
number of atoms in it doubles as well, and a metal-insulator transition
occurs. The transition is energetically favored when the reduction in en-
ergy due to the opening of the gap overcomes the energy needed for the
lattice relaxation. Secondly, a Kohn instability might appear: a phonon
mode softens due to the lack of screening ability of the electron gas for
a certain wave vector. A lower temperature enhances the depth of the
dip. When the phonon frequency becomes negative, the mode is unsta-
ble and a structural relaxation takes place. A metal-insulator transition
is not guaranteed by this latter structural relaxation. Afterwards, a �rst-
principle analysis is performed using the ABINIT software. The analysis
is organized as follows: the electron band structure is computed as well
as the phonon dispersion relation. Comparing the two, the occurrences
of Kohn anomalies and their relation with the Fermi surface nesting is
portrayed. Afterwards, electron-phonon coupling matrix elements are
calculated and related to the properties of the Kohn anomalies.





Introduction

The concept of charge density waves (CDW) is present in the scienti�c
literature since 1950s [1] and the �rst suggestion that metallic systems at
low temperatures are not stable dates back to the 1930s [2]. CDWs have
�rst been observed in one-dimensional (1D) structures. Then, proofs of
the appearance of CDWs in two- (2D) and three-dimensional (3D) materi-
als have been reported as well [3,4]. Nonetheless, since almost a century,
this is an open question, it is still discussed. A great deal of work is still
carried out both on theoretical and experimental sides in order to get a
full understanding of the problem [5].

A �rst issue is the origin of charge density waves in metals which
varies depending on the material and on its dimensionality. As we shall
see, the CDWs appear in 1D materials because of an instability of the
Fermi surface, while in 2D and 3D materials the origin lies in the electron-
phonon interaction. Moreover, the consequences of the formation of
charge density waves are quite di�erent: �rstly, metal-insulator Peierls
transition might take place under certain conditions. Secondly, soft-
enings of the phonon modes can occur leading to a structural relax-
ation. However, structural relaxations might take place without a metal-
insulator transition.

At the state-of-the-art, CDWs are known to occur in several systems.
Starting from 1D, nanowires have been widely studied, since they were
the �rst systems in which CDWs were observed. Particularly interest-
ing structures are the polymeric metallic chains such as polyacetylene
or TTF-TCNQ (tetrathiafulvalene-tetracyano-quinodimethane). On the
one hand, while remaining a relatively simple system, polyacetylene has
the advantage of being a real system, di�erently from the ones that will
be studied in this work, and a Peierls instability is well-known to oc-
cur, making this system a good proof of the principles. On the other
hand, TTF-TCNQ is a quasi-1D system which, however, shows all the
properties of a perfect 1D system, i.e. Fermi surface nesting, peak in the
Lindhard response function, Kohn anomaly and metal-insulator transi-
tion [6]. Other 1D structures now known to show CDWs are transitional
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metal trichalcogenides, such as NbSe3. Passing to 2D structures, par-
ticular interest is given to transition metal dichalcogenide, e.g. NbSe2,
and cuprates. The relationship between CDW and superconductivity
has emerged since the discovery of unconventional superconductivity in
cuprates. These are often considered as layered quasi-2D materials and
the competition between charge ordering a superconductivity attracts a
large deal of study, especially in YBa2Cu3O6+x (YBCO) [6]. This might
become an important �eld of study in the next future.

This thesis is devoted to the analyzes of the appearance of CDW in
metallic structures, with a particular focus on nanowires, and a brief
mention of 3D systems. The aim is to explore the properties of CDWs
in 1D systems and then to apply the acquired knowledge to bulk materi-
als. This is done because one-dimensional systems show CDWs in their
simplest way. Moreover, it is easier to perform an analysis in a single
direction, while the situation gets much more complicated approaching
two- and three-dimensional materials.

On the one hand, in chapter 1, a theoretical overview of the prob-
lem is provided. The possible origins of CDWs in metallic nanowires are
exposed, i.e. the Fermi surface nesting that leads to the divergence of
the Lindhard response function and the electron-phonon coupling. Fur-
thermore, the possible consequences, i.e. the Peierls transition and Kohn
anomalies, are presented. As it will be detailed in the chapter, the former
is the metal-insulator transition that follows from a structural relaxation;
the latter is the softening of a phonon mode due to the lack of conduc-
tive electrons’ screening ability at a particular wave vector. On the other
hand, in chapter 2, the �rst principle analysis of metallic systems is intro-
duced. The studied systems are silicon and aluminium nanowires. These
�ctitious systems, which are not found in nature, are studied in order to
get a better comprehension of the physical phenomena. Indeed, it will
be explained how the silicon linear chain is unstable and a more stable
system is the zigzag. The dispersion relation of both the linear and zigzag
chains are calculated and the occurrences of Kohn anomaly analyzed. In
order to do that, various physical quantities such as electron and phonon
band structures, electron-phonon coupling matrix elements and the �rst
order perturbation of potential are computed. Afterwards, the bulk sys-
tems are explored as well.

Possible future developments are �nding a systematic way to treat
linear chains, which means predicting the properties of phonon band
structures without actually calculating or measuring them. Then, it will
be needed to expand the treatment to real systems, starting from the ones
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whose properties are known, e.g. polyacetylene and TTF-TCNQ. After-
wards, the work may be repeated for 2D and 3D materials and a general
way to treat metals can be achieved. As it will be shortly discuss in the
next chapters, the identi�cation of CDWs’ location is much more com-
plicated in 2D and 3D materials since the shape of the Fermi surface is
more complex; a detailed study is therefore needed.

The ab initio calculations are performed usingAbinit [7–12]. Abinit
is a software suite used to calculate the optical, mechanical, vibrational
properties of molecules, nanostructures and solids with any chemical
compositions. It relies on density functional theory and density func-
tional perturbation theory. Together with Abinit, Abipy [13], a Python
library, is used to analyse the results.
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Chapter 1

Theoretical background

1.1 Charge density waves
In metals, the charge density is highly uniform and the ions in their equi-
librium positions form a perfectly periodic lattice (cfr. �gure 1.1). How-
ever, in some metals at T = 0 K , the Fermi surface associated to such a
lattice becomes unstable and the charge redistributes forming a periodic
spatial modulation [6]. This modulation of the electron density is called
charge density wave (CDW). The modulated charge can be expressed
as [1]

ρ(~r) = ρ0 + ρ1 cos (2~kF · ~r + ϕ) (1.1)

where ρ0 is the unperturbed electron density of the metal, ~kF is the
Fermi wave vector, and ϕ is the phase of the condensate.

Even though the appearance of CDWs in metals may have di�erent
origins depending on the system, i.e. the type of metal and the dimen-
sionality (1D, 2D or 3D), CDWs have some common traits. Indeed, they
modify the ionic potential and, therefore, lead to new equilibrium po-
sitions for the atoms in the lattice. Moreover, they are characterized
by a transition temperature (TCDW ) above which the charge density of

Figure 1.1: Electron density and periodic lattice without (a) and with (b) the formation
of charge density waves. Inspired by Ref. [1]
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the system is again uniform. The most straightforward CDW occur-
rence, that was also the �rst to be observed, is the instability of a one-
dimensional chain of equally-spaced atoms. This was pointed out by
Peierls in 1930 [2]. Another consequence of charge density waves is the
Kohn anomaly [14]. These two topics will be explored in more details in
sections 1.4 and 1.5, respectively.

CDWs may also emerge in two-dimensional systems, e.g. NbSe2,
which shows a Kohn-like anomaly. However, the origin has nothing
to do with Peierls’s picture [15]. It actually has to be ascribed to the
electron-phonon coupling. Three-dimensional systems show CDWs as
well. Nonetheless, the situation is even more complicated and it is not
easy to isolate a single charge density wave [6].

Since CDWs arise in their simplest form in one-dimensional struc-
tures [16], the main focus of this work will be on this type of systems and
their properties, in particular on metallic one-dimensional (1D) struc-
tures or metallic nanowires (NW). Therefore, section 1.2 will present
a summary of the electronic properties of one-dimensional structures:
the electronic dispersion relation and the geometry of the Fermi surface.
Consequently, in section 1.3, the Lindhard response function and its im-
pact on electronic charge stability is explored: the origin of the elec-
tronic instability that leads to the charge density wave is discussed. Sub-
sequently, as already mentioned, in sections 1.4 and 1.5, Peierls transi-
tions and Kohn anomalies are detailed. Then, in section 1.6, the electron-
phonon coupling, i.e. the other key element for the emergence of the
transition, is introduced. Finally, in section 1.7, some important �nal re-
marks are made: in particular, what happens when the Fermi surface
consists of more than one point.

1.2 One-dimensional structures
The solids that populate our world are characterized by �nite dimen-
sions in the three spatial dimensions. Nanoscience deals with materials
that are characterized by, at least, one dimension that is in the nanometer
(nm) range. Therefore, two-dimensional (2D), one-dimensional (1D) and
zero-dimensional (0D), systems are materials which have one, two and
three, dimensions in the nanometer range, respectively.

The fact that the real space passes from three to one dimension, so
as the reciprocal space, has important consequences both on the crystal
and the electronic structure. Firstly, we can model the electronic energy
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of such a system using the free electron model. This approximation is
justi�ed by the fact that valence electrons in metals form a gas that is free
to move in the solid. Moreover, being one-dimensional, there is only one
direction worth studying. Therefore the wave vector ~k in the reciprocal
space is, in fact, a number. The dispersion relation can hence be written
as:

εk =
~2k2

2me

(1.2)

where ~ is the reduced Planck constant, k is the electron’s wave num-
ber and me is the mass of the electron. In �gure 1.2, the dispersion re-
lation obtained from equation 1.2 is plotted over the 1st Brillouin zone
(1BZ). 2a is the length of the unit cell (cfr. �gure 1.3) and εF is the Fermi
energy. The dispersion relation has the typical shape of a parabola (con-
tinuous line in the �gure), while the Fermi level (dashed line) sets the
Fermi surface, that here is composed of two points, namely −kF and
+kF . Since the dispersion relation is often symmetric with respect to
k = 0, just one of the two halves is shown, the irreducible Brillouin zone
(IBZ).

Figure 1.2: Theoretical electronic band structure of a 1D system in the First Brillouin
zone. a is half of the size of the unit cell. The continuous line is the dispersion rela-
tion, while the dashed one is the Fermi level. We can notice that the Fermi surface is
composed of two points.
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Figure 1.3: Two possible geometries of a nanowire. a) zigzag chain and b) linear chain.
Adapted from [17].

1.3 Lindhard response function
At this point, the charge density, ρ, should be introduced. This describes
the density of charge as a function of the position in real space, ρ(~r), or
in reciprocal space, ρ(~q); the two are related through

ρ(~r) =

∫
~q

ρ(~q)ei~q·~rd~q (1.3)

The peculiar shape of the Fermi surface leads to a response to external
perturbations that is di�erent from the one of 2D and 3D systems [16].
The response of the charge density to a time independent perturbation
potential of the form:

φ(~r) =

∫
~q

φ(~q)ei~q·~rd~q (1.4)

is usually treated in the linear response theory:

ρ(~q) = χ(~q)φ(~q) (1.5)

where χ(~q) is the Lindhard response function. It is a complex function
that in d-dimensions can be expressed as

Re{χ0(~q)} =

∫
dk

(2π)d
fk − fk+q

εk − εk+q

(1.6)

Im{χ0(q)}
ω

=

∫
δ(εk − εF )δ(εk+q − εF )dk (1.7)

In equations 1.6 and 1.7, the zero as subscript indicates that the Lind-
hard function is evaluated close to ω = 0; fk = f(εk) is the Fermi-Dirac
distribution function at wave vector k.

f(εk) =
1

e
εk−εF
kBT + 1

T is the temperature and kB the Boltzmann constant. It is assumed that
the dispersion near the Fermi level is linear, εk−εF = ~vF (k−kF ), where
vF is the Fermi velocity that can be de�ned as ~k = mevF . Therefore,
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Figure 1.4: Di�erence in nesting between 1D, 2D and 3D systems: a) nesting vector
for a 1D system and b) for a 2D (adapted from [16]). Panel c) illustrates the Lindhard
response function for a 1D, 2D and 3D structure; the dashed line shows the e�ect of a
2 % deviation from perfect nesting (adapted from [18]).

in one dimension, the integral in equation 1.6 has a simple solution that
writes:

Re{χ0(q)} = e2n(εF ) log
∣∣∣q − 2kF
q + 2kF

∣∣∣ (1.8)

e is the electron’s charge and n(εF ) is the density of state at the Fermi
level de�ned as

n(εF ) =
L

π~

√
me

2εF
(1.9)

For a phonon’s wave vector that ful�lls the relation q = 2kF , the
response function shows a logarithmic divergence, contrarily to what
happens in 2D and 3D (cfr. �gure 1.4).

The divergence comes from the fact that there are two states at the
same energy, one full and one empty, which di�er exactly by 2kF : this is
called perfect Fermi surface nesting (FSN). Due to the particular topology
of the Fermi surface, in 1D there is a large number of states that ful�ll
this condition and that is why the divergence occurs. For 2D and 3D, the
number of states that satisfy it is reduced and the divergence is removed
(cfr. �gure 1.4). In �gure 1.4 a) and b), the di�erence between perfect
nesting with a vector ~q in 1D and 2D is shown. The instability is much
more visible in the 1D case since there are many states that di�er exactly
by the vector ~q, while, for instance, in 2D there is only one state. This
di�erence is re�ected in theχ(~q) function, depicted in �gure 1.4 c), where
the divergence at q = 2kF is present for the 1D system, ideal or broaden,
but not for the 2D and 3D.
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1.4 Peierls transition
The diverging behavior for χ(~q) near q = 2kF has consequences. Firstly,
from equation 1.5, it can be noted that a divergent χ leads to a divergent
charge redistribution; from this follows that the electron gas is unsta-
ble and the periodicity of the electron gas itself is varied. As stated by
Peierls in its work of 1930 [2], a perfect, or quasi-, 1D system is unstable,
showing an electronic divergence at the wave vector 2kF . As a conse-
quence, the periodicity of the chain is changed and the number of atoms
per unit cell doubles. Moreover, the dimension of the 1BZ is divided by
two (π/a −→ π/2a) and a gap is opened at its boundary. In �gure 1.5, the
Peierls transition is shown. On the one hand, in panel a), the situation
for a high-temperature conductive system is represented. As mentioned
in section 1.1, the charge distribution for a metal at high temperature is
highly uniform and the atoms in the chain are evenly spaced. The dis-
persion relation is the one typical of a conductive system (indeed there
are occupied states around the Fermi level). On the other hand, in panel
b), the situation where the CDW and the Peierls transition arise is por-
trayed. Here, the charge density assumes a periodic spacial modulation
(cfr. equation 1.1). As a consequence, the unit cell dimension doubles
and, therefore, the number of atoms per unit cell doubles as well. More-
over, the dispersion relation becomes the one of an insulator: a gap at
the boundary of the new 1BZ is opened.

The opening of the gap leads to a lowering of the electronic energy
that is proportional to the amplitude of the lattice’s distortion u. For
small displacements it goes as u2 log(u) [1]. This gain in energy always
overcomes the energy needed for the structural relaxation. Therefore,
at any temperature lower than TCDW , a 1D system will always undergo
the transition [18]. When increasing the temperature from T = 0 K ,
the electrons start to overcome the energy gap and the CDW conden-
sate progressively loses electrons. This phenomenon becomes more and
more relevant up to T = TCDW where a second-order phase transition
takes place and the gap is closed. The phase transition can be described
following the work by Grüner [1]. Starting from the Ginzburg-Landau
theory for such a transition, the electron energy gap at T = 0 K (∆0)
can be retrieved

∆0 = 2De−
1
λ (1.10)

D is the cut-o� energy, i.e. half of the maximum width of the bandgap.
λ is de�ned as

λ =
g2(2kF )

ω(2kF )εF

where g is the electron-phonon coupling matrix element (more details

9



Figure 1.5: Schematic representation of a Peierls transition. In panel a) the system at
T > TCDW is represented while in panel b) T < TCDW . At the top of the �gure the
charge density is depicted: it is uniform at a high temperature a), while it assumes the
periodic spacial modulation in b). Below, the doubling of the number of atoms in the
unit cell is displayed. At the bottom, the metal-insulator transition is depicted; indeed
panel a) shows the dispersion relation of a metallic system, while in b) the dispersion
relation becomes the one of an insulator. Adapted from [1]

will be provided in section 1.6) and ω(2kF ) is the phonon frequency
at q = 2kF . Similarly, the transition temperature can be written as
TCDW = ∆0/1.76kB , where the coe�cient 1.76 is an experimental value
that comes from the BCS theory for superconductivity. It can be already
noted that the interplay between phonons and electrons is important.
As a matter of fact, the larger the electron-phonon matrix element, the
larger λ and, therefore, the band gap are.

A quantitative measurement of the nesting is represented by the low-
frequency imaginary part of the electronic susceptibility Im{χ0(~q)} [19].
This must have a peak at the same ~q as the CDW. Moreover, in order to
have the transition, the real part of χ needs to have a peak too, since
this is the function that drives the instability, as shown in the previous
section. As a consequence, all the phonon modes should soften at this
wave vector with the sole exception of those forbidden due to symmetry
reasons.

There is a common misconception [19] that should be clari�ed: the
distortion of the lattice is not a consequence of the electronic instability.
Indeed, if it was so, the electrons could induce a charge redistribution
without taking into account whether the lattice would follow or not. The
two transitions occur simultaneously one as the cause and consequence
of the other. The Fermi surface nesting cannot be considered a su�cient
condition for the relaxation of the structure: the phonon dynamics and
the electron-phonon interaction have to be taken into account as well.
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1.5 Kohn anomaly
Kohn [14] was the �rst to point out that the lattice vibrations are screened
out by the conductive electrons in metals. At some point ~q in the recip-
rocal space, this screening changes abruptly; therefore, the phonon fre-
quency ω varies accordingly at the very same ~q, in the following manner∣∣∣∇~q ω(~q)

∣∣∣ −→∞ (1.11)

where∇~q is the gradient with respect to ~q. The position of these points is
determined, as mentioned above, by the Fermi surface nesting. In Kohn’s
picture, the physical origin of this abrupt change comes from the embed-
ded charge distribution ρext(~r) that induces an electronic charge density

ρel(~r) = −F (~q)ρext(~r)

where
F (~q) =

Re{χ0(~q)}
~q

The function χ(~q) can be expressed as in equation 1.8. Now, if the deriva-
tive of F is evaluated close to q = 2kF it can be noted that

dRe{χ(q)}
dq

∣∣∣
q∼2kF

∝ log |q − 2kF |
∣∣∣
q∼2kF

−→ −∞

Equation 1.11 is a consequence of this. This abrupt change is due to the
fact that for the phonon wavevector q > 2kF electrons cannot screen
anymore the charge distribution and, contrarily to what happens when
q < 2kF , the charge distribution cannot cause virtual excitations that
conserve the energy (cfr. �gure 1.6a) and b))

The consequence of equation 1.11 on the phonon band structure is
that near q = 2kF all the phonon modes (at least those which are not
forbidden by symmetry reasons) will soften and there will be a dip with
slope theoretically in�nite. However, the magnitude of the softening
is driven by temperature. Therefore at high enough temperatures the
softening will be washed out, while it will become more and more im-
portant as the temperature decreases. When the phonon frequency will
reach ω2 = 0, the mode will become unstable and the structure will re-
lax. However, if the softening does not take place at the boundary of
the 1BZ, the metal-insulator transition, typical of the Peierls picture, is
not guaranteed to occur. In Ref. [6], an example of a quasi-1D system
(NbSe3) is reported. This system shows two anomalies at temperatures
149 and 59 K , but neither of them results in a metal-insulator transition
(cfr. �gure 5b in the reference). The temperature that corresponds to
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Figure 1.6: Virtual excitation for a) q < 2kF and b) q > 2kF . Adapted from [14].
c) Schematic representation of Kohn anomaly: the dotted line is the high temperature
phonon dispersion relation; the dashed line is the Kohn anomaly, which however does
not lead to a structural relaxation since the temperature is still higher than the tran-
sition temperature; the continuous line is the dispersion at a temperature lower than
the transition temperature: the mode becomes unstable and the Peierls transition takes
place. Inspired by Ref. [18].

this transition is again referred to as TCDW . If there is a softening of the
phonon mode, but the frequency does not become negative, there will
be no structural relaxation. In �gure 1.6c) the phonon dispersion rela-
tion around the point q = 2kF is shown. The dotted line portrays the
band at T � TCDW where the Kohn anomaly is totally cancelled. The
dashed line corresponds to a temperature that is still above TCDW but in
the same order of magnitude. In this case, a softening can be seen, even
though no lattice distortion will take place. Finally, the continuous line
displays the situation at a temperature below the transition temperature:
the phonon frequency becomes negative which means that now the sys-
tem is unstable and the structural relaxation occurs.

It is immediately clear that, as for Peierls transitions, Kohn anoma-
lies are not the result of some phonon dynamics on their own, but they
involve the need of an interplay between the conductive electrons and
phonons; it will therefore be needed to explore the electron-phonon in-
teractions.
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1.6 Electron-phonon coupling
The need to introduce electron-phonon coupling (EPC) derives from the
fact that the vision for which Peierls instabilities and Kohn anomalies are
due to electrons or phonons instabilities alone is incomplete. As pointed
out by Johannes and Mazin [19], the problem with Kohn and Peierls the-
ories is that every time there is a FSN all the phonon modes, except for
the ones that are forbidden for symmetry reasons, should soften. How-
ever, this is almost never the case. It is not rare to observe, at a certain
q = 2kF that just one mode softens, or none. This is because the main
actor in the formation of Kohn anomalies is the EPC. In order to see a
large dip in the phonon band structure, a large electron-phonon interac-
tion has to be present.

In this section, the problem will be set and the main results will be
introduced, without deriving them (for derivations one can consult the
work of Giustino [20]).

In order to analytically analyze the electron-phonon coupling, one
should start from the Hamiltonian describing a coupled electron-phonon
system [20]:

Ĥ = Ĥe + Ĥph + Ĥe−ph (1.12)
where

Ĥe =
∑
n~k

εn~kĉ
+

n~k
ĉn~k

is the Hamiltonian part that describes non-interacting electrons and εn~k
is the eigenvalue of an electron in band n with crystal momentum ~k

Ĥph =
∑
~qν

~ω~qν
(
â+
~qν â~qν +

1

2

)
is the non-interacting-phonon Hamiltonian, where ω~qν is the frequency
of lattice vibration with crystal momentum ~q and mode ν. Finally,

Ĥe−ph =
1√
Np

∑
n~k,ν~q

gn,m,ν

(
~k, ~q
)
ĉ+

n~k+~q
ĉn~k(â~qν + â+

−~qν)

describes the electron-phonon coupling at the �rst order in atomic dis-
placements. Np is the number of unit cells in the Born-von-Karman su-
percell, gn,m,ν

(
~k, ~q
)

is the electron-phonon matrix element and it has
the dimensions of an energy. Furthermore, it measures the strength of
the coupling between the electron in band n with wave vector ~k and the
phonon in branch ν with wave vector ~q to the electron state in band m
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with wave vector ~k + ~q. Then, ĉ+

n~k
,ĉn~k and â+

~qν ,â~qν are the fermionic and
bosonic creation and destruction operators, respectively.
The electron-phonon coupling matrix element can be evaluated through

gn,m,ν

(
~k, ~q
)

= 〈ψm~k+~q|∆ν~qV |ψn~k〉 (1.13)

where ψ is the electronic wave function at band n (m) with wave vector
~k (~k + ~q). ∆ν~qV is the �rst order variation of the potential for a pertur-
bation at mode ν and phonon wavevector ~q.

Therefore, it will be important to evaluate all these quantities to char-
acterize the various instabilities, i.e. electron energies, phonon frequen-
cies and EPC matrix elements. It will also be interesting to see how the
�rst order variation of the potential evolves around the FSN.

For the time being, following the work by Barnett et al. [21], an an-
alytical expression for the phonon frequencies close to q = 2kF can be
found. The phonon self-energy of the mode ν at the wave vector ~q can
be written as:

Πµ(~q) = 2
∑
n

|gn,m,ν(~k, ~q)|2χ0,n(~q) (1.14)

In equation 1.14, χ is the electronic susceptibility de�ned in equation 1.6.
The dressed frequencies, for mode ν and phonon wave vector ~q, will be:

(ων,~q)
2 = (ω0

ν,~q)
2 + 2ω0

ν,~qΠν(q) (1.15)

Here ω0
µ,~q is the undressed frequency. Substituting equation 1.14 and 1.8

in equation 1.15, we can write the dressed frequencies as:

(ων,~q)
2 = (ω0

ν,~q)
2

+
∑
n

(2ω0
qMNNc)|gν,n,m(~k, ~q)|2 2m∗a

πMNckF,n
log
∣∣∣2kF,n − q
2kF,n + q

∣∣∣ (1.16)

This shows that near the nesting vectors there are logarithmic di-
vergences that are proportional to the squared modulus of the electron-
phonon matrix elements, and that depend on the phonon modes ν and on
the di�erent electronic bands n. From this equation, it is clear that, �rstly,
Fermi surface nesting alone is not enough to see a dip in the phonon dis-
persion relation. As a matter of fact if |gν,n,m(~k, ~q)|2 is zero (no EPC),
then the sum in equation 1.16 is zero and the phonon frequency is the
undressed one; no dip is thus observed. Moreover, not all the modes will
soften but, since the EPC matrix element is depending on the mode ν,
only the modes with a large |g|2 will damp.
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Lastly, a further correction can be introduced. If the Coulomb repul-
sion V (q) is introduced in equation 1.15, this can be rewritten as [21]:

(ων,~q)
2 = (ω0

ν,~q)
2 + 2ω0

ν,~q

Πν(q)

1− V (q)χ0(q)
(1.17)

It can be noted that a large Coulomb interaction can suppress the
CDW instability. The physical origin of this term is that the electronic
Coulomb repulsion can screen the electron-phonon coupling and there-
fore cancel the CDW.

1.7 Final remarks
In the sections above, the Fermi surface nesting has always been referred
to as q = 2kF . However, this comes from the fact that a parabolic dis-
persion relation was assumed and from the fact that just one electronic
band would cross the Fermi level.

In the case in which two bands cross the Fermi level as in the case
depicted in �gure 1.7, or even in the case in which one band crosses the
Fermi level multiple times, there will be multiple ~q that will connect two
points on the Fermi level (an example will be provided in chapter 2). In
these cases, nesting refers, not only to the phenomenon that takes place
at q = 2kF , but to all the ~q vectors in reciprocal space that allow electrons
to make transitions of the type k1

F −→ k2
F . Continuing with the example

in �gure 1.7, there will be four Fermi surface nestings, that are depicted
in the �gure with four arrows:

• qA : −k1
F −→ k1

F

• qB : −k2
F −→ k2

F

• qC : −k2
F −→ k1

F

• qD : k2
F −→ k1

F

As a result of these four FSN, equation 1.6 will exhibit four terms that
lead to a divergence [24].

χ(~q) =
1

2π

(∫ f 1
k − f 1

k+q

ε1k − ε1k+q

dk +

∫
f 2
k − f 2

k+q

ε2k − ε2k+q

dk

+

∫
f 2
k − f 1

k+q

ε2k − ε1k+q

dk +

∫
f 1
k − f 2

k+q

ε1k − ε2k+q

dk
)

(1.18)
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Figure 1.7: Nesting for a Fermi surface composed by more than two points.

Therefore, the equation to retrieve the dressed phonon frequency
shown in section 1.6 has to be adapted as well [21]

(ων,~q)
2 = (ω0

ν,~q)
2 +DA log

∣∣∣2k1
F − q

2k1
F − q

∣∣∣+DB log
∣∣∣2k2

F − q
2k2

F − q

∣∣∣
+DC log

∣∣∣(k1
F + k2

F )− q
(k1
F + k2

F )− q

∣∣∣+DD log
∣∣∣(k1

F − k2
F )− q

(k1
F − k2

F )− q

∣∣∣ (1.19)

where, Di, i ∈ {A,B,C,D}, is the factor multiplying the logarithm
in equation 1.16, but for the di�erent kF .

To sum up, as stated in this chapter, the elements that are needed for
a system to show a charge density wave instability are (i) a nesting of
the Fermi surface, (ii) which should lead to a divergence in the real part
of the Lindhard function and (iii) a large EPC matrix element should be
present for at least one mode.

Concluding the chapter, it is worth mentioning that throughout this
work the various properties will be simulated from �rst principles. How-
ever, they can be measured in the following manner: X-ray scattering can
probe the temperature dependence of the Kohn anomaly in the phonon
dispersion [15]; transport measurement can reveal the transition temper-
ature between the conductive and insulating phase, i.e. the Peierls tran-
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sition [25]; �nally, high-resolution angle-resolved photoemission spec-
troscopy [26] (ARPES) can detect the strength of EPC in a CWD system.
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Chapter 2

Results and discussion

In this chapter the obtained results will be presented. The physical re-
sults of the computations will be explained and comparisons between the
di�erent systems will be made. Moreover, several considerations on the
computational methods and the techniques used to improve the calcula-
tions’ feasibility will be given. An extensive study on the linear chain is
carried out in order to understand the physics and the principle of CDWs.
The goal is to apply the acquired notions to the case of 3D systems. The
chapter is organized as follows: in section 2.1, the chosen structure and
the parameters involved are introduced; in section 2.2, the used DFT and
DFPT techniques for the various steps are brie�y explained; eventually,
in sections 2.3 and 2.5, the results obtained for the silicon and aluminum
chains, are discussed. At the end of the chapter, some results on the bulk
structure of silicon and aluminum are presented.

2.1 Structure

2.1.1 Description of system and parameters
The systems studied are linear chains of aluminum (atomic number Z =
13) and silicon (Z = 14). The structure is composed of one atom per unit
cell which is tetragonal (cfr. �gure 1.3b)). The length of the cell along the
wire axis matches the Si-Si (Al-Al) bond length. The two perpendicular
dimensions are chosen to be equal and large enough to provide enough
vacuum between the chains. Indeed, Abinit uses periodic boundary con-
ditions in all the spacial directions; therefore, enough vacuum has to be
ensured in order to avoid interactions between the adjacent nanowires.
The chosen vacuum is 10 Å because it has been proven to ensure decou-
pling between nanowires (cfr. appendix A).
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As we shall see, both materials are metallic. As a result, it is needed
to face the problem of approximating the Fermi-Dirac (FD) distribution
function around the Fermi level at �nite temperature. The solution usu-
ally employed is to simulate the behavior of the FD distribution with a
smearing function. This needs to be enough accurate, but, at the same
time, to ensure a fast convergence and feasibility in terms of numerical
computation. Here, the smearing used is Gaussian, which corresponds
to the 0-order Hermite polynomial of Methfessel and Paxton [30]. The
smeared δ function can be written as

δ̃(x) =
e−x

2

√
π

and the occupancy is its integral:

f(x) =
1

2
[1− erf(x)] (2.1)

As a consequence of this approximation, the parameter that governs
temperature is the smearing temperature (or electronic temperature),
which has the dimensions of an energy. Actually, temperature and en-
ergy of a system are strictly connected by the relation E ∝ kBT , where
kB is the Boltzmann constant. Even though this is not a physical quan-
tity, lowering the value of this parameter one can simulate the e�ect of
decreasing the temperature. In the following, the smearing temperature
will be referred to as temperature, always keeping in mind that actually
it is not.

2.1.2 Structural relaxation
The structures have been relaxed. This means that the cell is allowed to
change its dimension in order to reach the minimum in energy. Dealing
with systems like the one described above, the only degree of freedom
is the bond length along the NW axis. The dimensions of the relaxed
structure depend on the parameters used to simulate the system (they
are described in appendix A). Therefore, these need to be carefully con-
verged. The relaxed bond lengths are 2.204 Å for silicon and 2.42 Å for
aluminum.

The results will be presented in the following manner: for each struc-
ture, the electronic dispersion relation will be discussed. As stated in
chapter 1, the shape of the electronic band structure is important to de-
termine the shape of the Fermi surface and hence the possible FSN. After-
wards, the phononic dispersion relation will be shown and the strength
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of the eventual Kohn anomalies examined. At the end, the EPC matrix
elements and the �rst order perturbation of the potential will be com-
puted.

2.2 Methodology
In this section, the main references about the methods used in order to
retrieve the di�erent physical quantities are introduced.

2.2.1 Electron band structure
Firstly, the electronic band structure is extracted solving the Kohn-Sham
(KS) equation non-self-consistently at di�erent points in the 1BZ (cfr.
equation 2.2 and Ref. [31,32]). The used electronic density comes from a
previous ground state self-consistent computation.

ĤKSψKSn (~r) = εKSn ψKSn (~r) (2.2)

The Kohn-Sham Hamiltionian has the following form

ĤKS = −1

2
∇2 + V KS(~r) (2.3)

In equation 2.3, the �rst term on the right-hand side is the kinetic
energy, while the second is the KS potential. It is the potential for a
single electron which is expressed as

V KS(~r) = V ext(~r) + V H(~r) + V xc(~r) (2.4)

where V ext(~r) is the potential seen by the single electron due to the pres-
ence of the nucleus. V H(~r) is the Hartree potential

V H =

∫
d~r′

ne(~r)

|~r − ~r′|

where ne =
∑

n |ψn|2 is the electron density. As it can be noted from
the equation, the Hartree potential takes into account the e�ect of the
other electrons in the atom. Lastly, V xc(~r) is the exchange-correlation
potential

V xc(~r) =
δExc[ne]

δne

which has to be modeled with a choice of the pseudopotential. Among
all the choices, the most popular are usually the LDA and GGA.
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In this work, V xc is modeled with the PBEsol functional [27]. The
used pseudopotentials are optimized norm-conserving ONCVPSP [28,
29]. The electronic con�gurations of the two species are [Ne]3s23p1

for aluminum and [Ne]3s23p2 for silicon (the con�guration of neon is
1s22s22p6). The chosen pseudopotential considers ten core electrons for
both species and three (four) valence electrons for Al (Si).

2.2.2 Phonon band structure
The phonon dispersion relation is calculated using the Density Func-
tional Perturbation Theory (DFPT) [33–38]. The idea is to calculate the
second order derivative of the total energy which is connected to the
phonon dynamical matrices. In order to do that, a perturbation corre-
sponding to the displacement of each atom in the unit cell needs to be
applied in the three spatial directions. From these matrices, the phonon
frequency can be directly calculated. However, this is done explicitly
only for some points in the reciprocal space; how many and how they
are positioned will be subject to discussion. Afterwards, these will be in-
terpolated using di�erent schemes, i.e. Fourier transform (FT) and spline.

The DFPT formalism has origin in the perturbation theory. The de-
tails of this theory may be found in several textbooks, for instance Ref.
[40]. The idea is to start from a Schrödinger equation

H(0)ψ(0) = ε(0)ψ(0)

whose solutions are known (denoted with a superscript (0)), and to apply
a small perturbation in the following manner

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + ... (2.5)

where H(i) are the perturbative terms and λ is a small number. In the
same way, the wave function and every physical quantity X can be ex-
pressed as

X = X(0) + λX(1) + λ2X(2) + ... (2.6)

Solving the Schrödinger equation Ĥψ = εψ using the Hamiltonian in 2.5
and the wave function of the form in equation 2.6, the �rst and second
order correction of the energy are respectively:

ε(1) = 〈ψ(0)
n |H(1)|ψ(0)

n 〉 (2.7)

ε(2) =
∑
n6=m

| 〈ψ(0)
m |H(1)|ψ(0)

n 〉 |2

ε0
n − ε

(0)
m

(2.8)
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where n and m are the electronic bands.

The second order correction of the energy can also be expressed as
a function of the perturbation associated with the atomic displacement
mentioned above:

ε = ε(0) +
1

2

∑
(κ,α,p)

∑
(κ′,α′,p′)

∂2ε

∂τ pκ,α∂τ
p′

κ′,α′

upκ,αu
p′

κ′,α′ (2.9)

where τ pκ,α is the position of the atom κ in the unit cell p, along the carte-
sian coordinate α. upκ,α is the corresponding displacement of the atom
with respect to its equilibrium position. The interatomic force constants
(IFCs) are

Cpp′

κα,κ′α′ =
∂2ε

∂τ pκ,α∂τ
p′

κ′,α′

(2.10)

The dynamical matrices are de�ned as

D̃κα,κ′α′(~q) =
1

MκMκ′
C̃κα,κ′α′(~q) (2.11)

where Mκ is the mass of the atom κ and the tilde indicates the Fourier
transform. Then, the squared phonon frequencies ω2

~qν can be obtained
solving the following eigenvalue problem∑

κ′α′

C̃κα,κ′α′(~q)Uκ′α′ν(~q) = Mκω
2
~qνUκαν(~q) (2.12)

where Uκαν(~q) is the phonon eigendisplacement, i.e. the vector describ-
ing the amplitude of the oscillation of atom κ for a phonon mode ν and
wave vector ~q.

2.2.3 Electron-phonon coupling matrix elements
The EPC matrix elements are computed starting from DFPT [20, 39]:

gν,n,m(~k, ~q) = 〈ψKS
m~k+~q
|∆~qνV

KS|ψKS
n~k
〉 (2.13)

whereψKS
n~k

is the Kohn-Sham Bloch’s state and ∆~qνV
KS is the �rst-order

variation of the self-consistent KS potential. This can be evaluated as

∆~qνV
KS =

1√
2ω~qν

∑
p,κ,α

∂V KS

∂τκα

eκα,ν(~q)√
Mκ

ei~q·
~Rp (2.14)

where eκα,ν(~q) is the α-th Cartesian component of the phonon eigen-
vector for the atom κ in the unit cell p, Mκ is the atomic mass, τκ is its
position and ~Rp is the lattice vector that de�nes the unit cell p. The �rst-
order derivative of the KS potential can be obtained directly from DFPT
by solving self-consistently a system of Sternheimer equations [33, 35].
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2.3 Silicon nanowire
In this section, the results obtained for silicon NW will be presented to-
gether with some details on the computational work. These same con-
cepts will be then exploited in the next section in order to discuss the
results found for aluminum NW.

2.3.1 Electron band structure
From the relaxed structures, the electronic dispersion relation of silicon
is calculated (cfr. �gure 2.1). The calculations have been performed after
checking once again the convergence of the electron energy with respect
to the cut-o� energy and the number of k points in reciprocal space. As
already stated, being 1D systems, the only meaningful direction to be
studied is the one along the chain axis (Γ−Z). Looking at the IBZ, it can
be noted that there are two points composing the Fermi surface, namely
kAF = 0.0 0.0 0.218 (that is doubly degenerate) and kBF = 0.0 0.0 0.435
(that is non-degenerate). From now on, the points in the reciprocal space
will be referred to mentioning only the last number of the coordinate in
reciprocal space since this su�ces to identify the point.

Firstly, the system is metallic since it is characterized by half-�lled
bands. Moreover, following the description in section 1.7, there will be
four possible FSN wave vectors:

qA = 2× kAF = 0.436

qB = 2× kBF = 0.872

qC = |kAF − kBF | = 0.217

qD = kAF + kBF = 0.653

(2.15)

Folding them back into the IBZ, they become
qA = 0.436

qB = 0.128

qC = 0.217

qD = 0.347

(2.16)
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Figure 2.1: Electronic band structures for silicon nanowire. The Fermi level is set to
zero and it is represented with a dashed line. The Fermi surface is indicated with the
points kF .

2.3.2 Phonon band structure
In this section, the phonon dispersion relation of silicon NW will be in-
vestigated. On the one hand, from the physical point of view, the soften-
ing of the phonon modes and the e�ect of temperature on the instability
will be explored. On the other hand, from the computational point of
view, the dependence of the band structure on the choice of the q-points
and the interpolation scheme will be examined.

Physical description

In �gure 2.3, the phonon dispersion relations at three di�erent values
of the smearing temperatures are shown. Firstly, it can be noted that
there are two phonon modes. Indeed, since there is only one atom per
unit cell, the two possible phonon modes are the vibration along the axis
(longitudinal) and the one o�-axis (transverse), which is actually degen-
erated. The two possible vibrational modes are depicted in �gure 2.2. All
the frequencies of the transverse mode are negative; therefore, the mode
is unstable. Since the transverse mode is unstable, the zigzag structure
should be the most stable (cfr. �gure 1.3a)). Indeed, in Ref. [17], He et al.
show how the unstrained monoatomic gold chain is not stable, while the
zigzag is. Here the situation might be similar.
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Figure 2.2: Vibrational modes for the monoatomic linear chain: in panel a) longitudinal
mode and in panel b) transverse mode.

It can be noted how in correspondence of the nesting vectors, Kohn
anomalies can be observed. On the one hand, the longitudinal mode
shows two Kohn anomalies: one at qB and one at qA. At the former
point, it shows a dip that is relatively small at a temperature (tsmear in
the graph) of 1× 10−2 Ha, while it becomes more relevant at lower tem-
peratures. At a temperature of 1× 10−3 Ha, the mode becomes negative
and, hence, it leads to a structural relaxation. At the latter one, the mode
softens but the e�ect is smaller. This Kohn anomaly never leads to an
instability; however, it can be noted that at 1× 10−2 Ha the dip is small
and quite broad, while it deepens and shrinks decreasing the tempera-
ture. On the other hand, the transverse mode softens at qC and qD. Even
though the mode is unstable, it shows Kohn anomalies and, hence, it is
worth studying. The anomaly at qC is totally canceled when the temper-
ature is 1× 10−2 Ha, while it appears at 1× 10−3 Ha and it is enhanced
at 1× 10−4 Ha. Meanwhile at qD an anomaly occurs at 1× 10−4 Ha.

Figure 2.3: Temperature dependent phonon band structure for silicon NW

Summarizing, at the four nesting vectors, one mode for each point
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softens and one of them, namely the longitudinal mode at qB , leads to an
instability.

The section can be concluded showing the evolution of the phonon
frequency at qB as a function of the temperature. In �gure 2.4, the tem-
perature is plotted on a logarithmic scale. It can be noted that TCDW is
in the interval (5× 10−3, 1× 10−3) Ha.

Figure 2.4: Frequency at qB as a function of the temperature. The temperatures are
represented in logarithmic scale.

Computational description

While computing the phonon band structure, a double convergence has
to be pursued. On the one hand, the grid of k-points needs to be dense
enough in order to get the proper value of the calculated frequencies. On
the other hand, the number of q-points at which the phonon frequency
is directly calculated has to be high enough. Particularly, in systems
where these kinds of anomalies are present, a high number of q-points
are needed. Since there is not an algorithm to predict Kohn anomaly,
the qs at which the phonon frequency softens have to be calculated di-
rectly. Conversely, if the grid is too narrow, the interpolation will not
appropriately describe the dips. Figure 2.5 can be studied as an example.

In the graph, the dispersion relation at 1 × 10−3 Ha is plotted. The
black curve samples the reciprocal space with 21 on the Γ−Z line, while
the red one with 101. Therefore, the two grids are commensurate: the
black curve passes in one out of �ve points belonging to the red one. It
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Figure 2.5: Phonon dispersion relation for silicon. The temperature is 1 × 10−3 Ha.
The dots are the directly-calculated frequencies, while the continuous line is the Fourier
Transform interpolation. The black and red curves are sampled by 21 and a 101 equally-
spaced points, respectively.

can be immediately noted that far from the Kohn anomalies and from Γ,
the convergence is quite fast and the dispersion relation is well described
already with 21 points in the IBZ. However, at the Kohn anomalies it can
be observed that the black curve totally misrepresents the real behavior:
at qA and qC the anomaly is reduced, while at qB it is displaced at a lower
wave vector. Furthermore, between Γ and qB , the black curve displays
some oscillations that are completely nonphysical but just the e�ect of
interpolation. This calls from a careful convergence with respect to the
two grids in reciprocal space. Moreover, while lowering the tempera-
ture, one has to carefully check on these two convergences and the trend
is that �ner grids are needed for decreasing temperatures. As a matter of
fact, the convergence on the reciprocal-space sampling is summarized in
table 2.1.

1× 10−2 Ha 1× 10−3 Ha 1× 10−4 Ha
k-grid 100 500 3000
q-grid 21 101 501

Table 2.1: Number of reciprocal-space points needed for convergence for of two grids
at di�erent temperatures.
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Figure 2.6: Phonon dispersion relation for silicon. The temperature is 1 × 10−3 Ha.
The black dots and line are the same as �gure 2.5. The green dots form a non-uniform
grid: the 21-point grid is used. Around the Kohn anomalies the points belonging to the
other grid are added. The green line is an interpolation of these points with a spline.

In Ref. [41, 42], Petretto et al. aim at �nding a systematical way in
order to get the convergence on the two grids for di�erent semiconduc-
tors. A similar work should be performed for metals as well. As already
stated, the problem with this kind of materials is that the Kohn anomalies
should be predicted a priori.

A solution to get a more accurate phonon band structure while keep-
ing the number of directly-DFPT-calculated frequencies limited is to use
a non-uniform grid (cfr. �gure 2.6). Far from the anomalies, the 21-point
mesh is used, while close to the anomalies, the 101-point grid is exploited.
The result is the green line in the �gure. If this is compared with the red
line in �gure 2.5, it can be noted that the description of the Kohn anomaly
is relatively improved with respect to the black line. The advantage of
this last method is that only 33 points, instead of the 101, are required to
obtain it. The gain here is small since the number of q points for conver-
gence is relatively small, but when it increases, the gain increases too.
Furthermore, the spline interpolation scheme has the advantage of not
showing the nonphysical oscillations close to Γ, while it has the draw-
back that it enhances the oscillations around the instabilities.
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2.3.3 Electron-phonon coupling matrix elements
As stated in chapter 1, in order to have a complete view over charge den-
sity waves, the electron-phonon coupling needs to be taken into account.
The EPC matrix elements are dependent on the electron wave vector as
well and, therefore, |g|2 is shown at k = 0.218 in �gure 2.7, while in
�gure 2.8 at k = 0.435; these are the two points on the Fermi surface. In
order to have a softening in the phonon mode (cfr. equation 1.16), there
must be an intra- or inter-bands FSN and an EPC matrix element di�er-
ent from zero.

Figure 2.7: EPC matrix elements for the silicon NW on the longitudinal at k = 0.218.
The line connecting the dots, here and in the following graphs representing EPC matrix
elements, is just a guide to the eye.

Electronic bands are labelled with integers starting from 1 as the low-
est energy band (cfr. �gure 2.1 and appendix B). Therefore, at kAF bands 2
and 3 cross the Fermi energy, while at kBF only band 4 does. As a conse-
quence, the possible FSNs are summarized in table 2.2. As it can be seen
from the picture, the large dip at qB on the longitudinal mode is due to
the coupling between band 2 at wave vectors −kBF and at kBF (the value
of the matrix element is ∼ 53000 meV2). Furthermore, the softening at
qA is due to the coupling of the phonon mode with intra-band transition
between wave vector −kAF and kAF of bands 3 (the values of the matrix
element around the point are between 44000 and 48000 meV2).

So far, the transverse mode has not been considered. The reason is
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Figure 2.8: EPC matrix elements for the silicon NW on the longitudinal at k = 0.435.

kAF qA qB qC qD kBF qA qB qC qD
n = 2,
m = 2

YES NO NO NO n = 2,
m = 2

NO NO NO NO

n = 2,
m = 3

YES NO NO NO n = 2,
m = 3

NO NO NO NO

n = 3,
m = 2

YES NO NO NO n = 3,
m = 2

NO NO NO NO

n = 3,
m = 3

YES NO NO NO n = 3,
m = 3

NO NO NO NO

n = 2,
m = 4

NO NO YES YES n = 2,
m = 4

NO NO NO NO

n = 3,
m = 4

NO NO YES YES n = 3,
m = 4

NO NO NO NO

n = 4,
m = 2

NO NO NO NO n = 4,
m = 2

NO NO YES YES

n = 4,
m = 3

NO NO NO NO n = 4,
m = 3

NO NO YES YES

n = 4,
m = 4

NO NO NO NO n = 4,
m = 4

NO YES NO NO

Table 2.2: Summary of the possible FSNs at kAF (left-hand side of the table) and kBF
(right-hand side).

30



Figure 2.9: Modi�ed EPC matrix elements for the transverse mode of silicon at kAF .
The plotted values are the average of the two degenerate modes.

that, since this mode is unstable, the current treatment cannot be applied.
As a matter of fact, in equation 2.14, it is clear that |g|2 is de�ned only
for positive frequencies and so the EPC matrix elements for the trans-
verse mode cannot be computed. This is reasonable: it does not make
much sense to investigate instabilities on a mode that is already unstable.
However, since the softening of the mode can still be observed around
qC and qD, it is interesting to calculate |g|2 neglecting the term 1/

√
ων,~q.

This will prevent the new calculated matrix elements from having any
physical meaning, but it will still probe for the electron phonon coupling
strength.

The results are shown in �gures 2.9 and 2.10. As mentioned earlier,
the new quantities are plotted for the two points of the Fermi surface. On
the one hand, in �gure 2.9, at the nesting between bands 2 and 3 at kAF
and band 4 at kBF a �nite matrix element is reported leading to a softening
at qC . On the other hand, nothing appreciable can be noticed at qD for
either points on the Fermi surface and for either bands. This is probably
due to the fact that the softening is indeed really small and, therefore, the
matrix element that leads to the softening is as small as the noise from
the surrounding points.
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Figure 2.10: Modi�ed EPC matrix elements for the transverse mode of silicon at kBF .
The plotted values are the average of the two degenerate modes.

2.3.4 First-order perturbation of the potential
In this section, the interpolation of the �rst-order perturbation of the
potential is explored. This will not add any physical results; however,
since this kind of potentials is normally interpolated while computing
EPC-related properties of materials, the e�ect of Kohn anomalies is in-
teresting to be studied.

When dealing with electron-phonon interaction computation, gν,n,m
on very dense q-grids are needed to be computed. Therefore, to lighten
the computational costs of such calculation, it is possible to calculate the
�rst-order perturbation potential at some points in the reciprocal space
and then interpolate them with the FT scheme. An example of this is
provided by the works of Brunin et al. [43, 44]. In �gure 2.11, the imagi-
nary part of ∆~q,νV

KS along the longitudinal mode is plotted. The choice
of showing only this curve is made because this is the only meaning-
ful result, while the others, i.e. real part of the longitudinal mode and
both imaginary and real part of the transverse, give results close to zero.
Moreover, it has to be mentioned that, at variance with the previous sec-
tion, here there is no dependence the k-grid since the dependence on k
appears in equation 2.13 when integrating with the wave function. The
potential itself does not depend on k. The �rst-order perturbation of the
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potential is averaged over the unit cell in real space.

Figure 2.11: The imaginary part of the �rst-order perturbation of the potential in the
longitudinal mode for silicon NW. The black line is DFPT-directly-calculated on a grid
in the reciprocal space composed of �ve-hundred and one points. The green line is
interpolated with FT scheme from a starting grid of three points. The same goes for red
and blue for starting grids of �ve and seven points respectively.

On the one hand, from �gure 2.11, it can be noted that around the two
instabilities, the DFPT-calculated ∆~q,νV

KS shows non-analicity. This is
a clear sign that the EPC matrix elements will show some divergence
there (cfr. equation 2.13). On the other hand, it can be pointed out how
the convergence of the interpolated curves is quite fast far from the insta-
bility. Indeed, at the center of the zone all the curves are superimposed.
However, close to the anomalies the convergence is slow: no interpolated
curve can reproduce the dip at qA and the cusp at qB is misrepresented.

In order to get an improvement, the quadrupolar interactions should
be introduced in the computation, as it has been done in Ref. [43]. In the
reference, long-range interactions induced by the incomplete screening
of the potential generated by atomic displacement lead to non-analiticies
at q −→ 0. In metallic systems, these long-range interactions do not play a
role, but the non-analicities are caused by the Kohn anomalies. Actually,
the need of quadrupoles here is even stronger since in metallic systems
there are no dipole-dipole interactions. Moreover, as already mentioned
previously, an algorithm to predict the anomalies and incorporate them
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into the interpolation is not available, but it would accelerate the conver-
gence.

2.4 Zigzag silicon chain
As mentioned in section 2.3.2, the most stable con�guration for the sili-
con chain should be the zigzag. Therefore, the steps for the linear chain
are repeated for the zigzag one (cfr. �gure 2.12). The starting structure
is a two-atom unit cell. The bond length is the same as the starting one
for the linear chain and the angle between the two bonds is of 125o. The
relaxed structure shows a bond length of 2.218 Å and an angle of 117o.

Figure 2.12: Zigzag silicon chain. On the left the structure is depicted, the bond length
is 2.218 Å and the angle 117o. On the right-hand side, the electronic band structure is
depicted. The Fermi level is set to zero and it is represented as a dashed line. In the
inset, a zoom around the Fermi surface is shown.

2.4.1 Electron band structure
In �gure 2.12, the electron band structure is shown as well. Firstly, it can
be noted that the zigzag structure is still metallic. The Fermi surface, as
displayed in the inset, is composed of one point in the IBZ, k = 0.4115.
As a consequence, a nesting will take place at q1 = 2× kF = 0.177. The
point forming the FS is doubly degenerated.
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2.4.2 Phonon band structure
In the structure, the two atoms per unit cell, each of which can be dis-
placed in the three spacial directions, leads to six possible vibrational
modes. The dispersion relation is shown in �gure 2.13. Firstly, it can be
noted that there is a Kohn anomaly in the most energetic optical mode
and in the less energetic acoustic mode. The former appears at a temper-
ature of 1×10−3 Ha (red curve), while it is cancelled at 1×10−2 Ha (black
curve). The latter mode, being really close to zero, becomes negative. It
might be a consequence of the Kohn anomaly and, therefore, a structural
relaxation might take place. However, the shape of the instability is odd
since it is relatively broad, but it still can be noted that there is clearly a
dip close to q1. This should be subject to further studies. Moreover, a �-
nal feature worth remarking is the mode which at 1×10−2 Ha is acoustic
(ω q−→Γ−−−→ 0), while at 1× 10−3 Ha is characterized by a �nite frequency.
This should be studied further as well. It should be mentioned that the
acoustic sum rule is imposed. The total energy should be invariant un-
der translation of the crystal as a whole. This would guarantee that the
three lowest phonon modes at Γ have zero frequency. However, since
the IFCs are calculated on �nite grids, the translational invariance might
be slightly broken. As a consequence, a sum rule is imposed∑

κ

C̃κα,κ′α′(~q = 0) = 0

where C̃ is the IFCs as de�ned in section 2.2.2.

2.5 Aluminum nanowires
Starting from the notions that have been discussed for the silicon NW,
now the aluminum monoatomic chain will be studied and the results
compared with the ones of the previous section. The two systems are
quite similar, i.e. they are both linear monoatomic metallic chains, they
just di�er for one electron in the valence shell.

2.5.1 Electron band structure
The aluminum electron dispersion relation is portrayed in �gure 2.14.
The Fermi level has been brought to zero and it is depicted with a dashed
line. There are just two points forming the Fermi surface in the 1BZ
and, therefore, one in the IBZ at kF = 0.125. As a consequence, a Kohn
anomaly is expected to occur at q = 2× kF = 0.25. The Fermi surface is
double degenerate: bands 2 and 3 cross the Fermi level at kF . Comparing
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Figure 2.13: Phonon band structure for zigzag silicon chain. The dispersion relation is
depicted for two temperature: 1× 10−2 in black and 1× 10−3 in red.

this result with the silicon’s band structure it can be noted that they are
indeed similar: the shape of the bands is the same. However, the Fermi
energy is shifted at lower energy. Even though this is a little change, this
shift has a big impact on the electronic properties: the Fermi surface,
as mentioned, passes from two to one point and this leads to important
consequences on the vibrational properties as well.

2.5.2 Phonon band structure
The phonon band structure is represented in �gure 2.15. The disper-
sion relation shows again two modes, the longitudinal and the transverse.
Since the softening of the transverse mode is small, the portrayed disper-
sion relation is at a temperature of 1×10−5 Ha; the used grid is composed
of 201-equally-distanced points. In the inset, a zoom on the dip is shown.
Even at such a low temperature the dip is of some cm−1 only. The po-
sition of the softening of the phonon mode is the one expected from the
FSN. Contrarily to the case of silicon, the transverse mode here shows a
Peierls instability at the zone’s boundary.

Comparing this band structure with the one of silicon, it can be noted
how the vibrational properties of metals are indeed di�cult to predict.
As a matter of fact, nevertheless the similarities, they show such di�erent
phonon dispersion relations. On the one hand, silicon shows an unstable
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Figure 2.14: Electron band structure for aluminum nanowire. The Fermi level is set to
zero and it is represented by a dashed line. The Fermi surface is indicated by the points
−kF and kF .

transverse mode, while the shape of the transverse mode of aluminum
is totally di�erent, with a Peierls instability at the zone boundary. On
the other hand, the longitudinal mode, in the case of silicon, presents
two large softenings corresponding to the two nesting vectors, one of
them leading to an instability. Contrarily, for aluminum the softening is
smaller in size and it is even misplaced. This, once again, calls for a need
of a more general understanding of CDW in metals in order to obtain a
systematic treatment of such systems.

2.5.3 EPCmatrix elements & �rst-order perturbation
of potential

In �gures 2.16 and 2.17, EPC matrix elements for the two modes of alu-
minum around the FSN are shown. Once again, the portrayed quantities
are |g|2.

On the one hand, in �gure 2.16, EPC matrix elements for the longi-
tudinal mode are depicted. It can be noted how the values are all large
and increasing with the q vector. At q the value is still large and the
softening is due to the nesting between bands n = 2 and m = 3. On
the other hand, in �gure 2.17, the matrix elements for the transverse
mode are shown. Even though there are large values even at the nesting
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Figure 2.15: Phonon dispersion relation for an aluminum nanowire. The smearing
temperature is 1 × 10−5 Ha, the q mesh is composed of 201-equally-distanced points.
In the inset, a zoom around the softening of the mode is shown with the curve sampled
with a grid composed by twice as many points.

Figure 2.16: EPC matrix elements for longitudinal mode of aluminum nanowires
around q.
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Figure 2.17: EPC matrix elements for transverse mode of aluminum nanowires around
q.

vector, no dip is observed in the phonon dispersion relation. A possible
explanation for this is that it is needed to include in the description of
the phonon frequency higher order terms including in the picture other
physical quantities, such as, for example, the Coulomb interaction (cfr
section 1.6). However, this should be studied further.

In a similar fashion to what has been said for the �rst-order pertur-
bation of potential for the silicon NW, also for aluminum the imaginary
part of ∆~q,νV

KS for the longitudinal mode can be shown (�gure 2.18).

As already discussed in the silicon case, close to the Fermi surface
nesting ∆~q,νV

KS shows a non-analicity that is not represented by the
FT interpolation. A conclusion similar to the one drawn in section 2.3.4
can be applied here as well.
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Figure 2.18: The imaginary part of the �rst-order perturbation of the potential in the
longitudinal mode for aluminum NW. The blue line is DFPT-directly-calculated on a
grid in the reciprocal space composed of two-hundred points. The orange line is inter-
polated with FT scheme from a starting grid of three points.

2.6 Bulk structures
As mentioned in the previous chapter, CDWs appear in 3D structures as
well. In this section, some results on FCC silicon and aluminum are pre-
sented. The structure is composed by a single atom in the unit cell (cfr.
�gure 2.19). The space group is 225 (Fm3̄m). However, the silicon FCC
structure is not stable, it is studied as a system that shows Kohn anoma-
lies. This bulk system becomes stable at high pressure [45].

Figure 2.19: Unit cell of FCC bulk system.
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Figure 2.20: Electron band structure for silicon bulk. In panel a) the calculated disper-
sion relation is portrayed, while in panel b) the one from Material Project (mp-27).

Firstly, the lattice parameter has been relaxed for the two structures,
starting from the cell dimensions taken from the Material Project [45].
The relaxed values are 3.87 Å for silicon and 4.03 Å for aluminum. All
the calculations are carried out at a smearing temperature of 1 × 10−2

Ha.

2.6.1 Electron band structure
The electron band structures of the two systems are depicted in �gures
2.20 and 2.21, where the calculated dispersion relations are presented
next to the one from the Material Project.

Figure 2.21: Electron band structure for aluminum bulk. In panel a) the calculated
dispersion relation is portrayed, while in panel b) the one from Material Project (mp-
134).
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It can be noted that the two systems are metallic and that there is
a good accordance between the calculated band structures and the ones
from the reference. As for the linear chains, the shape of the dispersion
relations of bulk silicon and aluminum are close one to the other. The
main di�erence is the energy of the Fermi surface that is shifted. This
is expected since the structure is the same and the two atomic species
di�er only for an electron in the valence shell. It is di�cult to predict
the appearance of CDWs in these cases since the nesting has not the big
e�ect proven in one-dimensional chains. As it can be seen from �gure
1.4 the origin of CDW in 3D materials does not lie in the divergence of
Lindhard response function.

2.6.2 Phonon band structure
In this section, the phonon dispersion relations of the two systems are
shown. As mentioned in section 2.3.2, high-throughput calculations for
metallic phonon properties have not been carried out yet. This does not
concern just linear chains or low-dimensional systems, but, in fact, all
metals. Therefore, it is interesting to explore phonon dispersion relation
of bulk metallic systems, to try to �nd some occurrence of CDWs and to
investigate their possible origins.

Figure 2.22: Phonon dispersion relation for FCC silicon.

In �gure 2.22, the phonon dispersion relation of FCC silicon is plot-
ted. From the �gure, it can be noted that the FCC structure for the silicon
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is not stable, i.e. there are some negative modes. It is well known that
the stable con�guration of bulk silicon is the diamond one. This unstable
mode shows some peculiar oscillation around Γ, but these are the e�ect
of the imposition of the acoustic sum rule.

Moreover, it can be noted that some modes soften, e.g. the most en-
ergetic mode close toK , U andX (marked with red circles in the �gure).
This might be due to Kohn anomalies.

Figure 2.23: Phonon dispersion relation for FCC aluminum.

In �gure 2.23 the phonon dispersion relation for FCC aluminum is
portrayed. Firstly, it can be observed how this is the stable structure for
the aluminum. As a matter of fact, no mode is unstable; however, simi-
lar features as the one highlighted in the case of silicon can be observed.
Close toK andU , there are some softenings that can be related to a Kohn
anomaly. Another dispersion relation has been calculated at a temper-
ature of 5 × 10−3 Ha, but no di�erences have been observed. Further
investigations on both systems should be performed.
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2.7 Summary
In this chapter, the linear chains of silicon and aluminum together with
the zigzag chain of silicon and the relative bulk systems have been stud-
ied. The appearance of CDWs in all these systems have been reported. In
the case of the linear chain, the origin of these anomalies have been stud-
ied in more details since the situation is simpler and the appearance of
Kohn anomalies is much clearer. In order to proceed, it is necessarily to
better understand the origin of the instabilities in linear chain. Moreover,
in order to improve the quality of the analysis for the 1D systems, on the
one hand, more studies on the EPC matrix element of silicon zigzag chain
should be carried out. On the other hand, the possible Peierls transition
for the aluminum chain at the boundary zone should be examined. Fur-
thermore, the bulk materials should be studied as well: �rstly, investigat-
ing whether those indicated are in fact Kohn anomalies and then trying
to �nd their possible origin, starting from the EPC. From this starting
point, one can aim at a deeper understanding of the subject including
also 2D materials (as mentioned in the introduction; see Ref. [4, 5] for
some examples).
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Conclusion

A charge density waves is the result of an instability of the electron gas
that occurs in some metals below a transition temperature. Despite the
fact that they have been known for almost a century now, a general un-
derstanding of the phenomenon is still lacking and this results in short-
age of tools to treat metals in general. In this work, an attempt to better
understand CDWs is made. In chapter 1, the theoretical background has
been laid out. In particular, charge density waves have been introduced.
After that, the theory of the Fermi surface nesting that leads to instabil-
ity in the Lindhard response function has been explored. The two major
consequences of this instability are Peierls transitions and Kohn anoma-
lies. Details about the two physical phenomena have been described. On
the one hand, the perturbation of the electronic density leads to a redis-
tribution of the ions in the lattice: the unit cell doubles its size, doubling
the number of atoms per unit cell as well. Moreover, the charge redistri-
bution also has the consequence of opening a band gap at the boundary
of the �rst Brillouin zone forcing the chain to undergo a metal-insulator
transition. On the other hand, the CDW condensate, below a certain
temperature, does not screen the virtual transition of the lattice anymore,
leading to a softening of some phonon modes close to the nesting vectors.
The amplitude of the softening, which is driven by the temperature, de-
termines whether the lattice undergoes a relaxation or not. Afterwards,
the role of electron-phonon coupling in the appearance of Kohn anomaly
has been studied. The main result of the section is that the softening of
a particular phonon mode is proportional to (i) |gν,n,m(~k, ~q)|2 and (ii) the
presence of a divergence in the real part of the Lindhard function.

In chapter 2, the results obtained from the �rst-principle calculations
have been displayed. The computations have been carried out using the
software Abinit and the Python-library Abipy (the used DFT and DFPT
techniques have been reminded). The studied structures are silicon and
aluminium monoatomic linear chains. In order to obtain the structures
that minimize the energy, the chains have been relaxed. Afterwards, the
electronic band structure has been computed. The shape of the disper-
sion relation is similar for both nanowires. The main di�erence is the
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energy of the Fermi level, which in one case leads to a FS made of two
points, while in the other only of one. The di�erence in the Fermi surface
is re�ected in the vibrational properties. As a matter of fact, only one FSN
vector is expected for the IBZ of the aluminium chain, while for silicon
the softening of the phonon mode is expected at four di�erent q-points.
Indeed, the phonon dispersion relation of silicon shows softenings of one
mode for each nesting wave vector: in particular, the longitudinal mode
has two large dips, one of which leads to an instability, while the trans-
verse mode, which is unstable, shows two small dips at the other points.
The fact that the unstable mode is the transverse one suggests that the
most stable con�guration of the silicon chain is the zigzag. This latter
structure has also been studied. In order to build a zigzag chain, one
has to use a unit cell with two atoms (the starting angle between the two
bond is 125o). The structure is relaxed as mentioned for the other systems
and the electrical and vibrational properties are calculated. The chain is
still metallic, and it still shows a region of instability. The band structure
shows an instability close to the nesting vector due to the Kohn anomaly,
which is anyway expected; the unforeseen fact is that the instability is
quite broad. The aluminium chain displays a softening as well, but the
amplitude is smaller even though the temperature is lower than the ones
for silicon. Moreover, a Peierls instability occurs at the zone boundary.
The analyzes of linear chains is continued with the computation of the
electron-phonon matrix elements which, as reminded above, needs to be
large enough in order to lead to a softening of the phonon mode. The two
softenings for the longitudinal mode of silicon are due to the transition
−kAF −→ kAF and to the transition −kBF −→ kBF . Here, the fact that there
are �nite matrix elements in correspondence of nesting vectors that does
not lead to a softening needs to be investigated further. As mentioned in
the chapter, this can be due to the screening of the Coulomb interactions.
For the transverse mode of silicon the instability at qC is the result of the
nesting between kAF −→ kBF , while nothing appreciable can be noticed
at qD for either points on the Fermi surface and for either bands. Lastly,
the phonon dispersion relations for the FCC silicon and aluminium have
been computed.

From the computational point of view, di�erent techniques to acceler-
ate the computation of the phonon dispersion relation and the �rst order
perturbation of the potential have been explored. The slow convergence
of the curve representing these quantities is due to the Kohn anomalies
and their unexpectedness. The lack of an algorithm that systematically
predicts their appearances and their magnitude requires a large number
of direct computations. In contrast, the interpolation on narrow grids
leads to a misrepresentation of the physical quantities. For the phonon
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band structure there is not a method to improve the quality of the inter-
polation without directly calculating more points in the IBZ. Instead, the
computation’s quality of the �rst-order perturbation of the potential may
be enhanced by including quadrupoles interaction in the calculations. A
clearer comprehension of the CDW phenomena as a whole is a key step
in better understanding the behavior of metals. As a consequence, it will
be possible to perform high-throughput calculations on metals as it is
nowadays done with semiconductors.
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Appendix A

Convergence studies

In Bloch theory, the wave function is described by a period function times
a plane wave:

φn~k(r) = un~k(~r)e
i~k·~r (A.1)

The periodic coe�cient can be expressed as

un~k(r) =
∑
G

un~k(
~G)ei

~G·~r (A.2)

Therefore, the total wave function writes:

φn~k(r) =
∑
G

un~k(
~G)ei(

~G+~k)·~r (A.3)

The coe�cients for the lowest energy wave functions decrease exponen-
tially with the kinetic energy ~k+ ~G

2
. The limit of the plane wave considered

can be chosen using the energy cut-o�.

~k + ~G

2
< Ecut (A.4)

In principle, in order to have very accurate calculations, the largest
number of plane waves should be included. However, �lling the unit cell
with several plane waves is computationally expensive and so a trade-o�
needs to be found. The other parameter, with respect to which a conver-
gence is needed, is the number of points in the reciprocal space. On the
one hand, the larger the number of sampling point, the more accurate is
the computation; on the other hand, a too large number of points makes
the calculation slower. Once again, a trade-o� and a convergence study
are needed. Both quantities are converged on the vacuum between the
chains, the relaxed cell parameter, the electron energy and the phonon
frequency. The convergence is always performed with a tolerance of the
0.2% with respect to the converged value.
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In the following, all the convergence studies will be reported. In �g-
ure A.1, the convergence for the lattice parameter of the FCC aluminum,
with respect to the cut-o� energy and the number of k-points in the re-
ciprocal space, is plotted as a proof of principles. The converged value is
4.033 Å. The convergence is quite fast and it is reached with a 10×10×10
grid in reciprocal space and a cut-o� energy of 12 Ha. As it will be
seen, the requirements will become much stricter while converging other
physical quantities. It is also interesting to compare the converged value
of the cut-o� energy with the values provided by the pseudo-dojo. As a
matter of fact, the pseudopotentials provided are characterized by three
values of cut-o� energy: a low cut-o� energy hint which is good for quick
calculations, a normal cut-o� energy hint for high-throughput calcula-
tions and a high cut-o� energy hint beyond which no signi�cant changes
should be observed in the results. The value of the low energy hint for
PBEsol ONCVPSP of aluminum is 16 Ha; however, it is well known that
the convergence for metals is reached for low value of the cut-o� energy.

Figure A.1: Convergence study for the lattice parameter of the bulk aluminum with
respect to the cut-o� energy on the x-axis and the k-grid as a parameter. The tolerances
are depicted by the black dashed line. A value is converged when it remains between
the dashed lines. The converged value is marked with a cross.

In the following. the converged values will be reported without all
the plots. The convergences for the monoatomic aluminum chain are
displayed in table A.1.

Firstly, it needs to be remarked that converging the electron (phonon)
band structure means to study the variation with respect to the number
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Physical quantity kpt [-] ecut [Ha]
Bond length = 2.42 Å 10 8

Vacuum = 10 Å 10 12
Electron band structure 40 18

Phonon band structure at 0.01 - 0.0001 Ha 100 18
Phonon bandstructure at 1× 10−5 Ha 4000 18

Table A.1: Summary of the convergence studies for the aluminum chain, kpt refers to
the number of k-points in reciprocal space, while ecut to the cut-o� energy.

of k-points and the cut-o� energy of the electron energy (phonon fre-
quency) at a certain point in reciprocal space. It can be noted that, in
order to get a precise representation of band structures, the value of the
cut-o� energy needs to be in the order of the low hint value. It can be
added that the bond length is also converged with respect to the smear-
ing temperature: the converged value is 0.05 Ha.

In table A.2, the convergence study for the silicon chain is reported.
The smearing temperature is converged again at 0.05 Ha for the bond
length. The low hint for the cut-o� energy of silicon is 14 Ha and all the
convergences are quite close to this value.

Physical quantity kpt [-] ecut [Ha]
Bond length = 2.2 Å 40 10

Vacuum = 10 Å 40 10
Electron band structure 60 18

Phonon band structure at 1× 10−2 Ha 100 10
Phonon bandstructure at 1× 10−3 Ha 500 10
Phonon band structure at 1× 10−4 Ha 3000 10

Table A.2: Summary of the convergence studies for the silicon chain.

The convergences of the silicon zigzag are presented in table A.3. The
structure of the zigzag chain is composed of a unit cell with two atoms.
The �rst one is place in position (0,0,0), while the position of the second
needs to be relaxed together with the cell dimension along the wire axis.
Since the dimension of the system in the direction perpendicular to the
chain is increased, the cell dimension should be larger as well in order
to keep the same vacuum between the NWs. The atomic positions are
given in reduced coordinates (xred) which provide the atomic position
as a function of the real space primitive translations (~rprim). These are
typically numbers between 0 and 1 and the real space atomic coordinates
are calculated as:

~R = xred(1)× ~rprim(1) + xred(2)× ~rprim(2) + xred(3)× ~rprim(3)
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Physical quantity kpt [-] ecut [Ha]
Cell dimension = 3.78 Å 10 10

xred(1) = 0.103 30 10
Vacuum = 11 Å 30 10

Electron band structure 30 14
Phonon band structure at 1× 10−2 Ha 250 14
Phonon bandstructure at 1× 10−3 Ha 250 14

Table A.3: Summary of the convergence studies for the silicon zigzag chain. Xred
refers to the reduced coordinate in the x direction of the second atom. The position in
the y direction is zero and in the z direction is half of the unit cell.

For what concerns the bulks, the structural parameter that needs to
converged is the dimension of the unit cell which is equal in the three
directions, i.e. the same quantity converged in �gure A.1. In table A.4,
the convergences for the aluminum bulk is reported. It can be noted that
the cut-o� energy required for convergence is in the range provided by
the pseudo-dojo. On the one hand, in order to have a good description of
physical properties, a larger number of k-points is needed with respect
to the linear chains, e.g. for the electron band structure the bulk needs
15×15×15 = 3375 points, while the aluminum linear chain needs only
1× 1× 40 = 40 points. On the other hand, the cut-o� energy is similar
in the two cases.

Physical quantity kpt [-] ecut [Ha]
Lattice parameter = 4.033 Å 10× 10× 10 12

Electron band structure 15× 15× 15 20
Phonon band structure at 1× 10−2 Ha 20× 20× 20 20
Phonon band structure at 5× 10−3 Ha 25× 25× 25 20

Table A.4: Summary of the convergence studies for the bulk aluminum.

Lastly, the convergence studies for the FCC silicon are reported in
table A.5. As it was noted for the linear chain, the needed cut-o� energy
for silicon is generally lower than the one for aluminum. It can also be
noted that in order to get a good representation of the band structures
for the bulks the Ecut needs to be in the range of the normal hint.
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Physical quantity kpt [-] ecut [Ha]
Lattice parameter = 3.875 Å 15× 15× 15 10

Electron band structure 15× 15× 15 10
Phonon band structure at 1× 10−2 Ha 40× 40× 40 18

Table A.5: Summary of the convergence studies for the bulk silicon.
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Appendix B

Electronic band structures

In this section, the di�erent electronic bands for the silicon and alu-
minum monoatomic chain are presented. Figure B.1 represents the �rst
four bands of silicon, from the �rst a) to the fourth d). It can be noted
that, as mentioned in section 2.3.3, the Fermi surface is composed by the
points kAF , where bands 2 and 3 cross the Fermi level, and kBF , where just
band 2 crosses the Fermi level. As a consequence, the possible nestings
are the ones summarized is table 2.2.

Figure B.1: Electronic bands of silicon monoatomic chain. In panel a) band 1 is rep-
resented, in b) 2, c) 3 and d) 4. The Fermi level is represented in all the plots with a
dashed line.
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The same is shown for the aluminum monoatomic chain. The results
are portrayed in �gure B.2. As already mentioned, the Fermi surface is
composed of a point in the IBZ, which is doubly degenerated (bands 2
and 3). Therefore, the four possible nestings are−k2

F −→ k2
F ,−k2

F −→ k3
F ,

−k3
F −→ k2

F and −k3
F −→ k3

F , where the superscripts are the electronic
bands.

Figure B.2: Electronic bands of aluminum monoatomic chain. In panel a) band 1 is
represented, in b) 2, c) 3 and d) 4. The Fermi level is represented in all the plots with a
dashed line.

A �nal comment on the electronic band structure of the FCC system
is needed. Looking at the comparison between calculated electron band
structures and the reference (cfr. �gures 2.21 and 2.20), it can be noted
that a small shift in energy is present. However, these small shifts have a
little impact since the bands are very dispersive, i.e. the slope of the bands
is large. This fact is con�rmed also analyzing the Density of States (DOS).
The DOS of the bulk aluminum is reported in �gure B.3. The Fermi level
is set to 0 eV. It can be noted that, even slightly changing the electron
energy, the DOS around the Fermi level changes a little. Therefore, the
e�ect of the shift reported in the �gures of chapter 2 is negligible.
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Figure B.3: Total DOS for the bulk aluminum around the Fermi level, which is set to
zero.
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