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Abstract

Weighted networks are rather complex data objects, so that it is not trivial
to extract statistics or summary indices from a population of networks,
especially if the nodes of the networks are unlabelled. Proper assumptions
on the distribution of the values of the edges, and on the geometry of a so
called Graph Space, are needed in order to construct the best explanatory
statistics for such framework. In particular, we introduce a new metric with
both a discrete and a continuous part, suited for networks having zero-valued
edges with positive probability. Such metric is the basis of a loss function we
introduce, called Euclidiscrete Distance, which for example is minimized by a
peculiar network being the Fréchet Mean of a dataset. We see also that such
metric can be reinterpreted to be used for unlabelled networks, providing an
opportune graph matching algorithm.

Keywords: Network-valued/Graph-valued data, Graph Space, Network/Graph met-
ric, Mean Network/Graph, Weighted networks, Graph matching.
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1 Introduction
Network Data analysis is a branch of Object oriented data analytics involving
networks, which are more complex than single numbers or vectors. Networks are
particular objects represented by graphs with a certain number of nodes, connected
by some edges. There exist many phenomena from several fields which may be
explained by a population of networks. Indeed, scientific studies and works about
networks are now quite common, but handling such complex objects becomes
challenging soon. In particular, we focus on the naturally non-Euclidean structure
of the notion of ”distance” between networks, since both nodes and edges may both
have attributes coming from a continuous probability distribution, but be absent in
the datum with positive probability. The presence of a discrete component inside
eventual distance measures has already been studied [Wang and Marron, 2007].
Moreover, we might have to deal with unlabelled networks, for which each node
has no label and the corresponding datum can be represented in different ways,
or permutations. Accordingly, our aim is to provide a proper distance measure
between (labelled or unlabelled) networks. As an application of such distance, we
are going to calculate the so called Fréchet Mean network of a population, namely
a graph which minimizes an overall distance function from our data. This concept
has been well explained by [Calissano et al., 2020], together with the definition
of the space in which we intend our data to live in (see also [Fréchet, 1948] for
completeness).

1.1 State of the art
We focused on the already present literature about multivariate regression to find
a possible extension to our object of interest. Multivariate because our response
variable should be at least as complex as a vector, and regression since the notion
of mean is bound to the one of intercept. Indeed, even if in this work no regression
is applied, the concept of regression always relies on a minimization of some error
or distance measure, which is what we are actually looking for. An exhaustive def-
inition of the topic can be found in [Johnson et al., 2014] (chapter 7.7). Moreover,
weighted networks can be interpreted as if the attribute of a non-existent edge
were just missing. Thus, several approaches to the issue can be examined, from
the theory of randomness of missing data [Bojinov et al., 2020] to tobit models
Anastasopoulos et al. [2012]. Consequently, the reference model we considered to
be the most suitable with the geometry of networks is the so called zero-augmented
model, treated by [Yau et al., 2002], [Wright et al., 2017]. This choice relies on the
fact that the presence or absence of an edge in a weighted network is captured by
a Bernoulli distribution, whereas the probability distribution of the value of the
link (when present) is generally continuous.
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In order to face the computational cost which might arise from such complex mod-
els, having a network object in response, a simplified version of them should be
considered, using a frequentist approach to maximize the overall likelihood of the
result, and discarding random effects.
Furthermore, we will try to unravel the problem of dependence between the prob-
ability distributions of the attributes of each network. A good idea, for example,
might be to assume independence between occurrences and values of distant edges.
Such approach has been discussed by [van der Pol, 2019], who introduced an Expo-
nential Random Graph Model (ERGM) in which only dependences within specific
structures (as 2-stars, 3-stars or triangles) are considered. Other methods linger on
the correlation among components of a multivariate Bernoulli distribution, which
has to be treated carefully, since the Pearson’s correlations between two Bernoulli
distributions generally cannot assume all values in the interval [−1; 1] [Geenens,
2019]. A model which might be taken into account for multivariate Bernoulli dis-
tribution is the so called Ising Model [Dai et al., 2013], in which only correlations
between nodes/edges of order 2 do exist.

We conclude this introduction by saying that a detailed analysis of such methods
is important in order to master the subject, although every possible correlation
between edges gets much blurred when networks have unlabelled nodes. Thus, we
should introduce a metric for which the probability distribution of the edges could
be considered independent at all. In Section 2, after defining an opportune space
for our networks and a proper distance measure, we will see that such assumption
of independence can be stated for certain metrics. In Section 3, we generate sim-
ulated data to apply our method and obtain Fréchet Mean and Fréchet Medoid,
treating both labelled and unlabelled data, and introduce the specific algorithm
for unlabelled networks. In Section 4, the same results are applied to a real dataset
of interactions among players of the game The Resistance.

2 Method
In this section, a definition of the Graph Space in which our network data live is
provided, and is followed by the definition of our proposed metric, along with the
description of a possible application. The notion of Graph Space in particular is
a simplification of the one enunciated by [Calissano et al., 2020], and it will be
applied to a case which is simpler than its actual potential.
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2.1 Graph Space
We define a graph as a triple G = (V, E, a), where V is a set of v nodes, E
is a set of m edges provided with attributes, and a : E → X is an attribute
map. Since networks are represented mathematically as graphs, the terms are
considered equivalent. In our framework, we consider each edge to have a single
real attribute, and do not contemplate attributes of nodes for simplicity, so that
X = Rm. For now, the single attribute of each edge can be considered as a weight
of the edge, so that the two terms will be treated as equivalent at least until Section
2.2. Moreover, without loss of generality networks are considered undirected and
potentially complete, since each absent edge may have 0 as attribute. In this way,
we have that m = v(v−1)

2 .
This formulation allows to represent a graph with a m-dimensional vector x =
(x1, . . . , xm), and it is safely applied on labelled networks, since we can explicit
a bijection between each component of a network x ∈ X with a pair of nodes
(i; j), with i, j ∈ N, 1 ≤ i < j ≤ m, meaning that the specific component is an
edge between nodes i and j (we do not allow self-loops again for simplicity). For
unlabelled networks, a more complex thought must be made. Each network x
represents just one of all v! possible permutations of the nodes.
Let now T be the set of all permutation operators. The most simple operator to
construct a permutation is the swap operator sij, which exchanges node i with
node j (i < j). A generic permutation t ∈ T can be seen as a collection of (at
most v − 1) swaps, indeed.

Remark 2.1. One may think that a network x as it is defined may have m!
possible permutations, but x is not just an m−dimensional vector, since each of
its components is associated with a specific pair od nodes. The swap operator shk

exchanges the components of x associated with pairs:

• (i; h) and (i; k), ∀i < h;

• (h; i) and (i; k), ∀h < i < k;

• (h; i) and (k; i), ∀i > k.

In such framework, ∀x ∈ X, t ∈ T we call tx ∈ X a permutation of network x. We
indicate with X/T the Graph Space which considers each element x ∈ X along
with all its permutations, and it is actually a quotient space of equivalence classes
[x] ∈ X/T .

Example 2.1. This example shows in detail a graph x with v = 5 nodes (m = 10
possible edges) subject to a swap s24 ∈ T between nodes 2 and 4. Both x and
the obtained permuted network s24x belong to the equivalence class [x] ∈ X/T . oo
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Edge (1;2) (1;3) (1;4) (1;5) (2;3) (2;4) (2;5) (3;4) (3;5) (4;5)

x 1 0 0 1 1 1 0 0 0 1
↓ ↓ ↓ ↓ ↓ ↓

s24x 0 0 1 1 0 1 1 1 0 0

Figure 1: The edges of the permuted graph linked
to node 2 were linked to node 4, and viceversa.

Each graph of this work has been represented with the R package network, whose
documentation is provided by [Butts, 2008].

2.2 Metrics
In order to produce a consistent metric for our data, we have to begin with the
probabilistic likelihood of the graphs, since we would like to calculate a mean,
or a medoid, to be also the most likely result to occur. An edge i of a network,
with 1 ≤ i ≤ m, as it is defined, has naturally a probability pi of being present,
so that this behaviour is captured by a Bernoulli distribution. An edge which
does occur has on the other hand a value coming from a continuous distribution
with probability density fi, having a set of parameters θi. The overall likelihood
function for the graph x factorizes then into a probability component L1, which
concerns only the aspect of occurrence, and a conditional component L2, which
concerns only the situation upon the presence of the edges:

L1(pi, x) =
∏

i:xi=0
(1 − pi(x))

∏
i:xi ̸=0

pi(x); L2(θi, x) =
∏

i:xi ̸=0
fi(θi, x). (1)

If the respective parameters are independent of each other, these two parts can be
treated completely separately [Yau et al., 2002]. Moreover, this formulation works
also within a network population in which data are independent and identically
distributed.
With such result, we may concentrate (for now) on binary networks, in which
an edge can be absent or present with unitary attribute. The assumptions made
before don’t allow yet to consider even the edges of the same graph independent
of one another; indeed, all the network x may influence the nature of probability
distributions for each edge in (1).
Let us concentrate on the simplest case, the bivariate one (namely, a graph with
two edges), and extract analytically the maximum likelihood estimator: we want
to see whether the dependence between occurrences of the edges is relevant.
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Independent edges: we have a set of n independent and identically distributed
graphs x1, . . . , xn, where the two components xi1, xi2 are realizations of the Ber-
noulli random variables (X1, X2) ∼ (Be(p), Be(q)), p, q ∈ [0; 1]. Since X1 ⊥ X2,
the maximum likelihood estimators for p and q are:

p̂MLE⊥ =

n∑
i=1

xi1

n
; q̂MLE⊥ =

n∑
i=1

xi2

n
. (2)

Because each component can be analysed separately.

Dependent edges: in this general case, both the edges of a graph can have either 0
or 1 as values, and so the log-likelihood l(p11, p10, p01|x1:n) is:

l =
n∑

x=1
xi1xi2 log p11p00

p10p01
+

n∑
x=1

xi1 log p10

p00
+

n∑
x=1

xi2 log p01

p00
+ n log p00. (3)

Where pab is the probability of a network to have the first edge with value a and
the second with value b, and a, b ∈ {0, 1}. Since naturally p00 = 1−p11 −p01 −p10,
calculations lead to these Maximum Likelihood Estimators:

p̂11 =

n∑
i=1

xi1xi2

n
; p̂10 =

n∑
i=1

xi1(1 − xi2)

n
; p̂01 =

n∑
i=1

(1 − xi1)xi2

n
. (4)

See Appendix A.1 for detailed calculations. Let now p̂MLE = p̂11 + p̂10, obtained
by relaxing the independence assumption. We can easily prove (both formally and
by experiment) that:

E [p̂MLE⊥ − p̂MLE] = 0; V ar [p̂MLE⊥ − p̂MLE] = 0. (5)
Where p̂MLE⊥ is the one defined in equation (2); similarly for q̂MLE = p̂11 + p̂01.
Namely, the maximum likelihood estimator of the probability of an outcome is just
its relative frequence. Without much effort, such result can be achieved also with
networks having more than two edges, reasoning by induction.
This is a considerably important outcome, because we may work in this environ-
ment to consider edges independent without losing information. However, finding
an appropriate distance measure (or loss function) to be minimized is not trivial.
A proper loss function should not include dependences among edges in its formu-
lation, in order to make the hypothesis of independence irrelevant. Therefore, let
us define two candidate loss functions:
Definition 2.1. The Probability of Error (PE) of a binary network x with respect
to a population of binary networks {x1, . . . xn} is defined as:

PE(x) = 1 − px. (6)
Where px is the relative frequence of network x within the set.
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Remark 2.2. In this framework, true probabilities (which are impossible to know
from a dataset) are estimated through relative frequences, so that when the term
probability is used, it naturally refers to a relative frequence.

Definition 2.2. The Expected Hamming Distance (EHD) of a binary network x
with respect to a sample of binary networks {x1, . . . xn} is defined as:

EHD(x) = 1
n

n∑
i=1

dH(xi, x) = 1
n

n∑
i=1

m∑
k=1

|xik − xk|. (7)

Where dH is the Hamming Distance between two networks (which is a proper
metric in the space of binary networks with a specific number of edges). It can be
seen that this formulation is indeed an average of the Hamming distances between
network x and each one of the graphs in the sample.

Using an opportune example, we can show that these loss functions behave in
different ways.

Example 2.2. The tables below show a particular situation in which one of the
joint probabilities/frequences (in this case, p11) is greater than the others, but it
is not true that p > 0.5 ∧ q > 0.5 (in this case, p = 0.4). Recall that p, q are
the parameters of the marginal Bernoulli distributions, whose estimators are de-
fined in (2). It happens that PE(x) is minimized by a different network when we
simplify the frequencies assuming independence between the two marginal distri-
butions of the edges, whereas EHD(x) not only does not change its choice, but
preserves even the value of the loss, and so it is a suitable function for our purposes.

True joint distribution
Distr. y2 = 1 y2 = 0
y1 = 1 0.4 0
y1 = 0 0.3 0.3

LF (x = (1, 1))
Loss F. Joint Marginal

PE 0.6 0.72
EHD 0.9 0.9

Assuming independence
Distr. y2 = 1 y2 = 0
y1 = 1 0.28 0.12
y1 = 0 0.42 0.18

LF (x = (0, 1))
Loss F. Joint Marginal

PE 0.7 0.58
EHD 0.7 0.7

The nature of the resulting network can be deduced from the following example:

Example 2.3. The table below shows a sample of n = 5 networks, with v = 4
nodes and m = 6 edges.
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Edge (1;2) (1;3) (1;4) (2;3) (2;4) (3;4)

x1 1 1 1 1 0 0
x2 1 1 1 0 0 1
x3 1 1 1 0 1 1
x4 0 0 1 1 1 1
x5 1 1 0 0 1 1

Candidate mean x̄ 1 1 1 0 1 1

Since EHD is based on a sum of different occurrences of the edges, the most
natural candidate (Fréchet) Mean is simply the one obtained by majority rule for
each edge, which indeed minimizes the total number of different edges with respect
to x̄. Then, EHD(x̄) ≤ EHD(x) ∀x ∈ X.

At this moment, we should reconnect to the general zero-augmented formulation
for the edges, and see if there exist a proper enrichment of the EHD to continuous
distributions. Let then x ∈ X be a network of our defined Graph Space.

Definition 2.3. The Binary Counterpart of x is a binary network xB, whose
components have value:

xB
k =

1 if xk ̸= 0
0 if xk = 0

∀k = 1, . . . , m. (8)

The idea behind this definition is to extend the calculation of the Expected Ham-
ming Distance to any networks x ∈ X, by applying its formulation to their binary
counterparts xB. Moreover, since EHD is by definition a sum of zeros and ones,
we may formulate it within the space of bounded sequences ℓ2 ⊃ X, rather than
ℓ1 (squaring the terms does not affect the result). The latter space might be more
natural to define a distance which is basically a Manhattan Distance, but now
we would like to get into an Euclidean framework, because we are applying to
more general networks whose edges have values coming from continuous distribu-
tions. We conclude that the Expected Hamming Distance may be reformulated as
follows:

EHD(x) = EHD(xB) = 1
n

n∑
i=1

m∑
k=1

|xB
ik − xB

k | = 1
n

n∑
i=1

m∑
k=1

(xB
ik − xB

k )2. (9)

In order to add a continuous part to our loss function, it’s clear that an Euclidean
expression based on the plain difference between the values of correspondent edges
could be considered: the strength of such formulation stays in its simplicity and
insensitivity to dependences among edges. Therefore, maintaining the quadratic
expression we obtain an overall loss function:
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Definition 2.4. The Euclidiscrete Distance (EDD) of a network x ∈ X with
respect to a sample of networks {x1, . . . xn} is a loss function defined as:

EDD(x) = ω1

m
EHD(x) + ω2

nm

n∑
i=1

m∑
k=1

(xik − xk)2

R2
k

. (10)

Here, ω1 and ω2 are (non-negative) weights to be assigned depending on the
dataset, and Rk denotes the range of values assumed by edge k.

Remark 2.3. The term Discrete in this definition does not refer to the so called
Discrete Distance, but relates to the discrete range of assumable values from the
first piece of the function.

A good practice should be an opportune transformation of the networks in order
to have all the values in [0; 1], so that Rk = 1 ∀k = 1, . . . , m. In this manner, ω1
and ω2 can be chosen so that ω1 + ω2 = 1, in order to have a normalized value for
EDD(x). If ω2 > 0, it can be easily proven that the ”dissimilarity” underlying
the Euclidiscrete Distance, namely:

dEDD(x, y) =
m∑

k=1
(xB

k − yB
k )2 +

m∑
k=1

(xk − yk)2 ∀x, y ∈ X, (11)

being the sum of a pseudometric with a metric, is therefore a metric (see [Wang and
Marron, 2007], for further details). Furthermore, since it sums all the differences
between attributes of the edges singularly, this formulation works even supposing
a dependence among the edges.

Remark 2.4. Not all the populations of networks, however, might be conceptually
coherent with such formulation. Indeed, we should wonder whether, for a specific
sample of networks, it exists an effective difference between a (basically) zero-
weighted edge and a non-existent edge at all, or not. If the answer is no, then
the values of the edges can be considered as weights and absent edges can be
interpreted as zero-weighted edges, so that EDD suits also the conceptual meaning
of the dataset to which it is applied. But, if the answer is yes, the values of
the edges may be considered as attributes, with the zeros meaning an effective
absence if it. With such consideration, the formula (10) presents a conceptual
discrepancy when it has to include differences between existent edges with non-
existent counterparts. Hence, we may also call Weighted Euclidiscrete Distance
(WEDD) the loss function defined in (10), and try to define an attributed version
of such loss function, which may be applied in the specific case written above.
Anyway, in this work we are going to apply the Weighted Euclidiscrete Distance
for the calculation of Fréchet Mean and Fréchet Medoid of a population of graphs.
See Appendix A.2 for further details.
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2.3 The Fréchet Mean
In this section, we introduce the concept of Fréchet Mean network with respect to
a set of network data, applying the metric introduced in Section 2.2 to labelled
and unlabelled samples.

Definition 2.5. The Fréchet Mean x̄ ∈ X with respect to a sample of labelled
graphs {x1, . . . , xn} ⊂ X is the network which minimizes a loss function relative to
some distance between a candidate graph x and each of the networks of the sample
[Calissano et al., 2020]. Using the expression (10) of the Euclidiscrete Distance,
we have:

x̄ = arg min
x∈X

EDD(x). (12)

The Fréchet Medoid x̃ is instead found among the network data {x1, . . . , xn} ⊂ X,
namely:

x̃ = arg min
x∈{x1,...,xn}

EDD(x). (13)

When it comes to unlabelled networks, a further reasoning is necessary. The Graph
Space underlying such type of data is X/T , defined in Section 2.1 and formed by
equivalence classes. Thus, the expression for the Fréchet Mean becomes:

[x̄] = arg min
[x]∈X/T

EDD([x]). (14)

Similarly the formula for the Medoid. In order to legitimate this notation, it
remains to give a proper definition of the relative metric dEDD([x], [y]), starting
from expression (11) and referring again to [Calissano et al., 2020].

Definition 2.6. Let [x], [y] ∈ X/T be two equivalence classes of unlabelled net-
works. The metric underlying the Euclidiscrete Distance in this Graph Space is:

dEDD([x], [y]) = min
t∈T

dEDD(tx, y). (15)

Furthermore, if it happens that dEDD(tx, y) = min
t′∈T

dEDD(t′x, y), we say that tx

is in optimal position with respect to y.

Remark 2.5. Observe that dEDD(x, y) is a metric in X, while dEDD([x], [y])
is a distance in X/T . Moreover, it should be noticed that the Fréchet Mean is
generally not unique, because X/T is a Geodesic Space, namely the shortest path
connecting two graphs of the Graph Space, called Geodesic, may be not unique
[Calissano et al., 2020]. This fact is not necessarily a problem for the purposes of
this work, but it helps to make the overall formulation more clear.
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3 Simulated data
In this section, we calculate Fréchet Mean and Fréchet Medoid from simulated
samples of labelled and unlabelled networks, in order to study the effects of the
application of the Euclidiscrete Distance (definition 2.4). We are going to anal-
yse the complexity and see what happens when the weights ω1, ω2 > 0 (with
ω1 + ω2 = 1) vary, and what happens when the method for labelled networks is
used for a population of unlabelled networks (and vice-versa). All the analysis has
been performed with R.
All simulated data have edges following a zero-augmented distribution, in which
the probability of being zero-valued is independent of its continuous counterpart
(see (1)), and the overall distribution is different for each edge. Classical distri-
butions as Beta, Uniform, Exponential, Gamma and Normal with different pa-
rameters are utilized and possibly transformed in order to have all the values of
the edges in [0; 1]. To make a generated population of networks unlabelled, each
graph has been permuted in a different way, using the method better described in
remark 2.1.

3.1 Labelled networks
With our formulation, labelled networks allow the assumption of independence
among the edges, thus it is easy to calculate the mean network, because such task
can be performed one edge at a time. Set indeed a sample of one-edged networks
{x1, . . . , xn} ⊂ X = R (m = 1). EDD(x) becomes a real function

EDD(x) = ω1EHD(x) + ω2

n

n∑
i=1

(xi − x)2

R2 , (16)

where, given the number of positive edges k, the Expected Hamming Distance has
value

EHD(x) =


n − k

n
if x ̸= 0

k

n
if x = 0

(17)

and the second part of EDD(x) has a parabolic behaviour: we observe that it
achieves a minimum at the average of all the edges. Thus, the only possible values
for the point of minimum of EDD(x) is either 0 or the average of the one-edged
network in the sample, including the zero-valued ones. This result can be similarly
extended to network populations with any number of edges.
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Figure 2: Fréchet Means (left) and Medoids (right) obtained for every value of ω1, ω2, from
a simulated population of n = 1000 networks, with v = 6 nodes, m = 15 edges. Each line
represents one edge of the extracted network. As noted before, each edge of the Fréchet Mean
assumes as weight just either the average of the sample or zero, and as ω1 increases, the number
of positive edges reduces from 11 to 6 (out of 15).

Extracting the Fréchet Mean presents a complexity of O(nm) = O(nv2). We note
that as ω1 increases, some of the edge values drop to 0. Thus it can be said that
higher values of ω1 make the result be more conservative, and this recalls the notion
of Lasso Regularization, since the part of EDD(x) carried by ω1 lives naturally in
ℓ1. For what concerns the Fréchet Medoid, the outcome is not the same, because
possibilities are restricted to the effective networks of the sample, and the overall
meaning is less organic. The process calculating the Medoid has a time complexity
of O(n2m), since n controls also the number of alternatives to be considered.
To see that such result does not apply to a single networks, an extended analysis
to more populations has been done, and all the obtained Fréchet Means has been
collected into boxplots to visualize their distribution (Figure 3).
It might be now interesting to figure out what happens if the Euclidiscrete Distance
on the labelled Graph Space X is applied to populations of unlabelled graphs. The
process scans every network one ”labelled” edge at a time (edges are considered
in a specific order), but now all the values are shuffled among the columns of the
dataset. Computing the Fréchet Mean, the averages of the edges become then very
close, and a definitely poor result is obtained (see Figure 4). Also the computation
of the Fréchet Medoid brings a far low significance, at least conceptually.
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Figure 3: Boxplots of Fréchet Means from 500 different simulated datasets with the same distri-
butions, with m = 10 edges and various choices of ω1, ω2. As ω1 increases, we observe again a
partial drop to 0 of the values of some edges, in particular edges 3, 7 and 9.

We conclude by saying that populations of unlabelled networks should be handled
using concepts based only on the Graph Space of equivalence classes X/T , which
considers the permutations of the edges.

Figure 4: Fréchet Mean and Medoid of a population of unlabelled networks, treated as if they
were labelled.
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3.2 Unlabelled networks
In order to compute the Fréchet Mean (or Medoid) of a sample of unlabelled net-
works, we have just noticed that the metric dEDD([x], [y]) (with [x], [y] ∈ X/T )
has to be used. But the definition of such metric (see Definition 2.6) requires how-
ever the usage of the correspondent metric in X. To go across this link, we should
explore all the permutations t ∈ T and choose the best one before the calculation
of our statistic (at this point, just in the Euclidean space X). As a general strategy,
we now present the Align All and Compute (AAC) algorithm, which consists of it-
eratively selecting an optimal representative network from every equivalence class
belonging to X/T [Calissano et al., 2020]. Indeed, the distance dEDD([x], [y]) cor-
responds exactly to its counterpart in X after posing the first network in optimal
position with respect to the other. We now define the AAC algorithm which, for
each iteration, is based on first putting observations in optimal position with re-
spect to the current mean/medoid estimate, then re-estimating the mean/medoid
based on the aligned observations, until some convergence is achieved. The Align
All segment of the process pertains to a more general subject called Graph Match-
ing, inherent in particular to unlabelled networks.

.

Algorithm 1: Align All and Compute for the Fréchet Mean/Medoid
.Data: {[x1], . . . , [xn]} ∈ X/T observations in X.
Result: An estimate of the Fréchet Mean/Medoid of {[x1], . . . , [xn]}.
Initialization: Select randomly a permutation x̃i ∈ [xi], ∀i ∈ 1 : n, and
randomly one of the permuted data x̃ = x̃i ∈ {x̃1, . . . , x̃n};
Set s = 1; (supposing a normalization of the distance)
Fix a threshold ε > 0;
While s > ε

Put every observation in optimal position w.r.t. x̃, obtaining an
aligned set of representatives {x̃1, . . . , x̃n} ⊂ X;
Compute the Fréchet Mean (or Medoid) x̄ in X of {x̃1, . . . , x̃n},
minimizing EDD(x̃);
Put s = dEDD(x̃, x̄);
Set x̃ = x̄;

Return [x̄].

When we apply the AAC for the Fréchet Medoid, convergence might not be reached
because of the possibility of a cyclic solution (though significant). On the other
hand, it can be shown that the algorithm for the mean theoretically converges in
finite time [Calissano et al., 2020], but it might be a long time due to the definitely
high O(nv!) time complexity. A threshold ε may be applied to control at least the
number of iterations.
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Note also that this algorithm in practice relies on inexact Graph matching, as
such process is generally NP complete [Calissano et al., 2020]. Indeed, a matching
might also separate the values of the edges more than the reality (as if it were
the first component of a Principal Component Analysis). Above all, the major
drawback of this algorithm, in common with most of Graph Matching processes,
is a high sensitivity to initial conditions (Figure 5). There might be indeed many
local minima of the loss function, reached in very few iterations, with suboptimal
values, .

Figure 5: Fréchet Means extracted from the same unlabelled network population (n = 1000, v =
6), with two different initial conditions and ω1, ω2 = 0.5. Each line represents the value of an
edge. Observe that the algorithm converges in very few iterations, but the resulting graph has
always the same positive edges of the initial network. Such phenomenon does not always happen,
but it has a probability much higher than it should.

Due to this fact, choosing the same starting network with different values of ω1, ω2
does not affect the number of zero-valued edges of the solution, on the contrary
compared to the Fréchet Mean of labelled networks populations. Eventually, the
two main obstacles of this procedure are time complexity and sensitivity to initial
conditions.
To overcome the first, greedier Graph Matching techniques might be considered,
such as more advanced metrics based on node centrality [Dwivedi and Singh, 2020],
Munkres Algorithm [Riesen and Bunke, 2009], and the use of random walks [Gori
et al., 2005].
About the latter issue, a multi-start process should be taken into account, even
if this entails a greater time complexity. Different initial graphs may be chosen
with respect to what edges are non-zero, so that ideally there should be 2m starting
points. However, such choice would be really expensive, hence the safest procedure
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should be picking a fixed number of samplings in the dataset and using them as
initial networks.
Ultimately, we may wonder what happens when the AAC algorithm is applied to
a population of already labelled networks. The best outcome should be obtaining
the same Fréchet Mean/Medoid network it would result from the analysis carried
out with labelled networks (see Section 3.1). Nevertheless, the Graph Space of
equivalence classes X/T is structurally larger, meaning that the loss function of
the Fréchet Mean/Medoid obtained with AAC is lesser or equal than the standard
one. If it is strictly lesser, for sure some permutations of the initial dataset have
occurred: we call such phenomenon over-matching, or hyper-alignment.

Figure 6: On the left, the values of the edges of the Fréchet Medoid obtained with AAC algorithm
(lines) compared with the ones obtained with the more proper approach with labelled networks
(points). On the right, the two represented networks, which are very different from each other:
this entails that over-matching is definitely compromising. A population of n = 1000 networks
with v = 6 nodes has been used.

4 Case study
We now analyse the introduced calculations on a real dataset, provided and already
handled by [Bai et al., 2019], [Kumar et al., 2021] and based on a set of board
game matches. The game is called The Resistance, and consists of a group of
missions the players have to face, divided in two teams: the Resistance, aiming
to complete successfully the missions, and the Spies, who secretly try to make the
missions fail (only Spies know how the teams are divided). Each match corresponds
to a different set of data, in which each network represents an instant. Nodes
correspond to the players (from 5 to 8), and each edge tracks interactions and
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glances between two specific players. For simplicity, we constructed an undirected
version of the graphs. In this work, we apply our metric extract first the Fréchet
Mean and Medoid from the labelled dataset of a single game, and then trying to
analyse more games together, in order to obtain a mean network for all the games:
the latter comes to be a naturally unlabelled framework.

Figure 7: Sample networks from a The Resistance game. From the interactions we can deduce
the player whose turn was in progress at each instant.

4.1 Single game analysis
In this section, the computation of Fréchet Mean and Medoid has been carried
out on a population of n = 7323 networks, representing the interactions for each
instant of one game among v = 7 players. Each node is bound to a fixed player,
so that the dataset is labelled. The computed statistics have the purpose to be
single networks which may explain the overall flow of the game. From Figure 8
we can see that player 3 is the one who interacts more with the others, during
the game. With lower values of ω1 the extracted network contains more positive-
valued edges (as said in Section 3.1), including some triangles: for what concerns
the game dynamics, players involved in triangles are more likely to be the three
Spies of the game.

Figure 8: Fréchet Means of the game with different values of ω1, ω2.
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Figure 9: Fréchet Medoids of the game with different values of ω1, ω2.

Also the Fréchet Medoid has been computed (Figure 9), and from it we observe
that player 7 had noticeable interactions with the others as well, but player 3 had
the strongest interplays altogether (as we can see from tougher edges).

4.2 Multiple games analysis
We selected g = 23 games with v = 7 players, where each game embodies a
different population of networks representing instants. Observe that each game
is played by different people, thus if we compute the Fréchet Mean or Medoid of
all the games (as done in Section 4.1), the set of obtained graphs constitutes a
naturally unlabelled population of networks. We then applied the AAC algorithm
to compute the Fréchet Mean, introduced in Section 3.2. On the other hand, due
to the low number of games, a Fréchet Medoid would be hardly significant. In this
framework we therefore apply our implementation on two levels, since the final
result is a mean of means, or a mean of medoids. For coherence, we apply the
same weights of the Euclidiscrete Distance for both levels: ω1 = 0.1, ω2 = 0.9. A
low value of ω1 allows indeed to obtain a resulting network with more positive-
valued edges, which is advisable for datasets like the one taken into consideration,
having rather sparse networks. Aware of the dependence of the AAC algorithm
on initial conditions and taking advantage of the low value of g, we calculated the
Fréchet Mean starting from each one of the statistics obtained after the first step
of computation (namely, the Fréchet Means, or Medoids, of each game), in order
to compare all the outcomes, and see the most common.
Figure 10 shows the network structures resulted with more occurrences, both for
Fréchet Mean of means and Mean of medoids. Observe that nodes have no labels,
because of the unlabelled nature of the analysed dataset. For the mean of medoids,
10 out of 23 results represent the same network structure, similar to the ones
obtained from the analysis of a single game. We deduce that there is often a player
interacting the most with the others, and one doing the least (the disconnected
node). Moreover, the only link not including the most interacting player could be a
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link between Spies. The behaviour of Fréchet Mean on means is similar, although
slightly less consistent for what concerns the frequences.

Figure 10: Fréchet Mean of means and Mean of medoids for multiple games, with ω1 = 0.1, ω2 =
0.9.

5 Conclusions
In this work, we first analysed the overall already present network literature, to find
existent formulations concerning the calculation of particular statistics, coming
from a sample of networks. The target objects were graphs having weighted edge
attributes which could have value zero with positive probability. Thus, we fixed
an opportune Graph Space both for labelled and unlabelled networks (obtaining
respectively X and X/T ) and observed the underlying probability distributions of
the values, in order to make the proper assumptions for our purpose. We finally
introduced our new metric according to the assumptions, and defined the Fréchet
Mean and the Fréchet Medoid network in order to see how such metric works.
This application in particular involves an Align All and Compute algorithm, when
made on populations of unlabelled networks. The resulting metric is particularly
versatile, due to the free choice of the weights ω1, ω2 depending on the more or
less conservative selection of the edges.

5.1 Further developments
We may enrich the defined Graph Space, without losing consistency with respect
to the assumptions, by adding nodal attributes and making the graphs directed.
The only issue which may figure out from such addition regards the possibility of
zero-valued nodes, but a third likelihood component inherent to the nodes should
overcome the problem (look at the expression (1) of the two components). The
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rules of swaps between nodes should change accordingly (see Section 2.1). Fur-
thermore, an extension to discrete probability distribution might be considered,
even if this may change the nature of the Graph Space. Graphs having edges both
with continuous and discrete probability distributions (conditioned to the fact of
being positive-valued) would require particular attention, especially in an unla-
belled framework (which may generate some contradictions).
The most important development for our application is anyway regression: indeed,
the formulation of this work may be interpreted as a null regression model, having
only the intercept to compute. A careful study on geodesics [Calissano et al., 2020]
and network structures should be carried out for this scope.
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A Appendix

A.1 Calculations of the Multivariate Bernoulli Maximum
Likelihood Estimators

Let us write the expression (3) of the log-likelihood l(p11, p10, p01|x1:n), keeping in
mind that p00 = 1 − p11 − p01 − p10:

l(p11, p10, p01|x1:n) =
n∑

x=1
xi1xi2 log p11(1−p11−p01−p10)

p10p01
+

+
n∑

x=1
xi1 log p10

1−p11−p01−p10
+

n∑
x=1

xi2 log p01

1−p11−p01−p10
+n log(1−p11−p01−p10).

(18)
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To obtain p̂11, we derive (18) with respect to p11, and set the derivative equal to
zero:

∂l

∂p11
= (1−2p11− p01−p10)

∑n
i=1 xi1xi2

p11(1−p11−p01−p10)
+

∑n
i=1(xi1 + x12) − n

1−p11−p01−p10
= 0;

(1−2p11− p01−p10)
n∑

i=1
xi1xi2 + p11

n∑
i=1

(xi1 + x12) = np11;

p11

[
2

n∑
i=1

xi1xi2 −
n∑

i=1
(xi1 + x12) + n

]
= (1−p01−p10)

n∑
i=1

xi1xi2;

p̂11 = (1−p10−p01)
∑n

i=1 xi1xi2

n −∑n
i=1(xi1+xi2) + 2 ∑n

i=1 xi1xi2
. (19)

Similarly for p̂10, we derive the log-likelihood with respect to p10:
∂l

∂p10
= (−1+p11+p01)

∑n
i=1 xi1xi2

p10(1−p11−p01−p10)
+

∑n
i=1 xi1(1−p11−p01)

p10(1−p11−p01−p10)
+

∑n
i=1 xi2 − n

1−p11−p01−p10
= 0;

n∑
i=1

xi1xi2(−1+p11+p01) +
n∑

i=1
xi1(1−p11−p01) =

(
n −

n∑
i=1

xi2

)
p10;

p̂10 = (1−p11−p01)
∑n

i=1 xi1(1−xi2)
n − ∑n

i=1 xi2
. (20)

For symmetry reasons, we also get:

p̂01 = (1−p11−p10)
∑n

i=1(1−xi1)xi2

n − ∑n
i=1 xi1

. (21)

The expressions (19), (20) and (21) contain all the parameters p11, p10 and p01:
to find the estimators, we put these expressions in a linear system with their
respective estimators p̂11, p̂10 and p̂01:

p̂11 = (1−p̂10−p̂01)
∑n

i=1 xi1xi2

n −∑n
i=1(xi1+xi2) + 2 ∑n

i=1 xi1xi2
;

p̂10 = (1−p̂11−p̂01)
∑n

i=1 xi1(1−xi2)
n − ∑n

i=1 xi2
;

p̂01 = (1−p̂11−p̂10)
∑n

i=1(1−xi1)xi2

n − ∑n
i=1 xi1

.

It can be easily checked that the solution of such system is:

p̂11 =

n∑
i=1

xi1xi2

n
; p̂10 =

n∑
i=1

xi1(1 − xi2)

n
; p̂01 =

n∑
i=1

(1 − xi1)xi2

n
. (22)

And we conclude.
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A.2 The Attributed Euclidiscrete Distance
Definition A.1. The Attributed Euclidiscrete Distance (AEDD) of a network
x ∈ X with respect to a set of networks {x1, . . . xn} is defined as:

AEDD(x) = ω1

m
EHD(x) + ω2

n

n∑
i=1

∑
k:xB

ik
xB

k
=1

(xik − xk)2

ciR2
k

. (23)

Where ci denotes the number of common (present) edges between x and xi, namely
an edge k is in common if and only if xB

k = 1 ∧ xB
ik = 1.

This definition is a different reformulation of the one explained by [Wang and
Marron, 2007]. However, compared to the Weighted Euclidiscrete Distance, this
one presents several drawbacks: its meaning is lesser interpretable, its slightly
more computationally expensive, it has an ambiguous behaviour for data with
ci = 0 (there is no division by 0, considering the fact that there would be no terms
to sum), it is quite pessimistic in order to estimate the Fréchet Mean, and - last
but not least - it does not allow any assumption of independence among edges.
Moreover, since it does not use all the information, it is neither a metric nor a
pseudometric.
Indeed, a counterexample in which the triangular inequality does not hold could
be easily provided. Regarding Definition A.1, we have that the expression for the
underlying dissimilarity measure is:

dAEDD(x, y) = ω1

m

m∑
k=1

(xB
k − yB

k )2 + ω2

c

∑
k:xB

k
yB

k
=1

(xk − yk)2 ∀x, y ∈ X, (24)

Where c ≤ m is the number of common positive-valued edges between the two
networks. Notice the use of the term dissimilarity, due to the fact that such mea-
sure is not proven to be a metric. As counterexample, consider the following three
networks with v = 4 nodes, along with the just defined dissimilarities between
them:

Edge (1;2) (1;3) (1;4) (2;3) (2;4) (3;4)

x1 1 1 1 0 0 0
x2 0 0 0 1 1 1
x3 0.5 0.5 0.5 0 0 0

dAEDD(x1, x2) = 6ω1

6 + 0ω2 = ω1;

dAEDD(x2, x3) = 6ω1

6 + 0ω2 = ω1;

dAEDD(x1, x3) = 0ω1 + 0.75ω2

3 = 0.25ω2.

If we choose the positive weights such that ω1 < 0.125ω2, we obtain that:

dAEDD(x1, x2) + dAEDD(x2, x3) = 2ω1 < 0.25ω2 = dAEDD(x1, x3).
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Namely, the triangular inequality does not hold for dAEDD, which hence is not a
metric for certain values of ω1, ω2.
We conclude that an idea of Attributed Euclidiscrete Distance should be perpetu-
ated in order to gain interpretative completeness about the subject, but it would
require a greater effort in terms of overall costs.
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