
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in

Computer and Science Engineering

Digital Healthcare, a web application

for Doctors and Volunteers

Advisor: Prof. Luciano BARESI

Co-Advisor: Ing. Carlo GERI (Medici Volontari Italiani - ETS)

Thesis by:

 Davide LAFFI Matr. 941535

Academic Year 2020 - 2021

2

Abstract

The purpose of this thesis is the design and the implementation of a web
application to support family medicine physician. The idea is to create an
innovative system to manage citizens, in this particular case of Lombardia
region, that can bind together both the medical side, inserted by doctors and
the general social information side, inserted by a third party, like municipal
volunteer. This would allow to have a real improvement in the efficiency
of filling the citizens data and a greater clarity in showing information too.
So, the application is designed both for family medicine physicians and for
the above municipal volunteers. In the first phase a doctor should insert
all medical data of a patient according to the guidelines of the HER/PS,
(FSE/PSS in Italian) [1], that is the Patient Summary of the Electronic
Health Report, and then a volunteer has to complete citizen’s data with
general information like, ID card, ICE numbers. In this way there would be
an overall profile of the citizen. The other scope of the application is about
first medical aid. In case either of accident or urgency medical situation,
an application made by a colleague of mine will use data registered by my
application to generate, in an intuitive way like with a QR code, a PDF file
with the citizen profile. That will be composed by all the most important
data which can be used in an emergency, for example blood group, relevant
diseases and emergency contacts which can save his life.

3

4

Sommario

L’obiettivo del progetto di tesi è la progettazione e lo sviluppo di un’applicazione
web a supporto dei medici di base. L’idea è quella di creare un sistema inno-
vativo che gestisca i cittadini, in questo caso particolare della regione Lom-
bardia, e che possa unire insieme sia la parte medica, inserita dai medici,
sia quella più generale, inserita da un terzo ente, per esempio un volontario
comunale. Questo porterebbe a un grande miglioramento nell’efficienza del
riempimento dei dati dei cittadini e una maggiore chiarezza nella visualiz-
zazione delle informazioni. Quindi l’applicazione è progettata sia per i medici
di base, sia per i volontari comunali. Nella prima fase il medico inserisce tutti
i dati relativi alla parte medica del cittadino, seguendo le linee guida del Fasci-
colo Sanitario Elettronico, e in secondo luogo, un volontario deve completare
il profilo del cittadino con i dati più generali, come carta d’identità, numeri
ICE. In questo modo si creerà un profilo completo del cittadino. Il secondo
scopo dell’applicazione riguarda l’intervento di primo soccorso. In caso di
incidente o di urgenza medica, un’applicazione progettata e sviluppata da
un mio collega userà i dati registrati dalla mia applicazione per generare, in
modo intuitivo per esempio con un codice QR, un file PDF con il profilo del
cittadino. Questo file sarà composto dai dati più importanti che hanno rile-
vanza in caso di emergenza come per esempio il gruppo sanguigno, malattie
rilevanti e contatti di emergenza che possono salvargli la vita.

5

6

Contents

Contents 7

List of Figures 9

1 Introduction 11
1.1 Overview . 11
1.2 State of the art . 12
1.3 Goal of the project . 15

1.3.1 Limits and issues of the State of the art 15
1.3.2 Improvements and goal of the project 16

2 Requirement Analysis 19
2.1 User Requirements . 19
2.2 Use Cases . 21
2.3 Sequence Diagram . 22

3 Architecture Design 29
3.1 Architecture Overview . 29
3.2 Angular Framework . 30

3.2.1 Typescript . 31
3.3 Server side: Firebase . 32

3.3.1 Firebase Authentication 33
3.3.2 Firebase Storage . 34
3.3.3 Firestore Database . 35

4 Implementation 39
4.1 Packages diagram . 39
4.2 Model . 40
4.3 Main classes . 43

4.3.1 Login and registration 43
4.3.2 Home . 46

7

8 CONTENTS

4.3.3 Add new Patient . 48
4.3.4 Patient profile . 50

4.4 Services . 51
4.4.1 Database . 51
4.4.2 Storage . 53
4.4.3 Guard . 54
4.4.4 Pipes . 54

5 Functionalities and demonstration 57
5.1 Login and registration . 57
5.2 Home . 58
5.3 Add new citizen . 59

5.3.1 Add new patient by doctor 59
5.3.2 Add new citizen by volunteer 60

5.4 Citizen Profile . 62
5.4.1 Patient’s profile . 62
5.4.2 Citizen’s profile . 63

5.5 Covid19 emergency . 64
5.6 User’s profile . 66

6 Conclusions and future improvements 67

Bibliography 69

List of Figures

1.1 EHR guidelines for the medical profile 13
1.2 Carta di identità salvavita . 13
1.3 CIS creation . 14
1.4 CIS example . 15
1.5 Architecture Design . 17

2.1 Data entry . 20
2.2 Use Cases Doctor . 21
2.3 Use Cases Volunteer . 22
2.4 add new patient sequence diagram 23
2.5 Patient Profile visualization sequence diagram 23
2.6 Covid-19 emergency sequence diagram 24
2.7 Personal profile sequence diagram 24
2.8 Add Citizen sequence diagram 26
2.9 Covid-19 emergency volunteer sequence diagram 26

3.1 General architecture . 30
3.2 New Patient Component . 32
3.3 Authentication . 34
3.4 Storage . 34
3.5 General architecture . 35
3.6 Citizens collection . 36
3.7 covid19 collection . 36
3.8 data collection . 37

4.1 Packages diagram . 39
4.2 Model diagram . 40
4.3 Packages list . 43
4.4 Login and registration package 43

5.1 Login page . 57
5.2 Registration phase . 58

9

10 LIST OF FIGURES

5.3 Home page . 58
5.4 Add new patient . 59
5.5 New patient form . 60
5.6 Citizens’ list . 61
5.7 Citizen’s profile . 61
5.8 Patients’ list . 62
5.9 Patient’s profile . 62
5.10 Citizen’s profile . 63
5.11 Covid19 section . 64
5.12 Add new report . 65
5.13 Covid19’s section volunteer . 65
5.14 User’s profile . 66

Chapter 1

Introduction

1.1 Overview

Digital Healthcare is a system made in collaboration with a colleague of mine,
Andrea Calici, which has the aim to create a link between citizens data. This
connection between data has borned because the thesis’ goal is to create a
system which could help medical first aid. When there is either an accident
or a medical urgency, time is the most important variable. Normally, in this
type of situations, rescuers have to lose a lot of time in searching informa-
tion about the person involved in the accident. As a matter of fact, it is
the same in hospitals, when people arrive to the emergency room, doctors
have to identify the patient and collect all his data. The idea is to create a
QR code which encapsulates fundamental information of a citizen like blood
group, allergies, and relevant diseases, in order for the doctors to be able to
intervene as soon as possible, having an overview of the most relevant infor-
mation. At the state of the art, doctors have to collect data which can have
missing fields, or they can be old or without an historical, but also they can
come from different sources which complicates the situation. Nowadays each
family medicine physician has his own software to register patients’ health
data, while municipal volunteers have another software to register more gen-
eral data like ID card and so on. Moreover, even between doctors there are
different software to use, which guarantee a heterogeneous quantity of data.
The idea is to create a system which completely deletes differences and com-
patibility problems between data. So, the goal is to design first of all, a robust
database in which all family medicine physician and municipal volunteers can
write and read from, and, in addition, to create a mobile application, based
on this database, which is focused on medical first aid. After discussing with
Andrea Calici, we agreed that I would devolop the web application, that can

11

12 CHAPTER 1. INTRODUCTION

be used also as a desktop application in the future, and he would program a
mobile application focused on the medical first aid, while the database would
be designed in common. This idea has borned in collaboration with Medici
Volontari Italiani [3] that is an association created at the end of 90’s and
that became an ONLUS in 2005. The project was made possible with the
help and the supervision of Carlo Geri, who is a member of the association
that has helped us during the user requirements phase and checked the work
during the whole project. Talking with the customer some other features and
requirements have came on and it was introduced the possibility to create an
historical of all the citizens to keep monitored the health profile. Moreover,
the project has been started during the pandemic situation due to Covid-19
and so, being a medical application, it was introduced a Covid-19 emergency
section to handle tests, vaccinations, and Green Pass, which is the European
certification that certify the protection from the virus. To sum up, the system
is composed by a web application used by doctors, in particular by family
medicine physicians, which provides a software to insert and register patients
and their data related to the medical part. The same web application has
a second section addressed to municipal volunteer to complete the data of
patients with the more general part of information like where do they live,
ID card, picture, and so on. Then there is a database which is in common
to the second part of the project, that is used to keep the data and to create
a linkage between the two applications. To conclude there is a mobile ap-
plication which allows to generate the QR code and to print all the reports
needed for a citizen.

1.2 State of the art

As it was said before, at the current situation handling data is complicated.
There is not a unique software which allows family medicine physicians to
insert data. So, each doctor registers data of patients in a different way, with
different format and increases the incompatibility of information. Moreover,
municipal volunteers add the general data of citizens to a completely different
platform, so that linking data becomes impossible.

1.2. STATE OF THE ART 13

Figure 1.1: EHR guidelines for the medical profile

In Figure 1.1 is reported an extract of the guidelines from the DPCM
”FSE” 31-03-2014 [2] which are effective from 31st of March 2014 to now.
There are 6 pages and each row represent a field to fill in for a patient, in total
there are 46 attributes. For each field there is the group, a small description, if
the field is either required or not and a possible codification. This document
was sent by the customer, it is the document that each family medicine
physician follows in Italy, and it provides the rules to follow. The problem is
that the software to insert this data is different for each hospital or office, and
not all fields have a codification. This creates confusion and heterogeneity
of data. In 2011, thanks to the IBM Foundation Project: ”Celebration of
Service”, Medici Volontari Italiani [3] was able to develop an application that
allows to digitalize medical data to make them easily accessible by rescuers
in case of emergency. This was achieved creating the CIS which means Carta
di identità Salvavita [1] that can be seen in Figure 1.2.

Figure 1.2: Carta di identità salvavita

CIS is a paper where are reported personal data of a citizen together with
some relevant diseases and allergies, but also with two numbers which can be
called in case of emergency. The application of Medici Volontari Italiani [1]

14 CHAPTER 1. INTRODUCTION

allows to read the QR code in the right side of the paper, in this way rescuers
can have a first overview of the citizen who needs help. As it can be read on
the website of Medici Volontari Italiani [1], the application exists only as a
web application for medical staff and cannot be downloaded by other people.
In addition to the CIS, there is the Busta Rossa [4] which contains personal
information and clinic information, and the Braccialetto Salvavita [4] which
is a bracelet that indicates that the person has the CIS to consult. Both are
useful facilities that can help in case of emergency or clinic situations.

Figure 1.3: CIS creation

On the website of Medici Volontari Italiani [3] there is a demo application
that allows to try to create your personal CIS. In Figure 1.3 is reported the
form to fill in to generate the badge where the citizen is asked to provide his
personal information, the two ICE numbers, and his blood group together
with relevant diseases.

1.3. GOAL OF THE PROJECT 15

Figure 1.4: CIS example

1.3 Goal of the project

1.3.1 Limits and issues of the State of the art

The limits and the issues of the actual configuration have been already anal-
ysed inside the overview of this document, but with the explanation of the
state of the art they are now completely clear. The first relevant problem is
the heterogeneity of data and the impossibility to create a system which en-
capsulates all citizens information. The second issue is a direct consequence
of the first one, because without a unique and stated way to collect data, it
is impossible to create a system which reads this data and that uses them.
The goal is to create an application to speed up the first medical aid, so, in
case of emergency, that shows to rescuers the most relevant data which can
save patients life. But this cannot be done because medical data are collected
by family medicine physicians in different ways, not uniform, while general
data of citizens, like ID card, ICE numbers are collected by Medici Volontari
Italiani [3] using another different form which the citizen himself has to fill in.
The problem is that each entity has his own method to retrieve citizen data
and even if the fields and the attributes are the same among the different
software and platforms, they are not compatible because of the typology of
the data. A date can be saved as date, as a number or even as a string, this
causes confusion and impossibility to link data. Another relevant problem is
that databases are different. Each doctor saves information in the database

16 CHAPTER 1. INTRODUCTION

of the system he is using, which is different respect to others. The same for
volunteers which use a completely different way of storing data because they
are a different entity. The problems illustrated before are not issues only in
order to implement an efficient method that helps first medical aid, but they
are also a real problem in data integrity. Having different ways of storing
data and different types of them lead to problems in data, like duplication,
missing data or even the loss of them. When you have to transfer data from
a system to another, the possibility of losing data is very high in particular
if the two systems are decoupled.

1.3.2 Improvements and goal of the project

The system that is created in this project wants to solve all the issues re-
ported above. The solution is creating a new system to collect data, which
is completely linked to the one which provides data when they are asked.
Me and Andrea have found the first solution in having a shared database
between entities. In this way, family medicine physicians insert information
in a database which is read by the application of the medical first aid. Then
the software of the web application would guarantee to have the same for-
mat of data for all doctors who are using it and it would register data on
the database we are talking about. At the end of the process there is the
mobile application which uses the information kept in the database and gen-
erates quickly and in a clear way data needed for medical first aid. This
is the starting point that was agreed with the customer of Medici Volon-
tari Italiani[3]. Clearly, thinking about the project, different improvements
where both asked from the customer and proposed by me. To sum up, there
is a web application which is dedicated to family medicine physicians and
it is used to collect patients’ data. The goal is to create a system that is
used by all the doctors in Italy to fill in information. The web application
generates a form following the guidelines from the DPCM ”FSE” 31-03-2014
[2]for each patient in order to have precise rules which guarantee uniform
data. Moreover, the system is extended to covid19 emergency, so that even
potential information related to the pandemic situation are clearly organised.
Then there is a mobile application focused on medical first aid which wants
to provide a fast and simple support in emergency situation. The linking
point between the applications is the database. In this way data are stored
in the same place, allowing to retrieve them in the fastest possible way.

1.3. GOAL OF THE PROJECT 17

Figure 1.5: Architecture Design

18 CHAPTER 1. INTRODUCTION

Chapter 2

Requirement Analysis

2.1 User Requirements

The work started with a conference call with the customer which explained
the requirements and what he expected from the application to do. The basic
requirement is an application which could be either a web application or a
desktop one, which allows family medicine physicians to register medical
data of a new patient inside a database. Then, in the same application,
a municipal volunteer should have the possibility to access and complete
the citizen’s profile with more general information, like ID card number and
emergency contacts. Talking about medical side, the doctor should be able to
register to the application and log in, then he has a personal section in which
he can add a new patient from scratch. Because of the pandemic situation due
to COVID-19, according to the customer it was decided to add a dedicated
section where the doctor can manage, for each of his patients, covid tests
reports and vaccinations. Then there is another section in which the doctor
can manage his personal profile. He can either change some of his personal
data, for example PEC or phone number or other information like working
days. Another important request was the possibility to keep track of relevant
changes about patient health that was solved introducing an historical record
which can register the past changes related to a patient’s profile. At the end,
the doctor should have a list of patients that can access to choose one of them
in order to visualize his data. The application should give the possibility of
changing data visualization, depending on the date on which information
where inserted. Moving towards volunteer’s part, the user should be able to
register and log in to the application, and then manage citizens’ profile. He
can complete general information data choosing the citizen from the list of
patients the doctor has added. The application should separate people who

19

20 CHAPTER 2. REQUIREMENT ANALYSIS

already have a volunteer assigned, and so should have the profile complete,
and people who are not assigned yet. When a person is selected the volunteer
has to fill in the general information. As in doctor case, volunteers should
have a personal area in which they can manage his personal profile changing
common information like PEC and phone number and other one like days of
works and availabilities. Even in the case of volunteer, there is a COVID-19
section, in which the volunteer can see all the reports about covid tests and
vaccinations and he can also print the Green Pass in case that the citizen
meets the requirements to have it. All these requirements were reached with
conference calls and mail flows. An important step was the creation of the
form which allows to enter data for a new patient. The customer provided a
schema to follow called “Profilo Sanitario Sintetico” which is a list of fields
that a family medicine physician must fill in to register a new patient. Then
there was another form, created by “Medici Volontari Italiani” which asks
for patient’s general social information. So, I tried to link the two schemas
filtering only relevant information and required ones. During this phase, it
was used a web application called JotForm [5] which allows to create mock-
up forms without writing any line of code. This was very helpful because
simplified the communication with the costumer by creating different mock-
up versions of the data entry form. The solution that was applied is to follow
accurately the schema proposed by “Profilo Sanitario Sintetico”, which is the
effective schema that family medicine physician follows in Lombardia region,
for the part of doctors. While, for the part of volunteer, the form provided
by “Medici Volontari Italiani”[3] was used, changing some fields and avoiding
repetitions.

Figure 2.1: Data entry

2.2. USE CASES 21

2.2 Use Cases

Use case diagrams are sketches that tries to represent the user flow inside the
application. There are actors and states. An actor is a type of user inside the
application, in this particular situation we will have an actor characterized by
a “New User” and other two actors representing the doctor and the municipal
volunteer. States have the goal to encapsulate all the possible situation which
a user can face. For example, in Digital Healthcare a possible flow of states
and actions can be a doctor who goes to Authentication section and then to
the Homepage and chooses to add a new patient.

Figure 2.2: Use Cases Doctor

This is the use case diagram that sketches the user flow of a doctor. First
of all, if the user is trying to enter in the web application for the first time, he
will face a registration form which collects some general information about
the doctor. Then the doctor fills in the login form and he can access to his
personal home page, that’s in the diagram at Figure 2.2 is called Home doc-
tor. From the homepage the doctor can now choose among the functionalities
of Digital Healthcare. Add new Patient guides the family medicine physician
through an intuitive form which registers a new patient, while List Patient
provides the list of all the patients registered in the database. The other two
sections are Covid-19 emergency which allows to manage covid tests reports
and vaccination, and personal profile settings.

22 CHAPTER 2. REQUIREMENT ANALYSIS

Figure 2.3: Use Cases Volunteer

In this diagram, there is the volunteer flow in the web application. A new
user has to register himself by clicking on “volunteer” and then he will have
to compile a short form in order to save his general information like phone
number and PEC. After the Sign-up and Sign-in process, the volunteer will
have his personal homepage, where he can choose among all functionalities.
List Patient allows the volunteer to choose the citizen from a list and complete
his general information through a form. In Covid-19 emergency he can print
the green pass of citizens and see covid reports.

2.3 Sequence Diagram

In this chapter are reported some sequence diagrams which are very powerful
items that are used to manage the application dynamics. Here we have some
of the fundamental interactions between the user and the web application. In
general, there are actors, in this case Doctors and Volunteers, which are the
users who interact with the application. Then, in red, there are the views,
which are the classes with the goal of data visualization and data render.
Each view has a corresponding class that we can call Controller class, which
implements the business logic of the application, so it handles algorithmic
logics and database calls. Sequence diagrams are very useful because they
allow to have a general view on the main actions that the application has
to support. It is still a design phase, so the functions that are written in
diagrams can be defined as pseudo-code which has the goal of representing

2.3. SEQUENCE DIAGRAM 23

the actions without any precise detail. Sequence diagrams help a lot in the
communication with the customer.

Figure 2.4: add new patient sequence diagram

Here it is reported the most important feature of the web application in
a schematic way. It is showed to the doctor the view to add a new patient,
in which there will be a form, the more intuitive as possible. Clearly under
the view there will be another class which implements the business logic of
the application.

Figure 2.5: Patient Profile visualization sequence diagram

Here it is reported the sequence diagram of the data visualization of a

24 CHAPTER 2. REQUIREMENT ANALYSIS

patient. First of all, the application shows to the user a list of patients
relative to the doctor with some basic information. Then the doctor can
choose one of the patients and asks for the complete profile. This is handled
by Patient Profile View and its relative controller Patient Profile.

Figure 2.6: Covid-19 emergency sequence diagram

The diagram is showing a simple procedure where the doctor adds a new
covid test report. It can be either a covid test or a vaccination and it will
be saved in the database. The application will allow also to retrieve a list
of tests and vaccinations which are made by a patient. As an example, it is
only showed the adding procedure.

Figure 2.7: Personal profile sequence diagram

2.3. SEQUENCE DIAGRAM 25

In Figure 2.7 is reported a simple diagram that shows the procedure in
order to change personal profile information. The doctor will see his data
and he is allowed to change his personal information and register changes.

26 CHAPTER 2. REQUIREMENT ANALYSIS

Moving towards volunteer side, the web application provides functionali-
ties similar to the doctor one. Below are reported some actions that volun-
teers can make that have significant differences respect to the doctor ones.

Figure 2.8: Add Citizen sequence diagram

As can be seen in Figure 2.8, a volunteer can access the list of citizens
registered in the application and choose from the list a citizen. Then, if there
are missing data, the web application will show a form to fill in in order to
complete the citizen profile with missing information.

Figure 2.9: Covid-19 emergency volunteer sequence diagram

Here it is shown how volunteer can interact in the Covid-19 emergency

2.3. SEQUENCE DIAGRAM 27

section. He can access to all the covid test and vaccination reports, and also
generate the green pass. The Green Pass, according to the rules of the state
of Italy, can be generated if the citizen has either a complete vaccination
against Covid-19 or a negative test within the last 48 hours. The application
should check also these requirements before generating the Green pass.

28 CHAPTER 2. REQUIREMENT ANALYSIS

Chapter 3

Architecture Design

This chapter has the goal to give an overview of the architecture of the
application Digital Healthcare. It will cover both the web application made
by me and a bit of explanation of the mobile application implemented by my
colleague Andrea Calici.

3.1 Architecture Overview

The two applications made by me and my colleague Andrea Calici are com-
pletely independent from each other. Both me and Andrea had the possibility
to choose the technologies we thought would be better for our own applica-
tion and none of us was influenced by the choice of the other. The only
common point between the two projects was the database. The web appli-
cation made for family medicine physician and the mobile application made
for citizens are completely separated except from the database which is in
common. The web app registers data patients and all the information in the
database, while the mobile application reads all the data from the database.

29

30 CHAPTER 3. ARCHITECTURE DESIGN

Figure 3.1: General architecture

Talking about the web application, my choice was to use Angular frame-
work [6] for the client side of the application, while we agreed that Google
Firebase [7] was the best database solution for our project. As a matter of
fact, before choosing the personal architecture, me and Andrea Calici have
discussed about all the database fields that were in common in the two appli-
cations. It was very important to agree everything before starting to program
because it was the only part that links the web application and the mobile
one. The web application is programmed using Angular framework. This
framework includes the use of different programming language. The front-
end part is mostly written in HTML and CSS with the large use of typescript
[8] to connect the model part to the view one. As it was said before, the server
side is handled by Firebase Database and its features. The authentication
is managed by Firebase Authentication [7] which guarantees a safe way to
access with email and password to the applications. The images are stored
using Firebase Storage [7] and all the data are registered in the database by
Firestore Database [7]. The mobile application is written using Flutter SDK
[9] which is a relatively new open-source framework made by Google to build
user interfaces for mobile and web devices.

3.2 Angular Framework

Angular is a modern development framework which allows to develop across
all platforms. It is mainly used for desktop and web development focusing on
the front-end part of the application. It uses HTML, CSS and Typescript as
programming languages. Angular itself was written in Typescript. Angular
benefits are different, the most important are:

• It gives the application a clean and loosely coupled structure.

3.2. ANGULAR FRAMEWORK 31

• It is very easy to test.

• It includes a lot of reusable code.

3.2.1 Typescript

Typescript can be defined as a superset of Javascript, every Javascript code
can be converted in Typescript, but Typescript has some additional fea-
tures. Browsers do not support Typescript, so there is a compiler that each
time the application is compiled, it translates Typescript code in Javascript
one. In Typescript there are object-oriented features which are not present
in Javascript. There are concepts of classes, fields, properties, private and
public fields, interfaces which are typical of an object-oriented programming
language [10]. In addition, we can catch errors at compile time and correct
them before executing the program in the browser. In Typescript there is the
concept of Modules. Modules are classes and cohesive block of code which
can be exported and imported in other part of the Angular application. An-
other essential entity is the Component. Each angular app has at least one
component that is the root component. Components define views that are
the parts that the user sees and which communicate with program logic and
data, and they use services which are injected in the components as depen-
dencies making the code more modular. Examples of services are database
classes or functions that are used more than one time. Each component
encapsulates:

• Logic: the methods and the operations used inside the class.

• View : the part that is showed to the user.

• Data: all the data and information used in the application.

Angular uses Decorators to markup the classes with some metadata that
allow the compiler to know which type of class (view, service, . . .) it is dealing
with. For example, a component is marked with the decorator @Component
while a service is marked with the @Injectable token. The power of Angular
framework is the use of Dependency Injection to inject in the classes some
services or pieces of code written in other part of the application. This allows
to reuse code and make the application lighter. Another important element
is the Template which is a form of HTML that tells Angular how to render
the component. The goal is to render in a view the data and the logic of
a component. This is done using HTML language and using data binding
provided by Angular. Moreover, Angular framework organizes its classes in

32 CHAPTER 3. ARCHITECTURE DESIGN

a very smart and modular way. When a component is automatically gen-
erated by the programmer using angular CLI, that is the command prompt
of angular framework, Angular generates a directory with the name of the
component in which there are prepared four files:

• CSS file: it is used to handle the format of the template using CSS
language.

• HTML file: it is used to render the view of the component. Using Ng
directives, the view part can be bind to the Typescript file in which is
encapsulated the logic and the data of the component.

• Typescript file: it is the main class of the component in which is con-
tained all the logic of the component including methods and functions.
Moreover, it contains the data of the program.

• Test file: it is used for test purpose. It allows to test the single com-
ponent in order to guarantee modularity.

Figure 3.2: New Patient Component

3.3 Server side: Firebase

The server side of the application is entirely hosted by Google Firebase [7]
and it is divided in a component for the authentication called Firebase Au-
thentication, another component called Firebase Storage with the goal of
storing images and the last one, that is the one which has the function of
a Database, called Firestore Database, which organizes everything stored in
the database in collections and documents. Firebase is a platform oriented
to the creation of web and mobile applications. It is developed by Google
and it offers different services which can help developers and company to
create their application and boost them safely. Firebase gives the possibility
to access to backend services which have the goal to store data inside the
Database. Authentication, Storage and Firestore Database are all belong-
ing to this category and, in addition to them, Firebase offers other backend
services like Machine Learning and Cloud Functions, which are server side

3.3. SERVER SIDE: FIREBASE 33

functionalities which can be very useful for applications. On the other hand,
there are monitoring and analytics features that a user can take advantage
of like Crashlytics and Performance.

3.3.1 Firebase Authentication

In applications the authentication phase is crucial. First of all for security
reason, but also for personalization. As a matter of fact, is very important
to control the access to an application in order not to allow someone not
registered to enter the system. Secondly, knowing the identity of a user is
essential for Digital healthcare, because each user has a personalized page
when he logs in. When a doctor sign in, he must have the doctor’s homepage
and not a municipal volunteer one and vice versa. Moreover, each doctor
and each volunteer needs to visualize his personal list of either patients or
citizens and cannot access to other lists different then his own one. Firebase
Authentication [7] propose a variety of methods for authentication. It allows
the programmer of the application to implement in a very simple way most of
the common authentication possibilities. Starting from the classical ones like
Username and password, Google and Facebook, to more particular ones like
Github and Yahoo. The integration of the authentication is very easy and it
is completely guided by the website of Firebase. Focusing on Digital Health-
care, there are two authentication methods provided by the web application:
email and password, and Google sign In. If a user tries to open the web ap-
plication while he is not logged in, he will be moved to the login page. If he
is not registered, the user can choose to sing up using either email and pass-
word by pressing “Registrati” button, or Google authentication by clicking
“Login on account google”. The Google method is very quick, and the user
is asked only to login to his Google account and agree to provide some infor-
mation. While choosing the email and password authentication, the user has
to specify some personal information like name, surname, phone number and
some others, and then provide an email and a password. When he finishes
to fill in the form, it will be sent a confirmation email to verify the identity
of the user. Each user registered in the application has a UID assigned. It
is a unique alphanumeric code that identifies each user in the database. In
this way, during the programming phase each page can be personalized de-
pending on the user who is logged in. Google authentication was inserted in
Digital Healthcare to speed up the authentication procedure, because some
data like profile image, phone number and email are automatically filled in
because incapsulated in Google’s account.

34 CHAPTER 3. ARCHITECTURE DESIGN

Figure 3.3: Authentication

In Figure 3.3 it can be seen a shortcut of the Authentication’s part of
Digital Healthcare in Firebase. The icon with the small envelope represents
users registered with email and password, while the google icon indicates
people logged in using Google Authentication.

3.3.2 Firebase Storage

Firebase Storage is a service offered by Firebase used to store images and
videos on the cloud. Firebase Storage stores files in a Google cloud storage
bucket, making them accessible through both Firebase and Google Cloud.

Figure 3.4: Storage

In Figure 3.4 are reported the folders that are present in the storage
part of the web application. Firebase storage [7] is used to store files and
it has the possibility to create folders to better organize users’ images and
files. First of all, Firebase needs to be integrated in the application. Then,
you need to reference the path of the file you want to upload or download
depending on either where you want to save it in the cloud or from where
you want to download it. For example, indicating a path to upload a file
as ”citizen image/xxx.png”, it will be uploaded the image “xxx.png” in the
folder “citizen image”. Talking about Digital Healthcare there are 3 folders.
Citizen image contains the pictures of all the citizens who have changed their
profile pictures. When a municipal volunteer, in the changing data section,
decides to upload a new profile picture for a citizen, it is directly uploaded

3.3. SERVER SIDE: FIREBASE 35

in that folder in the cloud. The name of the picture will be the fiscal code
of the citizen followed by the extension of the image. If the user has already
a profile picture and the volunteer uploads a new one, the newer image will
overwrite the older one. Then there is the Profile image folder which collects
all the profile images of doctors and municipal volunteers registered to the
web application. As it is done for the citizen images, each picture uploaded
to this folder is saved with the fiscal code of the user followed by profile and
the extension of the image. The last folder is used to store reports, which are
PDF files that contain COVID-19 reports like tests and vaccination. These
files can be uploaded by doctors and are different for all the patients. Then
these reports are downloaded by municipal volunteers when they need to
visualize documents related to COVID-19. Each PDF file is saved with the
fiscal code of the citizen followed by the word “report” and the timestamp
in which the report was uploaded to keep it unique.

3.3.3 Firestore Database

Firestore Database [7] is a NoSQL database hosted on the cloud. It intro-
duces an important change in database structures, organizing data in collec-
tions and documents. An admin can create some collections and each one can
be populated of independent documents which have some attributes called
fields. Documents can support different data types: number, strings, dates,
and others. Moreover, a document can contain another collection creating
nested objects and structures very useful.

Figure 3.5: General architecture

In Figure 3.5 it is showed the general architecture of Digital Healthcare.
The database is in common with the mobile application made by Andrea
Calici. There are 4 different collections which encapsulates all the informa-
tion of our application:

• Citizens: it contains all the information about patients and citizens
added by doctors and volunteers inside the database, both Covid-19
data and general patient data.

36 CHAPTER 3. ARCHITECTURE DESIGN

• Doctors: it groups together all the doctors registered to the applica-
tion.

• Users: it is an “helping” collection that simplify handling users regis-
tered to the application, both doctors and volunteers, holding general
and most used fields of users.

• Volunteers: similar to the collection Doctors, it groups together all
the volunteers registered to the application.

Figure 3.6: Citizens collection

Citizens’ collection is the most important in the database because it con-
tains all the information of a citizen. Each document is identified by the
fiscal code of the citizen. As it can be seen in the right side of Figure 3.6,
each citizen has some general attributes like name, surname and the fiscal
code of the referenced doctor and volunteer which have inserted the data and
two collections called Covid19 and data.

Figure 3.7: covid19 collection

Covid19 collection has a document for each report uploaded by the re-
ferring doctor identified by the timestamp at which it was uploaded. Then

3.3. SERVER SIDE: FIREBASE 37

each document has some fields with the information related by the report.
In Figure 3.7 it is shown the example of a Covid test, so there is the date on
which the test was performed, the outcome of the test, the link to the report
and the type of the test.

Figure 3.8: data collection

Data collection has a document for each time a new group of data is
added by a doctor. As a matter of fact, each document is identified by the
timestamp representing the instant on which the group of data was added.
For each timestamp there is a bunch of fields which contains all the informa-
tion of a citizen added both by the relative doctor and the relative volunteer.
All the data are registered as strings and are casted in the real type of data
when they are either wrote or read by the database.

38 CHAPTER 3. ARCHITECTURE DESIGN

Chapter 4

Implementation

This chapter has the goal of illustrating the implementation of the web ap-
plication, starting from the design part up to the coding phase. It will be
analysed the designing of the packages and the classes that are needed to
implement the whole system, but also some interesting coding part which
represents key points of the business logic of the application.

4.1 Packages diagram

Figure 4.1: Packages diagram

The macro categories in which the project can be divided are:

• Model

• Services

• Component

39

40 CHAPTER 4. IMPLEMENTATION

In general, the system is composed by a variety of components which
implement all the functionalities of the application, they render all the views
with whom the user interacts with, and they integrate all the external services
that the application needs to work. The cardinal package is the component
which together with the others implements all the logic of the application.
Each component needs to exchange information with the Model which is a
package that contains all the plain objects that are used inside the applica-
tion. The model class is called to create an object already defined in the past,
to facilitate the modularity and reusability of the application, the object is
defined in the model together with its fields. Another package very impor-
tant is the Services package. A service is a narrow class which should do
something specific and should not have more than a purpose [6]. The power
of services is that components can fully concentrate on the user experience,
connecting the view part and the data logic of the application, and they can
delegate to services some tasks. To enable the communication between com-
ponents and services, Angular uses the dependency injection. In this way,
when a component needs a specific service, it is injected in the constructor
of the class and it is used by the component. There are different types of
services, starting from database methods, but also authentication’ services
and routing protection’ services.

4.2 Model

Figure 4.2: Model diagram

4.2. MODEL 41

In Figure 4.2 is reported the diagram of the model. The package contains
all the classes belonging to the model part of the application. The classes
represent plain object which have only the definition of the fields and the
constructor.

export abstract class User {

public emai l : s t r i n g ;
public CF: s t r i n g ;
public uid : s t r i n g ;
public photoURL : s t r i n g ;
public e m a i l V e r i f i e d : boolean ;
public userType : s t r i n g ;

c on s t ruc to r (){
this . emai l = ”” ;
this .CF = ”” ;
this . uid = ”” ;
this . photoURL = ”” ;
this . e m a i l V e r i f i e d = fa l se ;
this . userType = ”” ;

}
}

User is an abstract class. There are six public fields with the type of
object defined. Then there is the constructor which is used to initialize the
object. In the model of the application there are three main objects which
are Patient, User and Covid Report. Starting from user, it is an abstract
class because, as it was said before, there are two types of users which can
register to the application: doctors and volunteers. So, the decision was to
create an abstract class for the entity user, and then two classes that are
MedicoProfile and VolunteerProfile which extend the superclass. This choice
guarantees to avoid duplication of code, the alternative was to create two
classes which do not extend any class, and so to duplicate the common part
of the two classes which is the one in class user. Moreover, the creation of
the abstract class allows to add new types of users if future improvements
require it. Because every user in the application must have the fields of the
class user declared, then it can modify the other fields depending on the
type of user it is. Patient is an object which encapsulates all the fields of a
patient that is registered to the system. The name Patient should be citizen,
because it includes both the medical attributes of a patient inserted by the

42 CHAPTER 4. IMPLEMENTATION

doctor, and the more general data inserted by the volunteer. Because of the
multiplicity of data, it was chosen to create other three “helping” objects to
facilitate the application modularity from a coding point of view, but also to
organise better the division of fields. The three objects are:

• PersonalData: it includes all the attributes defined as general data
of the citizen. For example, gender, date and place of birth, phone
number and email.

• VolunteerData: it covers all the information inserted by the mu-
nicipal volunteer in the web application. For example, ID card, ICE
numbers and other codes.

• MedicalData: it encapsulates the data registered by the family medicine
physician. For example, relevant diseases, allergies and other.

In addition to these three objects, the class patient has some general
attributes which are required to define it. The most relevant are name,
surname, but also medicoCF and volunteerCF which indicates the fiscal code
respectively of the doctor and of the volunteer which have inserted the data
of the patient. This is done to track all the citizen and to show to doctors
and volunteers only their patients and citizens based on the fiscal code. The
last object that is present in the application’s model is Covid Report. It is
an object relative to covid19 emergency part of the system, and it is used
when a user either registers or wants to read a Covid report, like tests or
vaccinations. The fields of the object are:

• Tipologia: which indicates the type of Covid report it was uploaded.
The value it can assumes are “Tampone”, “Vaccinazione”, “Sierologico”.

• Esito: in case of a Covid test, like “Tampone” or “Sierologico”, it will
have the result of the test as a string. Otherwise, in case of vaccination,
it will have the step of vaccination, like “Prima dose”.

• Data: it indicates the date on which the report was realized.

• nomeVaccino: it is a blank field in case of covid test, while it contains
the name of the vaccination, in case that the report is a vaccination
one.

• Link: it contains the link to the report saved on the Storage of the
database.

• Ts: it indicates the timestamp on which the Covid report was uploaded
to the database.

4.3. MAIN CLASSES 43

4.3 Main classes

Figure 4.3: Packages list

In Figure 4.3 there is a list of all the packages and component which compose
the application. Model is the package that contains the classes illustrated
in chapter 4.2. Then there are pipes and service which are packages that
will be discussed in the next paragraphs. The others are component. Each
component has a Typescript file, a HTML file, a CSS file, and a test file. It
will follow a list of the most important components of the application with
a description of the features they introduce and some screen of the most
relevant part of code. For the majority of components, they are duplicated
because the system implements some similar features both for doctors and
for volunteer in a decoupled way. For example, both doctors and volunteers
need to add citizen data, but the two components cannot be joined together.

4.3.1 Login and registration

Figure 4.4: Login and registration package

The login and registration directory contains four components. The registra-
tion process is implemented by the component sign-up. The aim of the class
is to realize all the user’s registration phase. There is a form which asks the
user to fill in his personal data, starting from if he is a doctor or a volunteer.
Then data will be registered in the database, and it will be sent a verification
mail to the one inserted in the form.

44 CHAPTER 4. IMPLEMENTATION

async onSignupMedico (){
this . medicoCreated = new MedicoPro f i l e () ;
this . medicoCreated . userType = ”medico” ;
this . medicoCreated .CF = this .CF;
this . medicoCreated . cognome = this . cognome ;
this . medicoCreated . emai l = this . emai l ;
this . medicoCreated . nome = this . nome ;
this . medicoCreated . pec = this . pec ;
this . medicoCreated . t e l e f o n o = this . t e l e f o n o ;

try {
await this . f i r e b a s e S e r v i c e
. s ignup (this . medicoCreated , this . password) ;

i f (this . f i r e b a s e S e r v i c e . i sLoggedIn ())
this . i s S i gned In = true ;

} catch (e r r o r) {
window . a l e r t (e r r o r) ;

}
}

This piece of code is extracted from the signup part. The method ngO-
nInit is an angular method that is called at the beginning of the process and
the class has to implement the interface OnInit to use it. At the beginning
the program controls if the user is already signed in and it sets a Boolean
value used to check it. The main method is onSignup which divides doc-
tor’s requests from volunteer’s one calling the specific method. By checking
the string variable userType, the method calls either onSignupMedico or on-
SignupVolunteer, respectively if the user specified either doctor or volunteer.
The method simply creates and instantiates an object that can be Medi-
coProfile or VolunteerProfile and, through angular data binding, it collects
data from the form implemented in the HTML page. Then, with a try catch
statements, it calls a service that was previously injected in the constructor
of the class called AuthService, which has some useful tools to handle the
authentication of users. One of the service’s method is signup, that asks as
parameters either the doctor or the volunteer profile object and the password
inserted in the form and connecting itself to firebase authentication service,
it register the user to the database.

4.3. MAIN CLASSES 45

<div c l a s s=”signup−form”>
<form (submit)=”onSignup ()” ngNat iveVal idate
#formSignUp>

<div id=”ze roSec t i on ” [ngClass]=”
{ ’ non−di sp lay −s e c t i on ’ : c o n t r o l l e r S e c t i o n !=1}”>

<div c l a s s=”form−check v e r t i c a l −padding10”>
<input c l a s s=”form−check−input ” type=”rad io ”
name=”userType” id=”medico” value=”medico”
[(ngModel)]=” userType”>
< l a b e l c l a s s=”form−check−l a b e l ”
f o r=”f l exRad ioDe fau l t1”>

Medico
</l abe l>

</div>
<div c l a s s=”form−check v e r t i c a l −padding10”>

<input c l a s s=”form−check−input ”
type=”rad io ”
name=”userType” id=”v o l o n t a r i o ”
va lue=”v o l o n t a r i o ”
[(ngModel)]=” userType”>
< l a b e l c l a s s=”form−check−l a b e l ”
f o r=”f l exRad ioDe fau l t2”> Volontar io
</l abe l>

</div>
<button type=”button ”
c l a s s =”btn btn−l g btn−primary ”
(c l i c k) = ” changeSectionGo ()”>
I n i z i a Reg i s t raz i one </button>

</div>

Some relevant keywords are ngClass which is an Angular command that
is used to hide or use a class depending on a true or false condition. In
the web application, this feature is often used to display some part of the
page depending on some condition. For example, if a form is composed
of more sections and it’s needed to display only one of them at a time,
with ngClass and a counter the other sections different from the counter
can be hided. Another important angular keyword is ngModel which is used
for data binding. It is very powerful because it can link together part of
the HTML variables and form parts to the Typescript variables value. In
this way the Typescript class and the HTML one can communicate in a

46 CHAPTER 4. IMPLEMENTATION

bidirectional way. As it can be seen in the snap of code above, each input
tag is bind together with a variable of the typescript class. So, when a user
fill in the form, all the values he is inserting are immediately transmitted to
the logic part of the application handled by typescript. The last command
is ngNativeValidate which is used to check the integrity of the form. This
instruction automatically activates the check of all the fields with a required
keyword in. Talking about the sign in part, the code is smoother. A form
implemented in the HTML page is displayed to the user and by fill in it and
pressing a button, the typescript class makes use of the authentication service
injected in the constructor and asks Firebase to log in the user with email and
password. If the user is already registered, the server gives a positive response
to the client and set a Boolean variable to true, allowing the user to enter
the application. Otherwise, an error message is displayed to the user. There
is another method in the sign in class which is the google authentication one.
Also for this one, the class uses the authentication service calling the relative
function of firebase.

4.3.2 Home

There are two different components respectively one for doctors and one for
volunteers which implement the view and the logic of the homepage.

ngOnInit () : void {
const userToConvert = l o c a l S t o r a g e . getItem (’ user ’) ;
this . currentUserRaw = userToConvert !== null ?
JSON. parse (userToConvert) : ”” ;

const documentRef = this . f i r e s t o r e
. c o l l e c t i o n (’ u s e r s ’) . doc (this . currentUserRaw [’ uid ’]) ;
const c o l l e c t i o n I n s t a n c e = documentRef . valueChanges () ;
var subs = c o l l e c t i o n I n s t a n c e . sub s c r i b e (s s => {

this . currentUserTemp = this . db
. createUserMedicoFromSnapshot (s s) ;

const documentRefMedico = this . f i r e s t o r e
. c o l l e c t i o n (’ doc to r s ’) . doc (this . currentUserTemp .CF) ;
const c o l l e c t i o n I n s t a n c e M e d i c o = documentRefMedico
. valueChanges () ;
var subs2 = c o l l e c t i o n I n s t a n c e M e d i c o
. sub s c r i b e (s s => {

4.3. MAIN CLASSES 47

this . currentUser = this . db .
createCompleteMedicoFromSnapshot (ss , this . currentUserTemp) ;

l o c a l S t o r a g e
. set I tem (’ medico ’ , JSON. s t r i n g i f y (this . currentUser)) ;
l o c a l S t o r a g e
. set I tem (’ medicoCF ’ , JSON. s t r i n g i f y (this . currentUser .CF)) ;
this . mySubs . push (subs2) ;

}) ;
}) ;

this . mySubs . push (subs) ;

}

The snap of code represents the constructor and the initialization method
of the homepage class. In the figure there is the doctor homepage, but it is
similar also for volunteer one. As it can be seen in the constructor there are
some services injected that are used inside the logic of the class:

• AuthService: as it was said before, it is used for authentication, in
this specific case it is used to allow the logout of the user when a button
is pressed.

• AngularFirestore: a very important service in the application. It is
used to communicate with Firebase database. By invoking the service
and accessing to it, there is the possibility to explore and get collections,
documents, and snapshot of the database.

• DatabaseService: it is an “helping” service where there are some
useful transformation methods, in particular when some data are asked
to the database and must be converted in typescript objects.

• NgbModal: which is used to create modal form.

• Router: the routing module is an Angular service used for navigation
among the different pages of the application.

Then there is the initialization method. First of all, it uses the local-
storage variable that is a default Angular keyword which allows to access to
an in-browser storage that has allocated space for each domain. During the
login phase, the service stores in the storage an item that can be retrieved
with the string user. In this way, even if the screen and classes changed, the

48 CHAPTER 4. IMPLEMENTATION

values of the item “user” can be obtained by invoking localstorage and using
the method getItem. Data in localstorage are handled like a JSON dictio-
nary. Then the class has to create the MedicoProfile object. To do that, the
AngularFirestore service is used and from the database all the data relative
to the user are taken. Then, the method createCompleteMedicoFromSnap-
shot of the class DatabaseService converts firebase snapshot into typescript
object and it is stored in the localestorage in order to simply have it in all
the others part of the application until the user connected either presses the
logout button or closes the browser. There is another important feature han-
dled by the home component which concerns the functionality which allows
to add a new patient to the database. This functionality is dedicated only
to doctors, because municipal volunteers do not need to add new citizens,
but only to complete the profile of a patient previously inserted. When the
family medicine physician wants to add a new patient, it is displayed a modal
which asks for the fiscal code of the patient. Here we have different scenarios
that can happen:

• The fiscal code is new to the database: In this situation, the route
navigation brings the user to the Add new Patient section, so that he
can proceed to add patient features.

• The fiscal code is already present in the database: The home
view shows the last date update for the registration of data of this
particular patient. The user can choose either to start to add the
patient from the last updated data or to add the patient from scratch.

4.3.3 Add new Patient

This component implements the most important feature in the whole system,
that allows to start the creation of a new citizen inside the database. The
terminology is the same, citizen is used when we are talking about a volunteer
who is adding a new person, patient is relative to a doctor adding the person’s
data.

ngOnInit () : void {

//Take CF from home
const codiceFisca leRaw = l o c a l S t o r a g e . getItem (’CF ’) ;
this . CFfromHome = codiceFisca leRaw !== null ?
JSON. parse (codiceFisca leRaw) : ”” ;

4.3. MAIN CLASSES 49

l o c a l S t o r a g e . removeItem (’CF ’) ;

//Take i f i t i s the f i r s t time you i n s e r t the p a t i e n t
const f i r s tT ime = l o c a l S t o r a g e . getItem (’ f i r s tT ime ’) ;
this . i sF i r s tT ime = f i r s tT ime !== null ?
JSON. parse (f i r s tT ime) : ”” ;
l o c a l S t o r a g e . removeItem (’ f i r s tT ime ’) ;

//Take i f you are s t a r t i n g from a d i f f e r e n t t s
const l a s tUserDate = l o c a l S t o r a g e
. getItem (’ las tUserDate ’) ;
l o c a l S t o r a g e . removeItem (’ las tUserDate ’) ;

//Take Medico CF who w i l l add data
const medicoCFraw = l o c a l S t o r a g e
. getItem (’ medicoCF ’) ;
this . medicoCF = medicoCFraw !== null ?
JSON. parse (medicoCFraw) : ”” ;
l o c a l S t o r a g e . removeItem (’ medicoCF ’) ;

this . pa t i en t .CF = this . CFfromHome ;
conso l e . l og (this . CFfromHome) ;

i f (! this . i sF i r s tT ime){
const c o l l e c t i o n R e f = this . f i r e s t o r e
. c o l l e c t i o n (’ c i t i z e n s ’) . doc (this . CFfromHome) ;
const c o l l e c t i o n I n s t a n c e = c o l l e c t i o n R e f
. valueChanges () ;
var sub = c o l l e c t i o n I n s t a n c e . sub s c r i b e (s s => {

this . pa t i en t = this . db
. createGeneralPatientFromSnapshot (s s) ;
this . mySubs . push (sub) ;
i f (las tUserDate != null){

this . lastUpdateTS = lastUserDate !== null ?
JSON. parse (las tUserDate) : ”” ;
const c o l l e c t i o n R e f = this . f i r e s t o r e
. c o l l e c t i o n (’ c i t i z e n s ’) . doc (this . CFfromHome)
. c o l l e c t i o n (’ data ’) . doc (this . lastUpdateTS+””) ;
const c o l l e c t i o n I n s t a n c e = c o l l e c t i o n R e f
. valueChanges () ;
var sub2 = c o l l e c t i o n I n s t a n c e

50 CHAPTER 4. IMPLEMENTATION

. s ub s c r i b e (s s => {
this . pa t i en t = this . db
. createPatientFromSnapshot (ss , this . pa t i en t) ;
this . mySubs . push (sub2) ;

}) ;
}

}) ;
}

}

The snap of code belongs to add new patient component. At the begin-
ning it retrieves from the localstorage some variables which are needed to
understand in which scenarios are we. The value “firstTime” is a Boolean
used to know if, in home component, the user has inserted a new fiscal code
which is not already registered in database. In this case the creation of the
new patient should be from scratch. Then, if the user has chosen to start
adding patient information from the last updated date, the component takes
the value of the last date from the localstorage and it makes and access to the
database collecting all the data. Then, it transforms snapshots in typescript
objects using the DatabaseService, and through data binding, it displays to
the user the standard form for a new patient, but with the fields already
filled with last data available.

4.3.4 Patient profile

The other two relevant components are the ones related to the patient profile,
both from the volunteer point of view and from the doctor one. The goal
of the component is to retrieve data from the database of a patient selected
from a list and to display the information to the user. The important feature
introduced in this component is the possibility to change the date on which
where inserted the data. As it was seen in the database explanation part, each
patient has a collection called data, and for each collection there are different
documents identified by the timestamp on which data where inserted. In
this way, for the same patient there are more than one collection of data
depending on the date they where added. Therefore, the system allows to
have some statistics of the patient, because, in the database it is registered
all the timeline of him.

<div c l a s s=”dropdown−menu”
ar ia −l a b e l l e d b y=”dropdownMenuButton”>

<div ∗ngFor=’ l e t t s o f arrayDatePatient ’>

4.4. SERVICES 51

<a [routerL ink]=”” fragment=””
(c l i c k)=”changeDatePatient (t s)”
c l a s s =”dropdown−item”>{{ t s |

date : ’ dd/MM/yyyy ’}}
</div>

</div>
</div>

</div>
<div c l a s s=”col−md−5 text−c en te r”>

<h3>Dati de l : {{ lastChosenTS |
date : ’ dd/MM/yyyy ’}}</h3>

</div>
</div>

</nav>
</div>

This is a snap of code of the HTML part which allows to change date
of patient’s data. There is a dropdown menu which shows all the dates on
which data for a specific patient were added. This menu is implemented by
the keyword ngFor which is an Angular command that allows to replicate
the code for all the elements of an array. By choosing one element of the
arrayDatePatient, the program calls the method changeDatePatient and asks
to the database all the data related to the specific timestamp. In this way the
object changes his fields with the updated data and through data binding,
the new information are showed to the user.

4.4 Services

Talking about the services that are used in the application, it was already
said what a service is. These typescript classes are marked as injectable
because they can be used by other classes through dependency injection.
Services need to implement specific features which the main classes delegate
to them. In the case of Digital Healthcare, there five relevant services which
are used.

4.4.1 Database

The first service is a helping service that is used to simplify the management
of the database. The main features are allowing a clean communication
between typescript objects and database’s snapshot data. When some data

52 CHAPTER 4. IMPLEMENTATION

are retrieved from the database, they usually are in a raw form, and it is very
risky to use them without modifications.

createPatientFromSnapshot (patientFromDB : any ,
r e s u l t P a t i e n t : Pat ient){

// Dati p e r s o n a l i
r e s u l t P a t i e n t .CF =
patientFromDB .CF
r e s u l t P a t i e n t . nome =
patientFromDB . nome ;
.

// Dati Medico
r e s u l t P a t i e n t . datiMedico . cod i ceEsenz ione =
patientFromDB . cod i ceEsenz ione ;
r e s u l t P a t i e n t . datiMedico . r e t i P a t o l o g i e A s s i s t i t o =
patientFromDB . r e t i P a t o l o g i e A s s i s t i t o
.

// Dati Vo lontar io
r e s u l t P a t i e n t . da t iVo l on ta r i o . numeroCartaIdentita =
patientFromDB . n u m e r o C a r t a I d e n t i t ;
r e s u l t P a t i e n t . da t iVo l on ta r i o . comuneRi lasc io =
patientFromDB . comuneRi lasc io ;
r e s u l t P a t i e n t . da t iVo l on ta r i o . dataScadenza =
patientFromDB . dataScadenza ;
.

}
An example is the piece of code above which shows the main method of

the class. createPatientFromSnapshot takes as parameter the snapshot just
taken from the database, and it converts it to the typescript object of patient.
The method is really simple, for each field of the object, it accesses to the
snapshot and takes the relative attribute.

createMedicoFromStorage (medicoRaw : any){
var medico = new MedicoPro f i l e () ;

medico .CF = medicoRaw [’CF ’] ;
medico . cognome = medicoRaw [’ cognome ’] ;

4.4. SERVICES 53

medico . emai l = medicoRaw [’ email ’] ;
medico . uid = medicoRaw [’ uid ’] ;
.

r e turn medico ;
}
This is another method which has a very similar goal to the previous one.

The method createMedicoFromStorage is used to convert the doctor data
saved in the localstorage of the browser to an object.

4.4.2 Storage

This service groups together all the services related to the storage upload
part. In the system, when it is needed to upload to Firebase storage, must
be called a service which handles the process. There are three possible type
of uploads that can be performed inside Digital Healthcare. The first one is
for user’s profile picture, so when doctors and municipal volunteers want to
change their personal profile, another one is for citizen’s profile picture, so
when a volunteer changes the profile picture of a citizen, while the last one
is for storing covid19 report, so PDF files.

async up loadFi l e (nomeFile : s t r i ng ,
CF: s t r i ng , dateTS : s t r i ng , r epo r t : CovidReport) {

i f (t h i s . f i l e) {
conso l e . l og (t h i s . f i l e) ;
const f i l e P a t h = ‘ ${ t h i s . basePath }/ ‘ + nomeFile ;
const snap = await t h i s . s t o rage
. upload (f i l ePa th , t h i s . f i l e) ;
t h i s . getUr l (snap , CF, dateTS , r epo r t) ;

} e l s e {
a l e r t (’ P lease s e l e c t an image ’) ;

}
}
This is an example of how the storage upload works [13]. Here it is

illustrated the coding part which allows to store in the firebase cloud the file
of a covid19 report, but also the other upload processes work in a similar way.
The first two methods have a preparation role saving the files in the typescript
object and setting the path of the storage in which the file is going to be saved.
Then there are two async functions which carry out the upload process. The
method uploadFile is the one that actually performs the upload with the

54 CHAPTER 4. IMPLEMENTATION

method upload called on the Firebase storage service. While the method
getUrl is used to save information in the Firestore Database about the report
the user is saving. So, while the file is being saved, the method communicates
to the database to create a document on the collection “covid19” with the
timestamp indicating the time on which the report is added and some general
information of the report as attributes.

4.4.3 Guard

A quick regression should be done talking about guard [14]. It is a powerful
service provided by Angular because it allows to protect the routing system
of the application. To implement guard system there should be a service
class which establishes the rules to follow and then an annotation on the app
routing module next to the routes which should be protected by the guard. In
the web application there are not users which have higher privileges respect
to others, so the rules implemented are:

• To protect not logged users from entering the application, so that a user
that is not logged in cannot reach part of the application different then
the login and registration pages.: In this situation, the route navigation
brings the user to the Add new Patient section, so that he can proceed
to add patient features.

• To differentiate municipal volunteers’ part from doctors’ part, so that
a doctor cannot access to volunteer pages and vice versa.

4.4.4 Pipes

The last service that will be mentioned is Angular Pipe service. Pipes are
simple functions which are used in template expression, so in the HTML file
of the component. They take as an input values and they give as an output
transformed values. Pipes are very powerful because they can be declared
only once in the program, but they can be called different times. There are
some pre-crafted pipes that angular provides, for example DatePipe which
formats a date value, UpperCasePipe which puts every character as input to
its uppercase, and others. The developer can create his own pipe and use it
as in this system.

<div c l a s s=”col−md−8” #tampone>
<div c l a s s=”card v e r t i c a l −padding10 ”
∗ngFor=’ l e t rep o f r epo r t |
t i p o l o g i a F i l t e r : t i p o l o g i a ’>

4.4. SERVICES 55

<div c l a s s=”card−header”>
<div c l a s s=”row”>

<div c l a s s=”c o l”>
{{ rep . data}}

</div>
<div c l a s s=”c o l text−end”>

<img s r c =”./ a s s e t s /tampone . svg ”
widht=”40” he ight =”40” />

</div>
</div>

</div>

This is an example of the use of the tipologiaFilter pipe taken by the
HTML class emergenzaCovidDoctor. It is a service that takes as input an
array of reports, which is an object that represents Covid19 report which can
be either a Covid test or a vaccination result, and a string called “tipologia”
which can be one of the three covid report typology. The pipe gives as output
all the items of the array which match the typology searched by the user.
So, if the user chooses vaccination as typology, the array is filtered and all
the items that have not “vaccination” as attribute are not shown.

trans form (items : any [] , searchText : s t r i ng ,
showAll : boolean , currentUser : Med icoPro f i l e
| V o l u n t e e r P r o f i l e) : any [] {

i f (! i tems) { r e turn [] ; }

i f (! showAll) {
i f (currentUser . userType == ”medico ”) {

i tems = items . f i l t e r (i t => {
r e turn i t . CFMedico == currentUser .CF;

})
}
e l s e i f (currentUser . userType == ” v o l o n t a r i o ”) {

i tems = items . f i l t e r (i t => {
r e turn i t . CFVolontario == currentUser .CF; })

}
i f (! searchText) { r e turn items ;}

}

searchText = searchText . toLocaleLowerCase () ;

56 CHAPTER 4. IMPLEMENTATION

r e turn items . f i l t e r (i t => {
r e turn (i t . nome + ” ” + i t . cognome + ” ” +
i t .CF) . toLocaleLowerCase ()
. i n c l u d e s (searchText) ; }) ;

}

This is the pipe tipologiaFilter we were talking about. As it can be
seen, pipes are marked with the decorator @Pipe and the name of the pipe.
Then, with the marker @param, the parameters are defined. In the method
transform there is the real filtering process with the method filter called
on the input array. The other pipe it is implemented in the application is
another filtering pipe which takes an array of patients as input. The goal of
the pipe is keeping only the elements of the array which were inserted by the
user, so that if the user is a doctor, the item should have the doctor’s fiscal
code as CFmedico, while if the user is a volunteer, the item should have the
volunteer’s fiscal code as CFvolunteer. The last pipe used in the system is
the DatePipe which is able to transform a timestamp to another date format.

Chapter 5

Functionalities and
demonstration

In this chapter, it will be shown a demonstration of the key points of the
application working. The system is complete, and all the features are fully
implemented.

5.1 Login and registration

Figure 5.1: Login page

When the user searches on the web the web application Digital Healthcare,
the first page that is shown from the application is the Login page. This is
because the system does not allow to user not logged in to access to appli-
cation’s functionalities. If the user is already registered to the database, he
can now choose to sign in by using email and password, otherwise he can
choose google sign in method. If this is the first time that the user faces the
login screen, he can click on register and move to the registration phase. The
last option is reserved to users who either lost or forgot their password. By
clicking on “password dimenticata” they will be able to recover the password
by inserting their registration mail.

57

58 CHAPTER 5. FUNCTIONALITIES AND DEMONSTRATION

Figure 5.2: Registration phase

In Figure 5.2, it is depicted the flow of a user, who wants to sign up to the
web application for the first time. The first step is choosing the type of user
he will be by selecting one out of the two radio boxes. After identifying if the
user is either a doctor or a municipal volunteer, the system shows the first
part of the registration form, where the user is asked to fill in general data
like name, surname, email, and password. The password must be confirmed
and the system will allow to press the button to proceed only if the two
strings are equals. The second part of the form asks to the user other data
and then he can complete the registration process. After that a confirmation
mail will be sent to the user mailbox and he will be able to sign in with that
email.

5.2 Home

Figure 5.3: Home page

The main page of Digital Healthcare is the home page. It is the first page
that is shown to the user after the login, and it contains all the functionalities
of the application. In Figure 5.3, there are both the doctor’s home page and
the volunteer’s home page, respectively on the left and on the right side. The
functionalities are very similar for both the users, but, as it can be seen, the
volunteer cannot add a new citizen from scratch from the home page. The
functionalities are:

5.3. ADD NEW CITIZEN 59

• List patient: to have access to the list of patient relative to a certain
doctor or volunteer and to visualize citizen’s data.

• Covid19 emergency: to access covid19 to check all the documents
relative to covid tests and vaccinations

• Profile settings: to access the user personal page and change user’s
information

• Add new Patient (only for doctors): to add a new citizen inside
the database with all the relative data.

5.3 Add new citizen

The process of adding a new citizen into Digital Healthcare is divided in
two parts. The first one is performed by the doctor, which can create a
new citizen profile into the database and he can insert all the medical data.
Then, there is a second section which is volunteer’s expertise that allows to
complete the citizen profile. The doctor has a dedicated section in the home
page called “aggiungi nuovo paziente” which allows to access directly to the
form. Instead, the volunteer has to click on citizen list and, by clicking on a
person, he will access the form to complete data.

5.3.1 Add new patient by doctor

Figure 5.4: Add new patient

The doctor has the goal of creating the patient’s profile for the first time.
The first step to add a new patient is in the home page, where the doctor,
by clicking on “aggiungi nuovo paziente”, will face a small modal form which
asks for a fiscal code. Here there are two possible scenarios; if the doctor fills
in the form with a fiscal code which is not already saved in the database,
the application will allow the user to navigate to the real add new patient
page. While if the fiscal code is already present in the database as in Figure

60 CHAPTER 5. FUNCTIONALITIES AND DEMONSTRATION

5.4, the application will collect from the system the last date on which data
where modified and will show it to the user. Then, the doctor can either
click on the date or click on the button “Aggiungi da zero”. The first option
will not create another patient inside the database, but it will bring the user
to the add new patient page with the standard form already precompiled
with the data of that date. While the second option will create, for the same
patient, a new document from scratch without data saved under that specific
timestamp.

Figure 5.5: New patient form

In Figure 5.5, it is provided an example of the form to add a new pa-
tient to the database. It has a very simple structure, and it is divided in
categories of information. There are six classes of attributes which include
some general data of the person and the more medical aspects. The user has
to complete all the required fields of the form, otherwise the program blocks
the proceed button and it does not allow the user to continue. When the
registration button is pressed, the system notifies to the doctor the result of
the procedure, and if everything was fine, it moves the user to the home page
of the application. Now, in the database there is a new citizen created which
is assigned to the doctor by fiscal code. All the fields are created but only
those inserted by the doctor are not empty. Then there is a second phase
executed by the municipal volunteer.

5.3.2 Add new citizen by volunteer

Talking about the volunteer point of view, the procedure to complete citizen’s
data is a bit different. By clicking on citizens’ list the user will see the list
of all the citizens which have been added by him with a green tick next to
their name to highlight that data are complete.

5.3. ADD NEW CITIZEN 61

Figure 5.6: Citizens’ list

By tapping on the checkbox “mostra tutti i cittadini”, the web application
will show to the user all the citizen registered to the database, adding to the
previous list both the citizens assigned to another volunteer, but also those
who do not have a referring volunteer at all. The citizens who do not have
a volunteer assigned have an incomplete profile, because no one has inserted
the missing general data. So, they are put to the top of the list and marked
with a yellow exclamation mark. Now the user can click on one of the citizen
which are divided in three types:

• Citizen without volunteer: the user is moved to the add new citizen
page with a form to fill in with all the data relative to volunteer’s part.
By clicking on the image on the top of the page, he can also change the
profile picture of the citizen. When the process is finished, by tapping
on the button at the bottom of the page, the volunteer will register
data to the database and complete the profile. See Figure 5.7.

• Citizen with volunteer different from user: the system shows to
the user the citizen’s profile page with all the information.

• Citizen with the user as volunteer: the user is able to see the
whole citizen’s profile page and to modify data.

Figure 5.7: Citizen’s profile

62 CHAPTER 5. FUNCTIONALITIES AND DEMONSTRATION

5.4 Citizen Profile

The citizen profile section is another important part of Digital Healthcare.
It can be accessed through the list of citizens from the homepage both from
doctors and from volunteers and it is dedicated to the visualization of data
of citizens. As in the previous chapters, it will be analysed first of all the
doctor side, and then the volunteer part.

5.4.1 Patient’s profile

Figure 5.8: Patients’ list

In order to visualize patients’ information, the doctor should pass through
the patients’ list that is shown in Figure 5.8. The standard list includes
only the patients related to the current user, so that each doctor can see
only his personal patients. By clicking on the checkbox above, the user can
visualize all the patients that are saved in the database of the application,
and those who are not related with him will be highlighted in orange. Now
the user can choose to click on one of his patient or on another one. In the
first case, he is moved to the patient’s profile section with the possibility to
modify patient’s data, while in the second case, he will not be able to change
patient’s information, but he can visualize data anyway.

Figure 5.9: Patient’s profile

In Figure 5.9 is shown how patient’s profile section looks like. In the left
side of the image there is the first visualization of data. In the left part there

5.4. CITIZEN PROFILE 63

is the patient profile with the picture, age and where he lives. Then in the
centre-right of the screen there are the more general data like, email, fiscal
code and some others. Moreover, in the bottom part of the window there are
all the categories of data grouped together and the dropdown menu allows
the user to move through all the possible information he wants to retrieve.
By clicking on the left side menu, in the centre of the page it will appear
the group of information asked. Another feature is the dropdown menu in
the top-left corner. It is used to filter data with the date in which they were
inserted. This is very useful to track diseases and to have some statistics
about the patient. By clicking on one date, the application will collect the
new data from the database and all the value will be automatically changed.
The last feature is the button under the profile picture called “Modifica dati”.
If the user tap on that button, he will face a page equals to the right side
of Figure 5.9. Except to fiscal code, every field will become editable, and
the doctor can modify the data of the patient. Once the user has finished to
update fields, he can click on the new button in the bottom side of the screen
to save the data and to navigate back to the homepage of the application.

5.4.2 Citizen’s profile

Figure 5.10: Citizen’s profile

The volunteer’s part of the application has a page to visualize citizen’s data
too. As it was said before, the user can access it through the list of citi-
zens and selecting a person who has the user as referring volunteer. In the
visualization page, the organization of data is similar to the patient’s one.
Even for volunteers, there is the possibility, by clicking the button under the
profile picture, to make all the fields editable and to change citizen’s data
dynamically. In this section it is also present a reset button, which is used
to unlink the patient from the respective volunteer. This can be useful if a
volunteer change, and so all the related citizens have to find a new volunteer.

64 CHAPTER 5. FUNCTIONALITIES AND DEMONSTRATION

5.5 Covid19 emergency

Due to the pandemic situation which involved everyone in the last year, it
was implemented a covid related part too. By clicking on covid19 emergency
section, the doctor is moved to the list of patients he controls. As before,
by clicking on the checkbox he can see the list of all patients saved in the
database. The list is exactly the same of the one in Figure 5.8. Then the
doctor can select either one of his patients or someone else. In the first case
he will be able to use all the features of the application’s section, otherwise
he will not be allowed to add new reports.

Figure 5.11: Covid19 section

In Figure 5.11, it is shown the covid19’s section if the patient selected by
the doctor is one of his patients. The differences with an external patient is
that there is not the possibility to add a new report and to delete a report
previously added. This is because reports must be handled from the patient’s
doctor. As it was said before, there are three typologies of report that can
be uploaded to the system. The user can choose among that three categories
and see a list of reports uploaded belonging to the specific category under
the separating line. For each report there is the date on which the test or
the vaccination was performed in the corner, the type of test and the result.
By clicking on the light blue button, the application redirects the user to the
PDF file of the report that can be downloaded, while the red button is used
to delete the report from the database.

5.5. COVID19 EMERGENCY 65

Figure 5.12: Add new report

By tapping on the button add new report, the application shows to the
user a small form which asks the information of the report. The first one
is a selection list which asks for the typology of the report among the three
possibilities. Then there is an input calendar in order to put the data of the
test and a result box which contains “Positive” and “Negative” if the report
is a test. While, if the typology is a vaccination, the result box is hidden,
and there are two more boxes: one for the dose of the vaccine which can be
first dose or second dose and another with the type of vaccine given. At the
end there is an upload button to save in the database the PDF file containing
the report.

Figure 5.13: Covid19’s section volunteer

Going back to volunteer’s side, the covid19 section is similar to the doc-
tor’s one. Clearly the volunteer is not able to add new report to the system,
because it is an exclusive medical task, but he is allowed to see all the previ-
ous tests and vaccinations performed by the citizen. Moreover, the volunteer
can generate the green pass, which is the European certification codified in a
QR code that allows to circulate without restriction in Italy. When the user
presses the green pass section, an algorithm computes if the citizen can have
it or not. The requirements are:

• Negative covid19 test in the last 48 hours: The algorithm checks

66 CHAPTER 5. FUNCTIONALITIES AND DEMONSTRATION

if there are negative covid19 tests uploaded for the citizen in the last
48 hours.

• A full vaccination: The algorithm checks if there are vaccinations
related to the citizen and if the vaccine has two doses and it was done
in less than 9 months, the system generates the green pass.

5.6 User’s profile

Figure 5.14: User’s profile

The last section of the application is the user’s profile section. Until now,
it is the same both for doctors and volunteers, in future improvements the
two profiles will have more features and fields and they will be different. On
the left side there is the user’s name with email and profile picture, with the
possibility to change it. Then in centre part of the page there are the general
data like name, surname, and phone number and in the right side there are
the working days which is one of the future improvements. By clicking on
save profile the modifications are saved and data will be registered in the
database.

Chapter 6

Conclusions and future
improvements

Digital Healthcare tries to link together the part of inserting medical and
social data and the part of using them to help rescuers to save citizens’
lives. The system is completely implemented and it can be reached at [15].
Now the web application is hosted on Firebase which provides a way to
deploy both web applications and mobile ones. The data used in the web
application are mock data used only for demonstration. The goal of Digital
Healthcare is not to apply as an outstanding and innovative system to collect
citizens’ data and use them in the best way as possible. The aim is to show
that medical information and general social information can collaborate to
help in first medical aids. The first chapter tells us some limits and issues
of the state of the art both in Lombardia region and in Italy, and Digital
Healthcare tries to propose a way of solving the heterogeneity of data and
a way to collect them with a very intuitive system. The power of Digital
healthcare is that these information are immediately used to provide help in
first medical aid, and this is possible because the web application used to
collect data, and the mobile application that uses them communicate with
a common database and are part of the same system. As it was said before
the applications are running and can be reached surfing on internet, but
only with a demonstration purpose. To become a system that is used by
real doctors and municipal volunteers, there should be access to personal
medical information and other authorities come in. As a matter of fact,
these privacy problems go over the thesis’ purpose and work. Moreover, the
Covid19’s section was a very interesting improvement. Due to the current
historical circumstance, we thought that a medical application requires a
section relative to the pandemic situation. In the web application, the doctor
is able to add covid report related to patients, while the municipal volunteer

67

68 CHAPTER 6. CONCLUSIONS AND FUTURE IMPROVEMENTS

can visualize report and print the Green Pass. This is very useful for elder
people which are not able to download a mobile application and to log in
in order to download a QR code, but they usually go to municipal hall to
asks for documents. The system supports only covid tests, vaccinations,
and green passes, but the pandemic situation is constantly evolving and the
application will require updates to be still efficient. The hope is that our
work can inspire someone, showing that in the current situation there are
too many ways of collecting the same data and linking everything together
with a unique system can provide benefits in terms of efficiency, but also in
first medical aids.

Bibliography

[1] Fascicolo Sanitario Lombardia
https://www.fascicolosanitario.regione.lombardia.it/

[2] DPCM 31-03-2014 FSE guidelines
https://www.agid.gov.it/sites/default/files/repository_

files/linee_guida/2_fse_linee_guida_dpcm_31032014.pdf

[3] Medici Volontari Italiani
https://www.medicivolontaritaliani.org/

[4] Comune di Milano
https://www.comune.milano.it/aree-tematiche/

servizi-sociali/raccolta-dati-personali-per-interventi-di-emergenza

[5] JotForm
https://eu.jotform.com/

[6] Angular Framework
https://angular.io/docs

[7] Firebase
https://firebase.google.com/docs

[8] Typescript
https://www.typescriptlang.org/docs/

[9] Flutter SDK
https://flutter.dev/

[10] Angular Tutorial for Beginners: Learn Angular and TypeScript
https://www.youtube.com/watch?v=k5E2AVpwsko&t=6239s

[11] Codevolution
https://www.youtube.com/channel/UC80PWRj_ZU8Zu0HSMNVwKWw

69

https://www.fascicolosanitario.regione.lombardia.it/
https://www.agid.gov.it/sites/default/files/repository_files/linee_guida/2_fse_linee_guida_dpcm_31032014.pdf
https://www.agid.gov.it/sites/default/files/repository_files/linee_guida/2_fse_linee_guida_dpcm_31032014.pdf
https://www.medicivolontaritaliani.org/
https://www.comune.milano.it/aree-tematiche/servizi-sociali/raccolta-dati-personali-per-interventi-di-emergenza
https://www.comune.milano.it/aree-tematiche/servizi-sociali/raccolta-dati-personali-per-interventi-di-emergenza
https://eu.jotform.com/
https://angular.io/docs
https://firebase.google.com/docs
https://www.typescriptlang.org/docs/
https://flutter.dev/
https://www.youtube.com/watch?v=k5E2AVpwsko&t=6239s
https://www.youtube.com/channel/UC80PWRj_ZU8Zu0HSMNVwKWw

70 BIBLIOGRAPHY

[12] Build a CRUD App with Angular and Firebase
https://developer.okta.com/blog/2019/02/28/

build-crud-app-with-angular-and-firebase

[13] Angular File Upload - StackOverflow
https://stackoverflow.com/questions/47936183/

angular-file-upload

[14] Router Guards
https://codecraft.tv/courses/angular/routing/

router-guards/

[15] Digital Healthcare web application
https://digital-healthcare-it.web.app/

https://developer.okta.com/blog/2019/02/28/build-crud-app-with-angular-and-firebase
https://developer.okta.com/blog/2019/02/28/build-crud-app-with-angular-and-firebase
https://stackoverflow.com/questions/47936183/angular-file-upload
https://stackoverflow.com/questions/47936183/angular-file-upload
https://codecraft.tv/courses/angular/routing/router-guards/
https://codecraft.tv/courses/angular/routing/router-guards/
https://digital-healthcare-it.web.app/

	Contents
	List of Figures
	Introduction
	Overview
	State of the art
	Goal of the project
	Limits and issues of the State of the art
	Improvements and goal of the project

	Requirement Analysis
	User Requirements
	Use Cases
	Sequence Diagram

	Architecture Design
	Architecture Overview
	Angular Framework
	Typescript

	Server side: Firebase
	Firebase Authentication
	Firebase Storage
	Firestore Database

	Implementation
	Packages diagram
	Model
	Main classes
	Login and registration
	Home
	Add new Patient
	Patient profile

	Services
	Database
	Storage
	Guard
	Pipes

	Functionalities and demonstration
	Login and registration
	Home
	Add new citizen
	Add new patient by doctor
	Add new citizen by volunteer

	Citizen Profile
	Patient's profile
	Citizen's profile

	Covid19 emergency
	User's profile

	Conclusions and future improvements
	Bibliography

