

1

POLITECNICO DI MILANO

Dipartimento di Elettronica, Informazione e Bioingegneria

Designing a blockchain platform for IoT forensics

evidence preservation

Supervisor: Prof. Alessandro Enrico

Candidate:

Aida Rezaeepoor

Matricola: 942106

Academic year 2022-2023

2

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor at Politecnico di Milano, Prof.

Alessandro Enrico Cesare Redondi, for guiding me throughout this work. He helped me to

progress during these months. Obviously, His patience, enthusiasm and collaboration made

this research possible.

I would like to thank my family because of their financial and emotional support to motivate

me in every step of this process to make progress unconditionally. Additional thanks also go

to my friends as they encouraged me continuously during this project with their positive

characteristics and attitudes.

I also would like to thanks all our respected other professors in the Telecommunication

engineering department and all the others members of the departments who assisted me

through this thesis directly or indirectly and shared with me new ideas to improve.

In the end, I strongly believe that Politecnico di milano improved my skills to be a successful

person in whatever I decide to foster. I believe that constant research in this area will

revolutionize the world of digital evolution.

3

Abstract

The Internet of Things is growing steadily, with millions of devices that make everyday life

easier. Such a tough relationship between humans and their smart devices, turning them into

digital witnesses of our daily lives through their sensors. This opens up a new field of digital

investigation called IoT forensics. Feature-Sniffer is an add-on for OpenWrt-based access

points and allows to easily perform online traffic feature extraction, which avoids to store

large PCAP files. There is a file which presents Feature-Sniffer with an accurate description

of details, and we show its possible uses with practical examples for device identification

and activity classification from encrypted traffic produced by IoT cameras.

Today, many Internet of Things (IoT) devices have become an integral part of our lives and

are revolutionizing the world. Technological developments in the Internet of Things (IoT)

have spawned multiple forms of cyber-attacks that exploit the heterogeneity of IoT networks.

Forensics collects, stores, and analyzes data of IoT devices. Digital evidence capture differs

from physical evidence due to its fragile electronic nature. Therefore, vulnerabilities such as

tempering should be prevented to ensure IoT evidence integrity [1].

This tamper-proof functionality can be provided using a hash code for the data. Traditional

databases have failed to provide adequate security measures and solutions to vulnerabilities.

IoT applications that operate on the basis of centralized systems must rely on central

instances. Such systems fail to provide data immutability, data traceability, and transparency.

Blockchain technology is a fully decentralized system that eliminates trusted third parties

(central authorities). A feature of this technology is that once data is entered, it cannot be

changed or removed from the system. Unlike centralized systems, blockchain offers data

traceability and transparency. State-of-the-art blockchain technology has shown promising

performance in building applications in various areas of life, from cryptocurrencies to smart

contracts, consensus, and decentralized applications. The characteristics of blockchain

technology can attract new users to integrate the IoT data entered into blockchain technology.

This work describes the design and implementation of a blockchain-based decentralized IoT

4

framework that can address the challenges associated with developing such frameworks

while taking advantage of blockchain's inherent security features. This decentralized IoT

framework uses blockchain in combination with other peer-to-peer mechanisms and aims to

provide: Access control, Secure IoT data transmission, A peer-to-peer data sharing business

model, Secure end-to-end IoT communications without relying on a central intermediary for

authentication or data processing.

A smart contract is a digital program that can be read by any participant and dynamically

executed in response to events on the blockchain. Additionally, smart contracts allow

registered accounts to interact with evidence. This paper contains proofs containing

numerical features of csv files extracted from traffic generated by some of IoT devices. One

of the main parts of the contributions is to suggest a possible structure for the desired

evidences to be inserted in the blockchain with Ethereum platform. In this use case, we

learned which consensus mechanism can be more suited to be implemented in the blockchain.

With all possible applications of blockchain-based frameworks within IoT, this work takes a

step towards the goal of a trustworthy and decentralized IoT blockchain.

5

KEYWORDS:

IOT, blockchain, SHA256, Consensus algorithm, Python

6

Contents

1. Introduction ... 13

1.1. Context and motivation ...13
1.2. Research objective ..15

1.3. Research structure ...16

2. Background and related works ... 17

2.1. Blockchain history ..17

2.2. Block chain definition ...17

Blockchain-based systems advantages ...18

2.3. Hash function..18

Storing hashes on the blockchain ...20

2.4. Merkle tree ...20

2.5. Blockchain structure ...22
2.6. Cryptography ..25

2.7. SHA256 ..26
2.8. Private and public key cryptography ...26

2.9. Peer to peer network ...27
2.10. Smart contracts ...28

2.11. Blockchain types ...28

Public blockchain...29

Private blockchain..30

Consortium blockchain ..30

2.12. Miner ..31
2.13. Mining ..31

Miners earn a mining reward ..32

2.14. Consensus mechanism ..32

Proof of Work ..33

Prove of Stake ..34

2.15. Ledgers ...35

Distributed Ledger Technology (DLT) ...35

2.16. Blockchain platforms for IoT ..35

Bitcoin Platform ..35

Ethereum Platform ...35

Hyperledger-fabric Platform ..36

Stellar Platform ..36

Multichain Platform ...37

7

2.17. Visual scenario on how the blockchain corporate with other parts39

2.18. Functional aspect of blockchain ..41

3. Implementation of evidence in blockchain.. 43

3.1. Functionality of the modules ...43

3.1.1. App.py ...43

3.1.2. AppConfig.py ..43

3.1.3. Blockchain.py ..43

3.1.4. Data_sent.py ..44

3.1.5. ExtractFromExcel.py ...44

3.2. Analysis of the codes ..45

3.2.1. App.py ...45

3.2.2. AppConfig.py...47

3.2.3. data_sent.py ...50

3.2.4. ExtractFromExcel.py ..50

3.2.5. Blockchain.py ..51

3.3. Display in console ..58

3.3.1. Select a row from excel file ..58

3.3.2. Save selected row from excel file into the blockchain59

3.3.3. Show the data with template which is saved in the blockchain59

3.3.4. Display of different rows added to blockchain in console59

4. Evaluation ... 61

4.1. Performance and Scalability in Consensus Algorithms ..61
4.2. Considering the time needed to insert a new record in the blockchain61

4.2.1. How much time it takes to insert a new record in the blockchain62

4.3. Retrieving the data from the blockchain ..64

4.3.1. The time is need to retrieve 1 record in different time stamps70

4.4. Comparing Proof of Work and Proof of Stake ...72

5. Conclusion and future work ... 74

5.1. Conclusion ..74

5.2. Future work ..75

6. References ... 77

8

Parole chiave: IOT, blockchain, SHA256, Consensus algorithm, Python

9

Abbreviations

IoT: Internet of Things

P2P: peer to peer

DB: Data Base

SHA: Secure Hash Algorithm

NSA: National Security Agency

CSPs: Cloud service providers

SC: Smart Contract

POW: Prove Of Work

PoS: Proof of stake

Sec: Second

10

List of figures

Figure 1 Hash Function .. 19

Figure 2 Merkle tree structure .. 21

Figure 3 Illustrates Merkle tree of nodes .. 21

Figure 4 Physical structure of blocks in blockchain ... 22

Figure 5 Graphical representation of the block chain .. 23

Figure 6 block header with Merkle tree of transactions ... 25

Figure 7 P2P structure .. 27

Figure 8 PoW consensus Mechanism [44] .. 33

Figure 9 Visual scenario of correlation in IoT and blockchain .. 41

Figure 10 Functional diagram of a Blockchain network .. 42

Figure 11 Import a dataset .. 45

Figure 12 Class APP() .. 46

Figure 13 Functionality of “appConfig” and “appSelect” methods 47

Figure 14 “AppConfig” class constructor ... 48

Figure 15 Get data from the row in excel file ... 48

Figure 16 Save data to blockchain method .. 49

Figure 17 Display all data in blockchain ... 49

Figure 18 Constructor of “data_sent” class .. 50

Figure 19 Constructor of “ExtractFromExcel” class ... 51

Figure 20 Reading each row of excel file ... 51

Figure 21 Standard libraries for blockchain .. 52

Figure 22 Constructor of blockchain .. 52

Figure 23 Creating the new block to add to the chain ... 53

Figure 24 Returning the previous block info ... 53

Figure 25 Proof of Work algorithm .. 54

Figure 26 Creating the hash of the identified block... 54

Figure 27 Validation of block and chain ... 55

Figure 28 Store data in the block using standard output .. 56

11

Figure 29 Showing list of chains and lengths of chains as output 57

Figure 30 Checking validity of blockchain ... 57

Figure 31 Select the specific row from excel file .. 58

Figure 32 Row selected and displayed in the console ... 58

Figure 33 Save the row in the blockchain and displayed in the console 59

Figure 34 Data format saved in blockchain displayed in the console................................. 59

Figure 35 All the records saved in the blockchain .. 60

Figure 36 Time of execution for inserting new record in the blockchain 62

Figure 37 execution time for saving the 1th row of data into the blockchain 62

Figure 38 Time of saving new row into the blockchain .. 63

Figure 39 How many characters each record of excel file has in order to be inserted in the

blockchain ... 64

Figure 40 Retrieve the original data between two specified time stamps:"2022-09-06

14:54:03" and "2022-09-07 16:41:03" .. 66

Figure 41 The retrieved data from the blockchain in the first timestamp 66

Figure 42 Rows retrieved for the third timestamp (in the case we have 100 rows saved in

the blockchain) .. 67

Figure 43 time to retrieve data in the third timestamp ... 68

Figure 44 comparing the time it takes to retrieve data in different timestamps 69

Figure 45 The length of original data in different timestamps ... 70

Figure 46 Retrieve 1 record between "2022-09-09 08:14:11" and "2022-09-09 10:15:20" 70

Figure 47 Time to retrieve one record from blockchain .. 71

Figure 48 How many characters each specified row has ... 71

12

List of tables

Table 1 Comparison of blockchain modes .. 29

Table 2 Blockchain platforms .. 38

Table 3 the specified bounded timestamps for the following evaluations 65

Table 4 The vulnerability of proof of work and proof of stake consensus mechanisms to

attack types .. 73

13

Chapter 1

1. Introduction

1.1. Context and motivation

In current Internet of Things (IoT) architectures, users implicitly trust third-party or hidden

services to process data collected from IoT devices and issue security certificates. The

Internet of Things has moved from a visionary concept to a reality, revolutionizing our lives.

Thanks to innovations in low-power communication technologies, sensor systems, energy-

efficient microcontrollers, and battery devices, the number of intelligent, connected devices

surrounding us is growing every day. Among the many application scenarios of IoT, smart

buildings and smart homes are the most ones which are researched. Buildings and homes rich

in energy resources (electricity grids) and connectivity (mainly WiFi) make perfect

playgrounds for all kinds of the IoT prototypes, even considering that's where people spend

most of their time. This strict coexistence of humans and intelligent devices has two effects.

B. Focus on sabotage of home/building security systems or identity theft from IoT devices.

On the one hand, such devices witness our daily life through sensors. For these reasons, the

term “IoT forensics” has been coined in recent years to mean activities related to collecting

sensitive information from IoT devices, whether compromised or not.[2]

IoT forensics is different and more sophisticated than traditional digital forensics. First, IoT

devices typically have limited or no persistent memory to analyze during investigations. The

main value available for forensic analysis is therefore the network traffic they generate and

exchange with other entities (such as cloud services). Therefore, it is imperative to set up a

system that can easily capture, store, and analyze such network traffic as close as possible to

its source.

For example, IoT traffic from multiple devices connected to an access point using NAT

technology (as it is often the case) may be of difficult analysis when observed from the

external, since all devices appear with the same source MAC and IP addresses. This makes

14

it difficult to perform per-device, feature-based traffic analysis, which is the de-facto

approach in case of encrypted traffic such as the one produced by current IoT devices.[3]

At the same time, storing the complete network packets produced by IoT devices (e.g., in the

form of PCAP files) may be not viable in the long run, due to the large storage space required.

Over the past decade, there has been a shift from local desktop applications to remote web

services that store data remotely. In fact, many security threats have emerged aimed at

exploiting and compromising these key trust points [4] . These attacks were seen not only in

the IoT through botnets [5], [6] , but also the Internet at large through adversarial attacks on

centralized servers [7]. The data collected by IoT devices contains confidential and private

information, therefore there are some privacy implications in the event of a security leak

within centralized services. Blockchain technology is suitable for data exchange and is used

as a platform for IoT devices. Hash keys created on a blockchain can be used to store large

amounts of data, stored in the form of Merkle trees. Hash of Evidence not only requires less

storage space to hold data, but also preserves the integrity, tamper-proof and security of

evidence data. When inserting data into the blockchain, there are structural advantages such

as the following. Blockchain brings immutability as data cannot be changed or deleted. In

addition, it brings traceability as every kind of action is recorded for ever [8] , [9] . Blockchain

also creates transparency as all recorded data is visible to network participants. Therefore,

considering these advantages, blockchain is deployed as a secure and tamper-proof platform.

Transactions in blockchain are performed to prove security with minimized overhead. The

recorded data on the blockchain can neither be deleted nor modified. A homomorphic

computation is performed to protect the data by encryption. Blockchain technology was

developed to manage and store data controlled by IoT devices. Based on transaction

selection, new blocks are created by miners. In our proposed work, the miner is the owner of

her IoT device. Only registered users can access blocks of transactions aggregated on the

blockchain. To identify a block, it is important to have a unique and trusted signature as proof

of work to complete the authentication challenge. Therefore, the public key and signature of

individual devices play an important role in solving security problems.

To participate in a cryptocurrency network, each node must have its own copy of the

blockchain, which is synchronized with other participants [10] . It is clear that all

15

cryptocurrencies must provide some way to protect the blockchain from attacks. For

example, an attacker can reverse a spending transaction by spending some money and then

sending their own version of the blockchain that doesn't contain the transaction. Because the

network is distributed, users do not know which version of the ledger is active. Proof-of-

Work algorithms provide network security in the form of block mining. The main point of

PoW is that each node that wants to participate in mining must solve a computationally

difficult problem to ensure the validity of the new mined blocks. Each new block gives the

miner a certain amount of coins. This protocol is fair in the sense that miners using 1/p of

total computing power can create blocks with probability p. An attacker must solve the same

task as any other participant in a PoW-protected network.

1.2. Research objective

Forensics is a criminal investigation to record criminal activity. I would like to know if there

are any hackers trying to manipulate the data in the blockchain. Therefore, one of the goals

of this work is to build a blockchain platform that is secure against various types of attacks.

In the last years, with the increase of interest in IoT and in Digital Forensics, a high number

of works focused on the study of IoT devices behavior as possible evidence for forensics

investigations. In particular the literature on IoT Forensics can be roughly divided into three

categories: IoT devices identification, real-life event detection, IoT forensics framework.

In this work, we have the data from IoT devices which includes the actions from humans

who live near IoT devices. By studying this traffic, we can understand which action the

person is doing. We want to store this data into a safe data base in order to be secure enough.

Then whenever we need this data (for example we want to know the actions of a user in a

specified timestamp), by retrieving the information, we can access to each data of a user. We

aim to incorporate with Ethereum blockchain among several forensic architectures, where

security is controlled in IoT devices. Our study focuses on proof-of-work (PoW) consensus

protocols, which is the dominant choice in existing digital currencies. Security is a major

topic of data protection aimed at ensuring security from the moment of data entry. Indeed,

16

designing a specific architecture for storing IoT data can defeat many types of attackers. This

paper contribution is based on several key issues. From a security perspective, our goal is to

address some challenges of blockchain, such as privacy and storage capacity. Security with

blockchain is the best whereas using a third party for the purpose of authentication. The goal

of this paper was to design a novel decentralized framework based on the blockchain data

structures that can be used to inject real-time traffic information from IoT devices collected

in the form of transactions at the blockchain.

At first, we extracted some data as evidence from IoT devices in several rows in excel file.

Each row has its own specific timestamp and the specific IoT device which is identified by

its mac address. Evidences are represented by numerical features extracted from the traffic

which is produced by each of the IoT devices. In this thesis, we aim to look forward to find

a possible structure to insert and store our evidence in the Ethereum blockchain platform.

1.3. Research structure

The following parts represent the structure of this work.

Chapter 1 (introduction) briefly refers to the IoT forensics, data storage, retrieving data from

IoT devices and new look towards new security issues involved in sensitive data.

Chapter 2 starts off understanding the concept of blockchain technology, digital forensics

and existing blockchain platforms. Furthermore, the consensus mechanisms will be explained

as it will be used as validation item to let block be added to blockchain.

Chapter 3, has taken theory into implementation, and have demonstrated a realworld

implementation of blockchain for the data frame (.csv file) with Python programming

language with considering traceability, immutability, transparency and security along with

performance metrics we observed in our implementation.

In Chapter 4, we will see the results and comparisons.

Finally, In Chapter 5 we conclude with the complete implementation, results, and future work

discussed about.

17

Chapter 2

2. Background and related works

This chapter provides a detailed overview of the current developments and trends in

blockchain for IoT evidences with definition of consensuses and smart contracts.

2.1. Blockchain history

Blockchain was first introduced by Satoshi Nakamoto when he created Bitcoin [11] . As a

specific type of database, blockchain differs from a typical database in the way it stores

information. Bitcoin was the first invention built on blockchain technology and was the first

digital cryptocurrency to solve the double-spending problem without the need for a trusted

intermediary or central server.

2.2. Block chain definition

In general, blockchain is a distributed database. This means that the central authority cannot

have full control over the database or change its data without traceability. Additionally, the

database is distributed. In other words, each node on the blockchain network holds a complete

copy of the database. Blockchain databases are called "immutable" because due to the

decentralization of databases, there is no authority to change or delete data. Therefore, once

data is added to the database, it cannot be removed or changed later. The only functions

allowed are data updates and additions, and these rules are enforced by the consensus

protocol. Blockchain-based systems are the product of cryptography, public key

infrastructure and economic modelling, applied upon peer-to-peer networking and distributed

consensus to achieve distributed database synchronization [12] , [13] . The blockchain is a

distributed data structure, and is dubbed a distributed "ledger" in its utility of recording

transactions occurring within a network [14] . In cryptocurrencies, applications have a record

of the entire blockchain. Additionally, distributed ledgers (ledgers for implementing

18

blockchain) could be used in networks where any form of data exchange takes place. In a

blockchain-based peer-to-peer network, all participating peers maintain an identical copy of

the ledger. A canonical shared state of the blockchain is maintained through decentralized

consensus among the peers.

Blockchain-based systems advantages

Some of the advantages of blockchain-based systems are as described [15] :

• Decentralization: In the blockchain ecological environment, data are distributed and stored

and linked by a cooperative mechanism. Such data is lightweight and secure.

• No tampering: Blockchain adopts some different encryption methods to track and manage

the whole data in the life cycle. In this case, data can reach the specific consensus by each

other and can be not dependent of each other.

• Openness, transparency and traceability: According to various business needs, blockchain

fully records each data operation in the chain and maps the operation record to the

information before and after the data operation. At the same time, blockchain provides a

public interface for data queries, and requesters perform relevant data interaction work

according to the established consensus which was reached before.

2.3. Hash function

It is a function that maps data x to a fingerprint y = h(x) of the data [16] . Fingerprints are

usually fixed length and shorter than the original data. A fingerprint represents the data that

creates it, just as a human fingerprint represents the person who created it. Hash function is

a one-way function as shown in the figure 1. A one-way hash function is a function that is

easy to compute but difficult to reverse. For example, given a one-way hash function and a

fingerprint, it's virtually impossible to identify the hashed data using the fingerprint.

Although unrealistic, it's commonly understood that the best strategy we know is to brute-

force search through all possible inputs when looking for a particular output. The Bitcoin

blockchain uses the one-way hash function called SHA256 (Secure Hash Algorithm) [17] ,

19

[18].

Figure 1 Hash Function

The purpose of a hash function is to generate a short and fixed-length hash value (also called

a message digest) from an input message of arbitrary length. A hash digest must be a unique

representation of the message, also known as a message fingerprint [19] , [20]. The hash

function can be represented as the following formula:

H = h(m)

Where h() is the hash function, m is the message and H is the hash value.

As the hash functions are always one-way functions, which the hash value doesn’t retrieve

the original message, no inverse function (h(H)-1) for this operation can be found. One-way

also means that, unlike encryption primitives, functions do not use private keys to generate

hashes (AES uses secure keys to encrypt and decrypt messages). A hash value is a unique,

short, fixed-length representation of a message. Modern hash functions exceed this length by

128 bits. Most blockchain technologies use hash functions that perform message digests that

are 256 bits long. The message digest length is an important factor in choosing a hash

function. The more bits used in the message digest, the more resistant it is to collision attacks.

A collision attack is finding a message that matches a hash value. To determine successfully

the message which corresponds to the hash value of n bits, the attacker has to hash 2n/2

20

messages [21]. Cryptographic hash functions are more sensitive if the messages they hash

are different. The difference in bits results in completely different hash values. An example

of hash (SHA256) production is shown below in the situation in whuch just one bit has

changed in the input text. Just the letter “c” and “d” have been changed in the ASCII code.

h("abc") = ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

h("abd") = a52d159f262b2c6ddb724a61840befc36eb30c88877a4030b65cbe86298449c9

Storing hashes on the blockchain

One way to receive the benefits of blockchain without paying a fortune for transactions is to

store hashes of evidence on the blockchain due to the fact that the original size of the evidence

is too large. In this case the hash can be used to check if the data has changed. All we store

on the blockchain is the hash of the evidence. Compared to our data, hashes are very small,

so the transaction costs are relatively low. The raw data can be optionally saved in any way

we want.

2.4. Merkle tree

A Merkle tree refers to a binary tree structure that can summarize content and audit content

in large datasets efficiently and safely, as shown in Figure 2. A Merkle tree holds a complete

copy of all transactions that have ever occurred on the blockchain [22].

21

Figure 2 Merkle tree structure

A Merkle tree summarizes all the transactions in a block by generating a digital fingerprint

of the entire collection of transactions, allowing users to see if a transaction is included in a

block. When one transaction changes or changes, so does the root of the Merkle tree. A field

in the block's header contains the root of the Merkle tree that is generated when the block is

created. A Merkle tree is created by repeatedly hashing pairs of nodes until only one hash

remains. This hash is called the root hash or the root of the Merkle tree. As shown in Figure

3, each leaf node contains a hash of transactions of data and each non-leaf node contains a

hash of previous hashes.

HT1 = Hash (Transactional_Evidence#1)

HT2= Hash (Transacrional_Evidence#2)

HT1,2 = Hash (HT1|HT2)

H Root = Hash (H12|……)

Figure 3 Illustrates Merkle tree of nodes

22

2.5. Blockchain structure

A blockchain is a decentralised ledger of all transactions on a peer-to-peer network,

containing previous block hashes, versions, timestamps, nonces, bits, and Merkle roots. Each

block body contains a list of transactions and a transaction counter, and when a block is

accepted by the network, it is sent to the network by the consensus algorithm and included

in the blockchain, so the blockchain is a block containing transaction details. appear in the

network as shown in Figure 4.

Figure 4 Physical structure of blocks in blockchain

Transaction information may relate to token transfers or any type of data exchange that takes place

over a network. Each block is divided into her two parts, the header, and the body. Transactions

are stored in the body of the block. The header of each block contains the identifier of the previous

block, so the blocks are connected in a chain like a linked list, as shown in Figure 5.The first block

in the chain is called the "genesis" block [23]. The identifier of each block is obtained by taking

its cryptographic hash, which is why having each block linked to the previous block helps the

blockchain achieve immutability of its contents.

23

Figure 5 Graphical representation of

the block chain

If a hacker were to alter the contents of a past block, its identifier would no longer be valid, and a

domino effect would render the parent block hashes in the subsequent blocks invalid as well.

Therefore, to successfully alter the contents of a single block, the attacker would have to alter the

headers in all successive blocks, and have this alteration take place in the majority of the nodes in

the network, so as to have the peers reach consensus on this altered blockchain. Other than the

block’s own identifier, and the identifier of the previous block, the header contains a timestamp of

when the block was published, and the Merkle tree root [24] for all the transactions stored within

the body of the block as illustrated in Figure 6. The Merkle tree root significantly reduces the effort

required to verify transactions within a block.

The block chain is a linearly growing data structure, with higher transaction activity inflating the

sizes of newer blocks. As part of all consensus algorithms, peers verify transactions recorded in a

newly published block. The transactions within a block all have a transaction ID, whereby each

transaction ID is the cryptographic hash of the corresponding transaction’s information stored in

the block. The transaction IDs are hashed together in pairs and a hash tree is built within the block,

as shown in Figure 5. The root of this tree is stored in the block header. To verify a transaction, a

local copy of all the transactions is not required, and verification can be carried out by simply using

the Merkle tree branch containing the transaction in question. A tampered transaction would

24

produce altered hashes within its branch and would be detected without much computational effort.

In the event of multiple nodes in the blockchain network producing valid blocks at the same time,

the block chain can fork, and maintaining a single canonical version of the blockchain becomes an

issue. Mainstream block chain networks [14] [25] resolve this issue by only considering the longest

fork as canon, and all orphaned forks are discarded. Other fields included in the block header

contain information specific to the consensus algorithm used within the blockchain network. The

maximum number of transactions that a block can contain depends on the block size and the size

of each transaction. The block size can be even 5 MB and contains usually more than 500

transactions.

As shown in Figure 6, the timestamp is to verify the time in which the block is created [26] . A

nonce is a counter used for proof of work (POW), and bits are used to record the hash value of the

current target. Version is used to update the version number of the blockchain system software. A

Merkle tree records a hash value for each transaction. Each transaction is stored in the block body,

after which a sha256 operation (for hashing) is performed to encrypt and secure the transaction. A

transaction counter records the number of transactions in the block body. To ensure data integrity,

the hash value will be completely different if the transaction or block is modified. If the hash value

changes, the Merkle root will also change. Therefore, it guarantees the operational security of the

blockchain. Blockchain transparency is proven as it can automatically detect all changes.

25

Figure 6 block header with Merkle tree of transactions

2.6. Cryptography

Encryption is defined as a method of protecting sensitive data from unauthorized access. There are

various cryptographic techniques that are expressed as part of blockchain security protocols. In a

blockchain network, cryptography protects transactions made between two nodes. There are three

main themes that are important to blockchain: distributed ledgers, peer-to-peer networks, and

cryptographic security. Distributed ledger systems and peer-to-peer networks (P2P) operate

securely with robust security technology. Blockchain uses two types of security approaches. One

is encryption and the other is hashing. Encryption is used to encrypt messages in P2P networks.

Hash functions are intended to ensure the security of block information and link a large number of

blocks within a blockchain. Encryption (encoding information) and decryption (decoding

encrypted information) are the two main concepts of cryptography.

Cryptography is therefore a security method for protecting gateways or exchanging information

between two nodes to protect against third-party intrusion.

26

2.7. SHA256

SHA stands for Secure Hash Algorithm, a cryptographic hash algorithm used to determine the

integrity of certain data. SHA256 is the successor to SHA1. This is because it is now much more

resilient to collision attacks, as long hashes that are hard to crack can be generated. Encrypted

messages cannot be decrypted by this algorithm, making them very secure. It is also a 256-bit

block cipher algorithm. SHA-256 converts a 64-character hexadecimal string to a character length

of 256 bits. Hence the name SHA-256.

2.8. Private and public key cryptography

Each peer on the blockchain has a public/private keypair (k p
r, k s

r) which is used for addressing,

and creating digital signatures on each transaction, for guaranteed non-repudiation. Since these

keypairs are not associated to real-life identities, blockchains offer "pseudonymity" to its users

[27]. Signed transactions are executed by functions written in deployed smart contracts to transfer

cryptocurrency tokens or interact with application binary interfaces (ABIs). Transactions can also

be made between two separate blockchains via sidechains. Sidechains [23] are blockchains

synchronized with and running in parallel to an existing blockchain, referred to as the "main

chain". Tokens can be transferred from the main chain to side chains and vice versa. Side chains

use tokens in isolated use case scenarios. Therefore, sidechains augment the functionality of the

mainchain and provide a testing ground for blockchain application development.

To further clarify, transactions on the blockchain are signed with a private key to prove ownership

of the public address. A private key owner can sign data by applying a cryptographic algorithm to

the private key. Everyone else can verify that the owner of the private key really is the owner by

unsigning it with the public key. Encryption systems also work in reverse, encrypting data with a

public key so that only the owner of the corresponding private key can decrypt the data. The public

address works like the address of the user's bitcoin wallet. A compressed public key, called a

Bitcoin address, can be shared with anyone and used by others to send funds to that wallet. The

corresponding private key can later be used to unlock the assets sent to this bitcoin address [28]

[14]. The private key used in Bitcoin is 256 random bits. A public address is then calculated based

27

on the private key using the Ecliptic Curve Digital Signature Algorithm. The public key is hashed

and preceded by two zeros to form the Bitcoin address [28] , [14].

2.9. Peer to peer network

A peer-to-peer network, also known as peer-to-peer, is a decentralized network with a group of

devices called nodes that collectively store and share files, with each node acting as a single peer.

His P2P network on blockchain runs without central control. This means that all nodes have the

same permissions to perform the same tasks [29] , as shown in Figure 7.

Figure 7 P2P structure

28

2.10. Smart contracts

The concept of the smart contract [30] was first introduced by Nick Szabo in 1994, which is defined

as “a computerized transaction protocol that executes the terms of a contract”. Within the context

of blockchain, the smart contract acts as a trusted distributed application that gains its trust from

the blockchain and the underlying consensus among the peers. Since they reside on the blockchain,

smart contracts have a unique address through which the end user can address a transaction to it.

The main benefits of deploying Smart Contracts over a blockchain are that the blockchain

guarantees that the contract terms cannot be modified. Blockchain makes it impossible to tamper

or hack the contract terms. Thus, smart contracts deployed over a blockchain are expected to bring

reduction in costs of verification, execution, arbitration and fraud prevention to overcome the

moral hazard problem. Smart contracts can be utilized to perform a variety of functions within a

blockchain network, such as:

Allowing ‘multi-signature’ transactions, whereby a transaction requires a specified amount of

signatures to be issued [31].

Enabling automated transactions triggered by specific events. This facilitates request-response

type transactions, for decentralized data access within a blockchain-based system. A smart contract

can also be triggered when a message is sent to the smart contract’s address [32].

Providing utility to other smart contracts. For example, in Ethereum, inheritance can be written

into smart contracts, where one contract can invoke functions written in another contract.

Allowing storage space for application-specific information, such as membership records, lists or

boolean states.

2.11. Blockchain types

The blockchain approach is a decentralized platform within a peer-to-peer network for sharing

data. Blockchains can be categorized as partially decentralized (permissioned blockchains) and

fully decentralized as non-permissioned blockchains (permissionless blockchains)[33] .

Moreover, as there are different principles such as access control mechanisms and authentication,

29

the blockchain can be divided into 3 main blockchains called a public blockchain, a private

blockchain, or a consortium blockchain [34] (see Table 1).

Features Public Blockchain Private Blockchain Consortium

Blockchain

Management Non centralized Centralized Partially centralized

Access permission Reading is public Public / Restricted Public / Restricted

Consensus

determination

All miners One organization Selected set of nodes

Consensus process Permission-based Permission-based Permission-free

Table 1 Comparison of blockchain modes

Public blockchain

Bitcoin and Ethereum are permissionless blockchains. Any entity can participate in the network

without permission granting, and entities are anonymous on the network. Each entity does not trust

other entities, but views them as enemies. A public blockchain is a permissionless, inherently

decentralized, open-source network in which anyone can participate and perform mining and

transactional operations, regardless of entity or context [34] , [35] . Each blockchain node has

maximum privileges to write, read, audit, or analyze blockchain records, such as cryptocurrencies.

A public blockchain-based peer-to-peer (P2P) network allows users to collect transaction records

and initiate mining processes to get desired outputs. Miner nodes gather information about

transactions in blocks, verify their legitimacy, then reach consensus and start adding results and

blocks to the current blockchain [36] .

A consensus mechanism is used to ensure that blocks are identical across the blockchain and that

no node has so many blocks to collide. Members are not identified on the public blockchain. They

are allowed to build blocks before mining, and each node makes the public blockchain vulnerable

to Sybil attacks. Proof-of-Work (PoW) consensus is a powerful way to address such issues on

public blockchains. If a competitor wants to dominate the blockchain in this process, 51% of the

blockchain network’s mining power is needed. Cryptographic keys whose address is a hash of the

user's public key are used to secure transactions on the blockchain. Nodes can participate in

30

transactions and transfer additional node assets simply by signing a hash of their ability to retrieve

information and including the new owner's public key throughout the transaction. Similarly, the

current owner must verify the signature to verify the chain of ownership [37].

However, neither the PoW protocol nor the public blockchain approach are suitable for financial

and banking applications due to the huge amount of data required and the complexity of the

computer systems involved. However, effective and uncomplicated methods for these applications

are currently being developed [37]. The PoW consensus algorithm reduces the number of nodes

participating in PoW and encourages multiple mining nodes to participate. As a result, we plan to

reduce energy waste caused by excessive hashing power in mining competitions and to fairly

distribute mining opportunities [15].

 Private blockchain

Private blockchain technology is a permissioned centralized network that allows the private

exchange and distribution of any amount of data within a community of entities or people. In

addition, since private blockchain mining operations are performed by individuals or specific

companies, the blockchain will not be used by new or unknown users unless a special order is

issued by the governing body [34]. One of private blockchain’s most popular features is the

Hyperledger [34]. To ensure confidentiality and stability, a deterministic shared consensus

protocol has been proposed that works in planning, preparation, and interaction phases used in

private blockchains. Writing within the private blockchain is restricted, and the network is only

allowed to write or transact to management nodes. This makes private blockchains appear

centralized. However, other characteristics of private blockchains, such as consensus and

distributed ledgers, make this type of blockchain suitable for banks and financial institutions.

Consortium blockchain

The consortium blockchain mechanism is a kind of private and public blockchains which is hybrid.

Individuals or a group of companies make the decision on block verification and consensus [34] ,

[38] . This coalition of organizations agrees on the network’s presence and mining nodes. The

network block, where the extracted block is assumed to be a legitimate block, is minted by a multi-

31

signature method if it is accepted and signed by the governing nodes [38]. Consortium blockchains

allow individual or organizational participants to verify blocks, rather than requiring everyone to

participate in the process or having a single entity to decide the verification process. Hyperledger

Fabric is the exact example of a consortium blockchain framework [39]. The consortium's

blockchain uses consensus algorithms such as Practical Byzantine Fault Tolerance (PBFT) and

Byzantine Fault Tolerance (BFT) via the Tendermint algorithm to validate transactions and

distribute applications on multiple machines in a secure and consistent manner.

2.12. Miner

A peer in a blockchain network that solves difficult cryptographic problems and confirms or

verifies transactions by adding them or "blocking" them on the blockchain, thereby updating the

ledger.

2.13. Mining

To define a new block and add it to the blockchain, there are different strategies for choosing nodes

that create hash values based on consensus algorithms. These nodes in the network must solve

complex "mathematical puzzles", and once the puzzle is solved, all other nodes in the network

confirm that their computations are correct. The process of solving this puzzle and creating a new

hash as a result is called "mining". Mining is usually based on advanced mathematical calculations

and therefore requires a lot of computing power. It also requires the use of dedicated computer

hardware. As a result, not all network nodes can act as "miners". To change the data stored in a

block, a malicious actor would have to edit the entire blockchain after that given block. However,

this is basically impossible as it requires a lot of computational and processing power.

32

Miners earn a mining reward

Mining consumes energy, and energy costs money. Therefore, we need an incentive for miners to

mine new blocks. This incentive is called a “mining reward” and is usually paid in the

cryptocurrency of the blockchain network. For example, miners are rewarded with the

cryptocurrency "ETH" for mining blocks on the Ethereum-based blockchain. Without miners,

there are no new blocks. As a result, the blockchain becomes useless.

2.14. Consensus mechanism

Consensus rules are one of the central points of blockchain [40] . These algorithms help reach a

common consensus on which blocks to include in the blockchain. Once consensus is formed on

the network validating a block, the block is added to the chain, becoming a permanent, immutable

record accessible to all participants. Consensus rules also aim to reach mutual agreement in a

secure manner that can filter out malicious participants. It is also possible that the system contains

faulty participants. However, until the majority of participants are honest (the system continues to

behave as originally desired), the entire system can remain in a trusted environment. There are

many consensus rules today (about 30 [41]). One of the best known is the Proof of Work [41]

(PoW) consensus, which applies to the Bitcoin [11] and Ethereum (main network) [23]

blockchains. This consensus is based on cryptographic challenges that must be solved by the

members participating in the consensus. This consensus rule provides a safe environment until her

51% of participants are honest. Note that PoW consensus is a hardware-resource intensive task

that is computed among the participants in the consensus rule. The member who solves a particular

her PoW faster than other participants, gets more cryptocurrencies (e.g. Ether on the Ethereum

blockchain). Practical Byzantine Fault Tolerance [30] (PBFT) is one of the most widely used

consensus rules between private and consortium blockchains (such as Hyperledger Fabric [40]).

This consensus is based on successive votes that can create a safe environment until her 2/3 of the

consensus participants are honest. Unlike PoW, the purpose of PBFT is not to set up a competition

between participants to acquire cryptocurrencies, but to reach consensus more securely. This

consensus rule consumes less hardware resources because there are no encryption issues with this

consensus. Two important matches are Proof of Work and Proof of Stake.

33

Proof of Work

When a new block is added to the blockchain, consensus between nodes is required. For this

reason, Proof of Work (PoW) algorithms require each node to solve a puzzle whose difficulty can

be adjusted. Therefore, the first node to solve the puzzle gets the right to add a new block to the

current chain. The effort a node puts in to solve a puzzle is called PoW and is paid to the node that

computes the right to hash. This node is called a mining node or miner and the actions taken to

solve the puzzle are called mining [42]. The solution to the puzzle is found in PoW, so normally

when created using the SHA-256 hash function, the hash should start with a series of zero bits.

The average amount of work required is exponential in the number of zero bits required and can

be found by performing a simple hash operation. In PoW, the puzzle difficulty is adjusted each

time a 2016 block is added, so the average rate of adding a new block to the chain is 1 block every

10 minutes. [42]. When a new block is created, the header information is combined and sent as an

input parameter to a SHA-256 hash function [43] . If the output of this function is below a threshold

T (depending on difficulty), the sought value is accepted. Otherwise, the node should continue

calculating the secret value until the output of the SHA-256 function is accepted. The smaller the

value of T, the higher the difficulty of the puzzle. [42].

Figure 8 PoW consensus Mechanism [44]

34

2.14.1.1. The advantage of PoW

 PoW has been widely successful mainly due to the following characteristics:

• Finding solutions to specific problems is difficult.

• If you find a solution to this problem, you can easily verify that it is the correct solution.

At Proof of Work, other nodes verify the validity of a block by checking if the hash of the

block's data is less than a preset number. Due to the limited supply of computing power, miners

are also encouraged not to cheat. Attacks on networks are expensive due to high hardware and

energy costs and the potential loss of mining profits.

Prove of Stake

The Proof-of-Stake (PoS) algorithm aims to reduce the power consumption of the ever-growing

PoW blockchain network [45] . As an alternative to computationally intensive puzzle solving,

Proof of Stake aims to stake the economic share of peers in the network (as seen for example in

Peercoin5). Here, the term “miner” is replaced with “validator” and one validator is chosen to

publish a block on the blockchain, similar to proof-of-work algorithms.

The difference is in the selection of validators. In Proof of Stake, validators are chosen pseudo-

randomly, with probabilities proportional to the validator's share in the network (as seen in NXT6

and Blackcoin7). Proof of Stake (PoS) is an alternative to PoW that allows miners to create blocks

based on the amount of resources at risk instead of requiring computational work [46]. Based on

such an approach, PoS can reduce the energy cost of the expensive PoW mining process and

reliance on dedicated hardware. However, PoS-based blockchains, which do not require resource

overhead, make the network more vulnerable to attacks.

35

2.15. Ledgers

A traditional blockchain network maintains a public ledger of all transactions as a copy of every

node. A ledger works like a public database owned by no one. In public and private blockchains,

ledgers are managed securely through cryptography. Ledgers contain blocks of transactions, and

some ledgers can even store other types of data such as: B. The state of the program running on

the blockchain.

Distributed Ledger Technology (DLT)

This is a family of technologies that also includes blockchains where the ledger is run by a group

of peers rather than a single central authority.

2.16. Blockchain platforms for IoT

This section describes the most popular and popular blockchain platforms that support IoT

application development and service integration.

Bitcoin Platform

Bitcoin is a popular blockchain platform that includes active cryptocurrencies that provide a

decentralized system for securely executing transactions without intermediaries or third parties

[47] . Bitcoin is involved in many IoT platforms to create micropayments and act as a wallet for

transactions. However, while Bitcoin uses a limited scripting language to carry out these

transactions, most IoT platforms use a common and reliable solution of smart contracts. Smart

contracts can more securely manage and record all interactions within a transaction without the

limitations of scripting languages.

Ethereum Platform

36

Originally, Ethereum was a public, permissionless, blockchain-based platform implementing a

Proof of Work based consensus protocol. Ethereum is an open-source blockchain framework that

leverages decentralized applications where anyone can own and control the platform [48] .

Additionally, the platform is flexible and adaptable, including smart contracts that enable the

integration of new IoT technologies and applications. A vibrant and popular platform with a broad

community supporting the development of multi-language-based application such as Go, C++ and

Python. The platform will be developed based on a consensus mechanism that enables the

development and customization of IoT applications and reduces the latency of blockchain

approaches. However, this platform does not provide the data confidentiality which is required for

most IoT applications.

Hyperledger-fabric Platform

The Hyperledger-Fabric platform is a incredibly famous open-supply platform (constructed

primarily based totally at the Golang and Java languages) permitting builders to construct

blockchain programs the usage of a modular structure method [49] . This modular method permits

the platform to be prolonged with a couple of components, which include club offerings and

consensus algorithms, making it an awesome preference to help enterprise organization solutions,

in conjunction with diverse different blockchain platforms. In addition, Hyperledger Fabric is a

permission-primarily based totally community that offers a information confidentiality function to

encrypt transactions in order that they cannot be changed via way of means of unauthorized

persons. However, there are various obstacles and downsides associated with the platform`s cap

potential to help IoT programs and development. For example, it's far much less or in part

decentralized, extra prone because of consider issues, has handiest one validator node and has bad

scalability of the consensus algorithms required to make a dependable system-primarily based

totally settlement throughout a couple of gadgets of an organization’s dispensed community [50].

Stellar Platform

It features a public blockchain with its own consensus algorithm which is like Practical Byzantine

Fault Tolerance (PBFT) [51] but uses elements from Social network modeling. The difference is

37

that a node agrees to a transaction if its neighbors agree. Neighboring nodes are trusted more than

other nodes. If a transaction is accepted by a threshold number of nodes in the network, there is a

cascading effect due to homogeneity, and the transaction is confirmed by the entire network with

high certainty. As such, the protocol requires far less computational power as it does not require

solving cryptographic puzzles. Unlike Ethereum, there is no specific language for smart contracts.

It is still possible to string together several transactions and write them atomically within the

blockchain. Stellar also features special accounts called multi-signature which essentially lets

several owners handle a single account. A minimum agreement must be reached between the

owners to operate from these accounts. Transaction chaining and multi-signature accounts can be

combined to create more complex contracts [52] .

Multichain Platform

Multichain is a private blockchain platform that provides application development and deployment

as well as offers privacy and a control-based P2P network [53]. The multichain platform enhances

and leverages the existing application program interfaces (APIs) of Bitcoin's core software by

adding new features to support financial transactions. The platform provides both an API and a

command line interface to support multi-chain configurations. Additionally, Multichain is a

permissioned blockchain that offers options for application development. It can be an open

blockchain or a closed blockchain, depending on your business needs. Additionally, it is an open

source blockchain platform that supports C, C++, Python, and Java script. Multichain is a

permissioned blockchain and provides a great solution for IoT to collect data when data erasure is

a concern, but it cannot protect against the risk of data theft. In addition, communicating intelligent

things with other resources within the allowed multi-chain is slow and costly [54].

38

Platform Blockchain Popularity&active
Consensus

algorithm
Pricing

Supported

languages

Smart

contracts

Bitcoin Public High PoW
Fees per

transactions

Script and

c++
No

Hyperledger-

Fabric

Private,

Permissioned
High PBTF

Open

Source

Price

Python,

Golang and

Java

Yes

Multichain
Private,

Permissioned
Medium PBTF

Free, Open

source Price
Python, C# Yes

Quorum
Public,

Permissioned
High Raft, IBFT

Fees per

transaction
Python, C# Yes

Lisk
Public,

Permissioned
Medium DPoS

Fees per

transaction
Java Script Yes

Litecoin Public Low Scrypt
Fees per

transaction
C++ No

HDAC
Public,

Permissioned
Low EPoW

Fees per

transaction

Web

Assembly
Yes

IOTA
Public,

Permissioned
Low

PoW,

TANGLE

Pricing not

clear as yet

Python, C,

Javascript
No

Table 2 Blockchain platforms

39

Table 2 shows a comparison of the existing platforms of blockchain that are used to develop the

IoT applications presented in this section.

Most platforms include smart contracts that allow application logic to extend beyond

cryptocurrency transactions. The most widely used programming languages are Python,

JavaScript, C++, and consensus algorithms PoW and PBT. Most platforms have public and

syndicated permissions so you can use them to build global and syndicated applications. In fact,

the consensus algorithm is the core feature that determines the performance of his blockchain-

based IoT applications in terms of block rate, consistency, scalability, and security. Consensus

algorithms based on PoW are considered the most secure in open networks. On the other hand,

pow precludes the possibility of block mining on IoT devices due to its high computational

requirements. PBFT-based private blockchain consensus mechanisms can provide IoT systems

with high block production rates but limit the number of participating miners. Among the above

blockchain projects, Ethereum is suitable for many IoT applications, including a large number of

his IoT systems and heterogeneous networks. As a public blockchain, Ethereum has high

scalability as it can support many heterogeneous devices. On the other hand, Hyperledger Fabric

is suitable for his IoT network with large amounts of data. Fabric integrates blockchain through a

customer service approach to achieve high transaction volumes up to tens of thousands of

transactions per second. Hyperledger Fabric requires controllable network infrastructure and is not

as publicly accessible as Ethereum.

2.17. Visual scenario on how the blockchain corporate with other parts

In figure 9, a visual scenario shows a conceptual scenario of an IoT blockchain platform. In this

scenario, a number of his IoT devices, data stores, user devices, servers, and local bridges are

connected by a peer-to-peer blockchain network. An IoT server is a service provider that can

interact with local bridges and blockchain networks in order to provide various services to end-

users, such as storing data in storage space via blockchain networks. A data storage network on

the blockchain can store physical device profiles and environmental data collected by sensors. It

can either be a hardware storage like a hard disk or a software storage such as a DB. User client

40

can be any terminal devices, such as smart phones, laptops, and PCs, through which end users can

read or write data to the blockchain network. For example, home users can view the status of

various home appliances stored on the blockchain for a specific period of time. There are various

communication protocols that developers can apply to their IoT products and systems. B.

Bluetooth, ZigBee, WiFi, and 2G/3G/4G cellular. A local bridge uses these communication

technologies to connect a cluster of IoT devices to a server and also acts as a service agent for

those devices.

 Nowadays, with the advancement of hardware technology, embedded devices such as Raspberry

Pi can directly consume web services by invoking representational state transfer application

programming interfaces (REST APIs). Therefore, two approaches are presented for

Communicating with physical devices, which is either via the local bridges or via direct wireless

communications. Unlike most existing projects that focus on connecting IoT devices to blockchain

networks using bridges, the proposed work focuses on simple communications. IoT devices can

be categorized into sensors and actuators. Sensors are used to collect environmental data such as

temperature and send this data to our server for further use. Actuators, on the other hand, are used

to perform specific actions (such as turning on lights) according to the commands they receive.

user.

41

Figure 9 Visual scenario of correlation in IoT and blockchain

2.18. Functional aspect of blockchain

A blockchain platform includes some specific processes and architectures. First, blockchain has a

specific transaction generation process to ensure transaction validity. Blockchain data units are

called transactions, and a certain number of transactions is a block. Each transaction participant in

a blockchain system is called a MINER. When a new transaction is generated on the blockchain,

miners broadcast the transaction information across the network and each miner integrates the

received transaction information into blocks. To ensure security, each miner should store a

42

complete copy of the blockchain data. Each miner tries to find her Proof of Work (PoW) hard

enough within a block, a process known as mining. When the miner finds evidence, it broadcasts

it across the network. Other miners agree on block validity through a specific consensus

mechanism as shown in Figure 10.

Figure 10 Functional diagram of a Blockchain network

43

Chapter 3

3. Implementation of evidence in blockchain

This section describes the work of implementing a public blockchain using the Ethereum platform

with the Python programming language. Blockchain is widely used in the field of IoT security.

However, when it comes to IoT forensics, this concept is still in the testing stage. When it comes

to implementing blockchain in an IoT environment, it can play an important role in the security,

management, control, and security of IoT devices. One example is digital evidence, where the use

of blockchain technology is encouraged to ensure quality and prevent tampering. In this case,

blockchain technology is used to store data controlled by IoT devices. In addition to the ability to

make IoT device management more efficient, IoT devices can be removed from the control of a

central authority that can operate or shut down the system. This makes it more difficult to attack

networks because they don't revolve around people. Additionally, data received from IoT devices

and stored on public blockchain networks is also less vulnerable to plaintext and cryptographic

attacks due to hashing of the data on the blockchain.

3.1. Functionality of the modules

In this python program, we used some modules to run each section of our blockchain project.

These modules are as following:

3.1.1. App.py

This module is the main module in our program.

3.1.2. AppConfig.py

It’s the module to set the relation between app.py class with excel module and Blockchain module.

3.1.3. Blockchain.py

 It’s a module for blockchain.

44

3.1.4. Data_sent.py

This class maintains the strings of the whole program.

3.1.5. ExtractFromExcel.py

With this module, we extract the information from the excel file.

45

3.2. Analysis of the codes

In this part, we go forward step by step by considering the layers.

3.2.1. App.py

The first module called data-sent contains string data shown in Figure 11.

from data_sent import data_sent

from AppConfig import AppConfig

Figure 11 Import a dataset

In the following class called App, we added these modules and we built objects from “data_sent”

and “AppConfig” to have access to its methods in the whole program. The “help” method, prints

us the contents of the helping list which is in the “data_sent” class. “app” method is the main

method for running the program at app class which creates the object of appConfig for running the

whole program as shown in Figure 12.

46

class App():

 def __init__(self) -> None:

 self.data_sent=data_sent()

 self.AppConfig=AppConfig()

 self.data=""

 self.model=-1

def help(self):

 for index,item in enumerate(self.data_sent.p1):

 print(item)

def app(self):

 self.appConfig()

Figure 12 Class APP()

In the “appConfig” method, the user enters the number as the input to get the output with calling

“appSelect” as shown in Figure 13.

def appConfig(self):

 print("welcome to system to manage data blockchain ---\n")

 while True:

 self.help()

 select=int(input("Enter : \n"))

 self.appSelect(select)

 if select==4:

 return False

 def appSelect(self,select):

 if select==1:

 self.data=self.AppConfig.getDataFromExcel()

 self.model=-1

47

 elif select==2:

 self.AppConfig.saveDataToBlockchain(self.data)

 self.data=""

 self.model=1

 elif select==3:

 self.AppConfig.showAllDataBlockchain(self.model)

Figure 13 Functionality of “appConfig” and “appSelect” methods

There are 2 parameters in the whole program as model and data which are integer and string. We

use “data” variable for storing the extracted data from excel as shown in Figure 13. Also we use

“model” variable to control the structure and prevent the estimated errors. When the users enters

1 as input, it starts to extract the information from the row of the excel file and insert in the “data”

variable. If the user inserts “2”, the row will be stored in data base. For storing data in data base,

we use “saveDataToBlockchain” method. If the user inserts “3” as input, it shows the data stored

in the blockchain and identify the validity of the data as illustrated in figure 13.

3.2.2. AppConfig.py

The module called “extraxtFromExcel” is responsible for extracting data from excel file. Also, the

last module called “Blockchain” contains the blockchain information as illustrated in Figure 14.

The “AppConfig” class is the complementary for the “app” class. In the constructor of

“AppConfig” class, we built the objects to use in all the program as shown in Figure 14.

48

from data_sent import data_sent

from ExtractFormExcel import ExtractFormExcel

from Blockchain import Blockchain

class AppConfig():

 def __init__(self) -> None:

 self.data_sent=data_sent()

 self.ExtractFromExcel=ExtractFormExcel()

 self.Blockchain=Blockchain()

Figure 14 “AppConfig” class constructor

In the “getDataFromExcel” method, we extracted data from excel file to return this “data” in the

method again. At first, we request the user to enter the row of the record in the excel file which

he wants to save in the blockchain. Then, we place this parameter as an input for “configExcel”

which is in the class called “ExtractFromExcel”. Now if that row exists, it shows us the data related

as shown in Figure 15.

def getDataFromExcel(self):

 try:

 select=int(input(self.data_sent.p2))

 data=self.ExtractFromExcel.configExcel(select)

 print(self.data_sent.p5)

 print(self.data_sent.p3)

 print (data)

 print(self.data_sent.p5)

 except:

 print(self.data_sent.p4)

return data

Figure 15 Get data from the row in excel file

49

The duty of “saveDataToBlockchain” method is to store data in blockchain. It has an input as the

data extracted from excel file (In the case the data parameter is not empty). This data will be stored

in the blockchain with the “mine-block” method. If there is an error, we will receive the error

message as shown in Figure 16.

def saveDataToBlockchain(self,data):

 try:

 if len(data) !=0:

 print(self.data_sent.p5)

 print(self.data_sent.p6)

 self.Blockchain.mine_block(data)

 print(self.data_sent.p5)

 else:

 print(self.data_sent.p7)

 except:

 print(self.data_sent.p7)

Figure 16 Save data to blockchain method

In the “showAllDataBlockchain” method, the display of data will be done by “display_chain”

method and the validation activity will be done by “valid” method. If there is an error, it shows us

the error message in output in Figure 17.

def showAllDataBlockchain(self,data):

 if data ==1:

 print(self.data_sent.p5)

 self.Blockchain.display_chain()

 self.Blockchain.valid()

 print(self.data_sent.p5)

 else:

 print(self.data_sent.p8)

Figure 17 Display all data in blockchain

50

3.2.3. data_sent.py

This module is the prepared messages which we use during our program for better coherence.

There is some information in the constructor of this class as string and list to use in the whole

program as shown in Figure 18.

class data_sent():

 def __init__(self) -> None:

 self.excelFile="E:\\Programing\\python\\blockchin\\saveData\\code\\16-11-06.xlsx"

 self.p1=["Select Record form Excel ----- (1) : \n",

 "Save Record excel to BlockChain --- (2) \n",

 "Show data save blockchain ---(3) \n",

 "Exit ---(4) \n"]

 self.p2="Enter num record for get from excelFile : \n"

 self.p3="Extract from excel file : --- \n"

 self.p4=" No any data for record --- :("

 self.p5="-------------------------------------"

 self.p6="Data save sussesfull ----- :)"

 self.p7="No any data for save ----- :("

 self.p8="No any data for print ----- :("

Figure 18 Constructor of “data_sent” class

3.2.4. ExtractFromExcel.py

This module, extracts the data from excel file. Xlrd is a module to read data from excel file (Fig

9). In the constructor of “ExtractFromExcel”, we use data-sent object and xlrd module for reading

data from excel file as illustrated in Figure 19.

51

import xlrd

from data_sent import data_sent

class ExtractFormExcel():

 def __init__(self) -> None:

 self.data_sent=data_sent()

 self.wb = xlrd.open_workbook(self.data_sent.excelFile)

 self.sheet = self.wb.sheet_by_index(0)

Figure 19 Constructor of “ExtractFromExcel” class

We receive the row information and show the output as a list of the row. The “configExcel” method

is for reading the row in Figure 20.

def readRow(self,select,index):

 information=[]

 for i in range(select):

 information.append(self.sheet.cell_value(index, i))

 return information

 def configExcel(self,index):

 for i in range(1,index+1,1):

 data=self.readRow(1,i)

 return data[0]

Figure 20 Reading each row of excel file

3.2.5. Blockchain.py

At first, we used the standard libraries of python:

Datetime is for time information. Hashlib, is used in constructing a blockchain. Json is for

standardization of data to show and store data as shown in Figure 21.

52

import datetime

import hashlib

import json

Figure 21 Standard libraries for blockchain

In the constructor of “Blockchain” class, we created a chain as list. We use the Proof of Work

algorithm in this blockchain. As the input of “create_block”, because we are in the gensis level of

blockchain (as the first block), we have the assumption of having predefined variables called

proof=1 and previous_hash=0 (as we are in the first block, so no block was presented before this

block in Figure 22.

class Blockchain:

 # This function is created to create the first block and set its hash to "0"

 def __init__(self) -> None:

 self.chain = []

 self.create_block(proof=1, previous_hash='0')

Figure 22 Constructor of blockchain

Here we want to create the new other blocks (The first block was created previously). In this

method, we have to input variables called “proof” and “previous_hash”. In the body of this method,

we have the block dictionary which consists of index as the length of the list chain, timestamp as

the time of the creation of the block, the proof amount and the previous_hash of previous block.

After that this dictionary is created, we added this dictionary to the chain list. Then, this dictionary

amount (as a new block of information) is as our output as shown in Figure 23.

53

This function is created to add further blocks into the chain

 def create_block(self, proof, previous_hash):

 block = {'index': len(self.chain) + 1,

 'timestamp': str(datetime.datetime.now()),

 'proof': proof,

 'previous_hash': previous_hash}

 self.chain.append(block)

 return block

Figure 23 Creating the new block to add to the chain

This method is to show the previous block (there is -1 as the output to return the previous block in

Figure 24.

This function is created to display the previous block

 def print_previous_block(self):

 return self.chain[-1]

Figure 24 Returning the previous block info

Now, there is the method to implement the Proof of Work algorithm . Our purpose is to

Calculate new_proof until the check_proof is equal to “False”. In this algorithm, we used one

argument called previous_proof which indicates the previous proof. There are 2 variables called

“new_proof” with the first assumption of 1 and “check_proof” as a logical variable with the first

assumption of False in Figure 25. We continue the loop until we exit from loop. Hexdigest()

Returns the encoded data in hexadecimal format. The Python hashlib module is an interface for

hashing messages easily. This contains numerous methods which will handle hashing any raw

message in an encrypted format. The core purpose of this module is to use a hash function on a

string, and encrypt it so that it is very difficult to decrypt it.

54

This is the function for proof of work used to mine the block successfully

 def proof_of_work(self, previous_proof):

 new_proof = 1

 check_proof = False

 while check_proof is False:

 hash_operation = hashlib.sha256(

 str(new_proof**2 - previous_proof**2).encode()).hexdigest()

 if hash_operation[:5] == '00000':

 check_proof = True

 else:

 new_proof += 1

 return new_proof

Figure 25 Proof of Work algorithm

This method aims to create the hash of block. In this method, it encodes a block (as input) using

JSON structure to create the hash as the output as shown in Figure 26.

def hash(self, block):

 encoded_block = json.dumps(block, sort_keys=True).encode()

 return hashlib.sha256(encoded_block).hexdigest()

Figure 26 Creating the hash of the identified block

This method works on validity of the identified chain in Figure 27. The “previous_block” receives

the value of index 0 of the chain as the input. In the while loop, we consider the validation (If it is

valid or not). In the while loop, if the “block_index” is more than the length of the chain, the chain

is valid, else the chain is not valid for the blockchain. In the body of the while loop, we try to

calculate the previous block hash and then compare it with the hash of previous block. If the

55

“previous_block” hash is different from the block['previous_hash'], the block is not validated as

shown in Figure 27.

def chain_valid(self, chain):

 previous_block = chain[0]

 block_index = 1

 while block_index < len(chain):

 block = chain[block_index]

 if block['previous_hash'] != self.hash(previous_block):

 return False

 previous_proof = previous_block['proof']

 proof = block['proof']

 hash_operation = hashlib.sha256(

 str(proof**2 - previous_proof**2).encode()).hexdigest()

 if hash_operation[:5] != '00000':

 return False

 previous_block = block

 block_index += 1

 return True

Figure 27 Validation of block and chain

If the while loop doesn’t return False, we will check the validity of the block with “hash_operation”

variable. For calculating “hash_operation” variable using standard libraries, first, we calculate

“previous_proof “ and “proof” parameter, then with the defined structure, we calculate the

“hash_operation” to check the validity of chain. If the if condition is not right, then the while loop

will continue until the validation or not validation of chain is defined as shown in Figure 27.

This method is to store the data in the created block. The argument called “data” are the input data

56

to be stored in the block (Fig 20). At first, it creates the “previous_block” parameter (as a block

type) using the “print_previous_block” method. Then the “proof” variable, takes the proof of work

as input. After calculating the “previous_hash”, it is the time to create the block by the method

called “create_block” with the output template for displaying block information as shown in the

Figure 28.

def mine_block(self,data):

 previous_block = self.print_previous_block()

 previous_proof = previous_block['proof']

 proof = self.proof_of_work(previous_proof)

 previous_hash = self.hash(previous_block)

 block = self.create_block(proof, previous_hash)

 response = {'message': data,

 'index': block['index'],

 'timestamp': block['timestamp'],

 'proof': block['proof'],

 'previous_hash': block['previous_hash']}

 print(response)

Figure 28 Store data in the block using standard output

As shown in Figure 29, this method is responsible for displaying the chains and the length of the

chains.

57

def display_chain(self):

 response = {'chain': self.chain,

 'length': len(self.chain)}

 print(response)

Figure 29 Showing list of chains and lengths of chains as output

This method checks validity of blockchain with “chain_valid” method as shown in Figure 30.

def valid(self):

 valid = self.chain_valid(self.chain)

 if valid:

 response = {'message': 'The Blockchain is valid.'}

 else:

 response = {'message': 'The Blockchain is not valid.'}

 print(response)

Figure 30 Checking validity of blockchain

58

3.3. Display in console

3.3.1. Select a row from excel file

Figure 31 Select the specific row from excel file

We selected this row with this information from excel file:

Figure 32 Row selected and displayed in the console

59

3.3.2. Save selected row from excel file into the blockchain

Figure 33 Save the row in the blockchain and displayed in the console

3.3.3. Show the data with template which is saved in the blockchain

It shows all the stored data in the blockchain and checks if the blockchain is valid or not.

Figure 34 Data format saved in blockchain displayed in the console

3.3.4. Display of different rows added to blockchain in console

Here we added the rows 1,20,1340 to our blockchain with this information. By entering 3, in the

console, we can see the records of the rows saved in the blockchain.

60

Figure 35 All the records saved in the blockchain

61

4. Evaluation

4.1. Performance and Scalability in Consensus Algorithms

Permissionless blockchains need slow block creation to keep up with the propagation speed of

nodes in the network. Permissioned blockchains, on the other hand, have much lower latency, but

have serious scalability issues. The network overhead introduced by the voting mechanism means

that permissioned blockchains can only scale to a few hundred nodes. The worst-case complexity

of permissioned blockchains is O(N2) compared to O(N) as the worst-case complexity of

permission-less blockchains. This limits the usability of permissioned blockchains for IoT [46].

Through the virtues of publicly anonymous accessibility and decentralization, permissionless

blockchains are better suited to industry wide IoT applications. Permissioned blockchains are more

suited to enterprise solutions due to their higher degree of control and permission granting

capabilities.

4.2. Considering the time needed to insert a new record in the blockchain

#save data in new block

 def mine_block(self,data):

 start_time = time.time()

 previous_block = self.print_previous_block()

 previous_proof = previous_block['proof']

 proof = self.proof_of_work(previous_proof)

 previous_hash = self.hash(previous_block)

 block = self.create_block(proof, previous_hash)

 response = {'message': data,

 'index': block['index'],

 'timestamp': block['timestamp'],

 'proof': block['proof'],

 'previous_hash': block['previous_hash']}

 print(response)

 print((time.time() - start_time))

62

Figure 36 Time of execution for inserting new record in the blockchain

4.2.1. How much time it takes to insert a new record in the blockchain

In this part, we discuss about the time needed to store a new record to our blockchain. Fist, we

want to know how much time it takes to create the first block. As we can see in the figure 37, the

creation time of the first block is about 2.4144902229 (sec) which results in creating the

blockchain.

Execution time (Sec) of storing a row in the blockchain

Figure 37 execution time for saving the 1th row of data into the blockchain

In the figure 38, we aim to compare the original record row numbers (as the rows) to the time it

takes to be stored in the blockchain.

63

Figure 38 Time of saving new row into the blockchain

The figure 39 shows the number of characters of each row in which we want to save in the

blocks of the blockchain. Here, we can count the number of characters of each row of excel file

(for the first 50 records), which is going to be inserted in the blockchain. This is a partial sample

of the excel file (1th to 50th row).

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
(s

ec
)

Row number

How much time it takes to insert a new row of data into a
block in the blockchain

Row of Excel file

64

Figure 39 How many characters each record of excel file has in order to be inserted in the blockchain

As we can understand from the above figures 38 and 39, the creation time for each block to be

inserted in to the blockchain, is different from other blocks because the blocks are different in

size. It is obvious that the length of each record is different so the time to change the original

characters to hash codes are different which results in different block creation time. The time for

the creation of the blocks in the blockchain depends on several issues. Some of the issues are as

following:

• The processing time and the computing power to create the hashes of the characters is

different for each row of the original data.

• The mathematical calculation to insert a new row of characters in each block takes

different times depending on the characters it contains.

• The current status of the Operating System and how many soft wares are running.

4.3. Retrieving the data from the blockchain

570

580

590

600

610

620

630

640

650

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

C
h

ar
ac

te
rs

Row number

The number of characters of each row

Series 1

65

In this part, we aim to know the original data which are saved to the blockchain in the specified

timestamps. In other words, the user wants to know the actions which are taken in the specific

time stamps duration.

The number of timestamps Time

The first timestamp Between "2022-09-06 14:54:03" and "2022-

09-07 16:54:03"

The second timestamp Between "2022-09-07 08:14:11" and "2022-

09-07 19:35:20"

The third timestamp Between "2022-09-03 08:14:11" and "2022-

09-08 09:00:20"

Table 3 the specified bounded timestamps for the following evaluations

 def limitchain(self,DataArray):

 start_time = time.time()

 Entry = "2022-09-06 14:54:03"

 Entry1 = "2022-09-07 16:54:03"

 Time_Entry = datetime.datetime.strptime(Entry, '%Y-%m-%d %H:%M:%S')

 Time_Entry1 = datetime.datetime.strptime(Entry1, '%Y-%m-%d %H:%M:%S')

 i = 0

 length = len(self.chain);

 new_Array = []

 New_Data_Array = []

 while i < length:

 block = self.chain[i]

 if (Time_Entry <(datetime.datetime.strptime(block['timestamp'], '%Y-

%m-%d %H:%M:%S.%f')) < Time_Entry1):

 if i == 0 :

 New_Data_Array.append("0")

66

 else:

 New_Data_Array.append(DataArray[i-1])

 new_Array.append(block)

 i = i + 1

 print (new_Array)

 print(New_Data_Array)

 print("Time of Execution")

 print((time.time() - start_time))

Figure 40 Retrieve the original data between two specified time stamps:"2022-09-06 14:54:03" and "2022-09-07 16:41:03"

In the figure 41, we want to get back the information in the blockchain between 2 different

timestamps with the time it takes to retrieve data. In a real scenario, we want to know the actions

in which a user did between 2 different times.

Figure 41 The retrieved data from the blockchain in the first timestamp

In the first timestamp, according to table 3 between "2022-09-06 14:54:03" and "2022-09-07

16:54:03", we retrieved two rows of the original data. The original data are of the row numbers

123 and 2345 with these original values as seen in the figure 41.

As we can see in the figure 41, the time to retrieve the data between these two timestamps is

0.016005516052246094 (sec).

67

Considering that we have a sample of 100 rows of raw data in the blockchain, we can understand

that from the second time stamp between "2022-09-07 08:14:11" and "2022-09-07 19:35:20", we

retrieved 9 blocks of information from the row number 1301 to row number 1308.

For the third timestamp as seen in the table 3, we want to retrieve the data between the total 100

blocks of data saved in the blockchain. The time to retrieve the data is higher than the other

timestamps because there are more records of data to retrieve as in the figure 42. This time, we

retrieve 20 blocks of records from blockchain.

Figure 42 Rows retrieved for the third timestamp (in the case we have 100 rows saved in the blockchain)

68

Figure 43 time to retrieve data in the third timestamp

In the following chart, we can see the time is needed to retrieve the original data from blockchain

for different time stamps. Also, we can see how many rows are retrieved in those specific

different timestamps in figure 44.

69

Figure 44 comparing the time it takes to retrieve data in different timestamps

In the next part in the figure 45, we want to calculate the total number of characters (the original

length of data) in these 3 different time stamps. As the length of the block increases, the time to

retrieve the data will increase too.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 rows retrieved 8 rows retrieved 20 rows retrieved

Ti
m

e
(s

ec
)

number of rows retrieved between the total 100 blocks

comparing the times needed to retrieve the data from
blockchain in different timestamps

first timestamp between :"2022-09-06 14:54:03" and "2022-09-07 16:54:03"

second timestamp between "2022-09-07 08:14:11" and "2022-09-07 19:35:20"

third timestamp between "2022-09-03 08:14:11" and "2022-09-08 09:00:20"

70

Figure 45 The length of original data in different timestamps

4.3.1. The time is need to retrieve 1 record in different time stamps

 In this part, we defined 3 different timestamps to retrieve the data in these three timestamps. For

each timestamp, just one row of record in the blockchain is being extracted. In the figure 46, It

shows the retrieved data of the row number 1000 of the original data in the specified timestamp.

Figure 46 Retrieve 1 record between "2022-09-09 08:14:11" and "2022-09-09 10:15:20"

In the figure 47, while the number of characters in the row 1000 has the largest length, It doesn’t

take the most time to retrieve the data related comparing to other original block sizes.

0

2000

4000

6000

8000

10000

12000

14000

First timestamp Second timestamp Third timestamp

C
h

ar
ac

te
rs

timestamps

Total number of characters which are retrieved from the
blocks for different time stamps

the number of Characters retrieved in the first timestamp

the number of Characters retrieved in the second timestamp

the number of Characters retrieved in the third timestamp

71

Figure 47 Time to retrieve one record from blockchain

Figure 48 How many characters each specified row has

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Record row number 1000 Record row number 2000 Record row number 3000

Ti
m

e(
se

c)

Record row number

The time to retrieve one record in different timestamps

First timestamp between "2022-09-09 08:14:11" and "2022-09-09 10:15:20"

Second timestamp between "2022-09-05 10:18:20" and "2022-09-09 13:18:20"

Third timestamp between "2022-08-29 08:14:11" and "2022-09-01 12:30:20"

570

580

590

600

610

620

630

640

1000 2000 3000

C
h

ar
ac

te
rs

Record number

Row number

Row number

72

4.4. Comparing Proof of Work and Proof of Stake

The chances of a successful double-spending attack decrease when a transaction receives

confirmation in a PoW-based currency and depend on the amount of mining power possessed by

the attacker [55]. To decrease the risk of funds double spending, it is recommended to wait for a

certain number of confirmations. Additionally, For both of consensuses (proof of work and proof

of stake), some types of attacks such as DoS attack is common. The purpose of DoS attack is to

disrupt the normal work of the cryptocurrency network by flooding the nodes. A Sybil attack

disrupts a network by creating a series of rogue nodes. Whether a network is susceptible to DoS

and Sybil attacks also depends on details of the network protocol. There is no reasons for PoS to

make it less susceptible to this kind of attack when it is compared to PoW. Selfish mining is

inherent in proof of working consensus. In selfish mining, an attacker selectively reveals mined

blocks to waste an honest miner's computing resources. Attacks are ineffective against PoS

currencies as block generation does not use expensive resources. On the other hand, there are no

known examples of successful selfish bitcoin mining attacks, and some studies have argued that

explanations for attacks are based on false assumptions.

For PoW consensus, the level of vulnerability to attacks can be easily predicted based on the

overall hash rate of the system [56] . In the case of PoS systems, there is no equivalent scale of the

network “health status”:

• Systems are vulnerable to blockchain fork-based attacks if stakes are evenly distributed

among many users.

• If there are users with large stakes, they can disrupt the operation of the network (for

example, by censoring transactions).

Type of attack
Vulnerabiliy

PoW PoS Delegated PoS

Short range

attack (e.g.,

bribe)

− + −

Long range attack − + +

73

Coin age accumulation
attack

− +/– −

Pre computing attack − + −

Denial of service + + +

Sybil attack + + +

Selfish mining +/– − −

Table 4 The vulnerability of proof of work and proof of stake consensus mechanisms to attack types

A pure proof-of-stake approach poses significant security threats that cannot be replicated by any

proof-of-work system (including Bitcoin). These problems are inherent in Proof of Stake

algorithms, since the Proof of Stake consensus is not fixed in the physical world (see Proof of

Work Hashing Device) [57] . For this reason, virtually all currencies that rely on proof-of-stake

use additional mechanisms to solve security problems.

 Unlike Proof of Work, Proof of Stake consensus is not objective. The state of a PoS system cannot

be reliably determined by a new user based solely on protocol rule and block lists and other

network messages received from peers. In order to prevent long range forks of the blockchain, a

proof of stake system needs to implement weak subjectivity by combining protocol rules with

social-driven security [58] . The social component of PoS systems weakens decentralization and

mathematical robustness. A recent development in

 Proof of Stake is the delegated system. Although these systems solve some key problems in simple

PoS implementations, they have not yet been widely deployed, making their security difficult to

assess. Still, delegated PoS solves the "nothing is at stake" problem and prevents short-range

attacks on your system. [58] .

74

5. Conclusion and future work

5.1. Conclusion

This work at first collects traffic features from IoT devices for forensic purposes. We proposed a

tool to collect traffic features to be installed in the access point and controlled through the LuCI

web interface, part of the OpenWrt services. Then, to show possible uses of the tool, we have

presented two application cases with corresponding experimental results in which the output of the

tool is used to train some Machine Learning classifiers for different purposes and to be stored in

the blockchain. Blockchain has been hailed as a channel for decentralizing the IoT as it has

provided a truly democratic and decentralized structure for performing data transactions. In his

traditional IoT architecture, centralized third parties provide critical services such as

authentication, authorization, access control and data management. Decentralized services using

blockchain have the potential to fundamentally change IoT service delivery without relying on

central intermediaries. This paper presents a blockchain-based framework for IoT data that aims

to provide a secure, decentralized system for storing IoT data.

The framework presented in this work includes proof-of-work consensus within blockchain

architectures to scale blockchain-based security and protect IoT Edge's large attack surface. The

framework is agnostic of the blockchain platform used if there are permissionless blockchains like

Ethereum. Therefore, within this blockchain architecture, every row of an Excel file can be easily

and securely stored with a hash. Applying the proposed architecture to IoT data shows its

application to general traceability. A traceability system was implemented on Ethereum to

emphasize the framework's agnosticity to the underlying blockchain platform.

For the purpose of traceability solutions, the permissionless Ethereum blockchain offers to co-

operate to have secure data by hashing. Consensus deployed on a blockchain-based framework

allows for tailored attacks on IoT data. To demonstrate this, we implemented a framework via the

Distributed IoT Data Framework. The implementation on the Ethereum platform allowed us to

observe how the framework behaves in real-life scenarios. Our results highlight the potential of

injecting data into blockchains via existing decentralized blockchains.

75

We demonstrated the applicability of this framework in securing the data. Functionally, periodic

hashes of the data being streamed can be stored within blockchain data base as proof of integrity.

We made important observations by conducting a performance analysis.

Our results showed that on one hand, the advantage of using the Proof of Work consensus

algorithm is that it has high level of security, decentralization and accepted level of scalability.

On the other hand, the main disadvantage of this consensus is that the functions of mining and

validating the blocks waste a lot of energy. Moreover, the speed and success rate of this hash

function highly depends on the computational abilities of the hardware running the hash [59] .

Although the complexity of hash functions is scalable, solving this puzzle takes time due to the

complexity of solving hash functions. Therefore, this algorithm is not suitable for large and fast-

growing networks that require many transactions. every second [60]. So, the cons of Proof of Work

can be as following:

• Less throughput

• High block creation time

• Energy inefficiency

• Special hardware dependency

• High computational cost

• Extensive bandwidth requirements.

In summary, the blockchain-based IoT framework presented in this work takes steps to build a

scalable and secure structure for IoT data communication without the need for a centralized trusted

authority. To do. The vision of decentralized IoT is one that does not rely on centralized authorities.

Blockchain continues to stimulate research progress towards realizing this vision by offering a

potential and fundamental paradigm shift in how the Internet of Things will be organized in the

future.

5.2. Future work

Research is a constant flow of collective consciousness, so it's important to recognize where the

flow will take us next. This paper introduced his contribution to designing a decentralized

architecture for IoT using blockchain. The architecture remains independent of the underlying

proof-of-work consensus mechanism as long as a distributed consensus mechanism is used.

76

Blockchain will remain a battleground between glamor and disillusionment for the foreseeable

future. We are fortunate to witness and participate in this battle. Our future work includes working

on blockchain consensus in combination with a proposed framework that can improve the

adaptability and scalability of blockchains for IoT.

Furthermore, there is the plan to analyze new PoW protocols. New protocols lacking rigorous

security analysis are still published in top venues or implemented to process financial transactions.

We will continue our line of research in PoW security analysis and expose their vulnerabilities.

Due to their complexity, new techniques in reinforcement learning will be employed, which further

extends our PoW-based method.

There is also an opportunity to design PoW protocols that are resistant to 51% attacks. There is a

PoP (Publish or Perish) design that increases the quality of the chain at the cost of longer

convergence times when the network is published and reunited. This trade-off can be avoided if a

compliant miner is aware of the state of the network and can rely on its local clock. Additionally,

introducing a subjective view helps the protocol defend against attackers who own more than half

of the total computing power. We will design stronger protocols in this direction and prove the

effectiveness of new protocols.

77

6. References

1. Li, S., L.D. Xu, and S. Zhao, The internet of things: a survey. Information Systems

Frontiers, 2015. 17(2): p. 243-259.

2. Stoyanova, M., et al., A Survey on the Internet of Things (IoT) Forensics: Challenges,

Approaches, and Open Issues. IEEE Communications Surveys & Tutorials, 2020. 22: p.

1191-1221.

3. Sivanathan, A., et al., Classifying IoT Devices in Smart Environments Using Network

Traffic Characteristics. IEEE Transactions on Mobile Computing, 2019. 18: p. 1745-1759.

4. Alaba, F.A., et al., Internet of Things security: A survey. Journal of Network and Computer

Applications, 2017. 88: p. 10-28.

5. Kolias, C., et al., DDoS in the IoT: Mirai and other botnets. Computer, 2017. 50: p. 80-84.

6. Bertino, E. and N. Islam, Botnets and Internet of Things Security. Computer, 2017. 50: p.

76-79.

7. Cardullo, P., ‘Hacking multitude’ and Big Data: Some insights from the Turkish ‘digital

coup’. Big Data & Society, 2015. 2(1): p. 2053951715580599.

8. Ali, M.S., et al., Applications of Blockchains in the Internet of Things: A Comprehensive

Survey. IEEE Communications Surveys & Tutorials, 2018. PP: p. 1-1.

9. Reyna, A., et al., On blockchain and its integration with IoT. Challenges and opportunities.

Future Generation Computer Systems, 2018. 88: p. 173-190.

10. Nakamoto, S. Bitcoin : A Peer-to-Peer Electronic Cash System. 2009.

11. Böhme, R., et al., Bitcoin: Economics, Technology, and Governance. Journal of Economic

Perspectives, 2015. 29(2): p. 213-38.

12. Pilkington, M., Blockchain Technology: Principles and Applications. 2016.

13. Beck, R., et al., BLOCKCHAIN – THE GATEWAY TO TRUST-FREE CRYPTOGRAPHIC

TRANSACTIONS. 2016.

14. Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing list

at https://metzdowd.com, 2009.

15. Sultan, K., U. Ruhi, and R. Lakhani, Conceptualizing Blockchains: Characteristics &

Applications. 2018.

16. Stinson, D.R.P.M., Cryptography : Theory and Practice, Fourth Edition. 2018.

17. Cuccuru, P., Beyond bitcoin: an early overview on smart contracts. International Journal

of Law and Information Technology, 2017. 25(3): p. 179-195.

18. Courtois, N., M. Grajek, and R. Naik, The Unreasonable Fundamental Incertitudes Behind

Bitcoin Mining. 2013.

19. Khanal, Y.P., et al., Utilizing blockchain for iot privacy through enhanced ECIES with

secure hash function. Future Internet, 2022. 14(3): p. 77.

20. Kuznetsov, A., et al., Performance Analysis of Cryptographic Hash Functions Suitable for

Use in Blockchain. International Journal of Computer Network & Information Security,

2021. 13(2).

21. Gupta, G. and S. Sharma. Enhanced SHA-192 algorithm with larger bit difference. in 2013

International Conference on Communication Systems and Network Technologies. 2013.

IEEE.

22. Panarello, A., et al., Blockchain and IoT Integration: A Systematic Survey. Sensors, 2018.

18: p. 2575.

https://metzdowd.com/

78

23. Ali, M.S., et al., Applications of Blockchains in the Internet of Things: A Comprehensive

Survey. IEEE Communications Surveys & Tutorials, 2019. 21: p. 1676-1717.

24. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. in

CRYPTO. 1987.

25. Wood, D.D. ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER. 2014.

26. Jaquet-Chiffelle, D.-O., E. Casey, and J. Bourquenoud, Tamperproof timestamped

provenance ledger using blockchain technology. Forensic Science International: Digital

Investigation, 2020. 33: p. 300977.

27. Biryukov, A., D. Khovratovich, and I. Pustogarov, Deanonymisation of Clients in Bitcoin

P2P Network, in Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security. 2014, Association for Computing Machinery: Scottsdale,

Arizona, USA. p. 15–29.

28. Lantz, L.C.D.S.a.O.R.M.C., Mastering Blockchain. 2020.

29. He, Y., et al., A Blockchain Based Truthful Incentive Mechanism for Distributed P2P

Applications. IEEE Access, 2018. PP: p. 1-1.

30. Lauslahti, K., J. Mattila, and T. Seppälä, Smart Contracts – How will Blockchain

Technology Affect Contractual Practices? 2017.

31. Omohundro, S., Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters,

2014. 1: p. 19-21.

32. Luu, L., et al., Making Smart Contracts Smarter. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, 2016.

33. Solat, S., P. Calvez, and F. Naït-Abdesselam, Permissioned vs. Permissionless Blockchain:

How and Why There Is Only One Right Choice. Journal of Software, 2020. 16: p. 95-106.

34. Hassan, M.U., M.H. Rehmani, and J. Chen, Privacy preservation in blockchain based IoT

systems: Integration issues, prospects, challenges, and future research directions. Future

Generation Computer Systems, 2019. 97: p. 512-529.

35. Tschorsch, F. and B. Scheuermann, Bitcoin and Beyond: A Technical Survey on

Decentralized Digital Currencies. IEEE Communications Surveys & Tutorials, 2016. 18:

p. 2084-2123.

36. Dinh, T.T.A., et al., Untangling Blockchain: A Data Processing View of Blockchain

Systems. IEEE Transactions on Knowledge and Data Engineering, 2018. 30(7): p. 1366-

1385.

37. Kus Khalilov, M.C. and A. Levi, A Survey on Anonymity and Privacy in Bitcoin-Like

Digital Cash Systems. IEEE Communications Surveys & Tutorials, 2018. 20: p. 2543-

2585.

38. Li, Y., L. Qiao, and Z. Lv, An optimized byzantine fault tolerance algorithm for consortium

blockchain. Peer-to-Peer Networking and Applications, 2021. 14(5): p. 2826-2839.

39. Androulaki, E., et al., Hyperledger fabric: a distributed operating system for permissioned

blockchains. Proceedings of the Thirteenth EuroSys Conference, 2018.

40. Liu, Y., et al., Effective Scaling of Blockchain Beyond Consensus Innovations and Moore’s

Law: Challenges and Opportunities. IEEE Systems Journal, 2022. 16: p. 1424-1435.

41. Takefuji, Y., Consensus algorithms in blockchain must be cared for achieving the robust

system. 2020.

42. Nguyen, G.-T. and K. Kim, A Survey about Consensus Algorithms Used in Blockchain. J.

Inf. Process. Syst., 2018. 14: p. 101-128.

79

43. Tran, T.H., P. Hoai Luan, and Y. Nakashima, A High-Performance Multimem SHA-256

Accelerator for Society 5.0. IEEE Access, 2021. PP: p. 1-1.

44. Zheng, Z., et al., Blockchain challenges and opportunities: A survey. International Journal

of Web and Grid Services, 2018. 14: p. 352.

45. Malone, D. and K.J. O'Dwyer, Bitcoin Mining and its Energy Footprint. 2014. 280-285.

46. Zheng, Z., et al., An Overview of Blockchain Technology: Architecture, Consensus, and

Future Trends. 2017 IEEE International Congress on Big Data (BigData Congress), 2017:

p. 557-564.

47. John, K., M. O’Hara, and F. Saleh, Bitcoin and beyond. Annual Review of Financial

Economics, 2021. 14.

48. Kabla, A.H.H., et al., Applicability of Intrusion Detection System on Ethereum Attacks: A

Comprehensive Review. IEEE Access, 2022.

49. Nathan, S., T. Parth, and B. Vishwanathan, Performance Benchmarking and Optimizing

Hyperledger Fabric Blockchain Platform. 2018.

50. Makhdoom, I., et al., Blockchain's adoption in IoT: The challenges, and a way forward.

Journal of Network and Computer Applications, 2019. 125: p. 251-279.

51. Castro, M. and B. Liskov, Practical Byzantine fault tolerance, in Proceedings of the third

symposium on Operating systems design and implementation. 1999, USENIX Association:

New Orleans, Louisiana, USA. p. 173–186.

52. Mazières, D. The Stellar Consensus Protocol: A Federated Model for Internet-level

Consensus. 2015.

53. Ismailisufi, A., et al. A private blockchain implementation using multichain open source

platform. in 2020 24th International Conference on Information Technology (IT). 2020.

IEEE.

54. Samaniego, M. and R. Deters, Internet of Smart Things - IoST: Using Blockchain and

CLIPS to Make Things Autonomous. 2017 IEEE International Conference on Cognitive

Computing (ICCC), 2017: p. 9-16.

55. Gervais, A., et al., On the Security and Performance of Proof of Work Blockchains, in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security. 2016, Association for Computing Machinery: Vienna, Austria. p. 3–16.

56. Nayak, K., et al., Stubborn Mining: Generalizing Selfish Mining and Combining with an

Eclipse Attack. 2016 IEEE European Symposium on Security and Privacy (EuroS&P),

2016: p. 305-320.

57. Vashchuk, O. and R. Shuwar, Pros and cons of consensus algorithm proof of stake.

Difference in the network safety in proof of work and proof of stake. Electronics and

Information Technologies, 2018. 9(9): p. 106-112.

58. Vashchuk, O. and R. Shuwar, Pros and cons of consensus algorithm proof of stake.

Difference in the network safety in proof of work and proof of stake. Electronics and

Information Technologies, 2018. 9.

59. Zheng, Z., et al. An overview of blockchain technology: Architecture, consensus, and future

trends. in 2017 IEEE international congress on big data (BigData congress). 2017. Ieee.

60. Alsunaidi, S.J. and F.A. Alhaidari, A Survey of Consensus Algorithms for Blockchain

Technology. 2019 International Conference on Computer and Information Sciences

(ICCIS), 2019: p. 1-6.

