
POLITECNICO DI MILANO
DEPARTMENT OF MATHEMATICS

DOCTORAL PROGRAMME IN MATHEMATICAL MODELS AND METHODS IN ENGINEERING

ANALYSIS OF SOME FLUID-STRUCTURE INTERACTION

PROBLEMS IN CHANNELS

Doctoral Dissertation of:
Clara Patriarca

Supervisor:
Prof. Filippo Gazzola

Tutor:
Prof. Simona Perotto

The Chair of the Doctoral Program:
Prof. Michele Correggi

2022 – Cycle XXXV





Acknowledgements

I started my PhD with quite a little awareness of what Mathematics and its rules were. Although
gaining some more consciousness of its extreme beauty, I certainly can not say that today I can
embrace what it really is. Though, I can undoubtedly say that "it gives me fire in the belly", so
as to cite my mother in an old discussion. If this path gave me the privilege that some of the
infinite entangled shapes of Mathematics, yet surely in a small part, unveiled to me, the merit
goes to all people that taught me and shared with me their enthusiasm for this discipline.

First of all, I would like to thank my supervisor, Professor Filippo Gazzola, for giving me
his trust from the very beginning and constantly during these three years. His continuous
dedication to my learning and growth in the academic world has manifested not only in pre-
cious guidance through many crucial choices, but most importantly in always addressing me to
greatly stimulating and diverse problems. I sincerely admire his devotion, expertise, and deep
creativity as a mathematician.

From the Department of Mathematics of Politecnico di Milano, I express my gratitude to
all the teachers and colleagues for being able to create an incessantly inspiring work environ-
ment. In particular, I thank Professor Vittorino Pata, with whom I had the chance to directly
collaborate, for leading me in the theory of semigroups through his sharp intuitions. I also thank
all the new friends that I was lucky enough to meet during these three years, daily spending time
together in the corridors of "La Nave".

From the Department of Mechanical Engineering, I thank Professors Daniele Rocchi, Tom-
maso Argentini, Paolo Schito and PhD student Filippo Calamelli for contributing with their
expertise to our shared project.

I want to thank Professor Denis Bonheure for his great generosity in welcoming me to the
Department of Mathematics of Université Libre de Bruxelles as if I was always part of it, and for
his direction in our common ongoing work. My sincere acknowledgments are also directed to
Professor Matthieu Hillairet for constantly and actively sharing with us his brilliant comprehen-
sion of fluid-structure interaction problems. My gratitude goes as well to my scientific "great
brother" Gianmarco Sperone, for all the time that we spend together working (and laughing).
My grateful and affectionate thought goes in general to all people who were close to me at the

I



Department in Bruxelles.
Finally, today but always, I thank my family and all the people that deeply matter to me,

for wonderfully filling my life with their loving presence and most importantly for being an
example to me, with their care, curiosity, brightness, and loyalty. I am so very lucky to have
you all.

Clara Patriarca

Milano, October 2022

II



Abstract

This thesis is concerned with the analysis of some fluid-structure interaction problems in chan-
nels. The physical motivations mostly stem from the phenomenon of wind interacting with
suspension bridges. In particular, our attention focuses on the instabilities which might affect
the deck, which is the most sensitive part of the structure. Beside inducing on the deck some
static effects, such as lift and drag forces, the wind generates dynamical instabilities, among
which we count vortex-induced vibrations, buffeting, one-degree of freedom instability and flut-
ter. This type of instabilities occurs in general during the interaction between a fluid and a
structure, whenever the fluid’s dynamic loading excites the natural modes of the structure.

While the motivations come from physics, the nature of our analysis is essentially theoretical.
Starting from some models apt to describe the desired phenomena, we investigate their purely
analytical properties.

First, we establish some existence and uniqueness results. Beside serving as a preliminary
step, these results are interesting per se, since we treat the case of fluid-structure problems with
non-homogeneous boundary conditions, still partially unexplored in the existing literature, both
in a stationary framework and in a full evolutionary fluid-structure interaction framework. In
particular, in the static case we study the connection between the multiplicity of solutions gen-
erating under large enough data and the apperance of forces acting on the fixed obstacle. In the
dynamic case, we adapt some existing techniques for well-posedness to the non-homogeneous
case, also dealing with the issue of collisions.

Then, we dig into the longterm dynamics of fluid-structure interaction problems. In this way,
we directly approach through a theoretical strategy fluid-structure instabilities. In this context,
we will use notions from the theory of infinite-dimensional dynamical systems, like the one of
global attractor, showing how it can be extended to the field of fluid-structure interaction. The
purely theoretical description of the long time behaviour is partially combined with a numerical
investigation, aiming at enriching the picture.
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CHAPTER1
Introduction

Naturally arising from the description of any physical phenomenon implying the reciprocal
action between a fluid and a solid, fluid-structure interaction (FSI) as a purely mathematical
research field already exhibits remarkable difficulties. The very setup required for the study of
this kind of phenomenon is complex from the beginning. If FSI problems have been widely
studied from the numerical and experimental point of view (see, for instance, [46, 102] and the
literature therein), their rigorous mathematical analysis is quite a recent subject and only in the
last decades ad hoc techniques have been made available to the mathematical community.

Rather than considering a fluid-body system at equilibrium, whose description began with
Archimedes’ principle, we are concerned with the evolution of a viscous fluid interacting with a
structure that is free to move, which results into a coupled problem. Independently of the nature
of the fluid and of the structure, which might be respectively compressible or incompressibile
and rigid or elastic, the coupling between the two media expresses in three aspects. First,
a kinematic condition imposes the fluid velocity to match with the structure velocity at the
interface. The second transmission condition appears in the equation governing the motion of
the body, translating the action-reaction principle. Finally, in the most interesting cases where
the displacements of the structure are not negligible, the fluid domain depends on time through
the solution itself, which makes the variation of the domain part of the unknowns.

In this thesis, we will be concerned with a Newtonian, viscous, incompressible fluid gov-
erned by the Navier-Stokes equations interacting with a rigid body. We are interested in aero-
dynamics modelling. In particular, the physical motivations mostly lie in the phenomenon of
wind interacting with suspension bridges. We will consider problems which are set on channels,
thus representing either wind tunnels or the atmospheric boundary layer surrounding the bridge.
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Chapter 1. Introduction

Since we will discuss ideal models, we could interpret them in the light of other physical frame-
works. In this introduction we focus on the mathematical overview of the problem, leaving
the precise presentation of the physics behind the considered models in the next chapters. The
wind blowing on a bridge gives rise to a miscellaneous lump of effects, producing both static
and dynamics actions.

The introduction has a double purpose. First, we retrace to the best of our knowledge a brief
state of the art of the mathematical study of the motion of a rigid solid inside a viscous fluid,
concerning well-posedness and long time behaviour. Specifically, we highlight which are the
difficulties as well as the open problems concerning both aspects. Then, we present the structure
of the thesis, focusing on our contributions to the subject.

1.1 State of the art

Well-posedness Concerning well-posedness, standard methods ( [57, 134]) are not of direct ap-
plication due to the fluid domain depending on time. Thus, all efforts are devoted to conceiveing
either new techniques or different ways to apply standard techniques.

A germinal paper is the one by D. Serre [124], which followed a previous work by H. Wein-
berger [137], where the author proves existence for the falling rigid body problem inside a
viscous incompressible fluid occupying R3 (see also [61]). The author invokes a simple change
of coordinates, by considering a reference frame attached to the obstacle so that the fluid domain
consequently loses its dependence on time.

However, it is only after 2000 that we witness a breakthrough in the development of the the-
oretical results concerning fluid-structure problems. In [31], Conca, San Martin and Tucksnak
adopt the same change of coordinates used in [124] to prove existence of weak solutions for
a problem describing the interaction of a spherical body with a viscous incompressible fluid
inside a bounded domain of R3, but, since dealing with a bounded domain, the change of refer-
ence frame is combined with a penalty method, first devised by Fujita and Sauer [56] to solve
the Navier-Stokes equations inside a domain moving with a prescribed law. Besides that given
in [31], several definitions of weak solutions have been adopted, as well as several techniques
to find such solutions. The methods introduced in [41, 42, 81, 87] are all based on approxi-
mating procedures. In [41, 42] the authors build a sequence of suitable regularized problems,
while in [87] they approximate the solid bodies by very viscous fluids. Finally, the solutions
in [81] are approximated by time discretized problems. We emphasize that all of these results
have been shown under the hypothesis that no-collision occurs between the obstacle and the
boundary of the fluid domain.

Moving to the framework of strong solutions, a pioneering result can be found in [79]. The
strategy, anticipated in [78], consists in several steps and allows to prove existence and unique-
ness, still assuming the absence of collisions. After rewriting the fluid equations in Lagrangian
coordinates, the authors prove, through the contraction mapping principle, the existence of a
solution for a given velocity of the obstacle and small enough time. This gives rise to a new
velocity at the interface, which generates a second fixed point argument allowing to recouple
the problem. A fixed point argument is also used in [130] to obtain existence and uniqueness of
strong solutions for a fluid-rigid body system in a bounded domain. Here, the author adopts a
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1.1. State of the art

change of variables inspired by [93], by which he is able to set the equations on a fixed domain.
Solutions are global-in-time provided that the rigid body does not touch the boundary of the
channel. For what concerns strong solutions, we also mention the results in [34,62,131], where
the fluid is assumed to fill the whole space. Finally, the no-slip case is treated in [5].

Collisions are a delicate issue in the context of FSI problems, especially because different
phenomena occur in the context of strong or weak solutions. The above considerations suggest
that collisions are strictly related to well-posedness in the context of FSI problems, affecting
the possibility to obtain solutions with a global-in-time character. Within the realm of weak
solutions, no general results are available on whether collisions do occur in finite time or not.
However, as shown in [119], weak solutions exist globally even if collisions occur in finite
time, because they are characterized by vanishing relative velocity and acceleration; this result
holds under regularity hypothesis on the boundary of the body and on the fluid domain (see also
[128]). In some particular 2D cases, where the contact surfaces are regular enough, collisions
are outright excluded, as it was indipendently shown in [83] and [84] (see also [128]). The
method suggested in [84] is based on the construction of a particular test function depending
on the inverse of the distance between the contact surfaces, which is multiplied by the fluid
equations. Suitable estimates are then obtained to some bounds in terms of the inverse of the
distance, which prevent collisions. An extension of [84] to the 3D case was given in [85].
However, this no-collision result appears physically unrealistic both at the macroscopic and
microscopic scales, as pointed out in [72, 73] where it is suggested that the flaw lies in the
modelling. Among the most common explanations to the paradox we find roughness, which
should be included to recover the occurrence of collisions, and the no-slip condition, which is
no longer valid when the interactions between the solids are of the order of micro- or nanoscale
(see [88]). Consequently, in order to let the fluid slip on the boundary of the solids, in literature
different boundary conditions have been explored, such as the Navier slip boundary conditions
(see [25, 74, 75, 109, 136]) or, very recently, the Tresca boundary conditions (see [86]). While
the Navier conditions render the effect of the fluid slipping whatever the size of the shear on the
boundaries might be, the Tresca conditions impose the fluid to stick to the solid interface until
a shear-rate threshold is reached after which purely Navier conditions appear.

Besides deciding on their global-in-time character, collisions also influence uniqueness of
solutions. Again, we need to distinguish between weak and strong solutions. Starovoitov [129]
was able to construct at least two weak solutions admitting collision in finite time; for the first
solution the body goes away from the boundary after the collision, while in the second solution
the body and the boundary remain in contact. Hence, in order to guarantee uniqueness of weak
solutions, one needs to exclude collisions. In particular, while uniqueness of strong solutions
is a known fact both in two and three-dimensions, and both for no-slip case and the slip case
(see [5, 34, 79, 130]), in [76] the authors proved a uniqueness result for weak solutions for a
two-dimensional fluid-rigid body system, and in [19] the author proved it for the slip case. In
both papers, the strategy is based on the application of a suitable change of variables allowing
to compare two different solutions, which a priori would be defined on different domains due
to the time-dependency of the fluid domain.

Although many aspects concerning well-posedness have been investigated in the existing
literature, it is important to mention that these results have been obtained under the assumption
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Chapter 1. Introduction

of homogenous boundary conditions at the boundary of the domain occupied by the fluid and
the body. In all of the existing cases, the motion of fluid is driven by initial conditions and/or
external forces. Although adding further difficulties, assuming that the motion is driven by
boundary conditions is more physical. Moreover, it fits for the purpose to represent phenomena
concerning the action of the wind over bridges. Indeed, already in the case of a stationary fluid
impinging a fixed obstacle, one can study the static effect exerted by the average wind to the
structure; provided that the non-homogeneous boundary conditions driving the flow as well as
the domain satisfy some symmetry assumptions (see [54, 55, 98, 108]), in [68] the authors were
able to prove in fact that the appearance of a lift force acting on the obstacle is connected to the
non-uniqueness of solutions to the corresponding stationary problem.

The general procedure to deal with non-homogeneous boundary conditions implies lifting
them by building a solenoidal extension, which is nothing but a divergence-free function car-
rying along the whole domain the flux imposed by the boundary conditions. After subtracting
this extension to the original solution of the problem, one is led to cope with an homogenous
problem, where the effect of the boundary conditions appears in some extra terms. In order to
let this function effectively act as a flux-carrier, it is fundamental to guarantee that there exists
a separation strip between the rigid body and the boundary of the surrounding domain, whose
width enters in the construction of the solenoidal extension. This is always guaranteed if the
obstacle is fixed, but as soon as the obstacle is free to move as in the case of a full FSI problem,
one needs to prove a no-collision result. However, the solenoidal extension itself appears in the
estimates needed to infer a control on the distance between the contact surfaces, generating a
"looping" problem.

Long time behaviour The natural step after exploring well-posedness is to look at the long time
behaviour of the fluid-body system. Concerning this topic, several questions can be addressed,
belonging to different ways to understand the problem, all borrowed from the theory of dynam-
ical systems. Here, we are interested in three main aspects.

Preliminarily, continuous dependence on the initial data must be established. It is well-
known that, by considering the same initial-value problem, this result also yields uniqueness. If
in the theory of the Navier-Stokes equations in domains with fixed boundaries continuous de-
pendence on the initial data is a standard result (see for instance [100]), in the case of variable
domains, as for FSI systems, the problem is by far non-trivial, since the two solutions are de-
fined in different domains and an energy identity of perturbations cannot be obtained by taking
the difference between the two weak formulations. This issue is explored in [80] (which pre-
ceeds [76], where a result of uniqueness of weak solutions for a fluid-body system is obtained).
In this paper, the authors prove a result of continuous dependence on the initial data for a FSI
problem, where the structure is supposed to be a viscoelastic thin body, having in mind cardio-
vascular applications. The method consists in applying a suitable coordinate transformations so
as to write both solutions in the same time-dependent domain, thus preserving the problem in
Eulerian coordinates.

A significant information on the asymptotic behaviour of the fluid-structure system can be
gained by establishing whether the rigid body stabilizes around some position in the domain
or not. The issue is well understood in the classical theory of the Navier-Stokes equations (see
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1.2. Structure of the thesis

for instance [114]), but not many results are available for a moving body inside a Navier-Stokes
fluid. It is worth mentioning the result by Fereisl and Nečasová [49], where the authors consider
the simplest situation of a rigid ball in a viscous fluid occupying a two-dimensional bounded
domain. Introducing the effect of gravity, it is shown that the rigid body approaches in the
asymptotic regime a static state corresponding to the contact with the bottom boundary of the
container. When the fluid fills the whole plane R2, a result has been obtained in [47], where the
authors obtain some time-decay estimates for the solutions to a Navier-Stokes fluid-rigid disk
system which suggest that the trajectory of the mass centre of the ball is possibly unbounded in
the long term. The same problem is studied in R3 in [48], where it is proven that the rigid body
eventually stabilizes around some position at infinite times.

In order to fully reinterpret the problem in the spirit of dynamical systems theory, so as to
draw notions from a further branch of mathematics and characterize the system to a greater
extent, one might view the solution to the fluid-body system as a trajectory in an appropriate
phace space. Well-posedness immediately proves the existence of a map yielding from all initial
data the solution at any positive time. One then usually investigates the existence of small (in
a suitable sense) subsets of the phase space able to confine the longterm dynamics, namely to
substantially reduce the degrees of freedom of the system. To this end, the most effective tool
in the theory of infinite-dimensional dynamical systems is the notion of global attractor, which
is a compact subset of the phase space to which all the solutions to the problem eventually
approach. But since in this context the fluid domain and the phase space for the solutions are
time-dependent, the very definition of such an object introduces a major difficulty: there is no
way to describe the solutions in terms of a semigroup, and not even in terms of a process [27].

For this reason, the existence of a global attractor for the whole fluid-structure-interaction
problem with a time-dependent fluid domain has not been treated in literature, and, to the best
of our knowledge, only partial results are known. On the one hand, a part of the literature is
devoted to the study of the longtime behaviour of fluid-plate interaction models, see, e.g., [28–
30] with a fixed fluid domain. On the other hand, the longterm dynamics of the Navier-Stokes
equations set on time-varying domains has been studied only when the motion of the domain
is prescribed and sufficiently smooth, see [126]; this allows to reformulate the problem on a
fixed domain by a coordinate transformations and to apply the techniques for non-autonomous
systems, see [22, 23, 95, 106].

1.2 Structure of the thesis

The thesis is organized as follows.
In Chapter 2 we present the general characteristics of the FSI models later considered in

Chapter 4-5-6. The first model is a modification of the one introduced in [15], while the second
model is a natural extension of the first one, considered in [16].

In Chapter 3, we study the static effects that the wind produces when interacting with sus-
pension bridges. We consider the behaviour of a fluid governed by the steady Navier-Stokes
equations impinging a fixed obstacle in a three-dimensional bounded domain, assuming that at
the boundary the flow is of Poiseuille type. This problem is not to be considered a FSI problem
in the sense given above. Nonetheless, this configuration allows to predict the appearance of
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Chapter 1. Introduction

a lift force acting on the obstacle. Indeed, in a symmetric configuration, it can be proven that
the occurrence of lift forces is a consequence of non-uniqueness of solutions to the considered
steady problem: obtaining an explicit threshold on the incoming flow ensuring uniqueness gives
the threshold for the appearance of lift. This requires building an explicit solenoidal extension
of the prescribed Poiseuille flow and bounding some embedding and cutoff constants. The
chapter is based on [66].

In Chapter 4, we proceed to the description of the dynamic effects induced by the wind
on suspension bridges, focusing on the flutter phenomenon. We consider a FSI problem for a
Poiseuille flow through a bounded two-dimensional channel containing a rectangular rigid body,
which is only free to move in the vertical direction. As explained in Section 4.1 this model is
suitable to represent the first stage of the flutter phenomenon as in a wind tunnel experiment.
We deal for the first time with the treatment of non-homogeneous boundary conditions in the
context of FSI problems, and we prove the existence and uniqueness of a global-in-time weak
solution, ensuring the absence of collisions by introducing a restoring force in the equation
governing the motion of the body. The chapter is based on [111].

In Chapter 5, the critical stage of the flutter phenomenon is studied, by extending the FSI
model analyzed in Chapter 4 to an unbounded two-dimensional channel. We consider the full
coupled vertical-torsional motion of the body and we prove a global-in-time existence result for
weak solutions, up to collision. The problem is treated by introducing a new technique based
on a double-approximating procedure, which requires building a sequence of strong solutions
for a penalized problem. The chapter is based on [16].

Chapter 6 is concerned with the longterm dynamics of the FSI problem considered in Chap-
ter 4. In this way, we study in mathematical terms the practical problem of which permanent
state will be observed after a transient period in a wind tunnel experiment, where an air flow
interacts with the deck of a bridge. As previously mentioned in Section 1.1, the fluid domain
being part of the unknowns prevents from borrowing notions from the classical theory of semi-
groups and processes. The main contribution of the chapter is in fact the extension of the notion
of global attractor to the setting of FSI problems, and the proof of its existence and regularity.
Furthermore, when the prescribed inflow is sufficiently small, we are able to prove that the so-
lution to the FSI evolution system converges to the unique stationary solution, corresponding
to a perfectly symmetric configuration. This gives an explicit characterization of the attractor
in a particular case. To complete the study, we intervene through numerical simulations giving
a qualitative description of the attractor for any intensity of the incoming flow. The chapter is
based on [65, 112].

In Chapter 7, we draw the concluding remarks and provide some future perspectives to our
study.

6



CHAPTER2
The Fluid-Structure Interaction models

In this chapter, we collect the main features of the two fluid-structure interaction models studied
in Chapters 4-5-6, to avoid repetitions in the sequel. Here, we only present general character-
istics of the models to be considered later. Chapters 4 and 6 deal with the same model. Any
specific hypothesis, depending on the goal of the study to be tackled in a given chapter, will be
detailed in this one.

In both models, we consider a fluid-structure interaction problem for a Poiseuille flow through
a 2D channel containing an obstacle, but in the first model the channel is bounded while in the
second one it is unbounded. The obstacle is a rigid body and it is free to interact driven by the
action of the fluid flow, smooth elastic restoring forces and viscous damping forces.

We denote by B a general rigid body immersed in a channel. According to the chapter, B
can be either a rectangular or an elliptical rigid body, and the channel can be either unbounded
or bounded. In particular, let δ < 1 and L≫ δ, I ≫ L. In Chapter 4-6, we have that

B =

{
(x1, x2) ∈ R2

∣∣∣∣∣ |x1| ≤ d ∧ |x2| ≤ δ

}
has a rectangular geometry and it is immersed in

R = (−I, I)× (−L,L), (2.0.1)

while in Chapter 5

B =

{
(x1, x2) ∈ R2

∣∣∣∣∣ x21d2 +
x22
δ2

≤ 1

}
7



Chapter 2. The Fluid-Structure Interaction models

has an elliptical geometry and it is immersed in

A = R× (−L,L) . (2.0.2)

The reasons for these choices will be precised in each of the aforementioned chapter. Without
loss of generality, we always take d = 1 so that d is the reference length unit. We denote
by ΓR = ∂R the boundary of the channel R in (2.0.1). The upper and lower boundaries of
the channel A in (2.0.2) are instead given by ΓA = R × {−L,L}. The parameters h and θ
respectively denote the vertical displacement of the barycenter of the rigid body and its rotation
from the equilibrium line x2 = 0, see Figure 2.1.

Figure 2.1: Above: the unbounded channel with the vertically moving and rotating elliptical obstacle B. Below:
the bounded channel with the vertically moving rectangular obstacle B.

Thus,

Bv = Q(θ)B + h ê2 =

[
cos θ − sin θ

sin θ cos θ

]
B + h ê2 ∀ (h, θ) ∈ Ad,δ (2.0.3)

tracks the position of the body after the vertical translation and rotation. Here, Ad,δ denotes the
set of admissible values for (h, θ), that is

Ad,δ =
{
(h, θ) ∈ R2

∣∣∣ |θ| < π

2
and |h|+ d| sin θ|+ δ cos θ < L

}
, (2.0.4)

which excludes the possibility of collisions between the obstacle and the boundaries of the
channel. Whenever Q(θ) ≡ I, being I the 2 × 2-identity matrix, the obstacle is only free to
move in the vertical direction and

Bv = Bh = B + h ê2 ∀ |h| < L− δ.

8



Due to the motion of the rigid body, the domain occupied by the fluid is variable in time and is
given by

Ωv(t) = A \Bv(t) , where h = h(t) and θ = θ(t) in (2.0.3) are functions of time.

Accordingly, when Bv = Bh, then we will write

Ωv(t) = Ωh(t) = R \Bh(t), (2.0.5)

see Figure 2.1. For simplicity, in the sequel we will sometimes omit emphasizing the depen-
dence on t ∈ (0, T ) and, with an abuse of notation, we will denote through a Cartesian product
the non-cylindrical space-time domain given by

Ωv × (0, T ) = {(x, t) ∈ R2 × R+ |x ∈ Ωv(t) , t ∈ (0, T )}.
The same notation is used when Ωv = Ωh.

Let us denote by vP a stationary Poiseuille flow on the channels with a prescribed pressure
drop p0 > 0, characterized by the function v0 = v0(x2) that solvesv

′′
0(x2) = −p0

µ
∀x2 ∈ (−L,L) ,

v0(−L) = v0(L) = 0 ,

so that
vP (x2) = v0(x2)ê1 = λ(L2 − x22)ê1 ∀x2 ∈ [−L,L] , (2.0.6)

with
λ =

p0
2µ

regulating the intensity of the flow. We notice that vP and the associated pressure πP (x1, x2) =
−p0 x1, for every (x1, x2) ∈ A and every (x1, x2) ∈ R satisfy the steady-state Navier-Stokes
equations

−µ∆vP + (vP · ∇)vP +∇πP = 0 , ∇ · vP = 0

since (vP · ∇)vP ≡ 0 both in A and R.
Let m > 0 and I > 0 respectively be the mass of the body B and its moment of inertia.

Moreover, we denote by β1 > 0 and β2 > 0 the damping coefficients associated to the viscous
forces acting in the vertical and angular directions. We suppose, without loss of generality, that
the density of the fluid is ρ = 1.

If the obstacle is only allowed to move in the vertical direction in the bounded channel R,
and if at the inlet and outlet section of the channel the velocity field reproduces the stationary
Poiseuille flow vP , we are lead to consider the first fluid-structure interaction evolution problem
on the time-interval, which will be extensively studied in Chapter 4-6:

ut = µ∆u− (u · ∇)u−∇p, ∇ · u = 0 in Ωh × (0, T ) ,

u = vP (x2) on ΓR × (0, T ) ,

u = h′ ê2 on ∂Bh × (0, T ) ,

mh′′ + f(h) = −ê2 ·
∫
∂Bh

T (u, p)n̂ dσ in (0, T ) ,

(2.0.7)

9



Chapter 2. The Fluid-Structure Interaction models

to which we associate the initial conditions

h(0) = h0, h′(0) = k0, u(x, 0) = u0(x) in Ωh0 = Ωh(0) ,

for some h0, k0 ∈ R. Here u : Ωh × (0, T ) −→ R2 and p : Ωh × (0, T ) −→ R are, respectively,
the velocity vector field and the scalar pressure, while n̂ denotes the outward normal to ∂Ωh,
thus directed towards the interior of ∂Bh. By compatibility, the initial data is supposed to satisfy
the conditions 

div(u0) = 0 in Ωh0 ,

u0 = vP (x2) on ΓR × (0, T ) ,

u0 = k0 ê2 on ∂Bh0 × (0, T ),

(2.0.8)

where Bh0 = Bh(0). The motion of the body is governed by the ordinary differential equation
in (2.0.7)4, where f : R −→ R is an elastic restoring force, and T (u, p) is the strain tensor of
the fluid flow. More precisely,

T (u, p) = −pI+ 2µD(u) with D(u) =
∇u+∇⊤u

2
,

being I the 2× 2-identity matrix, so that the right-hand sides of the ODE (2.0.7)4 expresses the
lift force exerted by the fluid on the body (see [68]). Further assumptions on f are collected in
the paragraph below.

In the second problem, which will be studied in Chapter 5, we extend the previous model
by assuming that B is also free to rotate around a pin located at its center of mass, inside
the unbounded channel A. Moreover, some viscous damping forces describing the dissipation
mechanism of the structure are also considered. At infinity, the velocity field of the fluid repro-
duces the prescribed Poiseuille flow. The fluid-structure interaction evolution problem on the
time interval is then described by:

ut = µ∆u− (u · ∇)u−∇p, ∇ · u = 0 in Ωv × (0, T ) ,

lim
|x1|→∞

u(x1, x2, t) = vP (x2) ∀x2 ∈ [−L,L] , t ∈ [0, T ] , u = 0 on Γ× (0, T ) ,

u = h′ ê2 + θ′(x− hê2)
⊥ on ∂Bv × (0, T ) ,

mh′′ + β1 h
′ + F1(h, θ) = −ê2 ·

∫
∂Bv

T (u, p)n̂ dσ in (0, T ) ,

J θ′′ + β2 θ
′ + F2(h, θ) = −

∫
∂Bv

(x− hê2)
⊥ · T (u, p)n̂ dσ in (0, T ) .

(2.0.9)
to which we associate the initial conditions

h(0) = 0, h′(0) = h0, θ(0) = 0, θ′(0) = θ0, u(x, 0) = u0(x) in Ω0 = Ωv(0) ,
(2.0.10)

for some h0, θ0 ∈ R. Notice that, for the sake of simplicity, we took the initial position h(0)
and rotation θ(0) of the obstacle equal to zero, but all the computations on the model can be
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easily generalized to a different case. Again, u : Ωv× (0, T ) −→ R2 and p : Ωv× (0, T ) −→ R
are, respectively, the velocity vector field and the scalar pressure, while n̂ denotes the outward
normal to ∂Ωv, thus directed towards the interior of ∂Bv. Again, by compatibility, the initial
data satisfies

div(u0) = 0 in Ω0 ,

lim
|x1|→∞

u0(x1, x2) = vP (x2) ∀x2 ∈ [−L,L] , u0 = 0 on ΓA × (0, T ) ,

u0 = h0 ê2 + θ0x
⊥ on ∂B0 × (0, T ),

(2.0.11)

where B0 = Bv(0) = B. The motion of the body is in this case governed by the ordinary
differential equations in (2.0.9)4-(2.0.9)5, where the right-hand sides express, respectively, the
lift force and the torque exerted by the fluid on the body. The forces F1, F2 : R2 −→ R in the
ODEs (2.0.9)4-(2.0.9)5 represent smooth elastic restoring forces, which are better characterized
in the following paragraph.

Assumptions on the restoring forces The motion of the body in problem (2.0.7) is governed by
(2.0.7)4, where we assume that

f ∈ C1(−L+δ, L−δ;R) is s.t. f(0) = 0 and f ′(h) > 0 ∀h ∈ (−L+δ, L−δ). (2.0.12)

Thus, we can think about f as the derivative of some (positive) potential F ∈ C2(−L + δ, L−
δ;R+) given by

F (h) =

∫ h

0

f(s) ds. (2.0.13)

From (2.0.12), it follows that f(h)h > 0 for all h ̸= 0 and that there exists ρ such that f ′(h) >
ρ > 0 for all h. Hence, given (2.0.13), we obtain

f(h)h ≥ F (h) ≥ ρ

2
h2. (2.0.14)

In problem (2.0.9), the body can also rotate, thus its motion is driven by the action of two
elastic restoring forces in (2.0.9)4-(2.0.9)5. In particular, the restoring force F1 and F2 might
be thought as a generalization to the extended model in (2.0.9) of the force f . We can think
about these forces as the derivatives, with respect to the first variable and the second variable
accordingly, of some (positive) potential F ∈ C2(Ad,δ;R+). In particular, we assume that

∂F

∂h
(0, θ) =

∂F

∂θ
(h, 0) = 0 ,

∂2F

∂h2
(0, 0) > 0 ,

∂2F

∂θ2
(0, 0) > 0 ,

h
∂F

∂h
(h, θ) > 0 if h ̸= 0 , θ

∂F

∂θ
(h, θ) > 0 if θ ̸= 0.

(2.0.15)

We can take F (0, 0) = 0 and, from (2.0.15), we obtain that the mixed second derivatives vanish
when h = θ = 0 , thus

F (h, θ) =
∂2F

∂h2
(0, 0)

h2

2
+
∂2F

∂θ2
(0, 0)

θ2

2
+ o(∥(h, θ)∥2) as (h, θ) −→ (0, 0).
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CHAPTER3
An explicit threshold for the appearance of lift on the

deck of a bridge

In the present chapter, we set up the analytical framework for studying the threshold for the
appearance of a lift force exerted by a viscous steady fluid (the wind) on the deck of a bridge.
We model this interaction as in a wind tunnel experiment, where at the inlet and outlet sections
the velocity field of the fluid has a Poiseuille flow profile. Since in a symmetric configuration
the appearance of lift forces is a consequence of non-uniqueness of solutions, we compute an
explicit threshold on the incoming flow ensuring uniqueness.

3.1 The model

The lift force is the component of the total force exerted by the fluid over an obstacle which is
perpendicular to the stream, see (e.g.) the Introduction in [2] and an updated state-of-the art
in [68]. Since the airplane flight is based on lift, improving the lift characteristics of aircrafts
is highly desirable. Instead, if the fluid interacts with an obstacle representing a structure in
civil engineering (e.g., a bridge or a skyscraper), the lift is an unpleasant factor of instability
which needs to be avoided. In order to evaluate the lift force exerted on a designed structure,
engineers usually exploit wind tunnel tests. We set up our model in the same context; we
intend to compute an explicit threshold for the appearance of lift on the deck of a scaled bridge.
The experiment is illustrated in Figure 3.1. In the left picture we sketch the wind tunnel with a
bridge within it while the right picture is taken during a wind tunnel experiment at Politecnico di
Milano: the appearance of vortices around the plate (deck) generates a lift due to the asymmetry
of the vortex shedding.

13



Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

Figure 3.1: Left: sketch of a bridge within a wind tunnel. Right: wind tunnel experiment at Politecnico di Milano.

Denoting by Ω the 3D (non simply connected) domain consisting of a right parallelepiped
(the wind tunnel) crossed by the plate, the fluid flow is assumed to be governed by the steady
Navier-Stokes equations

−µ∆u+ (u · ∇)u+∇p = 0 ∇ · u = 0 in Ω, (3.1.1)

where u : Ω → R3 is the unknown velocity vector field, p : Ω → R is the scalar pressure, µ
is the coefficient of kinematic viscosity. We emphasize that we do not consider the action of
any external force, in agreement with the experimental set-up in a wind tunnel where the flow
is driven only by the inflow conditions. These conditions usually reproduce a Poiseuille flow
profile, which we indicate with q, at the inlet and outlet sections. This leads to the following
non-homogeneous boundary conditions, that we associate to (3.1.1),

u = q on ∂T u = 0 on ∂K; (3.1.2)

here ∂T represents the boundary of the parallelepiped (tube) while ∂K represents boundary of
the crossing plate. The velocity profile for the Poiseuille flow through a rectangular section was
first derived by Boussinesq [18] and it correctly reproduces the (imposed) inflow and outflow
conditions in a wind tunnel, if the latter is sufficiently long with respect to the characteristic
length of the bridge (see, e.g. [17, Figure 11]), which justifies assuming the reorganization of
the flow past the obstacle for sufficiently low Reynolds numbers.

Analyzing the well-posedness of (3.1.1)-(3.1.2), in order to obtain explicit bounds for the
uniqueness of its solutions, is the main purpose of the present chapter; see Section 3.2 that
contains the main result of the chapter, Theorem 3.2.2. It turns out that, under symmetry as-
sumptions on both the domain Ω and the boundary conditions (3.1.2), the obstacleK may suffer
the action of a lift force exerted by the fluid only in presence of multiplicity of solutions. In
Section 3.2 we also provide quantitative bounds on the Poiseuille flow for the occurrence of
lift on the deck of some bridge models which were tested in the wind tunnel at Politecnico di
Milano.

The subsequent sections are devoted to the proof of Theorem 3.2.2, which is organized in
several steps. Section 3.3 is devoted to computing the bounds for the quantities that appear in
the estimates needed for uniqueness. We then construct a suitable solenoidal extension of the
Poiseuille flow q, which overcomes the presence of non-homogeneous boundary conditions in
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3.2. Appearance of the lift

the problem and of the obstacle K pulled out from the domain. This enables us to obtain the
sought estimates in Section 3.3.2. Then, in Section 3.3.3 we derive bounds for the Sobolev
constants involved in the problem. Finally, in Section 3.4 we conclude the proof of Theorem
3.2.2: we prove existence and uniqueness for solutions of (3.1.1)-(3.1.2) and give a bound for
uniqueness, which is fully explicit in view of the information derived in the previous sections.
Proposition 3.4.5 aggregates all considerations to give an explicit expression for the bound
which induces the appearance of a lift force over the obstacle.

Nowadays, computers are extremely precise but the importance of having explicit theoretical
bounds remains unchanged. In the case of a suspension bridge subject to the wind, several
different thresholds need to be compared in order to understand which phenomenon first triggers
the instability; besides the appearance of the lift force (as in the present chapter), one is also
interested in thresholds for hangers slackening [67], and in the appearance of the so-called
aerodynamic flutter [3]. The exact (or, at least, the explicit) value of the thresholds in general
problems from mathematical physics is well-explained in the celebrated monograph by Pólya-
Szegö [117], in particular for problems related to the electrostatic capacity, to the torsional
rigidity, and to the principal frequency of a body; several further geometric inequalities are
contained in the monograph. The techniques vary from symmetrization methods to a priori
bounds and functional inequalities. These tools are also used in shape optimization problems
[82] and in equimeasurable rearrangements of real-valued functions [132], both in calculus of
variations and in partial differential equations. And variational problems within PDE’s, such
as the ∞-Laplacian, turn out to be extremely powerful in bounding solenoidal extensions for
non-homogeneous boundary value problems in Navier-Stokes equations [51]. In this chapter we
derive bounds for some Sobolev embedding constants in a non simply connected 3D domain, a
topic that is already quite involved in 2D domains [69]. Moreover, we need a precise bound on
the solenoidal extension which is used to get rid of the non-homogeneous boundary condition.
Bounds for solenoidal extensions are also needed in different areas of mathematical physics: a
whole bunch of inequalities arises both in fluid mechanics and elasticity [13,32,53,90,97], and
they are all linked to each other. Our approach and bounds may also be fruitfully employed for
these problems.

3.2 Appearance of the lift

We consider a steady fluid filling a three-dimensional cylindrical domain T which contains an
obstacle K

T = (−L,L)× ω, ω = (−1, 1)× (−d, d),
K = (−l, l)× (−1, 1)× (−h, h), Ω = T \ K̄.

(3.2.1)

The cross section of the cylinder is ω = (−1, 1) × (−d, d), L is the length of the cylinder and
the obstacle K represents the deck of a bridge (l < L, h < d). The region of the flow is the
domain Ω, see Figure 3.2 for two lateral views of Ω.
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

Figure 3.2: Left: rectangular cross-section ω of the cylinder T . Right: Poiseuille inflow-outflow.

The cylinder T (the space occupied by the wind tunnel) has a rectangular cross-section ω,
see the left picture in Figure 3.2. This is the usual shape of a wind tunnel. The obstacle K has
the section (−l, l)× (−h, h) on the plane x1x3, while the x2-coordinate is confined in (−1, 1).
Note that Ω = T \ K̄ is not simply connected. Around the cross-section of the obstacle we
construct a “technical rectangle” R1 where the cut-off function will be supported.

At the inlet and outlet sections of the cylinder the flow is of Poiseuille-type, namely a uni-
directional flow along the axis of the channel and defined on the rectangular cross-section ω; to
this end, we define the function, for all (x2, x3) ∈ ω,

g(x2, x3) =
[
1− x23

d2
+ 4

∞∑
k=1

(−1)k

α3
k

cosh(αkx2
d

)

cosh(αk

d
)
cos(

αkx3
d

)
]
, (3.2.2)

where αk = (2k − 1)π
2

(k = 1, 2...). In the boundary conditions (3.1.2), q is the profile of a
Poiseuille flow, see the right picture in Figure 3.2. More precisely, we take

q(x) = {v1(x2, x3), 0, 0} with v1(x2, x3) = kp
g

∥∇g∥L2(ω)

(3.2.3)

so that
∥∇q∥L2(ω) = kp ,

see Figure 3.3 for the plot; hence, the magnitude of the inflow is measured by the parameter
kp = − 1

2µ
∂P
∂x1

d2 > 0, the flow itself being driven by a (constant and negative) pressure drop
∂P
∂x1

< 0.

Figure 3.3: Profile of the Poiseuille flow through a rectangular parallelepiped, together with its velocity contours.
The rectangular cross section is (−1, 1) × (−0.5, 0.5), the value of the parameter kp is chosen to be kp ≈
0.84 · 105
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3.2. Appearance of the lift

We consider the space of vector fields vanishing only on the boundary of the obstacle

H1
∗ (Ω) = {v ∈ H1(Ω) |v = 0 on ∂K},

and two functional spaces of solenoidal vector fields

V∗(Ω) = {ϕ ∈ H1
∗ (Ω) | ∇ · ϕ = 0 in Ω},

V (Ω) = {ϕ ∈ H1
0 (Ω) | ∇ · ϕ = 0 in Ω}.

(3.2.4)

Note that if u ∈ V∗(Ω) satisfies (3.1.2), then its trace u|∂Ω is continuous. Then we introduce the
standard trilinear form

ψ (u, v, w) =

∫
Ω

(u · ∇)v · w, (3.2.5)

which is continuous in H1
∗ (Ω) × H1

∗ (Ω) × H1
∗ (Ω), see e.g. [60, Lemma IX.1.1]). These tools

enable us to define weak solutions of (3.1.1)-(3.1.2).

Definition 3.2.1. Let Ω be as in (3.2.1). Given q as in (3.2.3), so that q ∈ W 1,∞(∂T ), a vector
field u : Ω → R3 is called a weak solution to (3.1.1)-(3.1.2) if u ∈ V∗(Ω) satisfies (3.1.2) in the
trace sense and

µ(∇u,∇ϕ)L2(Ω) + ψ(u, u, ϕ) = 0 ∀ϕ ∈ V (Ω). (3.2.6)

Let us now define rigorously what is meant by lift force in this context. The stress tensor of an
incompressible viscous fluid, whose velocity and pressure fields obey to the three-dimensional
Navier-Stokes equations (3.1.1), is expressed through the following 3 × 3 matrix (see [101,
Chapter 2])

T = −pI+ µ[∇u+ (∇u)T ], (3.2.7)

which combines the action of both the pressure p and the shear forces. In (3.2.7), I is the 3× 3
- identity matrix. Hence, according to (3.2.1), the force exerted by the fluid over the obstacle K
is

FK = −
∫
∂K

T · n̂ ds

where n̂ is the outward unit normal to Ω, therefore directed towards the interior of K. But since
we merely deal with weak solutions of (3.1.1)-(3.1.2), we need to weaken this definition and,
as in [68, Definition 3.3], to redefine FK by:

FK = −⟨T · n̂, 1⟩∂K , (3.2.8)

where ⟨·, ·⟩∂K is the duality betweenW− 2
3
, 3
2 (∂K) andW

2
3
,3(∂K). Accordingly, since the inflow

velocity (3.2.3) only has the first component, if k̂ denotes the unit vector along x3, then the lift
force exerted by the fluid on the obstacle K is

LK = FK · k̂. (3.2.9)

We can now state our main result :
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

Theorem 3.2.2. Let Ω be as in (3.2.1) and q as in (3.2.3), so that q ∈ W 1,∞(∂T ). For any
kp > 0, there exists a weak solution (u, p) ∈ V∗(Ω)×L2(Ω) of (3.1.1)-(3.1.2). Moreover, there
exists k̄p = k̄p(µ, L, d, l, h) such that, if

0 < kp < k̄p(µ, L, d, l, h) (3.2.10)

then the weak solution is unique. Hence, in order to observe a lift force over the obstacle, it
must be kp > k̄p.

Theorem 3.2.2 deserves several important comments that explain its possible applications.
The first statement does not come unexpected, existence and uniqueness for a non-homogeneous
problem such as (3.1.1)-(3.1.2) usually hold under smallness assumptions on the data. The main
novelty of Theorem 3.2.2 is the second statement since it allows to explicitly compute a thresh-
old of stability for the obstacle K in terms of the flux at the inlet and outlet sections of the
wind tunnel. This is possible because we are considering a symmetric framework, both for the
domain and the boundary condition. We can give a quantitative form to k̄p, after determin-
ing its dependence on the physical parameters µ, L, d, l, h; the explicit form of k̄p is given in
(3.4.8), (see also Proposition 3.4.5). We emphasize that our purpose is not to determine the
optimal (largest) value of k̄p; instead, we aim to provide an effective method to obtain an ex-
plicit expression for k̄p yielding a quantitative sufficient condition for uniqueness of solutions
of (3.1.1)-(3.1.2).

We now determine some numerical values of k̄p computed through the final formula (3.4.8).
We take real geometrical data from the online database [94] by referring to few experiments
which took place in the wind tunnel (GVPM) at Politecnico di Milano. The coefficient of
kinematic viscosity is chosen to be the one of air µ = 1.5 · 10−5. The first data are taken
from the model of the Izmit bay bridge in Turkey, a 1:30 sectional model. The second data
come from another Turkish bridge: the model of the Third Bosphorus bridge. Finally, we took
data from the model of the Talavera de la Reina Cable-stayed bridge near Toledo, in Spain. All
parameters are made dimensionless with respect to the characteristic length of the problem, half
of the channel’s width, coinciding with half of the obstacle’s length. The results are summarized
in the following table.

bridge model L d l h k̄p × 106

Izmit bay 5 0.555 0.072 0.011 6.242
Third Bosphorus 5 0.555 0.084 0.008 6.245

Talavera de la Reina Cable-stayed 5 0.555 0.041 0.003 6.258

From a theoretical point of view, we consider the height d, the size of the bridge and the
viscosity µ as fixed data for the problem, and we discuss the dependence of k̄p on L (the length
of the wind tunnel). We give here some qualitative properties on the behaviour of k̄p, derived
from its explicit form given in (3.4.8). As L diminishes, k̄p grows, by making condition (3.2.10)
less restrictive. This is as expected since a short channel does not let the velocity of the fluid
deviate from the field prescribed at the inlet and outlet sections; the unique solution would
tend to resemble the imposed Poiseuille flow q(x), also fairly close to the obstacle. On the
other hand, as L increases, k̄p = k̄p(L) diminishes and tends to an horizontal asympote when
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L→ ∞. In other words, provided that we impose a sufficiently weak flux at the inlet and outlet
sections, uniqueness is guaranteed even for an arbitrarily long channel (see also Remark 3.3.7).

Although L could tend to infinity, we do not consider an infinitely long channel. This would
not be physically meaningful since our problem models an experimental test in a wind tunnel
and we would also snag on a mathematical issue; existence of solutions for (3.1.1)-(3.1.2) would
not be guaranteed for any value of the parameter kp (as we have when L < +∞), but only for
sufficiently small values. Indeed, the problem would resemble the so-called Leray’s problem
(see [60, XII, Introduction]), for which the question around unconditional existence of solutions
is still an open issue.

Finally, we briefly discuss the regularity of the solutions of (3.1.1)-(3.1.2).

Remark 3.2.3. Weak solutions of (3.1.1)-(3.1.2) are smooth in the interior of the domain Ω,
defined as in (3.2.1), see for instance [60, Theorem IX.5.1]. Regularity up to the boundary is by
far more difficult; although the obstacle K has a Lipschitz boundary, it generates non-convex
corners within Ω. The H2-regularity can be obtained for a convex polyhedron-like domain:
see [35–37], where the authors precisely considers this type of domain and [99], where regu-
larity of the Navier-Stokes system in three-dimensional domains with conic points is studied.
However, arbitrary domains of polyhedral types which may possess reentrant corners, as in the
case that we are considering, do not allow to consider solutions exhibiting better regularity than
the minimal H1(Ω), see for instance [103].

3.3 Explicit bounds

3.3.1 Determination of the solenoidal extension

Given g as in (3.2.2), let b2 and b3 be the following functions, defined over ω:

b2(x2, x3) = − kp
3 ∥∇g∥L2(ω)

x3

[
2− x2

3

d2
+ 6

∞∑
k=1

(−1)k

α3
k

cosh(αkx2
d

)

cosh(αk
d
)
cos(

αkx3

d
)
]

(3.3.1)

b3(x2, x3) =
kp

3 ∥∇g∥L2(ω)

{
x2 + 6

∞∑
k=1

(−1)k

α4
k

sinh(αkx2
d

)

cosh(αk
d
)

[
x3αksin(

αkx3

d
) + d cos(

αkx3

d
)
]}

. (3.3.2)

Observe that
∂

∂x2
b3(x2, x3)−

∂

∂x3
b2(x2, x3) = v1(x2, x3),

where v1(x2, x3) describes the velocity profile of the Poiseuille flow in (3.2.3). Hence, if we
define the vector field

b(x) = {0, b2(x2, x3), b3(x2, x3)}, (3.3.3)

we obtain that ∇× (b(x)) = q(x), where q(x) is as in (3.2.3).
We aim to build a function a(x) that plays the role of a “flux carrier”, i.e. a smooth solenoidal

extension of the prescribed velocity field at the inlet and outlet sections, vanishing on ∂Ω. We
seek a function a(x) equal to q(x) far away from the obstacle and equal to zero in a neighbour-
hood of the obstacle. Hence, following the classical procedure by Ladyzhenskaya [100], we
take

a(x) = ∇×
(
b(x) θ(x)

)
, (3.3.4)
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where b is as in (3.3.3) and θ(x) is a C1 cut-off function equal to 1 at all points of Ω far away from
∂K and to 0 near ∂K (we shall later specify what we mean by “near”). Clearly a ∈ H1(Ω), a
is solenoidal and it vanishes close to the obstacle whereas it coincides with q far away from it.
In order to give the explicit expression of the solenoidal extension a(x), from (3.3.4), we need
to determine both θ(x) and b(x).

We first proceed in building the cut-off function θ(x), merely depending on x1 and x3, whose
profile is “specular” to a function supported in the rectangular region

R1 = {(x1, x3) ∈ (−l − α, l + α)× (−d, d)} (3.3.5)

that fully invades the domain Ω in the x3-direction but not in the x1-direction. In fact, the
parameter α satisfies 0 < α < L − l, is independent of L and is chosen so as to optimize the
estimates for unique solvability of (3.1.1)-(3.1.2) while the same trick in the x3-direction does
not help because we numerically saw that this would not lead to better estimates. The rectangle
R1, which contains the cross-section of the obstacle K (see the right picture in Figure 3.2),
enables us to partition the domain Ω in (3.2.1) as follows

Ω =
2⋃
i=0

Ωi, Ω0 = R1 × (−1, 1) \ K̄

Ω1 = {x ∈ R3 : x1 < −l − α, (x2, x3) ∈ ω},
Ω2 = {x ∈ R3 : x1 > l + α, (x2, x3) ∈ ω}.

(3.3.6)

We consider the functions

θ1(x1) =


1 if x1 < l

0 if x1 > l + α

ϕ1(x1) otherwise

, θ2(x3) =


1 if x3 < h

0 if x3 > d

ϕ2(x3) otherwise

,

with

ϕ1(x1) =
2x31
α3

− 3x21 (α + 2l)

α3
+

6x1 (l
2 + αl)

α3
− −α3 + 2l3 + 3α l2

α3
,

ϕ2(x3) = − x3
2

(d− h)2
+

2hx3
(d− h)2

+
d(d− 2h)

(d− h)2
.

Then we take
θ(x1, x3) = 1− θ1(x1)θ1(−x1)θ2(x3)θ2(−x3). (3.3.7)

This function is represented in Figure 3.4.
The above construction enables us to state:

Proposition 3.3.1. Let Ω ⊂ R3 be as in (3.2.1) and q(x) as in (3.2.3). Let a(x) = ∇ ×(
b(x)θ(x)

)
, where b(x) is as in (3.3.3) and θ(x) as in (3.3.7). Then, the vector field a(x) ∈

H1(Ω) is such that

∇ · a(x) = 0 a(x) = q(x) in Ωi a(x) = 0 on ∂K. (3.3.8)

with Ωi, i = 1, 2 defined in (3.3.6).
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Figure 3.4: Left: restriction of θ to the x1-axis and to the x3-axis. Right: three-dimensional representation of θ.

3.3.2 Bounds for the solenoidal extension

The aim of this subsection is to provide quantitative estimates for suitable norms of the solenoidal
extension a, defined in Proposition 3.3.1, which will play a role in the uniqueness bound for so-
lutions of (3.1.1)-(3.1.2). This bound will involve the L4-norm of a and the L2-norm of its
gradient in the region Ω0 defined by the partition (3.3.6); these are the quantities that we intend
to estimate here.

To this end, we first prove some technical inequalities that involve the so-called Apéry con-
stant [8]:

ζ(3) =
8

7

∞∑
k=1

1

(2k − 1)3
≈ 1.202. (3.3.9)

The next lemmas provide some estimates for the functions that we have introduced so far.

Lemma 3.3.2. Let b2 and b3 be as in (3.3.1), (3.3.2). Then,

|b2(x2, x3)|2 ≤
k2p

9 ∥∇g∥2L2(ω)

(
|2x3 −

x33
d2

|+ |x3|
42

π3
ζ(3)

)2

,

|b3(x2, x3)|2 ≤
k2p

9 ∥∇g∥2L2(ω)

(
|x2|+ |x3|

42

π3
ζ(3) + d

)2

,

∣∣∣∣∂b2(x2, x3)∂x2

∣∣∣∣2 ≤ k2p

d2 ∥∇g∥2L2(ω)

x23,

∣∣∣∣∂b2(x2, x3)∂x3

∣∣∣∣2 ≤ k2p

9 ∥∇g∥2L2(ω)

(
2 + 3

x23
d2

+
42

π3
ζ(3) +

3|x3|
d

)2

,

∣∣∣∣∂b3(x2, x3)∂x2

∣∣∣∣2 ≤ k2p

9 ∥∇g∥2L2(ω)

(
1 +

42

π3
ζ(3) +

3|x3|
d

)2

,

∣∣∣∣∂b3(x2, x3)∂x3

∣∣∣∣2 ≤ k2p

9 ∥∇g∥2L2(ω)

(
3|x3|
d

)2

.
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The bounds in Lemma 3.3.2 are obtained with some computations, by using (3.3.9) and the
convergence of the series

∞∑
k=1

1

(2k − 1)2
=
π2

8
,

∞∑
k=1

1

(2k − 1)4
=
π4

96
.

Then, we provide some bounds for the cut-off function.

Lemma 3.3.3. Let θ be as in (3.3.7). Then, given the partition (3.3.6), in the region Ω0 it holds
that

|θ(x1, x3)| ≤ 1,∣∣∣∣∂θ(x1, x3)∂x1

∣∣∣∣2 ≤ 36(x1−l)2(d−x3)2(d−2h+ x3)
2(l−x1 + α)2

α6(d−h)4
,∣∣∣∣∂θ(x1, x3)∂x3

∣∣∣∣2 ≤ 4(x3−h)2(l−x1 + α)4(2x1−2l + α)2

α6(d−h)4
,∣∣∣∣∂2θ(x1, x3)∂x21

∣∣∣∣2 ≤ 36(d− x3)
2(d− 2h+ x3)

2(2x1 − 2l − α)2

α6(d− h)4
,∣∣∣∣∂2θ(x1, x3)∂x23

∣∣∣∣2 ≤ 4(2x1 − 2l + α)2(l − x1 + α)4

α6(d− h)4
,∣∣∣∣∂2θ(x1, x3)∂x1∂x3

∣∣∣∣2 ≤ 144(x1 − l)2(x3 − h)2(l − x1 + α)2

α6(d− h)4
.

Now we are ready to proceed. To begin with, we seek an upper bound for the L4-norm of the
solenoidal extension. We remark that all the integrals that we will encounter are well-defined,
as we are considering smooth bounded functions over bounded domains.

Proposition 3.3.4. Let a = a(x) be the function defined in Proposition 3.3.1. Let Ω0 be defined
as in (3.3.6). Let the constants δi, i = 1, .., 24 be defined as in the Appendix. Then

∥a∥L4(Ω0)
≤Λ1kp, ∥∇a∥L2(Ω0)

≤ Λ2kp,

where Λ1 and Λ2 are defined by

Λ1 =
4
√
8

∥∇g∥L2(ω)

{[
δ1 + δ2 + δ3 + (4

√
δ4 +

4
√
δ5)

4
+ (
√

2δ6 +
√

2δ7)
2

+ (
√

2δ8 +
√

2δ9)
2
]1/4}

,

Λ2 =

√
8

∥∇g∥L2(ω)

{[
δ10+δ11+(

√
δ12+

√
δ13)

2
+δ14+δ15+(

√
δ16+

√
δ17)

2

+(
√
δ18+

√
δ17)

2
+ (
√
δ19+

√
δ20)

2+(
√
δ21+

√
δ22+

√
δ23+

√
δ24)

2
]1/2}

.
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3.3. Explicit bounds

Proof. The curl of the vector field

b(x)θ(x) = {0, b2(x2, x3)θ(x1, x3), b3(x2, x3)θ(x1, x3)}

reads

∇× (b(x2, x3)θ(x1, x3)) =

{
θ(x1, x3)v1(x2, x3)− b2(x2, x3)

∂θ(x1, x3)

∂x3
,

− b3(x2, x3)
∂θ(x1, x3)

∂x1
, b2(x2, x3)

∂θ(x1, x3)

∂x1

}
.

The L4-norm of this quantity involves both the square of each of the three components and the
corresponding double products, as follows:

∥a∥4L4(Ω0)
=∥∇×(b(x) θ(x, δ))∥4L4(Ω0)

=

∫
Ω0

∣∣∣∣∇×(b(x2, x3) θ(x1, x3))∣∣∣∣4dx
=

∫
Ω0

(∣∣∣∣θ(x1, x3)v1(x2, x3)−b2(x2, x3)∂θ(x1, x3)∂x3

∣∣∣∣2
+

∣∣∣∣b3(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2+ ∣∣∣∣b2(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2)2

dx.

The trinomial expansion gives six terms, that we estimate separately. The simplest terms can be
estimated using Lemmas 3.3.2 and 3.3.3 (their use is hidden in the computation of the constants
δi, but it does not appear explicitly here). Notice also that in the computation of the integrals
we exploited the evenness of the function and the symmetries of the domain of integration:∫

Ω0

∣∣∣∣b2(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣4 dx ≤
8 k4p

∥∇g∥4L2(ω)

δ2,∫
Ω0

∣∣∣∣b3(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣4 dx ≤
8 k4p

∥∇g∥4L2(ω)

δ1,

∫
Ω0

2

∣∣∣∣b2(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2∣∣∣∣b3(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2 dx ≤
8 k4p

∥∇g∥4L2(ω)

δ3,

while the remaining terms are estimated after an intermediate step which exploits the Minkowski
inequality.∫

Ω0

∣∣∣∣θ(x1, x3)v1(x2, x3)− b2(x2, x3)
∂θ(x1, x3)

∂x3

∣∣∣∣4 dx
≤
[(∫

Ω0

∣∣∣∣θ(x1, x3)v1(x2, x3)∣∣∣∣4 dx)1/4

+

(∫
Ω0

b2(x2, x3)
∂θ(x1, x3)

∂x3

∣∣∣∣4 dx)1/4]4
≤

8 k4p

∥∇g∥4L2(ω)

(
4
√
δ4+

4
√
δ5

)4

,
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Ω0

2

∣∣∣∣θ(x1, x3)v1(x2, x3)− b2(x2, x3)
∂θ(x1, x3)

∂x3

∣∣∣∣2∣∣∣∣b3(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2 dx
≤ 2

[(∫
Ω0

∣∣∣∣θ(x1, x3)v1(x2, x3)b3(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2dx)1/2

+

(∫
Ω0

∣∣∣∣b2(x2, x3)∂θ(x1, x3)∂x3
b3(x2, x3)

∂θ(x1, x3)

∂x1

∣∣∣∣2dx)1/2]2
≤ 2 ·

8 k4p

∥∇g∥4L2(ω)

(√
δ6 +

√
δ7

)2

,

∫
Ω0

2

∣∣∣∣θ(x1, x3)v1(x2, x3)− b2(x2, x3)
∂θ(x1, x3)

∂x3

∣∣∣∣2∣∣∣∣b2(x2, x3)∂θ(x1, x3)∂x1

∣∣∣∣2 dx
≤ 2 ·

8 k4p

∥∇g∥4L2(ω)

(√
δ8 +

√
δ9

)2

.

By combining these estimates, we obtain the L4-bound.
The upper bound for the Dirichlet norm of a is obtained through the very same procedure,

even though it turns out to be slightly more elaborate, since the gradient of the vector field
∇× (b θ) returns the following 3× 3 matrix

∇(∇× (b(x) θ(x))) =

{
∇
[
θ(x1, x3)v1(x2, x3)−b2(x2, x3)∂θ(x1,x3)∂x3

]
,

∇
[
−b3(x2, x3)∂θ(x1,x3)∂x1

]
,∇
[
b2(x2, x3)

∂θ(x1,x3)
∂x1

]}T
.

In order not to burden the writing of equations, we rewrite this term as

∇(∇× (b(x) θ(x))) =

{
∇A,∇B,∇C

}T
.

Thus we obtain
∥∇a∥2L2(Ω0)

= ∥∇(∇× (b(x)θ(x)))∥2L2(Ω0)

= ∥∇A∥2L2(Ω0)
+ ∥∇B∥2L2(Ω0)

+ ∥∇C∥2L2(Ω0)
.

We start estimating the second and third integral, which are slightly simpler. Analogously to
what has been done before, we obtain, after having exploiting the Minkowski inequality and
Lemmas 3.3.2 and 3.3.3,

∥∇B∥2L2(Ω0)
=

∫
Ω0

∣∣∣∣b3(x2, x3)∂2θ(x1, x3)∂x21

∣∣∣∣2dx+∫
Ω0

∣∣∣∣∂b3(x2, x3)∂x2

∂θ(x1, x3)

∂x1

∣∣∣∣2dx
+

∫
Ω0

∣∣∣∣− ∂b3(x2, x3)

∂x3

∂θ(x1, x3)

∂x1
− b3(x2, x3)

∂ 2θ(x1, x3)

∂x1∂x3

∣∣∣∣2dx
≤

8 k2p

∥∇g∥2L2(ω)

[
δ10 + δ11 + (

√
δ12 +

√
δ13)

2
]
,
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∥∇C∥2L2(Ω0)
=

∫
Ω0

∣∣∣∣b2(x2, x3)∂2θ(x1, x3)∂x21

∣∣∣∣2dx+∫
Ω0

∣∣∣∣∂b2(x2, x3)∂x2

∂θ(x1, x3)

∂x1

∣∣∣∣2dx
+

∫
Ω0

∣∣∣∣∂b2(x2, x3)∂x3

∂θ(x1, x3)

∂x1
+ b2(x2, x3)

∂ 2θ(x1, x3)

∂x1∂x3

∣∣∣∣2dx
≤

8 k2p

∥∇g∥2L2(ω)

[
δ14 + δ15 + (

√
δ16 +

√
δ17)

2
]
.

For what concerns the third integral, we obtain

∥∇A∥2L2(Ω0)
=

∫
Ω0

∣∣∣∣v1(x2, x3)∂θ(x1,x3)∂x1
−b2(x2, x3)∂

2θ(x1,x3)
∂x1∂x3

∣∣∣∣2dx
+

∫
Ω0

∣∣∣∣θ(x1, x3)∂v1(x2,x3)∂x2
− ∂b2(x2,x3)

∂x2

∂θ(x1,x3)
∂x3

∣∣∣∣2dx
+

∫
Ω0

∣∣∣∣θ(x1, x3)∂v1(x2,x3)∂x3
+ v1(x2, x3)

∂θ(x1,x3)
∂x3

− ∂b2(x2,x3)
∂x3

∂θ(x1,x3)
∂x3

− b2(x2, x3)
∂2θ(x1,x3)

∂x23

∣∣∣∣2dx
≤

8 k2p

∥∇g∥2L2(ω)

[
(
√
δ18 +

√
δ17)

2

+ (
√
δ19 +

√
δ20)

2 + (
√
δ21 +

√
δ22 +

√
δ23 +

√
δ24)

2
]
.

Thus, if we blend these bounds, we obtain the claimed estimate for the Dirichlet norm of a.

3.3.3 Bounds for the Sobolev embedding constants

We preliminarily remark that a slight modification of the procedure developed in [68, Theorem
2.2] yields, for all u ∈ H1

0 (ω),

σ∗ ∥u∥2L4(ω) ≤ ∥∇u∥2L2(ω) with σ∗ =
√
3

(
π

2

)3/2√
1 + d2

d
. (3.3.10)

Note that σ∗ provides a lower bound for the Sobolev constant σ0 of the embedding H1
0 (ω) ⊂

L4(ω) in the 2D-rectangle ω, see (3.2.1), defined by

σ0 = min
v∈H1

0 (ω)\{0}

∥∇v∥2L2(ω)

∥v∥2L4(ω)

. (3.3.11)

This section is devoted to computing an explicit lower bound S∗ for the Sobolev constant

S0 = min
v∈H1

0 (Ω)\{0}

∥∇v∥2L2(Ω)

∥v∥2L4(Ω)

(3.3.12)
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for the (compact) embedding H1
0 (Ω) ⊂ L4(Ω), appearing in the estimate ensuring uniqueness

for (3.1.1)-(3.1.2). A more significant modification of [68, Theorem 2.3] allows to find a con-
stant Γ∗, as small as possible, satisfying

∥v∥2L4(Ω) ≤ Γ∗ ∥∇v∥2L2(Ω) ∀ v ∈ H1
0 (Ω),

so that S0 ≥ S∗ = 1/Γ∗. We emphasize that Γ∗ is sought as small as possible, in order to obtain
less restrictive conditions ensuring uniqueness of the solutions of (3.1.1). In order to obtain an
explicit form for S∗, we need the following bound for the Poincaré constant.

Lemma 3.3.5. Let Ω be the domain in (3.2.1). For any scalar function w ∈ H1
0 (Ω), one has

∥w∥L2(Ω) ≤ min

{
2

π

Ld

(d2 + L2 + L2d2)1/2
,

3

√
6 (Ld− lh)

π4

}
∥∇w∥L2(Ω). (3.3.13)

Proof. We start by proving the first bound in (3.3.13). The least eigenvalue λ1 > 0 of −∆ in T
under homogeneous Dirichlet boundary conditions is given by

λ1 =
π2

4L2
+

π2

4 d2
+
π2

4
=
π2

4

d2 + L2 + L2d2

L2d2
,

as it is associated with the eigenfunction cos(πx1
2L

)cos(πx2
2
)cos(πx3

2d
). Hence, the Poincaré con-

stant inequality returns

∥w∥2L2(T ) ≤
4

π2

L2d2

d2 + L2 + L2d2
∥∇w∥2L2(T ) ∀w ∈ H1

0 (T ).

Since any function inH1
0 (Ω) can be extended by 0 inK, thereby becoming a function inH1

0 (T ),
this inequality proves the first bound in (3.3.13).

For the second bound in (3.3.13) we invoke the Faber-Krahn inequality (see [117]) which
states that

min
w∈H1

0 (Ω)

∥∇w∥L2(Ω)

∥w∥L2(Ω)

≥ min
w∈H1

0 (Ω
∗)

∥∇w∥L2(Ω∗)

∥w∥L2(Ω∗)

,

where Ω∗ is a ball having the same volume as Ω. In order to compute the right-hand side in this
inequality, we recall that the Poincaré constant constant in the unit sphere is given by π, which
corresponds to the first zero of the spherical Bessel function of order 0, sinx

x
. Then, in the ball

Ω∗, it holds that

min
w∈H1

0 (Ω
∗)

∥∇w∥L2(Ω∗)

∥w∥L2(Ω∗)

=
π

R
,

where R is the radius of this ball

R =
3

√
6 (Ld− lh)

π
,

and we used the fact that |Ω| = |T |− |K| = 8 (Ld− lh). Therefore we obtain the second bound
in (3.3.13).
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Note that equality between the two upper bounds in (3.3.13) occurs whenever

4π

3
= (Ld− lh)

(
1 +

1

L2
+

1

d2

)3/2

;

therefore which bound is better depends on the relative size of the obstacle K within T . Now,
we are ready to prove:

Proposition 3.3.6. For any v ∈ H1
0 (Ω), one has

∥v∥2L4(Ω) ≤ min

{
Ld

π3(d2 + L2 + L2d2)1/2
,

3

√
3 (Ld− lh)

4π10

}1/2

∥∇v∥2L2(Ω) (3.3.14)

This inequality holds both for scalar functions and vector-valued functions.

Proof. We first prove (3.3.14) for scalar functionsw for which del Pino-Dolbeault [38, Theorem
1] obtained the following optimal Gagliardo-Nirenberg inequality in R3:

∥w∥2L4(T ) ≤
1

21/3 π2/3
∥∇w∥L2(T )∥w∥L3(T ) ∀w ∈ H1

0 (T ). (3.3.15)

Here we exploit the fact that functions in H1
0 (T ) can be extended by zero outside T becoming

functions defined on the whole space R3. To get rid of theL3-norm, we use the Hölder inequality

∥w∥3L3(T ) =

∫
T

|w||w|2 dx ≤ ∥w∥L2(T )∥w∥
2
L4(T )

which, combined with (3.3.15), gives

∥w∥2L4(T ) ≤
1√
2 π

∥∇w∥3/2L2(T ) ∥w∥
1/2

L2(T ). (3.3.16)

Next, we estimate the term ∥w∥1/2L2(T ) through Lemma 3.3.5. Using (3.3.13) within (3.3.17) leads
to (3.3.14) (for scalar functions) since H1

0 (Ω) ⊂ H1
0 (T ).

Once we have obtained (3.3.14) for scalar functions, we claim that it also holds for vector-
valued functions. Indeed, let v = (v1, v2, v3) ∈ H1

0 (Ω); then, applying the Minkowski inequal-
ity, we can consider the L4-norm of each component of this function individually and we use
(3.3.14) as follows

∥v∥4L4(Ω)≤
(
∥v1∥2L4(Ω) + ∥v2∥2L4(Ω) + ∥v3∥2L4(Ω)

)2

≤ min

{
Ld

π3(d2 + L2 + L2d2)1/2
,

3

√
3 (Ld− lh)

4π10

}
×
(
∥∇v1∥2L2(Ω) + ∥∇v2∥2L2(Ω) + ∥∇v3∥2L2(Ω)

)2

= min

{
Ld

π3(d2 + L2 + L2d2)1/2
,

3

√
3 (Ld− lh)

4π10

}
∥∇v∥4L2(Ω).

(3.3.17)

This proves (3.3.14) also for vector fields in H1
0 (Ω).
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

We point out that (3.3.17) significantly improves the usual interpolation inequalities in fluid
mechanics [60, (II.3.10)]. Proposition 3.3.6 yields the lower bound for the Sobolev constant S0,
defined in (3.3.12), which reads as

S0 ≥ S∗ = max

{
π3

(
1 +

1

L2
+

1

d2

)1/2

, 3

√
4π10

3 (Ld− lh)

}1/2

. (3.3.18)

Remark 3.3.7. Once we have fixed the height d of the wind tunnel and the size of the obstacle
K by choosing l and h, there exists a critical threshold L∗ where the two bounds within the
maximum in (3.3.18) coincide. If L < L∗ then S∗(L) equals the second bound in (3.3.18) while
if L > L∗ then S∗(L) equals the first bound in (3.3.18) and, therefore,

lim
L→∞

S∗(L) = π3/2

(
1 +

1

d2

)1/4

.

The existence of an horizontal asympote for the function S∗(L) is particularly significant in
terms of uniqueness of solutions for the problem (3.1.1)-(3.1.2). Indeed, S∗ is part of the ex-
pression of k̄p which determines the condition for uniqueness of solutions (see Theorem 3.2.2)
and is the only parameter in this expression depending on L; however, since S∗ loses this depen-
dence by virtue of the presence of such an asymptote, we infer that L does not play a direct role
in terms of uniqueness of the solution. Figure 3.5 shows the behaviour of the map L 7→ S∗(L)
with the parameters from the model of the Izmit bay bridge (d = 0.555, h = 0.011, l = 0.072),
see Section 3.2; in this case, L∗ ≈ 0.0014.

Figure 3.5: Graph of the function L 7→ S∗(L) with the parameters from the model of the Izmit bay bridge.

3.4 Proof of Theorem 3.2.2

3.4.1 Existence and uniqueness

The idea of the proof is quite standard but, for our purposes, it is mandatory to fully report it
since we need to emphasize the role played by each of the constants appearing in the a priori
estimates.
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3.4. Proof of Theorem 3.2.2

In order to prove existence of a weak (or generalized) solution of (3.1.1)-(3.1.2) we look for
velocity fields of the form

u = û+ s (3.4.1)

where s is a sufficiently smooth general solenoidal extension of the prescribed velocity at the
boundary q, which reproduces a Poiseuille-flow, while û (weakly, see Definition 3.2.1) solves
the following problem:

−µ∆û+ (û · ∇) û+(û · ∇) s+ (s · ∇) û+∇p = f := µ∆s− (s · ∇) s,

∇ · û = 0 in Ω, û = 0 on ∂Ω.
(3.4.2)

It is well-known (see for instance [60, Theorem IX.4.1]) that the existence of a solution follows
once we find a uniform bound on ∥∇û∥L2(Ω) depending only on the data. On the other hand,
uniqueness of solutions relies on some a priori bound from the data, this is why we need the
following statement.

Lemma 3.4.1. Let Ω be as in (3.2.1) and q ∈ W 1,∞(∂T ) as in (3.2.3). Let û be a weak
solution of (3.4.2) defined as in (3.4.1). If S∗ is as in (3.3.18), σ∗ as in (3.3.10), the constants
Λi (i = 1, 2) as in Proposition 3.3.4, and if

kp <
µσ∗

S∗ + Λ2σ∗
, (3.4.3)

then the following a priori estimate holds:

∥∇û∥L2(Ω) ≤
µΛ2kp + Λ1

Λ2√
S∗
k2p

µ− kp
σ∗

− kpΛ2

S∗

. (3.4.4)

Proof. Consider (3.4.2) where we substitute s with the specific solenoidal extension a from
Proposition 3.3.1. Multiply (3.4.2) by û and integrate by parts over Ω and, recalling that û = 0
on ∂Ω, obtain

µ∥∇û∥2L2(Ω) + ψ (û, û, û) + ψ (û, a, û) + ψ (a, û, û) = ⟨ f, û⟩

with
⟨ f, û⟩ = −µ(∇a,∇û)L2(Ω) − ψ (a, a, û)

and ψ as in (3.2.5). The properties of ψ guarantee that the second and fourth terms on the
left-hand side vanish:

µ∥∇û∥2L2(Ω) + ψ (û, a, û) = ⟨ f, û⟩ = −µ(∇a,∇û)L2(Ω) − ψ (a, a, û). (3.4.5)

For the right-hand side of this equation we first exploit the partition (3.3.6)

(∇a,∇û)L2(Ω) =

∫
Ω0

∇a : ∇û dx+
∫
Ω1

∇a : ∇û dx+
∫
Ω2

∇a : ∇û dx
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

and we remark that∫
Ω1

∇q : ∇û dx =

∫
Ω1

∆q · û dx

= −2
kp

d2 ∥∇g∥L2(ω)

∫ −l−α

−L

[ ∫
ω

û · n̂ dx2 dx3
]
dx1 = 0

as û carries no flux being divergence-free on Ω. For the same reason, also the integral over Ω2

vanishes and we obtain∣∣µ(∇a,∇û)L2(Ω)

∣∣ = µ

∣∣∣∣∫
Ω0

∇a : ∇û dx
∣∣∣∣ ≤ µ∥∇a∥L2(Ω0)∥∇û∥L2(Ω0)

≤ µΛ2kp∥∇û∥L2(Ω),

where we used the bound in Ω0 given in Proposition 3.3.4. Since a = q in Ω1 ∪ Ω2 by
Proposition 3.3.1 and since (q · ∇)q ≡ 0, we have that∣∣ψ (a, a, û)

∣∣ = ∣∣∣∣∫
Ω0

(a · ∇)a · û dx
∣∣∣∣ ≤ ∥a∥L4(Ω0)∥∇a∥L2(Ω0)∥û∥L4(Ω0) .

Using again Proposition 3.3.4 and collecting terms we may then bound the right hand side of
(3.4.5) as

|⟨f, û⟩| ≤

(
µ ∥∇a∥L2(Ω0)

+ ∥a∥L4(Ω0)

∥∇a∥L2(Ω0)√
S0

)
∥∇û∥L2(Ω)

≤
(
µΛ2kp +

Λ1Λ2√
S∗
k2p

)
∥∇û∥L2(Ω)

where we also used (3.3.18).
On the other hand, since a obeys (3.3.8),

|ψ (û, a, û)| ≤
∣∣∣∣ ∫

Ω1

(û · ∇)q · û dx+
∫
Ω2

(û · ∇)q · û dx+
∫
Ω0

(û · ∇)a · û dx
∣∣∣∣

≤
(
kp
σ0

+
∥∇a∥L2(Ω0)

S0

)
∥∇û∥2L2(Ω),

(3.4.6)

where we used the Hölder inequality together with the Sobolev inequalities in (3.3.11) and
(3.3.12) as follows:∣∣∣∣ ∫

Ω1

(û · ∇)q · û dx
∣∣∣∣ ≤ ∫ −l−α

−L
∥û∥L4(ω)∥∇q∥L2(ω)∥û∥L4(ω) dx1

≤ kp

∫ −l−α

−L

∥∇x′û∥2L2(ω)

σ0
dx1 ≤

kp
σ0

∥∇û∥2L2(Ω1)
,

with x′ = (x2, x3), while ∇ indicates the gradient with respect to the three variables (x1, x2, x3).
The integral over Ω2 can be treated analogously. Finally, by exploiting the inequality ∥∇û∥2L2(Ω1)

+
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3.4. Proof of Theorem 3.2.2

∥∇û∥2L2(Ω2)
≤ ∥∇û∥2L2(Ω), we see that the left-hand side of (3.4.5) can be lower bounded by

−kp
σ0

∥∇û∥2L2(Ω) −
Λ2 kp
S0

∥∇û∥2L2(Ω) ≤ −kp
σ0

∥∇û∥2L2(Ω)

−
∥∇a∥L2(Ω0)

S0

∥∇û∥2L2(Ω)

≤ ψ (û, a, û),

where we used again the bounds in Proposition 3.3.4. At last, we exploit the inequalities (3.3.10)
and (3.3.18) to obtain

−kp
σ∗

∥∇û∥2L2(Ω) −
Λ2 kp
S∗

∥∇û∥2L2(Ω) ≤ ψ (û, a, û). (3.4.7)

By plugging (3.4.7) into (3.4.5) and dividing by ∥∇û∥L2(Ω), we obtain the bound (3.4.4), pro-
vided that (3.4.3) holds.

We are now in position to prove the following statement, whose major result is the form of
the quantitative bound for uniqueness of solutions of (3.1.1)-(3.1.2); this bound will be used for
the overall conclusion in Proposition 3.4.5 below.

Proposition 3.4.2. Let Ω be as in (3.2.1) and q ∈ W 1,∞(∂T ) as in (3.2.3). Then, there exists at
least one weak solution u to problem (3.1.1)-(3.1.2) with corresponding p ∈ L2(Ω).

Moreover, if S∗ is as in (3.3.18), σ∗ as in (3.3.10), the constants Λi (i = 1, 2) as in Proposition
3.3.4, and

kp < k̄p := µσ∗
2S∗ +

√
S∗Λ1σ∗ + 2Λ2σ∗ − σ∗

√
(
√
S∗Λ1 + 2Λ2)2 +

4S∗Λ2

σ∗

2S∗ + 2
√
S∗Λ1σ∗ + 2Λ2σ∗

. (3.4.8)

then the weak solution is unique.

Proof. Existence of u satisfying (3.2.6) follows from [60, Theorem IX.4.1], provided that we
have an a priori bound on ∥∇û∥L2(Ω), where û solves (3.4.1)-(3.4.2) in a weak sense. Multiply
(3.4.2) by û and integrate by parts over Ω: the two terms ψ (·, û, û) vanish and we bound the
right-hand side through the Hölder inequality and (3.3.12):

µ∥∇û∥2L2(Ω) + ψ(û, s, û)≤

(
µ∥∇s∥L2(Ω) + ∥s∥L4(Ω)

∥∇s∥L2(Ω)√
S0

)
∥∇û∥L2(Ω). (3.4.9)

We draw attention to the fact that s is here a sufficiently smooth general solenoidal extension
of q; that is why its norms in (3.4.9) live on the whole domain Ω, rather than on a component of
the partition (3.3.6).

The flux of q is null across the two connected components of the boundary ∂Ω = ∂K ∪ ∂T ,
i.e. ∫

∂T

q · n̂ =

∫
∂K

q · n̂ = 0.
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

Hence, in view of [60, Lemma IX.4.2], there exists a Hopf extension [89], namely for any η > 0
there exists a solenoidal extension s satisfying

|ψ(v, s, v)| ≤ η ∥∇v∥2L2(Ω) ∀v ∈ V (Ω).

By choosing η < µ and plugging this bound into (3.4.9), we obtain the desired a priori bound
on û ensuring existence of u satisfying (3.2.6) for any given value of µ > 0. The existence
of a pressure field p ∈ L2(Ω) corresponding to the weak solution u follows, for instance,
from [60, Lemma IX.1.2].

We now turn to uniqueness. Let us suppose that u0 and u1 are two weak solutions of (3.1.1)-
(3.1.2). Define w = u0 − u1; it satisfies the following identity

µ(∇w,∇ϕ)L2(Ω) + ψ (u0, w, ϕ) + ψ (w, u1, ϕ) = 0 ∀ϕ ∈ V (Ω)

where V (Ω) is defined in (3.2.4). Since w ∈ V (Ω), we may substitute ϕ with it and obtain

µ∥∇w∥2L2(Ω) = −ψ (w, u1, w).

Then, we obtain an upper bound for the right-hand side. If we define u1 = û1 + a, where a is
the specific solenoidal extension built in Proposition 3.3.1 (not the above Hopf extension), we
can divide this member in two terms:

−ψ (w, u1, w) = ψ (w,w, u1) = ψ (w,w, û1 + a) = ψ (w,w, û1) + ψ (w,w, a). (3.4.10)

For the first term, by applying the Hölder inequality, the Sobolev inequality in Ω and finally the
lower bound for S0 in (3.3.12), labelled as S∗, we deduce that

|ψ (w,w, û1)| ≤ ∥w∥L4(Ω) ∥∇w∥L2(Ω) ∥û1∥L4(Ω) ≤
∥∇w∥2L2(Ω)√

S0

∥û1∥L4(Ω)

≤
∥∇w∥2L2(Ω)

S0

∥∇û1∥L2(Ω) ≤
∥∇w∥2L2(Ω)

S∗
∥∇û1∥L2(Ω) .

The second term in (3.4.10) can be treated similarly to (3.4.6), after using the property of the
trilinear form ψ and both the lower bounds (3.3.10) and (3.3.18):

|ψ (w,w, a)| = |ψ (w, a, w)| ≤
(
kp
σ0

+
∥a∥L4(Ω0)√

S0

)
∥∇w∥2L2(Ω)

≤
(
kp
σ∗

+
∥a∥L4(Ω0)√

S∗

)
∥∇w∥2L2(Ω) .

By combining these bounds and using the result of Proposition 3.3.4 we infer

µ∥∇w∥2L2(Ω) ≤
∥∇w∥2L2(Ω)√

S∗

(∥∇û1∥L2(Ω)√
S∗

+
kp
σ∗

√
S∗ + ∥a∥L4(Ω0)

)
≤

∥∇w∥2L2(Ω)√
S∗

(∥∇û1∥L2(Ω)√
S∗

+
kp
σ∗

√
S∗ + Λ1 kp

)
.
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3.4. Proof of Theorem 3.2.2

Then, provided that (3.4.3) holds, we insert the a priori bound (3.4.4) for the gradient of û1 and
we obtain

µ∥∇w∥2L2(Ω) ≤ ∥∇w∥2L2(Ω)

−k2p

(
S∗
σ2∗

+
√
S∗Λ1
σ∗

+
Λ2
σ∗

)
+kp

(
√
S∗Λ1µ+Λ2µ+

S∗µ
σ∗

)
S∗ µ−

kp
σ∗

S∗−kpΛ2

,

which implies w = 0 if the following condition holds:

−k2p
(

S∗

µσ2
∗
+

√
S∗Λ1

µσ∗
+

Λ2

µσ∗

)
+ kp

(√
S∗Λ1 + 2Λ2 +

2S∗

σ∗

)
< µS∗.

This is a condition of negativity on a concave parabola as a function of kp, which crosses the
vertical axis in −µS0. Hence, it is fulfilled if kp is less than the smallest between the two roots
of the second-order polynomial, which reads as (3.4.8). Some tedious computations show that
the right-hand side of inequality (3.4.8) is smaller than the right-hand side of inequality (3.4.3),
thus (3.4.8) implies (3.4.3): this proves uniqueness.

Remark 3.4.3. Notice that k̄p > 0 since the denominator is strictly positive as well as the same
can be easily check to go for the numerator, and it can be rewritten as

k̄p = µσ∗

(
1−

√
S∗Λ1σ∗ + σ∗

√
(
√
S∗Λ1 + 2Λ2)2 +

4S∗Λ2

σ∗

2S∗ + 2
√
S∗Λ1σ∗ + 2Λ2σ∗

)
.

3.4.2 Threshold for the appearance of the lift

Before stating the main result of this section, in the spirit of [68] we recall the following impli-
cations for solutions of (3.1.1)-(3.1.2)

uniqueness =⇒ symmetry =⇒ no lift exerted over K.

It is a well-know experimental fact that lift vanishes whenever the obstacle is symmetric with
respect to the angle of attack of the fluid; see e.g. [40, Figure 7.21]. We state here a small variant
of [68, Proposition 4.1]:

Proposition 3.4.4. Let Ω be as in (3.2.1) and q ∈ W 1,∞(∂T ) be as in (3.2.3). Let u =
(u1, u2, u3) ∈ V∗(Ω) be a weak solution of problem (3.1.1)-(3.1.2). Let S∗ be as in (3.3.18), σ∗
as in (3.3.10), the constants Λi, i = 1, 2 as in Proposition 3.3.4. Then also w = (w1, w2, w3) ∈
V∗(Ω) defined by

w1(x1, x2, x3) = u1(x1, x2,−x3) w2(x1, x2, x3) = −u2(x1, x2,−x3)
w3(x1, x2, x3) = u3(x1, x2,−x3)

for a.e. (x1, x2, x3) ∈ Ω , solves (3.1.1)-(3.1.2) in a weak sense. Moreover, if (3.4.8) is valid,
the weak solution of (3.1.1)-(3.1.2) is unique and it satisfies the symmetry property

u1(x1, x2, x3) = u1(x1, x2,−x3) u2(x1, x2, x3) = −u2(x1, x2,−x3)
u3(x1, x2, x3) = u3(x1, x2,−x3)

for a.e. (x1, x2, x3) ∈ Ω
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Chapter 3. An explicit threshold for the appearance of lift on the deck of a bridge

Proposition 3.4.4 stands because Ω is symmetric with respect to all three axes x1, x2, x3 and
because the boundary datum q is x3-even in its first component v1 and null in its other com-
ponents. Proposition 3.4.4 then shows that uniqueness implies symmetry. Then, [68, Theorem
3.7] shows that symmetry implies no lift exerted on the obstacle K. We recall that we adopt a
generalized definition for the lift force, (3.2.9), since we are considering weak solutions.

In view of [68, Theorem 3.7], we can state the following proposition, which embodies the
explicit realisation of the purpose of this chapter.

Proposition 3.4.5. Let Ω be as in (3.2.1) and q ∈ W 1,∞(∂T ) as in (3.2.3). Let δi, i = 1, 2, .., 24
be reported in the Appendix, where we also emphatized the dependence on the parameter α,
used to define the rectangle R1 in (3.3.5). Let FK be the total force exerted by the fluid over
the obstacle K, given in (3.2.8). For any kp ≥ 0, there exists a weak solution (u, p) ∈ V∗(Ω)×
L2(Ω) of (3.1.1)-(3.1.2).

Moreover, given the constants Λ1 and Λ2 in Proposition 3.3.4, given σ∗ as in (3.3.10) and S∗
as in (3.3.18), if the parameter kp, regulating the inlet and outlet flow, is such that kp < k̄p (see
(3.4.8)), then the weak solution is unique and the fluid exerts no lift on the obstacle K, that is〈

{−pI+ µ[∇u+ (∇u)T ] } · n̂, 1
〉
∂K

= 0

It remains to show how to compute the constants δi, i = 1, 2, .., 24, depending on α (defining
the region R1 in (3.3.5)), which come from the explicit estimates for the norms of the solenoidal
extension a(x) given in Proposition 3.3.4.

We computed the δi’s with the software Mathematica, that was also used to compute the
value of α maximizing k̄p, once we know the structural parameters of the problem, in particular
for the table in Section 3.2. Since the computations are unpleasant, we give their explicit value
in the Appendix.
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CHAPTER4
Well-posedness of a FSI problem in a Poiseuille flow:

vertical motion

In the next two chapters, we analyze the well-posedness of the two fluid-structure interaction
models presented in Chapter 2. Chapter 4 treats the well-posedness of problem (2.0.7), while
Chapter 4 treats that of problem (2.0.9). In the present chapter, after a general introduction to the
purpose of the study, we enter into the details of problem (2.0.7), which models the interaction
between the cross-section of the deck of a suspension bridge and the wind in the first phase
of the so-called flutter phenomenon. In particular, we obtain a global-in-time existence and
uniqueness result for problem (2.0.7).

4.1 The flutter instability

Suspension bridges may experience several types of instability phenomena, which affect more
or less critically each component of the structure. Among all components, the deck is the
most sensitive part. When analyzing the dynamic response of the bridge to the wind from the
engineering point of view, we observe that the bridge may suffer from a variety of problems: one
degree and two degrees of freedom instability, buffeting and vortex shedding. Two degrees of
freedom instability, also known as flutter instability, occurs when the vertical and the torsional
motion of the deck synchronize so that aerodynamic forces introduce energy into the system.
However, this only occurs after reaching a critical value of the incoming wind velocity (see
[46], [64], [120]). Thus, the vertical and torsional displacements are decoupled in a regime of
small oscillations.
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In order to properly study flutter instability, one is lead to consider the two different models
presented in Chapter 2 so as to reproduce the two aforementioned regimes.

We set up the first model precisely under the hypothesis of a small flux for the incoming
flow field. We consider the interaction between an obstacle and a fluid in a 2D bounded channel,
where the flow is of Poiseuille type at the inlet and outlet sections; we analyze a fluid-structure
problem by allowing the obstacle to move in a vertical translation. Physically, this models the
interaction between the wind and the deck of a bridge in a wind tunnel experiment.

In a regime of strong incoming flux, it is necessary to consider the full coupled vertical-
torsional motion, which is taken into account in the second model. Also, here the channel is
unbounded and the Poiseuille flow is imposed at infinity so as to model the experiment at con-
sideration in a real-life framework, where the wind interacts with the bridge in the atmosphere.

4.2 Hypotheses and well-posedness

We refer to Chapter 2 for the notation and the rigorous formulation of problem (2.0.7).
To the purpose of studying the well-posedness of problem (2.0.7), we will assume that the

restoring force f in (2.0.7)4 satisfies some further conditions besides those given in Chapter
2, given later in (4.2.1), which translate the assumption of f being a strong force, preventing
the obstacle from colliding with the boundary of the channel ΓR. From the physical view
point indeed, f resumes the action of three kind of forces acting on the deck of a suspension
bridge, as also explained in [15, Introduction]: the upward restoring force due to the elastic
action of both the hangers and the sustaining cables, the weight of the deck acting downwards
and the elastic resistance to deformations of the whole deck, preventing the obstacle to go
too far from its equilibrium horizontal position (see also [64]). Our model indeed loses its
physical meaning in case of collisions; on the other hand, collisions would be purely virtual in
the physical framework at consideration, because we can not expect the bridge to be subjected to
very large deformations. This justifies the limit in the assumption in (4.2.1); we emphasize that,
in this context, we are not interested in choosing the optimal growth hypothesis on f ensuring
the absence of collisions.

In [15], the authors prove that for the stationary version of (2.0.7) the equilibrium position
of the obstacle is perfectly symmetric under smallness assumption on the imposed flow rate
magnitude of the Poiseuille flow; as a matter of fact, they are able to prove their result with
an assumption on f weaker than (4.2.1) (their result holds in an unbounded channel, but it can
be easily extended to a bounded domain). The main purpose of this chapter is to prove the
existence and the uniqueness of a weak solution for the fluid-structure interaction evolution
problem (2.0.7). In order to prove existence we adopt a penalty method devised in a paper by
Fujita and Sauer, see [56]; this technique was later exploited by Conca, San Martin and Tucsnak
in [31] in order to prove existence of solutions for a boundary problem modelling the motion
of a rigid ball in a viscous fluid occupying a bounded domain (see Chapter 1). Among the
several aforementioned techniques, we choose to apply the method by [31], because it enables
to work with a non-global weak formulation, in the sense that the terms concerning the fluid
sub-problem and those concerning the rigid body sub-problem of (2.0.7), although coupled,
remain distinguished. On the other hand, both the method introduced in [41] and [87, 119]
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would require working with global quantities and a global weak formulation, in the sense that
the integrals would be defined on the whole domain R; in this context, the approach by [31]
is more convenient because of the presence of the strong force f in the ordinary differential
equation governing the motion of the obstacle, which makes it non-trivial to define a global
weak form for the original coupled frame. The main difference with the problem considered
in [31] lies in the fact that the domain occupied by both the rigid body and the fluid in (2.0.7)
is an channel where a non-zero velocity field is imposed at the inlet and outlet; this requires
building a solenoidal extension of the Poiseuille flow. Moreover, besides the less affecting
difference of a rectangular shaped obstacle, the introduction of the strong force f in the ordinary
differential equation governing the motion of the obstacle in (2.0.7) allows to obtain solutions
with a global character in time, as well as uniqueness of such solutions: indeed, this force
prevents the obstacle from colliding with the boundary of the channel.

The main result of this chapter reads as

Theorem 4.2.1. Assume that f(h) ∈ C1(−L + δ, L − δ;R) satisfies the assumptions given in
Chapter 2 and

∃ r > 0 s.t. f ′(h) > 0∀h ∈ (−L+ δ, L− δ),

lim
|h|→L−δ

|f(h)| 1

exp 1
(L−δ−|h|)4+r

= +∞.
(4.2.1)

Moreover, let |h0| < L− δ and u0 satisfying (2.0.8)1-(2.0.8)2 be such that u0 · n̂ = k0ê2 · n̂ on
∂Bh0 , with k0 ∈ R. Then, problem (2.0.7) admits a unique weak solution (u, h), defined in a
suitable sense, for any T > 0. Moreover the solution (u, h) satisfies an energy estimate.

Theorem 4.2.1 deserves some comments. First, we emphasize that, since (2.0.7) is a fluid-
structure interaction problem, one needs to give a suitable definition of weak solutions which
takes into account the presence of the moving obstacle. Because of such difficulty, we adopt
a definition of weak solutions which is a compromise between the one given in [63] and the
one in [31]; weak solutions are defined in Definition 4.3.3 after transforming problem (2.0.7)
into an equivalent problem, as we shall see in Section 4.3. Finally, the global-in-time property
of solutions is ensured because of the energy estimate associated to problem (2.0.7), which
guarantees that no collision occurs between the obstacle and the boundary of the channel. Such
energy estimate will be made explicit in Theorem 4.3.6 for the equivalent problem.

The first part of the chapter is devoted to proving Theorem 4.2.1 and it is organized as fol-
lows. In Section 4.3 we present some notations and preliminary results which are essential to
apply the penalty method and are useful throughout the chapter. Then we reformulate prob-
lem (2.0.7) in a reference frame attached to the obstacle; this produces the equivalent problem,
(4.3.9)-(4.3.10). At the end of Section 4.3, Theorem 4.3.6 states the existence and uniqueness
of solutions for the equivalent problem (4.3.9)-(4.3.10). Thus, Theorem 4.2.1 is proven once we
develop the proof of such statement, which is addressed in the subsequent sections. In Section
4.4, we introduce an auxiliary problem, at the core of the penalty method, for which we prove
existence of solutions with the Faedo-Galerkin procedure. In Section 4.5, after some additional
results, we conclude the proof of the existence part of Theorem 4.3.6 and, consequently, the
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existence part of the main result of the chapter, Theorem 4.2.1. Section 4.6 is devoted to prov-
ing uniqueness of solutions to problem (4.3.9)-(4.3.10), which concludes the proof of Theorem
4.3.6 and thus also of Theorem 4.2.1. The main difficulty of proving uniqueness is that we can-
not simply take the difference between two weak solutions of problem (4.3.9)-(4.3.10) because,
since the fluid domain has moving boundaries, those solutions are not defined on the same do-
main, thus we will adopt a suitable change of variables to solve such issue, following the work
in [76].

4.3 An equivalent formulation

Problem (2.0.7) is set in a two-dimensional bounded channel with a prescribed non-zero veloc-
ity field at the inlet and outlet (the Pouseuille flow in (2.0.6)). We begin by capturing the flow
for large values of |x1|: we construct a suitable extension of the Poiseuille velocity profile by
using similar arguments to the classical procedure by Ladyzhenskaya [100] (see also [6]). For
this, we divide the channel R as

R =
2⋃
i=0

Ri ,

where

R0 = R∩([−3, 3]×R), R1 = R∩((−∞,−3)×R), R2 = R∩((3,∞)×R) , (4.3.1)

and then prove the following result:

Lemma 4.3.1. For every ε0 > 0 there exists a vector field s = sε0 ∈ W 2,∞(R) ∩H2(R) such
that
∇ · s = 0 in R , s = (0, 0) in [−2, 2]× [−L+ ε0, L− ε0] , s = (0, 0) on ∂R ,

s = vP in R1 ∪R2 , supp(s) = R \ ((−2, 2)× (−L+ ε0, L− ε0)) ,
(4.3.2)

and there hold the estimates

∥∇s∥L∞(R) ≤
c1
ε20
, ∥∇s∥L2(R0) ≤

c2
ε20
, (4.3.3)

where c1, c2 > 0 depend on L and λ.

Proof. Let b : [−L,L] −→ R the function defined by

b(x2) =
p0L

3

2µ

[
x2
L

− 1

3

(x2
L

)3]
∀x2 ∈ [−L,L] ,

so that
b′(x2) = vP (x2) ∀x2 ∈ (−L,L) .

As in [70, 127] we take a smooth cutoff function ζ1 ∈ W 2,∞ (R) acting on the horizontal
direction such that

ζ1(x1) =

{
1 if |x1| ≤ 2

0 if |x1| > 3 ,
supp(ζ1) = [−2, 2] . (4.3.4)
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Then, let ε0 ∈ (0, L). We take a cutoff function ζε0 ∈ W 2,∞(R) acting in the vertical direction
such that

ζε0(x2) =

1 if |x2| ≤ L− ε0
2

0 if |x2| > L− ε0
4
,

supp(ζε0) =
[
−L+

ε0
4
, L− ε0

4

]
. (4.3.5)

Furthermore, there exists a constant C > 0 (independent of ε0) such that

∥ζε0∥L∞(R) = 1 , ∥ζ ′ε0∥L∞(R) ≤
C

ε0
, ∥ζ ′′ε0∥L∞(R) ≤

C

ε20
.

Then we write
Zε0(x) = 1− ζ1(x1) ζε0(x2) ∀x ∈ R ,

and define the vector field

s(x) =

(
∂

∂x2

(
b(x2)Zε0(x)

)
,− ∂

∂x1

(
b(x2)Zε0(x)

))
∀x ∈ R .

In view of (4.3.4)-(4.3.5) we have that s ∈ W 2,∞(R)∩H2(R) and that it verifies the properties
in (4.3.2)-(4.3.3).

As a first step of the penalty method implemented in [31], we change problem (2.0.7) into an
equivalent problem by considering a frame attached to the rigid body, whose origin coincides
with its center of mass. Thus we set

y = x− h(t) ê2, (4.3.6)

and we denote

v(y, t) = u(y + h(t) ê2, t), q(y, t) = p(y + h(t) ê2, t),

T (v, q) = −qI+ µ[∇v + (∇v)T ]
Ω̃(t) = Ωh(t) − h(t)ê2, Rh(t) = R− h(t)ê2, Γ̃R(t) = ΓR − h(t)ê2,

B = Bh0 = Bh(t) − h(t)ê2.

(4.3.7)

The domain of the fluid in the new reference frame Ω̃ shall also be partitioned

Ω̃(t) =
2⋃
i=0

Ω̃i(t), Ω̃0(t) = Ω̃(t) ∩ {−3 ≤ y1 ≤ 3},

Ω̃1(t) = Ω̃(t) ∩ {y1 < −3}, Ω̃2(t) = Ω̃(t) ∩ {y1 > 3}.

(4.3.8)

We emphasize that the obstacle is now fixed, while the domain occupied by both the fluid and
the rigid body, Rh(t) = B ∪ ∂B ∪ Ω̃(t), changes with time. Then, we notice that

∇yv = ∇xu, divy v = divx u, ∆yv = ∆xu, vt = ut + (h′ê2 · ∇y)v.
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Thus, we obtain the following problem (see also [58]):

vt = µ∆v − (v · ∇) v −∇q+ (h′(t)ê2 · ∇) v (y, t) ∈ Ω̃(t)× (0, T ),

div v = 0 (y, t) ∈ Ω̃(t)× (0, T )

v = ṽP (y) := λ(L2 − (y2 + h(t))2) ê1 (y, t) ∈ Γ̃R(t)× (0, T ),

v = h′(t)ê2 (y, t) ∈ ∂B × (0, T ),

v(y, 0) = v0(y) y ∈ Ω̃(0)

(4.3.9)

where v0(y) = u0(y+h0ê2) with u0 as in (2.0.8)1-(2.0.8)2. Notice that all derivatives appearing
in this problem are now taken with respect to the new variable y = (y1, y2). The Poiseuille flow
is obtained by transporting vp as in (2.0.7) to the new reference frame:

ṽP (y) = vP (y + h(t)ê2).

Its associated pressure in the new reference frame is

π̃P = πP (y + h(t)ê2).

The motion of the rectangular body is governed by:

mh′′(t) + f(h(t)) = −ê2 ·
∫
∂B

T (v, q)n̂ t ∈ (0, T ). (4.3.10)

The original problem (2.0.7) is equivalent to (4.3.9)-(4.3.10), because we simply adopted a
change in the system of coordinates. Thus Theorem 4.2.1 is proven if we prove existence of
solutions to (4.3.9)-(4.3.10). We look for solutions to the problem (4.3.9)-(4.3.10) of the form

v = v̂ + a, q = p+ π̃P

where a is the solenoidal extension of the Poiseuille flow in the new reference frame, strongly
depending on h and on the choice of ε0 in Lemma 4.3.1:

a(y) = ah(t)(y; ε0) = s(y + h(t) ê2). (4.3.11)

The function a enjoys the same properties of s stated in Lemma 4.3.1 once we substituted vp
and R with their counterparts in the new reference frame, ṽP and Rh, and we partitioned Rh

similarly to what we did in (4.3.1). Assume that

h0 ∈ [−L+ δ + ε̂, L− δ − ε̂]

where ε̂ > 0 small is arbitrarily fixed. Then, the pair (v̂, p) solves the following problem:

v̂t − µ∆v̂ + (v̂ · ∇) v̂ +∇p− (h′(t)ê2 · ∇) v̂ − (h′(t)ê2 · ∇) a

+ (v̂ · ∇) a+ (a · ∇) v̂ = ĝ (y, t) ∈ Ω̃(t)× (0, T ),

div v̂ = 0 (y, t) ∈ Ω̃(t)× (0, T ),

v̂ = 0 (y, t) ∈ Γ̃R(t)× (0, T ), v̂ = h′(t)ê2 (y, t) ∈ ∂B × (0, T ),

v̂(y, 0) = v̂0(y) = v0 − ah0(y; ε̂) y ∈ Ω̃(0),

(4.3.12)
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where
ĝ := µ∆(a− ṽP )− (a · ∇) a. (4.3.13)

Notice that v̂0 ∈ L2(Ω̃(0)) is such that v̂0 · n̂ = k0ê2 · n̂ on ∂B. We also point out that
supp(ĝ) ∈ Rh \ {|y1| < 2 ∧ |y2| < L − ε0 − h}. The vertical translation of the obstacle h
responds to

mh′′(t) + f(h(t)) = −ê2 ·
∫
∂B

T (v̂ + a, p)n̂ t ∈ (0, T ), (4.3.14)

with initial conditions h(0) = h0, h′(0) = k0.
As already mentioned, in order to prove our main result we make use of a procedure which

is similar to the one adopted in [31]: problem (4.3.12)-(4.3.14) is set in a region with moving
boundaries, Ω̃(t), which makes it impossible to apply the Faedo-Galerkin approximation with
the standard functional spaces of hydrodynamic evolutionary problems. The idea exploited
in [31] is that of a penalty method and it was first elaborated in the paper by Fujita and Sauer
(see [56]). The crucial idea of the method implies introducing an auxiliary fixed domain R̃
given by:

R̃ = R−R = {x− y |x ∈ R, y ∈ R}, (4.3.15)

such that Ω̃(t) ⊂ Rh(t) ⊂ R̃ (see Figure 4.1 for the new configuration). Actually, R can be
chosen as

R̃ = (−2I, 2I)× (−2L+ δ, 2L− δ) .

Notice that the vertical motion of Ω̃(t) inside R̃ is confined: dist (∂R̃, Γ̃R(t)) ≥ δ. This is an
obvious consequence of impenetrability of bodies but we will later prove that this inequality
actually holds strictly, thus the obstacle never collides with the boundary of the channel. Inside
the auxiliary fixed domain R̃, we can naturally extend the velocity field ṽP (y) outside Rh(t) for
every h(t) through its definition in (4.3.9), see Figure 4.1.

We report three facts, that we will later use. First, an estimate for the L2-norm of the gradient
of ṽP in each one-dimensional section of the domain R̃:

∥∇ṽP∥L2(−2L+δ, 2L−δ) ≤ λ ξ̃ with ξ̃ =

√
8

3
(2L− δ) (7L2 − 10L δ + 4 δ2). (4.3.16)

Then, we give the following partition of R̃:

R̃ =
2⋃
i=0

R̃i, R̃0 = R̃ ∩ {−3 ≤ y1 ≤ 3}, R̃1 = R̃ ∩ {y1 < −3},

R̃2 = R̃ ∩ {y1 > 3}.

(4.3.17)

Finally, we comment on the property of f in (4.3.14) being a strong force. The condition (4.2.1)
may be interpreted in the spirit of [77]. In [77], the author considers systems of the general type
x′′+∇V (x) = 0, with x ∈ Rn, where the potential V (x) associated to a conservative dynamical
system, such as a n-body system, is assumed to be C2 everywhere except at a closed non empty
set S at which it has infinitely deep wells, i.e. V (x) → −∞ as x → S; then, the system is
said to satisfy the strong force condition if and only if there exists a neighborhood N of S and
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U ∈ C2 such that U(x) → −∞ as x → S and −V (x) ≥ |∇U(x)|2 for all x ∈ N \ S. In
a n-body system the singularities correspond to collisions of the masses and the strong force
condition allows to avoid them (see also [11]). In our case, in the terminology of [77], f plays
the role of V ′ and the ODE in (4.3.14) satisfies the strong force assumption, with the singularity
exhibited at |h| = L− δ.

Figure 4.1: The channel, after the change of variables, moves in the fixed red region R̃.

Now, we seek a rigorous definition of weak solutions to (4.3.9)-(4.3.10). We introduce some
classical functional spaces from mathematical fluid dynamics (see [134] for instance):

V(R̃) = {v ∈ D(R̃) | div v = 0},
H(R̃) = closure of V w.r.t. the norm ∥ · ∥L2(R̃),

V (R̃) = closure of V w.r.t. the norm ∥∇ · ∥L2(R̃).

We emphasize that since R̃ is bounded, there holds the Poincaré inequality, which makesH1
0 (R̃)

an Hilbert space with respect to the scalar product (u, v)H1
0 (R̃) = (∇u,∇v)L2(R̃). The presence

of the obstacle B requires introducing some further spaces:

W(R̃) = {(v, l) ∈ V(R̃)× R | v|B = l ê2},
H(R̃) = closure of W in L2(R̃)× R,
V(R̃) = closure of W in H1

0 (R̃)× R

to which we associate the scalar products

⟨(v1, ℓ1), (v2, ℓ2)⟩H(R̃) =

∫
R̃\B

v1 · v2 dy +mℓ1ℓ2,

⟨(v1, ℓ1), (v2, ℓ2)⟩V(R̃) = 2

∫
R̃\B

D(v1) ·D(v2) dy +mℓ1ℓ2.

Finally, the weak formulation of problem (4.3.9)-(4.3.10) will exploit the following spaces,
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which may be defined for any given function h(t). In particular, for every t

Wh(t) = {(v, ℓ) ∈ W(R̃) | supp v ∈ Rh(t)},
Hh(t) = closure of Wh(t) in L2(R̃)× R,
Vh(t) = closure of Wh(t) in H1

0 (R̃)× R.
(4.3.18)

Then, we introduce the standard trilinear form:

ψ(u, v, w) =

∫
Ω̃

(u · ∇) v · w. (4.3.19)

We are ready to state and prove the following proposition. Let us denote by ⟨·, ·⟩ the duality
pairing between V and V ′.

Proposition 4.3.2. Let the couple (v, h) be a classical solution to (4.3.9)-(4.3.10) such that
|h(t)| ≤ L−δ−ε0 for all t ∈ [0, T ] for some ε0 > 0. Then, building the extension a = ah(y; ε0)
in (4.3.11) choosing the same ε0, the function v̂ = v − a satisfies

−
∫ T

0

{(v̂, ϕt)L2(Ω̃(t)) +mh′ℓ′ − f(h) ℓ}+2µ

∫ T

0

(D(v̂), D(ϕ))L2(Ω̃(t))

+

∫ T

0

{ψ(v̂, v̂, ϕ) + ψ(v̂, a, ϕ) + ψ(a, v̂, ϕ)− ψ(h′ê2, a, ϕ)

− ψ(h′ê2, v̂, ϕ)} =

∫ T

0

⟨ĝ, ϕ⟩+mk0 ℓ(0) + (v̂0, ϕ(0))L2(Ω̃(0))

(4.3.20)

for every (ϕ, ℓ) ∈ C1([0, T ];Vh(t)) such that ϕ(·, T ) = ℓ(T ) = 0, with

ĝ := µ∆(a− ṽP )− (a · ∇) a.

.

Proof. Consider the problem satisfied by (v̂, h), (4.3.12)-(4.3.14). In order to obtain (4.3.20),
we choose a test couple (ϕ, ℓ) ∈ C1([0, T ],Vh(t)) such that ϕ(·, T ) = ℓ(T ) = 0. We multiply
the first equation in (4.3.12) by ϕ and integrate by parts on Q̃T = Ω̃(t)× [0, T ]. All terms may
be treated in a standard manner (see, e.g., [57]). Though, a particular attention must be devoted
to the diffusive and pressure terms. Indeed, we temporally move the term µ∆a appearing in ĝ
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in (4.3.12) on the left-hand side and we get:∫ T

0

(−µ∆v̂ − µ∆a+∇p, ϕ)L2(Ω̃(t)) =

∫ T

0

(divT (v̂ + a, p), ϕ)L2(Ω̃(t))

= −
∫ T

0

∫
∂B

(T n̂) · ϕ+

∫ T

0

∫
Ω̃(t)

T : ∇ϕ

= −
∫ T

0

ê2 ·
∫
∂B

(T (v̂ + a, p)n̂) ℓ+

∫ T

0

∫
Ω̃(t)

T (v̂ + a, p) : ∇ϕ

=

∫ T

0

(mh′′ + f(h)) ℓ+ 2µ

∫ T

0

(D(v̂), D(ϕ))L2(Ω̃(t))

+ 2µ

∫ T

0

(D(a), D(ϕ))L2(Ω̃(t))

= −
∫ T

0

mh′ℓ′ +

∫ T

0

f(h)ℓ+ 2µ

∫ T

0

(D(v̂), D(ϕ))L2(Ω̃(t))

+ 2µ

∫ T

0

(D(a), D(ϕ))L2(Ω̃(t)) −mk0ℓ(0).

Thus, given ψ in (4.3.19) and

⟨ĝ, ϕ⟩ = 2µ(D(a), D(ϕ))L2(Ω̃(t)) − ψ(a, a, ϕ).

we obtain the weak formulation (4.3.20).

These tools enable us to define weak solutions of (4.3.9)-(4.3.10). This definition is a com-
promise between the definition given in [31, Definition 1] and the one given in [63, Definition
3.1], although the extension in [63] is constructed so as to isolate the obstacle.

Definition 4.3.3. A couple (v, h) is called a weak solution of (4.3.9)-(4.3.10) with initial data
(v0, h0, k0) if, given v̂ = v − a, where a = ah is the extension in (4.3.11) depending on some
ε0 = ε0(v0, h0, k0, T ) > 0, it satisfies the following requirements:

h ∈ W 1,∞(0, T ;R) ∩ C([0, T ]; [−L+ δ + ε0, L− δ − ε0]),

(v̂, h′) ∈ L2(0, T ;Vh(t)) ∩ L∞(0, T ;Hh(t)),

(v̂, h) satisfies (4.3.20) for every (ϕ, ℓ) ∈ C1([0, T ];Vh(t))

such that ϕ(·, T ) = ℓ(T ) = 0.

(4.3.21)

Remark 4.3.4. The requirement h ∈ C([0, T ]; [−L+δ+ε0, L−δ−ε0]) ensures that no collision
occurs between the obstacle and the boundary of the channel as there exists a separation strip
of size ε0 > 0 for all t ∈ [0, T ]. This makes the definition of weak solution consistent, since
it also allows to build the solenoidal extension a = ah in (4.3.11) precisely by choosing such
ε0 > 0. As already mentioned, we will prove that this requirement is satisfied by making
use of the strong force assumption satisfied by f , given in (4.2.1). On the other hand, it is
worth mentioning that, one could prove the no-collisions result without adding the strong force
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assumption, at least in the case of an obstacle purely translating in the vertical direction, because
the contact surfaces are of the class C∞ (see [73, 128]). However, as soon as one allows the
obstacle to rotate, this result does not hold anymore because the contact surfaces are merely
Lipschitz continuous.

Finally, we provide an estimate on the norm of ĝ, defined as in (4.3.13), on the auxiliary
domain R̃, which we will exploit later.

Lemma 4.3.5. For any ε0 > 0, define ĝ = ĝε0 ∈ L∞(R̃) ∩ L2(R̃) as in (4.3.13). Then
ĝ ∈ L2(R̃) and the following estimate holds:

∥ĝ∥L2(R̃) ≤ µ∥∆a∥L2(R̃0)
+ ∥a∥L4(R̃0)

∥∇a∥L2(R̃0)
.

Proof. Multiply ĝ by a divergence-free vector field φ ∈ H1
0 (R̃) and integrate by parts over R̃,

so that ∫
R̃
ĝ · φdx = −µ

∫
R̃
∇(a− ṽP ) · ∇φdx−

∫
R̃
(a · ∇)a · φdx. (4.3.22)

We follow [66, Lemma 4.1] and we exploit the partition (4.3.17) together with the properties of
a. In particular, since a = ṽP in R1 ∪R2, the first term in (4.3.22) corresponds to:∫

R̃
∇(a− ṽP ) · ∇φdx =

∫
R̃0

∇a : ∇φdx.

Since (ṽP · ∇)ṽP ≡ 0 in R̃, we also have∫
R̃1

(a · ∇)a · φdx = 0 ,

and in a similar way, ∫
R̃2

(a · ∇)a · φdx = 0 .

Since a ∈ H2(R̃) by applying the previous results and Hölder’s inequality, we obtain∣∣ ∫
R̃
∇a : ∇φdx

∣∣ = ∣∣∣∣∫
R̃0

∆a · φdx
∣∣∣∣ ≤ ∥∆a∥L2(R̃0)

∥φ∥L2(R̃0)
, (4.3.23)

and also∣∣∣∣∫
R̃
(a · ∇)a · φdx

∣∣∣∣ = ∣∣∣∣∫
R̃0

(a · ∇)a · φdx
∣∣∣∣ ≤ ∥a∥L4(R̃0)

∥∇a∥L2(R̃0)
∥φ∥L2(R̃0)

. (4.3.24)

From (4.3.13)-(4.3.23)-(4.3.24) we thus obtain∣∣∣∣∫
R̃
ĝ · φdx

∣∣∣∣ ≤ (µ∥∆a∥L2(R̃0)
+ ∥a∥L4(R̃0)

∥∇a∥L2(R̃0)

)
∥φ∥L2(R̃)

for every divergence-free field φ ∈ H1
0 (R̃), from which the thesis of the lemma follows.
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The following theorem states existence and uniqueness of weak solutions to problem (4.3.9)-
(4.3.10).

Theorem 4.3.6. Let Ω̃ be as in (4.3.7). Let f ∈ C1(−L + δ, L − δ;R) satisfy conditions
(4.2.1). Let h0 ∈ [−L + δ + ε̂, L − δ − ε̂], for some ε̂ > 0 small arbitrarily fixed, and
(v0 − ah0(y, ε̂), k0) ∈ Hh0 , where ah is as in (4.3.11). Then, problem (4.3.9)-(4.3.10) admits a
unique weak solution (v, h), defined as in Definition 4.3.3, for any T > 0. Moreover, let

F (h) =

∫ h

0

f(s) ds (4.3.25)

and let ε0 = ε0(v0, h0, k0, T ) > 0 be such that |h(t)| ≤ L − δ − ε0 for all t ∈ [0, T ]. Then,
given v̂ = v − a, where a = ah(y, ε0), the pair (v̂, h′) is almost everywhere equal to a function
continuous from [0, T ] into Hh(t), and (v̂, h) satisfies the following energy estimate:

∥v̂(t)∥2
L2(Ω̃(t))

+m∥h′(t)∥2L∞(0,T ;R) + 2F (h(t)) + 4µ

∫ t

0

∥D(v̂(s))∥2L2(Ω̃(s))ds

≤ ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0) +

4

µ

∫ T

0

∥ĝ(s)∥2V ′(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
×
∫ T

0

α(s) exp

[
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
s

]
ds,

(4.3.26)

where α(s) is defined as

α(s) = ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0) +

4

µ

∫ s

0

∥ĝ(τ)∥2V ′(R̃\B) dτ. (4.3.27)

Since the original problem (2.0.7) is equivalent to problem (4.3.9)-(4.3.10), the proof of
Theorem 4.2.1 is completed if we prove Theorem 4.3.6. We emphasize that Theorem 4.3.6 has
a stronger statement than Theorem 4.2.1, because it guarantees the continuity of the (unique)
solution in a suitable sense. The proof of the existence part is developed in Section 4.4 and
Section 4.5 and, as previously mentioned, it takes advantage of a penalty method. Uniqueness
is proven in Section 4.6: there, we will consider two weak solutions of problem (4.3.9)-(4.3.10),
(v1, h1) and (v2, h2), in the sense of Definition 4.3.3. Given the extensions of the Poiseuille flow
a1 = ah1 and a2 = ah2 defined as in (4.3.11), one can put v̂1 = v1 − a1 and v̂2 = v2 − a2 and
do the computations on (v̂1, h1) and (v̂2, h2). As we already pointed out in the introduction,
we are not allowed to take the difference between the equation in weak form satisfied by the
two solutions, (4.3.20), because v̂1 and v̂2 are not defined on the same domain: the definition of
the functional spaces, (4.3.18), depends on h1, h2, and the weak formulation (4.3.20) is set on
two different domains, Ω̃1(t) and Ω̃2(t). To solve such issue, we follow the procedure devised
in [76]; here, the authors build a map ψt projecting Ω̃2(t) on Ω̃1(t), which allows to define a
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change of variables, so that they can introduce a solenoidal velocity vector field v̂2, the pullback
of v̂2 by such map, on Ω̃1(t). As a consequence, one can define

w := v̂1 − v̂2, ĥ := h1 − h2. (4.3.28)

Then, one proceeds standardly, obtaining the equation satisfied by (w, ĥ), providing some
proper estimates, and finally one can conclude by applying a Grönwall’s inequality.

4.4 The penalized problem

After changing problem (2.0.7) into the equivalent problem (4.3.12)-(4.3.14), the second step
of the penalty method exactly implies penalizing (4.3.20), which is the weak formulation of
problem (4.3.12)-(4.3.14). We denote by Eh the complementary domain of Rh in R̃, Eh =
R̃ \ Rh and we introduce its characteristic function χEh

. We emphasize that the functions
belonging to W(R̃) differ from those belonging to Wh precisely because their support might
be also in Eh. The penalty method eliminates the difficulty induced by the time dependent
domain by allowing to solve the problem in the fixed domain R̃, so that classical methods can
be applied, by introducing a penalization term which takes care of the remainder in Eh.

We extend v̂0 by zero outside Rh(0), while a(y) is naturally extended outside Rh(t) to the
whole fixed domain R̃ through its definition (4.3.11) for every t ∈ [0, T ] and we solve the
following problem:

Let n ≥ 1 be fixed. Find

h ∈ W 1,∞(0, T ;R) ∩ C([0, T ]; [−L+ δ + ε0, L− δ − ε0])

(v̂, h′) ∈ L2(0, T ;V(R̃)) ∩ L∞(0, T ;H(R̃)),

for some ε0 = ε0(v̂0, h0, k0, T ) > 0, satisfying

−
∫ T

0

{(v̂, ϕt)L2(R̃\B) +mh′ℓ′ − f(h) ℓ}+ 2µ

∫ T

0

(D(v̂), D(ϕ))L2(R̃\B)

+

∫ T

0

{ψ(v̂, v̂, ϕ) + ψ(v̂, a, ϕ) + ψ(a, v̂, ϕ)− ψ(h′ê2, a, ϕ)− ψ(h′ê2, v̂, ϕ)}

+ n

∫ T

0

(χEh
v̂, ϕ)L2(R̃) =

∫ T

0

⟨ĝ, ϕ⟩+mk0ℓ(0) + (v̂0, ϕ(0))L2(R̃\B),

∀ (ϕ, ℓ) ∈ C1([0, T ],V(R̃)) such that ϕ(·, T ) = ℓ(T ) = 0.

(4.4.1)

We remark that the trilinear forms in (4.4.1) are defined as in (4.3.19), where the integral is
now on R̃\B, but with a little abuse of notation we still use ψ as a label function. The existence
of a solution to the penalized problem is proven in the following proposition:

Proposition 4.4.1. Let R̃ be a fixed domain defined by (4.3.15), partitioned as in (4.3.17). Let
f ∈ C1(−L+δ, L−δ;R) satisfy conditions (4.2.1). Assume that h0 ∈ [−L+δ+ ε̂, L−δ− ε̂] for
some ε̂ > 0 small arbitrarily fixed, and (v̂0, k0) ∈ H(R̃). Then, there exists at least one solution
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(v̂, h) to problem (4.4.1) such that |h(t)| ≤ L − δ − ε0 for some ε0 = ε0(v̂0, h0, k0, T ) > 0.
This solution is global in time and, moreover, (v̂, h′) is almost everywhere equal to a function
continuous from [0, T ] into H(R̃); furthermore, given F (h) as in (4.3.25), it satisfies the energy
estimate:

∥v̂(t)∥2L2(R̃\B)+m∥h′(t)∥2L∞(0,T ;R)+2F (h(t)) + 4µ

∫ t

0

∥D(v̂(s))∥2L2(R̃\B) ds+ 2n

∫ t

0

∫
Eh

|v̂(s)|2 ds

≤ ∥v̂0∥2L2(R̃\B) +m|k0|2 + 2F (h0) +
4

µ

∫ T

0

∥ĝ(s)∥2V ′(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
×

∫ T

0

α(s) exp

[
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
s

]
ds

(4.4.2)

with

α(s) = ∥v̂0∥2L2(R̃\B) +m|k0|2 + 2F (h0) +
4

µ

∫ s

0

∥ĝ(τ)∥2V ′(R̃\B) dτ.

Proof. Since the domain R̃ is fixed, we can apply the Faedo-Galerkin procedure. The space
V(R̃) is a separable Hilbert space, and W(R̃) is dense in V(R̃), hence we can choose a se-
quence given by a countable set of couples {(wi, 1)}∞i=1 belonging to W(R̃) to be a basis in
V(R̃), orthonormal in H(R̃). For each N ≥ 1 we construct an approximate solution(

v̂N
HN

)
=

N∑
i=1

ciN(t)

(
wi
1

)
,

where the coefficients ciN are determined by the following first-order integro-ordinary differen-
tial system

N∑
i=1

(wi, wj)L2(R̃\B)c
′
iN(t) +m

N∑
i=1

c′iN(t) + f(hN(t))

+ 2µ
N∑
i=1

(D(wi), D(wj))L2(R̃\B)ciN(t)+
k∑

i,l=1

ψ(wi, wl, wj) ciN(t)clN(t)

+
N∑
i=1

ψ(wi, a, wj) ciN(t) +
N∑
l=1

ψ(a, wl, wj) clN(t)−
N∑
i=1

ψ(ê2, a, wj) ciN(t)

−
k∑

i,l=1

ψ(ê2, wl, wj) ciN(t)clN(t) +
N∑
i=1

n(χEhN
wi, wj)L2(R̃)ciN(t)

= ⟨ĝ, wj⟩ j = 1, ..., N

(4.4.3)

hN(t) = h0 +
N∑
i=1

∫ t

0

ciN(s)ds, ciN(0) = the ith component of v̂0,N ,

HN(0) = k0,N .
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The initial conditions are given by the orthogonal projections in H(R̃) of (v̂0, k0) onto the space
spanned by {(wi, 1)}Ni=1, which we call (v̂0,N , k0,N). This system has a solution defined on some
interval [0, tN ], provided that there exists ε0 > 0 such that

|hN(t)| ≤ L− δ − ε0 ∀ t ∈ [0, tN ]. (4.4.4)

In this way, we are allowed to build the function a as in (4.3.11), by choosing the same ε0.
We shall see that this condition is indeed always guaranteed for any t ∈ [0, T ] with T > 0,
because of the presence of f in (4.3.10). We will prove this claim at the end of the proof of this
proposition.

Our aim is finding an apriori estimate for the approximate solution (v̂N , HN). To this end,
we multiply (4.4.3) by cjN(t) and add the equations for j = 1, ..., N :

(v̂′N , v̂N)L2(R̃\B)+mH
′
NHN + f(hN)HN+2µ ∥D(v̂N)∥2L2(R̃\B)

+ ψ(v̂N , a, v̂N)−ψ(HN ê2, a, v̂N) + n∥v̂N∥2L2(EHN
) = ⟨ĝ, v̂N⟩

which we rewrite as

1

2

d

dt

(
∥v̂N∥2L2(R̃\B)

+m|HN |2 + 2F (hN)

)
+ 2µ ∥D(v̂N)∥2L2(R̃\B)

+ n∥v̂N∥2L2(EHN
) = ⟨ĝ, v̂N⟩ − ψ(v̂N , a, v̂N) + ψ(HN ê2, a, v̂N),

(4.4.5)

where F is defined in (4.3.25). Our aim is finding an a priori estimate for the approximate
solution (v̂N , HN). To this end, we start by estimating the right-hand side of (4.4.5). The first
trilinear form may be bounded exploiting the Hölder inequality and the Young inequality

ψ(v̂N , a, v̂N) ≤ ∥∇a∥L∞(R̃\B)∥v̂N∥
2
L2(R̃\B)

≤ (4L− 2δ)

π
∥∇a∥L∞(R̃\B)∥v̂N∥L2(R̃\B)∥∇v̂N∥L2(R̃\B)

≤ 2

µ

(4L− 2δ)2

π2
∥∇a∥2L∞(R̃\B)∥v̂N∥

2
L2(R̃\B)+

µ

8
∥∇v̂N∥2L2(R̃\B),

where we used the fact that the Poincaré constant in the domain R̃ is π2/(4L− 2δ)2. For what
concerns the second trilinear form, we exploit again the definition of a, as we did when proving
Lemma 4.3.5. Since a(y) is equal to 0 on the obstacle B, we write

ψ(HN ê2, a, v̂N) =

∫
R̃\B

(HN ê2 · ∇)a · v̂N =

∫
R̃
(HN ê2 · ∇)a · v̂N

=

∫ +2I

−2I

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂N dy2
)
dy1.
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Then

ψ(HN ê2, a, v̂N) ≤
∣∣∣∣ ∫ −3

−2I

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)ṽP · v̂N dy2
)
dy1

+

∫ +3

−3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂N dy2
)
dy1

+

∫ 2I

+3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)ṽP · v̂N dy2
)
dy1

∣∣∣∣.
(4.4.6)

Consider the partition (4.3.17). The first term is treated as follows, by using (4.3.16):∣∣∣∣ ∫ −3

−2I

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)ṽP · v̂N dy2
)
dy1

∣∣∣∣
≤ |HN |

∫ −3

−2I

(
∥∇ṽP∥L2(−2L+δ,2L−δ)∥v̂N∥L2(−2L+δ,2L−δ)

)
dy1

≤ |HN |λ ξ̃
∫ −3

−2I

∥v̂N∥L2(−2L+δ,2L−δ) dy1

≤ |HN |λ ξ̃ ∥v̂N∥L2(R̃1)
≤ 4L− 2δ

π
|HN |λ ξ̃ ∥∇v̂N∥L2(R̃1)

.

The third integral in (4.4.6) can be treated analogously, so that we obtain:∣∣∣∣ ∫ 2I

+3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)ṽP · v̂N dy2
)
dy1

∣∣∣∣ ≤ 4L− 2δ

π
|HN |λ ξ̃ ∥∇v̂N∥L2(R̃2)

.

For what concerns the term in the region R̃0 = [−3, 3]× [−2L+ δ, 2L− δ]:∫ +3

−3

(∫ 2L−δ

−2L+δ

(HN ê2 · ∇)a · v̂Ndy2
)
dy1 ≤

4L− 2δ

π
|HN |∥∇a∥L2(R̃0)

∥∇v̂N∥L2(R̃\B).

Thus, we finally obtain that:

ψ(HN ê2, a, v̂N) ≤
4L− 2δ

π
|HN |∥∇a∥L2(R̃0)

∥∇v̂N∥L2(R̃\B)

+
4L− 2δ

π
|HN |λ ξ̃ ∥∇v̂N∥L2(R̃\B)

≤ 2

µ

(4L− 2δ)2

π2
|HN |2(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

+
µ

4
∥∇v̂N∥2L2(R̃\B)

where we used the Young inequality and the fact that

∥∇v̂N∥2L2(R̃1)
+ ∥∇v̂N∥2L2(R̃2)

≤ ∥∇v̂N∥2L2(R̃\B).
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Then, we apply again the Young inequality, after the Schwarz inequality, to provide a bound for
the first term on the right-hand side in (4.4.5):

|⟨ĝ, v̂N⟩| ≤ ∥ĝ∥V ′(R̃\B)∥∇v̂N∥L2(R̃\B)≤
2

µ
∥ĝ∥2V ′(R̃\B) +

µ

8
∥∇v̂N∥2L2(R̃\B),

since Lemma 4.3.5 guarantees that ĝ ∈ V ′(R̃ \ B). Thus, by reordering equation (4.4.5), once
we have plugged these estimates and used the following fact∫

R̃\B
|∇v̂N |2 dy ≤

∫
R̃
|∇v̂N |2 dy = 2

∫
R̃
|D(v̂N)|2 dy = 2

∫
R̃\B

|D(v̂N)|2 dy,

since v̂N is a divergence free vector field vanishing on ∂R̃, we obtain

d

dt

(
∥v̂N∥2L2(R̃\B)

+m|HN |2+2F (hN)

)
+µ∥∇v̂N∥2L2(R̃\B)+ 2n∥v̂N∥2L2(EHN

)

≤ 4

µ
∥ĝ∥2V ′(R̃\B) +

4

µ

(4L− 2δ)2

π2
∥∇a∥2L∞(R̃\B)∥v̂N∥

2
L2(R̃\B)

+
4

µ

(4L− 2δ)2

π2
|HN |2(∥∇a∥2L2(R̃0)

+ λ2ξ̃2).

(4.4.7)

From (4.4.7), by integrating between 0 and t, we deduce that

∥v̂N(t)∥2L2(R̃\B)
+m|HN(t)|2+2F (hN(t)) + 2µ

∫ t

0

∥∇v̂N(s)∥2L2(R̃\B) ds

+ 2n

∫ t

0

∫
EHN

|v̂N(s)|2 ds

≤ ∥v̂0,N∥2L2(R̃\B)
+m|k0,N |2+2F (h0)

+
4

µ

∫ t

0

∥ĝ(s)∥2V ′(R̃\B)ds+
4

µ

(4L− 2δ)2

π2
∥∇a∥2L∞(R̃\B)

∫ t

0

∥v̂N(s)∥2L2(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

∫ t

0

|HN(s)|2ds

≤ ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0)

+
4

µ

∫ t

0

∥ĝ(s)∥2V ′(R̃\B)ds+
4

µ

(4L− 2δ)2

π2
∥∇a∥2L∞(R̃\B)

∫ t

0

∥v̂N(s)∥2L2(R̃\B)ds

+
4

µ

(4L− 2δ)2

mπ2
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

∫ t

0

m|HN(s)|2ds

≤ ∥v̂0∥2L2(R̃\B)
+m|k0|2+2F (h0)+

4

µ

∫ t

0

∥ĝ(s)∥2V ′(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
×
∫ t

0

(
∥v̂N(s)∥2L2(R̃\B) +m|HN(s)|2

)
ds.
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Since F (hN) ≥ 0 by (2.0.14), invoking Grönwall’s lemma, we obtain for any instant t ∈ [0, T ]:

∥v̂N(t)∥2L2(R̃\B)
+m|HN(t)|2

≤ α(t) exp

[
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
t

]
,

with

α(t) = ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0) +

4

µ

∫ t

0

∥ĝ(s)∥2V ′(R̃\B) ds.

Thus, we finally get

∥v̂N(t)∥2L2(R̃\B)
+m|HN(t)|2+2F (hN(t))+2µ

∫ t

0

∥∇v̂N(s)∥2L2(R̃\B) ds

+2n

∫ t

0

∫
EHN

|v̂N(s)|2 ds

≤ ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0) +

4

µ

∫ t

0

∥ĝ(s)∥2V ′(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
×
∫ t

0

α(s) exp

[
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
s

]
ds

≤ ∥v̂0∥2L2(R̃\B)
+m|k0|2 + 2F (h0)+

4

µ

∫ T

0

∥ĝ(s)∥2V ′(R̃\B)ds

+
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
×
∫ T

0

α(s) exp

[
4

µ

(4L− 2δ)2

π2
·max

(
∥∇a∥2L∞(R̃\B),

1

m
(∥∇a∥2L2(R̃0)

+ λ2ξ̃2)

)
s

]
ds

(4.4.8)

for all t ∈ [0, T ], where the right hand-side is bounded if T > 0. In particular, the solution
exists globally in time provided that condition (4.4.4) holds, which we still need to prove;
such condition in the original inertial reference system translates the condition of absence of
collisions occurring between the rectangular obstacle and the boundary of the channel.

Estimate (4.4.8) implies the existence of a couple

(v̂, h′) ∈ L∞(0, T ;H(R̃)) ∩ L2(0, T ;V(R̃))

and of a subsequence, which we denote by (v̂N , h
′
N), such that, as N → ∞:

(v̂N , h
′
N)⇀ (v̂, h′) inL2(0, T ;V(R̃)),

(v̂N , h
′
N)

∗
⇀ (v̂, h′) inL∞(0, T ;H(R̃)),

hN → h in C([0, T ];R),
(4.4.9)
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the latter holding because of the compact embedding of W 1,∞(0, T ;R) into C([0, T ];R). More-
over, through classical methods (see [31, Section 3] and [134, Chapter 3, Section 3]), in view of
(4.4.8) together with the fact that f(hN) can be thought to be a bounded function as long as the
rigid obstacle does not touch the boundary of the channel, one can prove a further convergence
property (up to the extraction of a subsequence):

(v̂N , h
′
N) → (v̂, h′) inL2(0, T ;H(R)) . (4.4.10)

By [31, Lemma 1] we also have that

χEhN
∩O → χEh∩O inLp(0, T ;Lp(R)) . (4.4.11)

The convergence results in (4.4.9) together with (4.4.10)-(4.4.11) enable us to pass to the limit
in the system satisfied by (v̂N , h

′
N), which is

(v̂′N , wj)L2(R̃\B) +mh′N + f(h′N) + 2µ (D(v̂N), D(wj))L2(R̃\B)

+ ψ(v̂N , v̂N , wj) + ψ(v̂N , a, wj) + ψ(a, v̂N , wj)

− ψ(h′N ê2, a, wj)− ψ(h′N ê2, v̂N , wj) + n(χEhN
v̂N , wj)L2(R̃) = ⟨ĝ, wj⟩

v̂N(0) = v̂0,N , h′N(0) = k0,N ,

with j = 1, ..., N and to obtain that (v̂, h) in (4.4.9) satisfies (4.4.1), as well as v̂(0) = v̂0 in
the distributional sense, by exploiting classical arguments (see for instance [134, Chapter 3,
Section 3]). To prove that (v̂, h′) is almost everywhere equal to a function continuous from
[0, T ] into H(R̃), one can easily proceed as in [134, Chapter 3, Theorem 3.1] to obtain that
(v̂′, h′′) ∈ L2(0, T ;V′(R̃)) and then apply [134, Chapter 3, Lemma 1.2], by exploiting the fact
that {V(R̃),H(R̃),V′(R̃)} is an Hilbert triplet. Moreover, the function v̂ obeys the energy
inequality (4.4.2), which is a natural consequence of the convergence results that we have just
proved.

The proof of Proposition 4.4.1 is complete once we prove the following lemma, which,
combined with the last convergence result in (4.4.9), allows to conclude on the global-in-time
character of the solution.

Lemma 4.4.2. For all T > 0, there exists ε0 = ε0(v̂0, h0, k0, T ) > 0 such that

|hN(t)| ≤ L− δ − ε0 ∀ t ∈ [0, T ].

Proof. By contradiction, let us suppose that there exists T > 0 such that hN(t̄) = L − δ for
some t̄ ∈ [0, T ]. The same procedure can be applied if hN = −L+ δ. Since hN ∈ C([0, T ];R),
for any η > 0 small there exist ε1 > ε2 > 0 such that

hN(t) ∈ [L− δ − 2η, L− δ − η], ∀ t ∈ (t̄− ε1, t̄− ε2).

Taking into account the conditions satisfied by f reported in (4.2.1), one can take η small enough
so that there exists a constant C̄ > 0 such that

F (hN) >

∫ L−δ−η

L−δ−2η

f(s)ds >

∫ L−δ−η

L−δ−2η

C̄ exp
1

(L− δ − s)4+r
ds

=

∫ 2η

η

C̄ exp
1

τ 4+r
dτ ≥ C̄η exp

1

(2η)4+r
.

(4.4.12)
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The solenoidal extension a in (4.3.11) is now built taking ε0 = η, thus

a(y) = ahN (y; η).

From the energy estimate (4.4.8) (which is uniform with respect to N ), (4.4.12) and the esti-
mates (4.3.3), we obtain that there exist a positive constant C0, depending on the initial data
h0, k0, v̂0, and two positive constants C1, C2 depending on the geometrical and physical param-
eters, i.e. m,λ, L, δ, µ, such that

2 C̄η exp
1

(2η)4+r
< C0 +

C1

η4
T +

C2

η4

∫ T

0

(C0 +
C1

η4
s) exp(

C2

η4
s) ds. (4.4.13)

Integrating by parts the right-hand side of (4.4.13), we obtain that

2 C̄η exp
1

(2η)4+r
<
C1

C2

+ C0 exp
C2T

η4
− C1

C2

exp
C2T

η4
+
C1

η4
+
C1

η4
T exp

C2T

η4
.

This immediately yields a contradiction, since r > 0. From the above argument, for all T > 0
it must be that |hN(t)| < L− δ when t ∈ [0, T ]. Since hN ∈ C([0, T ];R) and [0, T ] is compact,
the thesis of the lemma follows.

4.5 Existence

We already mentioned how proving Theorem 4.2.1 is equivalent to proving Theorem 4.3.6. The
idea of the proof of the first part of Theorem 4.3.6 is exploiting the result of existence for the
penalized problem, given in Proposition 4.4.1. Indeed, the next step of the penalty method
implies passing to the limit in (4.4.1) with respect to n. Again, we will follow the procedure
by [31], highlighting the differences when it is necessary. Let us label the weak solution to
(4.4.1) making the dependence on n explicit as (v̂n, hn); of course Eh also depends on n, thus
it may be relabelled as Ehn This solution satisfies the energy estimate (4.4.2), where we should
also make explicit the dependence on n. Let us state and prove two consequences of this fact.

The first consequence is natural: there exists a subsequence, which we denote again by
(v̂n, h

′
n) such that

(v̂n, h
′
n)⇀ (v̂, h′) inL2(0, T ;V(R̃)),

(v̂n, h
′
n)

∗
⇀ (v̂, h′) inL∞(0, T ;H(R̃)),

hn → h in C([0, T ];R),
(4.5.1)

where the latter is due to the compact embedding of W 1,∞(0, T ;R) onto C([0, T ];R).
The second consequence is proven in the following lemma.

Lemma 4.5.1. The sequence v̂n satisfies

lim
n→∞

∫ T

0

∫
Eh

|v̂n|2 dy ds = 0. (4.5.2)
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Proof. From (4.4.2), we obtain that

lim
n→∞

∫ T

0

∫
Ehn

|v̂n|2 dy ds = 0. (4.5.3)

Following [31], we write∫ T

0

∫
Eh

|v̂n|2 dy ds ≤
∫ T

0

∫
Ehn

|v̂n|2 dy ds

+

∫ T

0

∫
{Eh\Ehn}

|v̂n|2 dy ds.
(4.5.4)

Then, we use the Hölder inequality:∫ T

0

∫
{Eh\Ehn}

|v̂n|2 dy ds =
∫ T

0

∫
R̃
χ{Eh\Ehn}|v̂n|

2 dy ds

≤
∫ T

0

∥χ{Eh\Ehn}∥L2(R̃)∥v̂n∥
2
L4(R̃)

→ 0

as n→ ∞,

(4.5.5)

where we use the result in [31, Lemma 1] to infer that χ{Eh\Ehn} → 0 in Lp(R̃× [0, T ]) strongly
∀ p ∈ [1,∞) and that v̂n ∈ L4(R̃ × [0, T ]) as it is proven in [134, Lemma 3.3]. If we combine
(4.5.3), (4.5.5), (4.5.4), we obtain the sought result (4.5.2).

Now, we introduce, for any η > 0

Qh(t) = {(y, t) ∈ R̃ × [0, T ] | y ∈ Rh(t)}.

In order to develop the proof of Theorem 4.3.6, we need to prove an auxiliary result, i.e. that v̂n
is relatively compact in L2(Q), which implies the existence of a subsequence, still labelled as
v̂n, satisfying the following strong convergence result

v̂n → v̂ in L2(Q). (4.5.6)

For the moment, let (4.5.6) be true. We postpone the proof of this result at the end.
We can now proceed to the proof of Theorem 4.3.6. The objective is proving that the limit

(v̂, h) in (4.5.1) is a solution to the original problem, thus it satisfies (4.3.21).
We start by proving that (4.3.21)3 is satisfied. In other words, we pass to the limit in (4.4.1).

Take (ϕ, ℓ) ∈ C1([0, T ];Wh(t)). Since there holds the convergence result in (4.5.1)3, there exists
n0 ∈ N such that

(ϕ, ℓ) ∈ C1([0, T ];Whn(t)) ∀n ≥ n0,

and the penalty term in (4.4.1) vanishes for all n ≥ n0, by applying Lemma 4.5.1. The con-
vergence results (4.5.1), (4.5.6) together with the density of Wh(t) in Vh(t) prove that (v̂, h) also
satisfies (4.3.20) for T > 0.
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The results of convergence (4.5.1) prove that (v̂, h) ∈ L2(0, T ;V(R̃)) ∩ L∞(0, T ;H(R̃)).
By contradiction, let us suppose that supp(v̂) invades Eh. Then, we can find K ⊆ R̃ such that
supp(v̂) ⊂ K. However, from (4.5.6) and Lemma 4.5.1, we get a contradiction; thus in particu-
lar we obtain that (v̂, h) satisfies (4.3.21)1- (4.3.21)2. Moreover, with analogous considerations
as those that we did when proving Proposition 4.4.1, we obtain the continuity property of (v̂, h)
expressed in the statement of Theorem 4.3.6. Finally, the energy estimate (4.3.26) simply fol-
lows from taking the limit as n→ ∞ in (4.4.2); that explains the expression for α(s) in (4.3.27).
As a consequence of (4.4.2), we also obtain the global character in time of the solution and the
existence of some ε0 > 0 such that |h(t)| ≤ L−δ−ε0 for all t ∈ [0, T ], by proceeding precisely
as in Lemma 4.4.2.

To conclude the proof, we show how to prove (4.5.6). The procedure implemented in [31]
in order to prove (4.5.6) implies exploiting an Aubin-Lions type lemma: more precisely, one
wants to apply [56, Lemma 4.6]. However, first we need to build the structure to apply such
lemma. Thus, we introduce an open bounded set D ⊂ R2 with Lipschitz boundary such that
B̄ ⊂ D, and the function spaces

M(D) = {(v, l) ∈ L2(D̄)× R | div v = 0, v|B = l ê2},
Z(D) = {(v, l) ∈ H(D)× R | v|B = l ê2} ⊂M(D),

where H(D) can be characterized as follows since D is a Lipschitz open bounded set (see [134,
Theorem 1.4])

H(D) = {v ∈ L2(D) | div v = 0 , γνu = 0 on ∂D}.

We associate to both Z(D) and M(D) the following scalar product:

((v1, v2)) =

∫
D\B

v1 · v2 dy + l1l2,

which makes both of them Hilbert spaces. Then, we define the projector P (D),

P (D) :M(D) → Z(D).

We will now prove two technical lemmas, starting by a useful property of such projector.

Lemma 4.5.2. There exists a positive constant C such that

∥v − P (D)v∥L2(D) ≤ C∥v∥L2(∂D) ∀ v ∈M(D) ∩H1(D).

Proof. We follow step by step the proof of [31, Lemma 4]. We emphasize that even if D is
merely a Lipschitz domain this does not compromise the validity of the proof.

Then we prove the second technical lemma needed to guarantee (4.5.6).

Lemma 4.5.3. Let D be defined as above. Then we choose 0 < α < β < T , so that D ×
(α, β) ⊆ Q; let Un be the restriction of v̂n to D × (α, β). Then P (D)Un is strongly convergent
in L2(D × (α, β)).
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Proof. We introduce an auxiliary function space:

F (D) = {(v, l) ∈ H1
0 (D)× R | div v = 0, v|B = l ê2}.

Any element in F (D) can be extended by 0 in R̃ \ B, so we can consider F (D) ⊆ V(R̃). We
pick as a test function ϕ in (4.4.1) ϕ = a(t)φ, with φ ∈ F (D) and a(t) ∈ D(α, β) to obtain

d

dt
{(Un, φ)L2(D\B)+mh′n l}+f(hn) l = F (D)′⟨gn, φ⟩F (D) ∀φ ∈ F (D)

d

dt
((Un, φ)) = F (D)′⟨gn, φ⟩F (D) − f(hn) l ∀φ ∈ F (D)

(4.5.7)

where

F (D)′⟨gn, φ⟩ F (D)=− 2µ(D(Un), D(φ))L2(D)−ψ(Un, Un, φ)−ψ(Un, a, φ)− ψ(a, Un, φ)

+ ψ(h′nê2, a, φ) + ψ(h′nê2, Un, φ)−⟨ĝ, φ⟩,

provided that n is large enough. Since F (D) ⊆ Z(D), we may rewrite (4.5.7) as

d

dt
((P (D)Un, φ)) = F (D)′⟨gn, φ⟩F (D) −f(hn) l ∀φ ∈ F (D). (4.5.8)

From (4.5.8), we have that

| d
dt
((P (D)Un, φ))| = |F (D)′⟨gn, φ⟩F (D)|+ |f(hn) l| ∀φ ∈ F (D). (4.5.9)

Then, we can prove that the right-hand side of (4.5.9) can be bounded. Indeed, by exploit-
ing classical estimates (see [134, Chapter 3, Section 3.3]), Lemma 4.3.5, the energy estimate
(4.3.26), we obtain that

|F (D)′⟨gn, φ⟩F (D)| ≤M1∥∇φ∥L2(D), ∀n ≥ 1, (4.5.10)

where M1 is a constant depending on T, µ, λ, the geometry of the problem and the initial con-
ditions. Also

|f(hn) l| ≤M2|l|, ∀n ≥ 1, (4.5.11)

because f(hn) can be thought to be a bounded function as long as the rigid obstacle does not
touch the boundary of the channel, which has been proven. Bounds (4.5.10) and (4.5.11) imply
that

∥ d
dt
P (D)Un∥L2(0,T ;[F (D)]′) ≤M1 +M2, ∀n ≥ 1.

This inequality, together with the fact that Un is a bounded set in L2(0, T ;Z(D) ∩ H1(D))
because of the energy estimate (4.4.2), and the compact inclusions Z(D) ∩H1(D) ⊂ Z(D) ⊂
[F (D)]′, allow to apply [56, Lemma 4.6] so as to obtain that P (D)Un forms a compact set in
L2(D × (α, β)).

Finally, one can give the following lemma:

Lemma 4.5.4. The sequence v̂n is relatively compact in L2(Q), thus there holds (4.5.6).
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Proof. In order to prove this lemma, one can follow precisely the procedure given in [31, The-
orem 3], once we declare the following notations: given s ∈ N, define α0, α1, ..., αs, real
numbers, and the sets Ω1,Ω2, ...,Ωs such that

0 = α0 < α1 < ... < αs = T

Ω̄i×]αi−1, αi[⊂ Q, Q \ (Ωi×]αi−1, αi[) ⊂ Qi,η.

Then we denote

Iη =
s⋃
i=1

Ωi×]αi−1, αi[, Qη = Q \ Iη.

With the help of such definitions, we follow step by step the proof of [31, Theorem 3], which is
divided in two parts. The first part uses Lemma 4.5.3, while the second part aims at exploiting
the classical compactness result by Kolmogorov, [96, Chapter 3, Section 11.3, Theorem 3].

4.6 Uniqueness

We begin by stating the following regularity property on a solution given by Theorem 4.3.6.

Lemma 4.6.1. Let (v, h) be a weak solution to problem (4.3.9)-(4.3.10) in the sense of Defini-
tion 4.3.3. Then, given v̂ = v − a, where a = ah is the extension defined as in (4.3.11), there
holds

t v̂ ∈ L4/3(0, T ;W 2,4/3(Ω̃(t))), t ∂tv̂ ∈ L4/3(0, T ;L4/3(Ω̃(t))) ,

t∇p ∈ L4/3(0, T ;L4/3(Ω̃(t))) .
(4.6.1)

Moreover, one can estimate the trilinear form as follows, for any w ∈ H1
0 (Ω̃(t)):

|ψ(w, v̂, w)| ≤ 21/2∥w∥L2(Ω̃(t))∥∇w∥L2(Ω̃(t))∥∇v̂∥L2(Ω̃(t)). (4.6.2)

Proof. The proof of (4.6.1) follows the proof of [76, Proposition 3], up to some slight modi-
fication. We report here the main steps. We start by deducing, from a classical interpolation
argument [134, Chapter 3, Lemma 3.3] and suitable Sobolev embeddings, that

v̂ ∈ L4/3(0, T ;L4/3(Ω̃(t))) , (v̂ · ∇)v̂ ∈ L4/3(0, T ;L4/3(Ω̃(t))) .

The same interpolation argument together with the Hölder inequality can be used to deduce
(4.6.2). For any t ∈ [0, T ] and any y ∈ Ω̃(t), let us undo the change of variables in (4.3.6) and
introduce

û(x, t) = v̂(x− h(t) ê2, t) , p̂ = p(x− h(t) ê2, t) ∀ (x, t) ∈ Ωh(t) × [0, T ] . (4.6.3)

Obviously, û inherits the properties satisfied by v̂. In particular, it satisfies

−
∫ T

0

{(û, ϕt)L2(Ω̃(t)) +mh′ℓ′ − f(h) ℓ}+2µ

∫ T

0

(D(û), D(ϕ))L2(Ω̃(t))

+

∫ T

0

{ψ(û, û, ϕ) + ψ(v̂, s, ϕ) + ψ(s, v̂, ϕ)} =

∫ T

0

⟨ĝ, ϕ⟩+mk0 ℓ(0) + (û0, ϕ(0))L2(Ω̃(0))

(4.6.4)
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for every ϕ ∈ C1([0, T ];H1
0 (R)) such that ϕ(·, t)|Bh(t)

= ℓ(t) ê2, with ℓ(t) ∈ R and ϕ(·, T ) =
ℓ(T ) = 0, and

ĝ := µ∆(s− vP )− (s · ∇) s.

Equality (4.6.4) corresponds to (4.3.20) once we undo the change of variables in (4.3.6). The
second step to prove 4.6.1 implies introducing the following auxiliary linear system with un-
known (U,H):

∂U

∂t
− µ∆U +∇Q = f forx ∈ Ωh(t) ,

divU = 0 forx ∈ Ωh(t) ,

U = H ′ê2 forx ∈ ∂Bh(t) ,

U = 0 forx ∈ ∂ΓR ,

mH ′′(t) = −ê2 ·
∫
∂Bh(t)

T (U,Q)n̂ dσ +mf1 ,

(4.6.5)

where f and f1 are given source terms, and Ωh(t) and Bh(t) are prescribed and not unknown. In
particular, they are associated to (û, h), where û is known and it is as in (4.6.3). Following [76,
Definition 2], we say that, given f ∈ L4/3((0, T )× Ωh(t)), f1 ∈ L4/3(0, T ;R) and ε0 > 0, then

(U,H) ∈ [L2(0, T ;H1
0 (Ωh(t))) ∩ L∞(0, T ;L2(Ωh(t)))]× C([0, T ]; [−L+ δ + ε0, L− δ − ε0])

is a weak solution to (4.6.5), with vanishing initial data and source term f, f1, if U is divergence
free, U(0) = 0, H(0) = 0 and∫

Ωh(t)

∂U

∂t
ϕ dx+ 2µ

∫
R
DU : Dϕdx+m(H ′′ − f1)ℓϕ =

∫
Ωh(t)

f ϕ dx

for all ϕ ∈ C∞
0 ([0, T ] × R;R2) such that ϕ(·, t)|Bh(t)

= ℓ(t)ê2, with ℓ(t) ∈ R. The third step
implies showing that weak solutions to (4.6.5) in the sense given above are unique. This can
be done precisely as in [76, Lemma 8], by taking the difference between two weak solutions,
which is allowed because the fluid domain is in this case prescribed, thus identical for the two
solutions. Then, by [76, Lemma 4] and [71, Theorem 4.1] we know that problem (4.6.5) has a
unique strong solution with vanishing initial data belonging to

U ∈ L4/3(0, T ;W 2,4/3(Ωh(t))) , ∂tU ∈ L4/3(0, T ;L4/3(Ωh(t))), H ∈ W 2,4/3(0, T ;R) ,
∇Q ∈ L4/3(0, T ;L4/3(Ωh(t))) ,

(4.6.6)
and such that

∥U∥L4/3(0,T ;W 2,4/3(Ωh(t)))
+ ∥∂tU∥L4/3(0,T ;L4/3(Ωh(t)))

+ ∥∇Q∥L4/3(0,T ;L4/3(Ωh(t)))

≤ C
(
∥f∥L4/3(0,T ;L4/3(Ωh(t)))

+ ∥f1∥L4/3(0,T ;R)

)
,

(4.6.7)

where C depends on the geometry of the rigid body and on T . Through some integration by
parts, it can be shown that any strong solution to (4.6.5) is also a weak solution to (4.6.5). The
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Chapter 4. Well-posedness of a FSI problem in a Poiseuille flow: vertical motion

last step implies showing that, given

U := tû , H := th , Q := tp̂ , (4.6.8)

then (tû, th) is a weak solution to (4.6.5) in the sense given above, with source term

f := û− t(û · ∇)û− t(û · ∇)s− t(s · ∇)û+ tĝ ∈ L4/3(0, T ;L4/3(Ωh(t))) ,

f1 := h′ + t
f(h)

m
∈ L4/3(0, T ;R) .

Finally, we conclude by the properties of weak-strong uniqueness satisfied by the solutions to
(4.6.5), that the solution (4.6.8) must be strong, thus it satisfies the regulary in (4.6.6) and the
estimate in (4.6.7), which yields the desired result, up to undoing the change of variables in
(4.6.3) .

Let us consider two weak solutions of the equivalent problem (4.3.9)-(4.3.10), (v1, h1) and
(v2, h2), in the sense of Definition 4.3.3, with the same initial conditions, where v1 is defined
on the fluid domain Ω̃1(t) while v2 is defined on Ω̃2(t). Let ε0 > 0 be such that

min
t∈[0,T ]

(dist(B, ∂Ω̃i)) ≥ ε0

for i = 1, 2; the existence of such ε0 comes from Theorem 4.3.6. Finally, let ζ(y1, y2) be a
smooth cutoff function equal to 0 in a ε0/4 neighbourhood of ∂B and to 1 for any (t, y) such
that dist(y, ∂B) ≥ ε0/2. Then, for each of the two solutions, we define a solenoidal velocity
vector field Vi : [0, T ]× Ω̃i → R2 as

Vi(t, y) := {−y1h′i∂y2ζ, ζh′i + y1h
′
i∂y1ζ}. (4.6.9)

Notice that

Vi(t, y) =

{
0 if dist(y, ∂B) ≥ ε0/2

−h′iê2 if dist(y, ∂B) ≤ ε0/4.

We introduce a further domain Ω̃0, which serves as reference configuration, corresponding to the
initial condition (v0, h0). Then, we build the deformation mappings of such domain respectively
into Ω̃1 and Ω̃2, Xi : [0, T ]× Ω̃0 → Ω̃i(t), i = 1, 2 as the flow associated to (4.6.9):{

∂
∂t
Xi(t, y) = Vi(t,Xi(t, y))

Xi(0, y) = y.

Notice that, since ∇·Vi = 0,Xi is volume preserving. More precisely, taking y = (y1, y2) ∈ Ω̃0,

Xi(t, y1, y2) =

{
(y1, y2 + h0 − hi(t)) if dist(y, ∂B) ≥ ε0/2

(y1, y2) if dist(y, ∂B) ≤ ε0/4.

The mapping Xi is a smooth function of Vi. In particular, for some C > 0

∥∂tjXi(t, y)∥Ck( ¯̃Ωi)
≤ C|h(j)i | ∀ j = 0, 1, ∀ k ∈ N. (4.6.10)
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For each t ∈ [0, T ] we define the volume preserving diffeomorphisms

ψt : Ω̃
2(t) −→ Ω̃1(t)

y 7−→ ψt(y) = X1(t,X
−1
2 (t, y))

φt = ψ−1
t : Ω̃1(t) −→ Ω̃2(t)

y 7−→ φt(y) = X2(t,X
−1
1 (t, y)).

(4.6.11)

Thus for any y = (y1, y2) such that dist(y, ∂B) ≥ ε0/2

ψt(y1, y2) = (y1, y2 + h2(t)− h1(t)),

φt(y1, y2) = (y1, y2 + h1(t)− h2(t)).

Given the extensions of the Poiseuille flow associated to each of the two solutions, a1 = ah1
and a2 = ah2 , defined as in (4.3.11), we put v̂1 = v1 − a1 and v̂2 = v2 − a2. For any given
y = (y1, y2) ∈ Ω̃1(t), we introduce the function

v̂2 = ∇ψt(y) · v̂2(t, φt(y)),

the pullback of v̂2 by map φt in (4.6.11). Since a2 = 0 near the obstacle B, because of (4.3.11)
and the properties of s as in Lemma 4.3.1, we obtain that the pullback of a2 corresponds to

a2 = ∇ψt(y) · a2(φt(y)) = a2(y1, y2 + h1 − h2) = s(y1, y2 + h1 − h2 + h2) = a1,

which implies that the solenoidal extension a1 and a2 are equal after the change of variables.
Thus, from now on, a1 = a2 = a. We remark that v̂2 mantains the property of being solenoidal
since φt is volume preserving. We also define

π2 = p2(t, φt(y)) .

The weak formulation satisfied by (v̂1, h1) can be obtained from (4.3.20), after rewriting the
equation by integrating by parts the two first terms. For a.e. t ∈ [0, T ], there holds, for every
(ϕ(t), ℓ(t)) ∈ Vh1 such that ϕ(·, T ) = ℓ(T ) = 0,

⟨∂tv̂1(t), ϕ(t)⟩+mh′′1(t) ℓ(t) + f(h1(t)) ℓ(t) + 2µ(D(v̂1(t)), D(ϕ(t)))L2(Ω̃1(t))

+ ψ(v̂1(t), v̂1(t), ϕ(t)) + ψ(v̂1(t), a, ϕ(t)) + ψ(a, v̂1(t), ϕ(t))

− ψ(h′1(t)ê2, v̂1(t), ϕ)− ψ(h′1(t)ê2, a, ϕ(t)) = ⟨ĝ, ϕ(t)⟩.
We refer to [76, Section 3.2] for the explicit computation of the partial derivatives of v̂2 in terms
of those of v̂2, so as to obtain that the equation satisfied by v2 reads as

⟨∂tv̂2, ϕ⟩+mh′′2 ℓ+ f(h2) ℓ+ 2µ (D(v̂2), D(ϕ))L2(Ω̃1(t)) + ψ(v̂2, v̂2, ϕ)

+ ψ(v̂2, a, ϕ) + ψ(a, v̂2, ϕ)−ψ(h′2ê2, v̂2, ϕ)−ψ(h′2ê2, a, ϕ)=⟨ĝ, ϕ⟩−⟨f, ϕ⟩,
for every (ϕ(t), ℓ(t)) ∈ Vh1 such that ϕ(·, T ) = ℓ(T ) = 0, where, using Einstein’s summation
convention and omitting the index t in ψt and φt,

fi =+ (∂kφ
i − δik)∂tv̂

k
2 + ∂kφ

i∂lv̂
k
2(∂tψ

l) + (∂k∂tφ
i)v̂k2 + (∂2klφ

i)(∂tψ
l)v̂k2

+ v̂l2∂lv̂
k
2(∂kφ

i − δik) + (∂2lkφ
i)v̂l2v̂

k
2 + ∂kπ2(∂iψ

k − δik)− ∂jψ
m(∂2mkφ

i)∂lv̂
k
2∂jψ

l

− (∂kφ
i∂jψ

m∂jψ
l − δikδjmδjl)∂

2
mlv̂

k
2 − ∂kφ

i∂lv̂
k
2(∂

2
jjψ

l)

− ∂jψ
m(∂3mlkφ

i)∂jψ
lv̂k2 − (∂2lkφ

i)∂2jjψ
lv̂k2 − (∂2lkφ

i)∂jψ
l∂jψ

m∂mv̂
k
2.
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Now, let (w, ĥ) be defined as in (4.3.28). Then, taking the difference of the weak formulations
satisfied by v̂1 and v2, one has

⟨∂tw, ϕ⟩+mĥ′′ ℓ+ [f(h1)− f(h2)] ℓ+ 2µ(D(w), D(ϕ))L2(Ω̃1(t))

+ ψ(v̂1, w, ϕ) + ψ(w, v̂2, ϕ) + ψ(w, a, ϕ) + ψ(a, w, ϕ)− ψ(h′1ê2, w, ϕ)

− ψ(ĥ′ê2, v̂2, ϕ)− ψ(ĥ′ê2, a, ϕ) = ⟨f, ϕ⟩.

Then we take (ϕ, ℓ) = (w, h′) and we obtain

⟨∂tw,w⟩+mĥ′′ ĥ′ + [f(h1)− f(h2)] ĥ
′ + 2µ∥D(w)∥2

L2(Ω̃1(t))
= ⟨f, w⟩

− ψ(w, v̂2, w)− ψ(w, a, w) + ψ(ĥ′ê2, a, w).

Thus, using [134, Chapter 3, Lemma 1.2] and that (w′, ĥ′′) ∈ L2(0, T ;V′
h1
) (from the properties

of weak solutions to problem (4.3.9)-(4.3.10)), there holds

d

dt

{
∥w∥2

L2(Ω̃1)
+m |ĥ′|2 + 2

∫ h1

h2

f(s) ds

}
+ 4µ∥D(w)∥2

L2(Ω̃1)
= 2⟨f, ϕ⟩

− 2ψ(w, v̂2, w)− 2ψ(w, a, w) + 2ψ(ĥ′ê2, a, w).

(4.6.12)

Now, we estimate the right hand side of the above inequality, starting from the trilinear forms.
For what concerns the second term, we exploit Lemma 4.6.1 and the Young inequality:

|2ψ(w, v̂2, w)| ≤ 2∥w∥2
L4(Ω̃1(t))

∥∇v̂2∥L2(Ω̃1(t))

≤ 23/2∥w∥L2(Ω̃1(t))∥∇w∥L2(Ω̃1(t))∥∇v2∥L2(Ω̃1(t))

≤ 10

µ
∥w∥2

L2(Ω̃1(t))
∥∇v̂2∥2L2(Ω̃1(t))

+
µ

5
∥∇w∥2

L2(Ω̃1(t))

The third term can be estimated analogously to what we did in the proof of Proposition 4.4.1,
through the Hölder inequality, the Poincaré inequality in the domain Ω̃1(t) and the Young in-
equality:

|2ψ(w, a, w)| ≤ 4L

π
∥∇a∥L∞(Ω̃1(t))∥∇w∥L2(Ω̃1(t))∥w∥L2(Ω̃1(t))

≤ 5

4µ

16L2

π2
∥∇a∥2L∞(Ω̃1(t))∥w∥

2
L2(Ω̃1(t)) +

µ

5
∥∇w∥2L2(Ω̃1(t)).

Then, we consider the domain Ω̃1(t) to be partitioned as in (4.3.8) and we recall that the function
a enjoys the same properties of s stated in Lemma 4.3.1 once we substituted vp and Rh with ṽP
as in (4.3.9) (where, instead of h, we consider h1) and Rh1 . The last term on the right hand side
of (4.6.12) is bounded following the reasoning developed in the proof of Proposition 4.4.1 for
the terms in (4.4.6). Given

∥∇ṽP∥L2(−L,L) = λ ξ with ξ =

√
8L3

3
,
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one can write

|2ψ(ĥ′ê2, a, w)| ≤
5

2µ

4L2

π2
|ĥ′|2(∥∇a∥2L2(Ω̃1

0(t))
+ λ2ξ2) +

2µ

5
∥∇w∥2L2(Ω̃1(t)) .

In order to estimate the first term on the right-hand side of equation (4.6.12), following [76], we
divide f into pieces

f = f1 + f2 + f3 + f4 + f5

with

f1 :=(∂k∂tφ
i)v̂k2+(∂2klφ

i)(∂tψ
l)v̂k2−

∑
j

[
∂jψ

m(∂3mlkφ
i)∂jψ

lv̂k2+(∂2lkφ
i)∂2jjψ

lv̂k2

]
,

f2 :=∂kφ
i∂lv̂

k
2(∂tψ

l)−
∑
j

[
∂jψ

m(∂2mkφ
i)∂lv̂

k
2∂jψ

l + ∂kφ
i∂lv̂

k
2(∂

2
jjψ

l)

+ (∂2lkφ
i)∂jψ

l∂jψ
m∂mv̂

k
2

]
,

f3 :=(∂2lkφ
i)v̂l2v̂

k
2, f4 := v̂l2∂lv̂

k
2(∂kφ

i − δik),

f5 := (∂kφ
i − δik)∂tv̂

k
2 + ∂kπ2(∂iψ

k − δik)−
∑
j

(∂kφ
i∂jψ

m∂jψ
l − δikδjmδjl)∂

2
mlv̂

k
2.

We have the following estimates, where we use (4.6.10).

• Concerning the first three terms:∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f1 · w dy ds
∣∣∣∣

≤ C∥v̂2∥L∞(0,T ;L2(Ω̃1))

∫ t

0

(
max
[0,s]

∥w(·, s)∥L2(Ω̃1(s))max
[0,s]

|(ĥ(s), ĥ′(s))|
)
ds

≤ C∥v̂2∥L∞(0,T ;L2(Ω̃1))

∫ t

0

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|(ĥ(s), ĥ′(s))|2
)
ds,

∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f2 · w dy ds
∣∣∣∣

≤ C

∫ t

0

∥∇v̂2(·, s)∥L2(Ω̃1(s))

(
max
[0,s]

∥w(·, s)∥L2(Ω̃1(s))max
[0,s]

|(ĥ(s), ĥ′(s))|
)
ds

≤ C

∫ t

0

∥∇v̂2(·, s)∥L2(Ω̃1(s))

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|(ĥ(s), ĥ′(s))|2
)
ds,
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0

∫
Ω̃1(s)

f3 · w dy ds
∣∣∣∣

≤ C

∫ t

0

∥v̂2(·, s)∥2L4(Ω̃1(a))
∥w(·, s)∥L2(Ω̃1(s))max

[0,s]
|ĥ(s)| ds

≤ C∥v̂2∥L∞(0,T ;L2(Ω̃1))

∫ t

0

∥∇v̂2(·, s)∥L2(Ω̃1(s))max
[0,s]

∥w(·, s)∥L2(Ω̃1)

×max
[0,s]

|ĥ(s)| ds

≤ C∥v̂2∥L∞(0,T ;L2(Ω̃1))

∫ t

0

∥∇v̂2(·, s)∥L2(Ω̃1(s))

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|ĥ(s)|2
)
ds

≤ C∥v̂2∥L∞(0,T ;L2(Ω̃1))

∫ t

0

∥∇v̂2(·, s)∥L2(Ω̃1(s))

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|ĥ(s), ĥ′(s)|2
)
ds.

• For the fourth and fifth terms, following [76], thanks to Lemma 4.6.1, we have∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f4 · w dy ds
∣∣∣∣

≤ C

∫ t

0

∥v̂2(·, s)∥L4(Ω̃1(s))∥t∇v̂2(·, s)∥L4(Ω̃1(s))∥
1

t
(∂kφ

i − δik)∥L∞(Ω̃1(s))

× ∥w(·, s)∥L2(Ω̃1(s)) ds

≤ C

∫ t

0

∥v̂2(·, s)∥L4(Ω̃1(s))∥t∇v̂2(·, s)∥L4(Ω̃1(s))max
[0,s]

|ĥ′(s)|

× ∥w(·, s)∥L2(Ω̃1(s)) ds

≤ C

∫ t

0

∥∇v̂2(·, s)∥1/2L2(Ω̃1(s))
∥v̂2(·, s)∥1/2L2(Ω̃1(s))

∥t∇v̂2(·, s)∥L4(Ω̃1(s)) max
[0,s]

|ĥ′(s)|

× ∥w(·, s)∥L2(Ω̃1(s)) ds .

Next we notice that

b1(t) := ∥∇v̂2(·, t)∥1/2L2(Ω̃1(t))
∥t∇v̂2(·, t)∥L4(Ω̃1(t)) ∈ L1(0, T ) ,

due to the Hölder inequality with exponent p = 4 and q = 4/3. Hence we obtain∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f4 · w dy ds
∣∣∣∣

≤ C∥v̂2∥1/2L∞(0,T ;L2(Ω̃1(t)))

∫ t

0

b1(s)

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|ĥ(s), ĥ′(s)|2
)
ds.
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Next, we introduce

b2(t) :=∥t∂tv̂k2∥L4/3(Ω̃1(t)) + ∥∂kπ2∥L4/3(Ω̃1(t)) + ∥tv̂k2∥W 2,4/3(Ω̃1(t)) ∈ L4/3(0, T ) .

We deduce that∣∣∣∣ ∫ t

0

∫
Ω̃1(s))

f5 · w dy ds
∣∣∣∣ ≤ C

∫ t

0

b2(s)max
[0,s]

|(ĥ(s), ĥ′(s))|∥w(·, s)∥L4(Ω̃1(s))
ds .

Next, we apply the Young inequality twice as follows∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f5 · w dy ds
∣∣∣∣ ≤ C

∫ t

0

b2(s)
2/3∥w(·, s)∥2

L4(Ω̃1(s))
ds

+ C

∫ t

0

b2(s)
4/3max

[0,s]
|(ĥ(s), ĥ′(s))|2 ds

≤ C

∫ t

0

b2(s)
4/3∥w(·, s)∥2

L2(Ω̃1(s))
ds

+ C

∫ t

0

b2(s)
4/3max

[0,s]
|(ĥ(s), ĥ′(s))|2 ds

+
2µ

5

∫ t

0

∥∇w(·, s)∥2
L2(Ω̃1(s))

ds ,

where b2(t)4/3 ∈ L1(0, T ).

If we set

A(t) :=∥v̂2∥L∞(0,T ;L2(Ω̃1(t)))(1 + ∥∇v̂2(·, t)∥L2(Ω̃1(t)))

+ ∥v̂2∥1/2L∞(0,T ;L2(Ω̃1(t)))
b1(t) + b2(t)

4/3 ∈ L1(0, T ),

we obtain ∣∣∣∣ ∫ t

0

∫
Ω̃1(s)

f · w dy ds
∣∣∣∣ ≤ C

∫ t

0

A(s)

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|(ĥ(s), ĥ′(s))|2
)
ds

+
2µ

5

∫ t

0

∥∇w(·, s)∥2
L2(Ω̃1(s))

ds.

Then, given A(t) as above, we define

Ā(t) := A(t) +
10

µ
∥∇v̂2(·, t)∥2L2(Ω̃1(t))

+
5

4µ

16L2

π2
∥∇a∥2

L∞(Ω̃1(t))
,

B̄(t) := A(t) +
5

2µ

4L2

π2
(∥∇a∥2

L2(Ω̃1
0(t))

+ λ2ξ2).
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We reorder (4.6.12) once we plugged the above estimates, considering the above definitions and
using that ∫

Ω̃1

|∇w|2 dy ≤
∫
Ah1

|∇w|2 dy = 2

∫
Ah1

|D(w)|2 dy = 2

∫
Ω̃1

|D(w)|2 dy,

since w is a divergence free vector field vanishing on ∂Ah1 . Thus, integrating between 0 and t
we obtain, since w(0) = 0 = ĥ′(0),

∥w(t)∥2
L2(Ω̃1(t))

+m|ĥ′(t)|2 + 2

∫ h1(t)

h2(t)

f(s) ds

≤ C

∫ t

0

(
Ā(s)max

[0,s]
∥w(·, s)∥2

L2(Ω̃1(s))
+ B̄(s)max

[0,s]
|(ĥ(s), ĥ′(s))|2

)
ds.

(4.6.13)

Then we set
D(t) = Ā(t) + B̄(t)

and from (4.6.13), we infer

∥w(t)∥2
L2(Ω̃1(t))

+m|ĥ′(t)|2 ≤
∫ t

0

C D(s)

(
max
[0,s]

∥w(·, s)∥2
L2(Ω̃1(s))

+max
[0,s]

|(ĥ(s), ĥ′(s))|2
)
ds.

As in [76], we notice that
d

dt
|ĥ|2 ≤ C(|ĥ′|2 + |ĥ|2). (4.6.14)

Using D(t) ∈ L1(0, T ) and Grönwall’s lemma, we conclude that

∥w(t)∥2
L2(Ω̃1(t))

+m|ĥ′(t)|2 = 0,

which, if one uses (4.6.14), implies finishing the proof.
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CHAPTER5
Well-posedness of a FSI problem in a Poiseuille flow:

full motion

In the present chapter, we treat problem (2.0.9) which allows to model the second phase of the
flutter phenomenon, when the vertical and torsional motion of the deck of a suspension bridge
synchronize under the action of the wind (see the introduction in Chapter 4). In particular, we
obtain a global-in-time (up to collision) existence result for problem (2.0.9).

5.1 Global existence (up to collision) of weak solutions

We refer to the introduction in Chapter 4 for a general presentation of the flutter phenomenon,
and to Chapter 2 for the notation and rigorous formulation of problem (2.0.9). Problem (2.0.9),
analyzed in the present chapter, represents an extension of problem (2.0.7) which takes into
account a full coupled vertical-torsional motion of the obstacle in an unbounded channel. This
allows to model the interaction between the deck of a suspension bridge and the wind in a regime
of strong oscillations, as in real-life experiment, where the vertical and torsional displacements
are lead to be coupled under the action of the areodynamic forces. In this context, in analogy
to problem (2.0.7), the restoring forces F1 and F2 driving the motion of the obstacle in (2.0.9)4-
(2.0.9)5 can be seen as forces resuming the elastic upward action of both the hangers and the
substaining cables on the deck, the downward action of the weight of the deck and the elastic
resistance to bending and stretching of the whole deck.

The main purpose of this chapter is to prove the global-in-time (up to collision) existence
of weak solutions for the fluid-structure interaction evolution problem (2.0.9). In order to build
weak solutions, we exploit a penalization technique by allowing the obstacle to also move in the
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horizontal direction and penalizing its motion in such a direction. This produces the penalized
problem (5.3.1)-(5.3.2)-(5.3.3) such that, in the limit, we recover a purely vertical-torsional
oscillation of the obstacle. Actually, our method is based on a double-limit procedure, since
the initial data of the penalized problem will be approximated by more regular data allowing
to obtain a sequence of strong solutions to the penalized problem. By letting simultaneously
the penalization index go to infinity and the sequence of initial data converge to less regular
initial data, we obtain a weak solution to the original problem. The construction of strong
solutions follows the method in [33,130,131], which is based on a change of variables to make
the fluid domain time-independent, and a fixed point procedure. Using strong solutions allows
to circumvent the difficulty of working with a global weak formulation, which would be for
instance required when obtaining directly a weak solution through the methods in [41,87,119].
However, due to the coupling with rotation, the change of variables needed to work in a fixed
domain and obtain strong solutions is not of immediate application to the original problem
(2.0.9), where the obstacle has a purely vertical translation. This is why we add an intermediate
step by introducing the penalized problem.

The main result of this chapter reads as

Theorem 5.1.1. Assume that F1(h, θ), F2(h, θ) ∈ C1(Ad,δ;R) satisfy the assumptions given in
Chapter 2, with Ad,δ as in (2.0.4). Moreover, let u0 satisfying (2.0.11)1-(2.0.11)2 be such that
u0 · n̂ = (h0ê2 + θ0x

⊥) · n̂ on ∂B, with h0, θ0 ∈ R. Then, there exists at least one weak solution
(u, h, θ) to problem (2.0.9). Moreover, the following alternative holds

(1) T = ∞;

(2) T <∞ and limt→T ((k(t), h(t)), θ(t)) /∈ Ad,δ.

This chapter is devoted to the proof of Theorem 5.1.1. We emphasize that the statement of
Theorem 5.1.1 has to be understood as a global-in-time existence result up to collision; indeed,
the set Ad,δ in (2.0.4) is the set of admissible values for (h, θ), which excludes the possibility of
collisions between the obstacle and the boundary of the channel.

Chapter 5 is organized as follows. Section 5.2 is devoted to presenting the preliminary no-
tions needed to define in a suitable way a weak solution to problem (2.0.9). In particular, we
introduce a solenoidal extension for the Poiseuille flow vP , by which we reformulate the orig-
inal problem (2.0.9) into an equivalent problem with fully homogeneous boundary conditions,
problem (5.2.3)-(5.2.4)-(5.2.5). In Section 5.3, we introduced the penalized problem (5.3.1)-
(5.3.2)-(5.3.3) and we prove the existence of a global-in-time strong solution to this problem.
This requires transforming (5.3.1)-(5.3.2)-(5.3.3) via a change of variables to a fixed domain,
investigating a linearized problem associated to the transformed penalized problem by means of
a semigroup approach, and then applying a fixed point procedure. This only gives local-in-time
existence of a strong solution to problem (5.3.1)-(5.3.2)-(5.3.3); the global-in-time character is
then obtained through some suitable a priori estimates in Theorem 5.3.12. Finally, in Section
5.4, we conclude the proof of Theorem 5.1.1, by proving the existence of at least one weak solu-
tion to the equivalent problem (5.2.3)-(5.2.4)-(5.2.5) in Theorem 5.4.1. As already mentioned,
the proof is based on a diagonal argument, that implies approximating the initial data in (5.3.3)
by more regular data and passing to the limit in the penalized problem.
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Remark 5.1.2. One might wonder why the obstacle B considered in Chapter 5 has an elliptical
shape, whereas in Chapter 4 it was a rectangle. The explanation partially lies in Remark 4.3.4.
As soon as the contact surfaces are of the class C∞, one is in the position to extend the result in
Theorem 5.1.1 and prove a no-collision result without using any additional assumptions on the
restoring forces F1 and F2.

Remark 5.1.3. We observe that we do not expect the penalty method used in the case of transla-
tion in a bounded domain (see Chapter 4) to work also in this case, because the same technique
will generate an infinite energy term. For the purpose of clarifying this observation, we consider
a simplification of problem (2.0.9), by assuming that the obstacleB is only free to rotate around
a fixed pin placed at its center of mass and that any translation is absent. If we aim at using the
penalty method seen in Chapter 4, we must introduce the change of variables allowing to write
the equations of motion in a frame attached to B, whose coordinates are labelled as (y1, y2):

Q(θ) y = x, (5.1.1)

whereQ(θ) is defined as in (2.0.3). The fluid-structure interaction evolution problem in the new
rotating reference frame is obtained consequently, similarly to what is done in [58,124]. Let us
just highlight that the Poiseuille flow at infinity after the change of variables (5.1.1) assumes the
following expression, for each value of θ:

ṽP (y) =

(
cos[θ λ

(
L2−(y1 sin θ+y2 cos θ)

2
)
],− sin[θ λ

(
L2−(y1 sin θ+y2 cos θ)

2
)
]

)
. (5.1.2)

The auxiliary fixed domain that we built in Section 4.3 then corresponds to R2; indeed, the
channel is unbounded and it may cover the whole plane when rotating. The velocity field at
infinity ṽP defined in (5.1.2) in the new reference frame is then extended outside the rotating
channel to the whole R2 if one wants to apply the penalty method, as we did in Section 4.3.
Thus, the Poiseuille flow is extended to be a parabolic branch diverging to infinity. This implies
that the solenoidal extension would capture a flow to which it is associated an infinite energy,
thus compromising the possibility of proving the existence of a weak solution to the penalized
problem and, consequently, to the original problem, through the penalty method of Chapter 4.
This is the main justification why we analyze (2.0.9) with a different technique in the present
chapter.

5.2 Some technical tools

5.2.1 Functional spaces

In the sequel, we will be lead to consider the case where the body B is characterized by both a
vertical and an horizontal translation, thus denoting

Bf = Bv + k ê1, k ∈ R,
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the final position of B, after a full translation and rotation. Then, we define

H(Bf ) ={(v, ℓ, α) ∈ L2(A)× R2 × R | ∇ · v = 0 in A, v · n̂ = 0 on ∂A,

v = ℓ+ α (x1 − k, x2 − h)⊥ in Bf},

V(Bf ) ={(v, ℓ, α) ∈ H1
0 (A)× R2 × R | ∇ · v = 0 in A,

v = ℓ+ α (x1 − k, x2 − h)⊥ in Bf} .

In order to define a weak solution to problem (2.0.9), we introduce two closed subspaces of
respectively H(Bf ) and V(Bf ), namely

Hv(Bv) ={(v, ℓ, α) ∈ L2(A)× R× R | ∇ · v = 0 in A, v · n̂ = 0 on ∂A,

v = ℓ ê2 + α (x1, x2 − h)⊥ in Bv},

Vv(Bv) ={(v, ℓ, α) ∈ H1
0 (A)× R× R | ∇ · v = 0 in A,

v = ℓ ê2 + α (x1, x2 − h)⊥ in Bv} .

We define an inner product in L2(A) by

⟨ϕ1, ϕ2⟩L2(A) =

∫
Ωf

ϕ1 · ϕ2 dx+

∫
Bf

ρ ϕ1 · ϕ2 dx ∀ϕ1, ϕ2 ∈ L2(A) ,

where ρ > 0 is the density of the body and Ωf = A\Bf . This product induces a norm equivalent
to the usual norm in L2(A). Moreover, we notice that if ϕ1, ϕ2 ∈ L2(A) are such that

ϕi(x1, x2) =

{
ui(x1, x2) ∀ (x1, x2) ∈ Ωf

ℓi + αi (x1 − k, x2 − h)⊥ ∀ (x1, x2) ∈ Bf

for some ui ∈ L2(A), ℓi ∈ R2 and αi ∈ R, i ∈ {1, 2}, then

⟨ϕ1, ϕ2⟩L2(A) =

∫
Ωf

u1 · u2 dx+mℓ1 · ℓ2 + J α1α2 .

Since the Poincaré inequality holds in V(Bf ), we endow H(Bf ) and V(Bf ) with the scalar
products

⟨z1, z2⟩H(Bf ) =

∫
Ωf

u1 · u2 dx+mℓ1 · ℓ2 + J α1α2 ,

⟨z1, z2⟩V(Bf ) =

∫
Ωf

∇u1 : ∇u2 dx+mℓ1 · ℓ2 + J α1α2 ,

(5.2.1)

where zi = (ui, ℓi, αi), i ∈ {1, 2}. We call ∥ · ∥H(Bf ), ∥ · ∥V(Bf ) the norms induced by the scalar
products in (5.2.1). The integral in the second formula in (5.2.1) can be defined on the whole
channel A; indeed, ∇u1 = ∇u2 = 0 on Bf , since any element of V(Bf ) is a rigid motion on
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Bf . Recalling that D(·) denotes the symmetric part of the gradient, for all u1, u2 ∈ H1
0 (A) with

∇ · u1 = ∇ · u2 = 0 we have

2

∫
A

D(u1) : D(u2) dx =

∫
A

∇u1 : ∇u2 dx .

If k, h, θ : [0, T ] −→ R are functions of time such that (h(t), θ(t)) ∈ Ad,δ for every t ∈ [0, T ],
we define the spaces

Lp(0, T ;V(Bf (t))) =

{
f : [0, T ] → V(Bf (t)) s.t.

∥f∥pLp(0,T ;V(Bf (t)))
=

∫ T

0

∥f(τ)∥pV(Bf (t))
dτ < +∞

}
for 1 ≤ p <∞, and also

L∞(0, T ;H(Bf (t))) =

{
f : [0, T ] → H(Bf (t)) s.t.

∥f∥L∞(0,T ;H(Bf (t))) = ess sup
τ∈[0,T ]

∥f(τ)∥H(Bf (t)) < +∞
}
,

and analogously for

Lp(0, T ;V(Bv(t))), L∞(0, T ;H(Bv(t))).

In order to define further functional spaces which will be used in the sequel, we suppose that,
given T > 0, there exists a diffeomorphism φ : Ω0 × [0, T ] −→ Ωf (t) of class C∞ such that its
derivatives

(y, t) ∈ Ω0 × (0, T ) −→ ∂i+j+1φ

∂t ∂yi1 y
j
2

(y, t) ∀i, j ∈ N ,

exist, are continuous and compactly supported in Ω0. Furthermore, for any function g : Ωf (t)×
[0, T ] −→ R2, we denote by gφ : Ω0 × [0, T ] −→ R2 the mapping gφ(y, t) = g(φ(y, t), t),
for every y ∈ Ω0 and t ≥ 0. Then, we can define the following spaces in the time-dependent
domain:

L2(0, T ;H2(Ωf (t))) = {u : Ω0 × [0, T ] −→ R2 | uφ ∈ L2(0, T ;H2(Ω0))}

H1(0, T ;L2(Ωf (t))) = {u : Ω0 × [0, T ] −→ R2 | uφ ∈ H1(0, T ;L2(Ω0))}

C([0, T ];H1
0 (Ωf (t))) = {u : Ω0 × [0, T ] −→ R2 | uφ ∈ C([0, T ];H1

0 (Ω0))}

L2(0, T ; Ĥ1(Ωf (t))) = {u : Ω0 × [0, T ] −→ R2 | uφ ∈ L2(0, T ; Ĥ1(Ω0))} ,

where we have defined

Ĥ1(Ω0) = {p ∈ L2
loc(Ω0) | ∇p ∈ L2(Ω0)} .
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5.2.2 Construction of a solenoidal flux carrier

Since problem (2.0.9) is set in a two-dimensional unbounded channel with a prescribed non-zero
velocity field at infinity, we construct a solenoidal extension of the Poiseuille velocity profile at
infinity by following precisely the same procedure of Lemma 4.3.1 in Chapter 4. The following
result holds:

Lemma 5.2.1. For every ε > 0 there exists a vector field s = sε ∈ W 2,∞(A) ∩ H2
loc(A) such

that
∇ · s = 0 in A , s = (0, 0) in [−2, 2]× [−L,L− ε] , s = (0, 0) on ∂A ,

s = vP in A1 ∪ A2 , supp(s) = A \ ((−2, 2)× (−L,L− ε)) .

Proof. See the proof of Lemma 4.3.1 in Chapter 4. It sufficies to change the support of the
cutoff function acting in the vertical direction in (4.3.5). We emphasize that the fact that A is
an unbounded domain only changes the regularity of the function.

Let ε ∈ (0, L − δ) and define the vector field s = sε ∈ W 2,∞(A) ∩ H2
loc(A) as in Lemma

5.2.1. Introduce
ĝ = µ∆(s− vP )− (s · ∇)s , (5.2.2)

so that ĝ ∈ L∞(A) ∩ L2
loc(A). In fact, by following step-by-step the proof of Lemma 4.3.5, we

have

Lemma 5.2.2. For any ε ∈ (0, L − δ), define ĝ = ĝε ∈ L∞(A) ∩ L2
loc(A) as in (5.2.2). Then

ĝ ∈ L2(A) and the following estimate holds:

∥ĝ∥L2(A) ≤ µ∥∆s∥L2(A0) + ∥s∥L4(A0)∥∇s∥L2(A0).

5.2.3 Definition of weak solution

Given ε ∈ (0, L−δ), let s = sε be as in Lemma 5.2.1. Moreover, we define a subsetAv,ε ⊂ Ad,δ
as

Av,ε =

{
(h, θ) ∈ R×

(
−π
2
,
π

2

) ∣∣∣ d cos θ − δ| sin θ| ≤ 2 and

|h|+ d| sin θ|+ δ cos θ ≤ L− ε

}
,

so that
(h, θ) ∈ Av,ε =⇒ Bv ⊂ [−2, 2]× [−L+ ε, L− ε] .

We look for solutions to problem (2.0.9) in the form u = û + s and p = p̂ + πp where (û, p̂)
solves the problem:

ût − µ∆û+ (û · ∇) û+∇p̂+ (û · ∇) s+ (s · ∇) û = ĝ, div(û) = 0 in Ωv × (0, T ) ,

lim
|x1|→∞

û(x1, x2, t) = 0 ∀x2 ∈ [−L,L] , t ∈ [0, T ] , û = 0 on ΓA × (0, T ) ,

û = h′ ê2 + θ′(x− hê2)
⊥ on ∂Bv × (0, T ).

(5.2.3)
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According to (2.0.9)4-(2.0.9)5, the vertical translation and the rotation of the obstacleB respond
to

mh′′ + β1 h
′ + F1(h, θ) = −ê2 ·

∫
∂Bv

T (û, p̂)n̂ in (0, T ) ,

J θ′′ + β2 θ
′ + F2(h, θ) = −

∫
∂Bv

(x− hê2)
⊥ · T (û, p̂)n̂ in (0, T ),

(5.2.4)

with the initial conditions

h(0) = 0, h′(0) = h0, θ(0) = 0, θ′(0) = θ0, û0(x) = u0(x)−s(x) in Ω0 = Ωv(0) ,
(5.2.5)

for some h0, θ0 ∈ R. The properties of s given in Lemma 5.2.1 imply that û0 must verify


∇ · û0 = 0 in Ω0 ,

lim
|x1|→∞

û0(x1, x2) = 0 ∀x2 ∈ [−L,L] , û0 = 0 on ΓA × (0, T ) ,

û0 = k0 ê2 + θ0x
⊥ on ∂B0 × (0, T ).

Now, let (û, h, θ) be a smooth solution to problem (5.2.3)-(5.2.4). Taking

(ϕ, ℓ, α) ∈ C1([0, T ];Vv(Bv(t)))

such that ϕ(T ) = ℓ(T ) = α(T ) = 0, we multiply (5.2.3)1 by ϕ and integrate over space and
time to obtain

∫ T

0

∫
Ωv(t)

[ût − µ∆û+ (û · ∇) û+∇p̂+ (û · ∇) s+ (s · ∇) û] ·ϕ dx dt=
∫ T

0

∫
Ωv(t)

ĝ ·ϕ dx dt .

(5.2.6)

73
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Since ϕ(t) ∈ V(Bv(t)) for a.e. t ∈ [0, T ], an integration by parts and the boundary conditions
in (5.2.4) yield

∫ T

0

∫
Ωv(t)

(−µ∆û+∇p̂) · ϕ dx dt = −
∫ T

0

∫
Ωv(t)

div(T (û, p̂)) · ϕ dx dt

=

∫ T

0

∫
Ωv(t)

T (û, p̂) : ∇ϕ dx dt−
∫ T

0

∫
∂Bv(t)

T (û, p̂)n̂ · ϕ dx dt

= 2µ

∫ T

0

∫
Ωv(t)

D(û) : D(ϕ) dx dt−
∫ T

0

∫
∂Bv(t)

T (û, p̂)n̂ · ϕ dx dt

= 2µ

∫ T

0

∫
Ωv(t)

D(û) : D(ϕ) dx dt− ℓ ê2 ·
∫ T

0

∫
∂Bv(t)

T (û, p̂)n̂ dσ dt

− α

∫ T

0

∫
∂Bv(t)

(x− hê2)
⊥ · T (û, p̂)n̂ dσ dt

= 2µ

∫ T

0

∫
Ωv(t)

D(û) : D(ϕ) dx dt+

∫ T

0

ℓ(mh′′ + β1 h
′ + F1(h, θ)) dt

+

∫ T

0

α(J θ′′ + β2 θ
′ + F2(h, θ)) dt

= 2µ

∫ T

0

∫
Ωv(t)

D(û) : D(ϕ) dx dt+

∫ T

0

(−mh′ ℓ′ + β1 h
′ ℓ+ F1(h, θ) ℓ) dt−mh0 ℓ(0)

+

∫ T

0

(−J θ′ α′ + β2 θ
′ α + F2(h, θ)α) dt− J θ0 α(0) .

(5.2.7)
In a similar way,

∫ T

0

∫
Ωv(t)

ût · ϕ dx dt = −
∫ T

0

∫
Ωv(t)

û · ϕt dx dt− û0 · ϕ(0) . (5.2.8)

74



5.3. The penalized problem

By inserting (5.2.7)-(5.2.8) into (5.2.6) we deduce

−
∫ T

0

(∫
Ωv(t)

û · ϕt dx+mh′ ℓ′ − β1 h
′ ℓ− F1(h, θ) ℓ+ J θ′ α′ − β2 θ

′ α− F2(h, θ)α

)
dt

+ 2µ

∫ T

0

∫
Ωv(t)

D(û) : D(ϕ) dx dt+

∫ T

0

∫
Ωv(t)

[(û · ∇) û · ϕ+ (û · ∇) s · ϕ

+ (s · ∇) û · ϕ] dx dt

= û0 · ϕ(0) +mh0 ℓ(0) + J θ0 α(0) +

∫ T

0

∫
Ωv(t)

ĝ · ϕ dx dt

(5.2.9)
We are now ready to give a definition of weak solution to (5.2.3)-(5.2.4)-(5.2.5), which is equiv-
alent to the original problem (2.0.9).

Definition 5.2.3. Let T > 0. Given (û0, h0, θ0) ∈ Hv(Bv(0)) and s = sε as in Lemma 5.2.1
depending on some ε ∈ (0, L− δ), we say that a triplet (û, h, θ) is a weak solution to problem
(5.2.3)-(5.2.4)-(5.2.5) if

(h, θ) ∈ W 1,∞(0, T ;R2) ∩ C([0, T ];Av,ε0) ,

(û, h′, θ′) ∈ L2(0, T ;Vv(Bv(t))) ∩ L∞(0, T ;Hv(Bv(t))) ,

(û, h, θ) satisfies (5.2.9) for every (ϕ, ℓ, α) ∈ C1([0, T ];Vv(Bv(t)))

such that ϕ(·, T ) = ℓ(T ) = α(T ) = 0 .

5.3 The penalized problem

In order to solve problem (5.2.3)-(5.2.4) we will adopt a penalization technique, in the sense that
we will assume that the obstacle is free to move in all directions in the plane, by penalizing its
motion in the horizontal direction so that in the limit we will recover a purely vertical motion.
To this purpose, we introduce a set of admissible values for the three coordinates of the full
motion of B in the plane, that is

Af,ε =

{
(h, k, θ) ∈ R× R×

(
−π
2
,
π

2

) ∣∣∣ |k|+ d cos θ − δ| sin θ| ≤ 2 and

|h|+ d| sin θ|+ δ cos θ ≤ L− ε

}
,

so that

(k, h, θ) ∈ Af,ε =⇒ Bf ⊂ [−2, 2]× [−L+ ε, L− ε] .
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Let n ≥ 1 be a fixed integer. We introduce the following penalized problem:

ût − µ∆û+ (û · ∇) û+∇p̂+ (û · ∇) s+ (s · ∇) û = ĝ, div(û) = 0 in Ωf × (0, T ) ,

lim
|x1|→∞

û(x1, x2, t) = 0 ∀x2 ∈ [−L,L] , t ∈ [0, T ] , û = 0 on ΓA × (0, T ) ,

û = (k′, h′) + θ′(x1 − k, x2 − h)⊥ on ∂Bf × (0, T ).
(5.3.1)

In this case, the motion of the obstacle is governed by

mk′′ + β1 k
′ + n k = −ê1 ·

∫
∂Bf

T (û, p̂)n̂ in (0, T ) ,

mh′′ + β1 h
′ + F1(h, θ) = −ê2 ·

∫
∂Bf

T (û, p̂)n̂ in (0, T ) ,

J θ′′ + β2 θ
′ + F2(h, θ) = −

∫
∂Bf

(x1 − k, x2 − h)⊥ · T (û, p̂)n̂ in (0, T ),

(5.3.2)

with the initial conditions

k(0) = 0, k′(0) = k0, h(0) = 0, h′(0) = h0, θ(0) = 0, θ
′
(0) = θ0,

û0(x) = u0(x)− s(x) in Ω0 ,
(5.3.3)

for some k0, h0, θ0 ∈ R. The properties of s given in Lemma 5.2.1 imply that, in this case, û0
must verify

∇ · û0 = 0 in Ω0 ,

lim
|x1|→∞

û0(x1, x2) = 0 ∀x2 ∈ [−L,L] , û0 = 0 on ΓA × (0, T ) ,

û0 = (k0, h0) + θ0(x1 − k0, x2 − h0)
⊥ on ∂B0 × (0, T ).

Since we will deal with both weak and strong solutions of the penalized problem (5.3.1)-
(5.3.2)-(5.3.3), such definitions are given below.

Definition 5.3.1. Let T > 0. Given (û0, (k0, h0), θ0) ∈ H(Bf (0)) and s = sε as in Lemma
5.2.1 depending on some ε ∈ (0, L− δ), we say that a quadruplet (û, k, h, θ) is a weak solution
of (5.3.1)-(5.3.2)-(5.3.3) if

((k, h), θ) ∈ W 1,∞(0, T ;R2 × R) ∩ C([0, T ];Af,ε0) ,
(û, (k′, h′), θ′) ∈ L2(0, T ;V(Bf (t))) ∩ L∞(0, T ;H(Bf (t))) ,
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and also (û, k, h, θ) satisfies the identity

−
∫ T

0

(∫
Ωf (t)

û · ϕt dx+mk′ ℓ′1 − β1 k
′ ℓ1 − n k ℓ1 +mh′ ℓ′2 − β1 h

′ ℓ2 − F1(h, θ) ℓ2

+ J θ′ α′ − β2 θ
′ α− F2(h, θ)α

)
dt+ 2µ

∫ T

0

∫
Ωf (t)

D(û) : D(ϕ) dx dt

+

∫ T

0

∫
Ωf (t)

[(û · ∇) û · ϕ+ (û · ∇) s · ϕ+ (s · ∇) û · ϕ] dx dt

= û0 · ϕ(0) +mk0 ℓ1(0) +mh0 ℓ2(0) + J θ0 α(0) +

∫ T

0

∫
Ωf (t)

ĝ · ϕ dx dt

for every (ϕ, (ℓ1, ℓ2), α) ∈ C1([0, T ];V(Bf (t))) such that ϕ(T ) = ℓ1(T ) = ℓ2(T ) = α(T ) = 0.

Definition 5.3.2. Let T > 0. Given (û0, (k0, h0), θ0) ∈ V(Bf (0)) and s = sε as in Lemma
5.2.1 depending on some ε ∈ (0, L− δ), a quintuplet (û, p, k, h, θ) such that

û ∈ L2(0, T ;H2(Ωf (t))) ∩ H1(0, T ;L2(Ωf (t))) ∩ C([0, T ];H1
0 (Ωf (t)))

p̂ ∈ L2(0, T ; Ĥ1(Ωf (t))), (k, h) ∈ H2(0, T ;R2), θ ∈ H2(0, T ;R),

and (k(t), h(t), θ(t)) ∈ Af,ε0 for every t ∈ [0, T ], is called a strong solution of (5.3.1)-(5.3.2)-
(5.3.3) if (5.3.1)1 is satisfied almost everywhere in Ωf (t) × (0, T ), (5.3.1)3 is satisfied in the
trace sense and (5.3.2) is satisfied almost everywhere in (0, T ). Moreover, the initial conditions
(5.3.3) are attained for every t ∈ [0, T ].

5.3.1 The transformed equations

We now transform problem (5.3.1)-(5.3.2)-(5.3.3). We preliminary state a proposition allowing
to define a change of variables associated to the rigid motion of the obstacle in problem (5.3.1)-
(5.3.2)-(5.3.3) in order to be able to set the problem on a fixed domain and eventually also to
compare different solutions; indeed since (5.3.1)-(5.3.2)-(5.3.3) is set on a time-dependent fluid
domain, different solutions are defined on different domains. This change of variables depends
on time t through k, h and θ; it was first introduced by Takahashi [130, Section 4.1], inspired
by Inoue-Wakimoto [93]. For every ε ∈ (0, L/2) we write

Oε =

(
−3

2
,
3

2

)
× (−L+ 2ε, L− 2ε) and Aε = A \ ([−2, 2]× [−L+ ε, L− ε]) .

Note that, on one hand,
Oε ⊂ {x ∈ A | dist(x, ∂A) > 2ε} .

On the other hand, if s is the solenoidal extension of Lemma 5.2.1 with such ε, we have that
supp(s) ⊂ Aε, so that

s ≡ 0 on A \Aε. (5.3.4)

In [130, Section 4.1], the following result is proved:
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Proposition 5.3.3. Consider a fixed pair (k, h) ∈ H2(0, T ;R2) and a fixed function θ ∈
H2(0, T ;R) such that k(0) = h(0) = θ(0) = 0. For every t ∈ [0, T ] there exist two volume-
preserving diffeomorphisms

ψ(t, ·) : Ωf (t) −→ Ω0 and φ(t, ·) : Ω0 −→ Ωf (t) (5.3.5)

satisfying, for all ε ∈ (0, L/2) and t ∈ [0, T ], the following properties:

ψ(t, x) =

{
Q(θ(t))⊤(x1 − k(t), x2 − h(t)) if x ∈ Oε

x if x ∈ Aε ,

and

φ(t, y) =

{
Q(θ(t))y + (k(t), h(t)) if y ∈ Oε

y if y ∈ Aε .

More precisely, we have that ψ ∈ C1(0, T ; C∞(Ωf (t))) and φ ∈ C1(0, T ; C∞(Ω0)). In particu-
lar, for some constant C > 0 that depends on ℓ, L and ε, there hold

∥∂jtψ(t, ·)∥Cℓ(Ωf (t)) ≤ C
(
|k(j)(t)|+ |h(j)(t)|+ |θ(j)(t)|

)
∀j ∈ {0, 1}, ℓ ∈ N .

and

∥∂jtφ(t, ·)∥Cℓ(Ω0) ≤ C
(
|k(j)(t)|+ |h(j)(t)|+ |θ(j)(t)|

)
∀j ∈ {0, 1}, ℓ ∈ N .

Proof. We start by noticing that (k, h) ∈ C1([0, T ];R2) and θ ∈ C1([0, T ];R) due to a classical
Sobolev embedding theorem. Let ζ ∈ C∞(R2;R) be a smooth cutoff function equal to 0 in Aε

and equal to 1 in Oε. Define the rigid motion associated to (k, h) and θ as

V (x, t) = k′(t)ê1+h
′(t)ê2+θ

′(t)(x−h(t) ê2)⊥ = V1(x2, t)ê1+V2(x1, t)ê2 ∀(x, t) ∈ R2×[0, T ] ,

where

V1(x2, t) = k′(t)−(x2−h(t))θ′(t) and V2(x1, t) = x1θ
′(t)+h′(t) ∀(x, t) ∈ R2×[0, T ] .

Notice that V (·, t) ∈ C∞(R2,R2) for every t ∈ [0, T ] and V (x, ·) ∈ H1(0, T ;R2) for every
x ∈ R2. We introduce now the stream function associated to the rigid velocity field V as

w(x, t) = −
∫ x1

0

V2(s, t) ds+

∫ x2

0

V1(s, t) ds = k′(t)x2 − h′(t)x1 −
θ′(t)

2
(x21 + x22 − 2x2h(t)),

for all (x, t) ∈ R2 × [0, T ]. We then define the solenoidal vector field Λ : R2 × [0, T ] −→ R2 as

Λ(x, t) =

(
−w(x, t) ∂ζ

∂x2
(x)+ζ(x)V1(x2, t), w(x, t)

∂ζ

∂x1
(x)+ζ(x)V2(x1, t)

)
∀(x, t) ∈ R2×[0, T ] ,

so that Λ ∈ C(R2×[0, T ];R2), Λ(·, t) ∈ C∞(R2,R2) for every t ∈ [0, T ], Λ(x, ·) ∈ H1(0, T ;R2)
for every x ∈ R2 and

Λ(x, t) =

{
0 if x ∈ Aε,

V (x, t) if x ∈ Oε

∀t ∈ [0, T ].
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Then, the deformation map φ : Ω0 × [0, T ] −→ Ωf (t) from Ω0 into Ωf (t) is defined as the flow
associated to the vector field Λ, that is, the unique solution to the initial-value problem:

∂φ

∂t
(y, t) = Λ(φ(y, t), t) ∀(y, t) ∈ Ω0 × (0, T ) ,

φ(y, 0) = y ∀y ∈ Ω0 ,

see [130, Lemma 4.2] for further details.
We have that φ(x, ·) ∈ C1([0, T ];A) for every x ∈ Ω0 and that, for every t ∈ [0, T ], φ(·, t) ∈

C∞(Ω0; Ωf (t)) is a diffeomorphism. In particular, for some constant C > 0 that depends on L
and ε, there holds

∥∂jtφ(t, ·)∥Cℓ(Ω̄0) ≤ C
(
|k(j)(t)|+ |h(j)(t)|+ |θ(j)(t)|

)
∀j ∈ {0, 1}, ℓ ∈ N .

Furthermore, since Λ is divergence-free in R2, φ is volume-preserving, meaning that the deter-
minant of the Jacobian matrix of φ(·, t) is constant and equal to 1 in R2, for every t ∈ [0, T ].
Finally, we define ψ : R+ × Ωh(t),θ(t) −→ Ω0 by ψ = φ−1 in the space variables. Similarly,
there holds

∥∂jtψ(t, ·)∥Cℓ(Ω̄h(t),θ(t))
≤ C

(
|k(j)(t)|+ |h(j)(t)|+ |θ(j)(t)|

)
∀j ∈ {0, 1}, ℓ ∈ N .

for some constant C > 0 that depends on L, ε and ℓ. Obviously, ψ has the same regularity
properties of φ, so in particular, ψ ∈ C1(0, T ; Ck(Ωf (t))) for any k ∈ N.

Through Proposition 5.3.3, we can construct (we use the Einstein convention)

gij =
∂φk

∂yi
∂φk

∂yj
, gij =

∂ψi

∂xk
∂ψj

∂xk
, ΓA

i
kj = gir

(
∂gkr
∂yj

+
∂gjr
∂yk

− ∂gkj
∂yr

)
=
∂ψi

∂xr
∂2φr

∂yk∂yi
,

where gij defines a metric on R2 since det(∇yφ) ≡ 1.
Now, let (û, p, k, h, θ) a sufficiently smooth solution of problem (5.3.1)-(5.3.2)-(5.3.3). Call

(now the space variable is y)

v(y, t) = ∇ψ(φ(y, t), t) û(φ(y, t), t) ∀ (y, t) ∈ Ω0 × [0, T ] , (5.3.6)

the pullback of û by φ, and set

q(y, t) = p̂(φ(y, t), t) ∀ (y, t) ∈ Ω0 × [0, T ] . (5.3.7)

We follow the procedure in [130, Paragraph 4.2] to transform problem (5.3.1)-(5.3.2)-(5.3.3) in
the cylindrical domain Ω0 × (0, T ). Thanks to (5.3.4), for each term involving s, the maps ψ
and φ correspond to the identity. Furthermore, as in [130, Proposition 4.6], it can be proved that∫

∂Bf (t)

T (u, p)n̂ dσ(x) = Q(t)

(∫
∂B0

T (v, q)n̂ dσ(y)

)
∀t ∈ [0, T ] ,

∫
∂Bf (t)

(x1 − k, x2 − h)⊥ · T (u, p)n̂ dσ(x) =

∫
∂B0

y⊥ · T (v, q)n̂ dσ(y) ∀t ∈ [0, T ] .
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Thus, we obtain the following problem with variable coefficients in the new unknown (v, q, k, h, θ):

vt +Mv − µLv +N v + (v · ∇) s+ (s · ∇) v + Gq = ĝ, ∇ · v = 0 in Ω0 × (0, T ) ,

lim
|y1|→∞

v(y1, y2, t) = 0 ∀y2 ∈ [−L,L] , t ∈ [0, T ] , v = 0 on ΓA × (0, T ) ,

v = Q(θ)⊤(k′, h′) + θ′ y⊥ on ∂B0 × (0, T ) ,

m k′′ + β1 k
′ + n k = − ê1 ·Q(θ)

∫
∂B0

T (v, q)n̂ dσ(y) in (0, T )

mh′′ + β1 h
′ + F1(h, θ) = − ê2 ·Q(θ)

∫
∂B0

T (v, q) dσ(y)n̂ in (0, T )

J θ′′ + β2 θ
′ + F2(h, θ) = ê3 ·

∫
∂B0

y⊥ · (T (v, q)n̂) dσ(y) in (0, T ) .

(5.3.8)
with initial conditions

v(y, 0) = û0, k(0) = 0, k′(0) = k0, h(0) = 0, h′(0) = h0,

θ(0) = 0, θ′(0) = θ0.
(5.3.9)

The operators M,L,N appearing in (5.3.8) are defined here below (the exponent i stands
for the i-th component, and we use the Einstein notation).

(Mv)i = ∂rv
i∂tψ

r + ∂kψ
i(∂k∂tφ

i)vk + ∂kψ
i∂2krφ

i∂tψ
rvk,

(Lv)i = ∂kψ
i∂jψ

m(∂2mkφ
i)∂rv

k∂jψ
r + ∂jψ

m∂2mrv
i∂jψ

r + ∂rv
i(∂2jjψ

r)

+ ∂kψ
i∂jψ

m(∂3mrkφ
i)∂jψ

rvk + ∂kψ
i(∂2rkφ

i)∂2jjψ
rvk + ∂kψ

i(∂2rkφ
i)∂jψ

r∂jψ
m∂mv

k,

(N v)i = vr∂rv
i + ∂kψ

ivr(∂2rkφ
i)vk,

(Gq)i = gij∂jq.

Remark 5.3.4. Note that:
- (∂t +M)v corresponds to the original time derivative ∂tû ;
- Lv corresponds to ∆û ;
- N v corresponds to (û · ∇)û ;
- Gq corresponds to ∇p.
In particular, in Aε these operators coincide with the original ones; the same is true in Oε, except
for

(∂t +M)v = (∂t − (k′, h′) · ∇ − θ′y⊥ · ∇)v + θ′v⊥ .

The first equation in (5.3.8) can be rewritten as

vt − µ∆v + (v · ∇) v +∇q + (v · ∇) s+ (s · ∇) v = ĝ + F(v, k, h, θ, q),
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where
F(v, k, h, θ, q) = µ(L −∆)v −Mv − (N v − (v · ∇)v)− (G −∇)q.

Observe that

F(v, h, θ, q) =

{
0 in Aε

((k′, h′) · ∇+ θ′y⊥ · ∇)v − θ′v⊥ in Ōε,

thus F has compact support in Ω0. The introduction of the maps ψ and φ allows to remove
the dependence on time from the fluid domain, with a consequent strengthening of the coupling
between the equations governing the motion of the fluid and the one governing the motion of
the obstacle. Such a strengthening appears in the fictitious force F = F(v, k, h, θ, q), where
the dependence on h and θ is hidden in ψ and φ.

The following proposition, which can be proven as Proposition 4.5 and 4.6 in [130], guaran-
tees that the system of equations (5.3.8)-(5.3.9) is equivalent to the original penalized problem
(5.3.1)-(5.3.2)-(5.3.3).

Proposition 5.3.5. A quintuplet (u, p, k, h, θ) is a strong solution to (5.3.1)-(5.3.2)-(5.3.3) in
[0, T ] in the sense of Definition 5.3.2 if and only if the quintuplet (v, q, k, h, θ), where v and q
are defined by (5.3.6)-(5.3.7), satisfies

v ∈ L2(0, T ;H2(Ω0)) ∩ H1(0, T ;L2(Ω0)) ∩ C([0, T ];H1(Ω0))

q ∈ L2(0, T ; Ĥ1(Ω0)), (k, h) ∈ H2(0, T ;R2), θ ∈ H2(0, T ;R),

together with (5.3.8)-(5.3.9) in an almost-everywhere sense both in space and in time.

5.3.2 The linearized problem

The operators in (5.3.8) depend on the solution v through the map φ(t, ·), thus they are highly
nonlinear. However, as they correspond to the identity when t = 0, for small times we can think
about them as small perturbations, collecting them in a source term. The same can be said about
the restoring forces F1 and F2.

Notice that the equations (5.3.8)4-(5.3.8)5 can be jointly written in vector form as

mη′′ + β1 η
′ +Rn(η, θ) = −Q(θ)

∫
∂B0

T (v, q)n̂ dσ(y) in (0, T ) ,

where η = (k, h) and Rn(η, θ) = (n k, F1(h, θ)) is the restoring forces vector. Let the function
Λ : [0, T ] −→ R2 be

Λ(t) =

∫ t

0

Q(θ(τ))⊤η′(τ) dτ ∀ t ∈ [0, T ] ,

so that

Λ′(t) = Q(θ(t))⊤η′(t) and Λ′′(t) = Q(θ(t))⊤η′′(t) + θ′(t)Λ′(t)⊥ ∀ t ∈ [0, T ] ,
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Chapter 5. Well-posedness of a FSI problem in a Poiseuille flow: full motion

and also

η(t) = (k(t), h(t)) =

∫ t

0

Q(θ(τ))Λ′(τ) dτ ∀ t ∈ [0, T ] .

Then, problem (5.3.8) may be re-written as

vt − µ∆v +∇q = f, div(v) = 0 in Ω0 × (0, T ) ,

lim
|y1|−→∞

v(y1, y2) = 0 ∀y2 ∈ [−L,L] , v = 0 on ΓA × (0, T ) ,

v = Λ′ + θ′y⊥ on ∂B0 × (0, T ) ,

mΛ′′ + β1 Λ
′ = −

∫
∂B0

T (v, q)n̂ dσ(y) + fm in (0, T ),

J θ′′ + β2 θ
′ = −

∫
∂B0

y⊥ · T (v, q)n̂ dσ(y) + fJ in (0, T ).

(5.3.10)

with initial conditions

v(y, 0) = û0 , Λ(0) = 0 , Λ′(0) = (k0, h0) , θ(0) = 0 , θ′(0) = θ0 ,

where 
f = ĝ + µ(L −∆)v −Mv −N v − (G −∇)q − (v · ∇) s− (s · ∇) v,

fm = −Q⊤(θ)Rn(Λ
′, θ) +mθ′Λ′⊥,

fJ = −F2(Λ
′, θ).

Problem (5.3.10) can be linearized by thinking of f , fm and fθ as prescribed given forces. In
particular, suppose that

f ∈ L2(0, T ;L2(Ω0)) , fm ∈ L2(0, T ;R2), and fJ ∈ L2(0, T ;R).

From Section 5.2.1, we recall the spaces

H(B0) ={(v, ℓ, α) ∈ L2(A)× R2 × R | div(v) = 0 in A, v · n̂ = 0 on ∂A,

v = ℓ+ α y⊥ in B0}

V(B0) ={(v, ℓ, α) ∈ H1
0 (A)× R2 × R | div(v) = 0 in A, v = ℓ+ α y⊥ in B0} .

As in [33, 130, 131], the linearized problem is solved by exploiting a semi-group approach. For
this, let us define the set

D(S) = {z ∈ V(B0) | v|Ω0 ∈ H2(Ω0)} , (5.3.11)

which is a dense linear subspace of V , and the (unbounded) linear operator S : D(S) −→ L2(A)
by

S(z) =


− µ∆v in Ω0

1

m

(
2µ

∫
∂B0

D(v)n̂dσ(y)+β1 ℓ

)
+

1

J

(
2µ

∫
∂B0

y⊥ ·D(v)n̂dσ(y)+β2α

)
y⊥ inB0 ,
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for any z = (v, ℓ, α) ∈ D(S). Then, if P denotes the orthogonal projection fromL2(A)×R2×R
onto H(B0), we define

S(z) = P(S(z)) ∀z ∈ D(S) ,

and prove the following result:

Proposition 5.3.6. The unbounded linear operator S : D(S) −→ H(B0) is self-adjoint and
positive. Furthermore, there exists a constant C > 0 such that

∥u∥H2(Ω0) ≤ C∥(I + S)u∥H(B0) ∀z = (u, ℓ, α) ∈ D(S) . (5.3.12)

Proof. We start by proving that S is symmetric and positive. Take z1 = (v1, ℓ1, α1), z2 =
(v2, ℓ2, α2) ∈ D(S), so that

⟨S(z1), z2⟩H(B0) = ⟨S(z1), z2⟩L2(A) = ⟨S(z1), z2⟩L2(A)

=

∫
Ω0

−µ∆v1 · v2 + 2µ

(∫
∂B0

D(v1) n̂ dσ(y)

)
· ℓ2 + β1 ℓ1 · ℓ2

+ 2µ

(∫
∂B0

y⊥ ·D(v1) n̂ dσ(y)

)
α2 + β2 α1α2.

Notice that

∆v1 · v2 = 2 div(D(v1)) · v2 = 2 div(D(v1)v2)− 2D(v1) : D(v2),

and thus we obtain

⟨S(z1), z2⟩H(B0) =− 2µ

∫
Ω0

div(D(v1)v2) dy + 2µ

∫
Ω0

D(v1) : D(v2) dy

+ 2µ

(∫
∂B0

D(v1)n̂ dσ(y)

)
· ℓ2 + β1 ℓ1 · ℓ2

+ 2µ

(∫
∂B0

y⊥ ·D(v1)n̂ dσ(y)

)
α2 + β2 α1α2,

which, after integration by parts of the first term, yields

⟨S(z1), z2⟩H(B0) =− 2µ

∫
∂B0

(D(v1)v2) · n̂ dy + 2µ

∫
Ω0

D(v1) : D(v2) dy

+ 2µ

(∫
∂B0

D(v1)n̂ dσ(y)

)
· ℓ2

+ β1 ℓ1 · ℓ2 + 2µ

(∫
∂B0

y⊥ ·D(v1)n̂ dσ(y)

)
α2 + β2 α1α2.
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By the properties of the elements belonging to D(S) in (5.3.11), we obtain that

⟨S(z1), z2⟩H(B0) =− 2µ

∫
∂B0

(D(v1)(ℓ2 + α2y
⊥)) · n̂ dσ(y)

+ 2µ

∫
Ω0

D(v1) : D(v2) dy + 2µ

(∫
∂B0

D(v1)n̂ dσ(y)

)
· ℓ2

+ β1 ℓ1 · ℓ2 + 2µ

(∫
∂B0

y⊥ ·D(v1)n̂ dσ(y)

)
α2 + β2 α1α2

so that, for all z1, z2 ∈ D(S),

⟨S(z1), z2⟩H(B0) = 2µ

∫
Ω0

D(v1) : D(v2) dy+β1 ℓ1·ℓ2+β2 α1α2 = ⟨S(z2), z1⟩H(B0) , (5.3.13)

thus S is symmetric. Moreover, for all z ∈ D(S), there holds

⟨S(z), z⟩H(B0) = 2µ

∫
Ω0

|D(z)|2 dy + β1 |ℓ|2 + β2 θ
2 ≥ 0 ,

which gives that S is positive. The next step is to prove that S is not only symmetric but self-
adjoint; it sufficies to prove that I + S : D(S) −→ H(B0) is onto. For any f0 ∈ H(B0), we
need to show that there exists z = (u, ℓz, αz) ∈ D(S) such that

(I + S)z = f0

or, equivalently, that

⟨z, w⟩H(B0) + ⟨S(z), w⟩H(B0) = ⟨f0, w⟩H(B0) ∀w ∈ H(B0).

Since V(B0) is dense in H(B0), by (5.3.13), this is equal to prove

a(z, w) = ⟨z, w⟩H(B0)+2µ

∫
Ω0

D(u) : D(v) dy+β1 ℓz ·ℓw+β2 αzαw = ⟨f0, w⟩H(B0) (5.3.14)

for all w = (v, ℓw, αw) ∈ V(B0). By noticing that the bilinear form a : V(B0)× V(B0) −→ R
is continuous as well as coercive on the Hilbert space V(B0), and that the mapping

w 7−→ ⟨f0, w⟩H(B0)

defines a linear and continous functional on V(B0), by Lax-Milgram Theorem we obtain that
there exists a unique z = (u, ℓz, αz) ∈ V(B0) satisfying (5.3.14). Next, we choose w ∈ V(B0)
such that

w =

{
ϕ in Ω0

0 in B0

,

for some divergence-free ϕ ∈ C∞
0 (Ω0). Then, from [60, Lemma IV.1.1], we have that there

exists a p ∈ L2
loc(Ω0) such that

u− µ∆u+∇p = f0 in H−1(Ω0) .
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Moreover, as z ∈ V(B0), by definition of such space, we have that u is solenoidal and it is such
that

u = ℓz + αz y
⊥ in B0.

As a consequence, the triplet (u, ℓz, αz) is a weak solution of the following Stokes-type problem:
u− µ∆u+∇p = f0 , ∇ · u = 0 in Ω0 ,

lim
|y1|−→∞

u(y1, y2) = 0 ∀y2 ∈ [−L,L] , u = 0 on ΓA ,

u = ℓz + αz y
⊥ on ∂B0 .

(5.3.15)

So far we have proved that there exists z ∈ V(B0) satisfying (5.3.14). Thus, in order to show
that I + S : D(S) −→ H(B0) is onto, we must prove that z ∈ D(S). We extend the boundary
data in (5.3.15)3 to the interior of B0, by considering a cut-off function ζ ∈ C∞(A;R) such that

ζ ≡ 1 on B0 , supp(ζ) = {x ∈ A | |x| ≤ 2} .

We then set
ψ(y) = ζ(y)(ℓz + αz y

⊥) ∀y ∈ Ω0 ,

so that ψ ∈ H2(Ω0) and ∫
∂B0

ψ · n̂ dσ(y) = 0 .

Let us denote by C > 0 a generic constant which might change during the computations. By
combining (through a localization argument) the well known results concerning the regularity
of solutions of the Stokes equations in smooth bounded (see [24]) and unbounded domains
(see [60, Theorem VI.1.3] or [107]), we then obtain that u ∈ H2(Ω0) and

∥u∥H2(Ω0) ≤ C(∥f0∥L2(Ω0) + ∥ψ∥H2(Ω0)). (5.3.16)

Thus, z ∈ D(S), which, as already mentioned, implies that (I+S) is onto. By choosing w = z
in (5.3.14), we obtain

∥z∥2H(B0)
≤ ∥f0∥2H(B0)

,

by which, through (5.2.1), we obtain

m|ℓz|2 + Jα2
z ≤ ∥f0∥2H(B0)

,

which implies
∥ψ∥H2(Ω0) ≤ C∥f0∥H(B0).

Then, from (5.3.16), we obtain

∥u∥H2(Ω0) ≤ C∥f0∥H(B0),

which yields the sought estimate (5.3.12).

Next, we want to apply [131, Proposition 3.3] and prove well-posedness of the linearized
problem.
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Theorem 5.3.7. Let T > 0. Suppose that (û0, (k0, h0), θ0) ∈ V(B0) and

f ∈ L2(0, T ;L2(Ω0)), fm ∈ L2(0, T ;R2), fJ ∈ L2(0, T ;R).

Then the linear problem (5.3.10) admits a unique strong solution (v, q,Λ, θ) in [0, T ], that is

v ∈ L2(0, T ;H2(Ω0)) ∩ H1(0, T ;L2(Ω0)) ∩ C([0, T ];H1(Ω0))

q ∈ L2(0, T ;H1(Ω0)), Λ ∈ H2(0, T ;R2), θ ∈ H2(0, T ;R).

Moreover, there exists a positive constant K > 0 such that
∥v∥L2(0,T ;H2(Ω0))

+ ∥v∥L∞(0,T ;H1(Ω0))
+ ∥v∥H1(0,T ;L2(Ω0))

+ ∥∇q∥L2(0,T ;L2(Ω0))
+ ∥Λ′∥H1(0,T ;R2) + ∥θ′∥H1(0,T ;R)

≤ C0

(
∥∇û0∥L2(Ω0)

+ |k0|+ |h0|+ |θ0|+ ∥f∥L2(0,T ;L2(Ω0))
+ ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

(5.3.17)

The constant C0 depends on Ω0, µ, m, J , β1, β2 and T , and it is non-decreasing with respect
to T .

Proof. The proof follows closely [131, Corollary 4.3 ]. We observe that, by (5.3.13), the graph’s
norm of D(S1/2) is

∥z∥2D(S1/2) = ⟨z, z⟩H(B0) + ⟨S(z), z⟩H(B0) = ⟨z, z⟩H(B0) + 2∥D(v)∥2L2(A) + β1 |ℓ|2 + β2 α
2,

thus
D(S1/2) = V(B0).

Notice that z0 = (û0, (k0, h0), θ0) ∈ D(S1/2). We extend f to the whole of A by setting, almost
everywhere in [0, T ],

f∗(y, t) =


f(y, t) if y ∈ Ω0

fm(t)

m
+
fJ (t)

J
y⊥ if y ∈ B0 ,

so that (f∗, fm, fJ ) ∈ L2(0, T ;L2(A)) and

∥f∗∥2L2(0,T ;L2(A)) = ∥f∥2L2(0,T ;L2(Ω0))
+

1

m
∥fm∥2L2(0,T ;R2) +

1

J
∥fJ ∥2L2(0,T ;R) . (5.3.18)

Consider now the abstract Cauchy problem{
z′ + Sz = P(f∗) in (0, T ) ,

z(0) = z0 .
(5.3.19)

Due to Proposition 5.3.6, we can apply [131, Proposition 3.3] so as to deduce that problem
(5.3.19) admits a unique solution

z ∈ L2(0, T ;D(S)) ∩ C([0, T ];V(B0)) ∩H1(0, T ;H(B0))

that satisfies the estimate

∥z∥L2(0,T ;D(S)) + ∥z∥L∞(0,T ;V(B0)) + ∥z∥H1(0,T ;H(B0)) ≤ C0

(
∥z0∥V(B0) + ∥f∗∥L2(0,T ;L2(A))

)
,

(5.3.20)
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where C0 > 0 is a constant depending on the operator S and on T , and it is non-decreasing with
respect to T . As z ∈ H1(0, T ;H(B0)), there exist (unique functions) v ∈ H1(0, T ;L2(A)),
V ∈ H1(0, T ;R2) and ω ∈ H1(0, T ;R) such that z = (v, V, ω) and

v(y, t) = V (t) + ω(t) y⊥ ∀ y ∈ B0 , t ∈ [0, T ] .

Then, denoting by

Λ(t) =

∫ T

0

V (τ) dτ, θ(t) =

∫ T

0

ω(τ) dτ, ∀t ∈ [0, T ] ,

we have that Λ ∈ H1(0, T ;R2), θ ∈ H2(0, T ;R) and v(y, t) = Λ′(t) + θ′(t)y⊥ for all y ∈ B0

and t ∈ [0, T ]. Consider w = (u, ℓ, α) ∈ H(B0) and multiply (5.3.19)1 with w to obtain

⟨z′(t), w⟩H(B0) + ⟨S(z(t)), w⟩H(B0) = ⟨P(f∗), w⟩H(B0) = ⟨f∗, w⟩H(B0) ,

which is equal to

⟨z′(t), w⟩H(B0) + ⟨S(z(t)), w⟩H(B0) = ⟨f∗, w⟩H(B0) for a.e. t ∈ [0, T ] . (5.3.21)

From the definition of the operator S, and since z ∈ L2(0, T ;D(S)), we rewrite (5.3.21) as∫
Ω0

v′(t) · u dy +mΛ′′(t) · ℓ+ J θ′′(t)α +

∫
Ω0

(−µ∆v) · u dy + 2µ

(∫
∂B0

D(v) n̂ dσ(y)

)
· ℓ

+ β1Λ
′(t) · ℓ+ 2µ

(∫
∂B0

y⊥ ·D(v) n̂ dσ(y)

)
α + β2θ

′(t)α =

∫
Ω0

f(t) · u dy + fm · ℓ+ fJ α

(5.3.22)
for all w = (u, ℓ, α) ∈ H(B0). In particular, we can choose

w =

{
ϕ in Ω0

0 in B0

,

with ϕ ∈ C∞
c (Ω0) such that ∇ · ϕ = 0 in Ω0, so as to obtain∫

Ω0

v′(t) · ϕ dy +
∫
Ω0

(−µ∆v(t)) · ϕ dy =

∫
Ω0

f(t) · ϕ dy

for all ϕ ∈ C∞
c (Ω0) such that ∇ · ϕ = 0 in Ω0. Thus, by [60, Lemma XIII.1.1] we deduce

the existence of a unique q ∈ L2(0, T ; Ĥ1(Ω0)) such that

v′(t)− µ∆v(t) +∇q(t) = f(t) a.e. in Ω0 , for a.e. t ∈ [0, T ] . (5.3.23)

From (5.3.23) and (5.3.20) we can easily derive the estimate

∥∇q∥L2(0,T ;L2(Ω0)) ≤ C0

(
∥z0∥V(B0) + ∥f∥L2(0,T ;L2(A))

)
. (5.3.24)

Notice that (5.3.23) is, almost everywhere in [0, T ], an equality between elements of H(B0).
Thus, it implies that∫

Ω0

(v′(t)− µ∆v(t) +∇q(t)− f(t)) · u = 0 ∀w = (u, ℓ, α) ∈ H(B0) .
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After an integration by parts and in view of (5.3.22) we obtain

mΛ′′(t) · ℓ+ J θ′′(t)α + β1Λ
′(t) · ℓ+ β2θ

′(t)α− fm · ℓ− fJ α

=

∫
∂B0

q(t)u · n̂ dσ − 2µ

(∫
∂B0

D(v) n̂ dσ(y)

)
· ℓ− 2µ

(∫
∂B0

y⊥ ·D(v) n̂ dσ(y)

)
α

for all w = (u, ℓ, α) ∈ H(B0). By testing with w = (u, ℓ, 0), for arbitrary ℓ ∈ R2 and w =
(u, 0, 1) we recover respectively (5.3.10)4 and (5.3.10)5. In order to state the uniqueness of
(v, q,Λ, θ), we observe that any strong solution (5.3.10) must necessarily satisfy the abstract
Cauchy problem (5.3.19), which has a unique solution in virtue of Proposition 5.3.6 and [131,
Proposition 3.3]. Finally, notice that now the estimate (5.3.20) implies that

∥v∥L2(0,T ;H2(Ω0)) + ∥v∥L∞(0,T ;H1(Ω0)) + ∥v∥H1(0,T ;L2(Ω0)) + ∥Λ′∥H1(0,T ;R2) + ∥θ′∥H1(0,T ;R)

≤ C0

(
∥∇û0∥L2(Ω0) + |k0|+ |h0|+ |θ0|+ ∥f∗∥L2(0,T ;L2(A))

)
,

which, combined with (5.3.18) and (5.3.24), yields (5.3.17).

5.3.3 Global existence (up to collision) and uniqueness of strong solutions

The main purpose of this section is to prove a global-in-time (up to collision) existence and
uniqueness result for the penalized system (5.3.1)-(5.3.2)-(5.3.3). From the well-posedness of
the linear problem (5.3.10) we learn that there exists a mapping F from

L2(0, T ;L2(Ω0))× L2(0, T ;R2)× L2(0, T ;R) (5.3.25)

into itself, defined by

F

 f

fm

fJ

 =

F1(f, fm, fJ )

F2(f, fm, fJ )

F3(f, fm, fJ )

 =


ĝ + µ(L −∆)v −Mv −N v − (G −∇)q − (v · ∇) s− (s · ∇) v

−Q⊤(θ)Rn(Λ
′, θ) +mθ′Λ′⊥

−F2(Λ
′, θ)

 , (5.3.26)

where (v, q,Λ, θ) is the unique strong solution to (5.3.10). Let T > 0 and define, for anyR > 0,
the ball of radius R (centered at the origin) in the space (5.3.25), that is

BR(0) ={(f, fm, fJ ) ∈ L2(0, T ;L2(Ω0))× L2(0, T ;R2)× L2(0, T ;R) s.t.
∥(f, fm, fJ )∥L2(0,T ;L2(Ω0))×L2(0,T ;R2)×L2(0,T ;R) ≤ R}.

We want to show that the map F possesses a unique fixed point in a two-steps procedure.
The first step consists of proving that, provided that T is small enough andR is large enough,

then F maps BR(0) into itself. Following [130], let us denote in the sequel K0, C0, D0, C as
four positive quantities, respectively, satisfying the following requirements:
(A1) K0 is a function of k0, θ0, ∥∇û0∥L2(Ω0)

, T and R, non-decreasing with respect to T,R, ∥∇û0∥L2(Ω0)
, |k0|, |θ0|.
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(A2) C0 is a function of k0, θ0, ∥∇û0∥L2(Ω0)
and T , non-decreasing with respect to T, ∥∇û0∥L2(Ω0)

, |k0|, |θ0|.

(A3) D0 is a function of k0, θ0 and ∥∇û0∥L2(Ω0)
, non-decreasing with respect to ∥∇û0∥L2(Ω0)

, |k0| and |θ0|.

(A4) C is a constant independent of k0, θ0, ∥∇û0∥L2(Ω0)
, T and R.

Then, the following result can be easily proven:

Lemma 5.3.8. Let F be defined as in (5.3.26). Suppose that (f, fm, fJ ) ∈ BR(0). Then, there
exist K0, C0, D0, C with the properties respectively stated in (A1) − (A2) − (A3) − (A4) such
that

∥F1(f, fm, fJ )∥L2(0,T ;L2(Ω0)) ≤ ∥ĝ∥L2(A)T
1/2 + C0(∥∇s∥L∞(A) + ∥s∥L∞(A))(D0 +R) +K0T

1/10,

∥F2(f, fm, fJ )∥L2(0,T ;R2) ≤ CC0T
1/2(D0 +R)

(
nT 1/2 +D0 +R

)
,

∥F3(f, fm, fJ )∥L2(0,T ;R) ≤ CC0T (D0 +R).
(5.3.27)

Proof. From Lemma 5.2.2, we have that

∥ĝ∥L2(0,T ;L2(Ω0)) = ∥ĝ∥L2(Ω0)T
1/2. (5.3.28)

Then, by the properties of the function s in Lemma 5.2.1, estimate (5.3.17), we infer that

∥(v · ∇)s∥L2(0,T ;L2(Ω0)) ≤ ∥∇s∥L∞(A)∥v∥L2(0,T ;L2(Ω0)) = ∥∇s∥L∞(A)

(∫ T

0

∥v∥2L2(Ω0)

)1/2

≤ ∥∇s∥L∞(A)∥v∥L2(0,T ;H2(Ω0))

≤ ∥∇s∥L∞(A)C0(∥∇û0∥L2(Ω0) + |k0|+ |h0|+ |θ0|
+ ∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R))

≤ ∥∇s∥L∞(A)C0(D0 +R)
(5.3.29)

and

∥(s · ∇)v∥L2(0,T ;L2(Ω0)) ≤ ∥s∥L∞(A)∥∇v∥L2(0,T ;L2(Ω0)) = ∥s∥L∞(A)

(∫ T

0

∥∇v∥2L2(Ω0)

)1/2

≤ ∥s∥L∞(A)∥v∥L2(0,T ;H2(Ω0))

≤ ∥s∥L∞(A)C0(∥∇û0∥L2(Ω0) + |k0|+ |h0|+ |θ0|
+ ∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R))

≤ ∥s∥L∞(A)C0(D0 +R).
(5.3.30)

From [130, Corollary 6.9], the remaining terms in F1 can be bounded as

∥µ(L −∆)v −Mv −N v − (G −∇)q∥L2(0,T ;L2(Ω0)) ≤ K0 T
1/10. (5.3.31)

By collecting the inequalities in (5.3.28)-(5.3.29)-(5.3.30)-(5.3.31), we obtain (5.3.27)1.
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Since for small times the restoring forcesF1 andF2 are of class C1 and noticing that ∥Q∥L∞(0,T ;R4) =
1 we have, as a consequence of Jensen’s inequality,

|Rn(Λ
′(t), θ(t))|2 ≤ n2

(∫ t

0

|Q(θ(τ))Λ′(τ)| dτ
)2

+ |F1(Λ
′(t), θ(t))|2

≤ n2 t

∫ t

0

|Λ′(τ)|2 dτ + C

(∫ t

0

|Λ′(τ)| dτ + |θ(t)|
)2

≤ n2 t

∫ t

0

|Λ′(τ)|2 dτ + C

(
t

∫ t

0

|Λ′(τ)|2 dτ + |θ(t)|2
)

∀t ∈ [0, T ] .

(5.3.32)
Then, using the embedding H1(0, T ;R2) ⊂ L∞(0, T ;R2), by estimate (5.3.17) we have

∥Q⊤Rn(Λ
′, θ)∥L2(0,T ;R2) ≤

(∫ T

0

[
n2 t ∥Λ′∥2L2(0,T ;R2) + C t ∥Λ′∥2L2(0,T ;R2) + C|θ(t)|2

]
dt

)1/2

≤ C
[
T 2(n2 + 1)∥Λ′∥2L2(0,T ;R2) + T ∥θ∥2L∞(0,T ;R)

]1/2
≤ C T

[
(n2 + 1)∥Λ′∥2L2(0,T ;R2) + ∥θ′∥2L2(0,T ;R)

]1/2
≤ nC C0T (D0 +R) ,

(5.3.33)
and

∥mθ′Λ′⊥∥L2(0,T ;R2) ≤ C C0T
1/2(D0 +R)2 . (5.3.34)

A combination of (5.3.33)-(5.3.34)-(5.3.35) yields (5.3.27)2. Using the same reasoning, we
infer that

∥F2(Λ
′, θ)∥L2(0,T ;R) ≤ C C0T (D0 +R) , (5.3.35)

and thus we obtain (5.3.27)3.

From Lemma 5.3.8, it is then clear that

F(BR(0)) ⊂ BR(0) , (5.3.36)

provided that R is sufficiently large (which depends on ε and the initial data) and T is suffi-
ciently small.

Once R has been fixed to be large enough so that (5.3.48) holds, the second step consists
in proving that, for T small, the mapping F : BR(0) −→ BR(0) is a contraction. We con-
sider (f1, fm,1, fJ ,1), (f2, fm,2, fJ ,2) ∈ BR(0), as well as the corresponding strong solutions to
(5.3.10), with the same initial data, given by (v1, q1,Λ1, θ1) and (v2, q2,Λ2, θ2). A first simple
consequence of Theorem 5.3.7, specifically of estimate (5.3.17), is that the size (in a suitable
sense) of each solution is bounded from above by C0(D0 +R).
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We denote the differences

f = f1 − f2 , fm = fm,1 − fm,2 , fJ = fJ ,1 − fJ ,2 ,

v = v1 − v2 , q = q1 − q2 , Λ = Λ1 − Λ2 , θ = θ1 − θ2 ,

so that (v, q,Λ, θ) satisfies

vt − µ∆v +∇q = f, div(v) = 0 in Ω0 × (0, T ) ,

lim
|y1|−→∞

v(y1, y2) = 0 ∀y2 ∈ [−L,L] , v = 0 on ΓA × (0, T ) ,

v = Λ′ + θ′y⊥ on ∂B0 × (0, T ) ,

mΛ′′ + β1 Λ
′ = −

∫
∂B0

T (v, q)n̂+ fm in (0, T ),

J θ′′ + β2 θ
′ = −

∫
∂B0

y⊥ · T (v, q)n̂+ fJ in (0, T ),

with zero initial conditions. From Theorem 5.3.7, we have that
∥v∥L2(0,T ;H2(Ω0))

+ ∥v∥L∞(0,T ;H1(Ω0))
+ ∥v∥H1(0,T ;L2(Ω0))

+ ∥∇q∥L2(0,T ;L2(Ω0))
+ ∥Λ′∥H1(0,T ;R2) + ∥θ′∥H1(0,T ;R)

≤ C0(∥f∥L2(0,T ;L2(Ω0))
+ ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)).

(5.3.37)

Notice that each solution (vi, qi,Λi, θi), i ∈ {1, 2}, induces the differential operators Li, Mi,
Ni and Gi. According to which of the two solutions is considered, we ought add subscripts to
all quantities involved in the expression of

F

 f

fm

fJ


given in (5.3.26), say L = L1 − L2, M = M1 −M2 and G = G1 − G2. We notice that

F

 f1

fm,1

fJ ,1

−F

 f2

fm,2

fJ ,2

 =


F12(v,Λ, θ, q)− (v · ∇) s− (s · ∇) v,

m θ′1Λ
′⊥
1 −mθ′2Λ

′⊥
2 +Q(θ2)

⊤Rn(Λ
′
2, θ2)−Q(θ1)

⊤Rn(Λ
′
1, θ1)

−F2(Λ
′
1, θ1) + F2(Λ

′
2, θ2)

 ,

where

F12(v,H, θ, q) = µ(L1 −∆)v + µLv2 −M1v −Mv2 −N1v1 +N2v2 − (G1 −∇)q + Gq2.

In order to prove that the mapping F is a contraction in BR(0), in the following lemmas we give
component-wise estimates, in view of (5.3.26).

Lemma 5.3.9. Let (f1, fm,1, fJ ,1), (f2, fm,2, fJ ,2) ∈ BR(0). There exist K0, C0 with the prop-
erties stated in (A1)-(A2) such that

∥F1(f1, fm,1, fJ ,1)− F1(f2, fm,2, fJ ,2)∥L2(0,T ;L2(Ω0)) ≤ C0

(
K0 T

1/10 + ∥∇s∥L∞(A) + ∥s∥L∞(A)

)
×
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.
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Proof. From [130, Corollary 6.16] and (5.3.37), we easily infer the following estimates:

∥F12(v,H, θ, q)∥L2(0,T ;L2(Ω0)) ≤ C0K0 T
1/10

(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
and

∥(v · ∇) s+ (s · ∇) v∥L2(0,T ;L2(Ω0)) ≤ C0

(
∥∇s∥L∞(A) + ∥s∥L∞(A)

)
×
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

Lemma 5.3.10. Let (f1, fm,1, fJ ,1), (f2, fm,2, fJ ,2) ∈ BR(0). There exists C0, D0, C > 0 with
the properties stated in (A2)− (A3)− (A4) such that

∥F2(f1, fm,1, fJ ,1)− F2(f2, fm,2, fJ ,2)∥L2(0,T ;R2) ≤ nC C0 T (D0 +R)

×
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

(5.3.38)

Proof. We start by noticing that

mθ′1Λ
′⊥
1 −mθ′2Λ

′⊥
2 = mθ′Λ′⊥

1 +mθ′2Λ
′⊥ .

Therefore, in view of the embedding H1(0, T ;R2) ⊂ C([0, T ];R2) we can estimate the differ-
ence as follows:

∥mθ′1Λ
′⊥
1 −mθ′2Λ

′⊥
2 ∥L2(0,T ;R2) = ∥mθ′Λ′⊥

1 +mθ′2Λ
′⊥∥L2(0,T ;R2)

≤ m
(
∥Λ′

1∥L∞(0,T ;R2)∥θ′∥L2(0,T ;R2) + ∥θ′2∥L∞(0,T ;R2)∥H ′∥L2(0,T ;R2)

)
≤ C

(
∥Λ′

1∥H1(0,T ;R2)∥θ′∥L2(0,T ;R2) + ∥θ′2∥H1(0,T ;R2)∥Λ′∥L2(0,T ;R2)

)
≤ C C0(D0 +R)

(
∥θ′∥L2(0,T ;R2) + ∥Λ′∥L2(0,T ;R2)

)
≤ C C0(D0 +R)(∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)) .

(5.3.39)

In a similar way, we have

Q(θ2)
⊤Rn(Λ

′
2, θ2)−Q(θ1)

⊤Rn(Λ
′
1, θ1) =−Q(θ1)

⊤[Rn(Λ
′
1, θ1)−Rn(Λ

′
2, θ2)]

− [Q(θ1)
⊤ −Q(θ2)

⊤]Rn(Λ
′
2, θ2) .

(5.3.40)

In order to estimate the right-hand side of (5.3.40), we start noticing that

∥Q(θ1)−Q(θ2)∥L2(0,T ;R4) = ∥Q(θ1)⊤ −Q(θ2)
⊤∥L2(0,T ;R4) ≤ C T 1/2∥θ′∥L∞(0,T ;R) , (5.3.41)

and also, from (5.3.32),

∥Rn(Λ
′
i, θi)∥L∞(0,T ;R2) ≤ nC C0 T

1/2 (D0 +R) i ∈ {1, 2} . (5.3.42)
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Therefore, by (5.3.41) and arguing similarly to (5.3.32),

∥Q(θ1)
⊤[Rn(Λ

′
1, θ1)−Rn(Λ

′
2, θ2)]∥L2(0,T ;R2) ≤ T ∥Q(θ1)

⊤∥L∞(0,T ;R4)∥Rn(Λ
′
1, θ1)−Rn(Λ

′
2, θ2)∥L∞(0,T ;R2)

≤

[
C T (n2 + 1)

(∫ T

0

|Q(θ1(τ))Λ
′
1(τ)−Q(θ1(τ))Λ

′
1(τ)| dτ

)2

+ C T∥θ∥2L∞(0,T ;R)

]1/2

≤

[
C T (n2 + 1)

(∫ T

0

|Q(θ1(τ))Λ
′(τ)| dτ +

∫ T

0

|Q(θ1(τ))−Q(θ2(τ))||Λ′
2(τ)| dτ

)2

+ C T∥θ∥2L∞(0,T ;R)

]1/2

≤
[
C T (n2 + 1)

(
T∥Λ′∥2L2(0,T ;R2) + ∥Q(θ1(τ))−Q(θ2(τ))∥2L2(0,T ;R4)∥Λ

′
2∥2L2(0,T ;R2)

)
+ C T 2∥θ′∥2L2(0,T ;R)

]1/2
≤

[
C T 2 (n2 + 1)

(
∥Λ′∥2L2(0,T ;R2) + ∥θ′∥2L∞(0,T ;R)∥Λ′

2∥2L2(0,T ;R2)

)
+ C T 2∥θ′∥2L2(0,T ;R)

]1/2
≤

[
C T 2 (n2 + 1)

(
∥Λ′∥2L2(0,T ;R2) + ∥θ′∥2H1(0,T ;R)∥Λ

′
2∥2L2(0,T ;R2)

)
+ C T 2∥θ′∥2L2(0,T ;R)

]1/2
≤ nC C0 T (D0 +R)

(
∥f∥L2(0,T ;L2(Ω0))

+ ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)
)

(5.3.43)

and also, (5.3.41)-(5.3.42) imply that

∥(Q(θ1)⊤ −Q(θ2)
⊤)Rn(Λ

′
2, θ2)∥L2(0,T ;R2) ≤ ∥Rn(Λ

′
2, θ2)∥L∞(0,T ;R2)∥Q(θ1)⊤ −Q(θ2)

⊤∥L2(0,T ;R4)

≤ nC C0 T (D0 +R)∥θ′∥L∞(0,T ;R) ≤ nC C0 T (D0 +R)∥θ′∥H1(0,T ;R)

≤ nC C0 T (D0 +R)
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

(5.3.44)
Combining (5.3.43)-(5.3.44) we infer

∥Q(θ2)⊤Rn(Λ
′
2, θ2)−Q(θ1)

⊤Rn(Λ
′
1, θ1)∥L2(0,T ;R2)

≤ nC C0 T (D0 +R)
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

This last inequality and (5.3.39) yield (5.3.45).

Finally, by proceeding as in (5.3.43) one can prove

Lemma 5.3.11. Let (f1, fm,1, fJ ,1), (f2, fm,2, fJ ,2) ∈ BR(0). There exists C0, D0, C > 0 with
the properties stated in (A2)− (A3)− (A4) such that

∥F3(f1, fm,1, fJ ,1)− F3(f2, fm,2, fJ ,2)∥L2(0,T ;R) ≤ C C0 T (D0 +R)

×
(
∥f∥L2(0,T ;L2(Ω0)) + ∥fm∥L2(0,T ;R2) + ∥fJ ∥L2(0,T ;R)

)
.

(5.3.45)

The main result of this section reads:

Theorem 5.3.12. Given ε ∈ (0, L/2), (û0, (k0, h0), θ0) ∈ V(Bf (0)) and s = sε as in Lemma
5.2.1, there exists T1 > 0 (depending on ε and (û0, k0, h0, θ0)) such that the penalized problem
(5.3.1)-(5.3.2)-(5.3.3) admits a unique strong solution (û, p̂, k, h, θ) such that

û ∈ L2(0, T1;H
2(Ωf (t))) ∩ H1(0, T1;L

2(Ωf (t))) ∩ C([0, T1];H1
0 (Ωf (t)))

p̂ ∈ L2(0, T1; Ĥ
1(Ωf (t))), (k, h) ∈ H2(0, T1;R2), θ ∈ H2(0, T1;R),
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and
(k(t), h(t), θ(t)) ∈ Af,ε ∀ t ∈ [0, T1] . (5.3.46)

Moreover, the solution (û, p̂, k, h, θ) satisfies the energy estimate

En(t) +

∫ t

0

[
µ∥∇û(s)∥2L2(Ωf (s))

+ 2β1|η′(s)|2 + 2β2|θ′(s)|2
]
ds

≤ L2 T1
µ

∥ĝ∥2L2(A) + En(0) +

∫ T1

0

exp (2τ∥∇s∥L∞(A))

(
L2 τ

µ
∥ĝ∥2L2(A) + En(0)

)
dτ

(5.3.47)

for all t ∈ [0, T1] , where En is energy associated to the penalized system, that is,

En(t) = ∥û(t)∥2L2(Ωf (t))
+m|η′(t)|2 + J |θ′(t)|2 + 2F (θ(t), h(t)) + n k(t)2 ∀ t ∈ [0, T1] .

Proof. From Lemma 5.3.8, it is clear that

F(BR(0)) ⊂ BR(0) , (5.3.48)

provided that R is sufficiently large (which depends on ε and the initial data) and the se T is
sufficiently small. A combination of Lemmas 5.3.9-5.3.10-5.3.11 then allows us to conclude
that F is a contraction in BR(0) provided that T0 is small enough so that

C0

(
K0 T

1/10
0 + ∥∇s∥L∞(A) + ∥s∥L∞(A)

)
+ nC C0 T0 (D0 +R) + C C0 T0 (D0 +R) < 1 .

Notice that, except for n ≥ 1, all the terms on the left-hand of the previous inequality depend
on ε, (û0, k0, h0, θ0) and the prescribed magnitude λ for the Poiseuille flow. Therefore, the
mapping F possesses a unique fixed point which, by definition of F in (5.3.26), corresponds to
the unique strong solution to the penalized problem (5.3.1)-(5.3.2)-(5.3.3) in [0, T0].

In order to prove (5.3.47), we multiply (5.3.1)1 by û(t). Integrating by parts over Ωf (t) term
by term and applying the Reynolds Transport Theorem, we obtain∫

Ωf (t)

ût(t) · û(t) dx =
1

2

d

dt

∫
Ωf (t)

|û(t)|2 dx− 1

2

∫
∂Bf (t)

(û(t) · n̂)|û(t)|2 dσ , (5.3.49)

∫
Ωf (t)

(û(t)·∇)û(t)·û(t) dx =
1

2

∫
∂Bf (t)

(û(t)·n̂)|û(t)|2 dσ ,
∫
Ωf (t)

(s·∇)û(t)·û(t) dx = 0 ,

(5.3.50)

∫
Ωf (t)

[−µ∆û(t) +∇p̂(t)] · û(t) dx = 2µ

∫
Ωf (t)

|D(û(t))|2 dx−
∫
∂Bf (t)

û(t) ·T (û(t), p(t))n̂ dσ .

(5.3.51)
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By inserting (5.3.1)3-(5.3.2) into (5.3.51), we infer∫
Ωf (t)

[−µ∆û(t) +∇p̂(t)] · û(t) dx

= 2µ

∫
Ωf (t)

|D(û(t))|2 dx−
∫
∂Bf (t)

[η′(t) + θ(t)′(x− η(t))⊥] · T (û(t), p(t))n̂ dσ )

= 2µ

∫
Ωf (t)

|D(û(t))|2 dx+mη′′(t) · η′(t) + β1 |η(t)|2 +Rn(η(t), θ(t)) · η′(t)

+ J θ′′(t)θ′(t) + β2 |θ′(t)|2 + F2(θ(t), h(t))θ
′(t)

= µ

∫
Ωf (t)

|∇û(t)|2 dx+ 1

2

d

dt

(
m|η′(t)|2 + J |θ′(t)|2 + 2F (θ(t), h(t)) + n k(t)2

)
+ β1|η′(t)|2 + β2|θ′(t)|2 .

By combining this last identity with (5.3.49)-(5.3.50)-(5.3.51), we estimate as follows

1

2

dEn
dt

(t) + µ∥∇û(t)∥2L2(Ωf (t))
+ β1|η′(t)|2 + β2|θ′(t)|2

=

∫
Ωf (t)

ĝ · û(t) dx−
∫
Ωf (t)

(û(t) · ∇)s · û(t) dx

≤ ∥ĝ∥L2(Ωf (t))∥û(t)∥L2(Ωf (t)) + ∥∇s∥L∞(Ωf (t))∥û(t)∥
2
L2(Ωf (t))

≤ L2

2µ
∥ĝ∥2L2(Ωf (t))

+
µ

2
∥∇û(t)∥2L2(Ωf (t))

+ ∥∇s∥L∞(Ωf (t))∥û(t)∥
2
L2(Ωf (t))

.

(5.3.52)

Next, from (5.3.55) we get

dEn
dt

(t)+µ∥∇û(t)∥2L2(Ωf (t))
+2β1|η′(t)|2+2β2|θ′(t)|2 ≤

L2

µ
∥ĝ∥2L2(Ωf (t))

+2∥∇s∥L∞(Ωf (t))En(t) .

(5.3.53)
An application of the Grönwall lemma yields

En(t) ≤ exp (2t∥∇s∥L∞(Ωf (t)))

(
En(0) +

L2 t

µ
∥ĝ∥2L2(Ωf (t))

)
∀ t ∈ [0, T0] , (5.3.54)

and then, after integrating the inequality (5.3.53) in [0, t] and using (5.3.54), we end up with
(5.3.47).

To obtain the global-in-time existence (until the obstacle leaves the admissible set, i.e.,
(k(T∗), h(T∗), θ(T∗)) /∈ Af,ε for some T∗ > 0) of a strong solution (û, p̂, k, h, θ) to problem
(5.3.1)-(5.3.2)-(5.3.3), we observe that, from (5.3.47), a time T1 ≥ T0 depending on ε, λ and
(û0, k0, h0, θ0) can be chosen in such a way that

(k(t), h(t), θ(t)) ∈ Af, ε
2

∀ t ∈ [0, T1] .
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In order to then extend the solution, already defined in [0, T0], to the interval [0, T1], we need
estimates on ∥∇û∥L2(Ωf (t)). We proceed similarly to [33, Section 4], introducing some aux-
iliary functions. Let ζ ∈ C∞(A;R) be a function with compact support such that ζ ≡ 1 in
neighborhood of Bf (0), and set

ζ̂(x, t) = ζ
(
Q(θ(t))⊤(x− η(t))

)
∀(x, t) ∈ A× [0, T1] ,

where we remind η = (k, h). We then define the rigid velocity field associated to (η, θ) as

V (x, t) = η′(t) + θ′(t)(x− η(t))⊥ ∀(x, t) ∈ R2 × [0, T1] ,

and its associated stream function

w(x, t) = −
∫ x1

0

V2(s, t) ds+

∫ x2

0

V1(s, t) ds

= −h′(t)x1 + k′(t)x2 −
θ′(t)

2

(
x21 + x22 − 2x1k(t)− 2x2h(t)

) (5.3.55)

for all (x, t) ∈ R2 × [0, T1]. The solenoidal vector field Λ̂ given by

Λ̂(x, t) =

(
− w(x, t)

∂ζ̂

∂x2
(x) + ζ̂(x)V1(x2, t), w(x, t)

∂ζ̂

∂x1
(x) + ζ̂(x)V2(x1, t)

)
for all (x, t) ∈ R2 × [0, T1], satisfies the properties reported in [33, Section 4]. In particular,

∥Λ̂∥W 2,∞(Ωf (t)) ≤ C (|h′(t)|+ |θ′(t)|) (5.3.56)

where C is a positive constant depending on the geometry. The following useful identity can be
proven by exactly following the procedure in [33, Lemma 4.3]:

−
∫
Ωf

divT (û, p̂) ·
(
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

)
dx = µ

d

dt

∫
Ωf

|Dû|2 dx+m |η′′|2

+ β1 η
′′ · η′ + η′′ ·Rn(η, θ) + J |θ′′|2 + β2 θ

′′θ′ + θ′′F2(h, θ)−m
[
θ′(η′)⊥

]
· η′′

− β1
[
θ′(η′)⊥

]
· η′ −

[
θ′(η′)⊥

]
·Rn(η, θ) + 2µ

∫
Ωf

(Dû) : ((∇û)(∇Λ̂)−D((û · ∇)Λ̂)) dx .

(5.3.57)

We take the inner product of the equation (5.3.1)1 with

ût + (Λ̂ · ∇)û− (û · ∇)Λ̂
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and, by using (5.3.57), we obtain

∥ût∥2L2(Ωf )
+ µ

d

dt

∫
Ωf

|Dû|2 dx+m |η′′|2 + J |θ′′|2 + β1
d

dt

|η′|2

2
+ β2

d

dt

|θ′|2

2
=

+m
[
θ′(η′)⊥

]
· η′′ + β1

[
θ′(η′)⊥

]
· η′ +

[
θ′(η′)⊥

]
·Rn(η, θ)− η′′ ·Rn(η, θ)− θ′′F2(h, θ)

−
∫
Ωf

ût ·
[
(Λ̂ · ∇)û− (û · ∇)Λ̂

]
dx−

∫
Ωf

(û · ∇)û ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]
dx

−
∫
Ωf

(û · ∇)s ·
[
ût+(Λ̂ · ∇)û−(û · ∇)Λ̂

]
dx−

∫
Ωf

(s · ∇)û ·
[
ût + (Λ̂ · ∇)û−(û · ∇)Λ̂

]
dx

+

∫
Ωf

ĝ ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]
dx− 2µ

∫
Ωf

(Dû) : ((∇û)(∇Λ̂)−D((û · ∇)Λ̂)) dx .

(5.3.58)

At this point, some estimates for the terms of the right-hand side of (5.3.58) are needed, by
exploiting in a suitable way the Hölder, the Young and the Poincaré inequalities, together with
the properties of the solenoidal extension s and of the mapping Λ̂ given in (5.3.56). By recalling
that, as long as (5.3.46) holds, the restoring forces F1 and F2 are of class C1, we get the two
following inequalities

∣∣m [θ′(η′)⊥] · η′′∣∣ ≤ m

4
|η′′|2 +m|θ′(η′)⊥|2 ≤ m

4
|η′′|2 + m

2
(|θ′|4 + |η′|4) ,

and

|η′′ ·Rn(η, θ)| ≤
m

4
|η′′|2 + 1

2m
|Rn(η, θ)|2 ≤

m

4
|η′′|2 + 1

2m
|Rn(η, θ)|2

≤ m

4
|η′′|2 + 1

2m
(n2|k|2 + |F1(h, θ)|2) ≤

m

4
|η′′|2 + 1

2m

[
n2|k|2 + C(|h|2 + |θ|2)

]
.

Similarly

∣∣β1 [θ′(η′)⊥] · η′∣∣ ≤ β1
2
|η′|2 + β1

2
|θ′(η′)⊥|2 ≤ β1

2
|η′|2 + β1

2
(|θ′|4 + |η′|4)

and

|θ′′F2(h, θ)| ≤
J
2
|θ′′|2 + 1

2J
|F2(h, θ)|2 ≤

J
2
|θ′′|2 + C

2J
(|h|2 + |θ|2) .
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Next, since the Poincaré constant for the strip R× (−L,L) is π2/4L2, we have∣∣∣∣∣−
∫
Ωf

ût · (Λ̂ · ∇)û− (û · ∇)Λ̂ dx

∣∣∣∣∣ ≤ ∥ût∥L2(Ωf )∥(Λ̂ · ∇)û− (û · ∇)Λ̂∥L2(Ωf )

≤ 1

10
∥ût∥2L2(Ωf )

+
5

2
∥(Λ̂ · ∇)û− (û · ∇)Λ̂∥2L2(Ωf )

≤ 1

10
∥ût∥2L2(Ωf )

+
5

2
∥(Λ̂ · ∇)û∥2L2(Ωf )

+
5

2
∥(û · ∇)Λ̂∥2L2(Ωf )

≤ 1

10
∥ût∥2L2(Ωf )

+
5

2
∥Λ̂∥2L∞(Ωf )

∥∇û∥2L2(Ωf )
+

5

2
∥∇Λ̂∥2L∞(Ωf )

4L2

π2
∥∇û∥2L2(Ωf )

≤ 1

10
∥ût∥2L2(Ωf )

+
5

2
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
.

For what concerns the trilinear terms, proceeding in a similar way yields∣∣∣∣∣−
∫
Ωf

(û · ∇)û ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]∣∣∣∣∣
≤ ∥(û · ∇)û∥L2(Ωf )∥ût + (Λ̂ · ∇)û− (û · ∇)Λ̂∥L2(Ωf )

≤ 5

2
∥(û · ∇)û∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
∥(Λ̂ · ∇)û∥2L2(Ωf )

+
1

10
∥(û · ∇)Λ̂∥2L2(Ωf )

≤ 5

2
∥(û · ∇)û∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
,

and ∣∣∣∣∣−
∫
Ωf

(û · ∇)s ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]∣∣∣∣∣
≤ ∥(û · ∇)s∥L2(Ωf )∥ût + (Λ̂ · ∇)û− (û · ∇)Λ̂∥L2(Ωf )

≤ 5

2
∥(û · ∇)s∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
≤ 5

2
∥∇s∥2L∞(Ωf )

4L2

π2
∥∇û∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
,
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as well as ∣∣∣∣∣−
∫
Ωf

(s · ∇)û ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]∣∣∣∣∣
≤ ∥(s · ∇)û∥L2(Ωf )∥ût + (Λ̂ · ∇)û− (û · ∇)Λ̂∥L2(Ωf )

≤ 5

2
∥(s · ∇)û∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
≤ 5

2
∥s∥2L∞(Ωf )

∥∇û∥2L2(Ωf )
+

1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
.

The last two terms can be treated using the same arguments to obtain∣∣∣∣∣
∫
Ωf

ĝ ·
[
ût + (Λ̂ · ∇)û− (û · ∇)Λ̂

]∣∣∣∣∣ ≤ ∥ĝ∥L2(Ωf )∥ût + (Λ̂ · ∇)û− (û · ∇)Λ̂∥L2(Ωf )

≤ 5

2
∥ĝ∥2L2(Ωf )

+
1

10
∥ût∥2L2(Ωf )

+
1

10
max

(
1,

4L2

π2

)
∥∇û∥2L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
and∣∣∣∣∣2µ

∫
Ωf

(Dû) : ((∇û)(∇Λ̂)−D((û · ∇)Λ̂)) dx

∣∣∣∣∣ ≤ 2µ∥Dû∥L2(Ωf )∥(∇û)(∇Λ̂)−D((û · ∇)Λ̂)∥L2(Ωf )

≤ µ2∥Dû∥2L2(Ωf )
+

1

2
∥(∇û)(∇Λ̂)−D((û · ∇)Λ̂)∥2L2(Ωf )

≤ µ2∥Dû∥2L2(Ωf )
+

1

2
∥(∇û)(∇Λ̂)∥2L2(Ωf )

+
1

2
∥D((û · ∇)Λ̂)∥2L2(Ωf )

≤ µ2∥Dû∥2L2(Ωf )
+

1

2
∥∇Λ̂∥2L∞(Ωf )

∥∇û∥L2(Ωf )

+
1

2
∥|Dû||∇Λ̂|+ |û||D(∇Λ̂)|∥2L2(Ωf )

≤ µ2∥Dû∥2L2(Ωf )
+

1

2
∥∇Λ̂∥2L∞(Ωf )

∥∇û∥L2(Ωf )

+
1

2
∥Dû∥L2(Ωf )∥∇Λ̂∥L∞(Ωf ) + ∥û∥L2(Ωf )∥D(∇Λ̂)∥2L∞(Ωf )

≤ µ2∥Dû∥2L2(Ωf )
+

1

2
(1 +

4L2

π2
)∥∇û∥L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
+

1

2
∥Dû∥L2(Ωf )

[
C(|η′|2 + |θ′|2)

]
.

99



Chapter 5. Well-posedness of a FSI problem in a Poiseuille flow: full motion

Combining the above inequalities and plugging them into (5.3.58), we obtain that for a.e. t ∈
[0, T1]

1

2
∥ût∥2L2(Ωf )

+ µ
d

dt

∫
Ωf

|Dû|2 dx+ m

2
|η′′|2 + J

2
|θ′′|2 + β1

d

dt

|η′|2

2
+ β2

d

dt

|θ′|2

2
≤

m

2
(|θ′|4 + |η′|4) + 1

2m

[
n2|k|2 + C(|h|2 + |θ|2)

]
+
β1
2
|η′|2 + β1

2
(|θ′|4 + |η′|4) + C

2J
(|h|2 + |θ|2)

+
5

2
∥(û · ∇)û∥2L2(Ωf )

+
5

2
∥ĝ∥2L2(Ωf )

+ ∥∇û∥2L2(Ωf )

{
29

10
max

(
1,

4L2

π2

)[
C(|η′|2 + |θ′|2)

]
+

1

2
(1 +

4L2

π2
)
[
C(|η′|2 + |θ′|2)

]
+

5

2
∥∇s∥2L∞(Ωf )

4L2

π2
+

5

2
∥s∥2L∞(Ωf )

}
+ ∥Dû∥L2(Ωf )

[
C(|η′|2 + |θ′|2) + µ2

]
.

(5.3.59)

Proceeding step by step as in [33, Theorem 1.2], taking into account for the extra terms, we
arrive to an estimate for the term (û · ∇)û. For any ν > 0, there exists a positive constant Cν
depending on B and µ such that

∥(û · ∇)û∥2L2(Ωf )
≤ Cν

[
∥û∥L2(Ωf )∥∇û∥

2
L2(Ωf )

(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf ))

+ ∥û∥2L2(Ωf )
∥∇û∥2L2(Ωf )

(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf ))
2 + ∥ĝ∥2L2(Ωf )

+
4L2

π2
∥∇s∥2L∞(Ωf )

∥∇û∥2L2(Ωf )

+ ∥s∥2L∞(Ωf )
∥∇û∥2L2(Ωf )

+ C(|η′|2 + |θ′|2)
]
+ ν∥ût∥2L2(Ωf )

.

(5.3.60)

Therefore, by replacing (5.3.60) inside (5.3.59) and choosing ν sufficiently small, we infer that
for a.e. t ∈ [0, T1]

1

4
∥ût∥2L2(Ωf ) +

µ

2

d

dt

∫
Ωf

|∇û|2 dx+
m

2
|η′′|2 + J

2
|θ′′|2 + β1

d

dt

|η′|2

2
+ β2

d

dt

|θ′|2

2
≤

m

2
(|θ′|4 + |η′|4) + 1

2m

[
n2|k|2 + C(|h|2 + |θ|2)

]
+

β1

2
|η′|2 + β1

2
(|θ′|4 + |η′|4) + C

2J (|h|2 + |θ|2)

+
5

2
C

[
∥û∥L2(Ωf )∥∇û∥2L2(Ωf )(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf )) + ∥û∥2L2(Ωf )∥∇û∥2L2(Ωf )(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf ))

2

+ ∥ĝ∥2L2(Ωf ) +
4L2

π2
∥∇s∥2L∞(Ωf )∥∇û∥2L2(Ωf ) + ∥s∥2L∞(Ωf )∥∇û∥2L2(Ωf ) + C(|η′|2 + |θ′|2)

]
+

5

2
∥ĝ∥2L2(Ωf )

+ ∥∇û∥2L2(Ωf )

{
29

10
max

(
1,

4L2

π2

)[
C(|η′|2 + |θ′|2)

]
+

1

2
(1 +

4L2

π2
)
[
C(|η′|2 + |θ′|2)

]
+

5

2
∥∇s∥2L∞(Ωf )

4L2

π2
+

5

2
∥s∥2L∞(Ωf )

}
+

1

2
∥∇û∥L2(Ωf )

[
C(|η′|2 + |θ′|2) + µ2] .

Let us define

Kn(t) =
L2 t

µ
∥ĝ∥2L2(A) + En(0) +

∫ t

0

exp (2τ∥∇s∥L∞(A))

(
L2 τ

µ
∥ĝ∥2L2(A) + En(0)

)
dτ ,
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Then, combining the above inequality and (5.3.47) yields
1

4
∥ût∥2L2(Ωf ) +

µ

2

d

dt

∫
Ωf

|∇û|2 dx+
m

2
|η′′|2 + J

2
|θ′′|2 + β1

d

dt

|η′|2

2
+ β2

d

dt

|θ′|2

2
≤

mK2
n +

1

2m

[
n2|k|2 + C(|h|2 + |θ|2)

]
+

β1

2
Kn + β1K

2
n +

C

2J (|h|2 + |θ|2)

+
5

2
C

[
∥û∥L2(Ωf )∥∇û∥2L2(Ωf )(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf )) + ∥û∥2L2(Ωf )∥∇û∥2L2(Ωf )(∥û∥L2(Ωf ) + ∥∇û∥L2(Ωf ))

2

+ ∥ĝ∥2L2(Ωf ) +
4L2

π2
∥∇s∥2L∞(Ωf )∥∇û∥2L2(Ωf ) + ∥s∥2L∞(Ωf )∥∇û∥2L2(Ωf ) + CKn

]
+

5

2
∥ĝ∥2L2(Ωf )

+ ∥∇û∥2L2(Ωf )

{
29

10
max

(
1,

4L2

π2

)
CKn +

1

2

(
1 +

4L2

π2

)
Kn +

5

2

4L2

π2
∥∇s∥2L∞(Ωf ) +

5

2
∥s∥2L∞(Ωf ) +

1

2
(CKn + µ2)

}
.

(5.3.61)

Hence, integrating (5.3.61) with respect to t, and applying (5.3.47), we have that for all t ∈
[0, T1]

1

4

∫ t

0

∥ût(s)∥2L2(Ωf (s))
ds+

µ

2
∥∇û(t)∥2L2(Ωf (t))

+
m

2

∫ t

0

|η′′(s)|2ds+ J
2

∫ t

0

|θ′′(s)|2ds

+
β1
2
|η′(t)|2 + β2

2
|θ′(t)|2 ≤ K2 +K3

∫ t

0

(µ
2
∥∇û(s)∥2L2(Ωf (s))

)( 2

µ
∥∇û(s)∥2L2(Ωf (s)

)
ds ,

(5.3.62)

where

K2 =
µ

2
∥∇û0∥2L2(Ωf ) +

β1

2
(|k0|2 + |h0|2) +

β2

2
|θ0|2 + (m+ β1)K

2
n(T1)T1 +

β1

2
Kn(T1)T1 +

(
1

2m
+

C

2J

)
K1(T1)

T 2
1

2

+
5

2
(C + 1)∥ĝ∥2L2(Ωf ) +

5

2
CKn(T1)T1 +Kn(T1)

{
29

10
max

(
1,

4L2

π2

)
CKn(T1) +

1

2

(
1 +

4L2

π2

)
Kn(T1)

+
5

2

4L2

π2
∥∇s∥2L∞(Ωf ) +

5

2
∥s∥2L∞(Ωf ) +

1

2
(CKn(T1) + µ2)

}
,

and

K3 = C
5L

π

(
2L

π
+ 1

)
+K1(T1)

(
1 +

2L

π

)
.

By applying the Grönwall Lemma to (5.3.62) and using again (5.3.47), we get that for all
t ∈ [0, T1]

1

4

∫ t

0

∥ût(s)∥2L2(Ωf (s))
ds+

µ

2
∥∇û(t)∥2L2(Ωf (t))

+
m

2

∫ t

0

|η′′(s)|2ds+ J
2

∫ t

0

|θ′′(s)|2ds

+
β1
2
|η′(t)|2 + β2

2
|θ′(t)|2 ≤ K2 exp

{
K3

∫ T1

0

2

µ
∥∇û(s)∥2L2(Ωf (s))

ds

}
≤ K2

2

µ2
exp {K3Kn(T1)} .

(5.3.63)

The estimate (5.3.63) shows that the mapping

t 7→ ∥∇û(t)∥L2(Ωf (t))

is bounded on [0, T1].
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The global-in-time (up to a possible contact) strong solution obtained in Theorem 5.3.12 is
also a weak solution to problem (5.3.1)-(5.3.2)-(5.3.3) in the sense of Definition 5.3.1. Thus, an
immediate consequence of Theorem 5.3.12, which will play a fundamental role in the sequel of
the chapter, is now given.

Corollary 5.3.13. The unique strong solution (û, k, h, θ) to problem (5.3.1)-(5.3.2)-(5.3.3) given
by Theorem 5.3.12 is a weak solution to problem (5.3.1)-(5.3.2)-(5.3.3) in [0, T1] with initial da-
tum (û0, (k0, h0), θ0) ∈ V(Bf (0)). Precisely, we have that

((k, h), θ) ∈ W 1,∞(0, T1;R2 × R) ∩ C([0, T1];Af,ε) ,
(û, (k′, h′), θ′) ∈ L2(0, T1;V(Bf (t))) ∩ L∞(0, T1;H(Bf (t)))

satisfies the weak formulation given in Definition 5.3.1 and the energy estimate (5.3.47). More-
over, we have the alternative

(1) T1 = +∞;

(2) T1 <∞ and limt→T1((k(t), h(t)), θ(t)) /∈ Af,ε.

5.4 Weak solutions

The purpose of this section is to obtain a global-in-time (up to collision) weak solution to the
problem (5.2.3)-(5.2.4)-(5.2.5), in the sense of Definition 5.2.3. This concludes the proof of
Theorem 5.1.1, because problem (5.2.3)-(5.2.4)-(5.2.5) is equivalent to the original one, prob-
lem (2.0.9). Our method is based on a diagonal argument, since the inital data in (5.2.5) is
approximated by more regular data belonging to V(Bf (0)) and we also let the penalization
index n go to infinity. The main result of this section reads

Theorem 5.4.1. Assuming (û0, h0, θ0) ∈ Hv(Bv(0)), there exists at least one weak solution
(û, h, θ) to problem (5.2.3)-(5.2.4)-(5.2.5). Moreover, the following alternative holds

(1) T = ∞;

(2) T <∞ and limt→T ((k(t), h(t)), θ(t)) /∈ Ad,δ.

Proof. Given ε ∈ (0, L/2), consider an inital datum (û0, h0, θ0) ∈ Hv(Bv(0)). Then, there
exists a sequence

{(ûj0, h
j
0, θ

j
0)}j∈N ⊂ Vv(Bv(0))

such that

ûj0 −→ û0 in L2(A) as j → ∞ , lim
j→∞

(hj0, θ
j
0) = (h0, θ0) in R2 .

Notice that
{ẑj0}j∈N = {(ûj0, (0, h

j
0), θ

j
0)}j∈N ⊂ V(Bf (0))

is such that
zj0 −→ z0 = (û0, (0, h0), θ0) in H(Bf (0)) as j → ∞ .
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In view of Corollary 5.3.13, for every j, n ∈ N, there exists T j,n1 > 0 (depending on ε and
(ûj0, k

j
0, h

j
0, θ

j
0)) such that the penalized problem (5.3.1)-(5.3.2)-(5.3.3) admits a weak solution

zj,n = (ûj,n, kj,n, hj,n, θj,n) such that

((kj,n, hj,n),θj,n) ∈ W 1,∞(0, T j,n1 ;R2 × R) ∩ C([0, T j,n1 );Af,ε) ,

(ûj,n, (k
′
j,n, h

′
j,n),θ

′
j,n) ∈ L2(0, T j,n1 ;V(Bj,n

f (t))) ∩ L∞(0, T j,n1 ;H(Bj,n
f (t)))

with initial data zj0 ∈ V(Bf (0)). Moreover, the solution (ûj,n, kj,n, hj,n, θj,n) satisfies

(kj,n(t), hj,n(t), θj,n(t)) =

∫ t

0

(k′j,n(τ), h
′
j,n(τ), θ

′
j,n(τ)) dτ ∀t ∈ [0, T j,n1 ] , (5.4.1)

and also the energy estimate

Ej,n(t) +

∫ t

0

[
µ∥∇ûj,n(s)∥2L2(Ωj,n

f (s))
+ β1|η′j,n(s)|2 + β2|θ′j,n(s)|2

]
ds

≤ L2 T j,n1

µ
∥ĝ∥2L2(A) + Ej,n(0) +

∫ T j,n
1

0

exp (2τ∥∇s∥L∞(A))

(
L2 τ

µ
∥ĝ∥2L2(A) + Ej,n(0)

)
dτ

forall t ∈ [0, T j,n1 ], where ηj,n = (kj,n, hj,n), for every j, n ∈ N, and

Ej,n(t) = ∥ûj,n(t)∥2L2(Ωj,n
f (t))

+m|η′j,n(t)|2 + J |θ′j,n(t)|2 + 2F (θj,n(t), hj,n(t)) + n kj,n(t)
2

for all t ∈ [0, T j,n1 ] , j, n ∈ N . Notice that, since {zj0}j∈N converges to z0 in H(Bf (0)) and
F (0, 0) = 0, we have

lim
j→∞

Ej,n(0) = ∥û0∥2L2(Ωf (0))
+mh20 + J |θ0|2 ,

and therefore, there exists j0 ∈ N such that

Ej,n(0) ≤ C0 = 2
(
∥û0∥2L2(Ωf (0))

+mh20 + J |θ0|2
)
∀j ≥ j0 , n ∈ N .

Since T j,n1 depends on the initial data through the approximated initial energy Ej,n(0), we de-
duce that there exists T > 0, depending only on ε, such that

((kj,n, hj,n), θj,n) ∈ W 1,∞([0, T ];Af,ε) ,

(ûj,n, (k
′
j,n, h

′
j,n), θ

′
j,n) ∈ L2(0, T ;V(Bf (t))) ∩ L∞(0, T ;H(Bf (t))) ,

are uniformly bounded with respect to j, n ∈ N with

Ej,n(t) +

∫ t

0

[
µ∥∇ûj,n(s)∥2L2(Ωj,n

f (s))
+ β1|η′j,n(s)|2 + β2|θ′j,n(s)|2

]
ds

≤ L2 T

µ
∥ĝ∥2L2(A) + C0 +

∫ T

0

exp (2τ∥∇s∥L∞(A))

(
L2 τ

µ
∥ĝ∥2L2(A) + C0

)
dτ ∀t ∈ [0, T ] .

(5.4.2)
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We define, for all j, n ∈ N, the density function ρj,n ∈ C([0, T ];L∞(A)) by

ρj,n(t) = χΩj,n
f (t) + ρχBj,n

f (t) ∀t ∈ [0, T ] , (5.4.3)

so that the approximated energy is equivalent to

Ej,n(t) =

∫
A

ρj(t)|ûj,n(t)|2 dx+ 2F (θj,n(t), hj,n(t)) + n kj,n(t)
2 ∀t ∈ [0, T ] .

Therefore, in view of the compact embedding W 1,∞(0, T ;R2 × R) ⊂ C([0, T ];R2 × R), from
(5.4.1) and a diagonal argument, we deduce that there exist

((k, h), θ) ∈ C([0, T ];Af,ε) , û ∈ L2(0, T ;H1
0 (A)) ∩ L∞(0, T ;L2(A))

and subsequences (still denoted in the same way) such that

((kj,n, hj,n), θj) → ((k, h), θ) in C([0, T ];Af,ε) ,
ρj,n → ρ in C([0, T ];L∞(A)) ,

ûj,n ⇀ û in L2(0, T ;H1
0 (A)),

ûj,n
∗
⇀ û in L∞(0, T ;L2(A)) ,

(5.4.4)

as j, n → ∞. From (5.4.2) we easily deduce that k ≡ 0. In fact we have that (h, θ) ∈
H1(0, T ;R2) and

((k′j,n, h
′
j,n), θ

′
j,n)

∗
⇀ ((0, h′), θ′) in L∞(0, T ;R2 × R) as j, n→ ∞ . (5.4.5)

To see this, take any ϕ ∈ C∞
c (0, T ;R), so that∫ T

0

h(t)ϕ′(t) dt = lim
n→∞

lim
j→∞

∫ T

0

hj,n(t)ϕ
′(t) dt = − lim

n→∞
lim
j→∞

∫ T

0

h′j,n(t)ϕ(t) dt .

From (5.4.2) we find a constant C > 0, independent of j and n, such that∣∣∣∣∫ T

0

h′j,n(t)ϕ(t) dt

∣∣∣∣ ≤ C∥ϕ∥L2(0,T ) ∀j, n ∈ N ,

thus implying ∣∣∣∣∫ T

0

h(t)ϕ′(t) dt

∣∣∣∣ ≤ C∥ϕ∥L2(0,T ) ∀ϕ ∈ C∞
c (0, T ;R) .

The same argument can be applied to θ, so that (h, θ) ∈ H1(0, T ;R2). In order to prove (5.4.5)
we start by noticing that h(0) = 0, in view of (5.4.4)1. Therefore

hj,n(t) =

∫ t

0

h′j,n(τ) dτ and h(t) =

∫ t

0

h′(τ) dτ ∀t ∈ [0, T ] , j, n ∈ N ,
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so that, again in view of (5.4.4)1,

lim
n→∞

lim
j→∞

∫ t

0

h′j,n(τ) dτ =

∫ t

0

h′(τ) dτ ∀t ∈ [0, T ] . (5.4.6)

Since (h′j,n)j,n∈N is uniformly bounded in L∞(0, T ;R), there exists h̃ ∈ L∞(0, T ;R) such that
h′j,n

∗
⇀ h̃ in L∞(0, T ;R):

lim
n→∞

lim
j→∞

∫ T

0

h′j,n(t)ϕ(t) dt =

∫ T

0

h̃(t)ϕ(t) dt ∀ϕ ∈ L1(0, T ;R) .

In particular, the above convergence implies that

lim
n→∞

lim
j→∞

∫ t

0

h′j,n(τ) dτ =

∫ t

0

h̃(τ) dτ ∀t ∈ [0, T ] . (5.4.7)

From (5.4.6)-(5.4.7) we deduce that h′ = h̃ a.e. in [0, T ], so that (5.4.5) follows. We emphasize
that

ρ(t) = χΩv(t) + ρχBv(t) with Bv(t) = Q(θ(t))B + (0, h(t)) ∀t ∈ [0, T ] .

Taking ϕ ∈ C∞
c ((0, T ) × A) such that ∇ · ϕ = 0 in A and ϕ = ℓê2 + α (x1, x2 − h)⊥ in

a neighborhood of Bv(t) for some (ℓ, α) ∈ C∞
c (0, T ;R2), we can multiply (5.3.1)1 by ϕ for

j, n ∈ N sufficiently large, say j ≥ j∗ and n ≥ n∗, so as to obtain

−
∫ T

0

(∫
A

ρj,n ûj,n · ϕt dx− β1h
′
j,nℓ+mh′j,n ℓ

′ − F1(hj,n, θj,n) ℓ− β2 θ
′
j,n α− F2(hj,n, θj,n)α

)
dt

+ 2µ

∫ T

0

∫
A

D(ûj,n) : D(ϕ) dx dt+

∫ T

0

∫
Ωj,n

f (t)

[(ûj,n · ∇) ûj,n · ϕ+ (ûj,n · ∇) s · ϕ

+ (s · ∇) ûj,n · ϕ] dx dt =
∫ T

0

∫
Ωj,n

f (t)

ĝ · ϕ dx dt.

(5.4.8)
In order to pass to the limit in the above inequality, the weak convergences in (5.4.4)-(5.4.5) are
not enough. That is why the next paragraph is devoted to proving L2-compactness.

We closely follow the method devised in [81], later exploited in [85]. This method is based
on the application of Friedrichs Lemma [60, Lemma II.5.2]: for every bounded set O ⊂ A, for
any γ > 0, we can choose I = I(γ,O) ∈ N and a sequence of functions {ψk}Ik=1 ⊂ L∞(O;R2)
such that

∥ûj,n − û∥2L2(0,T ;L2(O)) ≤
I∑

k=1

∫ T

0

(∫
O
ρ (ûj,n(t)− û(t)) · ψk dx

)2

dt

+ γ∥∇ûj,n −∇û∥2L2(0,T ;L2(O)).

(5.4.9)
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Since ûj,n is uniformily bounded in L2(0, T ;H1
0 (A)), the crucial idea is to prove that the first

term on the right-hand side of (5.4.9) vanishes as j, n→ ∞, which immediately implies that

lim
n→∞

lim
j→∞

∥ûj,n − û∥2L2(0,T ;L2(O)) = 0 . (5.4.10)

This is enough to pass to the limit in (5.4.8), where we take O = supp(ϕ). By a density
argument, we then conclude that (û, k, h, θ) is a weak solution of (5.2.3)-(5.2.4)-(5.2.5) in the
sense of Definition 5.2.3. Set then

Ij,n =

∫ T

0

(∫
O
ρ (ûj,n(t)− û(t)) · ψ dx

)2

dt ∀j ≥ j∗ , n ≥ n∗ .

All efforts will be devoted to prove that, for any ψ ∈ L∞(O), there exists a subsequence,
denoted by ûj,n such that

lim
j,n→∞

Ij,n = 0 . (5.4.11)

In order to prove (5.4.11), we introduce

Īj,n =

∫ T

0

(∫
O
ρ (ūj,n(t)− û(t)) · ψ dx

)2

dt ,

where ūj,n is a sequence of functions, to be determined later, which is rigid in Bv(t). Notice
that

|Ij,n| ≤ 2
∣∣Īj,n∣∣+ 2∥ρ (ûj,n − ūj,n) · ψ∥2L2(0,T ;L2(O)) ∀j ≥ j∗ , n ≥ n∗ . (5.4.12)

To the purpose of proving that the first term on the right-hand side of (5.4.12) goes to 0, given
N ∈ N, we split [0, T ] intoN intervals [ti−1, ti], with ∆t = ti− ti−1 = T/N , for i ∈ {1, ..., N}.
Then, given a sufficiently small ε̄ < ε, we “thicken" the elliptical rigid body by denoting

B ε̄ =

{
(x1, x2) ∈ R2

∣∣∣∣∣ x21
(d+ ε̄)2

+
x22

(δ + ε̄)2
≤ 1

}
,

and introducing, for any t ∈ [0, T ],

B ε̄
v(t) = Q(θ(t))B ε̄ + h(t) ê2 .

Given i ∈ {1, ..., N}, we consider an orthonormal basis (ei,ε̄M )M∈N ⊂ Vv(B ε̄
v(ti)), where, without

loss of generality, we can assume that each ei,ε̄M has compact support in A. For every M, r ∈ N
we define the piecewise linear function in time ϕε̄M,r : [0, T ]× A −→ R2 by

ϕε̄M,r(t, x) = ei−1,ε̄
M (x) +

t− ti
∆t

(ei,ε̄r (x)− ei−1,ε̄
M (x)) ∀(t, x) ∈ [0, T ]× A ,

for i ∈ {1, ..., N} and t ∈ [ti−1, ti]. Since (h, θ) are uniformly continuous in [0, T ], we can
assure that D(ϕε̄M,r(t)) = 0 in B ε̄/2

v (t) for every t ∈ [0, T ], provided that N is sufficiently large
(i.e., ∆t is sufficiently small). In particular, we can deduce that ϕε̄M,r ∈ C([0, T ];Vv(Bv(t))
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for every M, r ∈ N, so that they will be employed to approximate functions belonging to
L2(0, T ;Hv(Bv(t)). Due to (5.4.4)1, there exist j1 = j1(ε̄), n1 = n1(ε̄) ∈ N such that

D(ϕε̄M,r(t)) = 0 in Bj,n
f (t) ∀t ∈ [0, T ] , ∀j ≥ j1 , n ≥ n1 ,

for every M, r ∈ N. Taking j ≥ j1 and n ≥ n1, we can multiply (5.3.1)1 by ϕε̄M,r with

ϕε̄M,r(t) = V ε̄
M,r(t) ê2 + αε̄M,r(t)(x1 − kj,n(t), x2 − hj,n(t))

⊥ ∀(x1, x2) ∈ Bj,n
f (t) .

Then, after integrating by parts in Ωj,n
f (t) and using the Reynolds Transport Theorem we obtain,

for all t ∈ [0, T ],

d

dt

∫
Ωj,n

f (t)

ûj,n · ϕε̄M,r dx =

∫
Ωj,n

f (t)

∂tϕ
ε̄
M,r · ûj,ndx+

∫
Ωj,n

f (t)

(ûj · ∇)ϕε̄M,r · ûj,n dx

+

∫
Ωj,n

f (t)

[(ûj,n · ∇)s+ (s · ∇)ûj,n] · ϕε̄M,r dx− 2µ

∫
Ωj,n

f (t)

D(ûj,n) : D(ϕε̄M,r) dx

− V ε̄
M,r

(
mh′′j,n + β2h

′
j,n + F1(hj,n, θj,n)

)
− αε̄M,r

(
J θ′′j,n + β2θ

′
j,n + F2(hj,n, θj,n)

)
+

∫
Ωj,n

f (t)

ĝ · ϕε̄M,r dx

which, by using the density function ρj,n in (5.4.3), can be rewritten as

d

dt

∫
A

ρj,n ûj,n · ϕε̄M,r dx =

∫
Ωj,n

f (t)

ρj,n ∂tϕ
ε̄
M,r · ûj,n dx+

∫
Ωj,n

f (t)

(ûj,n · ∇)ϕε̄M,r · ûj dx

+

∫
Ωj,n

f (t)

[(ûj,n · ∇)s+ (s · ∇)ûj,n] · ϕε̄M,r dx− 2µ

∫
Ωj,n

f (t)

D(ûj,n) : D(ϕε̄M,r) dx

− V ε̄
M,r

(
β2h

′
j,n + F1(hj,n, θj,n)

)
− αϕε̄

(
β2θ

′
j,n + F2(hj,n, θj,n)

)
+

∫
Ωj,n

f (t)

ĝ · ϕε̄M,r dx .

Fix M, r ∈ N. In view of (5.4.2) and following [81, Section 4], we can prove that there exists a
constant C = C(M, r) > 0 independent of j, n such that[∫

A

ρj,n(t) ûj,n(t) · ϕε̄M,r(t) dx

]t=ti+∆t

t=ti

≤ C(M, r)(∆t)a for some a ∈ (0, 1) .

Hence, the sequence {∫
A

ρj,n ûj,n · ϕε̄M,r dx

}
j≥j1,n≥n1

: [0, T ] → R

is bounded and equicontinuous, thus, by the Ascoli-Arzelá Theorem and applying the diagonal
Cantor procedure, we obtain that there exists a subsequence (denoted in the same way) such
that ∫

A

ρj,n ûj,n · ϕε̄M,r dx→
∫
A

ρ û · ϕε̄M,r dx in C([0, T ];R) ,
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Chapter 5. Well-posedness of a FSI problem in a Poiseuille flow: full motion

for every M, r ∈ N. Since ûj,n is uniformly bounded in L∞(0, T ;L2(A)) ∩ L2(0, T ;H1
0 (A)),

from (5.4.4)2 we also infer∫
A

ρ ûj,n · ϕε̄M,r dx→
∫
A

ρ û · ϕε̄M,r dx in C([0, T ];R) ,

By invoking the density results contained in [81, Lemma 4.1, Lemma 4.2] we further deduce
that ∫

A

ρ ûj,n · ϕ dx→
∫
A

ρ û · ϕ dx in C([0, T ];R) , ∀ϕ ∈ C([0, T ];Hv(Bv(t)) ,

thus guaranteeing that û attains the initial conditions, and also∫
A

ρ ûj,n · ϕ dx→
∫
A

ρ û · ϕ dx in L2(0, T ;R) , ∀ϕ ∈ L2([0, T ];Hv(Bv(t)) .

(5.4.13)
Next we move to define uj,n. Given t ∈ [0, T ], we introduce as in (5.3.5) the functions φ(t, ·) :
Ω0 −→ Ωv(t) and φj(t, ·) : Ω0 −→ Ωj,n

f (t) which satisfy, for every ε ∈ (0, L/2), the properties

φ(t, z) =

{
Q(θ(t))z + h(t)ê2 if z ∈ Oε

z if z ∈ Aε .

and

φj,n(t, z) =

{
Q(θj,n(t))z + (kj,n(t), hj,n(t)) if z ∈ Oε

z if z ∈ Aε .

With this we can introduce the functions Xj(t, ·) : Ωj,n
f (t) −→ Ωv(t) and Yj(t, ·) : Ωv(t) −→

Ωj,n
f (t) respectively by

Xj,n(t, x) = φ(t, φ−1
j,n(t, x)) ∀(t, x) ∈ [0, T ]× Ωj,n

f (t) ,

Yj,n(t, y) = φj,n(t, φ
−1(t, y)) ∀(t, y) ∈ [0, T ]× Ωv(t) .

In particular, notice that

Xj,n(t, x) =

{
Q(θ(t)− θj,n(t))[x− (kj,n(t), hj,n(t))] + h(t)ê2) if x ∈ Oε

x if x ∈ Aε .

and

Yj(t, y) =

{
Q(θj,n(t)− θ(t))(y − h(t)ê2) + (kj,n(t), hj,n(t)) if y ∈ Oε

y if y ∈ Aε .

We finally set

uj,n(t, y) = ∇Xj,n(t, Yj(t, y)) ûj,n(t, Yj,n(t, y)) ∀(t, y) ∈ [0, T ]× Ωv(t) .
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A simple computation shows that

uj,n(t, y) = Q(θ(t)−θj,n(t))(k′j,n(t), h′j,n(t))+θ′j,n(t)(y1, y2−h(t))⊥ ∀(t, y) ∈ [0, T ]×Bv(t) ,

so that

(uj,n, Q(θ − θj,n)(k
′
j,n, h

′
j,n), θ

′
j,n) ∈ L2(0, T ;V(Bv(t))) ∩ L∞(0, T ;H(Bv(t))) .

Then, for every j ≥ j1 and n ≥ n1 we have

∥ūj,n − ûj,n∥2L2(0,T ;L2(A)) =

∫ T

0

∫
A\Aε

|∇Xj,n(t, Yj,n(t, y))ûj,n(t, Yj,n(t, y))− ûj(t, y)|2 dy dt

≤ 2

∫ T

0

∫
A\Aε

|∇Xj,n(t, Yj,n(t, y))ûj,n(t, Yj,n(t, y))−∇Xj,n(t, Yj,n(t, y))ûj,n(t, y)|2 dy dt

+ 2

∫ T

0

∫
A\Aε

|∇Xj,n(t, y)ûj,n(t, Yj,n(t, y))− ûj,n(t, y)|2 dy dt

≤ 2∥∇Xj,n∥2L∞(0,T ;L∞(A))

∫ T

0

∫
A\Aε

|ûj,n(t, Yj,n(t, y))− ûj,n(t, y)|2 dy dt

+ 2T∥ûj,n∥2L∞(0,T ;L2(A))∥∇Xj,n − I∥2L∞(0,T ;L∞(A))

≤ 2∥∇Xj,n∥2L∞(0,T ;L∞(A))∥∇ûj,n∥2L2(0,T ;L2(A)∥Yj − idA∥2L∞(0,T ;L∞(A))

+ 2T∥ûj,n∥2L∞(0,T ;L2(A))∥∇Xj,n − I∥2L∞(0,T ;L∞(A))

(5.4.14)
At this point, we may apply [76, Corollary 1] to estimate

∥Yj,n − idA∥L∞(0,T ;L∞(A)) ≤ C
(
∥kj,n∥L∞(0,T ;R) + ∥hj,n − h∥L∞(0,T ;R) + ∥θj,n − θ∥L∞(0,T ;R)

)
∥∇Xj,n − I∥L∞(0,T ;L∞(A)) ≤ C

(
∥kj,n∥L∞(0,T ;R) + ∥hj,n − h∥L∞(0,T ;R) + ∥θj,n − θ∥L∞(0,T ;R)

)
,

for all j, n ∈ N, for some constant C > 0 independent of j and n. From (5.4.4)1 we then get

lim
j,n→∞

∥Yj,n − idA∥L∞(0,T ;L∞(A)) = lim
j,n→∞

∥∇Xj,n − I∥L∞(0,T ;L∞(A)) = 0 , (5.4.15)

which also proves that (∇Xj,n)j,n∈N is bounded in L∞(0, T ;L∞(A)). By plugging (5.4.15) into
(5.4.14) and recalling that (ûj,n)j,n∈N is uniformly bounded in

L2(0, T ;H1
0 (A)) ∩ L∞(0, T ;L2(A)),

we finally conclude that
lim

j,n→∞
∥ūj,n − ûj,n∥L2(0,T ;L2(A)) = 0 .

We are now in the position to prove (5.4.11) for ψ ∈ L∞(O). Given t ∈ [0, T ] we denote by
P(h(t),θ(t)) the orthogonal projection from L2(A, ρ dx) onto Hv(Bv(t)) and we introduce

ψ̃(t, x) = P(h(t),θ(t))ψ(x) .
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Thus, we have that
ψ̃ ∈ L∞(0, T ;Hv(Bv))

and, by the properties of the projection,

Īj,n =

∫ T

0

(∫
O
ρ (ūj,n(t)− û(t)) · ψ̃ dx

)2

dt .

We set

Ĩj,n =

∫ T

0

(∫
O
ρ (ûj,n(t)− û(t)) · ψ̃ dx

)2

dt ,

and we notice that ∣∣Īj,n∣∣ ≤ 2|Ĩj,n|+ 2∥ρ (ûj,n − ūj,n) · ψ∥2L2(0,T ;L2(O)) . (5.4.16)

We can choose in (5.4.13) the function ϕ = ψ̃ to obtain that there exists a subsequence (still
denoted by ûj,n) such that Ĩj,n → 0 as j, n → ∞. Finally, a combination of (5.4.12)-(5.4.15)-
(5.4.16) allows to conclude that (5.4.10) holds.
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CHAPTER6
Attractors for a FSI problem in a time-dependent phase

space

The present chapter is concerned with the longterm dynamics of problem (2.0.7), that is a
fluid-structure interaction problem describing a Poiseuille inflow through a 2D bounded channel
containing a rectangular obstacle. Physically, this models the interaction between the wind and
the deck of a bridge in a wind tunnel experiment, as time goes to infinity. We are able to extend
the notion of global attractor to this particular setting, where the solution operator associated
to the system acts on a time-dependent phase space, and prove its existence and regularity.
Moreover, when the inflow is sufficiently small, we give an explicit analytical characterization
of the attractor. Finally, we numerically simulate the case to give a qualitative description of the
attractor for any value of the inflow.

6.1 Longterm dynamics of fluid-structure interaction problems

We study the longterm dynamics of a coupled system describing the motion of a fluid in a 2D
channel with a rectangular obstacle. We aim at modelling the interaction between the cross-
section of the deck of a suspension bridge and the wind as in a wind tunnel experiment where,
at the inlet and outlet sections, the velocity field of the fluid has a Poiseuille flow profile. See
Figure 3.1 on the right for a picture taken during a wind tunnel experiment held at Politecnico
di Milano. The asymmetry of the vortex shedding generates a lift force on the plate (deck) (see
Chapter 3 for a study of the lift phenomenon).

Our analysis is performed on the two-dimensional fluid-structure interaction problem (2.0.7)
introduced in Chapter 2 whose well-posedness has been later established in Chapter 4. The
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reason for this choice is that we aim at modelling the framework of a wind tunnel (Figure 3.1),
where the longtime behaviour may also be studied experimentally. This is clearly impossible in
actual bridges where the wind has a random action on the structure.

Nowadays, the understanding of the dynamic response to turbulent wind is a crucial issue
in the design of long-span bridges. As already mentioned in the Introduction in Chapter 4,
numerous phenomena affect suspension bridges, like vortex-induced oscillations, buffeting and
flutter instabilities (see [46, 64, 125]). Specifically, flutter instability occurs at high wind veloc-
ities (> 70 m/s for long-span bridges) at which the vertical and torsional motion of the deck
synchronize, leading the deck to oscillate with growing amplitudes and eventually causing the
bridge to collapse [3, 4, 52]. In engineering terms, the flutter instability onset can be predicted
with different approaches, i.e. experimental, numerical or hybrid methods [43]. Experimen-
tal methods rely on wind tunnel testing of full-bridge aeroelastic models [10] while numerical
approaches typically involve Computational Fluid Dynamics (CFD) simulations. Hybrid meth-
ods are widely employed due to the implementation complexity of aeroelastic models, and they
usually combine numerical models of the structure with experimentally identified aerodynamic
coefficients [9, 44, 45]. On the other hand, Scanlan’s linearized theory constitutes the most
widely used approach to estimate the flutter limit (see [120, 121, 125]). In the 2D case, a major
contribution is also due to Theodersen’s inviscid flat-plate theory [135] and the approximate
formula by Selberg [123]. These studies are used as a modelling framework to select which ex-
perimental coefficients are to be evaluated during wind tunnel tests, namely the so-called flutter
derivatives.

The crucial (physical and engineering) issue to prevent structural and areodynamic insta-
bilities translates into having a nice behaviour of the body-fluid as time goes to infinity. In
mathematical terms, this can be described by looking for the attractor of the dynamical system
at consideration, which is the natural mathematical object in the theory of infinite-dimensional
system capturing the asymptotic observed nonstationary flow. Indeed, it is the smallest subset
of the phase space to which the trajectories of the system converge in the long term. However,
due to fact that that the fluid domain and the phase space are time-dependent, one cannot apply
neither the theory of semigroups nor that of processes. We refer to Section 1.1 in Chapter 1 for
a more extended discussion on the issue and all related references.

Accordingly, one of the main purposes of the present chapter is to extend the notion of global
attractor to cover the case of maps lacking the concatenation property (typical of semigroups
or processes), referred to in this chapter as semiflows. This allows us to circumvent the main
obstruction, leading to a proper definition of global attractor apt to describe the asymptotics of
our fluid-structure interaction problem acting on a time-dependent phase space. With this notion
at hand, we are able to study the dissipativity properties of (2.0.7), showing that in the longterm
it indeed admits an attractor. As we will see, this is a compact subset of the (variable-in-time)
phase space to which all the solutions (u, h) of (2.0.7) eventually approach. In this respect, the
first step is to characterize explicitly the attractor in some particular situation: we will show that
if the inflow vp is sufficiently small, then the attractor reduces to the unique stationary solution
of (2.0.7). To provide a description of the global attractor in all other situations and, thus, create
an explicit link between the analytical and experimental framework, we then intervene through
numerical simulations, by which we are able to capture some orbit of the dynamical system at
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consideration. In particular, we simulate the static and dynamic behaviour of the cross-section
of the deck immersed in a fluid flow at different conditions.

The chapter is organized in two parts, one devoted to the purely analytical study and the
second one to the numerical study. In Section 6.2 we introduce the main tools for the analysis of
(2.0.7), and we recall some results about the well-posedness and the existence and uniqueness of
equilibrium solutions, the latter holding under smallness assumptions on the flow. In Section 6.3
we explain why the classical approach does not apply and, particularly, why the description of
the dynamics of (2.0.7) in terms of semigroups or processes seems to be out of reach. In Section
6.4 we show that, in case of uniqueness, the equilibrium solution is stable. In Section 6.5 we
define what we mean by semiflow, and we introduce a time-dependent map which enables us to
transform (2.0.7), which is set in the time-dependent domain (2.0.5), into a different problem in
a fixed domain. In Section 6.6 we state and prove our final result on the existence of a global
attractor for (2.0.7). Then we proceed to the second part of the chapter, whose main purpose
is giving an explicit characterization of the global attractor for any range of the incoming flow,
through numerical simulations. As far as we are aware, this is the first time that numerics is
used to improve the knowledge on the structure of the attractor associated to a fluid dynamical
system. In Section 6.7, the numerical strategy adopted is described. Section 6.8 reports and
discusses the numerical results obtained in terms of the main objective of the second part of
chapter.

6.2 Weak solutions and well-posedness

6.2.1 Assumptions on the restoring force

To the purpose of guaranteing the well-posedness of problem (2.0.7), we assume that the restor-
ing force f in (2.0.7)4 satisfies some further conditions besides those given in Chapter 2. In
particular, as in Chapter 4, in order to prevent collisions, we require that f is a strong force, that
is

∃ r > 0 s.t. lim
|h|→L−δ

|f(h)| exp
{
− 1

(L− δ − |h|)4+r

}
= +∞. (6.2.1)

From a mathematical point of view, (6.2.1) may be probably weakened but, for our purposes, it
is not essential to determine the minimal growth condition for f as |h| → L− δ. The simplest
example of function f satisfying (6.2.1) is

f(h) = h exp
1

(L− δ − |h|)4+q
,

where q > 0 (in this case r = q
2
). Nevertheless, since the restoring force for the deck of

a bridge also involves gravity, the function f may not be odd. Then, we define the function
M : [0,+∞) → (−L+ δ, L− δ) as

M(y) := sup
{
|s| : F (s) ≤ y

}
,

where F is as in (2.0.13). Observe that M is a continuous increasing function with M(0) = 0.
Moreover,

∀C ≥ 0 F (h) ≤ C =⇒ |h| ≤M(C). (6.2.2)
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6.2.2 Definition of a solenoidal extension

In order to be able to capture the non-homogeneous boundary condition in (2.0.7), we build
a solenoidal extension for the Poiseuille flow, by combining some results from [20, 60, 68].
We need an H2-solenoidal extension (and not merely H1) because we need some additional
regularity to study the dissipation properties of our system. An alternative construction to that
used in Chapter 4-5 is here proposed. Let ε0 ∈ (0, L − δ) and consider the “smoothened
rectangle”

Aε0 =

{
(x1, x2) ∈ R2 ; |x2| < L− ε0, |x1| < 2 + 4

√
(L− ε0)4 − x42

}
,

so that ∂Aε0 ∈ C3. Then, we take the non-simply connected domain

Σε0 = R \ Āε0 , ∂Σε0 = ∂R∪ ∂Aε0 , (6.2.3)

and we state

Lemma 6.2.1. Let Σε0 be as in (6.2.3). Then, for any η > 0, there exists a solenoidal vector
field s = sε0 = sε0(η), depending on ε0 and η, such that

s ∈ H2(R) ∩ L∞(R), s = vp on ∂R, s = 0 on ∂Aε0 ,∣∣∣∣ ∫
R
(u · ∇)s · u

∣∣∣∣ ≤ η∥∇u∥2L2(R) ∀u ∈ H1
0 (R).

(6.2.4)

Moreover, there exist c1, c2, c3 > 0, depending on R and λ, such that

∥s∥L2(R) ≤ c1ε0e
2/ε0 , ∥∇s∥L2(R) ≤ c2ε0e

4/ε0 , ∥∆s∥L2(R) ≤ c3ε0e
6/ε0 . (6.2.5)

Proof. Consider the Stokes system
−∆v +∇q = 0 inΣε0 ,

div v = 0 inΣε0 ,

v = vp on ∂R,
v = 0 on ∂Aε0 .

(6.2.6)

By [60, Theorem IV.1.1], there exists a unique weak solution (v, q) ∈ H1(Σε0) × L2(Σε0) to
(6.2.6) such that

∥∇v∥L2(Σε0 )
+ ∥q∥L2(Σε0 )

≤ c λ,

for some c depending on ε0. Although ∂Σε0 is not globally of class C2 (it contains the corners
of R), we may proceed as in [68, Theorem 3.3] to infer that the regularity of the solution can be
improved to (v, q) ∈ H2(Σε0) ×H1(Σε0). Then, we follow the idea of [20], which is inspired
by [104], that is, we localize the solution of (6.2.6) in an ε-neighborhood of Σε0 . More precisely,
let v = (v1, v2) be the solution to (6.2.6), fix x0 ∈ Σε0 and let

g(x) =

∫ x

x0

(v1 dx2 − v2 dx1) ∀x ∈ Σε0
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be the stream function associated to v (see also [60, Lemma IX.4.1]). As a consequence,

v1 =
∂g

∂x2
, v2 = − ∂g

∂x1
, g ∈ H3(Σε0). (6.2.7)

For any sufficiently small ε > 0, letψε ∈ C∞(Σ̄ε0) be the cut-off function defined in [60, Lemma
III.6.2] so that

|ψε(x)| ≤ 1 for allx ∈ Σε0 , |ψε(x)| = 1 if δ < γ2(ε)/2k1, |ψε(x)| = 0 if δ ≥ 2γ(ε),

|∇ψε(x)| ≤ k2ε/δ(x) for allx ∈ Σε0 , |Dαψε(x)| ≤ k3ε/δ
|α|(x) for |α| ∈ {2, 3}, (6.2.8)

where δ = dist(x, ∂Σε0), γ(ε) = exp(−1/ε) while k1, k2, k3 > 0 are some constants. We set

s =

(
∂

∂x2
(g ψε),−

∂

∂x1
(g ψε)

)
inΣε0 , s = 0 inR \ Σε0 .

From (6.2.7), we see that s satisfies the first two properties in (6.2.4). Moreover, we can proceed
as in [60, Lemma IX.4.2] to find ε so as to obtain the third property in (6.2.4). Finally, the
estimates in (6.2.8) imply that

|∇ψε(x)| ≤ k4εe
2/ε; |D2ψε(x)| ≤ k5εe

4/ε; |D3ψε(x)| ≤ k6εe
6/ε ,

for all x such that γ2(ε)/2k1 < dist(x, ∂Σε0) ≤ 2γ(ε), for some constants k4, k5, k6 > 0. This
gives (6.2.5).

6.2.3 Steady states

We denote by (us, hs) the steady solutions to problem (2.0.7), namely the solutions to

− µ∆us + (us · ∇)us +∇ps = 0, divus = 0 in Ωhs ,

us = λ(L2 − x22)ê1 on ∂R, us = 0 on ∂Bhs ,
(6.2.9)

together with the static fluid-structure interaction condition

f(hs) = −ê2 ·
∫
∂Bhs

T (us, ps) · n̂. (6.2.10)

Weak solutions (us, hs) ∈ H1(Ωhs)× (−L+ δ, L− δ) to (6.2.9)-(6.2.10) represent equilibrium
positions of the body, for a given flow regime of the fluid. In the following theorem we provide
a well-posedness result for (6.2.9)-(6.2.10).

Theorem 6.2.2. Assume that f satisfies (2.0.12) and (6.2.1). For any λ > 0 the problem
(6.2.9)-(6.2.10) admits a weak solution. Furthermore, there exists λs > 0 such that if λ < λs
the problem (6.2.9)-(6.2.10) admits a unique weak solution (us, hs) ∈ H1(Ωhs)×(−L+δ, L−δ)
given by (uλ, 0), that is us, with hs = 0. Moreover, there exists C(λ) > 0, with C(λ) → 0 as
λ→ 0, such that

∥∇uλ∥L2(Ω0) ≤ C(λ).
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Proof. By symmetry of the problem one can assume that Bhs entirely lies above the horizontal
line x2 = −L+ δ + τ where τ > 0 and −L+ δ + τ < 0. Given the “smoothened rectangle”

Aτ =(−2, 2)× (−L+ δ + τ, L)

∪ {(x1, x2) ∈ R2 | (x1 − 2)4 + (x2 − δ
2
− τ

2
)4 < (L− δ

2
− τ

2
)4, x1 ≥ 2, x2 ≤ δ

2
+ τ

2
}

∪ {(x1, x2) ∈ R2 | (x1 + 2)4 + (x2 − δ
2
− τ

2
)2 < (L− δ

2
− τ

2
)4, x1 ≤ −2, x2 ≤ δ

2
+ τ

2
}

∪ {(x1, x2) ∈ R2 | (x1 − 2− 2L+ δ + τ)4 + (x2 − δ
2
− τ

2
)4 < (L− δ

2
− τ

2
)4, x1 ≥ 2, x2 > δ

2
+ τ

2
}

∪ {(x1, x2) ∈ R2 | (x1 + 2 + 2L− δ − τ)4 + (x2 − δ
2
− τ

2
)4 < (L− δ

2
− τ

2
)4, x1 ≤ −2, x2 > δ

2
+ τ

2
},

take the domain

Σ = R\Āτ , ∂Σ = ∂Σ1∪∂Σ2 =
(
∂R\∂Aτ

)
∪
(
∂Aτ\{−2 ≤ x1 ≤ 2∧x2 = L}

)
. (6.2.11)

Then, by Lemma 6.2.1, in which we replace Σε0 with Σ as in (6.2.11), there exists a function s
satisfying (6.2.4).

The proof of existence is similar to the proof of [15, Theorem 1], with some modifications;
see also [66]. We define

us = ûs + s.

Clearly ûs will depend on the particular s chosen, but when we get rid of the solenoidal exten-
sion by undoing the change of unknown, we go back to the solution to the original problem us.
Then, we take as weak formulation of (6.2.9)-(6.2.10)

µ

∫
Ωhs

∇ûs · ∇ϕ+

∫
Ωhs

(ûs · ∇)ûs · ϕ+

∫
Ωhs

(ûs · ∇)s · ϕ+

∫
Ωhs

(s · ∇)ûs · ϕ=∫
Ωhs

(s · ∇)s · ϕ+

∫
Ωhs

µ∆s · ϕ
(6.2.12)

for any solenoidal test function ϕ ∈ C∞
C (R). We notice that the existence of a weak solution of

(6.2.9)-(6.2.10) follows once we find an apriori bound on ∥∇ûs∥L2(Ωhs )
(see for instance [60,

Theorem IX.4.1]). Take ϕ = û in (6.2.12). After using the fact that∫
Ωhs

(ûs · ∇)ûs · ûs =
∫
Ωhs

(s · ∇)ûs · ûs = 0,

we obtain

µ∥∇ûs∥2L2(Ωhs )
+

∫
Ωhs

(ûs · ∇)s · ûs =
∫
Ωhs

(s · ∇)s · ϕ+

∫
Ωhs

µ∆s · ûs. (6.2.13)

The terms on the right-hand side of (6.2.13) can then be bounded as∫
Ωhs

(s ·∇)s · ûs ≤ ∥s∥L4(Ωhs )
∥∇s∥L2(Ωhs )

∥ûs∥L4(Ωhs )
≤ C∥s∥L4(Ωhs )

∥∇s∥L2(Ωhs )
∥∇ûs∥L2(Ωhs )

where C is the embedding constant for H1
0 (Ωhs) ⊂ L4(Ωhs), and∫

Ωhs

µ∆s · ûs = −µ
∫
Ωhs

∇s · ∇ûs ≤ µ∥∇s∥L2(Ωhs )
∥∇ûs∥L2(Ωhs )

.
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Finally, by exploiting the third property in (6.2.4) and taking η sufficiently small we obtain the
desired uniform bound on ∥∇ûs∥L2(Ωhs )

, which guarantees existence of weak solutions for any
value of the parameter λ.

By introducing the (different) specific solenoidal extension s used in [15, Theorem 1], here
defined on a bounded domain, we obtain uniqueness of the solution of (6.2.12) and its specific
form (us, hs) = (uλ, 0) in a similar way.

In [15, Theorem 1], the authors impose a bound both on the Poiseuille flow rate λ and on the
Reynolds number Re = cV/µ, where V is a reference speed and c > 0 a real constant. In the
statement of Theorem 6.2.2, we joined those two bounds in a unique condition on λ by choosing
as reference speed in the Reynolds number precisely the velocity of the Poiseuille flow at the
outlets of the channel. As expected, Theorem 6.2.2 guarantees that the equilibrium position is
unique and symmetric, at least for small flow rate of the incoming Poiseuille flow.

To develop our analysis in the subsequent sections, we rewrite problem (6.2.9)-(6.2.10) in
an equivalent form. For a given ε0 ∈ (0, L− δ), let

s = sε0 = sε0(η) (6.2.14)

be the function obtained through Lemma 6.2.1. The unique solution (us, hs) = (uλ, 0) to
problem (6.2.9), may be rewritten as

(us, hs) = (ûλ + s, 0).

Denoting by
ĝ := µ∆s− (s · ∇) s, (6.2.15)

we have that (ûs, hs) = (ûλ, 0) satisfies in a weak sense

− µ∆ûλ + (ûλ · ∇) ûλ +∇pλ + (ûλ · ∇) s+ (s · ∇) ûλ = ĝ, div ûλ = 0 in Ω0,

ûλ = 0 on ∂R, ûλ = 0 on ∂B0,
(6.2.16)

and
0 = f(0) = −ê2 ·

∫
∂B0

T (ûλ + s, pλ) · n̂. (6.2.17)

Finally, we prove a property of the function ĝ in (6.2.15).

Lemma 6.2.3. Let ĝ be as in (6.2.15), s = sε0 as in Lemma 6.2.1 for some ε0 ∈ (0, L − δ).
Then ĝ ∈ L2(Ωh) and

∥ĝ∥L2(Ωh) ≤ µ∥∆s∥L2(Ωh) + ∥s∥L4(Ωh)∥∇s∥L4(Ωh).

Proof. Multiply ĝ by φ ∈ C∞
c (R) and integrate by parts over Ωh. We obtain∫

Ωh

ĝ · φdx = µ

∫
Ωh

∆s · φdx−
∫
Ωh

(s · ∇)s · φ.

We bound the two terms on the right-hand side through the Hölder inequality and we get∣∣∣∣ ∫
Ωh

ĝ · φdx
∣∣∣∣ ≤ (µ∥∆s∥L2(Ωh) + ∥s∥L4(Ωh)∥∇s∥L4(Ωh)

)
∥φ∥L2(Ωh) ∀φ ∈ C∞

c (R),

from which the thesis of the lemma follows.
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6.2.4 Weak solutions to the evolution problem

The notions and the results contained in this section as well as those contained in the subsequent
section are analogous to those seen in Chapter 4. However, since in Chapter 4, we treated
problem (2.0.7) after imposing a change of reference frame, we report here some results directly
concerning problem (2.0.7) in its original formulation. Moving to the evolution problem (2.0.7),
we assume that

u0 ∈ L2(Ωh0), h0 ∈ [−L+ δ + ε̂, L− δ − ε̂],

where ε̂ ∈ (0, L − δ) is arbitrarily fixed. If ĝ is as in (6.2.15), the solutions to the problem
(2.0.7) have the form

u = û+ s,

where s = sε0 is as in (6.2.14). Again, we point out that û depends on the choice of the
solenoidal extension s built through Lemma 6.2.1, but, by undoing the change of variables, one
recovers the solution to the original problem. Hence,

the solution to the original problem (2.0.7) does not depend on the solenoidal extension.
(6.2.18)

We have that û solves the problem:

ût − µ∆û+ (û · ∇) û+∇p+ (û · ∇) s+ (s · ∇) û = ĝ, div û = 0 in Ωh × (0, T ),

û = 0 on ∂R× (0, T ), û = h′ê2 on ∂Bh × (0, T ),

û(x, 0) = û0(x) = u0(x)− sε̂(x) for a.e.x ∈ Ωh0 .
(6.2.19)

According to (2.0.7), the vertical translation of the obstacle h responds to

mh′′ + f(h) = −ê2 ·
∫
∂Bh

T (û+ s, p) · n̂ in (0, T ), (6.2.20)

with some initial conditions h(0) = h0, h′(0) = k0. Notice that û0 ∈ L2(Ωh0) is such that
û0 · n̂ = k0ê2 · n̂ on ∂Bh0 . It is worthwhile to emphasize that the knowledge of h′(t) allows to
reconstruct the position of the body:

Bh(t) = B + h(t)ê2, with h(t) = h0 +

∫ t

0

h′(τ) dτ. (6.2.21)

We now recall the classical functional spaces from fluid mechanics (see, e.g., [60, 134]):

V(R) = {v ∈ C∞
c (R) | div v = 0 inR},

H(R) = closure of V w.r.t. the norm ∥ · ∥L2(R), ,

V (R) = closure of V w.r.t. the norm ∥∇ · ∥L2(R).

Next, we denote by ⟨·, ·⟩ the duality pairing between V and V ′. Finally, we introduce the product
spaces

H(R) = H(R)× R, V(R) = V (R)× R.
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To define a weak solution to problem (6.2.19)-(6.2.20), for every h ∈ (−L + δ, L − δ) we
introduce the closed subspaces Hh ⊂ H and H1

h ⊂ V of compatible pairs

Hh = {z = (u, ℓ) ∈ H(R) |uBh
= ℓ ê2}, H1

h = {z = (u, ℓ) ∈ V(R) |uBh
= ℓ ê2},

(6.2.22)
endowed with the scalar products

⟨z1, z2⟩Hh
=

∫
Ωh

u1 · u2 dx+mℓ1ℓ2, ⟨z1, z2⟩H1
h
=

∫
Ωh

∇u1 : ∇u2 dx+mℓ1ℓ2, (6.2.23)

where zi = (ui, ℓi), and m is the mass of the body as in (6.2.20). We call ∥ · ∥Hh
, ∥ · ∥H1

h

the norms induced by the scalar products in (6.2.23), and we denote by H−1
h the dual of H1

h.
The integral in the second formula in (6.2.23) can be defined on the whole channel R; indeed,
∇u1 = ∇u2 = 0 on Bh, since any element of H1

h is a rigid motion on Bh. Recalling that D(·)
denotes the symmetric part of the gradient, for all u1, u2 ∈ V

2

∫
R
D(u1) : D(u2) dx =

∫
R
∇u1 : ∇u2 dx. (6.2.24)

If h = h(t) is a function from [0, T ] to (−L+ δ, L− δ), we define the following spaces:

Lp(0, T ;H1
h(t)) =

{
f : [0, T ] → H1

h(t) s.t. ∥f∥p
Lp(0,T ;H1

h(t)
)
=

∫ T

0

∥f(t)∥pH1
h(t)

dt < +∞
}

for 1 ≤ p <∞, and

L∞(0, T ;Hh(t)) =

{
f : [0, T ] → Hh(t) s.t. ∥f∥L∞(0,T ;Hh(t)) = ess sup

t∈[0,T ]
∥f(t)∥Hh(t)

< +∞
}
.

We can now define weak solutions to (6.2.19)-(6.2.20).

Definition 6.2.4. A pair (û, h) is called a weak solution of (6.2.19)-(6.2.20) with initial data
(û0, h0, k0) if there exists ε0 = ε0(û0, h0, k0, T ) ∈ (0, L − δ) such that, for s = sε0 as in
(6.2.14),

h ∈ W 1,∞(0, T ; [−L+ δ + ε0, L− δ − ε0]), (û, h′) ∈ L2(0, T ;H1
h(t)) ∩ L∞(0, T ;Hh(t)),

(ût, h
′′) ∈ L2(0, T ;H−1

h(t)),

and the pair (û(t), h(t)) verifies, for any (ϕ(t), l(t)) ∈ H1
h(t) and almost every t ≥ 0,

⟨ût(t), ϕ(t)⟩+mh′′(t)ℓ(t) + f(h(t)) ℓ(t) + µ

∫
R
∇û(t) : ∇ϕ(t) dx

+

∫
Ωh

(û(t) · ∇)û(t) · ϕ(t) dx+
∫
Ωh

(û(t) · ∇)s · ϕ(t) dx+
∫
Ωh

(s · ∇)û(t) · ϕ(t) dx

=

∫
Ωh

ĝ · ϕ(t) dx,

(6.2.25)

and û(0) = û0, h(0) = h0, h′(0) = k0.
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Remark 6.2.5. The requirement h ∈ W 1,∞(0, T ; [−L+ δ + ε0, L− δ − ε0]) makes Definition
6.2.4 consistent: it ensures that no collision occurs between the obstacle and the boundary of the
channel because there exists a separation strip of size ε0 ∈ (0, L−δ) for all times, by which one
is allowed to build the solenoidal extension s as in (6.2.14) precisely by choosing such an ε0.
As the no-collision result is a non trivial issue, it will be recalled explicitly in Corollary 6.2.8.
Also, we point out that the test functions depend on time and on the solution of the problem
itself.

Let us show that any classical solution to (6.2.19)-(6.2.20) is a weak solution according to
Definition 6.2.4. Incidentally, this also confirms (6.2.18).

Proposition 6.2.6. Let ĝ be as in (6.2.15). If a pair (û, h) is a classical solution to (6.2.19)-
(6.2.20) such that |h(t)| ≤ L− δ− ε0 for all t ∈ [0, T ] for some ε0 ∈ (0, L− δ), then it satisfies
(6.2.25) for all t ∈ [0, T ] and for every pair of test functions (ϕ(t), l(t)) ∈ H1

h(t).

Proof. In order to obtain (6.2.25), we choose a test pair (ϕ(t), l(t)) ∈ V(R) such that ϕ(t)|Bh(t)
=

l(t)ê2. We multiply the first equation in (6.2.19) by ϕ and integrate by parts over Ωh. All terms
may be treated in a standard manner (see, e.g., [57]). Though, a particular attention must be
devoted to the diffusive and pressure terms. We temporarily move the term µ∆s appearing in ĝ
in (6.2.19) on the left-hand side and we get, recalling (6.2.24),

⟨−µ∆û− µ∆s+∇p, ϕ⟩ = ⟨divT (û+ s, p), ϕ⟩ = −
∫
∂Bh

(T · n̂) · ϕ+

∫
Ωh

T : ∇ϕ

= −ê2 ·
∫
∂Bh

(T (û+ s, p) · n̂) l +
∫
Ωh

T (û+ s, p) : ∇ϕ

= (mh′′ + f(h)) l + µ

∫
Ωh

∇û : ∇ϕ+ µ

∫
Ωh

∇s : ∇ϕ

= (mh′′ + f(h)) l + µ

∫
R
∇û : ∇ϕ+ µ

∫
Ωh

∇s : ∇ϕ,

where the last equality holds because ∇ϕ = 0 on Bh, since ϕ is a rigid motion on Bh. Thus,
given ∫

Ωh

ĝ · ϕ = −µ
∫
Ωh

∇s : ∇ϕ−
∫
Ωh

(s · ∇)s · ϕ = µ

∫
Ωh

∆s · ϕ−
∫
Ωh

(s · ∇)s · ϕ

we obtain the weak formulation (6.2.25).

6.2.5 Well-posedness of the evolution problem

We provide the following well-posedness result for (6.2.19)-(6.2.20).

Theorem 6.2.7. Let ε̂ ∈ (0, L − δ) be fixed. For any initial data h0 ∈ [−L + δ + ε̂, L − δ −
ε̂], (û0, k0) in the space Hh0 and every T > 0, there exists a unique weak solution (û, h) to
(6.2.19)-(6.2.20) for some ε0 = ε0(h0, û0, k0, T ) ∈ (0, L− δ). Moreover (û, h′) is equal almost
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everywhere to a continuous function from [0, T ] to Hh and it satisfies the following energy
estimate, for every t ≥ 0

∥û(t)∥2L2(Ωh(t))
+mh′(t)

2
+2F (h(t))+µ

∫ t

0

∥∇û(τ)∥2L2(Ωh(τ))
dτ ≤∥û0∥2L2(Ωh0

)+mk0
2+2F (h0)

+
2

µ

4L2

π2

∫ t

0

∥ĝ∥2L2(Ωh)
dτ.

(6.2.26)

Proof. The result can be proven following the procedure implemented in Chapter 4, up to using
the solenoidal extension s = sε0 in (6.2.14). In order to prove (6.2.26), it sufficies to take
(ϕ, l) = (û, h′) in (6.2.25). We obtain

⟨ût, û⟩+mh′′h′ + f(h)h′ + µ∥∇û∥2L2(Ωh)
=

∫
Ωh

ĝ · û−
∫
Ωh

(û · ∇)s · û. (6.2.27)

We seek bounds for the two terms on the right-hand side. The first term is bounded by Lemma
6.2.3, the Hölder inequality, the Young inequality and the Poincaré inequality (here the Poincaré
constant is 4L2/π2). This gives∣∣∣∣ ∫

Ωh

ĝ · û
∣∣∣∣ ≤ 1

µ

4L2

π2
∥ĝ∥2L2(Ωh)

+
µ

4
∥∇û∥2L2(Ωh)

.

In order to bound the second term we exploit the third property in (6.2.4), with η = µ/4,∣∣∣∣ ∫
Ωh

(û · ∇)s · û
∣∣∣∣ ≤ µ

4
∥∇û∥2L2(Ωh)

.

Thus from (6.2.27) and the above bounds we obtain

d

dt

(
∥û∥2L2(Ωh)

+mh′
2
+ 2F (h)

)
+ µ∥∇û∥2L2(Ωh)

≤ 2

µ

4L2

π2
∥ĝ∥2L2(Ωh)

,

where F (h) is defined as in (2.0.13). Integrating on (0, t), we infer (6.2.26).

In the sequel, we will use the following consequence of the energy estimate (6.2.26). It reads
as

Corollary 6.2.8. For all T > 0, there exists ε0 = ε0(h0, û0, k0, T ) ∈ (0, L− δ) such that

|h(t)| ≤ L− δ − ε0 ∀ t ∈ [0, T ]. (6.2.28)

Moreover, ε0 decreases as |h0|, ∥û0∥L2(Ω0), |k0| and T increase. In particular, the solution to
(2.0.7) is global in time.

Proof. To prove (6.2.28), we can proceed as in [111, Lemma 3.2]. By contradiction, if the
solution of (2.0.7) was not global in time, then a collision would occur at some finite time
t = T . But, according to (6.2.18), the collision of the solution is independent of the solenoidal
extension and we reach a contradiction by taking s = sε0 with ε0 = ε0(T ) ensuring (6.2.28).
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6.3 Dissipation of the solution operator

From Theorem 6.2.7 we learn that, for every ε̂ > 0 small and every h0 ∈ [−L+δ+ ε̂, L−δ− ε̂],
problem (6.2.19)-(6.2.20) generates an operator

U(t) : Hh0 −→ Hh(t),

defined by the rule
z0 = (û0, k0) 7−→ U(t)z0 = (û(t), h′(t)), (6.3.1)

where, reconstructing h as in (6.2.21), the pair (û(t), h(t)) is the unique weak solution at time t
to problem (6.2.19)-(6.2.20) with initial data

û(0) = û0, h(0) = h0, h′(0) = k0.

Remark 6.3.1. It is worth noting that, although not explicitly written so not to burden the no-
tation, the operator U(t) depends on the particular h0 chosen. Besides, it acts between different
spaces; but this reflects the nature of the fluid-structure interaction problem (6.2.19)-(6.2.20),
where the functional framework is influenced by the evolution itself.

We begin our analysis by introducing the proper notion of dissipation for the dynamical
system under consideration.

Definition 6.3.2. We call R0 > 0 a zero-order absorbing radius if, for any R > 0 and ε̂ > 0,
there exists t0 = t0(R, ε̂), called entering time, such that, for every

h0 ∈ [−L+ δ + ε̂, L− δ − ε̂] and ∥z0∥Hh0
≤ R

it follows that

∥U(t)z0∥Hh(t)
=
[
∥û(t)∥2L2(Ωh(t))

+mh′(t)
2
] 1

2 ≤ R0 ∀ t ≥ t0.

We call R1 > 0 a first-order absorbing radius if, under the same assumptions, there exists
t1 = t1(R, ε̂), such that

∥U(t)z0∥H1
h(t)

=
[
∥∇û(t)∥2L2(Ωh(t))

+mh′(t)
2
] 1

2 ≤ R1 ∀ t ≥ t1.

We now address the dissipation properties of the solution operator U(t) in terms of zero-
order and first-order absorptions.

Theorem 6.3.3. There exists a universal constant R0 = R0(λ, L, δ, d,m, µ) > 0 with the
following property: for anyR > 0 and any ε̂ ∈ (0, L−δ), there is an entering time t0 = t0(R, ε̂)
such that

∥U(t)z0∥Hh(t)
≤ R0 ∀ t ≥ t0,

whenever
h0 ∈ [−L+ δ + ε̂, L− δ − ε̂] and ∥z0∥Hh0

≤ R.

In compliance with Definition 6.3.2, the constant R0 is a zero-order absorbing radius. More-
over, R0 → 0 as λ→ 0.
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Proof. Define a solenoidal vector field w ∈ C∞(R) ∩H1
0 (R) such that w = h ê2 in Bh in the

following way:

w(x, t) = h(t)

[
− ∂

∂x2
(ζ(x, t)x1),

∂

∂x1
(ζ(x, t) x1)

]
∀x ∈ R , ∀ t ≥ 0 ,

where ζ is a C∞ cut-off function equal to 1 in a small neighbourhood of Bh(t) and equal to 0
outside a larger neighbourhood. The following estimates hold

∥w∥L2(R) ≤ a1|h| , ∥∇w∥L2(R) ≤ a2|h| , ∥∇w∥L∞(R) ≤ a3|h| , (6.3.2)

where a1, a2 and a3 are constants depending on the cut-off function ζ . We observe that the
function ζ depends on the width of the separation strip between the obstacle and the channel.
Hence, for all t ∈ (0, T ),

w(x, t) = wε0(x, t) , (6.3.3)

where ε0 is given by Corollary 6.2.8. Our aim is to explore what happens for any t ≥ 0. Given
F (h) as in (2.0.13), we introduce the energy functional:

E(t) = ∥û(t)∥2L2(Ωh(t))
+mh′(t)

2
+ 2F (h(t)),

and, for ω ∈ (0, 1) to be fixed later, its perturbation

Eω(t) = ∥û(t)∥2L2(Ωh(t))
+mh′(t)

2
+ 2F (h(t)) + ω h(t)h′(t) + ω

∫
Ωh(t)̂

u(t) · w(t) dx.

From the Young inequality, we have

ω|hh′|+ ω

∣∣∣∣∫
Ωh

û · w dx
∣∣∣∣ ≤ ω

2ρ
h′

2
+

(
ωρ

2
+
c1ω

2

2

)
h2 +

1

2
∥û∥2L2(Ωh)

,

with ρ as in (2.0.14). Hence, we draw the bounds

c1E ≤ Eω ≤ c2E, (6.3.4)

for some c2 ≥ c1 > 0, provided that ω is small enough. So far, we have used an arbitrary ε0 to
build s = sε0 in (6.2.14), but in view of (6.2.18), ε0 may be modified. To this end, we claim that

∃ ε1 = ε1(λ) > 0 and t0 = t0(R, ε̂) s.t. |h(t)| ≤ L− δ − ε1 ∀ t ≥ t0 . (6.3.5)

By contradiction, suppose that the above statement does not hold. Then, by Corollary 6.2.8,
this implies that

lim sup
t→∞

h(t) = L− δ

and/or similarly for liminf = −L + δ. Then, since h ∈ C0(R+), for all ε > 0 there exist two
divergent sequences {tn1} and {tn2} such that

h(t) ≥ L− δ − ε ∀t ∈
∞⋃
n=1

[tn1 , t
n
2 ] .
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By (6.2.1), we can take ε > 0 small enough so that there exists c > 0 such that

F
(
h(t)

)
=

∫ h(t)

0

f(s)ds >

∫ L−δ−ε

L−δ−2ε

f(s)ds > c

∫ L−δ−ε

L−δ−2ε

exp
1

(L− δ − s)4+r
ds

= c

∫ 2ε

ε

exp
1

τ 4+r
dτ ≥ cε exp

1

ε4+r

(6.3.6)

whenever t ∈ ∪n[tn1 , tn2 ]. By (6.2.18), we can replace the solenoidal extension s = sε0 to the
solenoidal extension s = sε. Taking (ϕ, l) = (û + w, h′ + ωh) ∈ H1

h as a pair of test functions
in (6.2.25), by omitting (t) we obtain

1

2

d

dt
Eω − ωh′

2
+ ωf(h)h+ µ∥∇û∥2L2(Ωh)

=

∫
Ωh

ĝ · û dx−
∫
Ωh

(û · ∇)s · û dx

− µω

∫
Ωh

∇û : ∇w dx+ ω

∫
Ωh

ĝ · w dx

− ω

∫
Ωh

(û · ∇)s · w dx+ ω

∫
Ωh

(û · ∇)w · û dx.

(6.3.7)

We proceed to bound each term on the right hand-side of (6.3.7). We control the first term in the
right-hand side of (6.3.7) by exploiting the Hölder inequality, Lemma 6.2.3 above, the Young
inequality, and the Poincaré inequality (here the Poincaré constant is 4L2/π2). This gives∫

Ωh

ĝ · û dx ≤ ∥ĝ∥L2(Ωh)∥û∥L2(Ωh) ≤
3

2µ

4L2

π2
∥ĝ∥2L2(Ωh)

+
µ

6
∥∇û∥2L2(Ωh)

.

Similarly for the fourth term

ω

∫
Ωh

ĝ · w dx ≤ ω∥ĝ∥L2(Ωh)∥w∥L2(Ωh) ≤
µ

3

4L2

π2
∥ĝ∥2L2(Ωh)

+
3

4µ
ω2∥∇w∥2L2(R).

Concerning the second term in the right-hand side, we make use of the third property in (6.2.4)
with η = µ/3, to get

−
∫
Ωh

(û · ∇)s · û dx ≤ µ

3
∥∇û∥2L2(Ωh)

.

The third term is bounded through the the Hölder inequality and the the Young inequality as

−µω
∫
Ωh

∇û : ∇w dx ≤ µ

6
∥∇û∥2L2(Ωh)

+
3

2µ
ω2∥∇w∥2L2(R).

Again, for the fifth term, we exploit the third property in (6.2.4) with η = 1, and the Young
inequality. We obtain

−ω
∫
Ωh

(û · ∇)s · w dx ≤ ωη∥∇û∥L2(Ωh)∥∇w∥L2(Ωh) ≤
µ

3
∥∇û∥2L2(Ωh)

+ ω2 3

4µ
∥∇w∥2L2(R) .

124



6.3. Dissipation of the solution operator

Finally, the sixth term requires exploing w ∈ C∞(R) to deduce

ω

∫
Ωh

(û · ∇)w · û dx ≤ ω
4L2

π2
∥∇w∥L∞(R)∥∇û∥2L2(Ωh)

.

At this point, by (6.4.6) and using the fact that |h| ≤ L− δ − ε1 < L− δ, we set

µ− ω
4L2

π2
∥∇w∥L∞(R) > µ− a3ω|h|

4L2

π2
≥ µ− a3ω (L− δ)

4L2

π2
:= 3ν > 0

if ω is small enough. Inserting all above inequalities in (6.3.7) and, recalling that from (2.0.14)
f(h)h ≥ F (h), we arrive at

d

dt
Eω−2ωh′

2
+ωF (h)+ωF (h)+3ν∥∇û∥2L2(Ωh)

≤ 9 + 2µ2

6µ

4L2

π2
∥ĝ∥2L2(Ωh)

+
3

µ
ω2∥∇w∥2L2(R).

We apply the following trace inequality, through which we extract a damping term for the
obstacle Bh:

∥∇û∥L2(Ωh) ≥ c∥h′ê2∥L2(∂Bh) = c|∂Bh||h′|,
for some positive constant c. Moreover we use (6.4.6) to deduce that

ωF (h)− 3

µ
ω2∥∇w∥2L2(R) ≥ (ω

ρ

2
− a2

µ

3
ω2)h2 ≥ c h2 ,

where c is a positive constant, if ω is small enough. Thus,

d

dt
Eω + (cν|∂Bh|2 − 2ω)h′

2
+ ωF (h) + 2ν∥∇û∥2L2(Ωh)

≤ 9 + 2µ2

6µ

4L2

π2
∥ĝ∥2L2(Ωh)

.

where cν|∂Bh|2 − 2ω > 0 if ω is small enough. Finally, applying the Poincaré inequality in the
left-hand side, we find

d

dt
Eω+(cν|∂Bh|2−2ω)h′

2
+ωF (h)+

νπ

4L2
∥û∥2L2(Ωh)

+ν∥∇û∥2L2(Ωh)
≤ 9 + 2µ2

6µ

4L2

π2
∥ĝ∥2L2(Ωh)

.

Defining

β = min

(
cν|∂Bh|2 − 2ω

m
,
ω

2
,
νπ

4L2

)
> 0,

we end up with
d

dt
Eω + βE + ν∥∇û∥2L2(Ωh)

≤ κ, (6.3.8)

having set

κ =
9 + 2µ2

6µ

4L2

π2
∥ĝ∥2L2(Ωh)

.

Then, renaming β/c2 as β, we infer from (6.3.4) that

d

dt
Eω + βEω ≤ κ.
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The Gronwall Lemma yields
Eω(t) ≤ Eω(0)e

−βt +
κ

β
.

Inequalities (6.3.4) imply that

∥U(t)z0∥2Hh(t)
≤ E(t) ≤ c2

c1
E(0)e−βt +

κ

βc1
. (6.3.9)

Therefore,

lim sup
t→∞

∥U(t)z0∥Hh(t)
≤
√

κ

βc1
. (6.3.10)

Then, by using (6.3.6)-(6.3.9) and Lemma 6.2.3,

2 c ε exp
1

ε4+r
≤ 2F

(
h(t)

)
≤ E(t) ≤ c2

c1
E(0)e−βt +

κ

βc1
≤ c2
c1
E(0)e−βt +

1

βc1
c3ε exp

12

ε
.

(6.3.11)
Choose ε > 0 small enough in such a way that

c ε exp
1

ε4+r
>

1

βc1
c3ε exp

12

ε
.

Then take t0 = t0(R, ε̂) such that

c2
c1
E(0)e−βt <

1

βc1
c3ε exp

12

ε
∀ t ≥ t0 .

With these two choices, we contradict (6.3.11) and we prove (6.3.5).
We modify once more the solenoidal extension s in (6.2.14) and the function w in (6.3.3) by

taking s = sε1 , w = wε1 , with ε1 given by (6.3.5). This is allowed thanks to (6.2.18). With this
choice, we reach again (6.3.10). Given

R̂ =

√
κ

βc1
,

this tells us the balls in Hh of radius R0 > R̂ are absorbing, namely they contain the dynamics
of (6.2.19)-(6.2.20) for t large. This translates into the existence of the zero-order absorbing
radius R0 in the sense of Definition 6.3.2. Summarizing, for any h0 ∈ [−L+ δ + ε̂, L− δ − ε̂],
given z0 = (û0, h0) such that ∥z0∥Hh0

≤ R, we have

∥U(t)z0∥Hh
≤
√
E(t) ≤ R0, ∀t ≥ t0 = t0(R, ε̂) :=

1

β
log
(

min
{
1, c2

c1

E(0)

R2
0−R̂2

})
.

(6.3.12)
Finally, by Lemma 6.2.3, κ→ 0 as λ→ 0. This completes the proof of Theorem 6.3.3.

Note that 6.3.5 allows us to improve the conclusion of Corollary 6.2.8 on the separation
strip between the obstacle and the boundary of the channel. Accordingly, throughout the whole
section, we take s as in (6.2.14) by choosing the value ε1 given (6.3.5) instead of ε0, i.e., we
take s = sε1 . A further consequence of Theorem 6.3.3 is the existence of a suitable dissipation
integral for the solution (û, h) to problem (6.2.19)-(6.2.20).
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Corollary 6.3.4. Let R > 0 and ε̂ > 0 small be arbitrarily given, t0 as in (6.3.12) and R0 as
in Theorem 6.3.3. Assume that h0 ∈ [−L + δ + ε̂, L − δ − ε̂] and ∥z0∥Hh0

≤ R. There exists
D = D(R0) > 0 such that∫ t+1

t

∥∇û(τ)∥2L2(Ωh(τ))
dτ ≤ D ∀ t ≥ t0.

Moreover, D → 0 as λ→ 0.

Proof. Integrating inequality (6.3.8) on the time-interval (t, t + 1), and exploiting (6.3.4), we
get ∫ t+1

t

ν∥∇û(τ)∥2L2(Ωh(τ))
dτ ≤ κ+ Eω(t) ≤ κ+ c2E(t).

Hence, in light of (6.3.12), for t ≥ t0 we are led to∫ t+1

t

∥∇û(τ)∥2L2(Ωh(τ))
dτ ≤ 1

ν
κ+

c2
ν
R2

0.

Since we know that κ,R0 → 0 as λ→ 0, we are done.

We have now all the ingredients to proceed to show the existence of the first-order absorbing
radius, ensuring dissipativity of higher-order.

Theorem 6.3.5. There exists a universal constant R1 = R1(λ, L, δ, d,m, µ) > 0 with the
following property: for any R > 0, and any ε̂ > 0 small, it follows that

∥U(t)z0∥H1
h(t)

≤ R1 ∀t ≥ t0 + 1,

whenever
h0 ∈ [−L+ δ + ε̂, L− δ − ε̂] and ∥z0∥Hh0

≤ R,

where t0 is given by (6.3.12). In compliance with Definition 6.3.2, the constant R1 is a first-
order absorbing radius with entering time t1 = t0 + 1. Moreover, R1 → 0 as λ→ 0.

The proof of the theorem will make use of the uniform Gronwall lemma, that we recall for
the sake of convenience (see [133, §III.2, Lemma 1.1])

Lemma 6.3.6. Let f1, f2, f3 be three positive locally integrable functions on (t0,+∞) such that
f ′
3 is locally integrable on (t0,+∞), and which satisfy

df3
dt

≤ f1f3+f2,

∫ t+1

t

f1(s) ds ≤ a1,

∫ t+1

t

f2(s) ds ≤ a2,

∫ t+1

t

f3(s) ds ≤ a3

for t ≥ t0, where a1, a2, a3 are positive constants. Then

f3(t+ 1) ≤ (a3 + a2) exp(a1) ∀ t ≥ t0.
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Proof of Theorem 6.3.5. Let (û, h) be the unique weak solution to (6.2.19)-(6.2.20), and p ∈
L2

loc(Ωh) the associated pressure field (which can be standardly obtained for instance by apply-
ing [57, Theorem 2.1]). Then, we denote

Sû = −∇ · T (û, p) = −µ∆û+∇p.

As a consequence, after an integration by parts, (6.2.25) is equivalent to∫
Ωh

ût · ϕ dx+
∫
Ωh

Sû · ϕ dx+
∫
Ωh

(û · ∇)û · ϕ dx+
∫
Ωh

(û · ∇)s · ϕ dx

+

∫
Ωh

(s · ∇)û · ϕ dx =

∫
Ωh

ĝ · ϕ dx.
(6.3.13)

We proceed similarly to [33] by starting to define some auxiliary functions. Consider ζ a smooth
cut-off function with compact support such that ζ = 1 in a neighborhood of B̄h0 , and set
ζ̂(t, x1, x2) = ζ(x1, x2 − h(t) + h0). Then, we define the map V̂ (t, x) : R+ × R2 → R2 by

V̂ (t, x1, x2) = ∇× {0, 0,−ζ̂(t, x1, x2)x1h′(t)}.

We notice that V̂ (t, ·) ∈ C∞(R2,R2) for all t ≥ 0, V̂ (·, x) ∈ L∞(0, T ;R2) for all x = (x1, x2) ∈
R2, and

∥V̂ (t, ·)∥W 1,∞(Ωh(t)) ≤ C|h′(t)| (6.3.14)

for some C > 0. At this stage, one proceeds formally (see [57,133]) and assumes that Sû, ût ∈
L2(Ωh). We choose as test function ϕ in (6.3.13) the following function

Sû+ (V̂ · ∇)û− (û · ∇)V̂ ,

so as to obtain∫
Ωh

ût ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx+

∫
Ωh

Sû ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx =

−
∫
Ωh

(û · ∇) û ·
[
Sû+ (V̂ · ∇)û−(û · ∇)V̂

]
dx+

∫
Ωh

(û · ∇) s ·
[
Sû+ (V̂ · ∇)û−(û · ∇)V̂

]
dx

+

∫
Ωh

(s · ∇) û ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx+

∫
Ωh

ĝ ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx.

(6.3.15)
Arguing as in [33, Lemma 4.3], we find∫

Ωh

ût ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx = µ

d

dt
∥∇û∥2L2(Ωh)

+mh′′
2
+ f(h)h′′

+ 2µ

∫
Ωh

(Dû) :
[
(∇û)(∇V̂ )−D((û · ∇)V̂ )

]
dx.
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Thus, by plugging the above equality into (6.3.15), we obtain

µ
d

dt
∥∇û∥2L2(Ωh)

+mh′′
2
+ ∥Sû∥2L2(Ωh)

= −
∫
Ωh

Sû ·
[
(V̂ · ∇)û− (û · ∇)V̂

]
dx− f(h)h′′

−2µ

∫
Ωh

(Dû) :
[
(∇û)(∇V̂ )−D((û · ∇)V̂ )

]
dx−

∫
Ωh

(û · ∇) û ·
[
Sû+(V̂ · ∇)û−(û · ∇)V̂

]
dx

−
∫
Ωh

(û · ∇) s ·
[
Sû+(V̂ · ∇)û−(û · ∇)V̂

]
dx−

∫
Ωh

(s · ∇) û ·
[
Sû+(V̂ · ∇)û−(û · ∇)V̂

]
dx

+

∫
Ωh

ĝ ·
[
Sû+ (V̂ · ∇)û− (û · ∇)V̂

]
dx.

(6.3.16)
At this point, some estimates for the terms of the right-hand side of (6.3.16) are needed, by
exploiting in a suitable way the Hölder, the Young and the Poincaré inequalities, together with
the properties of the solenoidal extension s. We have the two following inequalities

f(h)h′′ ≤ m

2
h′′

2
+

1

2m
|f(h)|2,

and ∣∣∣∣ ∫
Ωh

ĝ · Sû
∣∣∣∣ ≤ ∥ĝ∥L2(Ωh)∥Sû∥L2(Ωh) ≤

7

4
∥ĝ∥2L2(Ωh)

+
1

7
∥Sû∥2L2(Ωh)

.

Using the renowned Ladyzhenskaya inequality (see [133, p.108, (2.16)]),∣∣∣∣ ∫
Ωh

(û · ∇)û · Sû
∣∣∣∣ ≤ c1∥û∥1/2L2(Ωh)

∥∇û∥L2(Ωh)∥Sû∥
3/2

L2(Ωh)
≤ 1

14
∥Sû∥2L2(Ωh)

+ c2∥û∥2L2(Ωh)
∥∇û∥4L2(Ωh)

,

where c1 and c2 are two strictly positive constants. For the remaining terms, we argue in a
similar manner, finding∣∣∣∣ ∫

Ωh

(û · ∇)s · Sû
∣∣∣∣ ≤ ∥∇s∥L4(Ωh)∥û∥L4(Ωh)∥Sû∥L2(Ωh) ≤ C

7

4
∥∇s∥2L4(Ωh)

∥∇û∥2L2(Ωh)

+
1

7
∥Sû∥2L2(Ωh)

,

where C > 0 depends on the constant describing the Sobolev embedding H1
0 (Ωh) ⊂ L2(Ωh),

and, exploiting again the Ladyzhenskaya inequality,∣∣∣∣ ∫
Ωh

(s·∇)û·Sû
∣∣∣∣ ≤ ∥s∥1/2L2(Ωh)

∥∇û∥L2(Ωh)∥Sû∥
3/2

L2(Ωh)
≤ c3∥s∥2L2(Ωh)

∥∇û∥4L2(Ωh)
+

1

14
∥Sû∥2L2(Ωh)

,

for some strictly positive constant c3 > 0. For all terms involving the map V̂ (x, t), we exploit
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(6.3.14). Thus, we have∣∣∣∣ ∫
Ωh

Sû ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣
≤ ∥V̂ ∥W 1,∞(Ωh)∥Sû∥L2(Ωh)∥∇û∥L2(Ωh) + c4∥V̂ ∥W 1,∞(Ωh)∥Sû∥L2(Ωh)∥∇û∥L2(Ωh)

≤ c4∥V̂ ∥2W 1,∞(Ωh)
∥∇û∥2L2(Ωh)

+
2

7
∥Sû∥2L2(Ωh)

≤ c4 h
′2∥∇û∥2L2(Ωh)

+
2

7
∥Sû∥2L2(Ωh)

,

where c4 > 0 changes from line to line, and it depends on the Poincaré constant. Then,∣∣∣∣ ∫
Ωh

(Dû) :
[
(∇û)(∇V̂ )−D((û · ∇)V̂ )

] ∣∣∣∣ ≤ c5∥V̂ ∥W 1,∞(Ωh)∥∇û∥
2
L2(Ωh)

≤ c5|h′|∥∇û∥2L2(Ωh)
,

for some strictly positive constant c5 > 0. Let c6, c7, c8, c9 be some strictly positive constant
that might change from line to line. Arguing by the Ladyzhenskaya inequality again, we obtain∣∣∣∣ ∫

Ωh

(û · ∇) û ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣
≤ c1∥V̂ ∥W 1,∞(Ωh)∥û∥

1/2

L2(Ωh)
∥Sû∥1/2L2(Ωh)

∥∇û∥2L2(Ωh)

+ c1∥V̂ ∥W 1,∞(Ωh)∥û∥
3/2

L2(Ωh)
∥Sû∥1/2L2(Ωh)

∥∇û∥L2(Ωh)

≤ c6∥û∥2L2(Ωh)
∥V̂ ∥4W 1,∞(Ωh)

(
1 + ∥û∥4L2(Ωh)

)
+

2

7
∥Sû∥2L2(Ωh)

+
1

7

(
1 + ∥∇û∥2L2(Ωh)

)
∥∇û∥2L2(Ωh)

≤ ∥∇û∥2L2(Ωh)

(
c6h

′4 + c6∥û∥4L2(Ωh)
+ c6∥∇û∥2L2(Ωh)

)
+

2

7
∥Sû∥2L2(Ωh)

.

Then, by similar arguments, we have∣∣∣∣ ∫
Ωh

(û · ∇) s ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c7∥∇s∥L4(Ωh)∥V̂ ∥W 1,∞(Ωh)∥∇û∥
2
L2(Ωh)

≤ c7∥∇s∥L4(Ωh)|h
′|∥∇û∥2L2(Ωh)

and ∣∣∣∣ ∫
Ωh

(s · ∇) û ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c8∥s∥L∞(Ωh)|h
′|∥∇û∥2L2(Ωh)

.

For what concerns the last term, we have∣∣∣∣ ∫
Ωh

ĝ·
[
(V̂ · ∇)û− (û · ∇)V̂

] ∣∣∣∣ ≤ c9|h′|∥ĝ∥L2(Ωh)∥∇û∥L2(Ωh) ≤
7

4
∥ĝ∥2L2(Ωh)

+c9h
′2∥∇û∥2L2(Ωh)

.

Collecting all together, and dividing by µ, we finally get
d

dt
∥∇û∥2L2(Ωh) ≤ ∥∇û∥2L2(Ωh)

(
c2
µ
∥û∥2L2(Ωh)∥∇û∥2L2(Ωh) +

c3
µ
∥s∥2L2(Ωh)∥∇û∥2L2(Ωh) + C

7

4µ
∥∇s∥2L4(Ωh)

+
c4
µ
h′2 +

c5
µ
|h′|+ c6

µ
∥∇û∥2L2(Ωh) +

c6
µ
∥û∥4L2(Ωh) +

c6
µ
h′4 + c7∥∇s∥L4(Ωh)|h

′|+ c8
µ
∥s∥L∞(Ωh)|h′|+ c9

µ
|h′|2

)
+

7

4µ
∥ĝ∥2L2(Ωh) +

1

2mµ
|f(h)|2.
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We are now in a position to apply Lemma 6.3.6 with the choice

f1 =
c2
µ
∥û∥2L2(Ωh)

∥∇û∥2L2(Ωh)
+
c3
µ
∥s∥2L2(Ωh)

∥∇û∥2L2(Ωh)
+ C

7

4µ
∥∇s∥2L4(Ωh)

+
c4
µ
h′

2
+
c5
µ
|h′|

+
c6
µ
∥∇û∥2L2(Ωh)

+
c6
µ
∥û∥4L2(Ωh)

+
c6
µ
h′

4
+
c7
µ
∥∇s∥L4(Ωh)|h

′|+ c8
µ
∥s∥L∞(Ωh)|h

′|+ c9
µ
|h′|2,

f2 =
7

4µ
∥ĝ∥2L2(Ωh)

+
1

2mµ
|f(h)|2,

f3 = ∥∇û∥2L2(Ωh)
.

Indeed, since t ≥ t0 with t0 as in (6.3.12), from (6.3.12) we have that 2F (h) ≤ R2
0, so that by

(6.2.2)

|h| ≤ M(R2
0)

2
,

providing in turn a uniform bound for |f(h)|. Therefore, with reference to Lemma 6.3.6, denot-
ing by Q a generic increasing positive function, and exploiting (6.3.12) and Corollary 6.3.4, we
draw the estimates∫ t+1

t

f1(s) ds ≤ a1,

∫ t+1

t

f2(s) ds ≤ a2,

∫ t+1

t

f3(s) ds ≤ a3 for t ≥ t0,

with

a1 =
c2
µ
R2

0 a3 +
c3
µ
∥s∥2L2(Ωh)

a3 + C 7
4µ
∥∇s∥2L4(Ωh)

+ c4
µ
R2

0 +
c5
µ
R0 +

c6
µ
a3 +

2c6
µ
R4

0

+ c7
µ
∥∇s∥L4(Ωh)R0 +

c8
µ
∥s∥L∞(Ωh)R0 +

c9
µ
R2

0,

a2 =
7
2µ
∥ĝ∥2L2(Ωh)

+Q(R0),

a3 = D(R0).

The conclusion is

∥∇û∥2L2(Ωh)
≤ (a3 + a2) exp(a1) ∀t ≥ t0 + 1.

The last step is to add mh′2 to both sides of the inequality above, which allows us to reconstruct
the norm of the norm of the solution, to wit,

∥U(t)z0∥H1
h(t)

≤
√

(a3 + a2) exp(a1) +R2
0 ∀t ≥ t0 + 1.

Here, we leaned on the estimatemh′2 ≤ R2
0, coming from (6.3.12). By callingR1 the right-hand

side, the proof is finished.

Remark 6.3.7. Due to the compact embedding

H1
h(t) ⋐ Hh(t),

which holds true for all t, the closed ball B1(t) of radius R1 in H1
h(t) is compact in Hh(t).

Theorem 6.3.5 tells that
U(t)B ⊂ B1(t) ∀ t ≥ t0 + 1,
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where B is the ball of radius R in Hh0 , for R > 0 arbitrarily given. This shows that the solution
operator U(t) defined by the rule (6.3.1) is not only dissipative in the sense of Definition 6.3.2,
but it has also a regularizing effect.

6.4 Stability of the unique steady state

In this section, we investigate the convergence of the solutions of (2.0.7) to the unique steady
state, if λ < λs, see Theorem 6.2.2. In particular, we study the convergence of the solutions
of (2.0.7) to those of (6.2.9)-(6.2.10), in terms of the convergence of the solutions of (6.2.19)-
(6.2.20) to the solution of (6.2.16)-(6.2.17).

Theorem 6.4.1. Let R > 0 be arbitrarily fixed and λs as in Theorem 6.2.2. There exists
λ1 = λ1(R) ∈ (0, λs) such that if λ < λ1, the weak solution (û, h) of problem (6.2.19)-(6.2.20),
with initial position of the obstacle h0 = 0 and initial velocities z0 = (û0, k0) ∈ H0 such that
∥z0∥H0 ≤ R, converges to the solution (ûλ, 0) of (6.2.16)-(6.2.17) in H0 as t→ ∞.

In order to prove Theorem 6.4.1, we preliminarily state and prove a basic proposition al-
lowing to define a change of variables associated to the rigid motion of the obstacle in prob-
lem (6.2.19)-(6.2.20) in order to be able to compare different solutions; indeed since (6.2.19)-
(6.2.20) is set on a time-dependent fluid domain, different solutions are defined on different
domains. This change of variables depends on time t through h; it was first introduced by
Takahashi ( [130, Section 4.1]), inspired by Inoue and Wakimoto ( [93]). We denote for all
ε > 0

Oε =
{
x ∈ R : dist(x,Γ) ≥ 2ε ∧ |x1| < 3

2

}
, Aε =

{
x ∈ R : dist(x,Γ) ≤ ε ∨ |x1| > 2

}
,

see Figure 6.1 for a representation. Note that, if we choose ε0 = ε, any function s defined in
Lemma 6.2.1 is such that

s(x) ≡ 0 on R \Aε. (6.4.1)

Figure 6.1: The subsets Oε, Aε ⊂ R.

Proposition 6.4.2. Consider a fixed h ∈ W 1,∞(0, T ; (−L + δ, L − δ)) with h(0) = h0. For
every t ∈ [0, T ] there exists a volume preserving diffeomorphism

ψ(t, ·) : Ωh(t) −→ Ωh0
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6.4. Stability of the unique steady state

satisfying, for all ε > 0, the following properties:

ψ(t, x1, x2) = (x1, x2 + h(t)− h0) ∀x = (x1, x2) ∈ Oε,

ψ(t, x1, x2) = (x1, x2) ∀x = (x1, x2) ∈ Aε.

Proof. Let ζ(x1, x2) be a smooth cutoff function equal to 0 in Aε and equal to 1 in Oε. Then,
we define the solenoidal vector field V : R+ × Ωh(t) → R2 as

V (t, x) = ∇× {0, 0,−ζ(x1, x2)x1h′}.

Notice that

V (t, x) =

{
0 in Aε,

h′ê2 in Oε,
(6.4.2)

and V (·, t) ∈ C∞(R2,R2) for all t ≥ 0, V (x, ·) ∈ L∞(0, T ;R2) for all x ∈ R2. Then we build
the deformation mapping of Ωh(t) into Ωh0 , ψ : R+ × Ωh(t) → Ωh0 , as the flow associated to
(6.4.2): {

∂
∂t
ψ(t, x) = V (t, ψ(t, x)),

ψ(0, x) = x.

Since ∇ · V = 0, ψ is volume preserving and det(∂ψi

∂xj
)i,j = 1 for all t ≥ 0. The mapping ψ is a

smooth function of V . In particular, for some C > 0,

∥∂jtψ(t, ·)∥Ck(Ω̄h(t))
≤ C|hj(t)| ∀j = 0, 1,∀ k = 0, 1, 2.

Notice that ψ ∈ W 1,∞(0, T ; Ck(Ωh(t))) for any k = 0, 1, 2.

Through Proposition 6.4.2, we define φ : R+ × Ωh0 −→ Ωh(t) by φ = ψ−1 in the space
variables to be the volume preserving diffeomorphism such that, for any y = (y1, y2) ∈ Oε,

φ(t, y1, y2) = (y1, y2 + h0 − h(t))

and, for any y = (y1, y2) ∈ Aε, φ(t, y1, y2) = (y1, y2). There holds

∥∂jtφ(t, ·)∥Ck(Ω̄h0
) ≤ C|hj(t)| ∀j = 0, 1,∀ k = 0, 1, 2.

Obviously φ ∈ W 1,∞(0, T ; Ck(Ωh0)) for any k = 0, 1, 2. We can now give the

Proof of Theorem 6.4.1. Let ε1 > 0 be given by (6.3.5) and take s = sε1 from Lemma 6.2.1.
Multiply the fluid equation in (6.2.16) by a function ϕ ∈ V (R) such that ϕ|B0 = ê2 and integrate
over Ω0. After integration by parts it comes

µ

∫
Ω0

∇ûλ : ∇ϕ+
∫
∂Ω0

(−µ∂ûλ
∂n̂

+psn̂)·ϕ+
∫
Ω0

(ûλ·∇)ûλ·ϕ+
∫
Ω0

(ûλ·∇)s·ϕ+
∫
Ω0

(s·∇)ûλ·ϕ=
∫
Ω0̂

g·ϕ.

Next, by the coupling condition in (6.2.17), we have that∫
∂Ω0

(−µ∂ûλ
∂n̂

+ pn̂) · ϕ = −ê2 ·
∫
∂B0

(T (ûλ, ps) · n̂) = 0.
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Consequently, we obtain that, for any ϕ ∈ V (R) such that ϕ|B0 = ê2,

µ

∫
Ω0

∇ûλ : ∇ϕ+
∫
Ω0

(ûλ · ∇)ûλ ·ϕ+
∫
Ω0

(ûλ · ∇)s ·ϕ+
∫
Ω0

(s · ∇)ûλ ·ϕ =

∫
Ω0

ĝ ·ϕ. (6.4.3)

Notice that (6.4.3) does not see the value of ϕ on B0, thus we could have taken ϕ|B0 = c ê2 with
c ∈ R. Then, let (û, h) be the unique solution to problem (6.2.19)-(6.2.20) given by Theorem
6.2.7, with h0 = 0 and some initial velocities z0 = (û0, k0) ∈ H0 such that ∥z0∥H0 ≤ R, for any
arbitrary R > 0. In order to be able to subtract the weak formulation satisfied by (û, h) and that
satisfied by (ûs, hs) = (ûλ, 0), we need to properly map û(t) from Ωh(t) to Ω0 for every t > 0.
We follow [76, 111]. From (6.3.5), we infer that h ∈ W 1,∞(0, T ; [−L + δ − ε1, L − δ − ε1]).
Thus, we can build ψ as in Proposition 6.4.2 with h0 = 0 and ε = ε1; we also define φ = ψ−1.
We introduce

v(y, t) = ∇ψ(φ(t, y), t) · û(φ(t, y), t) y ∈ Ω0,

to be the pullback of û by φ, and we set q(t, y) = p(t, φ(y, t)). We refer to [76, Section 3.2]
(see also [111, Section 5]) for the explicit computation of the partial derivatives of v in terms of
those of û, so that the equation satisfied by v reads

⟨∂tv(t), ϕ⟩+mh′′(t)l(t) + f(h(t))l(t) + µ

∫
Ω0

∇v(t) : ∇ϕ+

∫
Ω0

(v(t) · ∇)v(t) · ϕ

+

∫
Ω0

(v(t) · ∇)s · ϕ+

∫
Ω0

(s · ∇)v(t) · ϕ =

∫
Ω0

ĝ · ϕ−
∫
Ω0

f(v(t), h(t), q(t)) · ϕ,
(6.4.4)

for any test pair (ϕ, l) ∈ H1
0 where, using Einstein’s summation convention,

fi =+ (∂kφ
i − δik)∂tv

k + ∂kφ
i∂lv

k(∂tψ
l) + (∂k∂tφ

i)vk + (∂2klφ
i)(∂tψ

l)vk

+ vl∂lv
k(∂kφ

i − δik) + (∂2lkφ
i)vlvk + ∂kq(∂iψ

k − δik) + µ

[
− ∂jψ

m(∂2mkφ
i)∂lv

k∂jψ
l

− (∂kφ
i∂jψ

m∂jψ
l − δikδjmδjl)∂

2
mlv

k − ∂kφ
i∂lv

k(∂2jjψ
l)

− ∂jψ
m(∂3mlkφ

i)∂jψ
lvk − (∂2lkφ

i)∂2jjψ
lvk − (∂2lkφ

i)∂jψ
l∂jψ

m∂mv
k

]
.

(6.4.5)

Then set w(t) = v(t)− ûλ and subtract (6.4.3) from (6.4.4) to obtain:

⟨∂tw(t), ϕ⟩+mh′′(t)l + f(h(t))l + µ

∫
Ω0

∇w(t) : ∇ϕ+

∫
Ω0

(v(t) · ∇)w(t) · ϕ

+

∫
Ω0

(w(t) · ∇)ûλ · ϕ+

∫
Ω0

(w(t) · ∇)s · ϕ+

∫
Ω0

(s · ∇)w(t) · ϕ

= −
∫
Ω0

f(v(t), h(t), q(t)) · ϕ.

We follow the same reasoning of the proof of Theorem 6.3.3. We define

z(x, t) = h(t)

[
∂

∂x2
(−ζ(x, t)x1),−

∂

∂x1
(ζ(x, t)x1)

]
∀x ∈ R , ∀ t ≥ 0,
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where ζ is a C∞ cut-off function equal to 1 in a small neighbourhood of the obstacle B0 and
equal to 0 outside a larger neighbourhood. We observe that

z ∈ C∞(R) ∩H1
0 (R), divz = 0 , z = h ê2 in Bh .

The following estimates hold:

∥z∥L2(R) ≤ a1|h| , ∥∇z∥L2(R) ≤ a2|h| , ∥∇z∥L∞(R) ≤ a3|h| , (6.4.6)

where a1, a2 and a3 are constants depending on the cut-off function ζ . We introduce

E(t) = ∥w(t)∥2L2(Ω0)
+mh′(t)

2
+ 2F (h(t)),

and, for ω ∈ (0, 1) to be fixed later, its perturbation

Eω(t) = ∥w(t)∥2L2(Ω0)
+mh′(t)

2
+ 2F (h(t)) + ω h(t)h′(t) + ω

∫
Ω0

w · z.

Such functionals satisfy (6.3.4), provided thath ω is small enough. Then, choosing (ϕ, l) =
(w + ωz, h′ + ωh), we infer

1

2

d

dt
Eω − ωh′

2
+
ω

2
f(h)h+

ω

2
f(h)h+µ∥∇w∥2L2(Ω0)

=−
∫
Ω0

f(v, h, q) · w−
∫
Ω0

(w · ∇)ûλ · w

−
∫
Ω0

(w · ∇)s · w

− µω

∫
Ωh

∇w : ∇z dx− ω

∫
Ωh

(w · ∇)s · z dx

+ ω

∫
Ωh

(w · ∇)z · w dx.

(6.4.7)

Next, we estimate the right-hand side of (6.4.7). For the last two terms on the first line, we
exploit [68, (2.26)], the Poincaré inequality and the properties of s defined as in Lemma 6.2.1.
We obtain∫

Ω0

(w · ∇)ûλ · w ≤ ∥w∥2L4(Ω0)
∥∇ûλ∥L2(Ω0) ≤

(
2

3π

)1/2

∥∇w∥L2(Ω0)∥w∥L2(Ω0)∥∇ûλ∥L2(Ω0)

≤ L√
3

(
2

π

)3/2

∥∇w∥2L2(Ω0)
∥∇ûλ∥L2(Ω0),

and∫
Ω0

(w · ∇)s · w ≤ ∥∇s∥L4(Ω0)∥w∥L4(Ω0)∥w∥L2(Ω0) ≤
(

2

3π

)1/4

∥∇s∥L4(Ω0)∥∇w∥
1/2

L2(Ω0)
∥w∥3/2L2(Ω0)

≤
(
2L

π

)3/2(
2

3π

)1/4

∥∇s∥L4(Ω0)∥∇w∥2L2(Ω0)
.

135



Chapter 6. Attractors for a FSI problem in a time-dependent phase space

With the same arguments of those in Theorem 6.3.3, we estimate the terms involving the func-
tion z as follows

−µω
∫
Ωh

∇w : ∇z dx ≤ µ

8
∥∇w∥2L2(R) +

2

µ
ω2∥∇z∥2L2(R) ,

and
−ω

∫
Ωh

(w · ∇)s · z dx ≤ µ

8
∥∇w∥2L2(R) +

2

µ
ω2∥∇z∥2L2(R) ,

and, finally,

ω

∫
Ωh

(w · ∇)z · w dx ≤ ω
4L2

π2
∥∇z∥L∞(R)∥∇w∥2L2(R) .

As already mentioned, (6.2.19)-(6.2.20) corresponds to the problem treated in Chapter 4, but
here we do not need to change the reference frame. Reproducing the arguments in Lemma 4.6.1
in Chapter 4 we find that

t v ∈ L4/3(0, T ;W 2,4/3(Ω0)), t ∂tv ∈ L4/3(0, T ;L4/3(Ω0)) ,

t∇q ∈ L4/3(0, T ;L4/3(Ω0)) ,

and
∥tv∥L4/3(0,T ;W 2,4/3(Ω0)) + ∥t∂tv∥L4/3(0,T ;L4/3(Ω0)) + ∥t∇q∥L4/3(0,T ;L4/3(Ω0))

≤ C
(
∥f∥L4/3(0,T ;L4/3(Ω0)) + ∥f1∥L4/3(0,T ;R)

)
,

where

f := v − t(v · ∇)v − t(v · ∇)s− t(s · ∇)v + tĝ ∈ L4/3(0, T ;L4/3(Ω0)) ,

f1 := h′ + t
f(h)

m
∈ L4/3(0, T ;R) .

This regularity, through the steps in Section 4.6 in Chapter 4 allows to infer the existence of a
function

A(t) ∈ L1(0, T ) , A(t) = Q(∥v∥L2(Ω0), ∥∇v(t)∥L2(Ω0), ∥ĝ∥L∞(R), ∥s∥L∞(R), ∥∇s∥L∞(R)) ,

with Q being positive and increasing with respect to its variables, such that∫
Ω0

f(v(t), h(t), q(t)) · w(t) ≤ A(t)
(
∥w(t)∥2L2(Ω0)

+mh′(t)
2)

+
µ

8
∥∇w(t)∥2L2(Ω0)

.

Let ω be small enough so that

5µ

8
− ω∥∇z∥L∞(R)

4L2

π2
>

5µ

8
− a3ω(L− δ)

4L2

π2
:= ν > 0 ,

and, by using (2.0.14),

ω

2
f(h)h− ω2 4

µ
∥∇z∥2L2(R) ≥

ω

2
F (h)− ω2 4

µ
∥∇z∥2L2(R) = (ρ

ω

4
− 4

µ
a2ω

2)h2 ≥ ch2 ,

136



6.5. The dynamical system approach

for some c positive. After using the Poincaré inequality and the following trace inequality

∥∇w∥L2(Ω0) ≥ c∥h′ê2∥L2(∂B0) = c|∂B0||h′|,
through which we extract a damping term for the obstacle Bh from µ

2
∥∇w∥2L2(Ω0)

, we obtain

1

2

d

dt
Eω(t) +

ω

2
f(h(t))h(t) + ν∥∇w(t)∥2L2(Ω0)

+ (
µ

2
c|∂B0|2 − ω)h′(t)

2 (6.4.8)

≤ L√
3

(
2

π

)3/2

∥∇w(t)∥2L2(Ω0)
∥∇ûλ∥L2(R)+

L3/2

31/4

(
2

π

)7/4

∥∇s∥L4(R)∥∇w(t)∥2L2(Ω0)

+A(t)

(
4L2

π2
∥∇w(t)∥2L2(Ω0)

+mh′(t)
2

)
,

with µ
2
c|∂B0|2 − ω > 0 provided that ω is small enough. From Theorem 6.2.2 we have that,

if λ < λs (the threshold for uniqueness of solutions for the stationary problem), there exists
C1 = C1(λ) > 0 such that C1(λ) → 0 as λ→ 0 and

∥∇ûλ∥L2(Ω0) ≤ C1(λ).

On the other hand, from Theorem 6.3.3 and Theorem 6.3.5,

A(t) → 0 as λ→ 0 ∀ t ≥ t0 + 1,

with t0 as in (6.3.12). Thus, with t sufficiently large, every term on the right-hand side of (6.4.8)
multiplying ∥∇w(t)∥2L2(Ω0)

and h′(t)2 tends to 0 as λs → 0. As a consequence, one can find
λ1 > 0 such that, if λ < λ1, there exist c3, c4 > 0 such that

1

2

d

dt
Eω +

ω

2
f(h)h+ c3∥w∥2L2(Ω0)

+ c4h
′2 ≤ 0,

where we have used implicitely the Poincaré inequality. Multiply by 2, use (2.0.14) and the
definition of E to obtain

d

dt
Eω + γE ≤ 0,

with γ = min{4ω, 2c3, 2c4m } > 0. Then, renaming γ/c2 as γ, we find from (6.3.4) that d
dt
Eω +

γEω ≤ 0, which, together with (6.3.4), implies that c1E(t) ≤ c2E(0)e
−γt. Thus there exists

c > 0 such that

∥v(t)− ûλ∥2L2(Ω0)
+mh′(t)

2
+ 2F (h(t)) ≤ c

(
∥û0 − ûs∥2L2(Ω0)

+mk0
2
)
e−γt, (6.4.9)

since F (0) = 0. From (6.4.9), the convergence of the solutions in H0 is established as t → ∞,
which proves the claim.

6.5 The dynamical system approach

6.5.1 Semiflow vs semigroup

We now want to revisit the results of Section 6.3 within the framework of infinite-dimensional
dynamical systems, where the solution is viewed as a trajectory in a suitable phase space. Let
us begin with the abstract definition of a strongly continuous semiflow.

137



Chapter 6. Attractors for a FSI problem in a time-dependent phase space

Definition 6.5.1. Let (X , d) be a complete metric space. A family of one-parameter maps
S(t) : X → X is called a (strongly continuous) semiflow on X if

(i) S(0) = idX (the identity map in X );

(ii) the map t 7→ S(t)x is continuous for all x ∈ X ;

(iii) the map x 7→ S(t)x is continuous for all t ≥ 0.

If in addition the concatenation property holds, that is, S(t + τ) = S(t)S(τ) for all t, τ ≥ 0,
then S(t) is called a strongly continuous semigroup (see, e.g., [133]).

Obviously, a semigroup would simplify the analysis of the dynamics but, as already men-
tioned, the evolution maps S(t) of (6.2.19)-(6.2.20) do not satisfy the concatenation property.
The main reason relies on peculiarity of (6.2.19)-(6.2.20), where at each time step the pair
(û(t), h′(t)) belongs to a different functional space Hh(t), for the domain of fluid Ωh(t) depends
itself on the solution. The key idea to overcome this difficulty, for a given initial position h0 of
the obstacle, is to map at every time t the cylindrical domain Ωh(t) × (0, T ) onto Ωh0 × (0, T ),
via a suitable change of variables.

Throughout the whole section, let then

h0 ∈ (−L+ δ, L− δ)

be fixed, and denote

H = {z = (v, l) ∈ H(R) | vBh0
= lê2}, H1 = {z = (v, l) ∈ V(R) | vBh0

= lê2},

to which we associate the norms

∥z∥2H =

∫
Ωh0

|v|2 dx+ml2, ∥z∥2H1 =

∫
Ωh0

|∇v|2 dx+ml2,

where z = (v, l), and m is the mass of the body as in (6.2.20). The spaces H and H1 are
exactly the ones defined in (6.2.22), where the dependence of h0 is dropped, since the position
h0 of the obstacle is now fixed. In particular, we have the compact embedding H1 ⋐ H. Given
z0 = (û0, k0) ∈ H, we consider the solution operator U(t) : H → Hh(t) of Section 6.3,
recalling that h(t) is the second component of the weak solution to (6.2.19)-(6.2.20) with initial
data (û0, h0, k0). Hence,

U(t)z0 = (û(t), h′(t)).

Let ε0 ∈ (0, L− δ) be such that

min
t∈[0,T ]

dist(∂Bh(t),Γ) ≥ ε0. (6.5.1)

The existence of such an ε0 comes from Corollary 6.2.8. For this h(t), we can build for any
t > 0 the map ψ(t, ·) of Proposition 6.4.2, where we take ε = ε0, and define its inverse with
respect to the space variables, that we denote by φ(t, ·) = ψ−1(t, ·) . In order to recast our
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results in the semiflow language, the main ingredient is the introduction of the family of maps,
depending on h(t),

Φt : Hh(t) → H,
given by

Φt(û(t), h
′(t)) = (∇ψ(φ(t, y), t) · û(φ(t, y), t), h′(t)),

whose properties will be described later in this section. Then, we define the one-parameter
family of operators

S(t) : H → H,
acting by the rule

z0 7→ S(t)z0 = Φt(U(t)z0). (6.5.2)

Roughly speaking, what we do is to think the obstacle as fixed during the whole evolution.
Accordingly, the variable h loses its physical meaning, since it does not represent any longer
the position of the obstacle, but its effects appear inside the equation through the map Φt.

Theorem 6.5.2. The map S(t) fulfills the semiflow axioms (i)-(iii) of Definition 6.5.1 on the
complete metric space H, endowed with the distance induced by the norm ∥ · ∥H.

As it will be clear, it is however false that S(t) is a semigroup. The proof of Theorem 6.5.2
is carried out in the remaining of the section. In particular, in the next Subsection 6.5.2, we state
and prove some preliminary results in order to properly characterize the action of the map Φt

on problem (6.2.19)-(6.2.20). The conclusion of the proof will be given in Subsection 6.5.3, by
verifying the semiflow properties of Definition 6.5.1.

6.5.2 Properties of the map Φt

Recalling thath h0 ∈ (−L + δ, L − δ) has been fixed once for all, throughout this subsection,
we consider a given ε > 0 and a given function

h ∈ W 1,∞(0, T ; [−L+ δ + ε, L− δ − ε]) ∀T > 0 (6.5.3)

such that
h(0) = h0, Bh(t) ⊂ Oε ∀ t ∈ [0, T ].

With this choice, let s = sε be a function obtained through Lemma 6.2.1. Moreover, we
can build the volume preserving diffeomorphism ψ of Proposition 6.4.2, along with its inverse
φ = ψ−1. Then, we denote

gij =
∂φk

∂yi
∂φk

∂yj
, gij =

∂ψi

∂xk
∂ψj

∂xk
, Γikj = gil

(
∂gkl
∂yj

+
∂gjl
∂yk

− ∂gkj
∂yl

)
=
∂ψi

∂xl
∂2φl

∂yk∂yi
,

(6.5.4)
where gij defines a metric on R2 since det(∂ψi

∂xj
)i,j = 1. Call (now the space variable is y)

v(y, t) = ∇ψ(φ(t, y), t) · û(φ(t, y), t) y ∈ Ωh0 , (6.5.5)

the pullback of û by φ, and set
q(y, t) = p(φ(y, t), t).
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We follow the procedure in [130, paragraph 4.2] to transform the Navier-Stokes equation (6.2.19)
in the cylindrical domain Ωh0 × (0, T ). Thanks to (6.4.1), for each term involving s, the maps ψ
and φ correspond to the identity. Thus, we obtain the (weak) problem with variable coefficients
in the new unknown v (at this stage, the function h(t) is prescribed)

vt +Mv − µLv +N v + (v · ∇) s+ (s · ∇) v + Gq = ĝ in Ωh0 × (0, T )

div v = 0 in Ωh0 × (0, T )

v = 0 on Γ× (0, T )

v = h′ê2 on ∂Bh × (0, T )

lim
|y1|→∞

v(y1, y2) = 0

v(0) = û0.

(6.5.6)

The operators M,L,N appearing in (6.5.6) are defined here below (the exponent i stands for
the i-th component, and we use the Einstein notation).

(Mv)i =∂lv
i∂tψ

l + ∂kψ
i(∂k∂tφ

i)vk + ∂kψ
i∂2klφ

i∂tψ
lvk,

(Lv)i =∂kψi∂jψm(∂2mkφi)∂lvk∂jψl + ∂jψ
m∂2mlv

i∂jψ
l + ∂lv

i(∂2jjψ
l) + ∂kψ

i∂jψ
m(∂3mlkφ

i)∂jψ
lvk

+ ∂kψ
i(∂2lkφ

i)∂2jjψ
lvk + ∂kψ

i(∂2lkφ
i)∂jψ

l∂jψ
m∂mv

k,

(N v)i =vl∂lv
i + ∂kψ

ivl(∂2lkφ
i)vk,

(Gq)i =gij∂jq.
(6.5.7)

Remark 6.5.3. Note that:
- (∂t +M)v corresponds to the original time derivative ût;
- Lv corresponds to ∆û;
- N v corresponds to (û · ∇)û;
- Gq corresponds to ∇p.
In particular, in Aε these operators coincide with the original ones; the same is true in in Oε,
except for

(∂t +M)v = (∂t − h′ê2 · ∇)v.

The first equation in (6.5.6) can be rewritten as

vt − µ∆v + (v · ∇) v +∇q + (v · ∇) s+ (s · ∇) v = ĝ + F(v, h, q),

where
F(v, h, q) = µ(L −∆)v −Mv − (N v − (v · ∇)v)− (G −∇)q.

Observe that

F(v, h, q) =

{
0 in Aε

h′ê2 · ∇v in Ōε,
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thus F has compact support in Ωh0 . The introduction of the maps ψ and φ allows to remove
the dependence on time from the fluid domain, with a consequent strengthening of the coupling
between the equations governing the motion of the fluid and the one governing the motion of
the obstacle. Such a strengthening appears in the fictitious force F = F(v, h, q), where the
dependence on h is hidden in ψ and φ. This renders the dynamics structurally non-autonomous,
and this is the reason why we do not end up with a semigroup.

Remark 6.5.4. If h(t) is not just any prescribed function, but it is exactly the second component
of the weak solution to (6.2.19)-(6.2.20) with initial data (û0, h0, k0), and ε = ε0 with ε0 as
in (6.5.1), we have the equivalence between (6.5.6) and the original equation (6.2.19), in terms
of strong solutions. This was proven in [130, Propositions 4.5, 4.6], which in turn refers to [93,
Theorem 2.5]

Here, we are are interested in the construction of weak solutions. To this aim, leaning on
some ideas of [105], we introduce for any fixed t > 0 the scalar products

⟨v1, v2⟩t =
∫
Ωh0

gij(y, t)v
i
1(y)v

j
2(y) dy, ⟨Dgv1, Dgv2⟩t =

∫
Ωh0

gij(y, t)g
kl(y, t)∇kv

i
1∇lv

j
2 dy,

(6.5.8)
where

∇kv
i =

∂vi

∂yk
+ Γikjv

j,

and we denote by

∥v∥2t = ⟨v, v⟩t and ∥Dgv∥2t = ⟨Dgv,Dgv⟩t
the induced (square) norms. We emphasize that the scalar products in (6.5.8) explicitely depend
on the choice of the function h in (6.5.3), that for the moment is understood to be given. Under
the change of variables induced by φ, for any t ≥ 0 we have the equalities

⟨v1, v2⟩t =
∫
Ωh(t)

û1 · û2 dx, ⟨Dgv1, Dgv2⟩t =
∫
Ωh(t)

∇û1 : ∇û2 dx.

Moreover, since gij is a positive definite invertible matrix and the spatial derivatives of φ(·, t)
are bounded functions (see also [93, Section 3]), there exist C1, C2 > 0 (depending on T > 0),
such that, for any fixed t ∈ [0, T ],

C1∥v∥L2(Ωh0
) ≤ ∥v∥t ≤ C2∥v∥L2(Ωh0

). (6.5.9)

Analogously, there exist two positive constants C3 and C4 such that

C3∥∇v∥L2(Ωh0
) ≤ ∥Dgv∥t ≤ C4∥∇v∥L2(Ωh0

). (6.5.10)

This allows us to introduce the norms on H and H1

|z|t,H =
√

∥v∥2t +ml2 , |z|t,H1 =
√
∥Dgv∥2t +ml2 ,

equivalent to the original ones. Again, we point out that such an equivalence is uniform for a
fixed T > 0. Now we give the rigorous definition of a weak solution to problem (6.5.6).
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Definition 6.5.5. Let the given function h comply with (6.5.3). A function v is a weak solution
to (6.5.6), with initial value v(0) = û0, if

(v, h′) ∈ L2(0, T ;H1) ∩ L∞(0, T ;H), (∂tv, h
′′) ∈ L2(0, T ;H−1),

and, for any pair (ϕ̃, l) ∈ H1 and almost every t ≥ 0,

⟨∂tv(t), ϕ̃⟩t + ⟨Mv(t), ϕ̃⟩t +mh′′(t)l + f(h(t)) l − µ⟨Lv(t), ϕ̃⟩t + ⟨N v(t), ϕ̃⟩t

+

∫
Ωh0

(v(t) · ∇) s · ϕ̃ dy +
∫
Ωh0

(s · ∇) v(t) · ϕ̃ dy =

∫
Ωh0

ĝ · ϕ̃ dy. (6.5.11)

We are ready to prove the equivalence between problem (6.5.6) and the original problem
(6.2.19)-(6.2.20) in terms of weak solutions.

Proposition 6.5.6. Let (û, h) be the weak solution to problem (6.2.19)-(6.2.20) with initial data
(û0, h0, k0), and let v be a weak solution to (6.5.6) with the same h and initial datum û0, in the
sense of Definition 6.5.5. Then û and v are related by (6.5.5), that is,

v(·, t) = ∇ψ(φ(t, ·), t) · û(φ(t, ·), t).

Proof. The proposition is proven by establishing a correspondence among each term in (6.5.11)
and in (6.2.25). The function h is now the second component of the weak solution (û, h) to
problem (6.2.19)-(6.2.20) with initial data (û0, h0, k0), and ε0 is as in (6.5.1). Then, we can
build the map ψ of Proposition 6.4.2, where we take ε = ε0, and define its inverse with respect
to the space variables, φ = ψ−1. From (6.5.5), we obtain that

û(x, t) = ∇φ(ψ(t, x), t) · v(ψ(t, x), t). (6.5.12)

Concerning the test function ϕ and ϕ̃ appearing in the two definitions of solution, applying the
change of variable we produce a bijection ϕ↔ ϕ̃ given by

ϕ(x, t) = ∇φ(ψ(t, x), t) · ϕ̃(ψ(t, x)). (6.5.13)

Indeed, as ψ and φ are volume preserving, we do not lose the divergence-free property of
the functions (see for instance [93, Proposition 2.4]). Thus, by plugging (6.5.12)-(6.5.13)
into (6.2.25), after integrating by parts and using the fact that y = ψ(t, x) ∈ Ωh0 , we obtain∫

Ωh0

∂t[∇φ(y, t) · v(y, t)] · ∇φ(y, t) · ϕ̃(y) dy +mh′′(t)l(t) + f(h(t)) l(t)

− µ

∫
Ωh0

∆[φ(y, t) · v(y, t)] · ∇φ(y, t) · ϕ̃(y) dy +

∫
Ωh0

[(v(y, t) · ∇) s · ϕ̃(y) + (s · ∇) v(y, t) · ϕ̃(y)] dy

+

∫
Ωh0

(∇φ(y, t) · v(y, t) · ∇) [∇φ(y, t) · v(y, t)] · ∇φ(y, t) · ϕ̃(y) dy =

∫
Ωh0

ĝ · ϕ̃(y) dy.

(6.5.14)

We remark that in the equality above we have used the properties of a function s of Lemma
6.2.1, which is nonzero whenever φ, ψ are the identity, together with the function ĝ of (6.2.15).
From (6.5.7), we have that

∂t[∇φ(y, t) · v(y, t)] = ∂kφ
i∂tv

k + ∂kφ
i∂lv

k∂tψ
l + (∂k∂tφ

i)vk + ∂2klφ
i∂tψ

lvk

= ∂kφ
i∂tv

k + ∂kφ
i(Mv)i,
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∆[φ(y, t) · v(y, t)] = ∂jψ
m(∂2mkφ

i)∂lv
k∂jψ

l + ∂kφ
i∂jψ

m∂2mlv
k∂iψ

l + ∂kφ
i∂lv

k(∂2jjψ
l)+

∂jψ
m(∂3mlkφ

i)∂jψ
lvk + (∂2lkφ

i)∂2jjψ
lvk + (∂2lkφ

i)∂jψ
l∂jψ

m∂mv̂
k = ∂kφ

i(Lv)i,

(∇φ(y, t) · v(y, t) · ∇) [∇φ(y, t) · v(y, t)] = ∂kφ
ivl∂lv

k + vl(∂2lkφ
i)vk = ∂kφ

i(N v)i.

Thus, through the definition of the scalar products in (6.5.8), we obtain that (6.5.14) is equivalent
to (6.5.11), which completes the proof.

6.5.3 Proof of Theorem 6.5.2

On account of (6.5.5), we rewrite the map Φt as

Φt(û(t), h
′(t)) = (v(t), h′(t)),

where now v is defined by choosing the function h(t) to be the second component of the weak
solution to (6.2.19)-(6.2.20) with initial data (û0, h0, k0), and ε = ε0, with ε0 as in (6.5.1).
Then, point (i) of Definition 6.5.1 follows directly from the properties of ψ and φ. Point (ii) is a
consequence of Theorem 6.2.7 and Proposition 6.5.6, from which we learn that (v, h′) is equal
almost everywhere to a continuous function from [0, T ] to H with respect to the norm | · |t,H.
By the equivalence relation between the norms given in (6.5.9), this implies the continuity with
respect to ∥ · ∥H as well. The next proposition proves point (iii).

Proposition 6.5.7. Let R > 0 be arbitrarily fixed, and let n = 1, 2. For any pair of initial
velocities

z0,n = (û0,n, k0,n) ∈ H such that ∥z0,n∥H ≤ R,

the estimate
∥S(t)z0,1 − S(t)z0,2∥H ≤ K∥z0,1 − z0,2∥H

holds for every t ∈ [0, T ], for some positive constant K = K(R, T ).

Proof. Let z0,n = (û0,n, k0,n) ∈ H be such that ∥z0,n∥H ≤ R. Setting further hn(0) = h0, there
exists a unique weak solution (ûn, hn) to problem (6.2.19)-(6.2.20). From Corollary 6.2.8,
there is ε0, depending on R and T , such that Bhn ⊂ Oε0 . Thus, through Lemma 6.2.1 we
can build s = sε0 as well as ψn as in Proposition 6.4.2 and φn = ψ−1

n , where the subscript
n = 1, 2 depends on whether we consider h1 or h2. In order to estimate the distance between
S(t)z0,1 = (v1, h1) and S(t)z0,2 = (v2, h2) in terms of the distance between z0,1 and z0,2, we
exploit again the result and the procedure implemented in Section 4.6 in Chapter 4, where it is
proven the uniqueness for solutions to problem (6.2.19)-(6.2.20). In order to make the proof of
the theorem self-contained, let us briefly describe the procedure: we introduce the two maps

F : R+ × Ωh2(t) −→ Ωh1(t) and G : R+ × Ωh1(t) −→ Ωh2(t),

defined as
F = φ1(t, ψ2(t, x)) and G = φ2(t, ψ1(t, x)).

This is possible since h1(0) = h2(0) = h0. Following Section 4.6 in Chapter 4 (see also [111,
Section 5]), let

û2(x, t) = ∇F(G(x), t) · û2(G(x), t) x ∈ Ωh1(t)
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be the pullback of û2 by G. Next, we call

w = û1 − û2, h = h1 − h2,

and we take the difference between the weak formulation satisfied by (û1, h1) and that satisfied
by (û2, h2). We obtain

⟨∂tw, ϕ⟩+mh′′l + [f(h1)− f(h2)] l +µ

∫
R
∇w : ∇ϕ+

∫
Ωh1

(û1 · ∇)w · ϕ+

∫
Ωh1

(w · ∇)û2 · ϕ

+

∫
Ωh1

(s · ∇)w · ϕ+

∫
Ωh1

(w · ∇)s · ϕ =

∫
Ωh1

f · ϕ,

where the expression of f reads as in (6.4.5), once we substitute v with û2, Ω0 with Ωh1 , φ with
G and ψ with F. Then, we take (ϕ, l) = (w, h′) and we get

1

2

d

dt

(
∥w∥2L2(Ωh1

) +mh
′2 + 2

∫ h1

h2

f(s) ds

)
+µ∥∇w∥2L2(Ωh1

) = −
∫
Ωh1

(w · ∇)û2 · w

−
∫
Ωh1

(w · ∇)s · w

+

∫
Ωh1

f · ϕ.

(6.5.15)

Next, we estimate each term on the right-hand side. The first two term can be bounded by
suitably exploiting the Hölder inequality, [68, (2.26)], the Poincaré inequality and the Young
inequality. We obtain∣∣∣∣ ∫

Ωh1

(w · ∇)û2 · w
∣∣∣∣ ≤ ∥w∥2L4(Ωh1

)∥∇û2∥L2(Ωh1
) ≤

(
2

3π

)1/2

∥w∥L2(Ωh1
)∥∇w∥L2(Ωh1

)∥∇û2∥L2(Ωh1
)

≤ 2

3πµ
∥∇û2∥2L2(Ωh1

)∥w∥2L2(Ωh1
) +

µ

4
∥∇w∥2L2(Ωh1

),

and∣∣∣∣ ∫
Ωh1

(w · ∇)s · w
∣∣∣∣ ≤ ∥w∥2L4(Ωh1

)∥∇s∥L2(Ωh1
) ≤

(
2

3π

)1/2

∥w∥L2(Ωh1
)∥∇w∥L2(Ωh1

)∥∇s∥L2(Ωh1
)

≤ 2

3πµ
∥∇s∥2L2(Ωh1

)∥w∥2L2(Ωh1
) +

µ

4
∥∇w∥2L2(Ωh1

).

For what concerns the last term, analogously to what we did in Section 6.4, we can proceed step
by step as in 4.6 in Chapter 4 to obtain the existence of a function

A = A(t) = Q(∥û2(t)∥L2(Ωh1
), ∥∇û2(t)∥L2(Ωh1

), ∥ĝ∥L∞(R), ∥s∥L∞(R), ∥∇s∥L∞(R)) ∈ L1(0, T ),
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the L1-bound depending only on R, such that∫
Ωh1

f · ϕ ≤ A(∥w∥2L2(Ωh1
) +mh′

2
) +

µ

2
∥∇w∥2L2(Ωh1

),

Then, calling

Λ(t) = A(t) +
2

3πµ
∥∇s∥2L2(Ωh1(t)

) +
2

3πµ
∥∇û2(t)∥2L2(Ωh1(t)

),

and by inserting all the above inequalities in (6.5.15), we get

1

2

d

dt

(
∥w∥2L2(Ωh1

) +mh
′2 + 2

∫ h1

h2

f(s) ds

)
≤ Λ(∥w∥2L2(Ωh1

) +mh′
2
).

Moreover, defining the functions

Θ(t) = ∥w(x, t)∥2L2(Ωh1(t)
) +mh′(t)

2
= ∥û1(x, t)−∇F(G(x), t) · û2(G(x), t)∥2L2(Ωh1(t)

)

+m(h′1(t)− h′2(t))
2,

and observing that
Θ(0) = ∥û0,1 − û0,2∥2L2(Ωh0

) +m(k0,1 − k0,2)
2,

we obtain

Θ(t) ≤ Θ(0) +

∫ t

0

2Λ(τ)Θ(τ) dτ ∀ t ∈ [0, T ].

The Gronwall Lemma (integral form) then gives

Θ(t) ≤ KΘ(0) ∀ t ∈ [0, T ], (6.5.16)

having set K = exp
[ ∫ T

0
2Λ(τ) dτ

]
. The final step is to rewrite (6.5.16) on Ωh0 by applying

the coordinate transformation x = φ1(t, y). Given

v1(y, t) = ∇ψ1(φ1(t, y), t)·û1(φ1(t, y), t) and v2(y, t) = ∇ψ2(φ2(t, y), t)·û2(φ2(t, y), t),

for all t ∈ [0, T ] we obtain

∥∇φ1(t, y) · v1(y, t)−∇φ1(t, y) · v2(y, t)∥2L2(Ωh0
)+m(h′1(t)− h′2(t))

2

≤ K
(
∥û0,1 − û0,2∥2L2(Ωh0

) +m(k0,1 − k0,2)
2
)
,

which in turn can be rewritten as

∥v1(t)− v2(t)∥2t +m(h′1(t)− h′2(t))
2 ≤ K

(
∥û0,1 − û0,2∥2L2(Ωh0

) +m(k0,1 − k0,2)
2
)
.

Note that the norm ∥ · ∥t above is constructed by taking φ1 in (6.5.4). Therefore, recalling the
definition of the norm | · |t,H, we arrive at

|S(t)z0,1 − S(t)z0,2|t,H ≤ K∥z0,1 − z0,2∥H ∀ t ∈ [0, T ].

The desired conclusion follows by applying (6.5.9), up to redefining the constant K.
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6.6 The global attractor of the semiflow

The further step is to translate the dissipative features of our system in the semiflow language.
Let us begin by recalling some classical notions (see, e.g., [12, 26, 133]). In what follows, S(t)
is a strongly continuous semiflow acting on a complete metric space (X , d).

Definition 6.6.1. A set B0 ⊂ X is called an absorbing set for S(t) if for every bounded set
B ⊂ X there exists an entering time tB ≥ 0 such that

S(t)B ⊂ B0 ∀ t ≥ tB.

The existence of a bounded absorbing set witnesses the dissipative character of a semiflow,
since the dynamics is eventually confined in a bounded subset of the phase space. And indeed,
in the recent literature, the definition of a dissipative semiflow is exactly the one of a semiflow
possessing a bounded absorbing set. Nonetheless, in spite of its boundedness, an absorbing set
can be to some extent a very large object. For instance, if X is a (closed) subset of a Banach
space, an absorbing set might share the same dimension of the whole space (think to a ball). For
this reason, one would like to exhibit a stronger form of dissipation. The natural way to do that
is to invoke compactness, since this is the correct notion to translate the fact that the dynamics
loses degrees of freedom. Accordingly, the strategy is to look for the existence of compact sets,
hence meager in the space, able to attract (in a suitable sense) all the trajectories of the semiflow
in the longterm. This attraction property is expressed in terms of Hausdorff semidistance in X :
given two (nonempty) sets B, C ⊂ X , their Hausdorff semidistance is defined as

δ(B, C) = sup
x∈B

d(x, C) = sup
x∈B

inf
y∈C

d(x, y).

In a completely equivalent manner, we can write

δ(B, C) = inf
{
ε > 0 : B ⊂ Oε(C)

}
,

where Oε(C) =
⋃
y∈C

{
x ∈ X : d(x, y) < ε

}
is the ε-neighborhood of C.

Definition 6.6.2. A set K ⊂ X is called an attracting set for S(t) if, for every bounded set
B ⊂ X ,

lim
t→∞

δ(S(t)B,K) = 0.

Whenever there exists a compact attracting set the semiflow is said to be asymptotically com-
pact.

Remark 6.6.3. Clearly, an absorbing set is in particular an attracting set. It is also apparent that
if the semiflow is asymptotically compact, then it is dissipative, in the sense that it possesses a
bounded absorbing set.

Once the existence of a compact absorbing set is established, one might ask if there is the
best possible one among those sets. This leads to our last definition.

Definition 6.6.4. The global attractor A of S(t) is the smallest compact attracting set.
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In the literature, the notion of global attractor is usually given in the context of semigroups,
and not just semiflows (see, e.g., [12, 133]). In particular, with the only exception of [26], the
classical definition differs from the one given above since, besides the attraction property, one
requires also the invariance, that is, S(t)A = A for all t ≥ 0. Unfortunately, when dealing
with semiflows (and not semigroups), the invariance seems to be out of reach. Nonetheless, our
definition makes perfectly sense. The only problem is the existence of such a set. To this aim,
we state the following result.

Theorem 6.6.5. An asymptotically compact semiflow possesses the global attractor in the sense
of Definition 6.6.4.

Proof. The idea of the proof is somehow already contained in [26], although in that paper S(t)
is a semigroup. In fact, the theorem remains true if S(t) is a one-parameter selfmap of X ,
without requiring any of the axioms (i)-(iii) of Definition 6.5.1. Consider the family of sets

K =
{
K ⊂ X : K is compact and attracting

}
,

which, due to the hypothesis, is nonempty. Besides, let C be the collection of all possible
sequences of the form

yn = S(tn)xn,

where xn is a bounded sequence in X and tn → ∞. For any yn ∈ C we denote

L(yn) =
{
w ∈ X : yn → w up to a subsequence

}
.

Note that L(yn) ̸= ∅. Indeed, let K ∈ K. Then there exists wn ∈ K such that

d(yn, wn) → 0.

Invoking the compactness of K, there is w ∈ K and a subsequence wni
converging to w. Hence,

d(yni
, w) ≤ d(yni

, wni
) + d(wni

, w) → 0.

Finally, define the set
A⋆ =

⋃
yn∈C

L(yn).

We claim that A⋆ is attracting: if not, there exist a bounded set B ⊂ X , a sequence tn → ∞
and ε > 0 such that

δ(S(tn)B,A⋆) ≥ 2ε.

From the definition of Hausdorff semidistance, this implies the existence of a sequence xn ∈ B,
hence bounded, for which

d(S(tn)xn,A⋆) ≥ ε.

But, as we saw, yn = S(tn)xn has limit points, which belong to A⋆ by construction. This yields
the claim. It is also apparent that A⋆ is contained in any closed attracting set. Accordingly, the
set

A = A⋆ (closure in X )
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is the smallest element of K. An equivalent way to define A is to put

A =
⋂
K∈K

K,

noting that the (compact) sets K ∈ K fulfill the finite intersection property, for they all contain
A⋆.

We can now go back to our particular semiflow S(t) on H associated to problem (6.2.19)-
(6.2.20), and defined in (6.5.2). The main result of this section reads as follows.

Theorem 6.6.6. The semiflow S(t) : H → H possesses the global attractor.

Before entering the details of the proof, let us recall once again that we are working under the
hypothesis that h0 ∈ (−L+ δ, L− δ) is fixed. Theorem 6.6.6 makes use of the technical results
of Section 6.5.2. In view of the definition of the semiflow S(t), the function h(t) will always
be the second component of the weak solution to (6.2.19)-(6.2.20) with initial data (û0, h0, k0).
Our purpose is to investigate the longtime behaviour of S(t)z0 as z0 = (û0, k0) is allowed to
run in a bounded set of H. To this aim, we need to improve (and make uniform) the equivalence
relations between the norms given in (6.5.9) and (6.5.10). This can be done by exploiting the
dissipation properties of the solution operator U(t) of Section 6.3.

Proof of Theorem 6.6.6. In the light of Theorem 6.6.5, all we need to do is showing that S(t)
is asymptotically compact. In fact, we will obtain a stronger result, namely, the existence of
a compact absorbing set B1 ⊂ H. Indeed, given a bounded set B ⊂ H, we know from The-
orem 6.3.3 and Theorem 6.3.5 that there exist two universal constants R0, R1 > 0 and two
entering times

t0 = t0(B) and t1 = t1(B) = t0 + 1

such that, for every z0 ∈ B,

∥U(t)z0∥Hh(t)
=
√

∥û(t)∥L2(Ωh(t)) +mh′(t)2 ≤ R0 ∀ t ≥ t0, (6.6.1)

and
∥U(t)z0∥H1

h(t)
=
√
∥∇û(t)∥L2(Ωh(t)) +mh′(t)2 ≤ R1 ∀ t ≥ t1. (6.6.2)

Inequality (6.6.1), together with (6.3.5), imply the existence of a constant C = C(R0) such
that

∥h∥W 1,∞(t0,∞;R) ≤ C.

Thus, for every t ≥ t0, relations (6.5.9)-(6.5.10) improve into

C1∥v∥L2(Ωh0
) ≤ ∥v∥t ≤ C2∥v∥L2(Ωh0

), (6.6.3)

C3∥∇v∥L2(Ωh0
) ≤ ∥Dgv∥t ≤ C4∥∇v∥L2(Ωh0

), (6.6.4)

where now the constants C1, C2, C3, C4 depend only on R0 (and on t0). Invoking the coordinate
transformation φ, we have the equality

∥∇û(t)∥L2(Ωh(t)) = ∥Dgv(t)∥t.
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Looking at (6.6.2) and to the definition of | · |t,H1 , this yields

|S(t)B|t,H1 = ∥U(t)B∥H1
h(t)

≤ R1 ∀ t ≥ t1.

Hence, taking t ≥ t1 > t0, from the (uniform) equivalence of the norms established in (6.6.3)
and (6.6.4), up to redefining the universal constant R1, we conclude that

∥S(t)B∥H1 ≤ R1 ∀ t ≥ t1.

This means that the ball B1 of H1 of radius R1, which is compact in H in view of the compact
embedding H1 ⋐ H, is an absorbing set for S(t).

6.7 Simulation strategy

In this section, the numerical settings and schemes adopted for the simulations of (2.0.7) are
described. The analyses were performed in two stages, labeled as static and dynamic cases.
During the static stage, a Poiseuille flow impinges the fixed obstacle at different flow rates. The
static case was used both as a starting point to validate the chosen numerical setting and to
obtain a description of the flow field at different values of the inlet velocity magnitude. As for
the dynamic stage, the deck cross-section interacts with the fluid through a vertical translation.
Specifically, the global attractor associated with the dynamical system is characterized by de-
scribing the behaviour of the velocity field of the fluid and the position of the obstacle in the
long term.

Following the numerical strategy presented in [39], the simulations were carried out consid-
ering an aspect ratio for the obstacle d/δ equal to 5. As shown in Figure 6.2, the computational
domain was characterized by an along wind length and a height respectively equal to 30 d and
14.2 d. Moreover, the windward edge of the obstacle was located at a distance 8 d from the inlet.

The same mesh was adopted for both the static and the dynamic case. Specifically, the fluid
domain was divided into seven regions with different refinements. Close to the boundaries of the
obstacle, the mesh size is 2.7×10−3 d, resulting in a dimensionless wall distance y+ < 5 almost
everywhere, and it is coarsened up to a maximum of 0.35 d in the wake. Overall, the mesh
consists of 50000 cells, see Figure 6.2. A RANS-based modelling technique was employed,
adopting the well-known (k − ω SST) turbulence model. This closure model is one of the most
commonly exploited in the context of RANS simulations [39] since it exhibits a more reliable
behaviour when predicting separating flows with respect to other turbulence models. Second-
order schemes were selected for all quantities both in space and time and a PISO scheme was
used for the velocity-pressure coupling. At the inlet of the computational domain, a parabolic
velocity profile was imposed and Dirichlet boundary conditions were set for both the turbulence
kinetic energy k and the specific dissipation rate ω. Moreover, Neumann boundary conditions
were imposed for the pressure. The inlet turbulence intensity was set equal to 1% with a value
of the turbulence viscosity ratio ν/νt = 2, where νt is the turbulence kinematic viscosity. It
is worth pointing out that the k − ω SST turbulence model is quite stable with respect to the
inlet boundaries [39] and thus, with this approach, it is not possible to faithfully reproduce
the experimental wind tunnel inlet conditions. A no-slip condition was imposed on the top
and bottom sides of the domain, to keep the parabolic profile unchanged up to the windward
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edge of the obstacle. Finally, wall functions were employed for the near-wall treatment of the
obstacle. The time step was chosen so as to guarantee a value of the Courant number lower
than 1 almost everywhere, with a maximum of approximately 2 in very small areas around the
corners. The simulations were performed with the open-source software OpenFOAM [1]. The
next paragraphs treat the specific settings for the static and dynamic simulations.

deforming
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fixed
zone 14

.2
d

8d 22d

ou
tle
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no slip
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t

U

Figure 6.2: The figure above depicts a sketch of the computational domain while the figure below reports a close
up of the mesh structure adopted near the obstacle.

6.7.1 Static case

Let U = λL2 be the maximum velocity of the parabolic profile at the inlet. We define the
Reynolds number as

Re =
Uδ

ν
,

and thus, given that U = λL2, we consider the variations of Re rather than the variations of λ.
Another meaningful dimensionless parameter is the so-called Strouhal number, defined as

St =
fwδ

U
,

where fw is the vortex shedding frequency, as well as the Scruton number

Sc =
2πmξ

ρδ2
,
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where m and ξ are respectively the linear mass and the damping ratio of the system while ρ is
the density of the fluid. Let the dimensionless time t∗ be defined as

t∗ =
t U

δ
.

Figure 6.4 shows the time histories, obtained through the simulations, of the dimensionless drag
CD, lift CL and moment CM for U = 1, corresponding to Re ≈ 1.3 × 104. As expected, the
lift coefficient oscillates around zero. Indeed, it is well-known both from a theoretical and an
experimental point of view (see [66, 68, 110]) that no lift is exerted on a bluff body immersed
in a viscous fluid whenever its cross-section is symmetric with respect to the angle of attack.
Table 6.1 compares the time-averaged values of the aerodynamic coefficients and the Strouhal
number with the experimental ones taken from the literature [122]. It is worth pointing out
that, in this specific context, if the Reynolds number is not sufficiently large, the values of the
moment are not available, see [122, Section 3]. Figure 6.3 depicts the comparison between the
numerical values of the Strouhal number, as a function of Re, and the experimental data taken
from [122]. A reasonable agreement between the numerical and the experimental results allows
validating the chosen setting.

CL CD CM St
Experimental 0.08 (rms) 1.03 —— 0.11
Numerical -0.0013 1.004 −1.519× 10−4 0.118

Table 6.1: Comparison between the numerical and experimental time-averaged aerodynamic coefficients (experi-
mental data taken from [122]).
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Figure 6.3: Numerical and experimental [122] Strouhal number as a function of Re.
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Figure 6.4: Time traces of the numerical lift, drag and moment. The figures report just a portion of the time
histories. The dotted black line indicates the end of the transient stage.

6.7.2 Dynamic case

As previously mentioned, in the dynamic case the obstacle is allowed to move in the vertical
direction. Following the literature [21, 39, 92, 113], the mesh is organized in three regions (see
Figure 6.2): a boundary layer rigid motion region, a deforming region and a non-deforming
region. The first is defined close to the rigid body profile so that all the mesh nodes identically
move through a rigid translation. The mesh in the deforming region is modified by the body
motion at each time step while the non-deforming zone is fixed.

Before discussing the results, we conclude with a remark on the relation between the model
considered to obtain the analytical result in the first part of the chapter (all sections before
Section 6.7) and the model adopted for the computational analyses.

Remark 6.7.1. The numerical model differs from the analytical one presented in Section 6.1
in two aspects. Specifically, in the numerical model the obstacle is subjected to a linear elastic
force while, in the analytical one, f(h) satisfies conditions (6.2.1). The introduction of the
restoring force f(h) satisfying (6.2.1) in problem (2.0.7) comes from the necessity to avoid
collisions, by which one is able to prove Theorems 6.4.1, 6.2.7 and Theorem 6.6.6. A posteriori,
we observed that, in the numerical framework, collisions are prevented by the computational
setting itself and thus, it makes sense to substitute f(h) with its first order approximation f(h) ∼
−kh, where k > 0. The second difference with respect to problem (2.0.7) lies in the fact
that a viscous damping force is also driving the motion of the obstacle; this only contributes
increasing to the dissipative character of the system, and thus increasing the stable character
of the simulations, while not influencing any of the proofs of the theoretical results. All the
analytical results presented in Section the first part of the chapter still hold for the numerical
problem.
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6.8 Numerical results and discussion

In this section, the numerical results are presented, giving a general discussion and an explicit
characterization of the global attractor associated with the fluid-structure interaction system.

As for the static simulation, a qualitative description of the flow topology varying Re is de-
picted in Figures 6.5, 6.6 and 6.7. The instantaneous flow fields and streamlines all correspond
to the non-dimensional time t∗ = t∗regime + 500, where t∗regime has been identified through the
time history of the aerodynamic coefficients. For Re = 30, the streamlines are characterized
by an upstream-downstream symmetry. In particular, it is possible to observe the presence of
two symmetrical eddies in a closed re-circulation zone in the wake of the obstacle and, thus, the
flow can be considered steady.

A different regime is observed atRe ≈ 1.3×104, see Figures 6.5 and 6.7. The flow becomes
unsteady and time-periodic, and we can observe the appearance of the Von Kármán wake, typ-
ically characterizing the vortex shedding phenomenon. From a mathematical point of view,
this implies the occurrence of a so-called Hopf unsteady bifurcation, see [59] for a rigorous
description of the phenomenon. The same regime is observed also for Re = 105, 106, 107, see
Figure 6.6 and 6.7. In all cases, the vortexes shed from the obstacle with a specific frequency.
This phenomenon can be also interpreted in the light of Figure 6.3. Specifically, at sufficiently
high Re, the Strouhal number is non-zero, suggesting the presence of time-periodic flow mech-
anisms. The fact that the flow never becomes unstable, even when considering very high Re,
is probably due to the usage of a RANS-based model. Indeed, it is well-known from the state-
of-the-art [39] that RANS approaches, although being computationally convenient, mostly lose
capturing the unstable features of the flow. RANS-based models assume a stationary turbulent
regime, which prevents from sizing highly irregular velocity fluctuations. As a consequence,
although capturing the average changes in topology, we do not observe the generation of a
turbulent wake as observed in [14, 91].

Figure 6.5: Instantaneous flow field at t∗ = tregime + 500 for different Reynolds number (a) Re = 30; (b)
Re ≈ 1.3× 104.
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Figure 6.6: Instantaneous flow field at t∗ = tregime + 500 for different Reynolds number (c) Re = 105; (d)
Re = 106; (e) Re = 107.

Figure 6.7: Instantaneous streamlines obtained with the LIC technique at t∗ = tregime+500 for different Reynolds
number (a) Re = 30; (b) Re ≈ 1.3× 104; (c) Re = 105; (d) Re = 106; (e) Re = 107.

Regarding the dynamic case, as observed in the static simulations, increasing Re the flow
pattern makes a transition from a fully symmetrical and steady configuration to an unsteady
periodical one, where it exhibits a vortex shedding phenomenon. This naturally influences the
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dynamics of the body, leading to vortex-induced vibrations whose one of the most relevant
features is the so-called lock-in effect. Figure 6.8 depicts a time history of the dimensionless
vertical displacement, obtained imposing a maximum inlet velocity equal to 1.15m/s, which
leads to a Re approximately equal to 104. In particular, we observe that the obstacle oscillates
around the equilibrium position heq = 0.

As soon as the vortex shedding frequency becomes equal to the natural frequency of the
structure, a resonance phenomenon occurs and the body may be subjected to large amplitude
oscillations. If fn is the natural frequency of the body, for the 1-DOF system at consideration,
the onset of resonance occurs when

U = USt =
fnδ

St
.

Defining the reduced velocity U∗ = U
fnδ

, the vortex shedding synchronizes with the natural fre-
quency of the structure at U∗ = 1

St
. Subsequently, the motion of the obstacle starts contributing

to the coherence of the flow eddies, capturing the shedding frequency by locking it to the natural
frequency of the structure and spreading the lock-in effect on a range of velocities around USt.

In Figure 6.9(a), it is reported the maximum non-dimensional amplitude of oscillation at
regime as a function of the reduced velocity (heq = 0 is the position of the body given by the
unique stationary solution, see Theorem 6.4.1). Figure 6.9(b) shows the non-dimensional vortex
shedding frequency versus the reduced velocity. Both plots are built considering two regimes
for the Reynolds number Re and increasing the stiffness of the system accordingly. It is pos-
sible to observe the synchronization between the vortex shedding and the natural frequency of
the system for a specific range of reduced velocities around the predicted value U∗ = 1/St,
inducing the body to reach its maximum vibration amplitude. Furthermore, increasing the stiff-
ness of the system, the Scruton number Sc decreases from 256.4 to 7.0 and, as expected, the
maximum non-dimensional amplitude of oscillation increases.
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Figure 6.8: Time history of the structural motion for Re ≈ 104.
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Figure 6.9: Figure (a): non-dimensional amplitudes of oscillation of body versus the reduced velocity U∗. Figure
(b): vortex shedding frequency over the natural frequency of the system as a function of the reduced velocity
U∗.

In the last paragraph of this section, a reinterpretation of the previous results is given in terms
of the main purpose of the chapter, i.e. giving an explicit characterization of the global attractor
associated with the dynamical fluid-structure system. In view of the numerical observations that
we have described, we can identify two (three) different regimes (subregimes) as a function of
λ:

• If λ is sufficiently small, specifically lower than a critical value λ < λc, the attractor
reduces to a one-point set in the phase space, corresponding to the unique symmetrical
stationary solution (us, hs) = (uλ, 0) given by Theorem 6.4.1 and thus, the dimension of
the attractor is 0. The flow topology corresponding to this solution is reported in Figures
6.5(a) and 6.7(a). This is in accordance with the result already proven in Theorem 6.4.1
and thus, λc = λ1.

• As soon as λ > λc, a Hopf bifurcation occurs and, after a short transient motion, the
dynamics of the problem becomes time-periodic. In other words, given y(·) = (u(·), h(·))
the unique solution to (2.0.7), we have that y(·) converges to a non-symmetrical time-
periodic solution φ(·) to problem (2.0.7). The global attractor reduces in this case to the
orbit of φ(·) and therefore, it corresponds to a closed curve. However, we can identify
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two subregimes, λc < λc1 < λ < λc2 and λc < λ < λc1 ∨ λc2 < λ, where the time-
periodic solution to which y(·) converges drastically changes, at least from a quantitative
point of view. Indeed, according to the value of λ, we are inside or outside what we have
previously described as the lock-in range. As shown in Figure 6.9, the structure motion
inside the lock-in range may reach large amplitudes of vibration. As a result, although the
global attractor still corresponds to the orbit of a time-periodic solution, i.e. to a closed
curve, this orbit might deform consistently to the value of λ. The threshold values λc1 and
λc2 can be defined numerically, as it was done in Figure 6.9 for two Re regimes.

In principle, we might expect that the structure of the global attractor further complicates as
λ increases. Specifically, this would correspond to a chaotic structure for the flow, exhibiting
random variations of velocity and pressure in time and space. However, as already mentioned,
due to the numerical methods adopted, we are able to catch only the average stable features of
the flow.
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CHAPTER7
Conclusions and future developments

This work was devoted to the analysis of some fluid-structure interaction problems in channels,
with a double purpose. On the one hand, we gave a mathematical characterization of some
phenomena concerning areodynamics, in particular those arising when the wind interacts with
suspension bridges. On the other hand, our investigation was driven mostly by mathematical
motivations, which lead us to consider some partially unexplored aspects in the analysis of
fluid-structure problems.

We studied the case of a fixed obstacle impinged by a steady Poiseuille flow. Exploiting the
relation induced by symmetry between non-uniqueness of solutions and the lift force, already
invoked in [68] for a two-dimensional problem, we obtained analytically an explicit threshold
on the prescribed inflow predicting the apperance of the lift force on the obstacle, modelling
in this context the deck of a bridge. This required dealing with non-homogeneous boundary
conditions and to construct a suitable solenoidal extension. A future research line concerns
the generalization of this result to different boundary conditions and shapes of the obstacle,
possibly breaking the symmetry of the problem as well as investigating the apperance of other
solicitations, such as the torque. Some preliminary steps in this direction have already been
made in the two-dimensional case in [15].

We imposed a Poiseuille inflow and outflow also in the second problem, aiming to model
the dynamic effect of wind over suspension bridges. In this problem, where the full fluid-
structure interaction takes place, an unsteady flow in an bounded two-dimensional channel hits
a rectangular obstacle that is free to move vertically. We obtained global well-posedness for
this problem, ensuring the absence of collisions thanks to a restoring force. A more involved
version of the same model was obtained including a second-degree of freedom in the motion
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of the obstacle, i.e. rotation, and making the channel unbounded. Since in this case we took
the obstacle to have a smooth boundary, the obtained result of existence up to collision can be
extended by proving no-contact without using any restoring force. This will require extend-
ing the techniques by Hillairet et al. [72, 84] to the case of a rotating non-spherical obstacle.
Furthermore, with the purpose of representing more accurately the atmospheric boundary layer
in which bridges are immersed, different boundary conditions could be imposed to the general
model, such as a Couette flow.

Besides well-posedness, this work treated the long time behaviour of fluid-structure interac-
tion problems. Our main contribution concerns the extension of the notion of global attractor to
problems where the fluid domain depends on time in an unknown fashion. Since we restricted
our analysis to a bounded domain, it would be interesting to investigate if and how this notion
changes when the domain is unbounded. A further understanding of the long-term dynamics of
fluid-structure problems could be given by studying the finite dimensionality of the attractor, as
done for the classical Navier-Stokes system [133].

Using the obtained theoretical results, we also presented numerical simulations of the flow
past a rectangular obstacle. Two different simulation strategies were adopted: the static one
considers the obstacle fixed while the dynamic case allows its vertical translation. In order to
give an explicit qualitative characterization of the global attractor associated with the problem,
different Reynolds number regimes were investigated, detecting significant variations of the
system dynamics. The most natural developments of our numerical work would be to perform
Large Eddies Simulations (LES) of the problem, as well as including the torsional degree of
freedom in the motion of the obstacle. Specifically, LES are computationally very expensive
but they would allow to capture some turbulent features of the flow and, thus, have a more
precise knowledge on the characterization of the structure of the global attractor.
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CHAPTER8

Appendix

With reference to Chapter 3, in the sequel, we report the values of the constants δi’s used in
Proposition 3.3.4. Notice that the domain of integration has been reduced exploiting the fact that
the cut-off function θ(x) in (3.3.7) is equal to 0 in the region I = {(x1, x3) ∈ (−l, l)×(−h, h)}.
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Explicit values of the constants δi’s
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∣∣∣∣2 x23d2 dx3dx1 + ∫ α+l

l

∫ h

0

∣∣∣∣∂θ(x1,x3)∂x1

∣∣∣∣2 x23d2 dx3dx1 =
2d3(8d2 − 21dh+ 14h2)

175(d− h)4α

δ16 =

∫ α+l

l

∫ d

h

1
9

∣∣∣∣∂θ(x1,x3)∂x1

∣∣∣∣2(2+ 42
π3 ζ(3)+

3x3
d
+

3x23
d2

)2

dx3dx1

+

∫ α+l

l

∫ h

0

1
9

∣∣∣∣∂θ(x1,x3)∂x1

∣∣∣∣2(2+ 42
π3 ζ(3)+

3x3
d
+

3x23
d2

)2

dx3dx1 =

d3

3150π6α(d−h)4 (d
2(63336π3ζ(3)+395136ζ(3)2+2819π6)

−2dh(94080π3ζ(3)+617400ζ(3)2+3971π6)+16h2(8967π3ζ(3)+61740ζ(3)2+359π6))

δ17 =

∫ α+l

l

∫ d

h

1
9

∣∣∣∣∂2θ(x1,x3)∂x1x3

∣∣∣∣2(2x3 + x3
42
π3 ζ(3)− x23

d2

)2

dx3dx1 =

2
4725π6αd4(d−h)

[
74088d4ζ(3)2[6d2+3dh+h2)+1008π3d2ζ(3)(27d4

+11d3h+d2h2−3dh3−h4)+π6(428d6+129d5h−45d4h2−94d3h3−18d2h4+15dh5+5h6)

]

δ18 =

∫ α+l

l

∫ d

h

∣∣∣∣∂θ(x1,x3)∂x1

∣∣∣∣2(1−x23
d2
+ 7
π3 ζ(3)

)2

dx3dx1

+

∫ α+l

l

∫ h

0

∣∣∣∣∂θ(x1,x3)∂x1

∣∣∣∣2(1−x23
d2
+ 7
π3 ζ(3)

)2

dx3dx1 =

c3

525π6α(d−h)4 (16d
2(252π3ζ(3)+1029ζ(3)2+16π6)−3dh(4312π3ζ(3)

+17150ζ(3)2+279π6)+24h2(441π3ζ(3)+1715ζ(3)2+29π6))

δ19 =(l + α)

∫ d

h

1
d2
4 dx3 + α

∫ h

0

1
d2
4 =

4(l + α)
d− h

d2
+ 4α

h

d2
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δ20 =

∫ α+l

l

∫ d

h

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2 x23d2 dx3dx1 + ∫ l

0

∫ d

h

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2 x23d2 dx3dx1 =
26α (6d2 + 3dh+ h2)

525d2(d− h)

δ21 =(l + α)

∫ d

h

1

d2

(
2
x3
d2

+2

)2

dx3 + α

∫ h

0

1

d2

(
2
x3
d2

+2

)2

dx3 =

4

3c6
(−3c2h2l − h3l + c3(l + α) + 3c5(l + α) + 3c4(l − hl + α))

δ22 =

∫ α+l

l

∫ d

h

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2(1− x23
d2

+ 7
π3 ζ(3)

)2

dx3dx1

+

∫ l

0

∫ d

h

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2(1− x23
d2

+ 7
π3 ζ(3)

)2

dx3dx1 =

4(α+l)5(13α2+20l2−30αl)
3675π6α6d4(d−h) (−π3d2h2(49ζ(3)+π3)

−π3d3h(147ζ(3)+11π3)+d4(196π3ζ(3)+1715ζ(3)2+8π6)+3π6dh3+π6h4)

δ23 =

∫ α+l

l

∫ d

h

1
9

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2(2 + 42
π3 ζ(3) +

3x3
d

+
3x23
d2

)2

dx3dx1

+

∫ l

0

∫ d

h

1
9

∣∣∣∣∂θ(x1,x3)∂x3

∣∣∣∣2(2 + 42
π3 ζ(3) +

3x3
d

+
3x23
d2

)2

dx3dx1 =

2(α+l)5

33075π6α6c4(c−h) (13α
2+20l2−30αl)(12π3c2h2(147ζ(3)

+37π3)+3π3c3h(3234ζ(3)+403π3)+2c4(17787π3ζ(3)+61740ζ(3)2+1346π6)

+117π6ch3+18π6h4)

δ24 =

∫ α+l

l

∫ d

h

1
9

∣∣∣∣∂2θ(x1,x3)∂x23

∣∣∣∣2(2x3 + x3
42
π3 ζ(3)− x23
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)2

dx3dx1

+

∫ l

0

∫ d

h

1
9

∣∣∣∣∂2θ(x1,x3)∂x23

∣∣∣∣2(2x3 + x3
42
π3 ζ(3)− x23

d2

)2

dx3dx1 =

4(α+l)5

33075π6α6d4(d−h)3 (13α
2+20l2−30αl)(d4h2(4116π3ζ(3)

+61740ζ(3)2+71π6)−3π3d3h3(588ζ(3)+23π3)−3π3d2h4(588ζ(3)+23π3)
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