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Abstract

Nowadays, thanks to web platforms, a great amount of new songs are released every day.
Hit Song Prediction (HSP) is a field of Music Information Retrieval that aims to investi-
gate whether a song has the potential to become popular or not, in order to help talent
scouts, labels and producers to make a preliminary automatic selection of songs that can
be appealing in an artistic or in a market perspective.
After examining the current models and techniques employed in HSP, we explore the areas
where there is room for improvement. Based on these insights, we outline the decisions
that guided the development of our model. The system proposed has the novelty of em-
ploying, for the first time in this field, a multi-modal approach based on audio and lyrics
embeddings. In detail, when provided with audio, lyrics, and the song’s release year, our
model generates a popularity score or classifies the song accordingly. In order to do this
it involves a Multi-Layer Perceptron that takes as input features the concatenation of
three data: audio embedding extracted from the audio melspectrogram using a ResNet-
50, lyrics embedding computed by a Sentence-BERT transformer and release year.
In order to evaluate the effective applicability of our method we test it in three tasks.
Before doing this, we create two new version of the SpotGenTrack Popularity dataset,
after having performed some cleaning operations: an English and a multi-lingual dataset.
The first test conducted investigates the impact of using also text embeddings instead
of using only audio embeddings for a classification problem. The other tests conducted
aim to compare the performance of our solution with the state-of-the-art systems. Re-
sults evidence how the lyrics contribution has a key-role in HSP. Moreover, the overall
results obtained are comparable with the ones achieved by the reference papers. This
demonstrates that our proposed system is a valid solution for tackling HSP. In particular
multi-lingual setup outperforms the English-only experiments, underlying the importance
of having a significant amount of songs at disposal to model the complexity of HSP prob-
lem.

Keywords: Hit Song Prediction, Deep Learning, Audio Embedding, Lyrics, Multilin-
gual Embedding, Sentence-BERT





Abstract in lingua italiana

Grazie alle piattaforme web una grande quantità di nuove canzoni vengono rilasciate ogni
giorno. Hit Song Prediction (HSP) è un campo di Music Information Retrieval che ha lo
scopo di indagare se una canzone ha il potenziale per diventare popolare o meno, al fine
di aiutare talent scout e produttori a fare una prima selezione automatica di canzoni che
possono risultare accattivanti, in una prospettiva artistica o di mercato.
Dopo aver studiato modelli e tecniche attualmente utilizzati in HSP, partendo dagli as-
petti su cui esiste un margine di miglioramento, si descrivono le scelte che ci hanno portato
a progettare il nostro modello. Con l’architettura proposta vogliamo impiegare, per la
prima volta in HSP, un approccio multi-modale basato su embeddings audio e di testo.
Il sistema proposto prende in input audio, testo e anno di uscita di una canzone per
produrre come risultato il punteggio o la classe di popolarità a cui la canzone appartiene.
Per fare questo, si utilizza un Multi-Layer Perceptron che riceve come feature di ingresso
la concatenazione di tre dati: l’audio embedding estratto dal melspectrogram utilizzando
una rete Resnet-50, l’embedding calcolato da un transformer Sentence-BERT a partire
dai lyrics e l’anno di uscita. Prima di condurre gli esperimenti, due nuove versioni del
dataset SpotGenTrack Popularity sono state create: una inglese e una multilingua.
Per valutare l’effettiva applicabilità del nostro metodo nell’HSP lo sottoponiamo a tre
test. Il primo esamina l’impatto dell’utilizzo degli embeddings testuali confrontandolo
con l’utilizzo di soli embeddings audio, per svolgere un problema di classificazione. Gli
altri invece mirano a confrontare le prestazioni della nostra soluzione con i sistemi dello
stato dell’arte. I risultati ottenuti dimostrano che il contributo del testo ha un ruolo chi-
ave in HSP. Inoltre, le performance complessive del nostro sistema risultano comparabili
con quelle ottenute dai modelli di riferimento, portandoci ad affermare l’effettiva applica-
bilità del metodo proposto. In particolare, il dataset multilingua porta a risultati migliori
rispetto al dataset inglese, sottolineando l’importanza di avere una quantità significativa
di dati per modellare la complessità del problema di HSP.

Parole chiave: Predizione di Canzoni Hit, Deep Learning, Audio Embedding, Testi,
Embedding Multilingua, Sentence-BERT
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1| Introduction

Music industry market is drastically changed with the diffusion of digital audio formats
and the growth of streaming platforms. Technologies used in these last 15 years, to
manage and analyze songs data have evolved. In particular, the development of machine
learning has given rise to a new field: Music Information Retrieval (MIR). MIR is an inter-
disciplinary field that employs computational techniques to retrieve musical information,
analyzing them with the aim of solving tasks like music classification, recommendation,
music source separation, automatic music transcription and many others.
Among all these applications, there is also a field of studies, called Hit Song Science that
aims to investigate whether a song has the potential to become popular or not.
Producing an artist or deciding to invest in marketing campaign for a song requires to
consider several factors to understand the risks and the possible results in terms of pop-
ularity and profits.
Revenues in music industry are mainly obtained from live music and recorded music. Both
of them are influenced by different factors. Especially during the pandemic, because of
the restrictions, many live performances were canceled and live music revenues decreased
drastically while, on the other hand, streaming incomes boosted.
Social Networks and music streaming platforms, for example Spotify and TikTok, have
increased the popularity. They have contributed to music revenues so much that digital
media and music streaming become the majority source of profit for music industry.
In particular, popularity of a song on digital platforms and streaming applications has
become a measure of success and consequently of the incomes a song may generate.
Everyone can understand the genres of songs they appreciate, but it’s not clear precisely
why a certain song is more appealing or popular. Considering this scenario, labels and
producers are looking for ways to answer questions like "Which are the characteristics
of songs that make them popular? Perhaps the lyrics speak to an experience? Perhaps
the energy makes it appealing?". In this scenario technology innovation might play an
important role.
Hit Song Science (HSS) is a term invented by Mike McCready [1], an American en-
trepreneur in the music industry, that became famous for having been the pioneer of the
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topic of hit song prediction using acoustic analysis software to gather and study the un-
derlying patterns in music.
Nowadays, HSS is an hot and active research topic in Music Information Retrieval (MIR).
It’s important to precise that HSS’s main goal is not to substitute talent scouts but, given
the great amount of new songs released every day, thanks to web platforms and streaming
applications, it can be a useful tool to make a preliminary automatic selection of songs
that can be appealing from an artistic or a market perspective.
In this context, machine learning algorithms and deep learning techniques gain a key role
thanks to their capabilities in automatic capturing information from audio signals and
lyrics texts that are fundamental to search and identify underlying patterns in songs.
Researches conducted in these last years propose Hit Song Prediction systems that employ
mainly machine learning methods to address this challenge, only in few cases deep learning
techniques. Even in the case of deep learning approaches, the systems proposed are based
on Multi-Layer Perceptron structures applied on songs metadata and sets of manually
hand-crafted features computed from audio and lyrics. Starting from these observations,
encouraged by the advancements in deep learning technologies able to automatically ex-
tract features from images and texts, in this work we will study the embedding-based
methods applied to Music Information Retrieval. After stating that embeddings lead to
state-of-the-art systems not only in computer vision field, but also in audio-related tasks,
we will conduct an investigation of the applicability of these embedding-based solutions
in the field of Hit Song Prediction.
This thesis aims to introduce a novel approach to address HSP. Going into detail, we
will explore the use of CNN-based methods to automatically extract features from raw
audio files and the usage of transformer-based systems to extract text embeddings from
lyrics. According to this, we will not take advantage of other information, such as the
artist’s popularity, the markets in which the songs are available that can bias the resulting
popularity predicted.
We will develop a neural network architecture that takes as input for each song the
relative audio, lyrics and release year to temporally contextualize songs. Starting from
these three rough data, the system architecture involves three main processing parts to
achieve the final prediction result. An audio processing chain, built with a ResNet-50 [2]
model, produces the audio embeddings taking advantage of its convolutional layers ap-
plied to the audio mel-spectrogram. A text processing chain, based on a Sentence-BERT
[3] transformer-model, produces the lyrics embeddings. These two contributions, together
with the song release year, are then processed as feature input vector by a Multi-Layer
Perceptron that produces the popularity prediction.
The popularity value used as target by this model is the popularity score assigned by
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Spotify. This score is available through the Spotify API and it is a parameter computed
considering the number of plays a track has on Spotify and how recent those plays are.
In order to evaluate the model performance, under a classification perspective, we define
four classes matching four Spotify popularity ranges.
The model proposed is then tested comparing performances when using only audio em-
beddings and considering both audio and text embeddings, to investigate the impact of
text in HSP. Moreover, other tests are conducted to analyze how the system performance
changes, both in classification and regression tasks, with two kinds of datasets: English-
only and multi-lingual.
The thesis is organized as follows. In Chapter 2, theoretical concepts necessary to the
understanding of the thesis. In Chapter 3, the state-of-the-art in Hit Song Science, and
in particular in music popularity prediction, is presented, we will give an overview of the
main techniques used in the literature leading the state-of-the-art at the actual point.
Moreover an overview of audio and text embedding networks is provided with the aim of
investigating cases of applicability in the MIR field.
Chapter 4 introduces the method we design to address the problem of Music Popularity
Prediction.
Chapter 5 illustrates the experimental setup used to evaluate the performance of the so-
lution proposed. First of all the process of training setup is explained, with particular
attention to the dataset building phase. Successively an introduction of the evaluation
strategies used is presented and finally the results obtained, with the relative discussion,
are reported. Lastly in Chapter 6 conclusions, possible improvements and future works
are summarized.
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2| Theoretical Background

In this chapter, we will introduce theoretical concepts related to the thesis work developed.
All the concepts explained here are the bricks for Hit Song Prediction applications, the
design of the solution proposed, and its implementation.
The chapter is organized in two subsections with the aim of dividing the topics in two
main fields: audio features extraction and deep learning methods.

2.1. Sound Representation

Audio music signals have to be pre-processed to extract meaningful descriptors to be fed
into Machine Learning or Deep Learning models. Features are fundamental to represent
music signals so that machines can interpret them.
Generally, music audio signals can be represented in two domains: time and frequency.
Consequently, also features can be computed in these two domains depending on if they
are calculated starting from the sound wave or from the audio signal spectrogram. Both
of these type of features have to be considered because of their contribute in identifying
different relevant aspects of the signal.
In order to compute features in the frequency domain, the frequency signal content has to
be computed through the application of the Fourier Transform (FT) [4]. Fourier Trans-
form is a mathematical function that converts a signal from the time domain into a form
that describes the frequencies that compose it. A variation on FT in the discrete domain
consists in the Discrete Fourier Transform (DFT) [4]. The DFT operation is similar to
Fourier Transform but it takes as input a sampled signal, instead of a continuous signal.
It produces, as output, a collection of coefficients of a complex sinusoidal linear combina-
tion, ordered by frequency.
The fact of having as input a discrete signal makes DFT optimal for processing digital
audio signals, that consist in a sequence of quantized samples obtained from sampling an
analogue audio signal.
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2.1.1. Short Time Fourier Transform

In music frequency content changes over time, therefore signals have to be considered
simultaneously in frequency and time domain, to be analyzed in a more complete way.
This is possible through the use of Short-Time Fourier Transform (STFT) [5].
The Short-Time Fourier Transform representation of a signal is obtained by dividing it
into shorter overlapping segments, of equal length, multiplying them by a sliding window
and then stacking the Discrete Fourier Transform (DFT) computed on each of them.
In this way, applying the Discrete Fourier Transform on consecutive windows of the signal,
it’s possible to observe how the frequency components evolve over time providing insights
into the dynamics of the signal. An example of the procedure to compute Short Time
Fourier Transform can be seen in Figure 2.1.

Figure 2.1: Illustration of Short Time Fourier Transform computation

Going into details, multiplying a chunk of the original signal by a bell-shaped window
w[n], with a certain hop-size H between windows, the windowed frame xw[n,m] obtained
can be described by the equation:

xw[m] =
N−1∑
n=0

w[n] · w[n+mH] (2.1)

with N the size of the frame and m the number of frame. DFT of each signal frame can
be obtained as:

X[m, k] =
N−1∑
n=0

xw[m] · e−j2πnk/N , (2.2)



2| Theoretical Background 7

in which N is the size of the frame. The variable m denotes the number of the frame
considered along the time axis, while k is the frequency index, and is sometimes referred
to as a frequency bin.
Finally, by stacking the DFTs corresponding to each frame in the temporal dimension,
a 2D representation is obtained. Usually, the spectrogram is returned by the modulus
(magnitude spectrogram) or squared magnitude (power spectrogram) of the STFT. The
size of window and hop influences the spectral and temporal resolution of the STFT, as
shown in Figure 2.2.

Figure 2.2: Impact of window duration on the STFT. A spectrogram is shown, using
Hamming windows of duration 10 ms (upper figure) and 50 ms (lower figure).

2.1.2. Mel Spectrogram

Short-Time Fourier Transform works over a linear-frequency scale, but human perception
of sounds shows a logarithmic behavior. Moreover it doesn’t take into consideration pitch
sensitivity and varying frequency resolution, making it less suited to represent how we
perceive sound.
In fact, frequency resolution of the human ear varies along the frequency axis. In audi-
ology and psycho-acoustics [6], the concept of critical bands was introduced by Harvey
Fletcher in 1933 and refined in 1940. Critical bands are designed to approximate the
bandwidth of auditory filters in the cochlea. Two tones within the same band will inter-
fere with each other leading to the masking phenomenon.
Following this assumptions, other representations of the frequency content of signals have
been considered, paying attention to the perceptual descriptor. In this way, more high-
level information about the signal analyzed could be obtained.
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Mel scale is a perceptual scale of frequencies that approximate how human perceive
sounds. There exist several analytical expressions, but a common relation between the
mel scale mel(f) and the Hertz scale f was given by Fant in 1968 [7]:

mel(f) =
1000

log 2
· log(1 + f

1000
). (2.3)

Mel scale represents the fact that ears perceive in a more sensitive way changes lower
frequencies while they are less sensitive to small changes at higher frequencies.
The mel-spectrogram is a representation of the STFT where frequencies scale changes,
according to the mel-scale, to better align with human perception of sound.
The mel-spectrogram is obtained by computing the STFT and then applying the mel-
filterbank. Mel-filterbank is a set of triangular filters spaced evenly on the mel scale so
that each filter covers a certain frequency range.
After multiplying the mel-filterbank to the STFT, the logarithm is applied to obtain a
more perceptually relevant representation. An example of mel-spectrogram obtained from
the spectrogram of a given waveform is depicted in Figure 2.3.

Figure 2.3: Example of waveform and relative spectrogram and mel-spectrogram

The resulting mel-spectrogram is a 2D representation where the x-axis represents time,
the y-axis represents mel-frequency, and the intensity at each point represents the mag-
nitude or energy of the corresponding frequency component at that time.
The mel-spectrogram has been widely used and found to be effective in various audio pro-
cessing tasks, such as speech recognition, music classification, and sound event detection.
By focusing on perceptually relevant frequency information, the mel-spectrogram helps
to capture the characteristics that are important for these tasks and can lead to better
performance than using a spectrogram obtained using the STFT.

2.2. Deep Learning

Deep learning focuses on algorithms that take inspiration from human brain and that are
structured according with its functioning. Deep learning algorithms are known as Artificial
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Neural Networks (ANN) and consist of a collection of interconnected basic units, called
neurons, that can "fire" based on the inputs received, from previous neurons, and can send
output signals to subsequent neurons. Each neuron can be connected with one or more
other neurons and each connection has a different importance defined by a weight. These
connections are organized in layers and they allow the algorithm to exchange information
with the purpose of classifying information, clustering data or predicting outcomes.
During the years, neural networks have become an evolution of machine learning algo-
rithms due to their ability to learn the mapping between an input and a desired output
by capturing a-priori unknown information hidden in the data.
In fact, Deep Learning models can recognize complex patterns in raw input such as im-
ages, texts, sounds and other data to produce accurate information and predictions.
This knowledge is acquired trough a training step. The training process consists of finding
the combination of weights of each connection in order to achieve the desired result of
having as output the right prediction.
There are two kinds of methods for learning techniques: supervised and unsupervised
learning. The latter technique is characterized by the unavailability of the target desired
in output, given a certain input sample. In this case, the training process of the model
consists of taking some inputs and trying to reach a stability, building clusters between
similar data.
In supervised learning instead, every sample is provided with a label that identifies the
expected output or target. The training process of the model in this case consists of tun-
ing the weights of the connections between neurons in a proper way to estimate correctly
the well-known target, given a certain data in input.

2.2.1. Multi-Layer Perceptron

The basic organization structure of an ANN is called perceptron and it consists of a
single layer neural network composed by a single neuron, as it is shown in Figure 2.4. In
fact, it is a simplified model of a neuron that takes in input a signal X = x1, x2, . . . , xn

with its assigned weight W = w1, w2, . . . , wn, with n ∈ N corresponding to the dimension
of the input. The perceptron calculates the weighted sum of the inputs, adds a bias
scalar value b, and applies an activation function ϕ to obtain the output y. The complete
equation is

y = ϕ(
n∑

j=1

xjwj + bj). (2.4)

In general, the activation function is a mathematical function applied to the output of a
neuron or a layer of neurons. In particular, the perceptron algorithm, introduced by Frank
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Rosenblatt in the late 1950s [8], is specifically designed for binary classification tasks. For
this reason, it uses a linear activation function, such as the sign function, which allows
the perceptron to make binary decisions based on whether the weighted sum of inputs
exceeds a certain threshold.

Figure 2.4: Structure of a Perceptron

The goal of a perceptron is to learn automatically weights and bias parameters during the
training process, to achieve the desired values and the correct output. Going into details,
the training process consists in a first forward pass step, in which labelled training data
are pass through the perceptron and a prediction is obtained according to the Equation
2.4. Successively, after having compared prediction and target label, a phase of weights
updating is required, following this criteria:

• Increase the weights if the predicted output is too low for a positive instance

• Decrease the weights if the predicted output is too high for a negative instance

This process will be repeated in an iterative way until a convergence criteria is met, such
as reaching a maximum number of iterations or when the perceptron achieves satisfactory
accuracy in prediction.
Multiple perceptrons can be interconnected in a structured network, according to a topol-
ogy, creating a Neural Network, also called Multi-Layer Perceptron (MLP), that over-
comes the limitations of perceptron in handling non-linear data. The structure of MLP
is illustrated in Figure 2.5. It consists in layers - set of neurons equally distant from the
input neuron - of three main types: input, hidden and output layers.
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Figure 2.5: Structure of a Multi-Layer Perceptron

Each neuron, belonging to each layer in an MLP, applies an activation function to the
weighted sum of its inputs. Activation function introduces non-linearity to the network,
allowing it to learn complex patterns and make more sophisticated predictions. There
are several activation functions commonly used in neural networks, here some commonly
used ones:

• Linear
f(x) = x (2.5)

• Sigmoid Function

f(x) =
1

1 + e−x
(2.6)

• Rectified Linear Unit (ReLU)

f(x) = max(0, x) (2.7)

• Hyperbolic Tangent (Tanh)

f(x) =
ex − e−x

ex + e−x
(2.8)

Also in MLP the training process can be divided in two main steps: forward and backward-
propagation. The first one consists in taking labelled-training data, making them prop-
agate across the neural network until the last layer in which the final prediction is com-
puted. Once the prediction is obtained, for each data given as input, the error committed
is calculated using a loss function that measures the discrepancy of the prediction result
in relation to the correct label. This loss value is then backward propagated, computing
gradient of the loss function with respect to the network’s parameters (weights and bi-
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ases), enabling iterative updates that progressively improve the model’s performance.
This is typically done using an optimization algorithm like stochastic gradient descent
(SGD) or one of its variants, such as Adam, according to a certain learning rate, which
determines the step size of the updates. The goal of the training process is to minimize
as much as possible the loss function, so that the prediction produced is as much precise
as possible. For this reason, the training process terminates when a convergence criteria
or a certain accuracy level is reached.
During the training process, it can happen that the neural network suffers of overfitting,
this means that the model starts to perform too well on the training data learning also
noise, but fails to generalize to new unseen data. To avoid overfitting there are several
techniques:

• Increase training data: collecting more training data can help the model learn a
better representation of the underlying patterns in the data. Exposing the model
to a wider range of examples makes it less weak on noise or outliers.

• Regularization: technique that add a penalty term to the loss function, discourag-
ing the model from assigning excessive importance to individual features or making
overly complex decisions.

• Dropout: a regularization technique that consists in dropping out and ignoring
a group of nodes of the neural network chosen randomly with a certain probabil-
ity. The set of ignored neurons changes at each forward-backward interaction and
doing so the main advantage is that the network becomes more robust avoiding
co-adaptation between neurons that will lead to generalization of the unseen data.

• Data Augmentation: is a method to increase training data from the ones already
had. It consists of generating additional training data by applying transformations,
distortions, or perturbations to the existing data. An example applied to audio
spectrograms can be seen in Figure 2.6.

• Simplify the model: to decrease the complexity of a model and consequently
improve its capacity of generalizing on unseen data, one of the simplest solution
is decrease its own complexity removing layers or simply reducing the number of
neurons.

• Early stopping: a technique that keeps track of the validation loss and if it observes
a stop in the loss decreasing for several epochs in a row it forces the training stopping.
The number of how many epochs we want to wait after the last time the validation
loss improved before breaking the training loop is set according to the patience
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parameter.

Figure 2.6: Example of data augmentation performed on an audio spectrogram following
the SpecAugment[9] technique

2.2.2. Convolutional Neural Network

By utilizing deep architectures, researchers have achieved remarkable success and state-of-
the-art performances in many applications in domains like computer vision, natural lan-
guage processing and speech recognition. In particular, these results have been achieved
taking advantage of some categories of neural networks such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs).
A Convolutional Neural Network (CNN) is a type of sparse connected neural network
widely used for various computer vision tasks, such as image classification and object
detection, due to its capability of capturing local features and patterns in an image.
In particular, CNNs are able to learn features hierarchically, starting with low-level fea-
tures (e.g. edges) in early layers, going on to more complex and abstract features in deeper
layers, until the last layers in which classification is performed. Moreover, CNNs are also
robust to small spatial translations, rotations and distortions. For this reason, this kind
of Neural Network is well-suited for tasks where the position of objects or features may
vary.



14 2| Theoretical Background

Figure 2.7: Example of CNN

As can be seen in Figure 2.7, the set of layers that constitute the structure of a CNN is
the following:

• Input layer: the first processing unit that receives the input data. Its dimensions
correspond to the dimensions of the input, hence height, width and the number of
channels.

• Convolutional layers: a set of several layers that are designed to capture and
process data efficiently, like human visual cortex cells that are sensitive to small
receptive field. They apply a set of filters, also known as kernels, to the input
data. These filters slide across the input data using a specified stride value and they
perform the convolution operation at each location.
The convolution is computed following this formula:

y(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m)(j − n) (2.9)

where y(i, j) is the feature map, I and K are respectively the input and the filter
matrices. As the filter slides across the input, it generates a matrix known as
feature map. Each element in the feature map represents the activation value
of the filter at a specific spatial location of the input. The number of filters used
in a convolutional layer determines the number of feature maps produced. Each
filter focuses on capturing different patterns or features, such as edges, corners or
textures.
Performing a convolution, the main parameters that have to be set are the filter size,
the depth, that indicates the number of filters used in the layer, and the horizontal
and vertical stride, that represent how far the filter moves from one position to the
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following one. Lastly, after each convolution layer, an activation function is applied.

• Pooling layer: it is a layer used to downsample feature maps, reducing their
dimensions while keeping the most important information. The most common pool-
ing operations are max pooling, in which the maximum value is retained inside each
sliding window, and average pooling that takes the average value inside a sliding
window. Pooling helps the model to be more efficient, also reducing overfitting.

• Fully Connected Layers: they are typically placed at the end of the CNN archi-
tecture to extract the output. These layers connect every neuron from the previous
layer to the ones in the subsequent layer. By doing this, they capture global pat-
terns and relationships among the learned features allowing the network to make
predictions. The number of neurons in the last fully connected layer corresponds to
the number of classes in a classification task or the number of regression outputs in
a regression task.

CNNs are particularly suitable for transfer learning. Pre-trained CNN models, trained
on large-scale datasets, like ImageNet [10], have learned general features that can be
transferred to new, smaller datasets or related tasks. By leveraging pre-trained models as
a starting point, CNNs can accelerate training and achieve good performance even with
limited training data.
In conclusion, CNNs have become widely used due to their ability to extract high-level
information from images, in order to acquire the ability to both classify and generate
them. The CNNs application in the audio domain arises from the intuition to apply them
to 2D representation of sounds in time-frequency domains, such as spectrograms.

2.2.3. Transformers

Transformers are a type of neural network architecture developed to solve the problem of
sequence-to-sequence modelling, that finds a lot of applications such as speech recognition,
chat bots, language translation, text summarization, music generation, image captioning
and many others. All these problems have in common the need of some sort of memory.
For example, if we consider translating sentences, a neural network model needs to figure
out connections between words, hence it must remember them.
Sequence-to-sequence modelling in general is composed of two steps: encoding and de-
coding processes. The encoder builds a representation of the source and gives it to the
decoder. The decoder takes the source representation to create the target sequence. Dif-
ferent neural network configurations have been used to implement Sequence-to-Sequence
models.
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Figure 2.8: Sequence to sequence model functioning - RNN

Initially, Recurrent Neural Networks (RNNs) have been used to deal with the memory
problem, because of their naturally constitution by loops, that allow information to per-
sist. However, the problem with RNNs is that information is passed at each step and
the longer the chain becomes, the more probable the information gets lost. As can be
seen in Figure 2.8, with RNN only one hidden state is passed to the decoder, while the
single words hidden states are propagated only inside the following hidden states. For
this reason, RNNs have become very ineffective when the gap becomes very large between
the more relevant information and the point where this information is needed to give a
global sense to the context.
Long Short-Term Memory (LSTM), a special type of RNN, has been introduced to solve
this kind of problem, but even with this innovation the probability of extract context,
given by a word that is far away from the current word being processed, decreases expo-
nentially with the distance.
Finally, to solve this issue, researchers have created a technique for paying attention to
each specific word, driven by the idea that there might be relevant information in every
word in a sentence. For this reason, in order for the decoding to be precise, it needs to
take into account every word of the input, using a technique called Attention.
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Figure 2.9: Sequence to sequence model functioning with Attention

As reported in Figure 2.9, in sequence-to-sequence modelling with Attention mechanism,
instead of passing only one hidden state to the decoder as done previously, all the hidden
states generated by every word of the sentence are passed to the decoding stage. In this
way, each hidden state is used to figure out where the network should pay attention to
during the decoding phase.

2.3. Natural Language Processing

Natural Language Processing (NLP) [11, 12] is a branch of AI that allows computers to
read, generate, understand and derive meaning from human language.
NLP combines linguistics and grammar-based rules with computer science, in particular
machine learning and deep learning models, to comprehend, break down and separate
significant details from text and speech, even in real time. In fact, some NLP applica-
tions are speech recognition, word sense disambiguation, sentiment analysis and natural
language generation. Several studies [13, 14] in computer vision field have demonstrated
the utility of jointly considering media content with natural language captions and this
is valid for music and lyrics as well. In fact, lyrics have been shown to be effective in
predicting emotions and they can be used to perform genre and mood classification of
songs [15–19].
Going into details, to reach this goal, NLP has to understand the sintax and, above all, the
semantic of a text to overcome the ambiguity of the human natural language. Regarding
sintax, NLP follows a series of passages to analyze texts:

• Segmentation : operation that breaks down documents into sentences.
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• Tokenization : operation that breaks down sentences into tokens, each one corre-
sponding to words or even characters and punctuation, depending on the level of
granularity required for the task at hand.

• Identification of stop words: step that identifies and eventually removes stop
words such as articles, to reduce noise in the data because these words do not carry
much meaning.

• Speech tagging : operation that assigns grammatical label (noun, verb, adjective,
etc.) to each word in a sentence.

• Name entity recognition : step that identifies and classifies named entities (peo-
ple, organizations, locations, dates etc).

• Stemming : operation that reduces words to their base root form by removing
prefixes and suffixes, often leading to incorrect meanings and spelling.

• Lemmatization : reduces words to their meaningful base or root form (lemmas),
considering the context and part of speech.

Regarding the semantic of a text, it can be learned by NLP applying algorithms to
understand the meaning and structure of sentences, for example with Word Sense Dis-
ambiguation technique that derives the meaning of a word based on context.
The most fundamental step for Natural Language Processing tasks is to convert words in
a way that machines can understand them and also decode patterns within a language.
This step of converting words in numbers or vectors of numbers, so that a computer can
handle them, is called text representation and can be performed in two ways: in a discrete
or in a distributed way.
For what concern the discrete text representation, two traditional way for representing
texts are one-hot encoding and Bag-of-Words techniques. They consist in creating a dic-
tionary of words from the ones used inside a text and counting the instances of each word,
discarding any information about the order of words in the document. This approach is
then used considering each word count as a feature and concluding that documents are
similar if they contain similar content.
These methods suffer from many problems: size of vocabulary, sparsity with all its con-
sequences of expensive computation and, above all, the assumption that each word is
unique and independent of each others, neglecting context and meaning. Doing this, it’s
not possible to understand which words are similar, because all vectors are orthogonal to
each other: the inner product of any pair of vectors is zero and their similarities cannot
be measure by distance nor cosine-similarity.
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Figure 2.10: Embedding space of Word2Vec

Distributed ways to perform text representation allow the representation of each word as
a vector, while capturing its semantic and syntactic relation with other words. This way
of representing words as vectors, taking advantage of their position to understand their
meaning, is one of the key turning points for the recent great performance improvement
of deep learning methods in NLP problems. The main concept introduced with this
knowledge is word embedding: a learned representation of text according to which
words that have the same meaning have a similar and closer representation. In fact,
the Figure 2.10 shows how words with a similar meaning are closer than others and also
how the distance between words is proportional to their semantic. For example, "Queen"
and "King" shares the same distance of "Woman" and "Man" expressing the meaning of
genre.
Word2Vec [20] is one of the most used ways to train embeddings, a two-layer neural
network that is trained to reconstruct linguistic contexts of words. Word2Vec models
generate embeddings that are context-independent: there is just one vector representation
for each word, meaning that, if there are multiple instances and senses of the same word,
they are combined into one single vector. However, new deep learning models, based
on transformers and encoders, have introduced a new revolution. The new embeddings
generation process allows to have multiple vector representations for the same word, based
on the context in which the word is used. These models can produce embeddings that
are context-dependent, ensuring that not only single words, but also sentences or entire
documents could be embedded.

2.4. Conclusive Remarks

In this chapter, we have explained the main theoretical knowledge used in this thesis.
Particular attention has been payed to some well-known techniques used to represent
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sounds in frequency domain and also main deep learning strategies that will be used in
the proposed method to predict song popularity. Lastly, we have also considered concepts,
methods and strategies related to NLP, from which this work will take advantage.
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3| State of the Art

In this chapter, we will report an overview of the state-of-the-art in music popularity
prediction and related topics. First of all, we have studied the most relevant approaches
in the field, developed and investigated in the last past years. These works can be divided
in machine learning and deep learning-based approaches.
The analysis of state-of-the-art in Hit Song Prediction evidences how almost every method,
used nowadays in the field, is strictly related to the use of metadata or features manually
extracted from music audio and lyrics texts. By the way, the tendency of considering em-
bedding and features automatically extracted from neural networks emerges investigating
other fields in Music Information Retrieval, such as music recommendation systems, music
genre and mood classification, music generation and many others.
After taking awareness of this, our research has been moved towards state-of-the-art
methods to extract meaningful compact representations of texts and spectrograms. The
purpose of this choice is obtaining a more powerful way of representing music audio and
lyrics. For this reason, we will report the state-of-the-art models to extract audio and
text embeddings applied in Music Information Retrieval tasks.

3.1. Music Popularity Prediction Overview

Music Popularity Prediction is the field of studies that aims to investigate how much
a song has the potential of becoming popular, after having analyzed its characteristics.
This science becomes an interesting field of studies with the growth of the music industry.
Understand if there is some repeated pattern or shared characteristic among all the songs
that have obtained a great success, in terms of popularity, can help music labels and
record companies to produce and focusing only on the most promising songs and artists.
To reach this goal, several analysis are conducted to find out which characteristics are
more relevant and influence the song popularity. Of course, all these studies are more
focused on characteristics that can be quantified, even if the popularity of a song is
conditioned on some psychological and cultural factors that make the popularity not
completely predictable, but we can assume those aspects somehow related to intrinsic
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music qualities.
To extract these aspects and features, a central role is played by the datasets available.
In fact, even if many music datasets are published, over the years there has been a lack of
data and there is still a lack of information to properly compute an accurate estimation
of the impact and the popularity of a song within a platform.

3.1.1. Machine Learning Methods

The very first attempts to predict music popularity are made in 2005 by Dhanaraj and
Logan [21], considering the Hit Song Prediction problem as a classification task and ad-
dressing it with a Support Vector Machine model that discriminates hit from not-hit songs.
The input features used are MFCCs, for what concern the timbral aspect of audio, and
the main topic of lyrics extracted among a list of pre-learnt topics, using a Probabilistic
Latent Semantic Analysis (PLSA) [22].
Interesting aspects emerged from this study are that lyrics play a key role in classifica-
tion, but the authors suggest that different kinds of acoustic features should be considered
and also time-varying classifiers should be studied to improve results. In fact, this first
attempt obtains only a ROC of 0.69 as best result, but the most important aspect to
underline is that they demonstrate, through this research, that this kind of classifier is
better than random, hence they state that Hit Song Science (HSS) is possible.
Despite the results obtained, this statement is far from obvious and easily accepted. In
fact, in 2008, François Pachet and Pierre Roy publish a research [23] in which they show
that the popularity of a song cannot be learnt by using state-of-the-art machine learning
techniques, contradicting the claims of Hit Song Science. By the way, further investiga-
tions [24], lead once again to the affirmation that HSS is possible. Once this becomes a
certainty, several authors focus their researches on mining musical track popularity infor-
mation using ML techniques with the aim of improving the first raw attempts of music
popularity prediction.
In particular, improvements start thanks to the availability of Billboard charts [25] and
the Spotify’s API [26], that finally make gaining data easier. Billboard Hot 100 charts
is a record list, published by Billboard magazine, that measures song popularity based
on radio airplay, audience impressions, digital song sales and streaming activity. Taking
advantage of this, several works [27–31] start from the Billboard Hot 100 charts and then,
for each song represented inside the ranking, they retrieve high level acoustic features
exploiting the Spotify’s API, in particular using the ones related to tracks information.
The last work in terms of time that lead to meaningful results is developed in 2023 [32].
The innovation of this research consists of using a new dataset called “Billboard Hot-100



3| State of the Art 23

Songs 2000-2018 w/Spotify Data+Lyric” [33] that contains features related to songs in
the Billboard Hot 100 weekly charts from 2000 to 2018, in addition to the corresponding
lyrics, for a total of 3581 unique songs. Each song present in the dataset is labelled as
“hit” if it reaches the Top 10 positions in the Billboard Hot 100 list at least once, otherwise
as “not-hit”.
The goal of the model is to classify a song as hit or not based on the features provided
by the dataset and using other features computed starting from the metadata.
In particular, the features used for each song are:

• 12 Spotify audio features, such as energy, liveness, acousticness, danceability, etc.

• Song lyrics topic: feature extracted using bag-of-words representation with Latent
Dirichlet Allocation (LDA) [34].

• Popularity continuity: an engineered feature that assigns a certain amount of points
to each track based on the number of weeks in which it was in chart, i.e. for more
than 50 weeks 3 points, between 20 and 50 weeks in chart 2 points, between 20 and
10 1 point and otherwise 0 points are assigned. The utility of this feature indicates
that the longer a song can maintain a position in the charts, the more likely it is to
become a hit.

• Song title topic: feature extracted using bag-of-words representation with Latent
Dirichlet Allocation (LDA) [34].

• Genre class: data that replaces the existing string variable broad genre with a
numerical value.

In this work, five machine learning approaches are applied and evaluated: K-Nearest
Neighbours, Naïve Bayes, Random Forest, Logistic Regression and also a first simple
version of Multilayer Perceptron. A comparison between their results is performed show-
ing that Random Forest (RF) and Logistic Regression (LR) outperforms other models,
achieving 89.1% and 87.2% accuracy, and 0.91 and 0.93 AUC, respectively, providing a
significant improvement with respect to previous works.
Interesting aspects emerged from this research are that lyrics and title topics once again
play a key role in identifying hit songs. On the other hand, the negative side showed up
is that the dataset is small both in number of songs and in terms of years considered.
Moreover, it takes into account only songs that reach the top 100 position in the Bill-
board list, so considering also tracks outside this chart could be useful to have a better
representation of a real and not biased scenario.
Lastly, a very important point, not already taken into account, is the consideration that
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the characteristics of a hit song may change over time. Certainly, to reach further im-
provements, more complex models have to be employed to include temporal aspects and
model changes in popularity over time.

3.1.2. Deep Learning Methods

Due to the fact that Deep Learning techniques improve the state-of-the-art in audio
and image processing, in addition to many other fields of study, also in the area of Music
Popularity Prediction some research works try to take advantage of this kind of technology.
The works developed in this way are very few but, starting from the ones available, it’s
possible to see how these models outperform, in terms of accuracy, the results obtained
with raw machine learning models.
L.- C. Yang et Al. [35] introduce Convolutional Neural Network approach to improve the
prediction performances. This work has to be considered important because, for the first
time, deep learning is considered a superior approach and HSP a regression problem.
In particular, CNN model takes mel-spectrogram as input and the hit score to be predicted
is computed as a product of play count and number of users (both in logarithmic scale)
who listened to a song. The dataset used is different with respect to all the other works
taken into consideration: in collaboration with KKBOX Inc. [36], they obtain a subset of
songs reproduced by Taiwanese listeners over one year.
Also Zangerle et Al. in 2019 [37] treat Music Popularity Prediction as a regression problem
but they change the type of features used, considering also low-level features. Going into
detail, this work takes the Billboard Hot 100 chart as starting point, but combined it with
Million Song Dataset (MSD) [38]. MSD contains one million songs that are representative
for western commercial music released between 1922 and 2011. Each song in the Billboard
chart is selected from MSD and, for each one, high- and low-level audio features are
computed using the Essentia toolkit [39]. The resulting dataset is published and available
at [40]. Pushed by the short-life nature of trends in music industry, they do an hypothesis
that plays a key role in their work: to allow modeling dynamics more efficiently the
authors embed songs with a temporal context by adding to features the release year.
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Figure 3.1: Wide and Deep network architecture of Zangerle et. Al [37]

Taking three groups of features of different nature (low and high-level features extracted
from audio in addition to the release year), they use a network architecture, shown in
Fig. 3.1 , inspired by the structural concept of the Wide and Deep network architecture
by Cheng et al. [41]. They use this system to perform a regression task for predicting the
peak position a song could reach in the charts.
The relevant aspect is that, even if lyrics are not considered at all, with this work the key
role of the release year emerges to allow the network to temporally contextualize songs,
reflecting musical trends. In fact, the introduction of the year is a novelty and it’s one of
the most important contribution of this research, because they find out that the inclusion
of this feature, contributes to improve the prediction performance in every experiment by
12–13%.

HitMusicNet

Martín-Gutiérrez et Al. in [42] propose a paper that contributes to improve two aspects
in Hit Song Science: they create a new dataset called SpotGenTrack Popularity Dataset
(SPD) [43] and they develop an innovative multimodal end-to-end deep learning archi-
tecture named HitMusicNet for predicting popularity of music tracks.
The dataset is created to overcome the restrictions of the already existing datasets. In
particular, SpotGenTrack Popular Dataset (SPD) unifies musical knowledges in different
fields employing Spotify and Genius API to collect music and lyrics content. SPD starts
collecting music tracks data of the top 50 playlists of 26 countries where Spotify is avail-
able. For each song, SPD computes and stores many low and high-level audio features but
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it provides also the URL’s of audio previews as well as the complete set of lyrics to avoid
limitations in new features extraction. Some text features are included in the dataset as
an initial approach to Natural Language Processing (NLP). In addition, some metadata
such as the number of followers of the artist, the popularity of the artist and the number
of available markets where the song will be or is released are considered.

Figure 3.2: HitMusicNet Model

From the point of view of the deep learning architecture used instead, as it can be seen
in Figure 3.2, the model is divided in two parts: after having computed all the features
and having composed a feature vector, firstly an Autoencoder (AE) is applied to perform
features compression. After this step, a multi-layer perceptron, named as MusicPopNet
and represented in Figure 3.3, receives the compressed representation and, through three
hidden fully connected layers, it predicts the popularity value. Using this architecture,
many experiments from both classification and regression perspectives are conducted, un-
til the best configuration of the two components in order to address the problem is found.
The number of neurons of each layer is based on the input dimension c and three pa-
rameters: α1, α2 and α3. In particular, after performing different experiments the set of
α1, α2, α3 is determined as 1, 1/2, 1/3 respectively. Hence, the dimension of the hidden
layers decreases linearly with respect to the input dimension. Moreover, all the hidden
layers have a Dropout layer to avoid suffering from overfitting. Lastly, the dimension
of the output layer, denoted with γ, is composed by a unique neuron as the problem is
addressed from a regression perspective, with the aim of getting the final prediction in
the range [0; 1].
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Figure 3.3: Fully-connected Neural Network Architecture of MusicPopNet

Taking advantage of this configuration it is demonstrated that the obtained results are
considerably better than in previous studies, conducting to the state of the art in Music
Popularity Prediction using DL techniques. Moreover, this research lead to the creation
of a new dataset rich of information both regarding audio and lyrics.
In conclusion, despite this successful result, some considerations might be done. For
example, automatic extraction of audio features using CNN nor Word Embedding repre-
sentations for lyrics are not considered, as well as the release year of the analyzed tracks,
that might provide temporal contextualization.

3.2. Embeddings

Advancements in deep neural networks lead to learn useful domain-conditioned represen-
tations in audio domain from raw audio input with no human intervention, known as
deep audio embeddings [44]. Furthermore, deep audio embeddings turn out to frequently
outperform hand-crafted feature representations. In fact, pre-trained audio embeddings
also achieve state-of-the-art transfer learning performance on many other MIR fields, such
as cross-modal retrieval, music genre classification and music tagging benchmarks. At the
same way, also for what concern the text representation, deep learning and transformers
methods overcome previously used models, as anticipated in Chapter 2.3. For this reason,
our study moves on these topics to find which are the state-of-the-art methods to obtain
text and audio embeddings.
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3.2.1. Audio Embeddings

In Machine Learning, feature maps for data are firstly created and then a classifier is
applied on them. As explained in [45], Deep Learning algorithms extract high-level, com-
plex abstractions as data representations through a hierarchical learning process. Using
CNN’s ability to exploit spatial or temporal correlation in data, as in [46], features that
are generated automatically by convolutional and pooling layers can be extracted and
then combined with other types of deep neural network to perform classification or re-
gression tasks. Many researches such as [47–51], carried out in the past years, show how
features learned by deep Convolutional Neural Networks (CNNs) are recognized to be
robust and expressive, so much that they are often preferred to handcrafted ones. This
is the reason why features extracted from CNNs have become diffusely used in different
computer vision tasks, such as object detection, image captioning and many others.
Encouraged by the positive results obtained in computer vision field, researchers investi-
gate the possibility of apply CNNs also to audio. In 2014, [52] shows that spectrograms
can be successfully treated as input images in CNN models paving the way toward exploit-
ing the power of this deep networks also for MIR tasks, following a procedure that can be
summarized as in Figure 3.4. For example, as an application of these concepts, [53] uses a
CNN model such a MobileNetV2 to extract features and then applies a KNN (K-Nearest
Neighbours) algorithm to embedding vectors to perform anomalous sound detection in a
self-supervised way.

Figure 3.4: Classification chain example using features extracted from a CNN

A turning point in the usage of CNNs coincides with the introduction of the concept
of transfer learning, pushed by the discovery that using pre-trained weights, instead
of randomly initialized weights, leads to better results. In fact, transfer learning is the
method used to exploit the knowledge of a model, trained in a particular domain with
a large amount of data, to extract useful features for a new task in a related domain,
different from the original one but for which less data are available.
In computer vision domain, this happens using ImageNet pre-trained models for particu-
lar tasks of object detection and image understanding, such as Medical Image Analysis.
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Initially, in audio domain, transfer learning is applied from models exclusively pre-trained
on huge audio datasets. Indeed, the very first examples of audio classification tasks, em-
ploying transfer learning, use CNN models pre-trained on Million Song Dataset [54] or
models like VGG pre-trained on AudioSet [55]. In [47], but in particular Grzywczak D.
and Gwardys G. in [52] for the first time show that transfer learning for audio tasks is
possible, also from models trained on image datasets, such as ImageNet. However, only
[56] understand the potential of this technology using a single model and a single set of in-
put features proving the ability of CNN models to learn boundaries of energy distribution
in mel-spectrograms to classify them.

3.2.2. Text Embeddings

As already mentioned, from the beginning of researches in Hit Song Prediction, many
studies such as [21, 32] point out the key-role of lyrics in predicting the popularity of a
song. In fact, in [57], Singhi and Brown propose a Bayesian network model to perform hit
detection based exclusively on lyrics’ features that outperforms the state-of-the-art results
of that time, demonstrating the power of lyrics in classifying hits. However, that classifi-
cation is based on rhyme and syllable features, ignoring the semantic and the meaning of
the lyrics.
Another example of research, in which features of that kind are used, is HitMusicNet [42].
In fact, Martín-Gutiérrez et Al. in their proposed method use text features such as the
total number of sentences, average number of words per sentence, total number of words
and average number of syllables per word. Moreover, some engineered features are em-
ployed, such as a sentence similarity coefficient, to investigate the influence of repetitive
patterns, and also a vocabulary wealth coefficient, that is an indicator of the diversity
of the vocabulary, in terms of words. Zhao M. et al. [32] instead use a bag-of-word
representation to encode lyrics but, as explained in Chapter 2.3, this approach has many
drawbacks, in particular it is computationally expensive and the lyrics significance is once
again ignored.
Nowadays, many of the state-of-the-art text embedding models are based on transformer
architectures, we have previously explained in Chapter 2.2.3. Transformers revolution
Natural Language Processing tasks by providing powerful language modeling capabilities,
enabling models to capture long-range dependencies and context in texts.
BERT (Bidirectional Encoder Representations from Transformers) [58] is con-
sidered a groundbreaking model in NLP and has a significant impact on the field for
several reasons. BERT’s idea is born starting from the limitation of all the previous
language models to learn general language representations in unidirectional way. BERT
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solves the unidirectionality problem by using a “masked language model” (MLM) pre-
training objective. As Devlin et Al. in [58] explain, the MLM randomly masks some
of the words received in input and the objective is to predict the original masked word
based only on its context. Unlike left-to-right language model pre-training, MLM enables
the representation to fuse the left and the right context, obtaining a pre-trained deep
bidirectional Transformer. This novelty, together with a “next sentence prediction” task
that jointly pre-trains text-pair representations, makes BERT embeddings more powerful
for various NLP tasks as they capture word meaning based on their context. In fact, due
to this ability of extracting the semantic of a text, some researches [59–62] take advantage
of BERT/RoBERTa to extract embeddings from lyrics.

3.2.3. Audio and Text Embeddings combined

An overall example in the audio domain of usage of BERT and also CNN to extract
embeddings is BECMER [63]. This research work tries to predict the type of music
emotion based on audio signal and lyrics.

Figure 3.5: BECMER fusion model architecture

In particular, for the NLP chain BERT and ALBERT [64] models are used to compute text
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embeddings. Instead, for what concern the audio, CNN is employed to extract features
from the mel-spectrograms and at the end the two types of embeddings are fused together
to create the input of a multi-layer perceptron, as in Figure 3.5. The experiment confirms
that using audio and lyrics information to classify the emotions of songs has a better
performance than using the audio-only learning methods as in previous studies, stating
the effectiveness of BERT and of audio embeddings.
Other examples, that use audio and text embeddings are [65, 66]. In these researches, the
authors explore cross-modal learning in an attempt to bridge audio and language in the
music domain. To align text and audio both of them uses features extracted from ResNet-
50 [2] model, given in input the melspectrogram of the songs, and a transformer-based
model to extract text embeddings. They reach valuable results in multi-modal contrastive
learning but also in music classification tasks, confirming the effectiveness of methods that
employ BERT’s embeddings and features automatically extracted from CNNs.

3.3. Conclusive Remarks

In this chapter, we have introduced the state-of-the-art in the main fields involved in
our research. Firstly, we have made an overview of the actual situation in Hit Song
Prediction. Taking awareness of the lack of employment of deep learning techniques,
that have earned lot of results in other audio tasks, we have moved our attention to
state-of-the-art embedding methods to find meaningful representation of audio and texts
that can lead our research toward a different interesting perspective with respect to the
state-of-the-art in Hit Song Prediction.
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4| Proposed Method

In this chapter, we will formalize and explain in detail our solution to the problem of Hit
Song Prediction we are going to address. First of all, having in mind the considerations
made exploring the state-of-the-art in the field, after stating the problem, we will describe
the choices that lead us to design the global architecture to face HSP. Successively, we will
explain more precisely the functioning of each sub-model that contributes to create the
overall system. In particular, we will clarify how audio embeddings and text embeddings
are extracted with two independent processing chains. Lastly, we will illustrate how this
two contributions are used together to build a unique feature vector that is processed by
a final model to predict songs popularity.

4.1. Problem Statement

The problem we want to tackle in this thesis is Music Popularity Prediction, also known as
Hit Song Prediction. Hit Song Prediction aims to predict whether a song can become a hit
or not based on its objective characteristics. In this thesis work, we discriminate hit and
not-hit songs assigning to each song a popularity class and also predicting a popularity
score, reducing HSP to a multi-class or a regression problem.
The aim of this thesis work is to propose a novel approach with respect to the state-of-the-
art works in this field. In fact, we want to investigate the power of embeddings applied to
this challenge and their applicability in this area of study. Moved by these ambitions, we
use a prediction model that takes as input feature vector an array created joining three
contributions: embeddings extracted directly from the audio, text embeddings extracted
from the songs lyrics and the songs release year.
These design choices emerge with the study of the state-of-the-art in Chapter 3, because
of these main motivations:

• A deep learning approach is not yet applied at its full potential in this field. Studying
the state-of-the-art in Hit Song Prediction with particular attention to solutions
based on deep learning methods, we have found uniquely some examples of MLP
applied to array of high and low-level features in addition to songs’ metadata. By
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the way, advancements in deep neural networks show how CNN-based models obtain
great results in classification and retrieval tasks in the audio field.

• Considering the complexity of the problem we want to solve, we do not have at
disposal datasets that store so many musical tracks annotated with Spotify’s infor-
mation and for which audio files are available. Due to these motivations and moved
by the positive results obtained in researches reported in Chapter 3.2, we want to
employ audio and text embeddings taking advantage of transfer learning, to explore
their effective usability.

• The majority of the solutions proposed in papers, for example [42], uses as features
some biasing information, such as the artists popularity, the markets in which the
song is available and the number of followers of the artist. This choice means
that songs of already famous artists are facilitated to obtain high popularity score.
Instead, we want to conduct our study starting from raw data such as the audio file
content and the lyrics transcription of each song, investigating results obtainable in
a scenario unconditioned from those metadata.

• Even if some state-of-the-art researches, such as [32], classify musical tracks as "hit"
or "not-hit", based on the position a song reaches in Billboard charts, we decide
to use as ground truth value of popularity the popularity score assigned by Spotify
and available through the Spotify’s API. In this way, the problem can be faced as a
regression task.

• Many papers developed in the HSP field do not consider the release year of songs.
Researches like [40] demonstrate how the presence of this feature can have benefits
on the final model results. Moreover, the release year can add a temporal context
to songs allowing modeling dynamics more efficiently. For this reason, we consider
it as input feature.

4.2. Overall Model Architecture

Our proposed method, bearing in mind the motivations listed before and following the
promising results obtained from [42, 63], consists in a neural network model that can be
broken down in three main parts: an audio processing chain and a lyrics processing chain,
that are totally independent, and a final multi-layer perceptron, as shown in Fig. 4.1.
The system takes in input the .mp3 audio file, the song’s lyrics and the song’s release
year. Then the workflow is divided in two autonomous branches:

• An audio pipeline that processes the track audio content and extracts a meaningful
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representation of it. The feature-extraction system is based on a pre-trained CNN, a
ResNet-50 network, that takes the audio mel-spectrogram as input and from which
the embeddings are retrieved extrapolating the features from the second-last inner
layer of the ResNet model.

• A text pipeline that processes the songs lyrics to extract the text embeddings.
The designed system relies on a transformer-based model, moved by their successful
application, already explained in Chapter 3.2.2. The input of this processing chain
is constituted by the lyrics and they are processed by a Sentence-BERT [3].

Figure 4.1: Overall scheme of the proposed method to address popularity prediction

After the application of these two independent chains, the two contributions, automat-
ically extracted by audio and lyrics, are concatenated by adding the release year. The
feature array obtained is given in input to a final multi-layer perceptron that returns an
output of two types: the expected popularity score, between 0 and 100, or a popularity
class.
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The popularity score is predicted having as target the popularity score achievable through
the Spotify’s API [26], that is computed considering the number of plays a track has and
how recent those plays are. The popularity class of a song is computed as follows:

• Low Popularity (class 0): popularity value between 0 and 24

• Mid-Low Popularity (class 1): popularity value between 25 and 49

• Mid-High Popularity (class 2): popularity value between 50 and 74

• High Popularity (class 3): popularity value between 75 and 100

In the next sections each component of this pipeline will be described in detail.

4.3. Audio Processing Chain

In this section we will describe the extraction of audio embeddings starting from the raw
audio signal. Firstly, we illustrate the computation of the melspectrograms and then
we explain how they are processed to achieve a meaningful and compact representation,
suitable for our final prediction purpose.

4.3.1. Audio pre-processing

All the audios can be downloaded using the Spotify’s API preview URL, linked to each
song. The files obtained have length l equal to 30 seconds. The first operation of the
overall system is computing the melspectrogram of each audio file received in input.
Before being ready to be processed, once the spectrograms are retrieved, they are con-
verted to decibel (dB). Lastly, the input log melspectrogram X is submitted to a Min-Max
Scaler normalization process according to the equation:

Xs =
X −Min(X)

Max(X)−Min(X)
(4.1)

4.3.2. Embedding extraction

Starting from this 2-D representation of the signal in time and frequency domains, the
aim of the system is to not use hand-crafted features to perform the prediction task, but
to obtain a meaningful and compact representation of the raw audio and use it to infer
the regression or classification problem. So we want to obtain, from each song audio
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examined xa, an audio representation that we call ea:

xa −→ ea. (4.2)

In this perspective, the task of this first audio-processing chain is to return an automat-
ically extracted representation of each song, given as input the relative melspectrogram.
As explained in the previous Section 3.2.1, meaningful representations of an image, hence
of an audio melspectrogram, can be obtained from convolutional and pooling layers of a
CNN.
In particular, in this thesis work, the convolutional-based model chosen to extract the
embeddings is a ResNet model [2]. It has been chosen for the audio chain, because of
its power and efficiency that have revolutionized the field of computer vision. The key
introduction of ResNet is the concept of residual learning, which allows the network to
be significantly deeper than previous architectures without suffering from the vanishing
gradient problem, that leads to a degradation of the performances. The main idea to
prevent degradation is the use of residual connections, also known as skip connections,
which skip one or more layers and directly connect the input of a layer to its output.
The theoretical concept behind residual learning is the following. In a standard feed
forward neural network, each layer taking a certain input x aims to learn the desired
underlying mapping H(x). When training deep networks with many layers, a significant
issue arises due to vanishing gradient problem. During back propagation, gradients tend
to become extremely small as they are propagated backward through many layers. This
can result in very slow convergence or even in the complete failure of the network to learn.
In residual connections, the stacked nonlinear layers aim to fit another mapping

F (x) = H(x)− x, (4.3)

that represents the difference (or residual) between the desired mapping H(x) and x. The
hypothesis under this strategy is that it is easier to optimize the residual mapping than
to optimize the original, unreferenced mapping. Following this reasoning, the original
mapping is recast into

H(x) = F (x) + x. (4.4)

Figure 4.2 shows that, having identity connection coming from x, residual block aims to
learn the residual function. As advantage, in an extreme situation, it would be easier to
push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.
If F (x) is close to zero, it means the layer has learned to preserve the input’s information



38 4| Proposed Method

while modifying it as needed. In this way, exploiting skip connections, the training process
can propagate larger gradients to initial layers, and these layers also could learn as fast
as the final layers, gaining the ability to train deeper networks.

Figure 4.2: Residual learning schematic representation [67]

Another important aspect of ResNet is that the deep representations learned by this type
of networks are highly transferable. Pre-trained ResNet models on large datasets, like
ImageNet [10], can be fine-tuned for various specific computer vision tasks, even with
limited labeled data. This transfer learning capability makes it easier for researchers and
developers to create accurate models for new tasks with less data and training time.
The promising results obtained from [65, 66], that demonstrated ResNet is also well-
suited to work with audio melspectrograms, joined with the reasons explained before,
make ResNet the model we rely on in the audio embeddings extraction process.

Figure 4.3: ResNet50 schematic model architecture [68]

Going into detail, the model that processes the audio melspectrogram is a ResNet-50, a
version of ResNet that consists of 50 layers, including convolutional and fully connected
layers. These layers can be divided into five stages, as shown in Figure 4.3. Each stage
consists of a sequence of convolutional residual blocks. According to the residual learning
theoretical concept explained before, in ResNet-50 bottleneck residual blocks are imple-
mented as shown in Figure 4.4 in a specialized version designed to be computationally
efficient while maintaining the benefits of residual learning. The block consists of three
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main components: 1x1, 3x3, and 1x1 convolution layers each one followed by Batch Nor-
malization and a ReLU activation function.

Figure 4.4: ResNet50 schematic architecture of a residual block

More precisely, the architecture of a ResNet-50 can be described by the following building
blocks that process the melspectrogram given as input:

• Stage 1 - Initial Convolutional Layer: the first layer is a standard convolutional
layer followed by batch normalization and ReLU activation function to prepare the
input image for further processing. The images typically have three color channels
(e.g. RGB). The output tensor is then passed through a max-pooling layer to reduce
spatial dimensions.

• Stage 2: it consists of three residual blocks. The number of kernels in these blocks
increases from 64 to 256 progressing through the stage.

• Stage 3: it consists of four residual blocks. The number of filters in these blocks
increases from 256 to 512 progressing through the stage.

• Stage 4: it consists of six residual blocks. The number of kernels in these blocks
increases from 512 to 1024 progressing through the stage.
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• Stage 5: it consists of three residual blocks. The number of filters in these blocks
increases from 1024 to 2048 progressing through the stage.

• Global Average Pooling: it reduces the spatial dimensions of the feature maps
to 1x1, resulting in a feature vector of dimensions 1x2048.

• Fully Connected Layer: this is the final layer that maps the feature vector to
the predicted class, using a Softmax activation function. The number of neurons in
this layer is typically equal to the number of classes to which it can belong.

Exploiting this architecture, ResNet-50 is able to extract relevant aspects from images
and to classify them. In fact, our interest in ResNet is due to its ability of automatically
filtering and extracting relevant features of images, hence in our particular case from
melspectrograms. In order to make the ResNet-50 learn to handle this type of images,
starting from the ImageNet weights, we pre-trained it on the GTZAN Genre Dataset,
introduced in [69].
After having pre-trained the model, it is used to perform transfer learning and to return
embeddings from the music tracks of which we want to predict the popularity. In order
to extract the embedding, the model is used with all its layer except the last one. In
this way, the last fully connected layer is discarded and the result we obtain given a mel
spectrogram in input is a feature vector of dimension 1x2048.

4.4. Text Processing Chain

For what concern the text embedding extraction, after retrieving each song lyrics xl, it
is necessary to perform text vectorization, to achieve a compact numerical representation
of xl that preserve the meaning of the text and that can be easily processed by the
system. For this reason, we want to obtain, from each song lyrics examined, the lyrics
representation that we call el

xl −→ el (4.5)

As explained before in Chapter 2.3, there are several techniques for representing text as
vector. The most suited one to be used is determined by the task the system has to carry
out and the aspects related to text most important according to it.
In our case, the choice is conditioned by two factors:

• The system is working with lyrics and the focus is considering the meaning of the
texts rather than their linguistic constructs of words or their grammatical structure.

• The system has the constraint of needing embeddings that have an homogeneous
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representation in size, independently from the length of the text, in such a way that
every song has assigned the same number of features.

Taking into consideration these requirements, as anticipated before, we develop a text
processing chain that takes advantage of a transformer-based model.
Considering the work examined in the Chapter 3.2.2, regarding the text embeddings
model, both BECMER [63] and MuLan [66] architectures consider the commonly used
Bidirectional Encoder Transformer (BERT) in its base architecture. However, BERT
architecture has not been developed to compute independent sentence embeddings but,
in its original form, it focuses on token-level embeddings for individual words within
sentences. For these reason, many studies in the past years have been conducted leading
researchers to developed a new model called Sentence-BERT [3]. It is able to overcome
the BERT limitation in tasks like semantic search, which require a strong sentence-level
understanding and that can not be approached using just word-level transformers. We
use Sentence-BERT since in this work we use song lyrics that are typically organized in
sentences or verses, each carrying its own meaning.

Sentence BERT (S-BERT) [3] is a pre-trained transformer network that is developed by
modifying pre-trained BERT/RoBERTa [70] network, adding a mean pooling operation
to the output to obtain fixed-length sentence embeddings. During the fine-tuning training
process, S-BERT employs a Siamese network architecture. Siamese neural network is a
particular type of network that contains two (or more) identical models that usually have
the same weights. Also parameters are shared and the updating is performed identically
across both sub-models. Due to these characteristics, siamese networks are normally used
to compute similarity scores of the inputs, in order to compare them.
In Figure 4.5, it is shown how the model is built with two identical BERT models. Dur-
ing the training phase, it can be seen that one sub-network is used to encode the first
sentence and the other is used to encode the second sentence independently. After encod-
ing both sentences, S-BERT produces fixed-length embeddings that capture the semantic
meaning of each sentence. To compare sentence embeddings and determine their similar-
ity, S-BERT typically uses cosine similarity and then apply a Softmax loss function. As
training progresses, the model learns to map sentences into an embedding space where
similar sentences have embeddings that are close in distance, and dissimilar sentences
have embeddings that are far apart.
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Figure 4.5: S-BERT training process [71]

Exploiting this, S-BERT directly produces embeddings that capture semantic meaning
and similarity for entire sentences or paragraphs. This makes it well-suited for tasks like
semantic search and document retrieval, based on similarity of meaning.
In our model case, we don’t want directly to compare sentences, to know if they are
similar in meaning, but we are interested in finding embeddings for each lyrics text and
then using its representation as feature vector on which the system performs the popularity
prediction. In order to do this, in this chain of text processing the system uses a pre-trained
S-BERT only to encode lyrics. First of all, the input text is pre-processed, which includes
tokenization, lowercasing, and any other necessary text cleaning steps. Tokenization
splits the text into words or subword tokens, following the behaviour of the tokenizer
used during pre-training. Successively, these input sentences pass through a pre-trained
sentence embedding model, which is capable of producing contextual embeddings for
each token in the sentences. An average pooling strategy is applied to obtain a fixed-
size sentence embedding from the token embeddings. Finally, the resulting sentence or
paragraph embeddings are normalized with an L2 normalization to have unit length and
to ensure that they are comparable in terms of cosine similarity.

S-BERT models are developed for various languages, making them suitable for multilin-
gual applications, such as cross-lingual similarity measurement, where sentences in dif-
ferent languages are compared. As explained in [72], multilingual models are developed
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through knowledge distillation technique. This consists in transferring knowledge from a
large, complex model (teacher) to a smaller, more efficient model (student). The distilla-
tion technique works with a fixed (monolingual) teacher model, able to produce sentence
embeddings in one language. The student model is supposed to mimic the teacher but, in
order to make the student "learn" further languages, it is trained on parallel (translated)
sentences. The translation of each sentence is also mapped to the same vector as the
original sentence.
There are different pre-trained versions of S-BERT available: the most used ones are re-
ported in Table 4.1, each one with its correspondent performance evaluated on different
datasets and tasks. We evaluate our model on two different datasets: one that contains
solely English lyrics and a more extended version of it that also contains songs with
French, Spanish, Italian, German and Portuguese lyrics. For this reason, we employ three
types of pre-trained Sentence-BERT:

• all-mpnet-base-v2 : it is obtained using the pre-trained microsoft/mpnet-base model
and then fine-tuning it on a one billion sentence pairs dataset. Despite of the low
speed and the high size, it is the model that provides the best quality, but it is
trained only in English. By default, input text longer than 384 word pieces is
truncated. The embeddings produced are already L2 normalized.

• multi-qa-mpnet-base-dot-v1 : it is trained on 215 million (question, answer) pairs
from diverse multi-lingual sources. It takes by default input text no longer than
512 word pieces, otherwise texts longer than that threshold are truncated. The
embeddings produced are not normalized.

• paraphrase-multilingual-mpnet-base-v2 : it is trained using "paraphrase-mpnet-base-
v2" as teacher model and "xlm-roberta-base" as student. It is able to manage 50+
languages and by default, it takes as input texts no longer than 128 word pieces.
The embeddings produced are not normalized and so a L2 normalization operation
has to be performed.

All these three models map sentences and paragraphs to a 768 dimensional dense vector
space that is suggested to be used for tasks like clustering or semantic search.
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Model
Name

Performance
Sentence
Embed-
dings

Performance
Semantic
Search

Avg.
Perfor-
mance

Encoding
Speed
(sentence
/sec)

Model
Size

all-mpnet-
base-v2

69.57 57.02 63.30 2800 420
MB

multi-qa-
mpnet-base-
dot-v1

66.76 57.60 62.18 2800 420
MB

all-
distilroberta-
v1

68.73 50.94 59.84 4000 120
MB

all-MiniLM-
L12-v2

68.70 50.82 59.76 7500 120
MB

paraphrase-
multilingual-
mpnet-base-
v2

65.83 41.68 53.75 2500 970
MB

Table 4.1: Five S-BERT pre-trained models, with the best performances, available at [73]

4.5. Combination of the two systems

Once the two processing chains are applied, the system ends up with:

• The feature vector that contains the audio embedding ea

• The feature vector that contains the lyrics embedding et

These two arrays are then concatenated with the release year xyear to create the final
feature vector that represent each song x. The aim of this final part of the system is to
take all these contributions and compute the popularity prediction as:

Px = f(ea, et, xyear), (4.6)

having as f the neural network function that computes the popularity.
The Multi-Layer Perceptron in charge to process these information has different technical
settings based on the problem addressed. In fact, different version of MLP are presented
in chapter 5.2.3 based on the dataset used and the experiment conducted. In order to
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compute the popularity prediction in the case of multi-lingual dataset, the MLP has the
architecture shown in Figure 4.6. In general, every model used during the experiments
have a structure that can be resumed as: the input layer, some hidden layers and the
output layer.

Figure 4.6: Multi-layer perceptron schematic architecture

Each sequential block that composes these architectures is built with the following layers:

• BatchNorm1D: this layer computes the mean and variance of the input and uses
them to regularize data. This effectively scales and shifts the input data, making
them more consistent across batches and reducing the impact of feature scale varia-
tions. It’s very important to apply it as first step because we have embeddings and
release year that are not comparable as measure.

• Dense layer: a linear layer with ReLU activation function to introduce non linearity
into the model.

• Dropout: a regularization technique used to prevent overfitting.

As result of the output layer, based on the task the model has to deal with, the MLP
returns the popularity class assigned to the song given as input or the popularity score.
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4.6. Conclusive Remarks

In this section, we have described the structure of our model in detail, starting from the
statement of the problem we want to investigate. Successively, we have discussed the
design choices that lead us to the proposed model architecture. Then, we have analyzed
each step of the popularity prediction pipeline, focusing on the pre-processing operations,
the extractions of the audio and the text embeddings. Lastly, we have explained how the
audio and text contributions are used to predict the popularity.
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In this chapter, we will describe the results obtained with the experiments, carried out
in order to evaluate our model and prove its applicability in the Hit Song Prediction
challenge. In particular, we will first describe the datasets used in training and validation
phases. Successively, we will report an overview of how the experimental setup is con-
figured and which are the metrics we will use to evaluate the performance of our model.
Finally, tests and relative results are listed with observations and discussions.

5.1. Dataset

In this section, creation process of the dataset used during the tests is exposed. The
dataset from which our research has began is the SpotGenTrack Popularity Dataset (SPD)
[43], a database for Music Popularity Prediction, Genre Classification and many other
tasks related to Music Information Retrieval, already mentioned in Chapter 3.1.2 as one
of the contributions of Martín-Gutiérrez et Al. [42].
It consists in different .csv files, each one containing several information regarding 101939
tracks. The data collected are about not only the track but also the linked albums, artists,
low-level audio features, high-level audio features obtained via Spotify’s API and text
features obtained using Genius’ API. The tracks, from which the data are extrapolated,
are gathered considering 26 countries where Spotify is available and for each country,
taking in consideration the top 50 playlists per category.
Analyzing them into detail, the features collected from both audio and lyrics analysis,
processing the 30 second audio previews, that can be retrieved from the Spotify preview
URL, are the following:

• Low-level Audio Features: Mel Frequency Cepstral Coefficients (MFCCs), Mel-
Spectrogram, Spectral Centroid, Energy Entropy, Spectral Roll-Off, Constant Q-
Chromagram, Octave-based spectral contrast, Zero Crossing Rate and Tonnetz (a
novel approach for detecting changes in the harmonic content of musical audio sig-
nals).
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• High-Level Audio Features: acousticness, danceability, duration [ms], energy, in-
strumentalness, key, liveness, loudness, mode, popularity, speechiness, tempo, time
signature, valence.

• Text Features: Total number of sentences, average number of words per sentence,
total number of words, average number of syllables per word, a sentence similarity
coefficient to investigate the influence and the correlation of repetitive patterns in
lyrics with the popularity of the musical track and a vocabulary wealth coefficient
that is an indicator of the diversity of the vocabulary, in terms of words, employed
when writing a certain lyric.

The popularity value [74] of a track is computed by a Spotify’s algorithm and it is mainly
based on the number of plays of a track and how recent those plays are. The popularity
can assume vales between 0 (not popular at all) and 100 (most popular).

Figure 5.1: Popularity distribution of songs in SPD [43]

For example, having two songs with the same number of listening, if the first track has
with the majority of plays now and the latter has a lot of plays in the past, the first one
will surely have a higher popularity. Moreover, tracks that have a duplicate, for example
as a single and as an album, are rated independently. Instead, artist and album popularity
is derived mathematically from track popularity.
For this reason, artist and album popularity haven’t been taken in consideration during the
prediction process because they can lead to a misleading result: tracks related to already
popular artists have for sure an higher score while our purpose is mainly analysing the
solely characteristics that make a song popular or not.
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The popularity value stored in this dataset is updated to 2019 and it has the distribution
reported in Figure 5.1.
Even if the majority of researches in Hit Song Prediction use the Billboard 100 Hot Songs
as dataset, for this thesis work the SPD has been chosen mainly for the presence of the
preview URL of each song, allowing the download of the 30 second preview of the tracks
and, as a result, the possibility of computing other features and handle the spectrogram
of each song directly as well.
Starting from SPD dataset, we perform a set of operations schematically listed in Figure
5.2 to remove all the songs stored that have some missing information or that are not
useful for our thesis, ending up with two new versions of the SPD dataset.

Figure 5.2: SpotGenTrack Popularity Dataset cleaning process schema

5.1.1. Speech-Music Classification

Analyzing the audio files of the tracks contained in the dataset, evidences have proved
that not only musical tracks has been stored inside the dataset but podcasts tracks as
well.
To avoid misleading results due to the presence of podcasts recordings inside the dataset,
we have developed a Neural Network model able to discriminate speech and music tracks.
The model used to perform this classification is a CNN trained on the GTZAN Music
Speech dataset [75], a set of audio labelled with speech or music tags. The dataset consists
of 120 tracks, each containing 30 seconds of audio. The tracks are all 22050Hz Mono 16-
bit audio files in .wav format and for each class (music/speech) the dataset contains 60
samples.
After having performed this first distinction between podcast and music tracks, we have



50 5| Experiments and Results

obtained the results represented in Figure 5.3. We have found out that, among all the
audio files contained in the SPD dataset, 6744 audio correspond to podcast content and
the other 94857 audio correspond to music tracks.

Figure 5.3: Music VS Podcast distribution

5.1.2. Language Filtering and Lyrics Retrieval

After having performed this first cleaning operation of the dataset, we have focused on
lyrics. First of all, we have conducted an analysis of the language distribution among the
songs. To perform language detection we have decided to use langdetect library, a port of
Google’s language-detection library [76] that supports 55 languages.

Figure 5.4: Music tracks’ language distribution
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The final distribution we have obtained is shown in Figure 5.4 and it evidences how even
if the majority of the songs are in English there is also a great amount of songs in many
other different language. In conclusion, we have ended up with a set of 46955 English
musical tracks.
By doing this analysis on lyrics, some evidences proved that some songs do not correspond
with the lyrics they have associated in the dataset. For this reason, we decided to retrieve
the original lyrics taking advantage of the Musixmatch’s API [77]. In particular, using the
Musixmatch Python library, starting from the title and the name of the artist associated
to each song, we used an API to get lyrics: the matcher.lyrics.get API method. Giving
as parameters the title and the artist, this method allowed us to obtain the lyrics and the
correspondent Musixmatch Id of each song.
Finally, removing all the songs for which the lyrics are not available, the duplicates and
the ones for which the release year can not be found through the Spotify’s API, the
final version of the SpotGenTrack Popularity Dataset we obtained consists of 26711 well-
annotated in English, with popularity distribution shown in Figure 5.5, that we call
SPD-English.

Figure 5.5: Popularity distribution of our English solely dataset (SPD-English)

The average popularity is 47.26 and the standard deviation is 13.98.
The choice of using only songs with English lyrics comes from the Sentence-BERT pre-
trained models available and their correspondent results. For this reason, as explained in
section 4.4 based on its average performance we choose the all-mpnet-base-v2 that is the
model that provides the best quality but it is trained only in English.
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5.1.3. Increasing the dataset size

Because of the small amount of well-annotated songs remaining after SPD dataset clean-
ing, we looked for a way to increase the number of songs within the dataset, so as to
improve the performance of the model given the complexity of the problem to be solved.
In order to obtain additional song, we used two datasets:

• "Billboard Hot-100 Songs 2000-2018 w/Spotify Data+Lyric" dataset [33] already
used by Mengyisong Z. et Al. in [32]. The dataset includes all songs in the Billboard
hot 100 weekly charts from 2007 to 2017, as well as audio features, metadata and
lyrics of each song provided by Spotify. The raw dataset includes 33 attributes for
a total of 7574 songs.

• A set of Billboard’s Year-End Hot 100 songs between 1964 and 2015 [78] collected
using the Spotify’s API for the audio features and Musixmatch’s API for the lyrics,
for a total of 5101 songs.

Before combining these two datasets, we remove all those songs that have some miss-
ing information such as the lyrics, the popularity, the release year or the preview URL
available from Spotify that is fundamental to be able to gain the audio file of each song
and so to compute the relative melspectrogram. Finally, after all the filtering process to
maintain only the well-annotated data, we ended up with a final dataset of 7604 songs
well-annotated of which 6625 in English. Before joining our clean SpotGenTrack Popular-
ity Dataset version and our Billboard dataset version, we call the Spotify’s API devoted
to get the track information to retrieve the updated popularity value, to be sure that the
annotation for all the songs considered are updated to the same date.
Going into detail, we use the Spotipy Python library [79] to interact with the Spotify’s
API, following these steps:

• Taking advantage of Spotipy system to manage the Spotify’s OAuth2 authentica-
tion process, we create an object of class SpotifyClientCredentials that takes as
parameters the Spotify CLIENT_ID and CLIENT_SECRET obtainable after hav-
ing created an app from the Spotify’s for Developers dashboard.

• An object of class Spotify is created using the SpotifyClientCredentials object al-
ready defined. The Spotify object is able to call every Spotify’s API with the
properly authorization being set.

• Exploiting the Spotify object, the Spotify’s API endpoint to get the popularity
information, called Get Track API, is called. It takes as parameters the unique
Spotify ID that identifies a single track and returns as response the correspondent
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Spotify catalog information, such as the track number, the available markets, the
preview URL, the popularity value and others.

After this chain of steps, we obtain a dataset that takes advantage of both SPD and
Billboard dataset’s for a total of 29078 English songs.

Figure 5.6: Distribution of the updated popularity obtained joining SPD and Billboard
datasets

At this point, another observation is done: having passed at least 3 years from the con-
struction of the SPD dataset the songs that at that time were popular, now we discover
that have popularity score 0. As result, the final popularity distribution is unbalanced
towards, zero as can be seen in Figure 5.6.
Instead of having a small increase in size but a dataset not balanced, we disregard this
option of integrating the Billboard dataset. In conclusion, to increase the number of songs
with which training our system, we consider also songs with lyrics in Spanish, French, Ger-
man, Italian and Portuguese from the cleaned version of SDP ended up with a collection
of data relative to 41333 songs, that we call SPD-Multilingual. In order to obtain lyrics,
the steps followed are the same used in the case of English dataset, taking advantage of
the Musixmatch’s API. As mentioned before, the negative side of this choice is that the
average performance of the Sentence Transformer used with multi-languages is worst than
the results obtained by Sentence-BERT trained only in English. On the other hand, the
positive side is the great amount of songs we gain considering also other languages.
Moreover, in Figure 5.7 we can see how the popularity has a Gaussian-shaped distribu-
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tion, having average popularity 46.45 and standard deviation 13.97.
After all this pre-processing phase, we decide to take experiments employing the dataset
of solely English song and this last multi-lingual dataset, obtained from the SPD dataset
after having re-collect lyrics and after having clean all the data not properly annotated
or with some missing information.

Figure 5.7: Popularity distribution of the multi-lingual dataset (SPD-Multilingual)

The attributes stored in these final datasets are the ones we need for our thesis work:
preview URL, release year, lyrics and popularity value computed in 2019. In addition, we
stored also the Spotify ID and the Musixmatch ID in case we need in future to retrieve
other information from the relative APIs. The structure of the dataset and some rows
taken as example are shown in Table 5.1.
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Spotify ID
Musixmatch
ID

Preview URL
Release
Year

Lyrics Popularity

6lsumzVFKP9SnfKcuGwqVp 87425313
https://p.scdn.co/
mp3-preview/...

2000

You and me we’re meant to be
Walking free in harmony
One fine day we’ ll fly away
Don’ t you know that Rome wasn’ t
built in a day
...

63

... ... ... ... ... ...

3MjUtNVVq3C8Fn0MP3zhXa 113838494
https://p.scdn.co/
mp3-preview/...

1999

Oh, baby, baby
Oh, baby, baby
Oh, baby, baby, how was I supposed
to know
That something wasn’t right here?
Oh, baby, baby, I shouldn’t have let
you go
And now you’re out of sight, yeah
...

82

0ofHAoxe9vBkTCp2UQIavz 227606494
https://p.scdn.co/
mp3-preview/...

1977

Now here you go again, you say you
want your freedom
Well, who am I to keep you down?
It’s only right that you should play
the way you feel it
...

87

Table 5.1: Sample rows extrapolated from the final dataset

5.2. Experimental Setup

In this section, more technical details about our experimental setup are described. First
of all, the method to pre-process audio file, used in training and evaluation phase, is
explained. Successively, the pre-training strategy used to fine tune the ResNet-50 model
is reported. Lastly, regarding the multi-layer perceptron used as last prediction phase,
technical specifics about layers, neurons and hyper parameters used during the training
procedure are depicted.

5.2.1. Audio Pre-Processing

Both in training and validation phase, audio files have to undergo pre-processing opera-
tions to ensure each audio is in the same suitable format for the neural network to learn
effectively and efficiently.
In particular, using Librosa [80] Python library, first of all the signals are re-sampled with
a sample rate Fs = 22050 Hz, to maintain a common sampling frequency between all the
tracks. After this step, the melspectrogram is computed using these parameters:

• window_size=1024 samples
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• hop_size=512 samples

• n_fft=1024 samples

• n_mels=256 samples

The final melspectrogram obtained, with the listed parameters above, leads to a F×T
frequency-time representation, having as number of frequency bands F = n_mels and as
number of time frames

T =
l ∗ Fs

hop_length
= 1291 samples. (5.1)

Before passing the computed mel-spectrogram to the ReNet-50 model, it has to be con-
verted in decibel scale, applying a logarithmic transformation to the squared magnitude of
the spectrogram values. Then a normalization scaling process is applied, using a Min-Max
Scaler. As last operation, due to the fact that ResNet-50 model needs three input chan-
nels images, we concatenate three times the spectrogram computed, to create a properly
formatted image ready to be processed that has a shape of (3, 256, 1291).

5.2.2. ResNet Pre-Training

Before using the ResNet-50 model to extract audio embeddings, a pre-training operation
is performed because this model is originally designed for image classification tasks. By
fine-tuning it on an audio dataset, we adapt the model to the specific characteristics and
patterns present in audio data. This allows the network to learn relevant features and
representations for audio signals.
The task on which we pre-train the model is genre classification, using the dataset GTZAN
Genre Dataset [69]. It is one of the most-used public dataset for evaluation in Music
Information Retrieval tasks, such as music genre recognition, because it is well labeled
and balanced. It contains a total of 1000 audio tracks of 30-seconds duration. The dataset
songs can be divided into a total of 10 genres, each one represented by 100 tracks. All
the tracks are 22050Hz Mono 16-bit audio files in .wav format.
Due to the fact that the number of songs is low, also to reduce overfitting and to improve
the robustness of machine learning models to variations, we use three different techniques
to perform data augmentation:

• Time stretching: audio processing method that alters the temporal duration of the
audio signal, preserving its spectral characteristics intact. It effectively manipulates
the playback speed without affecting its underlying spectral content. This strategy
is applied using Librosa time stretching function, giving as stretch ratio parameter
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a value chosen randomly in a range from 0.5 to 1.5.

• Pitch shifting: in contrast to time stretching, this technique enables the alteration
of spectral characteristics, while preserving the original duration of the track. This
manipulation can change the perceived musical key or tone, without affecting the
track’s length. This strategy is applied using Librosa pitch shifting method, giving
as number of shift steps a value chosen randomly in a range from 1 to 5.

• SpecAugment [9]: this is a spectrogram data enhancement technique. Concretely,
with this method one or more covering bands are set along time and frequency di-
mension, respectively. The bandwidth is an integer randomly selected and the value
of the frequency covered by the covering band is set to 0. However, if the spectro-
gram is covered by too many bands or the width of bands is too wide, information
can be lost. Inspired by [81], we cover only one frequency band, with a maximum
bandwidth of 16 samples, and two time bands with a maximum bandwidth of 75
samples.

In each training iteration, two variations are generated for identical samples exhibiting
slight distinctions attributed to the stochastic nature of the data augmentation process.
Consequently, this approach encourages the model to prioritize the comprehension of time-
frequency patterns within the spectrogram environment throughout the training phase.
In conclusion, the ResNet-50 model is pre-trained on the GTZAN genre classification task
so, for this reason, we change the number of output neurons of last layer to 10, that is
the number of classes represented in the dataset. Before this last layer we add a Dropout
layer with probability p = 0.5 and a Batch Normalization layer. Other hyper parameters
used in the pre-training process are: the learning rate to 1e-5, batch size to 16, optimizer
of type Adam with weight decay 1e-1.

5.2.3. System Training Setup

The overall system has the theoretical structure explained in section 4.5. The audio em-
beddings are computed taking advantage of the ResNet-50 pre-trained network and they
are obtained as an array of 1x2048 elements. The text embeddings are calculated through
the use of the pre-trained Sentence-BERT. The English-only models use Sentence-BERT
"all-mpnet-base-v2" while the multi-lingual models use "multi-qa-mpnet-base-dot-v1", ac-
cording to the languages used to pre-training the sentence transformers. In both cases of
English and multi-lingual setup, the lyrics embeddings are returned as an array of 1x768
elements.
Even if this first step of creation of the feature vector is shared, regarding more technical
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details, we can distinguish different versions of the final Multi-Layer Perceptron, depend-
ing on the dataset we use and on the tasks we are approaching. In fact, we evaluate these
different setups:

• Audio-only setup, with SPD-English dataset, neglecting lyrics to perform classi-
fication task

• Audio and lyrics basic setup, with SPD-English dataset considering one single
lyrics embedding to perform classification task

• Audio and lyrics English weighted setup, with SPD-English dataset and dou-
ble text embeddings to perform classification and regression tasks

• Audio and lyrics multi-lingual weighted setup, with SPD-Multilingual dataset
and double text embeddings to perform classification and regression tasks

This distinction is done because for example dealing with a multi-lingual dataset, with
a greater number of songs, the complexity of the problem increases, with respect to the
case in which the dataset contains just English songs. For this reason, we can not conduct
every experiment with the same asset.
These four configurations can be summarized in two principal setups, successively ex-
plained, based on the fact that they use the English on the multi-lingual dataset.
All the implementation is done with Pytorch library. For every training procedure, data
augmentation is applied following the same approach already introduced in the ResNet-
50 pre-training explanation in chapter 5.2.2. In every experimental setup, performing
classification task over the four classes of popularity, the loss function used is a CrossEn-
tropyLoss, with mean reduction. CrossEntropyLoss is a common loss function used for
training classification models, especially in multi-class classification tasks. It combines
the Softmax activation function and the negative log-likelihood loss, to calculate the loss
between predicted class probabilities and true class labels. Going into detail, this loss
function takes as input the predicted class probabilities produced by the model and the
true class labels, for each data point in the batch. Internally it applies the Softmax ac-
tivation function to the predicted class probabilities to normalize the raw scores for each
class, converting them into probabilities that sum to 1. After Softmax, the loss function
computes the negative log-likelihood loss. For each data point in the batch, it calculates
the negative natural logarithm of the predicted probability assigned to the true class label.
This penalizes the model more heavily for confidently incorrect predictions.
In regression case instead the loss function used is the Mean Absolute Error that is a
metric usually employed to evaluate the system performances and that is explained in
chapter 5.3.
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As optimizer we have chosen Adam with learning rate set to 1e-5 and weight decay to
1e-2.

English Models Setup

In case of using the dataset with just English songs, after comparing different MLP
architectural structures, we conclude that too complex architectures lead the model to
overfit. For this reason, for the experiments on English dataset, the MLP structure chosen
is composed by the input layer, one hidden layer and the output layer.

• Input layer: this layer takes n input features, apply them a batch normalization to
have all the input features on the same scale, and map them to 512 output neurons.
The value of n changes according to the particular setup used:

– In audio-only setup, lyrics embeddings are not considered, so the input feature
vector is composed only by the audio embeddings and the release year. For
this reason the input layer takes an array of n = length(audio embeddings) +

length(year) = 2048 + 1 = 2049 elements.

– In audio and lyrics basic setup, the system takes as input the audio em-
bedding from ResNet-50, the text embeddings from S-BERT and the release
year of each songs. For this reason the input layer takes an array of n =

length(audio embeddings) + length(text embeddings) + length(year) =

2048 + 768 + 1 = 2817 elements.

– In audio and lyrics weighted setup, text embeddings gain more relevance,
accordingly to the results obtained during experiment 5.4.1. This setup re-
quires the usage of the audio embedding, the text embeddings used twice and
the release year. The final input array in this configuration contains n =

length(audio embeddings) + 2 ∗ length(text embeddings) + length(year) =

2048 + 1536 + 1 = 3585 elements.

• Hidden layers: these blocks are constituted by linear layers with ReLU activation
function. There is a single hidden layer that takes the 512 inputs and maps them into
other 128 neurons. Before applying the transformation, regularization and dropout
are applied to reduce overfitting.

• Final layer: this layer takes the 128 input features from the hidden layer and maps
them to four neurons in case of classification, otherwise in a single neuron if per-
forming regression. In case of classification, each of the four neurons represents
one of the popularity class in which the MLP can map a song. From a regression
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perspective, the unique neuron uses a Sigmoid activation function with the aim of
getting the final prediction in the range [0; 1]. Hence, a normalization procedure is
employed to adapt the range of the original popularity value that lies in the interval
[0; 100], to the one required by the neural network, in order to compute the loss
function.

Multi-lingual Models Setup

In case of multi-lingual dataset the task of predicting popularity is more difficult and for
this reason the structure of the architecture gets more complex. In fact, in this MLP
structure we have the input layer, three hidden layers and finally the output layer.

• Input layer: this layer takes the 3585 input features, as in audio and lyrics English
weighted setup, apply them a batch normalization to have all the input features on
the same scale, and map them to 1024 output features. The layer used is a Linear
and the activation function is ReLU.

• Hidden layers: this block of layers is constituted by three linear layers each one with
ReLU activation function. The first layer takes the 1024 inputs and maps them into
other 1024 neurons, the second one takes the 1024 inputs and maps them to 512
neurons, the final one takes the 512 input and maps them to 128 neurons. Between
each level regularization and dropout are applied to reduce overfitting.

• Final layer: this layer takes the 128 input features from the last hidden layer and
maps them to four neurons in case of classification, otherwise in a single neuron if
performing regression. In case of classification, each of the four neurons represents
one of the popularity class in which the MLP can map a song. From a regression
perspective, the unique neuron uses a Sigmoid activation function with the aim of
getting the final prediction in the range [0; 1]. Hence, a normalization procedure is
employed to adapt the range of the original popularity value that lies in the interval
[0; 100], to the one required by the neural network.

All the configurations summaries are reported in a detailed version in Appendix A.

5.3. Evaluation metrics

We will define the evaluation methods that have been chosen to examine the outcomes of
the system. In order to evaluate our model performances during training and validation
phase we use different metrics based on the task performed by the neural network. The
metrics used are the traditional ones used in Hit Song Prediction, so that we can compare
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the performances obtained by our model with other systems.
In case of regression the metric we decide to use is the Mean Absolute Error. This
metric as been chosen also because it is used in [42] and this allow us to compare our
results with the one reported in the paper.
Mean Average Error (MAE), also known as Mean Absolute Error, is a commonly used
metric in regression problems due to its interpretability that makes it used as a funda-
mental tool for assessing the performance of regression models. The calculation of MAE
is given by

MAE =
1

n

n∑
i=1

|ŷi − yi| , (5.2)

computing, for each data point i-th in the dataset, the absolute difference between the
predicted value ŷi and the actual target value yi.
In summary, MAE provides a straightforward way to measure the average magnitude of
errors between predicted values and actual target values, offering a clear and intuitive
understanding of how well a regression model is performing. Moreover, one of the key
advantages of MAE is its robustness to outliers. Unlike other metrics such as Mean
Squared Error (MSE), which penalizes larger errors more heavily due to the squaring
operation, MAE treats all errors equally.
In fact, Mean Squared Error is used to measure the average of the squared differences
between predicted values and actual target values. The computation of MSE is done
following this equation:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (5.3)

considering ŷi the predicted value for the i-th data point, yi the target value for the i-
th data sample. In the context of classification, various metrics are employed to assess
the system’s performance, with each measure offering a distinct viewpoint on the system’s
capabilities. The counts of correct and incorrect predictions are referred to as intermediate
test results. Given a certain class c these results can be defined as:

• True positive (TP): it indicates a correct prediction, meaning that the system output
and the reference both indicate class c as present.

• True negative (TN): it indicates a correct prediction, meaning that the system
output and the reference both indicate class c as not present.

• False positive (FP): it indicates a wrong prediction. The class c is predicted as
present while the reference indicates class c as not present.

• False negative (FN): it indicates a wrong prediction. Class c is predicted as not
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present, but target indicates class c present.

Our prediction problem is organized as a multi-class problem with 4 classes which a song
can belong to. The intermediate test results in a multi-class scenario can be represented
as reported in Figure 5.8.

Figure 5.8: Multi-class confusion matrix

Based on the total counts of these intermediate test results, different measures can be
derived:

• Precision is the proportion of true positives among all the elements. It is computed
as:

P =
TP

TP + FP
(5.4)

• Recall is the proportion of positives that are correctly identified among all the real
positives. It is computed as:

R =
TP

TP + FN
(5.5)

• Accuracy measures how often the classifier makes the correct decision, as the ratio
of correct system outputs to total number of outputs. It is computed as:

A =
TP + TN

TP + TN + FP + FN
(5.6)

• F1Score is the harmonic mean of precision and recall. It is computed as:

F =
2PR

P +R
(5.7)
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5.4. Results

In this section we will present the different tests conducted to evaluate the performance
of the system and investigate the effectively applicability of our solution in Hit Song
Prediction. First of all, to investigate the influence of lyrics embeddings in Hit Song
Prediction, we conduct a comparison between the performances of an audio-only based
model, with respect to the performances of the same model that also takes in input the
lyrics.
After this first step, we move our attention to the system overall results, in two main
case scenarios: popularity score and popularity class prediction. Doing this evaluation
of classification and regression capabilities of our system, we use as reference system the
architecture proposed by Gutierrez in [42] that is, in our knowledge, the state-of-the-art in
HSP, using deep learning methods. In their paper, Gutierrez et Al. compare the metrics
achieved by their solution with the results of [82]. In [82] the authors propose a set of
classifiers to determine the popularity of a song, as a binary classification problem, and
some regression models to compute the popularity score. They employ the Million Song
Dataset (MSD) [38] which provides a set of meta-data, neglecting raw audio files content
or lyrics meaning. They just incorporate additional features such as Bag of Words to take
into consideration also lyrics. For this reason we use also [82] as reference.

5.4.1. Audio vs Audio and Lyrics Classification

A first experiment is conducted to investigate the effectiveness of employing lyrics em-
beddings. Previous researches, conducted in different MIR field, demonstrate the key-role
of lyrics in many different tasks, hence we want to prove the positive contribute of text
embeddings even in performing music popularity prediction.
In order to conduct this test, we compare the results obtained classifying songs in four
popularity classes, using two different sets of features: the first with only audio embed-
dings and release year; the second including also lyrics embeddings. The two cases of
study involve the identical system architecture, a part from the MLP input layer that
changes dimension according to the size of the input feature array, as explained in Chap-
ter section 5.2.3. We evaluate the performance in terms of accuracy both during training
and validation phase.
As it is shown in Figure 5.9, the validation accuracy envelope of model that takes advan-
tage of both audio and text embeddings reaches an higher accuracy level.
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Figure 5.9: Evolution of the accuracy level reached by audio-only and audio and lyrics
models during the validation phase performing classification

In particular, after 40 epochs of training, the two observed models obtain the results
reported in Table 5.2.

Model Problem N° of classes Dataset
Training
Accuracy

Validation
Accuracy

Audio-Only Classification 4 SPD-English 0.532 0.565
Audio and Lyrics Classification 4 SPD-English 0.577 0.595

Table 5.2: Comparison among the performance obtained addressing the classification
popularity prediction problem considering the employment of only audio embeddings and
using both audio and text embeddings

These results align with the literature, because they confirm that a multi-modal approach,
that captures both the musical and lyrical aspects of a song, leads to better performance
in music related tasks, in this particular case in music popularity prediction.
Furthermore, we demonstrate the effectiveness of Sentence-BERT in capturing semantic
characteristic of texts. State-of-the-art models in Hit Song Prediction use only hand-
crafted features computed starting from the lyrics. Analyzing this test result, we state
the usability of Sentence Transformer approaches also in popularity prediction, a field in
which it has never been used. We prove that NLP techniques can be used to analyze lyrics,
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to extract sentiment, and to identify patterns in the text that resonate with audiences
and contribute to a song popularity.
The demonstrated utility of lyrics in Hit Song Prediction reveals that the subject of lyrics
can influence a song popularity, reflecting cultural trends or the spirit of a particular time.
Moreover, memorable or catchy phrases in lyrics can become viral and may be shared on
social media, further boosting the song’s visibility.
Having proved that lyrics embeddings bring to an improvement in the system performance,
we investigate the possibility of weighting embeddings.

5.4.2. English vs Multi-lingual Lyrics Classification

In section 5.4.1 we prove the utility and positive impact of text embeddings in HSP tasks.
Starting from this result, we evaluate the possibility of weighting embeddings to get the
most from their impact on popularity prediction. After performing different attempts,
changing the MLP input vector constitution, we decide to use in the next tests the same
text embedding twice, with the aim of propagate the textual information through mul-
tiple layers, providing more opportunities for the model to learn complex patterns and
relationships within the text data. In this way, we are effectively doubling the impact
of the textual features on the model performance, hence information contained in lyrics
acquire emphasis and extra weight in the model’s decision-making process.
In fact, in this test we use a final setup of the MLP, with doubled text embeddings, to
evaluate our proposal in a classification task. In particular, we want to compare the
results obtained from our model with respect to the ones obtained by reference papers
mentioned before, such as [42, 82].
We want to evaluate the performance of our model applied in two different scenarios:
processing English-only and multi-lingual songs.
In order to perform this experiment, unlike the state-of-the-art proposals, with our ap-
proach we increase the number of popularity classes to four with the aim of adding another
intermediate level of popularity, in addition to the third added by [42].
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Model Study Dataset N° of classes
Validation

Accuracy (%)
MLP [82] MSD 2 79.3
HitMusicNet [42] SPD 3 83.03
Our model Proposed SPD-English 4 67.95
Our model Proposed SPD-Multilingual 4 70.14

Table 5.3: Comparison among the performance obtained addressing the classification
popularity prediction problem considering existing models and the proposed approaches

Analyzing the final results gathered after 100 epochs and reported in Table 5.3, we can
see that our proposed solution leads to some positive considerations. First of all, we can
notice that the multi-lingual method proposed obtains better results in terms of accuracy
with respect to the English-only version. This demonstrates that greater amount of songs
influences the results, bridging the performance gap of multi-lingual Sentence-BERT with
respect to the one trained only in English.

Figure 5.10: Evolution of the accuracy level reached by multi-lingual and English-only
models during the validation phase performing classification

In fact, observing the Figure 5.10 we can see how our proposed models follow a similar
behaviour until the 80th epoch, after which the multi-lingual one starts to perform better.
The trend of the graph suggests that the English-only model keeps improving the accuracy
in a constant way, while the multi-lingual one after the 80th epoch has a sharp increase



5| Experiments and Results 67

that leads the model to achieve faster 70% of accuracy.
On the other hand, assessing our results in relation with the ones obatined by [42, 82],
we can state that the results are comparable if we consider the situation in which we set
ourselves, with the constraints of:

• Augmenting the number of output classes, with respect to the other models evalu-
ated, that increases the complexity of the problem.

• Discarding any metadata, such as the artist’s popularity, that [82] identify as one of
the most influential features in their dataset. Taking in input only audio preview file,
lyrics and release year of each song, in order to keep our solution as unconditioned
as possible from data related to popularity, that can affect the prediction.

This result leads us to claim that effectively the combination of audio embeddings, text
embeddings and release year in music popularity prediction is a valid approach to be fur-
ther investigated, since it has different grades of improvement and the resulting accuracy
can surely enhance with more data at disposal and epochs considered.

5.4.3. English vs Multi-lingual Lyrics Regression

Using the same input vector configuration used in the previous experiment, we want
to compare the results obtained from our models with respect to the results obtained
by reference papers, [42, 82], to predict the popularity score of songs. Also performing
regression, we compare the results obtained by our model both using English and multi-
lingual datasets.

Model Study Dataset ML Problem MAE MSE
MLR [82] MSD Regression 0.1357 0.0184
MLR + Lasso [82] MSD Regression 0.1342 0.0180
HitMusicNet [42] SPD Regression 0.0855 0.0118
Our model Proposed SPD-English Regression 0.0986 0.0157
Our model Proposed SPD-Multilingual Regression 0.0937 0.0145

Table 5.4: Comparison among the performance obtained addressing the regression popu-
larity prediction problem considering existing models and the proposed approaches

The results of the experimental models in terms of Mean Squared Error and Mean Ab-
solute Error, presented in Table 5.4, show that the proposed model trained using the
multi-lingual dataset outperforms the one trained using only English songs. Even in this
case, we can see how the number of songs affects the overall performance. Indeed, even
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if the multi-lingual Sentence-BERT has an average performance worse than the English
one, the results achieved by the multi-lingual system are better with respect to the ones
obtained by the English model, that contains half the songs of the other.
Mean Average Error and Mean Squared Error progressions are respectively reported in
detail in Figures 5.11 and 5.12, to illustrate the evolution of the results obtained dur-
ing the validation phase of the test that consists of 60 epochs. The two depicted trends
represent the developments of the English-only and the multi-lingual model.

Figure 5.11: Evolution of the Mean Average Error reached by multi-lingual and English-
only models during the validation phase, performing regression
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Figure 5.12: Evolution of the Mean Squared Error reached by multi-lingual and English-
only models during the validation phase, performing regression

Moreover, the results obtained by both our proposed methods outperform the MAE and
MSE values achieved by [82] and are close to the ones obtained by [42]. In this case, there
is no mismatch in the number of output prediction classes and we are always neglecting
artist popularity. For this reason, considering the MAE and MSE values reached, it is
more clear that our results are comparable with the state-of-the-art. In particular, the
MAE values achieved by our models are similar to the one achieved by [42], while the
MSE values are higher. This observation suggests the possibility of outliers, as the MAE
metric tends to handle them more effectively than MSE that is less robust and tends to
amplify the effect of large errors.
In conclusion, also evaluating the regression task, we demonstrate the potential of our
system in tackling HSP using an architecture based on audio and text embeddings.

5.5. Conclusive Remarks

In this chapter, we have described how we have created two new version of an existing
dataset: one with English solely songs and the second one with multi-lingual songs. Suc-
cessively, the training setup has been exposed in detail. The explanation begins with the
initial audio pre-processing phase, extends to the ResNet-50 pre-training procedure, and
culminates in a detailed overview of the overall system training process. Subsequently,
we assessed the proposed system’s performance across classification and regression tasks,
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presenting the results alongside a comparative analysis with state-of-the-art systems.
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6| Conclusions and Future

Developments

In this thesis we have developed an Hit Song Prediction (HSP) system able to predict the
popularity of a song both in a classification and a regression perspective, given the relative
audio, lyrics and release year. To implement our model we exploited and combined Deep
Learning based architectures, taking inspiration both from state-of-the-art in Hit Song
Prediction and in other Music Information Retrieval systems.
Traditional HSP systems mainly involve machine learning methods and only in few case
they use deep learning architectures. Even when Multi-Layer Perceptrons are used, the in-
put data used are features manually computed from audio and lyrics. Starting from these
observations, encouraged by the advancements in deep learning technologies, able to au-
tomatically extract features from audio and lyrics, we have introduced a novel approach
to address HSP that exploits the usage of embeddings automatically extracted from au-
dio and lyrics. Going into detail, we have employed a pre-trained ResNet-50 model to
automatically extract features from audio melspectrograms and a Sentence-BERT trans-
former to extract text embeddings from lyrics. According to this, we have used only raw
audio and text data without taking advantage of other information, such as the artist’s
popularity, that can bias the resulting popularity predicted. The unique additional data
we have considered is the release year of each song to temporally contextualize them and
model temporal trends.
Audio embeddings, lyrics embeddings and release year have been fed into a MLP that is
responsible for producing the popularity prediction. The MLP returns the resulting pop-
ularity in two ways: as a popularity score or as a popularity class based on four ranges
of score. In this way we have been able to use our model addressing two different tasks:
regression and classification.

Before doing experiments, we have explained into detail how the training configuration
has been set with a particular attention to the creation of the dataset used. Starting from
the SpotGenTrack dataset, after performing data cleaning, we have built two versions of
the dataset according to the language of the songs: an English-only and a multilingual
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dataset. In order to evaluate the effective applicability of our model in Hit Song Prediction
and testing its performances, we have conducted three experiments. The aim of the first
experiment is to investigate the influence of text in Hit Song Prediction. For this reason
we have compared the accuracy obtained by our model performing classification using
only audio embeddings and considering also text embeddings. Results have confirmed the
key-role of text in predicting music popularity, according with the literature.
The other two tests have the purpose of proving the popularity prediction ability of our
system performing regression and classification. The performances obtained have been
compared with the results of the state-of-the-art architectures. In addition, a comparison
has been done also between the accuracy value obtained by our proposed method trained
on the English-only dataset and the one trained on the multilingual dataset.
Results have shown better results, both in classification and in regression, using the
multi-lingual dataset instead of using the English-only one. This have demonstrated that
greater amount of songs influences the results, bridging the performance gap of multi-
lingual Sentence-BERT with respect to the one trained only in English.
Moreover, results achieved by our models have reached similar values of accuracy with
respect to models taken as reference, both in classification and in regression. Results have
not outperformed the state-of-the-art performance, but they are definitely conditioned
from the data used as input features, because we have not used any information regard-
ing the artist popularity that is one of the most influential feature used by the papers
taken as reference. By the way, considering the results obtained, we have demonstrated
the potential of a system based on audio and text embeddings to tackle HSP, giving more
relevance to the content of songs than to additional metadata.
However, many improvements could be introduced. First of all, in order to get better
results, a different ResNet-50 pre-training procedure could be followed, to increase the
ability of our model to extract meaningful embeddings from the audio mel-spectrograms.
For example we could use a dataset that contains more data with more target classes.
In addition, in order to build a 3-channel image we could try to use harmonic-percussive
sound separation or other techniques to create three different informative representations
of the audio. Moreover, different kind of CNN-based methods can be evaluated, for exam-
ple the Audio Spectrogram Transformer [83]. Doing this changes the audio representation
obtained from our solution could improve, capturing other relevant aspect of audio that
are representative of characteristics that have a key-role in songs popularity.
Another improvement could be using a greater dataset for evaluating songs popularity.
Starting from Spotify’s and MusixMatch’s API a dataset specifically designed for this
task could be created collecting a more relevant amount of songs with updated popularity
scores.
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Lastly thinking about the applications of our model, could be interesting to use it in a re-
verse way with the aim of answering the question "Which are the characteristics of a song
that makes it popular?". In order to investigate which are the most important features
of audio and lyrics that mostly influence and determine how much a song is appealing for
audience.
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A| Appendix A

Here are reported the summaries of all the Muli-Layer Perceptron configurations imple-
mented in Pytorch to conduct the experimetns proposed

Figure A.1: Multi-lingual Classification - Weighted Embeddings
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Figure A.2: Multi-lingual Regression - Weighted Embeddings

Figure A.3: English Classification - Weighted Embeddings
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Figure A.4: English Regression - Weighted Embeddings

Figure A.5: English Classification - Single text Embedding

Figure A.6: English Audio Only Classification





87

List of Figures

2.1 Illustration of Short Time Fourier Transform computation . . . . . . . . . 6
2.2 Impact of window duration on the STFT. A spectrogram is shown, using

Hamming windows of duration 10 ms (upper figure) and 50 ms (lower figure). 7
2.3 Example of waveform and relative spectrogram and mel-spectrogram . . . 8
2.4 Structure of a Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Structure of a Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . 11
2.6 Example of data augmentation performed on an audio spectrogram follow-

ing the SpecAugment[9] technique . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Example of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Sequence to sequence model functioning - RNN . . . . . . . . . . . . . . . 16
2.9 Sequence to sequence model functioning with Attention . . . . . . . . . . . 17
2.10 Embedding space of Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Wide and Deep network architecture of Zangerle et. Al [37] . . . . . . . . . 25
3.2 HitMusicNet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Fully-connected Neural Network Architecture of MusicPopNet . . . . . . . 27
3.4 Classification chain example using features extracted from a CNN . . . . . 28
3.5 BECMER fusion model architecture . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Overall scheme of the proposed method to address popularity prediction . 35
4.2 Residual learning schematic representation [67] . . . . . . . . . . . . . . . . 38
4.3 ResNet50 schematic model architecture [68] . . . . . . . . . . . . . . . . . 38
4.4 ResNet50 schematic architecture of a residual block . . . . . . . . . . . . . 39
4.5 S-BERT training process [71] . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Multi-layer perceptron schematic architecture . . . . . . . . . . . . . . . . 45

5.1 Popularity distribution of songs in SPD [43] . . . . . . . . . . . . . . . . . 48
5.2 SpotGenTrack Popularity Dataset cleaning process schema . . . . . . . . . 49
5.3 Music VS Podcast distribution . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Music tracks’ language distribution . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Popularity distribution of our English solely dataset (SPD-English) . . . . 51



88 | List of Figures

5.6 Distribution of the updated popularity obtained joining SPD and Billboard
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Popularity distribution of the multi-lingual dataset (SPD-Multilingual) . . 54
5.8 Multi-class confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.9 Evolution of the accuracy level reached by audio-only and audio and lyrics

models during the validation phase performing classification . . . . . . . . 64
5.10 Evolution of the accuracy level reached by multi-lingual and English-only

models during the validation phase performing classification . . . . . . . . 66
5.11 Evolution of the Mean Average Error reached by multi-lingual and English-

only models during the validation phase, performing regression . . . . . . . 68
5.12 Evolution of the Mean Squared Error reached by multi-lingual and English-

only models during the validation phase, performing regression . . . . . . . 69

A.1 Multi-lingual Classification - Weighted Embeddings . . . . . . . . . . . . . 83
A.2 Multi-lingual Regression - Weighted Embeddings . . . . . . . . . . . . . . 84
A.3 English Classification - Weighted Embeddings . . . . . . . . . . . . . . . . 84
A.4 English Regression - Weighted Embeddings . . . . . . . . . . . . . . . . . 85
A.5 English Classification - Single text Embedding . . . . . . . . . . . . . . . 85
A.6 English Audio Only Classification . . . . . . . . . . . . . . . . . . . . . . . 85



89

List of Tables

4.1 Five S-BERT pre-trained models, with the best performances, available at
[73] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Sample rows extrapolated from the final dataset . . . . . . . . . . . . . . . 55
5.2 Comparison among the performance obtained addressing the classification

popularity prediction problem considering the employment of only audio
embeddings and using both audio and text embeddings . . . . . . . . . . . 64

5.3 Comparison among the performance obtained addressing the classification
popularity prediction problem considering existing models and the pro-
posed approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Comparison among the performance obtained addressing the regression
popularity prediction problem considering existing models and the pro-
posed approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Theoretical Background
	Sound Representation
	Short Time Fourier Transform
	Mel Spectrogram

	Deep Learning
	Multi-Layer Perceptron
	Convolutional Neural Network
	Transformers

	Natural Language Processing
	Conclusive Remarks

	State of the Art
	Music Popularity Prediction Overview
	Machine Learning Methods
	Deep Learning Methods

	Embeddings
	Audio Embeddings
	Text Embeddings
	Audio and Text Embeddings combined

	Conclusive Remarks

	Proposed Method
	Problem Statement
	Overall Model Architecture
	Audio Processing Chain
	Audio pre-processing
	Embedding extraction

	Text Processing Chain
	Combination of the two systems
	Conclusive Remarks

	Experiments and Results
	Dataset
	Speech-Music Classification
	Language Filtering and Lyrics Retrieval
	Increasing the dataset size

	Experimental Setup
	Audio Pre-Processing
	ResNet Pre-Training
	System Training Setup

	Evaluation metrics
	Results
	Audio vs Audio and Lyrics Classification
	English vs Multi-lingual Lyrics Classification
	English vs Multi-lingual Lyrics Regression

	Conclusive Remarks

	Conclusions and Future Developments
	Bibliography
	Appendix A
	List of Figures
	List of Tables

