
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Master Thesis

Large-scale MILP solution via
a multi-agent reformulation

Supervisor: Prof. Maria Prandini
Co-Supervisor: Prof. Alessandro Falsone

Author: Lucrezia Manieri

ID:920062

A.Y. 2019–2020

To my aunt Mariella,
I’ve had the time of my life fighting dragons with you.

Acknowledgments

Many people have taught, encouraged, supported, helped and advised
me during the time in which I worked on this thesis. I wish I could express
my deepest gratitude to each and one of them.

My first thanks go to my supervisor, Professor Maria Prandini, and
my co-supervisor, Alessandro Falsone, for guiding and supporting me with
(a lot of) patience during the writing of this thesis and beyond. Without
them this work would never have seen the light as it is today.

I would also like to thank my travel companion Andrea for him has
made these years spent together at the Politecnico brighter. I will always
be in his debt, for the help, support and the valuable advice he gave me
while writing this thesis and during all the (far too many) projects we
worked on together.

I am grateful to my hometown friends, who have been with me for more
than ten years now. To Chiara, blunt but capable of great love who has
always encouraged me and that believes in me even more than she should.
To Giulia, lost and found ”contenta dei deserti” that showed me how to
bend without breaking. To Sara, who has now resigned herself to the fact
that her (kilometer-long) voice messages cannot but remain unheard for at
least a week. To Caterina, my faithful sister in the daily fight against the
patriarchy. And to Veronica, who loves me despite (and perhaps because
of) the long chats on summer evenings about the meaning of life.

Finally, I must express my deep gratitude to my parents for providing
me with unfailing support and continuous encouragement throughout my

v

years of study and for being so patient and understanding through the
process of researching and writing process of this thesis. None of this
would have been possible without them. Thank you.

Ringraziamenti

Molte persone mi hanno insegnato, incoraggiato, sostenuto, aiutato e
consigliato durante il tempo in cui ho lavorato a questa tesi. Vorrei poter
esprimere la mia più profonda gratitudine a ciascuno di loro.

Il mio primo grazie va alla mia relatrice, la Professoressa Maria Prandini,
e al mio co-relatore, Alessandro Falsone, per avermi guidato e sostenuto
con (molta) pazienza durante la stesura di questa tesi e non solo. Senza di
loro questo lavoro non avrebbe mai visto la luce per come è oggi.

Vorrei, poi, ringraziare il mio compagno di viaggio Andrea per aver
illuminato questi anni passati insieme al Politecnico. Sarò per sempre
in debito con lui, per l’aiuto, il supporto (emotivo e non) e i preziosi
consigli che mi ha dato durante la scrittura di questa tesi e negli svariati
(decisamente troppi) progetti a cui abbiamo lavorato insieme.

Sono grata alle mie amiche “di giù”, che mi sono accanto da più di dieci
anni. A Chiara, schietta ma capace di un grande amore che da sempre mi
incoraggia e crede in me molto più di quanto dovrebbe. A Giulia, perduta
e ritrovata contenta dei deserti che mi ha mostrato come piegarmi di fronte
alle difficoltà della vita, senza spezzarmi. A Sara, che si è ormai rassegnata
al fatto che i suoi (chilometrici) messaggi vocali rimangano inascoltati per
almeno una settimana. A Caterina, mia fedele sorella nella lotta quotidiana
contro il patriarcato. E a Veronica, che mi vuole bene nonostante (e forse
soprattutto per) le lunghissime chiacchierate nelle sere d’estate sul senso
della vita.

Infine, devo esprimere la mia profonda gratitudine ai miei genitori

vii

per avermi fornito un sostegno incessante e un incoraggiamento continuo
nel corso della mia carriera universitaria e per essere stati così pazienti e
comprensivi durante il processo di ricerca e scrittura di questa tesi. Nulla
di questo sarebbe stato possibile senza di loro. Grazie.

Lucrezia

Milan, October 2020

The Devil’s in the details.

Contents

1 Introduction 1
1.1 Context and goal . 1
1.2 Contribution by chapter 3

2 MILPs for optimal decision making 5
2.1 Why MILPs? . 5
2.2 A significant example . 7

3 Resolution schemes for large-scale MILPs 17
3.1 Optimal approaches . 17

3.1.1 Branch and bound algorithms 18
3.1.2 Cutting plane method 20
3.1.3 Column generation 22

3.2 Heuristic approaches . 22
3.2.1 Lagrangian relaxation 23

3.3 Decentralised approaches for structured MILPs 25

4 Large-scale MILPs with hidden multi-agent structure 31
4.1 Proposed resolution scheme 31
4.2 Problem statement . 32

4.2.1 Reformulation as a graph partitioning problem . . . 33
4.3 Proposed partitioning algorithm 36

4.3.1 Procedure outline 36
4.3.2 Initialization and introduction of fictitious nodes . . 41

ix

4.3.3 Continuous-discrete nodes association 42
4.3.4 h-way partitioning 45
4.3.5 Block isolation . 50
4.3.6 Estimation of the number of blocks 51

4.4 Alternative approaches . 54

5 Performance assessment of the proposed resolution scheme 57
5.1 Introduction . 57
5.2 Sensitivity analysis . 58
5.3 Computational time . 66
5.4 Identification of the number of blocks 70

6 Conclusions and future work 79
6.1 Conclusions . 79
6.2 Future work . 81

A MLD operating constraints 83

B MILP constraints 87

Bibliography 95

Abstract

Mixed Integer Linear Programs (MILPs) arise in different contexts
and engineering applications and allow to formulate a variety of decision-
making problems involving systems comprising continuous and logical
components. If the system is large-scale, however, the resulting MILP is
typically hard to solve because of its combinatorial complexity due to the
presence of integer decision variables: finding an optimal solution is often
not viable in practice, and one has to resort to heuristic approaches to
recover computational tractability and find a solution that is – at least –
feasible.

This issue has been also addressed in recent works on decentralized
optimization for multi-agent systems. In particular, an approach has
been proposed for computing a feasible solution to constraint-coupled
multi-agent MILPs, while quantifying its sub-optimality level.

In a constraint-coupled multi-agent MILP, multiple agents cooperatively
aim at optimizing the sum of their individual cost functions with respect
to local decision variables subject to both individual and global constraints
originating from resource sharing. The introduced decentralized strategy
reduces the overall large-scale MILP to multiple lower-dimensional ones
(one per agent) that are repeatedly solved a finite number of times by
the agents while exchanging information on the coupling constraints. The
strategy is most effective if the number of agents is large compared to the
number of coupling constraints.

In this thesis, we propose a resolution scheme for a large-scale MILP

xi

with a hidden constraint-coupled multi-agent structure: such a structure is
recovered first, and then the previously mentioned decentralized optimiza-
tion scheme is applied. In order to disclose the hidden constraint-coupled
multi-agent structure, we need to manipulate the matrix defining the
linear constraints and reduce it to a singly-bordered block-angular form,
where the blocks define both local constraints and local decision variables
of the fictitious agents, whereas the border corresponds to the coupling
constraints.

We translate the matrix reformulation problem into a hyper-graph
partitioning problem and introduce a novel partitioning algorithm that
accounts for the specific requirements of our setting: i) maximize the
number of fictitious agents while minimizing the border size, and ii) evenly
distribute the discrete decision variables among the agents so as to uniformly
split the computational load.

Performance of the novel partitioning strategy in terms of quality of
the obtained result, sensitivity with respect to user-defined parameters,
and computational time is assessed through extensive simulations.

Keywords: Large-Scale MILP, Optimization, Decomposition, Hyper-
graph partition, Singly-Bordered Matrix

Sommario

I programmi lineari misto-interi (MILPs) si presentano in diversi con-
testi e applicazioni ingegneristiche e permettono di formulare una grande
varietà di problemi decisionali che coinvolgono sistemi formati da com-
ponenti continue e discrete. Tuttavia, nel caso di sistemi di larga scala
il MILP risultante è tipicamente difficile da risolvere a causa della sua
complessità combinatoria, dovuta alla presenza di variabili decisionali in-
tere: spesso trovare una soluzione ottima non è possibile in pratica ed
è necessario ricorrere ad approcci euristici per recuperare la trattabilità
computazionale e trovare una soluzione che sia almeno ammissibile, cioè
compatibile con tutti i vincoli.

Questo problema è stato affrontato anche in articoli recenti relativi
all’ottimizzazione decentralizzata per sistemi multi-agente. In particolare,
è stato proposto un approccio per calcolare una soluzione ammissibile
per MILP multi-agente con vincoli di accoppiamento, quantificando il suo
livello di sub-ottimalità.

In un MILP multi-agente con vincoli di accoppiamento, gli agenti
collaborano per ottimizzare la somma delle loro funzioni di costo individuali,
agendo sulle rispettive variabili decisionali locali e rispettando sia vincoli
individuali che globali, originati dalla condivisione delle risorse. La strategia
decentralizzata introdotta riduce il MILP globale di larga scala a un insieme
di sotto-problemi di dimensione inferiore (uno per agente) che vengono
risolti ripetutamente un numero finito di volte dagli agenti, scambiando
informazioni sui vincoli di accoppiamento. Tanto maggiore è il numero di

xiii

agenti rispetto al numero di vincoli di accoppiamento, tanto più efficace la
strategia.

In questa tesi, proponiamo uno schema di risoluzione per MILP di
larga scala che hanno una struttura nascosta multi-agente con vincoli di
accoppiamento: tale struttura viene prima evidenziata, per poi applicare
lo schema di ottimizzazione decentralizzato citato in precedenza. Al fine
di rivelare la struttura multi-agente nascosta, è necessario manipolare la
matrice che definisce i vincoli lineari e ridurla a una forma blocco-angolare
a bordo singolo, dove i blocchi definiscono sia i vincoli locali che variabili
di decisione locali degli agenti fittizi, mentre il bordo corrisponde ai vincoli
di accoppiamento.

Il problema di riformulazione della matrice viene tradotto in un prob-
lema di partizionamento di un iper-grafo e viene introdotto un nuovo
algoritmo di partizionamento che tiene conto dei requisiti specifici dello
scenario considerato: i) massimizzare il numero di agenti fittizi riducendo al
minimo la dimensione del bordo e ii) distribuire uniformemente le variabili
decisionali discrete tra gli agenti in modo da dividere uniformemente il
carico computazionale.

Le prestazioni della nuova strategia di partizionamento vengono valutate
in simulazione, in termini di qualità del risultato ottenuto, sensibilità
rispetto ai parametri definiti dall’utente e tempo di calcolo.

Parole chiave: MILP su larga scala, Ottimizzazione, Decomposizione,
Partizione di Iper-grafi, Matrici blocco-angolari a bordo singolo

Chapter 1

Introduction

1.1 Context and goal

Technological advances have enabled the introduction of engineering
systems with enhanced capabilities in many fields, such as manufacturing,
aerospace, and power engineering, to name a few. As a consequence,
systems have grown in complexity, which ultimately makes their design
and operation more challenging.

Optimal operation of engineering systems often translates into setting
discrete and/or continuous decision variables so as to maximize some
performance index subject to feasibility constraints. This leads to the
formulation of a mathematical program, [1], which becomes intractable
in case of a large-scale system involving discrete decision variables due to
the combinatorial explosion of the computational effort. One then has to
sacrifice optimality for computational tractability and head for a resolution
method that provides a feasible solution with, possibly, some performance
guarantees.

In this thesis, we focus on those decision making problems that can be
formulated as a large-scale Mixed Integer Linear Program (MILP).

MILPs arise as a natural framework when addressing problems of various
nature (identification, verification, reachability analysis, and control) for

1

2 Introduction

the class of Mixed Logical Dynamical (MLD) systems, originally introduced
in [2]. MLD systems have been extensively studied in the systems and
control literature [3, 4, 5, 6, 7, 8], because of their modeling capabilities
that make them suited to represent various systems comprising both logical
and physical components.

Several algorithms for solving generic MILPs have been developed over
the years [9, 10, 11, 12, 11, 13], but the reduction of their computational
complexity is still an open challenge, especially in case of large-scale
problems. Recent work in [14] and [15] partially addresses this issue
by introducing effective methods for solving large-scale MILPs with a
constraint-coupled multi-agent structure where each agent is optimizing
a subset of the decision variables with respect to its own cost function
subject to its local constraints and additional global ones that are coupling
its decision with that of the other agents. The original MILP is then
reduced to multiple lower-dimensional MILPs, one per agent, that are
repeatedly solved while exchanging information on the coupling. If the
number of discrete decision variables per agent is small, then, computational
tractability is recovered. In particular, by relying on the interconnected
structure of the multi-agent system, the decentralized iterative scheme in
[15] guarantees convergence to a feasible solution in a finite number of
iterations and provides also a characterization of its sub-optimality level
with respect to a centralized solution where the sum of the cost functions
is minimized subject to all local and global constraints. The method is
most effective if the number of coupling constraints is small with respect
to the number of agents.

The aim of this thesis is to devise a procedure that manipulates a
large-scale not necessarily structured MILP so as to highlight its partially
decomposable structure, thus making it more suitable for the application
of the resolution scheme in [15]. This calls for a method to rewrite the
original program as an equivalent constraint-coupled multi-agent MILP
by properly permuting the matrix defining the linear constraints into a

1.2. Contribution by chapter 3

block-angular structure, where the blocks define both local constraints and
local decision variables of the fictitious agents, and the border corresponds
to the coupling constraints. Since the cost function is linear, it can always
be decomposed into a sum of local cost functions according to the decision
variable partition. The most convenient structure for the application of the
algorithm in [15] needs to be enforced in the resulting matrix, which should
have a large number of blocks and a thin border, with the discrete decision
variables evenly divided among the agents associated to the blocks.

1.2 Contribution by chapter

The remainder of the thesis is organised as follows:

Chapter 2 provides some insights on MILP as a framework for optimal
decision making, with reference to the class of MLD systems and
energy systems as a possible application context.

Chapter 3 presents an overview on solution algorithms for MILPs with
a special focus on well-established decomposition-based approaches.
The chapter ends with the description of recently developed decen-
tralized optimisation algorithms for constraint-coupled multi-agent
MILPs.

Chapter 4 proposes a resolution scheme for a large-scale MILP that rests
on its reformulation as a constraint-coupled multi-agent MILP and
its decentralized solution. The MILP reformulation is based on the
permutation of the constraint matrix to a block-angular form. A novel
strategy based on a graph interpretation of the constraint matrix is
presented and compared with alternative state-of-the-art algorithms
for matrix manipulation. The proposed procedure is specifically tuned
to work well with the adopted decentralized resolution method.

Chapter 5 focuses on performance evaluation of the proposed strategy
for reducing a large-scale MILP to a constraint-coupled multi-agent

4 Introduction

MILP. Implementation choices are described and motivated. An
analysis of how different tuning parameters of the procedure affect
the final result is also provided.

Chapter 6 concludes the thesis with some final remarks and suggestions
for future developments.

Chapter 2

MILPs for optimal decision
making

2.1 Why MILPs?

Mixed integer linear optimization deals with decision-making problems
in which values for both continuous and discrete variables must be set so
as to optimize a linear performance index subject to linear constraints.
A compact canonical form for a generic Mixed Integer Linear Program
(MILP) is the following:

min
x
c̃>x (2.1a)

subject to:

Ãx ≤ b̃ (2.1b)

x ∈ Rnc × Znd (2.1c)

where vector x contains nc continuous decision variables and nd discrete
ones. Vector c̃ ∈ Rnc+nd defines the cost function, whereas matrix Ã ∈
Rq×nc+nd and vector b̃ ∈ Rq define q scalar constraints.

A decision vector x is feasible if it belongs to the mixed integer feasible

5

6 Chapter 2. MILPs for optimal decision making

set

S = {x ∈ Rnc × Znd : Ãx ≤ b̃}. (2.2)

A decision vector x ∈ S is an optimal solution to (2.1) if it minimizes the
cost function c̃>x over the feasibility set S. An optimal solution will be
denoted in the sequel as x?.

MILPs arise in various contexts, from finance and production planning
to any engineering application involving systems comprising interconnected
continuous (such as temperature, power, mass, etc.) and/or discrete
variables (on/off conditions, operating levels, etc.) that can be modeled
as Mixed Logical Dynamical (MLD) systems. MLD systems have wide
modeling capabilities and can describe the behavior of processes involving
interleaved physical laws and logical rules subject to operating constraints.
They include linear hybrid systems, finite state machines, and piecewise
linear, possibly constrained, dynamical systems, [2].

An MLD system is described by the following set of linear equations:

s(t+ 1) = Ats(t) +B1tu(t) +B2tη(t) +B3tz(t) (2.3a)

y(t) = Cts(t) +D1tu(t) +D2tη(t) +D3tz(t) (2.3b)

E2tη(t) + E3tz(t) ≤ E1tu(t) + E4ts(t) + E5t (2.3c)

where

- s =
sc
sl

, sc ∈ Rqc , sl ∈ {0, 1}ql , q := qc + ql

- y =
yc
yl

, yc ∈ Rpc , yl ∈ {0, 1}pl , p := pc + pl

- u =
uc
ul

, uc ∈ Rmc , ul ∈ {0, 1}ml , m := mc +ml

are the state, output and input vectors respectively, having both continuous
and binary components, while

2.2. A significant example 7

- η ∈ {0, 1}rl

- z ∈ Rrc

are additional auxiliary variables.
In [2], well-posedness of the system of equations (2.3a)-(2.3c) defining

the state s(t+1) and the output y(t) of a MLD system given the initial state
s(0) and the input u up to time t is discussed. Notions of output and state
trajectory, equilibrium and stability are extended to the MLD class and
optimal control is illustrated. Model predictive control (MPC) strategies
are also discussed. In MPC, a finite-horizon constrained optimization
problem needs to be solved at each time instant. Due to the hybrid nature
of the variables and operational constraints involved, when addressing
MPC with linear cost function and operating constraints for an MLD
system, a MILP comes into play. Its size depends not only of the order
of the system, but also on the time horizon length of the finite-horizon
optimization problem, which can make it challenging to find a solution
within one time step in case of fast processes.

An example of a MILP for the optimal operation of an MLD system
over a finite-horizon is described next with reference to the power grid
application context. The example clearly shows the potential of the MLD
modeling framework and the natural connection of the related optimal
control problems with mixed integer optimization. It is also instrumental
to introduce the class of multi-agent MILPs that typically arise when
modelling an aggregate of subsystems (agents), where each agent has its
own set of decision variables and local constraints but all agents decisions
are coupled due to the presence of a common resource.

2.2 A significant example

In this section we show an application of the MILP framework to
energy systems and, in particular, to the problem of coordinating multiple

8 Chapter 2. MILPs for optimal decision making

prosumers so as to provide balancing services to the grid. The example
is taken from [16]. Here, we work out explicitly the MLD model of the
multiple prosumers system before deriving the MILP formulation of the
coordination problem. Note that integer variables will be coded as binary
variables to match the MLD model (2.3).

We consider an Energy Service Provider (ESP) who acts as an aggre-
gator of a pool of prosumers. The power exchanged by the pool with
the grid is scheduled according to some reference daily profile established
with the Transmission System Operator (TSO). However, the TSO can
submit a request to the ESP to change the reference profile of a given
amount during a time slot of a certain duration, so as to balance production
and consumption at the grid level. The ESP has then to decide how to
distribute the requested change among all prosumers in the pool so as to
satisfy the TSO request up to a certain tolerance, while minimizing the
operating costs.

The problem can be addressed by deriving a MLD model for the
aggregated system and solving the resulting MILP as described next.

Consider a pool of m prosumers (agents), each one equipped with:

- a controllable generator G producing power PG
i > 0;

- a programmable load L requiring power PL
i > 0

- a battery storage device B, with exchange rate PB
i such that PB

i < 0
when charging and PB

i > 0 when discharging.

- a known reference daily power exchange profile P̃i.

The power request of the pool is then given by

P =
m∑
i=1

(PG
i + PB

i − PL
i).

The scheduling operation can be carried out dividing the one-day time
horizon into M time slots of duration ∆ts. In the sequel, we shall denote

2.2. A significant example 9

with t, t ∈ {0, 1, . . . ,M−1}, the time slot corresponding to [t∆ts, (t+1)∆ts)
and refer to the average values per time slot of the continuous variables.

Assume that a power variation request is submitted to the ESP with
reference to the time slots t0, . . . , tf .This request can be expressed as a
variation in the power profile of the type: ∆P (t)± ε∆P (t), with ε ∈ (0, 1)
relative tolerance parameter. The ESP is, hence, expected to resched-
ule the operations of the different prosumers (their programmable loads,
controllable generators, batteries) so as to meet the conditions:

(1− ε) ∆P (t) ≤ P (t)− P̃ (t) ≤ (1 + ε) ∆P (t), t = t0, . . . , tf (2.4)

Pi(t) = P̃i(t), t = tf + 1, . . . ,M − 1, (2.5)

while accounting for the additional operational constraints of the overall
system (described in detail next).

P̃i = P̃G
i + P̃B

i − P̃L
i denotes the pre-agreed reference power profile of

prosumers i and depends on the the reference power profiles of the devices
(generator P̃G

i , battery P̃B
i and load P̃L

i), while P̃ = ∑m
i=1 P̃i. Note that

(2.5) ensures that each prosumer maintains the original profile after the
satisfaction of the request, avoiding rebound effects.

The programmable load of each prosumer is assumed to operate only
at specific levels, i.e., , PL

i (t) ∈
{

0, P
L
i

nLi
, 2P

L
i

nLi
, . . . , P

L

i

}
. We shall assume

in the following that nLi = 2JLi − 1 with JLi ∈ N. We can then provide a
binary code for the admissible values of PL

i through the binary variables
δLi,j(t), j ∈ {1, . . . , J iL}, as follows:

PL
i (t) = P

L

i

nLi

JLi∑
j=1

(
2j−1 · δLi,j(t)

)
= σ>i δ

L
i (t) (2.6)

where we set

σi = P
L
i

nLi



1
2
...

2JLi −1

 δLi (t) =


δLi,1(t)

...
δL
i,JLi

(t)

 .

10 Chapter 2. MILPs for optimal decision making

If nLi cannot be expressed as nLi = 2JLi − 1, then, JLi =
⌈
log2(nLi + 1)

⌉
and

adequate constraints have to be introduced to exclude the values of PL
i (t)

in (2.6) that are not admissible.

In order to derive a MLD model of the aggregated prosumers system,
we need to introduce the following additional variables:

- the state of charge Si(t) of the battery storage unit of prosumer i at
the beginning of the time-slot t

- a binary variable δGi (t) modeling the status of the generator of
prosumer i during time-slot t (1 if it is on, 0 otherwise).

The resulting MLD is then characterized by:

- a state vector s(t), collecting the state of the m battery storages
at the beginning of the time-slot t:

s(t) =
[
S1(t) · · · Sm(t)

]>
- an input vector u(t), collecting the values of all the variables that
the ESP can modify in the time slot t:

u(t) =
[
u1(t) · · · um(t)

]>
where

ui(t) =
ui,c(t)
ui,d(t)

 =


PG
i (t)

PB
i (t)
δGi (t)
δLi (t)


The evolution in time of the aggregated system is subject to operating

constraints related to each time slot t = t0, . . . ,M − 1 and specified for all
prosumers i = 1, . . . ,m:

Battery storage dynamics

Si(t+ 1) = Si(t)−∆tsPB
i (t) (2.7a)

= Si(0)−∆ts
t∑

s=0
PB
i (s) (2.7b)

2.2. A significant example 11

Min/Max energy level
Si ≤ Si(t) ≤ Si (2.8)

Discharging/Charging rates limitation

PB,c
i ≤ PB

i (t) ≤ PB,d
i (2.9)

Min/Max power produced by G

δGi (t)PG
i ≤ PG

i (t) ≤ δGi (t)PG
i (2.10)

Energy consumption by L

M−1∑
t=t0

∆tsPL
i (t) =

M−1∑
t=t0

∆tsσ>i δLi (t) = EL
i (2.11)

where EL
i is the amount of energy required by the load and constraint

(2.11) makes sure the load receive all the required energy.

The standard form (2.3) can be derived by suitably expressing the
above relationships in terms of the introduced state and input variables.

In particular, the state equation (2.7) can be brought in the form (2.3a)
as follows:

s(t+1) =


S1(t+ 1)

...
Sm(t+ 1)

 = s(t)−∆ts



vs1 01×JL1 +3 · · · 01×JLm+3

01×JL1 +3 vs2 · · · 01×JLm+3
...

01×JL1 +3 01×JL2 +3 · · · vsm


︸ ︷︷ ︸

B1t


u1(t)
...

um(t)



where vsi =
[
0 1 0 01×JLi

]
.

As for constraints (2.7) - (2.11), they can be re-arranged in the form
(2.3c) as shown in Appendix A. We next focus on the formulation of the
rescheduling problem that has to be solved for satisfying the TSO request
over time-slots t0, . . . , tf .

The following additional constraints need to be introduced:

12 Chapter 2. MILPs for optimal decision making

Flexibility limitation of L

PL
i (t) = σ>i δ

L
i (t) = P̃L

i (t), t < tL,0i ∨ t > tL,fi (2.12)

where tL,0i and tL,fi respectively denote the first and the last time
slots in which the load can be modulated or shifted.

Power variation required by the TSO

(1− ε)∆P (t) ≤
m∑
i=1

(
PG
i (t) + PB

i (t)− σ>i δLi (t)
)
− P̃ (t) ≤ (1 + ε)∆P (t),

(2.13)

for t = t0, . . . , tf

Rebound-Effect avoidance

Pi(t) = PG
i (t) + PB

i (t)− σ>i δLi (t) = P̃i(t), t = tf + 1, . . . ,M − 1
(2.14)

where the last two are (2.4) and (2.5) rewritten here in terms of the
input variables.

Among the different admissible solutions to the problem, we favor the
one minimizing the overall operating cost:

J(·) =
m∑
i=1

M−1∑
t=t0

(
CG
i P

G
i (t)+CB

i

∣∣∣PB
i (t)− PB

i (t− 1)
∣∣∣+CL

i

∣∣∣PL
i (t)− P̃L

i (t)
∣∣∣),

where CG
i > 0 is the cost of producing one unit of power with the control-

lable generator, CB
i > 0 is the cost associated to the aging of the battery,

and CL
i > 0 is the cost that penalises changes in the programmable load

consumption profile with respect to its original schedule.
By replacing the absolute values appearing in the cost function above

with the auxiliary decision variables hBi (t), hLi (t), i = 1, . . . ,m:

J(·) =
m∑
i=1

M−1∑
t=t0

(
CG
i P

G
i (t) + CB

i h
B
i (t) + CL

i h
L
i (t)

)
(2.15)

2.2. A significant example 13

and imposing the following constraints

PB
i (t)− PB

i (t− 1) ≤ hBi (t), t = t0, . . . ,M − 1 (2.16a)

− PB
i (t) + PB

i (t− 1) ≤ hBi (t), t = t0, . . . ,M − 1 (2.16b)

σ>i δ
L
i (t)− P̃L

i (t) ≤ hLi (t), t = t0, . . . ,M − 1 (2.16c)

− σ>i δLi (t) + P̃L
i (t) ≤ hLi (t), t = t0, . . . ,M − 1 (2.16d)

where PL
i (t) has been replaced ith σ>i δLi (t) according to (2.6), the MILP

framework is recovered.

The ESP has in fact to determine the values for the control input and
the auxiliary decision variables along the time horizon [t0,M − 1] so as
to minimize (2.15) subject to the MLD system constraints (2.7)-(2.11),
the operating constraints (2.12)-(2.14) due to the TSO request, and the
constraints (2.16) on the introduced auxiliary decision variables.

Separability of (2.15) across i allows to express it as a sum of contribu-
tions from different prosumers. Indeed, all variables referred to the same
prosumer i in t = t0, . . . ,M − 1 can be collected in a vector xi of local
variables:

xi =
[
ui(t0)> hBi (t0) hLi (t0) · · · u>i (M − 1) hBi (M − 1) hLi (M − 1)

]>

so that (2.15) can be written as

J(·) =
m∑
i=1

c>i xi

where c>i =
[
cui Cb

i CL
i · · · cui Cb

i CL
i

]
with cui =

[
CG
i 0 0 01×JLi

]
As a result, the demand response problem can be formulated as the

14 Chapter 2. MILPs for optimal decision making

following constraint-coupled multi-agent MILP:

min
x1,...,xm

m∑
i=1

c>i xi (2.17a)

subject to:

(2.13), t = t0, . . . , tf (2.17b)

(2.7)− (2.10), (2.16), t = t0, . . . ,M − 1

(2.11)

(2.12), t = t0, . . . , t
L,0
i , tL,fi , . . . ,M − 1

(2.14), t = tf + 1, . . . ,M − 1

i = 1, . . . ,m (2.17c)

where

- xi is the local decision vector of prosumer i and contains both binary
and continuous variables

- (2.7) - (2.12), (2.14), (2.16) are linear constraints that jointly define
a local constraint set Xi of prosumer i

- (2.13) is the coupling constraint, arising from the need to coordinate
all the prosumers in the pool so as to satisfy the TSO flexibility
request. This constraint can be expressed in the form ∑m

i=1Aixi ≤ bi

(see the derivations in the Appendix B).

Formally, the general structure of a constraint-coupled multi-agent
MILP is as follows:

min
x1,...,xm

m∑
i=1

c>i xi (2.18a)

subject to:
m∑
i=1

Aixi ≤ b (2.18b)

xi ∈ Xi, i = 1, . . . ,m, (2.18c)

2.2. A significant example 15

where Xi in (2.18c) is the mixed-integer set defined by the local constraints
and compactly described as:

Xi = {xi ∈ Rnc,i × Znd,i : Dixi ≤ di}, (2.19)

with nc,i and nd,i respectively denoting the number of continuous and
discrete decision variables of agent i. The coupling constraint in (2.18b) is
defined by vector b ∈ Rp and matrix Ai ∈ Rp×ni where ni = nc,i + nd,i is
the total number of decision variables of agent i.

Problems in the form (2.18) are not confined to power systems control,
but arise in several contexts involving resources allocation and management:
from traditional combinatorial challenges, as the knapsack problem [17],
to finance [18], and network utility optimization [19].

Chapter 3

Resolution schemes for
large-scale MILPs

3.1 Optimal approaches

Despite the simplicity of their formulation, which involves linear cost
and constraints, large-scale MILPs are difficult to solve, because of their
intrinsic combinatorial complexity due to the presence of integer decision
variables.

In principle, an optimal solution to a MILP can be found combining
the traditional simplex method [20] with the enumeration of all possible
combinations of values for the nd discrete components of x. Indeed, each
combination defines a different LP, whose optimal solution provides values
for the nc continuous components of vector x?. Although possible in
theory, the number of combinations to test grows exponentially with nd,
thus making such a strategy inefficient and often not viable in practice.
To have an idea, consider the MILP provided in the energy application
example in Section 2.2 formulated for a pool of m = 10 prosumers, each
having only two levels for the load (on-off state associated to only one
binary variable δLi (t)). The corresponding formulation, setting t0 = 0 and
considering a 24-hours time horizon divided in M − t0 = M = 96 time slots

17

18 Chapter 3. Resolution schemes for large-scale MILPs

of 15-minutes duration, has a total of nc = M · 4 ·m = 3840 continuous
and nd = 2 ·M ·m = 1920 binary variables. With explicit enumeration,
even assuming an unrealistic solving time of 10−10 seconds for each of the
2nd LPs, it would take 3.0115 · 10560 years to find an optimal solution via
explicit enumeration.

3.1.1 Branch and bound algorithms

A widely adopted algorithmic principle that allows to overcome such
limitation is Branch and Bound (B&B). Devised in 1960 by Land and Doig
in [13] and embedded in state-of-the-art software for integer programming,
B&B is a search strategy based on a binary enumeration tree. Two
operations are at the core of the procedure: branching that recursively
divides the feasible set S into subsets, and bounding, that attempts to
prune the enumeration exploiting the optimization sub-problems inducted
by the branching. Different policies can be adopted for the two steps,
resulting in different B&B strategies.

A common choice for the branching strategy consists in creating two
disjoint sub-problems for each node of the tree by restricting the range of
values that a given discrete variable can assume. This approach, known as
variable branching, generates two children for each node by splitting the
feasibility set S into two disjoint subsets and gives to the enumeration tree
its binary structure. However, branching alone is just an enumeration tech-
nique. It is the bounding step that actually makes B&B competitive (and
viable) with respect to exhaustive enumeration, because it allows to decide
whether a branch can lead to the optimal solution (by further branching)
or not, thus greatly reducing the number of combinations actually explored.
There are many alternatives to bound the objective function value of a
sub-problem. The simplest strategy is the linear programming bounding
that provides a lower bound for the optimal objective function value z? by
relaxing the integrality constraints and solving the resulting LP.

Overall, a B&B procedure adopting the mentioned policies performs the

3.1. Optimal approaches 19

enumeration as follows. It starts by solving a LP relaxation of the original
MILP (2.1) at the root node of the tree. If the LP is infeasible, enumeration
stops since no solution for the original MILP can be found. If, instead,
all the nd originally discrete components of the LP solution x̃0 = (x̃0

c , x̃
0
d)

assume integer values, x̃0 is also optimal for the original problem (2.1).
Otherwise, the branching strategy selects one of the components in x̃0

d

assuming a fractional value, say xj, and generates two child nodes adding
constraints

xj ≤
⌊
x̃0
j

⌋
(3.1)

xj ≥
⌈
x̃0
j

⌉
(3.2)

to the corresponding sub-problems. The procedure is repeated on the each
child node h and depending on the optimal solution x̃h = (x̃hc , x̃hd) of the
LP relaxation of the associated sub-problems the procedure can:

- prune the branch by infeasibility if the LP has no solution;

- prune the branch by integrality if all components in x̃hd assume an
integer value. The corresponding value z̃h of the LP objective function
is an upper bound on the optimal solution z? of the original MILP;

- prune the branch by bound if x̃hd is not an integral vector and z̃h is
greater then or equal to the best known upper bound on z?. This,
indeed, ensures that no better solution can be found proceeding along
the branch and allows to implicitly enumerate all its nodes;

- branch on a non-integer component of x̃hd when the optimal solution
of the LP sub-problem provides a value z̃h for the objective function
that is lower than the best known upper bound.

The procedure is repeated until no open branch is left to explore.
Implicit enumeration of the discrete part of the feasibility set allows to

retrieve a solution to (2.1) rapidly and without sacrificing its optimality.
The policies chosen for the branching and bounding steps affect the speed

20 Chapter 3. Resolution schemes for large-scale MILPs

of the algorithm, thus becoming crucial as the size of the problem increases.
Indeed, the strength of any B&B approach consists in the opportunity of
pruning by bounding, which avoids explicit exploration of portions of S. In
general, computational time reduces when the number of pruned branches
increases or the level at which pruning occurs is higher. Depending on the
specific application, one may generate bounds solving different relaxations
of the sub-problems such as the Lagrangian relaxation, [21], described in
Section 3.2.1.

3.1.2 Cutting plane method

In general, solving to optimality the LP relaxation of (2.1) provides
a solution x?LP that minimizes the objective function value but does not
necessarily satisfy the neglected integrality constraints. However, it might
happen that x?LP satisfies the integrality constraints, then, it is optimal
for the original MILP. In order to make this more likely to happen, one
can add to the original MILP linear constraints that reduces the feasibility
region of its LP relaxation while preserving all admissible values in the
mixed-integer feasibility set S.

In principle, one should add all the inequalities that describe the smallest
polyhedron containing all admissible points for (2.1). Such polyhedron,
called convex hull of S and denoted as conv(S), defines the ideal formulation
for (2.1) and plays a crucial role in the resolution of MILP problems. Indeed,
solving the LP relaxation of a problem (2.1) defined over the convex hull
of its feasibility set allows to retrieve a solution x?LP that coincides with
the optimal one of (2.1).

A possible resolution strategy may, then, add a-priori inequalities to
the original formulation in the attempt of retrieving a description of the
convex hull of its feasibility set. Unfortunately, finding the description
of conv(S) is, in general, not trivial and requires adding a considerable
number of constraints to the linear relaxation, thus making its solution
more challenging.

3.1. Optimal approaches 21

For this reason, in 1958, Ralph Gomory proposed an alternative ap-
proach known as cutting plane method [22], which is based on the recursive
generation of cuts to provide a local description of the convex hull. A cut
is an inequality constraint that tightens the solution space of the relaxed
problem without cutting out any admissible solution in S. The main idea
behind Gomory’s algorithm is to exploit cuts to build a local description
of the convex hull of S only in a neighbourhood of the optimal solution x?.
However, since such solution is not known a priory the characterisation
of conv(S) is obtained through an iterative procedure. At each step of
the procedure, the LP relaxation of the current formulation is solved to
optimality. If its solution satisfies the integrality constraints, then it is also
optimal for the original problem and the procedure stops. Otherwise, one
or more cuts are added to the formulation solving a separation problem,
aimed at excluding the current fractional solution from the feasibility set of
the LP relaxation while preserving all the feasible solutions of the original
problem.

In principle, the cutting planes method can find an optimal solution
in a finite (possibly high) number of iterations. However, its efficiency
in tightening the feasibility region of the LP relaxation depends on the
separation problem and the computational effort required to solve it, which
may vary depending on the problem at hand. For this reason the generation
of cuts is often integrated in a B&B scheme, resulting in the so-called
Branch and Cut approach (see [11] and [23]). This leads to a B&B approach
where one or more cutting-plane steps are performed on the sub-problems
before the branching operation. The resulting algorithm consists in a
standard B&B where one can decide, for each un-pruned branch, whether
to tighten the solution space of the sub-problem before generating the child
nodes. This allows to produce potentially tighter bounds, and increase the
pruning opportunities, thus reducing the overall computational time of the
B&B procedure.

22 Chapter 3. Resolution schemes for large-scale MILPs

3.1.3 Column generation

Column generation [24] is an iterative technique used to solve linear
programming problems having a large number of decision variables, possibly
exponential in the number of constraints, for which direct resolution is
typically not viable or extremely heavy from a computational point of
view.

At each iteration, the algorithm considers only a subset of decision
variables and solves a restricted version of the original problem defined over
such variables only. The original problem is usually called master problem
(MP) whilst the version defined over the subset of variables is the restricted
master problem (RMP). Once the RMP is solved, the algorithm determines
whether the solution found is also optimal for the whole problem or if
some variables should be added to the formulation to improve the result,
together with the corresponding column in the constraint matrix. This
decision is made solving a pricing sub-problem that starts from the current
RMP solution and searches for a non-basic variable with negative reduced
cost. The procedure stops when no variable can be added to improve the
solution of the current restricted problem, which is thus optimal also for
the original MILP.

Notice that the column generation algorithm provides solution for
linear programs, but is not a resolution scheme for MILP problems per sé.
Nevertheless, it proves to be extremely efficient in the Branch and Price
strategies, where column generation is applied at each node to solve the
linear relaxation of the associated sub-problem.

3.2 Heuristic approaches

As the size of the instance increases, the computational effort required
to solve a MILP at optimality may become prohibitive. One may then
try to take advantage of the special structure of the decision-making
problem formulation, if any, to obtained simplified reformulations. Such

3.2. Heuristic approaches 23

reformulations can either replace the standard linear relaxations in a B&B
approach - to retrieve an optimal solution - or they can be combined
with suitable problem-specific heuristics to recover a feasible (but possibly
sub-optimal) solution, see e.g. [25] and [26].

3.2.1 Lagrangian relaxation

A first and well known reformulation is the Lagrangian relaxation. It
applies to all problems in the form (2.1) when the constraints (2.1b) can
be partition into two subsets, namely Ã1 x ≤ b̃1 and Ã2 ≤ b̃2, such that the
reformulation obtained by removing one of the subset of constraints, say
Ã1 x ≤ b̃1, called complicating constraints, can be more efficiently solved
with respect to the original problem.

More precisely, consider the MILP

min
x
c̃>x (3.3a)

subject to:

Ã1x ≤ b̃1 (3.3b)

Ã2x ≤ b̃2 (3.3c)

x ∈ Rnc × Znd (3.3d)

Its Lagrangian relaxation (LR) can be obtained by removing the compli-
cating constraints (3.3b) from the formulation and adding a penalisation
of their violation in the cost function:

min
x
c̃>x− λ

(
b̃1 − Ã1x

)
(3.4a)

subject to:

Ã2x ≤ b̃2 (3.4b)

x ∈ Rnc × Znd (3.4c)

Vector λ ≥ 0 collects the Lagrange multipliers and determines the impact
of the constraints violation in the objective function. The choice of λ is, in

24 Chapter 3. Resolution schemes for large-scale MILPs

general, not unique but it strongly affects the quality of the lower bound
on the optimal cost of the original problem provided by its Lagrangian
relaxation. The tightest bound can be obtained solving the Lagrangian
dual:

max
λ≥0

{
q(λ) = min

x∈Q

{
c̃>x− λ

(
b̃1 − Ã1x

)}}
(3.5)

where the set Q is equal to:

Q = {x ∈ Rnc × Znd : Ã2x ≤ b̃2} (3.6)

Since the dual function q(λ) is concave and non-differentiable, the dual
problem (3.5) is usually solved by means of the subgradient algorithm. The
lower-bound obtained by the joint solution of (3.5) and (3.4) can be proved
to be at least as tight as the one provided by a linear relaxation, and
typically better, [27, Corollary 8.4].

Therefore, whenever the constraints of the original problem can be
partitioned as described, a Lagrangian reformulation can be used in place
of an LP relaxation in B&B algorithms to improve the performance, since:

- it leads to a simplification of the optimization problem that is solved
at each node of the enumeration tree;

- it typically increases the pruning opportunities.

Dantzig-Wolfe relaxation

The Dantzig-Wolfe reformulation (DWR) allows to retrieve an alterna-
tive relaxation for MILPs in the form (3.3), where (3.3b) are still assumed
to be complicating constraints, while characterising set conv(Q), with
Q = {x ∈ Rnc×Znd : Ã2x ≤ b̃2} is ”easy”. In particular, the DWR consists
in rewriting the original problem by substituting constraints (3.3c)-(3.3d)
with the condition x ∈ conv(Q).

Such constraint is, then, implicitly enforced expressing x as the sum of
a convex combination of the vertices {vk}Kk=1 and a conic combination of
the extreme rays {rh}Hh=1 of conv(Q):

3.3. Decentralised approaches for structured MILPs 25

x =
K∑
k=1

(
`kv

k
)

+
H∑
h=1

(
µhr

h
)

(3.7)

where ` ≥ 0 collects the convex combination weights {`k}Kk=1, which are such
that ∑K

k=1 `k = 1, whilst µ ≥ 0 collects the conic combination coefficients
{µh}Hh=1. The obtained relaxation

min
x

c̃>
(

K∑
k=1

(
`kv

k
)

+
H∑
h=1

(
µhr

h
))

(3.8a)

subject to:

Ã1
(

K∑
k=1

(
`lv

k
)

+
H∑
h=1

(
µhr

h
))
≤ b̃1 (3.8b)

K∑
k=1

`k = 1 (3.8c)

` ∈ RK
+ , µ ∈ RH

+ (3.8d)

is expressed with respect to the vectors of the weights of the combination
` and µ.

Note that, in general, problem (3.8) has a large number of decision
variables, namely as many as the vertices and rays of set conv(Q), and is,
thus, solved via column generation.

3.3 Decentralised approaches for structured
MILPs

Constraint-coupled multi-agents MILPs are an example of structured
problem suited for the application of Lagrangian or Dantzig-Wolfe refor-
mulation. Indeed, the set of constraints of a problem in the form (2.18)
can be always partitioned into two subsets coinciding with coupling and
local constraints and such that - neglecting the first ones - the problem
becomes separable across the agents and is, hence, reduced to the solution
of many lower-dimensional MILPs.

26 Chapter 3. Resolution schemes for large-scale MILPs

Solving to optimality any of the two relaxations, however, does not
necessarily provide a feasible solution for (2.18). In particular, the Dantzig-
Wolfe reformulation substitutes the set defined by the local constraints
with its convex hull, effectively solving the following constinuous linear
problem:

min
x1,...,xm

m∑
i=1

c>i xi

subject to:
m∑
i=1

Aixi ≤ b

xi ∈ conv(Xi), i = 1, . . . ,m,

whose optimal solution x? = [x?1, . . . , x?m] may not satisfy (2.18c) since

x∗i ∈ conv(Xi) 6=⇒ x∗i ∈ Xi. (3.9)

The Lagrangian relaxation, instead, neglects the coupling constraints and
makes the problem separable across the agents. Its solution can be retrieved
with a two step procedure where the dual problem is solved first

max
λ≥0
−λ>b+

m∑
i=1

(c>i + λ>Ai)xi

and then the primal solution is recovered as

xi(λ) ∈ arg min
xi∈Xi

(c>i + λ>Ai)xi (3.10)

where λ is set equal to the solution λ? of the dual. The obtained xi(λ?),
i = 1, . . . ,m are, however, not guaranteed to jointly satisfy the coupling
constraint and the standard recovery approaches of the convex case (see
[28]), do not apply here. In the recent work [14], an approach is proposed
that guarantees feasibility of the solution obtained via (3.10) when λ is
set equal to the solution of the dual of a tightened version of the original

3.3. Decentralised approaches for structured MILPs 27

problem (2.18)

min
x1,...,xm

m∑
i=1

c>i xi (3.11)

subject to:
m∑
i=1

Aixi ≤ b− ρ

xi ∈ Xi, i = 1, . . . ,m

where the available amount of resource b is reduced of a suitable quantity
ρ > 0.

Let us define vector ρ̃ ∈ Rp with components

ρ̃j = p max
i∈{1,...,m}

{
max
xi∈Xi

[Ai]jxi − min
xi∈Xi

[Ai]jxi
}
, j = 1, . . . , p, (3.12)

where [Ai]j denotes the j-th row of Ai and ρ̃j the j-th entry of ρ̃. Suppose
that there exists a unique solution to the dual of the tightened problem
(3.11) and to the associated LP when setting ρ = ρ̃. If we denote by λ?ρ̃ the
solution to the dual, then, in [14] it is shown that xi(λ?ρ̃), i = 1, . . . ,m, (cf.
equation (3.10)) is feasible for the original problem (2.18). Performance
guarantees are also provided, with a gap that scales linearly with the
infinity norm of the tightening vector. The approach is effective only if
the number p of coupling constraints is small compared to the number m
of agents.

In [15] the choice of the tightening vector ρ is performed in an adaptive
fashion and integrated into a decentralized resolution scheme that aims at
determining a feasible solution to (2.18) through a similar reasoning than
[14].

The proposed algorithm is a variant of the dual sub-gradient algorithm
and is reported below for ease of reference (cf. Algorithm 1). At each
iteration, agents generate tentative primal solutions xi(k + 1) (see step 7
in Algorithm 1) and share them with a coordination unit, which in turn
update the value for the tightening ρ and the dual variable λ. Due to the

28 Chapter 3. Resolution schemes for large-scale MILPs

separable structure of the problem, dualization of the coupling constraints
decomposes the original MILP into m sub-problems, one for each agent
with reduced complexity and subject to local constraints only. Reduced
conservativeness with respect to [14] is guaranteed by the update policy
for the tightening. At each iteration the value ρ(k) is refined based only
on explored values of the primal solutions xi ∈ Xi for i = 1, ...,m and not
on the overall set Xi (see step 12).

In [15], Algorithm 1 with ḩoice of {α(k)}k≥0 such that lim
k→∞

α(k) = 0
and ∑∞k=0 α(k) =∞ is shown to converge in a finite number of iterations
to a feasible solution with a final value for the tightening vector ρ that
is no worse (and typically better) than the worst-case ρ̃ defined in (3.12).
This leads to a better performing solution and a less conservative approach
which can be applied to a wider class of problems than the approach in
[14].

Possible variants of Algorithm 1 can be devised to improve the quality
of the solution, while preserving its finite convergence properties.

3.3. Decentralised approaches for structured MILPs 29

Algorithm 1 Decentralised Multi-Agent MILP
1: λ(0) = 0;
2: si(0) = −∞, i = 1, . . . ,m;
3: si(0) = +∞, i = 1, . . . ,m;
4: k = 0
5: repeat
6: for i = 1 to m do
7: xi(k + 1)← arg min

xi∈vert(Xi)
(c>i + λ(k)>Ai)xi

8: end for
9: si(k + 1) = max{si(k), Aixi(k + 1)}, i = 1, . . . ,m
10: si(k + 1) = max{si(k), Aixi(k + 1)}, i = 1, . . . ,m
11: ρi(k + 1) = si(k + 1)− si(k + 1), i = 1, . . . ,m
12: ρ(k + 1) = p max

i=1,...,m
{ρi(k + 1)}

13: λ(k + 1) =
[
λ(k) + α(k)

(m∑
i=1

Aixi(k + 1)− b+ ρ(k + 1)
)]

+

14: k ← k + 1
15: until a stopping criterion is met

Chapter 4

Large-scale MILPs with
hidden multi-agent structure

4.1 Proposed resolution scheme

The presence of a large number of discrete variables is the major obstacle
to the solution of a MILP due to the exponential complexity growth. This
issue has been partially tackled in the literature for structured problems,
and, in particular, for constraint-coupled multi-agent MILPs. Section 3.3
shows how a feasible solution to constraint-coupled multi-agent MILPs with
performance guarantees can be obtained through a decentralized scheme
where the original MILP is decomposed into multiple lower-dimensional
MILPs and a coordination layer is introduced to impose the coupling
constraint, thus providing a scalable resolution strategy. However, this
method is tailored to the specific structure of the program and is hence
not directly applicable to a general (large-scale) MILP.

In this chapter we propose an automatic procedure aiming at refor-
mulating a generic large-scale MILP to highlight its hidden multi-agent
structure. By combining such a procedure with the decentralized resolution
scheme in [15], we shall provide a general-purpose tool to large-scale MILP
optimization.

31

32
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

4.2 Problem statement

The constraint-coupled multi-agent MILP (2.18), with local constraint
sets defined in (2.18c), can be rewritten in the general MILP form (2.1) by
setting c̃> = [c>1 · · · c>m] and by collecting all local and global constraints
in the inequality 

D1 0 . . . 0
0 D2 . . . 0
...
0 0 . . . Dm

A1 A2 . . . Am


︸ ︷︷ ︸

Ã



x1

x2
...
...
xm


︸ ︷︷ ︸

x

≤



d1

d2
...
dm

b


︸ ︷︷ ︸

b̃

(4.1)

where the block matrix Ã is characterized by a singly-bordered block-angular
structure, [29].

The problem of disclosing the hidden multi-agent structure of a MILP
then amounts to finding a suitable transformation of matrix Ã in (2.1) so as
to bring it into the singly-bordered block-angular form in (4.1). Figure 4.1
provides a pictorial view of a (sparse) matrix Ã (left plot) which, under
suitable manipulations, is brought into a singly-bordered block-angular
form (right plot). This allows to compute a feasible solution of the generic
MILP via the iterative procedure described in Section 3.3, where each
block on the main diagonal of the transformed Ã defines the agents’ local
variables and constraints, while the border at the bottom of the transformed
Ã corresponds to the coupling constraints.

Notice that

- in order to preserve the mixed-integer nature of the problem, only
transformations involving permutations of rows and columns are
adopted

- integer decision variables have to be evenly distributed among the
agents to equally split the computational load

4.2. Problem statement 33

Figure 4.1: Transformation of a generic MILP constraint matrix (left) into
its singly-bordered block-angular form (right), highlighting the
presence of a constraint-coupled multi-agent structure.

- the border of the matrix corresponding to the coupling constraints
has to be thin compared to the number of agents (blocks) for the
decentralized resolution scheme to be effective.

4.2.1 Reformulation as a graph partitioning problem

The problem of retrieving a block-angular form for a (sparse) matrix Ã
is well-known in different fields. Numerical analysis techniques take advan-
tage of the block-angular forms to parallelize computations in LU or QR
decomposition, matrix multiplication and inversion. In optimization, it is
adopted to efficiently solve large-scale LPs via Dantzig-Wolfe reformulation
[30]. For this reason, several algorithms have been proposed to perform
such a transformation.

The most common approach consists in reformulating the matrix trans-
formation problem into a graph partitioning problem. First, a suitable
hyper-graph representation for matrix Ã is derived, then a partition of
the hyper-graph nodes in m sets is performed. Finally, the hyper-graph

34
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

partition is re-interpreted as a permutation of the matrix Ã. Unfortunately,
available algorithms for hyper-graph partitioning are not directly applicable
to our setting, mainly because we need to balance the number of discrete
decision variables among the blocks corresponding to the agents. The idea
developed in this thesis is to introduce a novel partitioning algorithm that
is inspired by those in the literature but meets our requirements. To this
purpose, we first need to recall some notions of graph theory.

A hyper-graph H = (U ,N) is defined as a set U of nodes and a set N
of nets (or hyper-edges). Every net ni ∈ N is a subset of nodes, ni ⊆ U ,
and represents a connection among them. If all nets have cardinality 2,
then, the standard notion of graph is recovered since each net would be
equivalent to an edge connecting two nodes. The nodes in a net are called
pins and the set of pins in a net ni is denoted as Pins(ni). The set of nets
connected to a node uj is instead denoted as Nets(uj). A net ni is said
to be incident on a node uj if uj ∈ Pins(ni), and a node uh is named a
neighbour of uj if there exists a net ni incident on (i.e. connecting) both
nodes.

Figure 4.2a shows an example of a hyper-graph H. Each node uj is
represented with a circle containing the node label uj, while each net
ni is depicted as a solid square labelled with ni. A net i is incident on
a node j if there exists a line connecting square ni with circle uj. For
example, net n1 is incident on nodes u1, u2 and u3, that are its pins (i.e.
Pins(n1) = {u1, u2, u3}, whilst nets n2, n3 and n4 belong to Nets(u4).

An m-way node partition of a hyper-graph H is a collection Π =
{U1, . . . ,Um} of subsets of nodes (each subset is called part) such that:

- Uh ⊂ U , Uh 6= ∅, h = 1, ...,m;

- Uh ∩ Ul = ∅, 1 ≤ h < l ≤ m;

- ⋃mh=1 Uh = U .

Figure 4.2b shows a possible 3-way partition Π = {U1,U2,U3} of the hyper-
graph H depicted in Figure 4.2a with U1 = {u1, u2, u3}, U2 = {u5, u6}, and

4.2. Problem statement 35

(a) (b)

Figure 4.2: Example of hyper-graph H (a) and a possible 3-way partition (b).

U3 = {u4, u7, u8}. Given a partition Π of H, we say that net ni connects
part Uh if ni has at least one pin in Uh. Nets are called cut (or external) if
they connect more than one part and uncut (or internal) otherwise. With
reference to Figure 4.2b, n1, n4, and n5 are internal nets while n2 and n3

are external nets. Note that, it is always possible to derive an equivalent
representation of Π as an m-way net partition Π = {U1, . . . ,Um} =
{N1, . . . ,Nm;Next}, the set Nh for h = 1, . . . ,m contains internal nets
connecting part Uh, whilst Next all the external nets. The number of cut
nets corresponds to the number of nets in Next, and denotes the cut-size
of the partition. The net partition Π = {N1,N2,N3;Next} corresponding
to the node partition in Figure 4.2b is N1 = {n1}, N2 = {n5}, N3 = {n4},
and Next = {n2, n3}. The cut-size of Π is, hence, equal to 2.

A partition Π = {U1, . . . ,Um} is called ε-balanced if each part Uh
satisfies the balance constraint:

|Uh| ≤ (1 + ε)
⌈∑m

h=1 |Uh|
m

⌉
, (4.2)

where |U| denotes the cardinality of set U . When ε = 0, the partition is said
to be balanced. An optimal, ε-balanced m-way partition of hyper-graph H
is a partition satisfying (4.2) and with minimum cut-size.

36
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

Given a constraint matrix Ã, two equivalent hyper-graph representa-
tions can be derived: a row-net or a column-net model. Without loss
of generality, we describe only the row-net representation of Ã, since a
column-net model of Ã can be obtained as a row-net model of its transpose
Ã>.

A hyper-graph row-net model of matrix Ã is a hyper-graph HÃ = (U ,N)
where each node in U corresponds to a column of Ã and each net in N
corresponds to a row of Ã. More specifically, if the entry aij of Ã is
non-zero, then node uj is a pin of net ni. Since each row of Ã corresponds
to a constraint and each column to a decision variable of our MILP, then
the nodes of the hyper-graph represent the decision variables and a net
represents a constraint (i.e. a connection) between decision variables.
Note that permuting rows and columns of Ã does not change the hyper-
graph structure but only the labels associated to nodes and nets. An
m-way partition ΠÃ = {U1, . . . ,Um} = {N1, . . . ,Nm;Next} of the row-
net hyper-graph representation of matrix Ã induces a permutation of Ã
and the permuted matrix ÃΠ has singly-bordered block-angular structure.
Specifically, nodes in Uh and internal nets in Nh identify columns and rows
of block Dh for h = 1, ...,m in (4.1), whilst nets in Next correspond to the
border [A1, . . . , Am]. Formal derivation of the result is provided in [29].

In Figure 4.3b we show the hyper-graph now-net model of the (sparse)
constraint matrix represented in Figure 4.3a. Column labels refers to nodes
and row labels refers to nets. In Figure 4.4b we report a possible 3-way
partition of the hyper-graph in Figure 4.3b and the resulting (permuted)
constraint matrix in Figure 4.4a.

4.3 Proposed partitioning algorithm

4.3.1 Procedure outline

State-of-the-art hyper-graph partitioning algorithms cannot be applied
directly to our setting because they do not account for the following key

4.3. Proposed partitioning algorithm 37

(a) (b)

Figure 4.3: Constraint matrix Ã (a) and its row-net hyper-graph representation
HÃ (b).

(a) (b)

Figure 4.4: 3-way partition of the HÃ (b) and induced singly-bordered block-
angular form ÃΠ of matrix Ã (a).

38
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

requirements of

1. maximizing the number m of agents while minimizing the size p of
the border matrix representing the coupling constraints and

2. evenly distribute the number of integer decision variables among the
agents.

More specifically, the performance guarantees provided by the decentralized
solution summarized in Algorithm 1 are affected by the border-to-agents
ratio p

m
. In principle, the smaller the border, compared with the number

of agents, the better the performance of the obtained approximate solu-
tion. Minimization of the border size p is already promoted by standard
partitioning algorithms. However, the number of parts m is typically
considered as fixed and a-priori given. In our context, it is not known and
its estimation (and maximization) becomes crucial and must be integrated
in the partitioning algorithm.

The second requirement, instead, ensures even distribution of the
computational load in the m lower-dimensional MILPs associated with the
agents. The standard notion of balanced partition must then be extended
to account for the mixed-integer nature of the set of nodes in the hyper-
graph HÃ. Since each node is associated with a decision variable that
can be either continuous or discrete, a balanced m-way partition must
be such that discrete nodes are distributed in equal number among the
agents, whereas continuous nodes can be unevenly distributed if this helps
in balancing the discrete ones and/or in reducing the size of the border.

Building upon available algorithms, we propose a novel technique
to bring a matrix Ã into a singly-bordered block-angular form via hyper-
graph partitioning, whilst accounting for the above mentioned requirements.
Algorithm 2 provides the pseudo-code of the partitioning procedure for a
fixed number of parts m. Some strategies for its identification are proposed
and described in Section 4.3.6.

The algorithm takes as input the hyper-graph H = (Uc ∪ Ud,N) to be

4.3. Proposed partitioning algorithm 39

Algorithm 2 Hyper-graph partitioning

Input:

H original hyper-graph Dmax max discrete nodes
Ud Set of discrete nodes m number of parts
Uc Set of continuous nodes π threshold for the p

m
ratio

a penalty parameter
1: h = m

2: Hρ = (Uρ,Nρ) = H = (Uc ∪ Ud,N)
3: Π? = ∅
4: p = 0
5: repeat
6: nδ = h ·Dmax − |Ud|
7: Hρ = add_dummy_nodes(Hρ,nδ)
8: [M, H̃ρ] = assign_continuous2discrete(Hρ,Ud, Uc)
9: Π̃ρ={Ui}mi=1={{Ni}mi=1;Next}=h_way_partitioning(H̃ρ, h,Dmax, a)
10: [Hρ, Πρ] = ungroup_disc_continuous(H̃ρ, Π̃ρ,M)
11: [β1, . . . , βB,Nτ] = isolateBlocks(Hρ,Πρ)
12: [Hρ, Πρ] = remove_dummy_nodes(Hρ, Πρ, nδ)
13: p = p+ |Nτ |
14: Π? = Π? ∪ {Uβ1 , . . . ,UβB}
15: h = h−B
16: Hρ =

(
Uρ \

{⋃B
b=1 Uβb

}
,Nρ \

{⋃B
k=1Nβk

}
\ Nτ

)
17: until h < 2 ∨ p

m
> π

Output: Partition Π?

40
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

partitioned, with information on whether a node represents a continuous
(inside Uc), or discrete (inside Ud) decision variable, and the number m of
desired parts. Three additional parameters are supplied:

- the maximum number Dmax of discrete variables admitted per block,
which measures the maximum computational effort that can be
endured by each agent;

- a threshold π denoting a satisfactory border-to-agents ratio, repre-
senting the desired performance guarantees provided by Algorithm 1

- a penalty parameter a ≤ 1, which enters in the definition of the
objective function used to guide the partitioning algorithm.

The idea behind the overall procedure is as follows. The algorithm
seeks for an m-way partition Π? of H by iteratively isolating groups of
nodes (the parts). Parts that are identified in one iteration are removed
and a reduced hyper-graph Hρ is passed on to the next iteration to seek
for an h-way partition with h < m. Each iteration unfolds as follows. At
the beginning, the algorithm performs a preliminary clustering operation
during which each continuous variable is assigned to the discrete variable it
is most coupled with (cf. Step 7). In the resulting coarsened hyper-graph
H̃ρ, each node (also called supernode) contains one discrete variable only
and the associated continuous ones. Then, the algorithm performs an
h-way ε-balanced minimum cut-size partition Π̃ρ = {U1, . . . , Uh} of the
coarsened hyper-graph H̃ρ (cf. Step 8) and ungroups the supernodes to
express the obtained partition in terms of a partition Πρ of the hyper-graph
Hρ (cf. Step 9). The amount of imbalance ε in the partitioning phase is
ensured by adding an appropriate amount of fictitious nodes (cf. Step 6)
at the beginning, which are then removed at the end of the iteration (cf.
Step 11).

The one-to-one correspondence between discrete nodes in Hρ and
supernodes in H̃ρ allows to evenly distribute (within the ε tolerance) the
discrete variables and has the added bonus of simplifying the partitioning

4.3. Proposed partitioning algorithm 41

phase by reducing the dimension of the hyper-graph, as nodes associated to
continuous variables are not present in H̃ρ. Clearly, nets of H̃ρ are different
from the nets in Hρ as they must account also for indirect connections
between discrete nodes that are not directly connected in Hρ, but they are
connected to the same continuous variable. After the ungrouping phase,
the B-least coupled parts Uβ1 , . . . , UβB in Πρ are isolated (cf. Step 10) and
all nets connecting isolated parts are removed. The number of external nets
p is updated (cf. Step 12), parts Uβ1 , . . . , UβB are stored and will be parts
of the returned partition Π? (cf. Step 14). Their nodes and associated
nets are removed from Hρ (cf. Step 15), and the algorithm proceeds to
the next iteration.

Such a coarsening-partitioning-isolation routine is performed iteratively
until all m parts are identified. Since the size of the border p cannot
decrease across the iterations, any execution leading to an unsatisfactory
final partition can be preemptively interrupted monitoring the border-to
agents ratio p

m
. Early-stop occurs whenever p

m
exceeds a quality-threshold

π, that can be tuned based on qualitative knowledge of the application
and/or explicit specifications, when available.

Notice that, the combination of the m-way partitioning scheme together
with the block-isolation procedure makes the approach powerful since it
allows to improve the final partition whilst reducing the dimension of the
hyper-graph as iterations progress, and thus the run-time required by each
execution.

A more detailed description of the operations performed at each itera-
tion is provided in the following Sections 4.3.2-4.3.5.

4.3.2 Initialization and introduction of fictitious nodes

To allow for an unbalanced partition, we follow the approach suggested
in [31], which consists in adding a specific number of dummy nodes (i.e.,
nodes not connected by any net) and then seek for a balanced partition.

Without any prior knowledge on the hidden multi-agent structure of our

42
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

MILP, we can tune the imbalance based on our computational constraints.
To this end, consider the maximum amount Dmax of discrete variables
that are admitted per block and the tentative value m for the size of the
partition. In principle, we can accommodate a total of mDmax discrete
decision variables equally distributed among m parts. But if the number
nd of discrete decision variables in our MILP is less than mDmax, then we
can add

nδ = mDmax − nd (4.3)

dummy discrete decision variables and then perform a balanced m-way
partition to provide some flexibility. Indeed, those agents that will receive
some dummy discrete variables will have a lower computational load, but
none of them will receive more than Dmax discrete variables.

Knowing that anm-way balanced partitioning algorithm run on a graph
with mDmax will produce a partition with |Ui| = Dmax we can use (4.2) to
compute the relative imbalance

ε = Dmax⌈
nd
m

⌉ − 1 (4.4)

between the parts that this procedure allows.
Alternatively, if an estimate ε̂ for ε is known, it can be used to add

nδ = ndε̂ variables provided that nd + nδ ≤ Dmax.

4.3.3 Continuous-discrete nodes association

Merging continuous and discrete nodes before computing a partition of
the hyper-graph is fundamental in order to focus on distributing the discrete
variables among the parts. Indeed, the grouping operation allows to create
a coarsened hyper-graph in which each supernode represents one discrete
decision variable and all its associated continuous variables. Clearly, the
nets connecting the nodes in this coarsened hyper-graph account also for
constraints between continuous variables associated to different discrete
ones, whilst constraints involving only continuous variables and the discrete
variable to which they are associated disappear.

4.3. Proposed partitioning algorithm 43

Algorithm 3 assign_continuous2discrete

Input:
H original hyper-graph Ud set of discrete nodes
Γ : U → 2U neighbours map Uc set of continuous nodes

1: M = {}
2: w = 1 ∈ Rn

3: H̃ = H = (Uc,Ud)
4: for each v ∈ Uc do
5: if Γ(v) ∩ Ud 6= ∅ then

// cycle through the discrete neighbours of v
6: for each u ∈ Γ(v) ∩ Ud do
7: compute r(u, v) according to (4.7)
8: end for
9: select u? = argmax

u∈Γ(v)∩Ud
r(u, v)

10: else if Γ(v) ∩ Uc 6= ∅ then
// cycle through the continuous neighbours of v

11: for each u ∈ Γ(v) ∩ Uc do
12: compute r(u, v) according to (4.7)
13: end for

// find the best contraction partner
14: select u? = argmax

u∈Γ(v)∩Uc
r(u, v)

15: else
16: randomly select u? ∈ Ud
17: end if
18: [M, H̃,Γ, w] = contract(H̃,Γ, w, u?, v)
19: end for

Output:
M contraction map H̃ coarsened hyper-graph
Γ updated neighbours map w updated array of weights

44
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

The aggregation of nodes generates a lower-dimensional hyper-graph,
which simplifies the effort involved in partitioning the graph. However, it
also changes the structure of the connections between the discrete nodes
and a not appropriate assignment may hamper the partitioning phase.
For this reason, the adopted grouping criterion must be carefully selected
in order to minimize the impact on the structure of the connections and
ensure that a good partition of the resulting coarsened hyper-graph yields
to a good partition of the original one.

The grouping policy proposed is summarized in Algorithm 3, which
is a modified version of an existing coarsening procedure, known as Edge
Coarsening (EC) and adopted in [32, 33, 34] to reduce the dimensions of
the input hyper-graph and improve the performance of the partitioning
algorithm.

EC merges pairs nodes based on the strength of their connection,
evaluated considering the number and the size of the nets they share (i.e.
the nets that are incident on both nodes). In particular, it assigns to each
net n in the hyper-graph a hyper-edge weight ω(n), measuring the strength
of the connection established between any pair of nodes u, v ∈ Pins(n) by
net n and computed as:

ω(n) = 1
|Pins(n)| . (4.5)

The smaller the size of the net n, the higher its hyper-edge weight ω(n) and
the tighter the coupling between its pins. The strength of the connection
between a pair of nodes u, v can then be measured using the rating function

rEC(u, v) =
∑

n∈Nets(u)∪Nets(v)
ω(n) (4.6)

which can be used to determine, for each node u, the best contraction
partner v? = argmax

v
{r(u, v)} to be merged with. The grouping oper-

ation is, then, performed as follows: EC randomly selects a node u in
the hyper-graph, it searches its best contraction partner v? among its
neighbours and merge them together. The procedure is repeated until a
given dimension/density criterion on the coarsened hyper-graph is met.

4.3. Proposed partitioning algorithm 45

The grouping strategy in Algorithm 3 follows a similar paradigm, but
adopts restrictions to avoid merging together discrete nodes. Specifically,
it randomly selects a continuous node v in the hyper-graph in Step 4 and
looks for a contraction partner u among its discrete neighbours (cf. Steps
5-8). If no discrete neighbour exists, a continuous contraction partner is
selected (cf. Steps 10-13). In case of completely isolated node, the discrete
counterpart is chosen arbitrarily (cf. Step 16). Candidate contraction
partners u, either discrete or continuous, are evaluated and ranked in
Steps 7 and 12, according the a modified version r(u, v) of the rating
function in (4.6):

r(u, v) = 1
w(u) + w(v)

∑
n∈Nets(u)∪Nets(v)

ω(n) (4.7)

where the function w(u) defines the weight of the supernode u and is equal
to the number of nodes inside the supernode, with w(u) = 1 when u is a
node and not a supernode. The rating function r(u, v) is inspired to the one
used in EC but contains an additional scaling factor 1

w(u)+w(v) to promote
a balanced distribution of the continuous variables in the super-nodes.
Once the best candidate u? is found (see Steps 9 and 14), nodes u? and
v are grouped together, the structure of the hyper-graph is updated and
information for the ungrouping operation is stored in a table M. The
procedure is repeated until all continuous nodes are assigned.

4.3.4 h-way partitioning

At the core of iterative procedure, the partitioning algorithm distributes
the discrete variables (along with their associated continuous one obtained
from the previous phase) among the agents following a sequential break-off
paradigm. The procedure is summarized in Algorithm 4.

First introduced in [35], sequential break-off finds an h-way partition
of an input hyper-graph with n nodes by iteratively isolating groups of n

h

nodes having a weak connection (i.e., a low number of common nets) with
the remaining ones. In particular, at each iteration k of the sequential

46
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

Algorithm 4 h-way partitioning (via sequential break-off)

Input:
H̃ coarsened hyper-graph
h number of parts a penalty parameter
Dmax max discrete nodes nd number of discrete nodes

1: nh =
⌈
nd
h

⌉
2: U2 = U
3: for k = 1, . . . , h− 1 do
4: U1 = select_n_h_elements(U2, nh)
5: U2 = U2 \ U1

6: Πrnd = (U1, U2)
7: (U?1 ,U?2) = FM_w_pen(H̃,Πrnd, Dmax, 1)
8: UΠ0,j = U?1
9: U2 = U?2
10: end for
11: Π0 = (UΠ0,1, . . . ,UΠ0,h)
12: Π? = pairwise_comparison(Π0, Aρ, Dmax)

Output: Π? Final Partition

4.3. Proposed partitioning algorithm 47

Algorithm 5 Iterative Refinement Bisection Algorithm

Input:
H̃ reduced hyper-graph
Π0 Initial partition a scaling factor
Dmax max discrete nodes nd number of discrete nodes

1: ∆cs = compute_cut_size (Π0)
2: Πpass = Π0

3: repeat // pass
4: i=1
5: Πlist[i] = Πpass

6: repeat // move
7: for each u ∈ Ũ do
8: ∆g(u) = compute_pen(H̃, Dmax, a,Πlist[i])
9: g(u) = compute_gain(Πlist[i], a,Dmax) - ∆g

10: end for
11: [mv?] = best_feasible_move(g,∆g,Πlist[i], Dmax)
12: Πlist[i+ 1] = move(mv?,Πlist[i])
13: i = i+ 1
14: lock_moved_node(mv?)
15: until all nodes are locked // end move
16: Π? = find_best_partition(Πlist)
17: ∆cs = compute_cut_size(Πlist[1])-compute_cut_size(Π?)
18: if ∆cs ≥ 0 then
19: Πpass = Π?

20: end if
21: until ∆cs ≥ 0 // end pass

Output: Πpass Final Bisection

48
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

break-off routine an initial 2-way partition (bisection) {U1,U2} is created
(cf. Steps 4-5) by randomly selecting a subset U1 of nh =

⌈
n
h

⌉
nodes. This

choice establishes a relative unbalance between the parts equal to:

ε2 = |U2|⌈
|U1|+|U2|

2

⌉ − 1 (4.8)

Such bisection is, then, optimized (cf. Step 7) to reduce the cut-size
preserving the ε2 relative unbalance, the refined subset of U?1 is set aside
and the procedure is repeated on the remaining elements in U?2 until all h
parts of the h-way partition are stored. Finally, the procedure performs
pair-wise comparisons between the parts (cf. Step 12) aiming at making
the h-way partition pair-wise optimal, i.e. such that for every pair of
parts Ui,Uj for i = 1 < j ≤ h the 2-way partition {Ui,Uj} is a 0-balanced
minimum cut-size bisection of the sub-hyper-graph induced by Ui and Uj.
Comparisons are performed iteratively until either a maximum number
of iterations is reached, or all the possible

(
h
2

)
pairs of subsets Ui,Uj are

compared but no move is found to improve the partition.
A minimum cut-size bisection can be obtained starting from the initial

random bisection, by applying a modified version an iterative refinement
partitioning scheme proposed by Fiduccia and Mattheyses (FM) in [35],
summarized in Algorithm 5. As in the original version, the algorithm
starts from an initial partition Π0 of the hyper-graph and iteratively
refines it moving nodes between the parts to reduce the hyper-edge cut.
The procedure is organised in incrementally improving linear-time passes.
During each pass (cf. Steps 4-20), every node is moved exactly once and
nodes are processed according to a minimum cut-size oriented order. At
the end of the pass the sub-sequence providing the best improvement is
performed, the new partition is stored (cf. Steps 16 and 19) and a new
pass is started. No further pass is performed if no improvement is obtained
(i.e. ∆cs ≤ 0).

The order in which nodes are moved from one part to the other is
decided according to a gain g associated to the move. A pass consists, then,

4.3. Proposed partitioning algorithm 49

in iteratively selecting the feasible move (i.e. not compromising the balance
requirements) with the highest gain, perform it, lock the involved node (so
that it/they cannot be moved again in the same pass) and update the gains
of the remaining moves. Note that negative gains do not prevent moves to
be executed, thus making the algorithm able to perform hill-climbing and
escape locally optimal partitions.

In a standard FM scheme, the gain of a move coincides with the
reduction of the cut-size obtained by moving the corresponding node to
the complementary part of the current partition. In the proposed bisection
algorithm we add a penalisation ∆g to the cut-size reduction metric (cf.
Steps 8-9), in order to discourage moves that improve the current partition
by favouring the aggregation of real discrete variables in a single part, while
they should be associated to different agents. This possibility typically
arises when Dmax is large enough and the number of fictitious variables
added to the hyper-graph provide an excessively high flexibility that allows
the procedure to group discrete variables in the same part in order to reduce
the cut-size, with the undesired effect of increasing the computational load
of the resulting aggregated agent.

In particular, denote with Θ : 2U → N the map returning the number
of real (non-dummy) discrete nodes in any subset of nodes U and let U1,
U2 be the two sides of the current bisection to be refined by the algorithm.
If u ∈ U1, then the penalisation ∆g is given by

∆g(u) = a ·

∣∣∣Θ(U1)
h−i −

⌈
nd
m

⌉
−Θ({u})

∣∣∣
Dmax

(4.9)

where h takes its value from the iteration of Algorithm 2, i denotes the
current iteration of the sequential break-off procedure in Algorithm 5, and
a ≤ 1 is a scaling factor that can be tuned to reduce the order of magnitude
of the penalisation. The choice a = 0 recovers the standard FM algorithm,
whilst a = 1 provides the maximum impact.

The rationale behind this penalization is to avoid clustering all discrete
variables. Indeed if the average number of real discrete decision variables

50
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

(Θ(U1) normalized by the expected number of agents h− i inside U1) in U1

is above the expected average
⌈
nd
m

⌉
, then ∆g(u) will promote the removal

of real nodes from U1. Otherwise, it will discourage the removal of a real
variable from U1. The discussion is symmetric in case u ∈ U2.

Normalisation of (4.9) through Dmax ensures that ∆g(u) is effective
only when all moves have no effect on the number of coupling constraints.

Once the aggregated nodes are distributed between the h agents, the
corresponding h-way partition of the original hyper-graph is retrieved by
means of a un-grouping operation exploiting the contraction information
inM. Notice that the final partition is not guaranteed to have minimum
cut-size, because Algorithm 4 is based on a heuristic strategy. Indeed,
solving the h-way hyper-graph partitioning problem to optimality would be
NP-hard [36], thus requiring enumerative resolution schemes, impractical
in almost any application.

4.3.5 Block isolation

The partition obtained via Algorithm 4 is generally sub-optimal and
highly dependent on the size of the hyper-graph, the way in which con-
tinuous and discrete nodes are merged and the starting partition, which
is randomly chosen. Thus, multiple runs of the procedure with different
initializations are likely to produce different results.

In order to exploit this inherent randomization to improve the quality
of the final partition, we do not return the partition provided by Step 8
of Algorithm 2, but we isolate the Q-least connected parts and re-run
the procedure on the remaining portion of the hyper-graph. The block
isolation procedure works as follows.

We first determine the number of cut nets connecting each part Ui,
i = 1, . . . , h. We then select the part Ui? having the minimum number of
nets in the cut. Ui? is then added to the output partition Π? and removed
from Hρ together with its internal and external nets. Any other block that
after this removal operation is no longer connected by any external net

4.3. Proposed partitioning algorithm 51

is isolated and also added to the final partition. In this case, nodes and
internal nets of such isolated blocks are also removed from Hρ.

4.3.6 Estimation of the number of blocks

Algorithm 2 partition the input hyper-graph H
Ã
in a number of blocks

m that is fixed and a-priori given. The overall decomposition procedure,
however, should be able to provide an estimate for m, maximizing the
number of parts while preserving a satisfactory cut-size p. We propose two
strategies for such estimation, that fit the considered setting and objectives.

The first option consists in running Algorithm 2 multiple times with dif-
ferent tentative m and selecting the best estimate m̂ as the value providing
the partition with the smallest border-to-agents ratio.

Without a careful choice of the candidates, blindly testing all values
m in a given range is ineffective and time-consuming. In fact, even with
adequate restrictions of the interval of admissible m, obtaining a correct
estimate may require many executions. That is why the proposed strategy
accelerates the m-identification by exploiting the additional degrees of
freedom due to the presence the fictitious variables to avoid performing
unnecessary tests.

More in detail, the maximum number of dummy nodes nδ|max that can
be introduced in the hyper-graph grows with the number of parts m. As
a consequence, for tentative values m lower than the correct estimate m0

the algorithm has little flexibility and is hence likely to attribute at least
one real variable to each subset of the final partition, eventually using the
available dummies to allow for an unbalanced distribution. However, as
the number of parts increases more fictitious nodes are introduced in the
hyper-graph making the procedure able to entirely fill surplus parts with
unnecessary dummy variables whenever m exceeds m0.

The overall estimation can be, thus, carried out by spanning a range[⌊
nd

Dmax

⌋
,
⌈

nd
Dmin

⌉]
of admissible values for m, estimated from the expected

maximum and minimum number of discrete variables per agent, Dmax and

52
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

Dmin. Candidate m can be selected according to either a top-down or a
bottom-up policy.

A top-down approach starts testing the highest value m =
⌈

nd
Dmin

⌉
and

iteratively reduces m according to the number of parts in the obtained
partition that are containing dummy variables only. Iterations stops
whenever m cannot be further reduced without increasing the size of the
border p. A bottom-up policy, instead, takes as first tentative m =

⌊
nd

Dmax

⌋
and increases it with a fixed step until the partition obtained contains
at least one surplus group of dummy variables only. In both cases, the
procedure returns the partition of the input hyper-graph HÃ with the
smallest border-to-agents ratio, net of the dummy variables, and the
corresponding estimated number of agents m̂.

The choice between the two exploration criteria should be application-
driven. In general, a top-down approach produces the final estimate with
fewer tests at the price of an increased partitioning time per value m,
whilst a bottom-up one may require more iterations but with reduced
run-time per tentative. This is due to the introduction of dummy nodes
that make the size of the hyper-graph increase, as well as the time required
by the sequential break-off partitioning operation to produce a final result.
In addition, the computational time per tentative is also affected by the
number of parts, being the worst-case maximum number of iterations of the
coarsening-partitioning-isolation algorithm linearly increasing with with
m.

A correct estimation of parameters Dmax and Dmin is, instead, crucial
to limit the growth of the hyper-graph. Indeed, when all nδ|max dummy
variables are introduced, the higher Dmax, the higher the expansion rate
for increasing m. Dmax should be, thus, relatively small to avoid an
unnecessary increase of the overall computational time, but large enough
to provide the flexibility needed to retrieve a satisfactory partition. Notice
that Dmin does not have a direct impact on the quality of the result, but
only contributes to set the upper-bound for candidate values m.

4.3. Proposed partitioning algorithm 53

The second approach we proposed for the identification of the number
of agents m builds a tree of partitions by repeatedly applying Algorithm 2
on the input hyper-graph H

Ã
and its sub-graphs.

The procedure starts computing K k-way partitions of the original
hyper-graph, considering as candidate k the first K prime numbers CK .
Each tentative is associated to a node ν of the tree and produces a partition
Πν of k parts with cut-size pν . The operation is, then, recursively repeated
at each node where, all k-way partitions, with k ∈ CK , are computed for
each sub-hyper-graph Hν,i induced by part i of Πν (i.e. the hyper-graph
obtained considering only nodes and internal nets of part i of Πν). The
recursion stops whenever the cumulative size of the border p becomes
excessively high compared with total the number of agents. Thus, a
condition on the border-to-agents ratio p

m
< π determines whether or not

closing a branch and stop partitioning.

Notice that, whilst information on p can be easily propagated from
a node to its children, determining the total number of parts to be used
in the evaluation of p

m
is not straightforward since the final m cannot be

known a priori, and must be then efficiently estimated. We here adopt a
trivial solution that considers a target number of parts mtarget equal for all
the nodes. More sophisticated approaches are mentioned in Section 6.2.

Exploration of the resulting k-ary tree can be, thus, optimized by
pruning a branch whenever the estimated border-to-agents ratio does not
meet prescribed requirements, specified by the threshold π, or is not better
than the best result achieved.

The progressive reduction of the size of the hyper-graph at each level
of the recursion yields better performance of the partitioning algorithm.
This motivates the depth-first policy adopted to traverse the tree, that
gives priority to the creation of children-nodes with respect to iteration of
k. By doing so, satisfactory lower-bounds are likely to be found sooner in
the search, increasing the pruning opportunities and reducing the compu-
tational effort required by the overall m-identification process.

54
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

A good trade-off between computational time and overall quality of the
partition calls for a fine tuning of the threshold π, to be made considering
the decomposition phase as well as the performance of the decentralized
optimization algorithm. Partitions with a border-to-agents ratio above
the threshold are assumed to yield a poor-quality solution of the MILP
problem and, thus, discarded.

4.4 Alternative approaches

The procedure proposed in Algorithm 2 combines features of differ-
ent state-of-the-art partitioning schemes. It does not, however, fit into
the classification suggested in [32], that roughly identifies three types of
algorithms:

- Iterative Refinement Partitioning Algorithms, as the already men-
tioned FM [35] or the Schweikert - Kernighan - Lin (SKL) [37], that
start from an initial partition of the hyper-graph and repeatedly
refine it moving nodes across the parts to reduce the cut-size.

- Coarsening-Partitioning Algorithms [38, 39] that perform a prelim-
inary clustering operation to group highly-connected nodes and
retrieve the partition of the hyper-graph by means of iterative refine-
ment schemes.

- Multilevel Algorithms as the ones in [40] and [32], that perform coars-
ening and un-coarsening operations before and after the partitioning
stage, according to a multi-level paradigm, to exploit randomisation
while refining the partition.

In fact, a single iteration of Algorithm 2 applies a strategy similar to a
coarsening-partitioning technique, but with a different rationale behind the
clustering operation. In particular, standard approaches merge nodes
with the main objective of reducing the size of the hyper-graph and

4.4. Alternative approaches 55

improve efficiency in the partitioning phase. They can either merge pairs
of highly connected nodes, following an edge-coarsening policy, or adopt an
alternative hyper-edge-coarsening one that, instead, groups subsets of pins
of a net. In the proposed scheme, however, the clustering step is leveraged
to uniformly distribute discrete nodes between the parts and not to reduce
the hyper-graph size.

Another distinctive feature of the proposed procedure is the sequential
break-off paradigm employed to distribute the nodes of the coarsened
hyper-graph. Indeed, state-of-the-art multi-level partitioning algorithms
typically retrieve the sought m-way partition by first computing a bisection
of the initial graph, and then recursively repeating the operation on the
two sub-hyper-graphs obtained. Although appealing, following a similar
rationale in the considered set up makes it difficult to simultaneously
account for the limitations on the maximum number of discrete variables
admitted per agent and allow for unbalanced distributions. An adaptive
tolerance parameter ε, as the one used in [34] could potentially solve the
problem, however finding a law to adequately describe its evolution across
each recursion level may be not trivial and requires further investigation.

Lastly, the integration of the coarsening-partitioning phase with the
block-isolation procedure allows to reduce the cut-size of the obtained
partition across the iterations while ensuring a progressive decrease in
the size of the hyper-graph. This defines a novel competitive refinement
strategy that proves to be more effective and better suited for the set-
up considered in this thesis than other existing schemes. In particular,
it compares with the two well-established iterative [35] and hyper-edge
refinement [32] approaches that, instead, try to improve a partition by
moving respectively single nodes or entire subsets of pins of a net, in the
attempt of reducing the number of hyper-edges in the cut. Such schemes
are typically very efficient when applied to refine bisections but have poor
performances on generic m-way partitions. This is due to the fact that
the iterative refinement typically have difficulties in reconstructing nets

56
Chapter 4. Large-scale MILPs with hidden multi-agent

structure

having pins in more than one part, whilst hyper-edge refinement - that
overcomes such limitation - is not suited to enforce balance requirements.
The same holds for the multi-level refinement strategies, V-Cycle, v-Cycle,
or vV-Cycle, proposed in [32] that combine the basic iterative refinements
with additional coarsening-uncoarsening steps. Therefore, conventional
refinement techniques may yield little-to-no improvement when used to
refine the partition obtained via sequential break-off, as that returned by
Step 10 of Algorithm 2. Block isolation is, instead, generally more effective
since it simplifies the hyper-graph at every new iteration while exploiting
the randomization of the clustering phase to generate different coarsened
hyper-graphs and, thus, possibly different partitions.

Chapter 5

Performance assessment of the
proposed resolution scheme

5.1 Introduction

In this chapter, we shall assess the effectiveness of the strategy proposed
in Chapter 4 for recovering the multi-agent structure of a MILP, by
considering randomly generated constraint matrices Ã of a MILP (2.1)
with a hidden (i.e., not evident) singly-bordered block-diagonal structure.
A random matrix with such a structure can be easily generated by starting
from a singly-bordered block-diagonal one (with prescribed number of
blocks and number of coupling constraints) and randomly permuting its
rows and columns.
In the sequel, different configurations are tested with a twofold purpose of

- investigating the impact of the input parameters Dmax (maximum
amount of discrete variables that are admitted per block) and m

(number of blocks) on the procedure, both in terms of quality of the
obtained result and run time;

- providing some insight on how to tune the two parameters.

The quality of the obtained results is evaluated comparing the estimated

57

58
Chapter 5. Performance assessment of the proposed resolution

scheme

m̂ and p̂ with their real values m0 and p0 and considering the corresponding
p̂
m̂

ratio, interpreted as a performance measure of the solution obtained
running Algorithm 1 onto the decomposed constraint matrix Ã.

Tests are organized in the following sections as follows: Section 5.2
presents a sensitivity analysis of the procedure with respect to the input
parameters Dmax and m, Section 5.3 focuses on the computational time
required by the procedure and, finally, Section 5.4 compares the two
proposed strategies for estimating the number m of blocks and shows their
effectiveness.

All simulations are carried out on a 6-core 2.6 GHz personal computer
with 16 GB RAM.

5.2 Sensitivity analysis

To assess the sensitivity of the proposed procedure with respect to the
input parameters m and Dmax, we consider two scenarios: i) the hidden
block-angular singly-bordered matrix structure has the same number of
discrete decision variables in each block (balanced case), or ii) the blocks
can have different number of discrete variables (unbalanced case); and then
we experiment different values for m and Dmax in both cases.

Notice that we explore different values of the parameterDmax to consider
different computational capabilities for the agents.

Balanced distribution

We first consider running Algorithm 2 in the ideal setting where the
constraint matrix Ã is balanced, the parameter m is set to the true number
of blocks m0, and the maximum number Dmax of discrete variables allowed
per agent is set to nd

m0
, where nd is the total number of discrete variable.

In Figure 5.1 we report the hidden structure of the (balanced) con-
straint matrix used in the following tests (left) and its randomly permuted
companion Ã given as input to the proposed procedure. Non-zero elements

5.2. Sensitivity analysis 59

agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
nc,i 29 16 20 19 21 28 19 20 19 24 11 13 15 21 19

Figure 5.1: Original singly-bordered block-diagonal (left) and permuted ver-
sion (right) of the balanced random matrix Ã with the correspond-
ing distribution of variables.

of the matrices are represented with dots and zero elements are not shown.
The nd = 360 discrete variables (red dots) are uniformly distributed among
m0 = 15 agents whilst continuous ones (blue dots) are randomly attributed
to each part, so as to challenge the clustering operation. The table in
Figure 5.1 reports the number nd,i of discrete decision variables and the
number nc,i of continuous decision variables assigned to agent i, for all
i = 1, . . . ,m0. Finally, there are p0 = 3 coupling constraints and, thus, the
border-to-agents ratio p0

m0
is equal to 3

15 = 0.2.
We run Algorithm 2 five times on the same input matrix setting

m = m0 = 15, but significantly over-estimating parameter Dmax = 40.
The decomposed matrix Ã with the smallest ratio p̂

m̂
= 386

10 over the five
runs, is reported in Figure 5.2a and, as can be seen, is far from being
satisfactory. However, the presence of blocks with a number of discrete
variables lower than the selected Dmax (e.g. the forth block has 31 discrete

60
Chapter 5. Performance assessment of the proposed resolution

scheme

(a) m = m0, Dmax = 40 > nd,i|max. (b) m = m0, Dmax = 35 > nd,i|max.

(c) m = m0, Dmax = 24 = nd,i|max.

(a)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
nd,i,est 37 33 37 31 36 37 36 39 35 39

(b)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
nd,i,est 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

(c)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
nd,i,est 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

Figure 5.2: Decomposed balanced sample matrix Ã in Figure 5.1 for m = m0

and decreasing values of Dmax.

variables) suggests to reduce the parameter Dmax to

Dmax = 1
10

10∑
i=1

n̂d,i = 35 (5.1)

5.2. Sensitivity analysis 61

where n̂d,i denotes the number of discrete decision variables assigned to
block i by Algorithm 2. Running again the procedure with Dmax = 35, the
quality of the obtained decomposition improves. The best result over five
runs, reported in Figure 5.2b, is characterised by a balanced distribution
of the discrete variables, 24 per block, but fails in estimating the number
of coupling constraints p̂ = 67 � p0. However, from visual inspection
it is possible to verify that only 3 of them are actually linking all the
agents, whilst the others are coupling the blocks 14 and 15 only. The
decomposition can be, then, further improved in two ways: running again
the procedure considering the entire matrix and setting Dmax = 24, or
considering the portion composed by the columns of the mentioned blocks.
The obtained decompositions are shown in Figure 5.2c and Figure 5.3
respectively. Either ways, the algorithm is able to retrieve the hidden
structure with p̂

m̂
= 3

15 = 0.2.

Figure 5.3: Result obtained applying the procedure to a submatrix obtained by
the decomposed matrix in Figure 5.2b selecting only the columns
of blocks 14, 15 and setting m = 2,Dmax = 24.

The difficulties experienced by the procedure in case of over-estimation
of Dmax can be mainly attributed to fact that, during the random selection
step of the sequential break-off procedure (Step 4 of Algorithm 2) large
subsets of nodes of distinct agents may be grouped together. As a result,

62
Chapter 5. Performance assessment of the proposed resolution

scheme

a long sequence of moves with negative gain may be needed to separate
such nodes but - at the same time - many moves attributing others to
the same part may yield a reduction of the cut-size. In similar conditions,
penalisation in Algorithm 5 has little effect and the partitioning algorithm
is likely to return a unsatisfactory solution. These situations can, however,
be easily identified by a visual inspection of the result and a good estimate
of Dmax can be achieved with a couple of trials.

Unbalanced distribution

The case of unbalanced distribution of discrete variables among agents
is typically more challenging for the procedure, which seeks for balanced
partitions and hence requires the introduction of additional dummy nodes
to handle unbalance. To provide a fair comparison, tests are carried out on
a random matrix, the one depicted in Figure 5.4, with the same number of
discrete variables (nd = 360), blocks (m0 = 15) and of coupling rows in
the border (p0 = 3) as in the tests on the balanced distribution case. In
this unbalanced case, each block can contain between 20 and nd,i|max = 31
discrete variables, but the overall number of discrete variables is still
nd = 360, as for the balanced case.

The procedure has satisfactory performance in the ideal configuration
where Dmax is set equal to the actual maximum number of discrete variables
of the agents (Dmax = max

i=1,...,m0
{nd,i} = nd,i|max) and the number of blocks

m is set equal to the actual number of agents (m = m0). An example is
shown in Figure 5.5, where the true decomposition is retrieved despite the
presence of agents that could be merged together without exceeding Dmax.

The true decomposition is instead only partially identified if one sets
Dmax = 25 < nd,i|max, see Figure 5.6a. However, also in this case, a visual
inspection of the result can aid the selection of a better value for Dmax.
Looking at the result in Figure 5.6a, 9 out of 15 blocks are clearly correctly
isolated, thus allowing to identify rows that are likely to belong to the
cut-set and many parts have a number of discrete variables close to the

5.2. Sensitivity analysis 63

agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nc,i 20 12 20 16 23 20 23 15 19 25 22 18 25 20 19

Figure 5.4: Original singly-bordered block-diagonal (left) and permuted ver-
sion (right) of the unbalanced sample matrix Ã with the corre-
sponding distribution of variables.

allowed maximum, which suggests to increase parameter Dmax.

When Dmax is overestimated, i.e., Dmax = 40 > nd,i|max, the procedure
tends to group different parts together. The resulting decomposed matrix
is, in general, still satisfactory and its structure may allow identification of
coupling constraints by visual inspection. Figure 5.6b shows an example
of such a scenario with a re-arranged matrix counting m̂ = 15 blocks and
p̂ = 33 rows in the border. In this case, the obtained decomposition may be
further improved running again the procedure on the sub-matrix composed
by the the columns of the coupled blocks. The estimated p̂

m̂
can also be

reduced without even re-running the procedure, as considering blocks 14, 15
as a unique block would reduce the coupling to p̂ = p = 3 at the price
of increasing (but not exceeding) the computational load of the resulting
aggregated agent (which will have n̂d,14 + n̂d,15 = 18 + 13 = 31 < Dmax

discrete variables).

If we now set Dmax = 31 and let m vary, tests show that the procedure

64
Chapter 5. Performance assessment of the proposed resolution

scheme

agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nd,i,est 31 27 20 20 27 21 20 23 20 28 23 26 28 20 26

Figure 5.5: Decomposed matrix Ã in the ideal setting.

performs better when the number of agents is overestimated rather than
underestimated, due to the flexibility granted by the additional fictitious
variables that allows to create empty groups and, hence, reduce the number
of estimated parts with respect to the specified desired number of agents.
Two examples are reported in Figures 5.6c and 5.6d for the choices m =
13 < m0 and m = 18 > m0, respectively. In both cases, the procedure fails
at estimating the size of the border p (p̂ = 140, p̂ = 33) and the number
of agents m (m̂ = 13, m̂ = 16), but it manages to reduce the number of
agents from the user-specified m = 18 to the estimated m̂ = 16 in case
of over-estimation. In addition, the resulting decomposition has a lower
p̂
m̂

ratio and allows to identify the hidden structure by visual inspection
(blocks 15, 16 can be aggregated compatibly with Dmax), similarly to the
previous case.

Note that performance may worsen in case of unfortunate combinations

5.2. Sensitivity analysis 65

(a) m = m0, Dmax = 25 < nd,i|max. (b) m = m0, Dmax = 40 > nd,i|max.

(c) m = 13 < m0, Dmax = 31. (d) m = 18 > m0, Dmax = 31.

(a)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nd,i,est 21 20 26 20 23 26 26 22 23 26 26 26 26 26 23

(b)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nd,i,est 26 40 23 20 27 27 20 21 26 28 28 23 20 18 13

(c)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nd,i,0 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nd,i,est 20 26 27 28 31 20 23 29 32 31 32 32 29

(d)
agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
nd,i,0 20 20 31 27 26 23 28 20 28 20 23 26 20 27 21
nd,i,est 27 20 28 26 23 20 27 21 23 20 20 26 28 20 19 12

Figure 5.6: Decomposed Ã with different settings and relative distributions

66
Chapter 5. Performance assessment of the proposed resolution

scheme

of m and Dmax, depending on the properties of the decomposed matrix.
Providing a complete overview of the all the possible tuning choices is
outside the scope of this analysis.

To show the effectiveness of the procedure in addressing large-scale
MILPs decomposition, we perform tests with large number of parts m0 and
number of decision variables. Figure 5.7 shows a sample matrix Ã hiding
a multi-agent structure of m0 = 80 agents coupled by p0 = 16 constraints,
and characterised by an unbalanced distribution of discrete variables with
ε0 = 0.2632.The obtained decomposition is shown in Figure 5.8. All the
constraints in the border are correctly identified (p̂ = 16), but two pairs of
distinct agents are aggregated leading to an estimated m̂ = 78 < m0 = 80
and a corresponding 2% relative increase in the border-to-agents ratio.

Figure 5.7: Original singly-bordered block-diagonal (left) and permuted ver-
sion (right) of a sample matrix Ã with m = 80 agents, in the
unbalanced case.

5.3 Computational time

In order to determine the time needed for the hyper-graph partitioning
Algorithm 2 to find a singly-bordered block-angular decomposition of
a matrix Ã, we have to account for the contribution of the following
operations:

5.3. Computational time 67

Figure 5.8: Decomposed matrix obtained from input matrix in Figure 5.7:
m̂ = 78 vs m0 = 80 and p̂

m̂ = 0.2051 vs p0
m0

= 0.2

- a preliminary clustering that associates the continuous nodes to the
discrete ones and creates a coarsened hyper-graph

- the computation of a h-way partition of such a hyper-graph

- an uncoarsening step that expresses the obtained partition in terms
of the nodes of the initial uncoarsened hyper-graph

- a block-isolation procedure that identifies the parts to be stored in
the final partition and reduces the hyper-graph accordingly

The plot in Figure 5.10 summarizes information on the impact that each
phase has on the run-time of a single iteration and refers to the decomposi-
tion of the sample matrix Ã in Figure 5.9. Most of the computational effort
is concentrated in the partitioning phase, that takes more than 95% of the
time in the first and second iterations and drops below 90% at the third
one. As expected, the partitioning phase has a contribution on the total
execution time per iteration that decreases as more parts are identified
and removed from the hyper-graph due to the isolation step; however, it
remains the operation with the main impact on the overall run-time.

68
Chapter 5. Performance assessment of the proposed resolution

scheme

Figure 5.9: Decomposition of a balanced sample matrix with m0 = 17. From
left to right: matrix A, decomposed matrix and hidden structure

(a) absolute run-time per iteration (b) relative impact per iteration

Figure 5.10: Plot of the absolute and relative run-time of each of the four
main operations of the procedure per iteration.

As a consequence, it is the number of discrete decision variables in a
MILP to determine the computational effort involved in its reformulation as
multi-agent constraint-coupled MILP, since it coincides with the number of
supernodes in the coarsened hyper-graph to be partitioned. The number of
continuous decision variables, instead, has little impact since it affects the
run-time of the coarsening and uncoarsening steps, respectively represented
in blue and yellow in Figure 5.10. Note that also the number of parts m
plays an important role, since it coincides with the worst-case number of
iterations of the coarsening-partitioning-isolation procedure.

To investigate the relationship between the number of discrete nodes
and the overall computational time, we test the procedure on matrices Ã
of increasing dimensions with underlying singly-bordered block-angular

5.3. Computational time 69

(a) run-time including partitioning (b) run-time without partitioning

(c) total run-time vs number of discrete nodes

Figure 5.11: Assessment of the dependence of the run-time on the number of
discrete decision variables.

structure composed of m0 = 17 blocks, containing {nd,i}17
i=1 = 20 discrete

variables each, and characterised by a border-to-agents ratio equal to
p0
m0

= 0.2. We perform 5 repetitions with different seeds for each test
instance and report the arithmetic mean of the cumulative run-time (in
seconds) of the four operations across the partition. Figure 5.11a reports
values for all coarsening (blue), partitioning (orange), uncoarsening (yellow)
and isolation (grey) phases, whilst Figure 5.11b provides the same plot,
neglecting the partitioning one.

Figure 5.11c shows that the total run-time increases more than linearly
with the number of discrete decision variables. This is mainly due to
the gain update performed in the FM procedure, that has a worst-case
complexity per pass growing quadratically with the sum of pins and nets
P = ∑

n∈N |Pins(n)|+∑
u∈U |Nets(u)| in the hyper-graph to be partitioned

70
Chapter 5. Performance assessment of the proposed resolution

scheme

H = (U ,N) (see [35] for mathematical derivation). Since a new pass is
performed only if the previous on reduces the cut-size, the worst-case
execution is the one that produces a reduction ∆cs = −1 at any pass
and that, hence, performs a worst-case number of passes equal to |N |.
Ultimately, the sole Step 7 of Algorithm 4 requires a number O(|N |P 2) of
operations.

5.4 Identification of the number of blocks

All tests presented consider a configuration in which at least one
between Dmax and m is correctly set. In real applications, however, one
typically has little or no insight on the hidden structure to be recovered
and it is, hence, likely to choose incorrect values for both parameters. The
integration of Algorithm 2 with one of the suggested approaches for the
estimation of the number of agents allows the user to focus the tuning on
parameter Dmax whilst the procedure provides an estimated for m.

The first identification strategy proposed in Section 4.3.6 estimates
the number of blocks m0 of the equivalent constraint-coupled multi-agent
MILP reformulation with an iterative approach, trying different candidate
values in an ordered sequence. To assess its effectiveness we test the
procedure considering both structures having balanced and unbalanced
distribution of discrete decision variables among the agents. Note that,
since simulations performed in Section 5.2 highlight a robustness of the
procedure with respect to an over-estimation of the number of agents
(m > m0), the choice of candidate m follows a top-down approach, starting
from m =

⌈
nd
Dmin

⌉
and possibly reaching m =

⌊
nd

Dmax

⌋
, where Dmin and Dmax

respectively represent the maximum and minimum number of discrete
variables per agent.

We first test the procedure on a matrix hiding a structure composed of
m0 = 18 parts with {nd,i}18

i=1 = 20 discrete decision variables each, for a
total of nd = 360 discrete decision variables. Values Dmax and Dmin are

5.4. Identification of the number of blocks 71

Figure 5.12: Outcome of the iterative m-identification strategy applied to
a balanced distribution of discrete variables.From left to right:
matrix Ã, decomposed matrix and hidden structure.

set to Dmax = 25 and Dmin = 10. Figure 5.12 shows the input matrix Ã
(left), the decomposed matrix (centre) and the hidden structure (right).
The procedure considers as first candidate the value m =

⌈
nd
Dmin

= 36
⌉
and

retrieves a singly-bordered block-angular decomposition having m̂ = 19
blocks with a border-to-agents ratio equal to p̂

m̂
= 1, 4211. It, then, runs

again the procedure setting m = 19 and further reduces the number of
blocks to m̂ = 18 and the border-to-agents ratio p̂

m̂
= 0.1667. An additional

iteration is performed, but no improvement in the border-to-agents ratio is
obtained and the routine stops and returns the best obtained decomposition,
corresponding to the iteration m = 19 and reported in Figure 5.12. The
evolution is summarized in Figure 5.13.

We then perform a test considering an unbalanced structure having the
same number of blocks m0, with nd,i|max = 20 and relative unbalance of
ε0 = 0.667. Following a top-down approach, the first run of the procedure
considers as first tentative value m =

⌈
nd
Dmin

⌉
= 203

10 = 21 and retrieves
a decomposition having m̂ = 12 blocks with border-to-agents ratio p̂

m̂
=

3
12 = 0.25 and an estimated relative unbalance ε̂ = 0.5294. It then applies
the procedure again setting m = 12 but no improvement is found and the
m-identification procedure stops. Figure 5.14 shows the input matrix and
the hidden singly-bordered block-angular structure, whereas Figure 5.15a
and 5.15b report the two decompositions found, having equal estimated
border-to-agent ratio p̂

m̂
= 3

12 = 0.25 but different relative unbalance

72
Chapter 5. Performance assessment of the proposed resolution

scheme

Figure 5.13: Evolution of the estimated border-to-agent ratio p̂
m̂ during the

test of the iterative m-identification strategy with balanced dis-
tribution of discrete variables.

ε̂1 = 0.5294 and ε̂1 = 0.4118 respectively.
Note that, due to the unbalanced distribution, the procedure finds a

minimum cut-size partitioned but fails in estimating the number of agents
m0, thus obtaining a higher p

m
ratio.

Construction of a k-ary tree

The second approach proposed in Section 4.3.6 to estimate the number
of blocks m0 recursively applies the partitioning algorithm to the hyper-
graph representing matrix Ã and the obtained sub-hyper-graphs, choosing
tentative values in the set CK , collecting the first K prime numbers.

We run the procedure on the test instance in Figure 5.16 with hidden
structure composed of m0 = 12 blocks coupled by p0 = 2 coupling con-
straints, characterised by a balanced distribution of the discrete variables,
which are set equal to 20 per agent. We setmtarget = 12, π = 0.5 and choose
to iterate over k ∈ C = {2, 3, 5, 7}. The obtained tree of decompositions is
depicted in Figure 5.17:

- grey leaf nodes are associated to unsatisfactory partitions for which

5.4. Identification of the number of blocks 73

Figure 5.14: Hidden structure (left) and input matrix Ã (right) used in the
second test of the m-identification iterative routine.

the estimated p̂ν
mtarget

is greater than the threshold π.

- yellow leaf nodes correspond to good partitions for which the es-
timated p̂

mtarget
is below the threshold and equal to the smallest

upper-bound found.

Nodes associated with unsatisfactory partitions at level 4 of the tree are
not reported for the sake of compactness and readability.

The tree must be interpreted as follows: each node ν contains an
ordered sequence denoting the number of parts in which the corresponding
sub-hyper-graphs in the father node are divided. Figure 5.18 provides two
examples of interpretation of a given path on the tree. Path a contains
the orange branches: the hyper-graph corresponding to the initial matrix
is first divided in 2, each induced sub-hyper-graph is again bisected when
going from level 2 to level 3 and finally, the first 2 sub-hyper-graphs of the
four obtained at level 3 are partitioned in 3 parts each. Path b contains
the yellow branches: the initial hyper-graph is divided in 2, each half is,
then, partitioned in 3 and finally the sub-hyper-graphs are further divided
in 2.

74
Chapter 5. Performance assessment of the proposed resolution

scheme

(a) Iteration 1, m = 21 (b) Iteration 2, m = 12

Figure 5.15: Decomposed matrices obtained during the iterative m - identifi-
cation tested on the matrix in Figure 5.14.

A complete decomposition is obtained starting from leaf nodes asso-
ciated to satisfactory partitions (the yellow ones) having the same father
node. The test run finds 2 decomposition for matrix Ã. The first is
obtained dividing the initial hyper-graph in 2, then again each half in
2 and finally each quarter in 3. The second, instead, is obtained taking
an alternative branch at level 2: the hyper-graph is bisected, each half is
divided in 3 and each third is finally bisected in 2. Both paths yield to a
minimum cut-size 12-way partition of the original hyper-graph, associated
to a singly-bordered block-angular decomposition of the input matrix Ã
composed of m̂ = 12 = m0 blocks and p̂ = 2 = p0 rows in the border.

Note that node ν3 is not further divided, despite the fact that the correct
number of parts m = 12 can be obtained partitioning the hyper-graph in 3
parts, and then bisecting each sub-hypergraph twice. The algorithms fails
at finding a satisfactory 3-way partition and hence the branch is pruned
due to a large p̂

m̂
ratio.

In order to compare the two strategies for estimating the number of
blocks m, we run also the iterative routine exploring an ordered sequence
of candidate m values on matrix in Figure 5.16 setting Dmax = 25 and
Dmin = 10. Figure 5.19 shows the final decompositions obtained with the
iterative routine (a) and the exploration of the tree (b). Both procedures

5.4. Identification of the number of blocks 75

agent 1 2 3 4 5 6 7 8 9 10 11 12 13
nd,i,0 20 20 20 20 20 20 20 20 20 20 20 20

Figure 5.16: Original singly-bordered block-diagonal (left) and permuted ver-
sion (right) of the balanced sample matrix Ã considered to test
the m-identification routines, with the corresponding distribution
of variables.

return a final decomposition counting m̂ = 12 blocks, and p̂ = 2 rows in
the border.

The choice of the strategy depends on the problem at hand and the
number of discrete decision variables, in particular. Building the tree
typically requires computing many unsatisfactory partition, but allows to
reduce the dimensions of the hyper-graph and the number of blocks with
a reduction of the run-time of the partitioning operation. The iterative
method, instead, applies repeatedly the partitioning procedure on the same
matrix trying different values for m, but is likely to perform a smaller
number of trials, thus running the partitioning algorithm a smaller number
of times.

76
Chapter 5. Performance assessment of the proposed resolution

scheme

Figure 5.17: Tree built during the m identification routine while partitioning
the sample matrix in Figure 5.16.

Figure 5.18: Interpretation of a path of the tree. Tree (left) and visual repre-
sentation of the partitioning operations.

5.4. Identification of the number of blocks 77

(a) (b)

Figure 5.19: Outcome of the two m-identification strategies applied to the
balanced distribution of discrete variables in Figure 5.16

Chapter 6

Conclusions and future work

6.1 Conclusions

This work addressed the problem of finding a constraint-coupled multi-
agent reformulation for a generic large-scale MILP, so as to make it suited
for the resolution via distributed optimization algorithms.

We first pointed out the relevance of the problem, since MILPs can
model various engineering applications of interest, but often have a large
size and are then hard to solve in practice. We then provided an overview
of the existing optimal and heuristic resolution schemes for generic MILPs,
and described a recently proposed decentralized optimization algorithm
tailored to constraint-coupled multi-agent MILPs, where a feasible so-
lution with performance guarantees is computed in a finite number of
iterations. Scalability is recovered by making agents solve in parallel
lower-dimensional MILPs associated to their own decision variables, while
exchanging information on the coupling constraints.

In an effort of making it a general-purpose tool for the resolution of
large-scale MILPs, we proposed a two-step strategy that first discloses an
equivalent constraint-coupled multi-agent structure of the MILP and then
retrieves a solution applying the mentioned decentralized algorithm. Key
to the effectiveness of the approach is the even distribution of discrete

79

80 Chapter 6. Conclusions and future work

decision variables among the fictitious agents, and the minimization of the
coupling constraints.

We then focused on the decomposition step showing how the desired
reformulation can be obtained by reducing the matrix defining the linear
constraints in the MILP to a singly-bordered block-angular structure (with
blocks corresponding to agents and border to coupling constraints) by
means of permutation of its rows and columns. After translating the
matrix manipulation problem into a hyper-graph partitioning one, we
introduced a novel algorithm inspired to state-of-the-art partitioning tools
but with innovative elements to account for the specific requirements of
our settings. In particular, we designed

- a preliminary clustering phase that aggregates nodes corresponding
to the continuous and discrete decision variables so as to evenly
distribute the discrete ones while partitioning the resulting coarsened
hyper-graph;

- a refinement strategy based on the iterative identification and isola-
tion of the different agents that allows to exploit randomization of
the coarsening operation to improve a partition while reducing the
size of the hyper-graph.

We also suggested two different approaches to estimate the number of
fictitious agents in the reformulation, to be maximized while minimizing
the number of coupling constraints. A first iterative routine starts from an
initial guess for the number of agents and iteratively reduces it (or increases
it, depending on whether a top-down or bottom-up paradigm is followed)
until no improvement in the final partition is obtained. An alternative
approach, instead, creates a tree of partitions by recursively applying the
procedure on the initial hyper-graph and the obtained sub-hyper-graphs,
choosing prime numbers as candidate values for the number of blocks at
every stage in the tree construction.

Performance of the novel partitioning strategy was assessed in simu-

6.2. Future work 81

lation, considering matrices with a hidden singly-bordered block-angular
structure generated at random. The introduction of fictitious nodes in the
hyper-graph enabled the procedure to retrieve the correct matrix refor-
mulation in case of both balanced and unbalanced hidden distribution of
the discrete variables, and for different values of the user-defined param-
eters. Tests were also instrumental to give guidelines on how to modify
such parameters to get satisfactory results. Finally, we compared the two
strategies proposed to identify (and maximize) the number of agents in
the final reformulation.

The proposed procedure gave promising results when applied to matrices
with underlying singly-bordered block angular structure.

6.2 Future work

Interesting research directions can be explored to improve the proposed
partitioning algorithm, as discussed below.

A further more challenging topic is how to handle the case when the
MILP has not really a hidden multi-agent structure but its constraint
matrix can be reduced to a form which is close to a singly-bordered block-
angular structure. What if the weak connections between agents are
neglected when computing the MILP solution? Answering this question
requires additional effort, which goes far beyond this thesis work.

Recursive Bisection

The first extension concerns an alternative implementation of the m-
way partitioning algorithm, in which the sequential break-off paradigm is
replaced by a recursive bisection procedure. As explained in Section 4.4,
the standard recursive strategy does not account for the limitation on the
maximum number of discrete variables allowed per agent (and hence of
supernodes admitted per part) and, hence, needs to be modified accordingly
to fit the considered set-up. This could be done by introducing an adaptive

82 Chapter 6. Conclusions and future work

balance parameter, but the design of the law describing its evolution needs
to be further investigated.

Note that the introduction of a recursive bisection paradigm would
pave the way to the implementation of multilevel refinement strategies (see
Section 4.4), to further improve the obtained partition.

Estimate the border-to-agents ratio within the m-identification
tree

Another interesting research direction focuses on the exploration of the
tree of partitions created by one of the strategies proposed in Section 4.3.6
for the estimation of the number of agents. More in detail, the current
implementation evaluates the border-to-agents ratio p

m
at each node of

the tree setting m = mtarget, with mtarget defined a-priori, thus causing
the pruning decision to be based on the size p of the border only. The
introduction of a technique to estimate the final number of parts in the
partition based on the information available at each node can be crucial
in order to improve the effectiveness of the pruning operation and, hence,
reduce the unnecessary partitions computed by the procedure.

Appendix A

MLD operating constraints

The final objective is rewriting the constraints so as to obtain a structure
as the following:

0 ≤ E1t



PG
1 (t)

PB
1 (t)
δG1 (t)
δL1 (t)
...

PG
m(t)

PB
m (t)
δLm(t)



+ E4t


S1(t)
...

SN(t)

+ E5t (A.1)

In the sequel, the reformulation is carried on focusing on the ith component
of vectors s(t), u(t), z(t), hence deriving the ith column block of the compact
matricial form.

Min/Max Energy Level

Si ≤ Si(t) ≤ Si →


0 ≤ +Si(t)− Si
0 ≤ −Si(t) + Si

83

84 Appendix A. MLD operating constraints

02×1 ≤ 02×(3+JLi)ui(t) +
+1
−1

 si(t) +
−Si

+Si

 (A.2)

Discharging/Charging Rates Limitation

PB,c
i ≤ PB

i (t) ≤ PB,d
i →


0 ≤ +PB

i (t)− PB,c
i

0 ≤ −PB
i (t) + PB,d

i

02×1 ≤

0 1 0 01×JLi
0 −1 0 01×JLi

ui(t) +
0

0

 si(t) +
−PB,c

i

+PB,d
i

 (A.3)

Min/Max Power Produced

δGi (t)PG
i ≤ PG

i (t) ≤ δGi (t)PG
i →


0 ≤ +PG

i (t)− δGi (t)PG
i

0 ≤ −PG
i (t) + δGi (t)PG

i

02×1 ≤

+1 0 −1 01×JLi
−1 0 +1 01×JLi

ui(t) +
0

0

 si(t) +
0

0

 (A.4)

Power Consumption by L

PL
i (t) = P

L
i

nLi

JLi∑
j=1

(
2j−1·δLi,j(t)

)
=

σ>
i︷ ︸︸ ︷[

1 2 · · · 2JLi −1
]

δLi (t)︷ ︸︸ ︷
δLi,1(t)

...
δL
i,JLi

(t)

 = σ>i δ
L
i (t)

Such constraint is not required to be expressed via inequalities,
being it is implicitly enforced replacing PL

i (t) with the corresponding
expression when necessary.

Correctness of the amount of energy supplied to L

EL
i =

M−1∑
t=t0

∆tsP
L
i (t) →


0 ≤ −∆ts

∑M−1
t=t0 P

L
i + EL

i

0 ≤ +∆ts
∑M−1
t=t0 P

L
i − EL

i

Defining:

85

- ηu,i =
[
0 0 0 σ>i

]
∈ R(JLi +3)

- ζu,i =
[
0 0 0 01×JLi

]
∈ RJLi ×(JLi +3)

constraint (2.11) can be expressed in compact notation as:

02×1 ≤ ∆ts ·
−11×M−t0

+11×M−t0




PL
i (t0)
...

PL
i (M − 1)



02×1 ≤ ∆ts ·
−11×M−t0

+11×M−t0




ηu,i ζu,i · · · ζu,i

ζu,i ηu,i
. . . ζu,i

...
ζu,i ζu,i · · · ηu,i




ui(t0)

...
ui(M − 1)

 (A.5)

Notice that the form of (A.5) is different from the one required in
(A.1) because the constraint expressed involves values of vector u(t)
at different time instants.

Appendix B

MILP constraints

The following appendix handles the MILP constraints and shows how to
derive the compact notation

N∑
i=1

Aixi ≤ b

xi ∈ Xi, i = 1, ..., N

We start by recalling that

x>i (t) =
[
ui(t0)> hBi (t0)> hLi (t0)> . . . ui(M − 1)> hBi (M − 1)> hLi (M − 1)>

]
u>i (t) =

[
PG
i (t)> PB

i (t)> δGi (t)> δLi (t)>
]

δLi (t)> =
[
δLi,1(t)> . . . δL

i,JLi
(t)>

]

Local Constraints

The condition xi ∈ Xi, where Xi is a mixed integral polyhedral set,
can be expressed as Di · xi ≤ di. We next retrieve the explicit expression
of matrixes Di, that define the block-diagonal submatrix of the overall
constraint one.

Battery Storage Dynamics

Si(t+ 1) = Si(0)−∆ts
t∑

s=0
PB
i (s) = Si(t)−∆tsPB

i (t)

87

88 Appendix B. MILP constraints

Implicitly enforced replacing the expression for Si(t) when needed.

Min/Max Energy Level

Si ≤ Si(t) ≤ Si

→


+∆tS

∑t−1
k=t0 P

B
i (k) ≤ +Si(t0)− Si

−∆tS
∑t−1
k=t0 P

B
i (k) ≤ −Si(t0) + Si

∀t = t0 + 1, ...,M − 1

Defining:

- ζxi = 01×(JLi +5)

- vELi =
[
0 ∆ts 0 01×JLi

0 0
]
∈ RJLi +5

constraints (2.8) can be rewritten as



vEL1 ζxi · · · ζxi

vEL1 vEL2 · · · ζxi
...

vEL1 vEL2 · · · vELm

−vEL1 ζxi · · · ζxi

−vEL1 −vEL2 · · · ζxi
...

−vEL1 −vEL2 · · · −vELm



xi ≤



Si(t0)− Si
...

Si(t0)− Si
−Si(t0) + Si

...
−Si(t0) + Si



Discharging/Charging rates limitation

PB,c
i ≤ PB

i (t) ≤ PB,d
i →


−PB

i (t) ≤ −PB,c
i

+PB
i (t) ≤ PB,d

i

∀t = t0, ...,M−1

Defining

vDCL =
[
0 1 0 01×JLi

0 0
]
∈ R1×(JLi +5)

89

the M − t0 constraints can be rewritten as


−vDCL ζxi · · · ζxi

ζxi −vDCL · · · ζxi
...
ζxi ζxi · · · −vDCL
vDCL ζxi · · · ζxi

ζxi vDCL · · · ζxi
...
ζxi ζxi · · · vDCL



xi ≤



−PB,c
i

−PB,c
i

...
−PB,c

i

PB,d
i

PB,d
i

...
PB,d
i



Min/Max power produced by G

δGi (t)PG
i ≤ PG

i (t) ≤ δGi (t)PG
i

→


−PG

i (t) + δGi (t)PG
i ≤ 0

+PG
i (t)− δGi (t)PG

i ≤ 0
∀t = t0, ...,M − 1

Defined:

- vPG =
[
−1 0 PG

i 01×JLi
0 0

]
∈ R1×(JLi +5)

- wPG =
[
+1 0 P

G

i 01×JLi
0 0

]
∈ R1×(JLi +5)

The 2(M − t0) constraints can be written as:



vPG ζxi · · · ζxi

ζxi vPG · · · ζxi
...
ζxi · · · ζxi vPG

wPG ζxi · · · ζxi

ζxi wPG · · · ζxi
...
ζxi · · · ζxi wPG



xi ≤ 02(M−t0)×1

90 Appendix B. MILP constraints

Flexibility limitation of L

PL
i (t) = P̃L

i (t) →


+σ>i δLi (t) ≤ +P̃L

i (t)

−σ>i δLi (t) ≤ −P̃L
i (t)

∀t < tL,0i ∨ t > tL,fi

Introducing vector:

vFL =
[
0 0 0 σ>i 0 0

]

Constraint (2.12) can be re-written as



vFL ζxi · · · · · · · · · · · · ζxi

ζxi vFL
. ζxi

...
ζxi · · · ζxi vFL ζm · · · ζxi

xi ≤


P̃L
i (t0)

P̃L
i (t0 + 1)

...
P̃L
i (tL,0i)



ζxi · · · ζxi vFL ζxi · · · ζxi
...
ζxi · · · · · · · · · · · · ζxi vFL

xi ≤

P̃L
i (tL,fi + 1)

...
P̃L
i (M − 1)




−vFL ζxi · · · · · · · · · · · · ζxi

ζxi −vFL
. ζxi

...
ζxi · · · ζxi −vFL ζxi · · · ζxi

xi ≤


−P̃L
i (t0)

−P̃L
i (t0 + 1)

...
−P̃L

i (tL,0i)



ζxi · · · ζxi −vFL ζxi · · · ζxi
...
ζxi · · · · · · · · · · · · ζxi −vFL

xi ≤

−P̃L

i (tL,fi + 1)
...

−P̃L
i (M − 1)



91

Cost Function Reformulation
hBi (t) =

∥∥∥PB
i (t)− PB

i (t− 1)
∥∥∥

hLi (t) =
∥∥∥PL

i (t)− P̃L
i (t)

∥∥∥

→



+PB
i (t)− PB

i (t− 1)− hBi (t) ≤ 0

−PB
i (t) + PB

i (t− 1)− hBi (t) ≤ 0

+PL
i (t)− P̃L

i (t)− hLi (t) ≤ 0

−PL
i (t) + P̃L

i (t)− hLi (t) ≤ 0

∀t = t0, ...,M − 1

Considered as known the value PB
i (t0 − 1), exploiting vector vDCL

defined by (B) and:

- v1,LCF =
[
0 1 0 01×JLi

−1 0
]

- v2,LCF =
[
0 −1 0 01×JLi

−1 0
]

it is possible to write the constraints (2.16a)-(2.16b) as:

v1,LCF ζxi · · · · · · ζxi

−vDCL v1,LCF ζxi · · · ζxi

ζxi −vDCL v1,LCF · · · ζxi
...
ζxi · · · ζxi −vDCL v1,LCF

v2,LCF ζxi · · · · · · ζxi

vDCL v2,LCF ζxi · · · ζxi

ζxi vDCL v2,LCF · · · ζxi
...
ζxi · · · ζxi vDCL v2,LCF



xi ≤



PB
i (t0 − 1)

0
...
0

−PB
i (t0 − 1)

0
...
0



Whilst introducing

- v3,LCF =
[
0 0 0 σ>i 0 −1

]
- v4,LCF =

[
0 0 0 −σ>i 0 −1

]

92 Appendix B. MILP constraints



v3,LCF ζxi · · · ζxi

ζxi v3,LCF · · · ζxi
...
ζxi

. . . ζxi v3,LCF

v4,LCF ζxi · · · ζxi

ζxi v4,LCF · · · ζxi
...
ζxi

. . . ζxi v4,LCF



xi ≤



P̃L
i (t0)

P̃L
i (t0 + 1)

...
P̃L
i (M − 1)
−P̃L

i (t0)
−P̃L

i (t0 + 1)
...

−P̃L
i (M − 1)



Correctness of the amount of energy supplied to L

M−1∑
t=0

∆tsPL
i (t) = EL

i →


∑M−1
t=0 ∆tsσ>i δLi (t) ≤ EL

i

−∑M−1
t=0 ∆tsσ>i δLi (t) ≤ −EL

i

Defining:

ηxi =
[
0 0 0 σ>i 0 0

]
Constraint (2.11) can be rewritten as

[
ηxi ηxi · · · ηxi

]
xi ≤

EL
i

∆ts[
−ηxi −ηxi · · · −ηxi

]
xi ≤ −

EL
i

∆ts

Rebound Effect Avoidance

Pi(t) = P̃i(t)

→


+PG

i (t) + PB
i + σ>i δ

L
i (t) ≤ P̃i(t)

−PG
i (t)− PB

i − σ>i δLi (t) ≤ −P̃i(t)
∀t = tf + 1, ...,M − 1

Defining vector

vr =
[
1 1 0 σ>i 0 0

]

93


ζxi · · · ζxi vr ζxi · · · ζxi
...
ζxi · · · · · · · · · · · · ζxi vr

xi ≤

P̃i(tf + 1)

...
P̃i(M − 1)



ζxi · · · ζxi −vr ζxi · · · ζxi
...
ζxi · · · · · · · · · · · · ζxi −vr

xi ≤

−P̃i(tf + 1)

...
−P̃i(M − 1)


The overall Di matrix and di vector are then obtained by ordering all the
matrices and vectors in column.

Coupling Constraints

The coupling constraint (2.13) concerns the overall power demand and
hence cannot be reduced to a set of decoupled conditions on the prosumers.
Nevertheless, it can be expressed in the form ∑N

i=1Ai · xi ≤ b :


+P (t)− P̃ (t) ≤ +(1 + ε)∆ P (t)

−P (t) + P̃ (t) ≤ −(1− ε)∆ P (t)

→


+∑m

i=1 Pi(t) ≤ P̃ (t) + (1 + ε)∆P (t)

−∑m
i=1 Pi(t) ≤ −P̃ (t)− (1− ε)∆P (t)

∀t = t0, ..., tf


vr ζxi · · · ζxi
...
ζxi · · · ζxi vr ζxi · · · ζxi

xi ≤


P̃ (t0) + (1 + ε)∆P (t0)

...
P̃ (tf) + (1 + ε)∆P (tf)



−vr ζxi · · · ζxi
...
ζxi · · · ζxi −vr ζxi · · · ζxi

xi ≤

−P̃ (t0)− (1− ε)∆P (t0)

...
−P̃ (tf)− (1− ε)∆P (tf)



Bibliography

[1] Graham Goodwin, Mara M. Seron, and Jos A. de Don. Constrained
Control and Estimation: An Optimisation Approach. Springer Pub-
lishing Company, Incorporated, 1st edition, 2010.

[2] Alberto Bemporad and Manfred Morari. Control of systems integrating
logic, dynamics and constraints. Automatica, 35:407–427, 1999.

[3] M. Hejri and A. Giua. Hybrid modeling and control of switching
DC-DC converters via MLD systems. In 2011 IEEE International
Conference on Automation Science and Engineering, pages 714–719,
2011.

[4] M. Mukai, T. Azuma, and M. Fujita. A collision avoidance control
for multi-vehicle using pwa/mld hybrid system representation. In
Proceedings of the 2004 IEEE International Conference on Control
Applications, 2004., volume 2, pages 872–877 Vol.2, Sep. 2004.

[5] Alessandra Parisio, Evangelos Rikos, and Luigi Glielmo. A model
predictive control approach to microgrid operation optimization. IEEE
Transactions on Control Systems Technology, 22(5):1813–1827, 2014.

[6] Alberto Bemporad, Domenico Mignone, and Manfred Morari. Moving
horizon estimation for hybrid systems and fault detection. In Proceed-
ings of the 1999 American Control Conference (Cat. No. 99CH36251),
volume 4, pages 2471–2475. IEEE, 1999.

95

96 BIBLIOGRAPHY

[7] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal
controllers for hybrid systems. In Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No.00CH36334), volume 2,
pages 1190–1194 vol.2, 2000.

[8] Sertac Karaman, Ricardo G Sanfelice, and Emilio Frazzoli. Optimal
control of mixed logical dynamical systems with linear temporal logic
specifications. In 2008 47th IEEE Conference on Decision and Control,
pages 2117–2122. IEEE, 2008.

[9] Ralph E Gomory. Outline of an algorithm for integer solutions to
linear programs and an algorithm for the mixed integer problem. In
50 Years of Integer Programming 1958-2008, pages 77–103. Springer,
2010.

[10] Vasek Chvatal. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete mathematics, 4(4):305–337, 1973.

[11] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm
for the resolution of large-scale symmetric traveling salesman problems.
SIAM Review, 33(1):60–100, 1991.

[12] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs.
Mathematical Programming, 112(1):3–44, 2008.

[13] Ailsa H. Land and Alison G Doig. An automatic method of solving
discrete programming problems. Econometrica, 28(3):497–520, 1960.

[14] Robin Vujanic, Peyman Mohajerin Esfahani, Paul Goulart, Sébastien
Mariéthoz, and Manfred Morari. A decomposition method for large
scale milps, with performance guarantees and a power system applica-
tion. Automatica, 67:144–156, 2016.

[15] Alessandro Falsone, Kostas Margellos, and Maria Prandini. A decen-
tralized approach to multi-agent MILPs: finite-time feasibility and
performance guarantees. Automatica, 103:141–150, 2019.

BIBLIOGRAPHY 97

[16] Alessio La Bella, Alessandro Falsone, Ioli Daniele, Prandini Maria,
and Scattolini Riccardo. A mixed-integer distributed approach to
prosumers aggregation for providing balancing services. Submitted,
2020.

[17] Silvano Martello. Knapsack problems: algorithms and computer
implementations. Wiley-Interscience series in discrete mathematics
and optimiza tion, 1990.

[18] Philipp Baumann and Norbert Trautmann. Portfolio-optimization
models for small investors. Mathematical Methods of Operations
Research, 77(3):345–356, 2013.

[19] Daniel Pérez Palomar and Mung Chiang. A tutorial on decomposition
methods for network utility maximization. IEEE Journal on Selected
Areas in Communications, 24(8):1439–1451, 2006.

[20] George B Dantzig. Maximization of a linear function of variables
subject to linear inequalities. Activity analysis of production and
allocation, 13:339–347, 1951.

[21] Arthur M Geoffrion. Lagrangean relaxation for integer programming.
In Approaches to integer programming, pages 82–114. Springer, 1974.

[22] Ralph Gomory. An algorithm for the mixed integer problem. Technical
report, RAND CORP SANTA MONICA CA, 1960.

[23] Alberto Caprara and Matteo Fischetti. Branch-and-cut algorithms.
Annotated bibliographies in combinatorial optimization, pages 45–64,
1997.

[24] Lester Randolph Ford Jr and Delbert R Fulkerson. A suggested com-
putation for maximal multi-commodity network flows. Management
Science, 5(1):97–101, 1958.

98 BIBLIOGRAPHY

[25] Dimitri Bertsekas, G Lauer, N Sandell, and T Posbergh. Optimal
short-term scheduling of large-scale power systems. IEEE Transactions
on Automatic Control, 28(1):1–11, 1983.

[26] N Jiménez Redondo and AJ Conejo. Short-term hydro-thermal coor-
dination by lagrangian relaxation: solution of the dual problem. IEEE
transactions on power systems, 14(1):89–95, 1999.

[27] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer
programming, volume 271. Springer, 2014.

[28] Alessandro Falsone, Kostas Margellos, Simone Garatti, and Maria
Prandini. Dual decomposition for multi-agent distributed optimization
with coupling constraints. Automatica, 84:149–158, 2017.

[29] Cevdet Aykanat, Ali Pinar, and Umit Catalyurek. Permuting sparse
rectangular matrices into block-diagonal form. SIAM Journal on
Scientific Computing, 25, 12 2002.

[30] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini,
Marco E Lübbecke, Enrico Malaguti, and Emiliano Traversi. Auto-
matic Dantzig–Wolfe reformulation of mixed integer programs. Math-
ematical Programming, 149(1-2):391–424, 2015.

[31] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal, 49(2):291–307,
1970.

[32] George Karpys, Rajat Aggarwal, Vipin Kumar, and Sashi Shekar.
Multilevel hypergraph partitioning: Applications in VLSI domain.
IEEE Transaction on Very Large Scale Integration (VLSI) Systems,
1:69–78, 03 1999.

[33] Charles J Alpert, Jen-Hsin Huang, and Andrew B Kahng. Multilevel
circuit partitioning. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 17(8):655–667, 1998.

BIBLIOGRAPHY 99

[34] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke,
Peter Sanders, and Christian Schulz. K-way hypergraph partitioning
via n-level recursive bisection. In 2016 Proceedings of the Eighteenth
Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 53–67. SIAM, 2016.

[35] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic
for improving network partitions. In 19th design automation confer-
ence, pages 175–181. IEEE, 1982.

[36] Michael R Garey and David S Johnson. Computers and intractability,
volume 174. freeman San Francisco, 1979.

[37] Daniel Schweikert and B. Kernighan. A proper model for the parti-
tioning of electrical circuits. Proc. 9th Design Automation Workshop,
pages 57–62, 01 1972.

[38] Thang Bui, Christopher Heigham, Curt Jones, and Tom Leighton. Im-
proving the performance of the kernighan-lin and simulated annealing
graph bisection algorithms. In Proceedings of the 26th ACM/IEEE
Design Automation Conference, pages 775–778, 1989.

[39] Charles J Alpert and Andrew B Kahng. A general framework for vertex
orderings with applications to circuit clustering. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 4(2):240–246, 1996.

[40] Thang Nguyen Bui and Curt Jones. A heuristic for reducing fill-in in
sparse matrix factorization. Technical report, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA . . . , 1993.

	Acknowledgments
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Abstract
	Sommario
	Introduction
	Context and goal
	Contribution by chapter

	MILPs for optimal decision making
	Why MILPs?
	A significant example

	Resolution schemes for large-scale MILPs
	Optimal approaches
	Branch and bound algorithms
	Cutting plane method
	Column generation

	Heuristic approaches
	Lagrangian relaxation

	Decentralised approaches for structured MILPs

	Large-scale MILPs with hidden multi-agent structure
	Proposed resolution scheme
	Problem statement
	Reformulation as a graph partitioning problem

	Proposed partitioning algorithm
	Procedure outline
	Initialization and introduction of fictitious nodes
	Continuous-discrete nodes association
	h-way partitioning
	Block isolation
	Estimation of the number of blocks

	Alternative approaches

	Performance assessment of the proposed resolution scheme
	Introduction
	Sensitivity analysis
	Computational time
	Identification of the number of blocks

	Conclusions and future work
	Conclusions
	Future work

	MLD operating constraints
	MILP constraints
	Bibliography

