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Abstract

THIS doctoral thesis aims to establish a theoretically-sound frame-
work for the adoption of Recurrent Neural Network (RNN) models
in the context of nonlinear system identification and model-based

control design. The idea, long advocated by practitioners, of exploiting
the remarkable modeling performances of RNNs to learn black-box mod-
els of unknown nonlinear systems, and then using such models to synthe-
size model-based control laws, has already shown considerable potential in
many practical applications.

On the other hand, the adoption of these architectures by the control
systems community has been so far limited, mainly because the general-
ity of these architectures makes it difficult to attain general properties and
to build solid theoretical foundations for their safe and profitable use for
control design.

To address these gaps, we first provide a control engineer-friendly de-
scription of the most common RNN architectures, i.e., Neural NARXs
(NNARXs), Gated Recurrent Units (GRUs), and Long Short-Term Mem-
ory networks (LSTMs), as well as their training procedure. The stability
properties of these architectures are then analyzed, using common non-
linear systems’ stability notions such as the Input-to-State Stability (ISS),
the Input-to-State Practical Stability (ISPS), and the Incremental Input-to-
State Stability (δISS). In particular, sufficient conditions for these proper-
ties are devised for the considered RNN architectures, and it is shown how
to enforce these conditions during the training procedure, in order to learn
provenly stable RNN models.
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Model-based control strategies are then synthesized for these models. In
particular, nonlinear model predictive control schemes are first designed: in
this context, the model’s δISS is shown to enable the attainment of nominal
closed-loop stability and, under a suitable design of the control scheme,
also robust asymptotic zero-error output regulation. Then, an alternative
computationally-lightweight control scheme, based on the internal model
control strategy, is proposed, and its closed-loop properties are discussed.

The performances of these control schemes are tested on several non-
linear benchmark systems, demonstrating the potentiality of the proposed
framework.

Finally, some fundamental issues for the practical implementation of
RNN-based control strategies are mentioned. In particular, we discuss the
need for the safety verification of RNN models and their adaptation in front
of changes of the plant’s behavior, the definition of RNN structures that
exploit qualitative physical knowledge of the system to boost the perfor-
mances and interpretability of these models, and the problem of designing
control schemes that are robust to the unavoidable plant-model mismatch.
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Glossary

δAS Incremental Asymptotic Stability.
δIOS Incremental Input-to-Output Stability.
δISS Incremental Input-to-State Stability.

AS Asymptotic Stability.

CEP Certainty Equivalence Principle.

DL Deep Learning.

FFNN Feed-Forward Neural Network.
FHOCP Finite Horizon Optimal Control Problem.

GD Gradient Descent.
GRU Gated Recurrent Units.

IMC Internal Model Control.
IOPS Input-to-Output Practical Stability.
ISPS Input-to-State Practical Stability.
ISS Input-to-State Stability.

LSTM Long Short-Term Memory.

ML Machine Learning.
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Glossary

MPC Model Predictive Control.
MPRS Multilevel Pseudo Random Signal.
MSE Mean Square Error.

NMPC Nonlinear Model Predictive Control.
NN Neural Network.
NNARX Neural Nonlinear AutoRegressive eXoge-

nous.

RL Reinforcement Learning.
RNN Recurrent Neural Network.

TBPTT Truncated Back-Propagation Through
Time.
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CHAPTER1
Introduction

IN RECENT DECADES, data-driven control has become a solid and flour-
ishing research topic in the systems and control community. Essen-
tially, data-driven control refers to all the approaches that, based on

informative data collected from the operation of a physical dynamical sys-
tem, allow to synthesize a controller with no, or only partial, knowledge of
the physical laws governing the system itself.

There are many reasons why a control system designer may prefer data-
driven control approaches over traditional model-based synthesis, to the
point that discussing all of these reasons exhaustively might even be over-
whelming. For instance, determining the first-principles model of a plant1

is, in general, a time-consuming task that requires in-depth knowledge of
the specific system under consideration. Not infrequently the underly-
ing physical laws are not even entirely known to the control system de-
signer. Also, first-principle models are often derived operating the plant
around nominal conditions, and when the plant operating point needs to be
changed, the model needs to be derived again and the controller synthesis

1In this work we will use the terms “physical system” and “plant” synonymously to refer to the physical
system, characterized by potentially unknown physical laws, for which we want to synthesize a control system.
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Chapter 1. Introduction

needs to be repeated. The main idea behind data-driven control strategies is
that the data collected from the physical system can be exploited to alleviate
the need for human knowledge in the loop [1].

Data-driven control strategies can be broadly grouped in two categories,
i.e., the indirect methods and the direct methods. In indirect methods,
the data collected from the physical system are employed to learn an ap-
proximate dynamical model of the system by means of suitable system
identification procedures [2]. Then, traditional model-based control strate-
gies, among which one of the most prominent is Model Predictive Control
(MPC) [3], are employed to synthesize a control law based on such iden-
tified model. Recent notable examples of learning-based indirect control al-
gorithms are based, for example, on Koopman operator [4], set-membership
[5], and Gaussian Processes [6, 7]. On the other hand, direct methods al-
low to directly learn a control law from the plant’s data. As an example,
popular direct approaches are represented by the so-called Virtual Refer-
ence Feedback Tuning [8] and by the more recent Data-Enabled Predictive
Control [9].

In recent years, increasingly sophisticated data-driven control strategies
have been proposed, as the control systems community experienced a fruit-
ful interchange of ideas with the Deep Learning (DL) community. Among
all DL tools, Neural Networks (NNs) are those that have received the great-
est interest for control applications mainly for two reasons: their flexibility,
which allows them to be used in a multitude of different contexts and for
different purposes, and their well-assessed universal approximation capa-
bilities [10,11]. In light of these peculiarities, the use of NN for data-driven
control began to be investigated as early as the eighties [12]. However, for
many years this interest cooled down due to several shortcomings, such as
the limited availability of data and computational resources, as well as the
insufficient performances of the NN architectures used at the time.

Significant advances were made only in the 2000s, which are indeed
regarded as the golden age of deep learning. In particular, the following
developments are to be considered the main factors that have bolstered the
application of NNs in data-driven control:

• The increasing availability of large and informative datasets.

• The formulation of novel NN architectures, such as Recurrent Neural
Networks (RNNs), that can process data over time and hence learn
temporal patterns [13].

• The availability of optimization algorithms for training, which are in-
creasingly efficient and computationally lightweight [14].

2



1.1. Teleonomy of NNs for control

• The development of high-quality open-source software libraries that
allow to easily train and deploy a wide variety of NN architectures,
such as PyTorch and TensorFlow.

The use of NNs for control has been advocated by many contributions,
both in the early days – see e.g. [12, 15, 16] – and in more recent years,
see e.g. [17–20]. In the following section, an attempt is made to classify
the main frameworks in which NNs can be employed for control-related
problems.

1.1 Teleonomy of NNs for control

We propose six categories in which most of the control-related applications
of NNs can be classified. It should be noted, however, that this list is not
meant to be exhaustive since, given the flexibility of NNs, there are several
approaches that may not fall into the categories listed below.

Black-box modeling

The most common approach is to employ neural networks as black-box
models of the unknown plant in a nonlinear system identification frame-
work [2]. In this case, experiments – designed to suitably excite the system
– are carried out and input-output data is collected. An appropriate NN ar-
chitecture is then chosen and trained to learn the dynamics of the unknown
system. That is, the weights of the NN are progressively tuned to make
it an accurate model of the system, i.e., a model able to reconstruct the
input-output relationship across the temporal dimension.

While black-box nonlinear identification is known to be an hard task,
due e.g. to the importance of the design of experiment and to the stabil-
ity of the numerical algorithm that fits the model to the data, the use of
NNs as black-box models has been widely explored both in the academia
[16, 19, 21, 22] and in the industry [23–25]. Two of the reasons behind this
popularity are the egregious modeling performance of NNs and the general-
ity of the approach, which can be applied to different systems with marginal
changes.

Gray-box modeling

Another context in which NNs stand out is that of gray-box modeling. In-
deed, when first-principle models are available, they often depend on un-
known terms and functions that are difficult to model, e.g., physical rela-
tionships that depend on internal variables and unmodeled states. In such

3



Chapter 1. Introduction

cases, NNs can be employed to learn these components from data, which
allows to blend classic physical modeling with learning.

This paradigm, known as Theory-Guided Data Science [26], allows to
avoid complex and over-parametrized black-box models, while achieving
better interpretability and modeling performances outside the identification
domain. On the other hand, however, this approach requires a good knowl-
edge of the physical system, and the architecture adopted is deeply related
to the system itself.

Examples of this strategy are [27] and [28], where the high-level knowl-
edge of mechanical systems is complemented with the use of a NN to learn
part of the nonlinear state update functions. A similar approach is proposed
in [29], in which NNs are used to learn the kinetic parameters of a CSTR
system.

Uncertainty modeling

When a nominal model of the plant is available, be it identified from data
or derived from physical equations, a NN can be used to learn the model
uncertainty [30], i.e. the plant-model mismatch. Such approach allows to
refine the existing model and to improve its accuracy [31]. This, in turn,
can significantly enhance the closed-loop performances.

In fact, as an alternative to incorporating the NN uncertainty model
within the nominal model, it is actually possible to leverage such uncer-
tainty model to design a control system which guarantees robust stabil-
ity properties. Note that, when the nominal system is linear, the plant-
model mismatch learned by the NN is essentially the linearization error
[32]. Based on the nominal linear system, a robust controller can be de-
signed to guarantee robust closed-loop stability and constraint satisfaction
in spite of the linearization error.

Approximating computationally-intensive control laws

Another application context for NNs is the approximation of computation-
ally onerous control laws. In fact, there are cases in which the plant’s model
is known, yet the application of a specific control law is impossible because
of its computational cost that would prevent its implementation in real time.
This is often the case for Nonlinear MPC laws, as they require to solve a
potentially extremely heavyweight optimization problem in real time, es-
pecially critical when the system displays fast dynamics. While for linear
systems, under mild assumptions, the state-feedback MPC law admits an

4



1.1. Teleonomy of NNs for control

exact explicit form [33], for nonlinear systems one can, at best, approxi-
mate the control law with sufficient accuracy.

In this framework, owing to their approximation capabilities and ex-
tremely low online computational demands2, NNs have often been used
as surrogates for MPC control laws [34–36]. It has been recently shown
that, if properly used, these networks can preserve the closed-loop stabil-
ity [37, 38] and fulfill input [39] and state constraints [40]. Recently, it has
been shown that NNs can be even employed to successfully approximate
robust predictive control laws with guarantees [41].

Other possible approaches that fall into this category are those in which
NNs are used to map the nonlinear system model into a linear model defined
in the features space, with respect to which explicit control laws, or control
laws with limited computational burden, can be synthesized [42, 43].

Direct control learning

Neural networks can also be used in the context of direct data-driven con-
trol strategies, in which one seeks to synthesize a control law directly from
input and output data collected from the physical system. Many direct ap-
proaches for the synthesis of controllers for nonlinear systems rely upon
dictionaries of kernel functions for the approximation of the control law,
see e.g. [44]. In this context, some recent work has shown that NNs are
suitable candidates for learning control laws from data, [45, 46], as they
not only lead to superior performances compared to linear control struc-
tures, but also, as shown in [47], they can even be designed to fulfill input
constraints.

Deep Reinforcement Learning

Lastly, an increasingly popular approach is the so-called deep Reinforce-
ment Learning (RL). Although deep RL has a similar goal to optimal con-
trol, namely to find an optimal control law, in the former it is assumed that
neither a model of the system nor a cost function against which to eval-
uate the control action itself are available [48]. Instead, deep RL relies
on the availability of a system simulator on which to conduct closed-loop
experiments, and an exogenously generated reward signal that quantifies
the goodness of the control action. While there is a multitude of deep RL
strategies to solve the problem [48–50], many of them share the use of a
number of NNs to determine a value function approximation that satisfies

2The computational cost of the MPC is not eliminated; it is just brought forward in time, from the real-time
deployment to the offline training of the NN.
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Chapter 1. Introduction

Bellman’s optimality equation and a state-feedback control law that mini-
mizes (or maximizes) such value function.

The use of deep RL strategies for controlling systems with continuous
control actions has been, in the past, limited by its computational cost and
by the interpretability and reliability of the learned control law. Despite
this, some recent work tried to address these issues by combining RL with
MPC, see e.g. [51, 52], with the goal of making the control law safer and
less computationally intensive.

1.2 Open problems, motivations and contributions

In this work we focus on indirect data-driven control synthesis techniques.
More specifically, on the use of recurrent neural networks as black-box
models of dynamical systems, to be used in conjunction with model-based
control strategies. Therefore, the approach considered herein consists of
two distinct steps:

i. The system identification step, in which a black-box (recurrent) neural
network model of the system is identified, i.e., learned from the data.

ii. The model-based control synthesis step, where such model is used to
synthesize a model-based control law, in general under the so-called
Certainty Equivalence Principle (CEP)3.

Let us point out that these two steps are strictly related, as the choice of the
model’s architecture, its properties, and its identification can dramatically
affect the control strategy to adopt, its closed-loop performances, and even
its closed-loop stability properties. It is therefore necessary to develop a
theoretically-sound unified approach which formalizes the use of neural
models for the synthesis of model-based control laws.

Before delving into the details of the proposed contribution, let us moti-
vate why, among the many approaches discussed in Section 1.1, we inves-
tigated precisely the strategy discussed above.

The first reason is that this approach is very general, since it only as-
sumes stability-related properties of the plant to identify. No requirements
on the structure of the physical system are imposed, nor the partial knowl-
edge of the physical laws by which it is governed is necessary; a suitable
amount of informative input-output data is enough to carry out the identi-
fication procedure. Furthermore, this approach can be combined with the

3The CEP is often introduced for indirect data-driven control design, and it consists in assuming that the
identified model exactly matches the real system.
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1.2. Open problems, motivations and contributions

most advanced model-based control strategies available which, compared
to many direct synthesis methods and deep RL strategies, allows to easily
enforce input and output constraints and to track arbitrary output setpoints.

A further reason is that, over the years, this approach has attracted sig-
nificant interest from control practitioners, in particular in conjunction with
RNN models. Recurrent neural networks are stateful NNs, i.e. they fea-
ture internal loops storing memory of the past data, which make them
particularly suitable for learning dynamical systems. Accounts of appli-
cations of RNNs stem from the chemical [39, 53, 54] and pharmaceuti-
cal [25] process control domains, industrial manufacturing plant manage-
ment [24], buildings’ HVAC optimization [55], microgrid optimal energy
management [56], just to mention a few.

Despite the popularity of this approach, however, there are open prob-
lems that need to be addressed from the perspective of control theory.

a. The safety and generalizability of the RNN black-model must be en-
sured. The former property means that, for a set of possible input tra-
jectories to the RNN model, it must be guaranteed that the output tra-
jectories are contained within a safe set. The second, instead, relates
to ensuring that the accuracy of the model does not degrade excessively
in regions not “too far” from the training set. Notably, these two prop-
erties imply that the RNN model should be robust to perturbations on
the inputs, i.e., these perturbations ideally should cause neither signifi-
cant fluctuations of model’s outputs nor a significant loss of the model’s
accuracy.

b. A control architecture guaranteeing the closed-loop stability for a broad
family of RNN architectures should be devised.

Despite the relevance of these problems, they have yet to be fully tack-
led by the control systems community. Indeed, although for specific (and,
generally, overly simple) architectures some theoretical work is present,
for many of the newer, more powerful architectures such problems remain
open. We aim to fill these gaps by proposing a theoretical framework for
employing RNNs for the identification and control of stable unknown dy-
namical systems. More specifically, this work brings the following contri-
butions.

i. We show how the main RNN architectures can be represented as dis-
crete time nonlinear dynamical systems in state space form, and we
discuss how these models can be used to identify unknown stable dy-
namical systems that display stability-like properties.
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ii. We derive sufficient conditions under which it is possible to guarantee
that these networks are Input-to-State Stable (ISS), Input-to-State Prac-
tically Stable (ISPS), and Incrementally Input-to-State Stable (δISS).
We show how these properties, which are instrumental to ensuring the
RNN model’s safety and robustness against input perturbations, can be
enforced during the training procedure of the RNN model.

iii. We devise a nominally closed-loop stable Nonlinear Model Predictive
Control (NMPC) law, which is then extended to guarantee asymptotic
offset-free tracking capabilities for constant output reference signals.

iv. An alternative control scheme, based on Internal Model Control, is also
proposed owing to its low online computational cost.

1.3 Thesis structure

This doctoral thesis is structured as follows.

Part I – Learning stable RNN models

The first part of the thesis is entirely devoted to the learning of stable RNN
models. To this end, in Chapter 2 the ISPS, ISS, and δISS properties are de-
fined, and their relevance in the context of system identification and control
design is discussed.

In Chapter 3, the RNN architectures considered in this thesis are de-
scribed in detail, and sufficient conditions for their ISPS, ISS, and δISS
properties are devised. These conditions are then exploited in Chapter 4
in order to train provenly ISPS, ISS, and δISS RNN models. To this end, a
suitable training procedure based on the popular truncated back-propagation
through time approach is described.

The content of this part is based on the following papers.
■ F. Bonassi, M. Farina, and R. Scattolini, “Stability of discrete-time feed-forward neural net-

works in NARX configuration,” in 19th IFAC Symposium on System Identification (SYSID
2021), 2021, pp. 547–552, IFAC-PapersOnLine 54.7

■ E. Terzi, F. Bonassi, M. Farina, and R. Scattolini, “Learning model predictive control with
long short-term memory networks,” International Journal of Robust and Nonlinear Control,
vol. 31, no. 18, pp. 8877–8896, 2021

■ F. Bonassi, M. Farina, and R. Scattolini, “On the stability properties of gated recurrent units
neural networks,” Systems & Control Letters, vol. 157, p. 105049, 2021

■ F. Bonassi, A. La Bella, G. Panzani, M. Farina, and R. Scattolini, “Deep Long-Short Term
Memory networks: Stability properties and Experimental validation,” in 2023 European Con-
trol Conference (ECC), 2023, (Under review)
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■ F. Bonassi, M. Farina, J. Xie, and R. Scattolini, “On Recurrent Neural Networks for learning-
based control: recent results and ideas for future developments,” Journal of Process Control,
vol. 114, pp. 92–104, 2022

Part II – Control design

The second part of the thesis is devoted to the design of model-based con-
trol strategies that rely on the trained δISS RNN models. In particular, in
Chapter 5 the control problem is introduced, and an overview of the avail-
able scientific literature on the topic is provided.

Then, considering one of the proposed RNN architectures (i.e., δISS
GRUs), in Chapter 6 two control schemes based on NMPC are proposed: a
first simpler scheme, inspired to [22], that allows to guarantee the nominal
closed-loop stability; a second scheme, characterized by a slightly more in-
volved design phase, which also attains asymptotic error-free output track-
ing of constant references.

In Chapter 7 the same control problem is addressed for another class
of RNN models (i.e., NNARXs), yielding a nominally closed-loop stable
NMPC that is able to achieve offset-free output tracking.

Then, with the aim of providing an alternative control scheme that in-
volves the lowest possible online computational burden, in Chapter 8 the
synthesis of Internal Model Control schemes and their closed-loop proper-
ties are discussed.

The content of this part is based on the following published papers.
■ F. Bonassi, C. F. Oliveira da Silva, and R. Scattolini, “Nonlinear MPC for Offset-Free Track-

ing of systems learned by GRU Neural Networks,” in 3rd IFAC Conference on Modelling,
Identification and Control of Nonlinear Systems (MICNON 2021), 2021, pp. 54–59, IFAC-
PapersOnLine 54.14

■ F. Bonassi, J. Xie, M. Farina, and R. Scattolini, “An Offset-Free Nonlinear MPC scheme for
systems learned by Neural NARX models,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), 2022, pp. 2123–2128

■ F. Bonassi and R. Scattolini, “Recurrent neural network-based Internal Model Control of
unknown nonlinear stable systems,” European Journal of Control, p. 100632, 2022

■ F. Bonassi, A. La Bella, M. Farina, and R. Scattolini, “Nonlinear MPC design for incremen-
tally ISS systems with application to GRU networks,” Automatica, 2023, (In preparation)

Part III – Towards practical applications of deep learning for control

In the third and final part, along the lines of [20], the main challenges con-
cerning the use of RNNs for modeling and control design in applicative
contexts are discussed.

In particular, in Chapter 9, the problems of safety verification of RNN
models and their fine-tuning during the plant’s lifespan are outlined, and

9
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preliminary solutions are concisely discussed. The research trend of physics-
based NNs is also introduced, and the problem of designing control laws
with robustness guarantees [64] is mentioned. At last, conclusions are
drawn in Chapter 10.

The content of this last part is based on (or, at least, hints to) the follow-
ing contributions

■ F. Bonassi, E. Terzi, M. Farina, and R. Scattolini, “LSTM neural networks: Input to state sta-
bility and probabilistic safety verification,” in Learning for Dynamics and Control. PMLR,
2020, pp. 85–94

■ F. Bonassi, J. Xie, M. Farina, and R. Scattolini, “Towards lifelong learning of recurrent neural
networks for control design,” in 2022 European Control Conference (ECC), 2022, pp. 2018–
2023

■ F. Bonassi, M. Farina, J. Xie, and R. Scattolini, “On Recurrent Neural Networks for learning-
based control: recent results and ideas for future developments,” Journal of Process Control,
vol. 114, pp. 92–104, 2022

■ J. Xie, F. Bonassi, M. Farina, and R. Scattolini, “Robust offset-free nonlinear model predictive
control learned by neural nonlinear autoregressive exogenous models,” International Journal
of Robust and Nonlinear Control, 2022, (Under review, arXiv preprint 2210.06801)

Source code availability statement

The source codes implementing the approaches described in this thesis are
available upon request to the author, or at the following link:

https://bonassifabio.github.io/phd-thesis

1.4 Notation

In the remainder of this work, the following notation is adopted. Given a
vector v ∈ Rn, we denote by v′ its transpose and by ∥v∥p its ℓp norm (where
p ≥ 1), i.e.

∥v∥p =
( n∑

i=1

∣∣[v]i∣∣p) 1
p

.

The weighted norm of v is indicated by ∥v∥2Q = v′Qv. A similar notation
is adopted for matrices, where the induced ℓp norm of a generic matrix A is
indicated by

∥A∥p = max
v

∥Av∥p
∥v∥p

.

We denote by
¯
ςA and ς̄A the minimum and maximum singular values of

matrix A, respectively.
The Hadamard (i.e., element-wise) product between the vectors u and

v is denoted by u ◦ v. We use square brackets primarily for concatenation
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of vectors, e.g. z = [u′, v′]′, but when followed by subscript i they indi-
cate the i-th component of the vector. For instance, [v]i represents the i-th
component of the vector v.

Time-varying vectors and scalars are denoted by a subscript indicating
the time instant to which they refer. In this regard, the letter k and t com-
monly refer to a discrete time instant. Thus, vk represents the quantity v at
time k ∈ Z≥0.

By sequence we define the realization, between two time instants k1 and
k2 (with k1 ≤ k2), of some time-varying quantity. Sequences are compactly
denoted by vk1:k2 , where vk1:k2 = {vk1 , vk1+1, ..., vk2}. The ℓp,q norm of a
sequence is defined as

∥vk1:k2∥p,q =
∥∥∥[∥vk1∥p, ∥vk1+1∥p, ..., ∥vk2∥p

]′∥∥∥
q
.

A noteworthy case is that of q =∞, in which

∥vk1:k2∥p,∞ = max
t∈{k1,...,k2}

∥vt∥p.

The main activation functions used throughout the paper are the tanh
and logistic functions, indicated by ϕ(x) = tanh(x) and σ(x) = 1

1+exp(−x) ,
respectively. Note that, when applied to vectors, these activation functions
are intended to be applied element-wise. Thus, for example,

σ(v) =
[
σ([v]1), ..., σ([v]n)

]′
.

When dealing with multi-layer neural networks, the quantities associ-
ated to each layer are indicated by the superscript (l), i.e., the layer index
wrapped by parentheses. Therefore, for example, x(l) denotes a quantity
related to the l-th layer.

By diag(q1, ..., qn) we indicate an n-by-n diagonal matrix having q1, ..., qn
on the main diagonal, whereas In,m represents an n-by-m matrix having
ones on the main diagonal. Similarly, 1n,m and 0n,m represent n-by-m ma-
trices filled with ones and zeros, respectively.

Sets are generally indicated by calligraphic letters, e.g. S, and their
interior part is denoted by Int(·), e.g. Int(S).

In the remainder of this work, additional notation will be specified as
Notation Addenda.
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CHAPTER2
Stability notions

In this chapter, we formally present the stability notions considered in this
work, namely the Input-to-State Stability (ISS), the Input-to-State Practi-
cal Stability (ISPS), and the Incremental Input-to-State Stability (δISS).
These stability properties have been introduced for continuous-time sys-
tems in [67], [68], [69], with the aim of providing a natural tool for stability
analysis of nonlinear systems. Other notions previously used for stability
analysis of neural networks, such as Asymptotic Stability (AS) and Incre-
mental Asymptotic Stability (δAS) [69], are also presented, and their rela-
tionship to ISPS, ISS, and δISS is investigated. Finally, the implications
of these stability conditions for identification and control purposes are dis-
cussed.

Before delving into the details, however, let us introduce few required
definitions.

Definition 2.1 (K function). A continuous function Ψ(s) : R≥0 → R≥0 is
of class K if Ψ(0) = 0 and Ψ(s) is strictly increasing with its argument.

Definition 2.2 (K∞ function). A continuous function Ψ(s) : R≥0 → R≥0 is
of class K∞ if it is of class K and Ψ(s)

s→+∞−−−−→ +∞.
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Definition 2.3 (KL function). A continuous function Ψ(s, k) : R≥0 ×
R≥0 → R≥0 is of class KL if it is of class K∞ with respect to its first
argument and, for any s ∈ R≥0, Ψ(s, k)

k→+∞−−−−→ 0.

In this thesis we consider discrete-time nonlinear systems in the follow-
ing general form

Σ :

{
xk+1 = fd(xk, uk)

yk = g(xk)
, (2.1)

where u ∈ Rnu , x ∈ Rnx , and y ∈ Rny are the input, state, and output
vectors, respectively. The subscript d here denotes the dependency of f
upon a vector of parameters, i.e. d, such that f0(0, 0) = 0. That is, when d
is null, the origin is an equilibrium of the system.

Furthermore, in the following the stability properties are stated with re-
spect to the sets X ⊆ Rnx and U ⊆ Rnu , both containing the origin. There-
fore, the stability notions here discussed are regional, i.e., they only apply
within these sets. In case X = Rnx and U = Rnu the global stability defini-
tions are recovered. This choice is motivated by the fact that, as discussed
in Section 3, RNNs may enjoy regional stability properties with respect to
specific sets X and U , while global stability definitions would be overly
restrictive.

Assumption 2.1. The set X with respect to which the stability properties
are stated is assumed to be a Positive Invariant Set. That is, for any u ∈ U ,

x ∈ X =⇒ fd(x, u) ∈ X .

Notation Addendum 2.1. Given the generic discrete-time nonlinear sys-
tem Σ described by (2.1), we denote by xk(x0, u0:k; Σ) the state of the sys-
tem Σ at time k, when its initial state is x0 and it is fed by the input sequence
u0:k. With a slight abuse of notation, we also denote by x0:k(x0, u0:k; Σ) the
resulting state trajectory, i.e.

x0:k(x0, u0:k; Σ) =
{
x0, x1(x0, u0:1; Σ), ..., xk(x0, u0:k; Σ)

}
. (2.2)

For the sake of compactness, in the following Σ may be omitted from (2.2)
when the underlying system is evident from the context.

Notation Addendum 2.2. Given a vector v extracted from V , we indicate
by Vk1:k2 the set of possible sequences vk1:k2 . That is,

Vk1:k2 =
{
vk1:k2 | vτ ∈ V ∀τ ∈ {k1, ..., k2}

}
. (2.3)
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2.1 ISS, ISPS, and δISS

In light of the preliminary considerations expressed above, we are now
in the position of stating the considered stability properties for nonlinear
discrete-time systems. It is worth pointing out that, despite the follow-
ing definitions are stated along the lines of existing discrete-time ISS [70],
ISPS [71], and δISS [72] notions, they are recast in a slightly more general
form by adopting a generic ℓp norm in place of the ℓ2 norm on which the
aforementioned contributions rely. The equivalence between the proposed
and traditionally adopted definitions will then be proved. Finally, the Lya-
punov theoretical framework behind these properties will be summarized,
and the relationship among these properties will be discussed.

2.1.1 Definition of the stability properties

Definition 2.4 (ℓp-ISPS). System (2.1) is said to be ℓp-ISPS with respect to
the sets X and U if there exist a scalar ϱ ≥ 0 and functions β ∈ KL and
γ ∈ K∞ such that, for any k ∈ Z≥0, any x0 ∈ X , and any input sequence
u0:k ∈ U0:k, it holds that

∥xk(x0, u0:k)∥p ≤ β(∥x0∥p, k) + γ(∥u0:k∥p,∞) + ϱ. (2.4)

Definition 2.5 (ℓp-ISS). System (2.1) is said to be ℓp-ISS with respect to
X and U if it is ℓp-ISPS over X and U with ϱ = 0. That is, there exists
functions β ∈ KL and γ ∈ K∞ such that

∥xk(x0, u0:k)∥p ≤ β(∥x0∥p, k) + γ(∥u0:k∥p,∞). (2.5)

Notice that both ISS and ISPS guarantee that, regardless of the initial
conditions of the system, the state is asymptotically bounded by a func-
tion, γ, which is strictly increasing with the maximum input1 applied to the
system. That is, bounded inputs lead to state trajectories that are asymptoti-
cally bounded in a set whose amplitude decreases with the amplitude of the
applied input trajectories. Smaller input trajectories thus result in tighter
bounds.

Under mild assumptions on the smoothness of the the function g(·) of
(2.1), the ISS/ISPS of the system also entail the boundedness of the sys-
tem’s output reachable set [20,73], and the ISS/ISPS functions β and γ can
be leveraged to compute a (conservative) bound of such set.

A further stability notion considered in this work is that of δISS. This
property has been originally proposed for continuous-time nonlinear sys-

1By “maximum input” we informally refer to the maximum ℓp norm of the input sequence from time 0 to k.
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tems [69], and it has been recently extended to discrete-time nonlinear sys-
tems in [72]. As for ISS, we here extend the δISS definition by considering
arbitrary ℓp norms in place of the ℓ2 norms adopted in [72]. The relationship
between the two formulations is then discussed.

Definition 2.6 (ℓp-δISS). System (2.1) is said to be ℓp-δISS with respect to
the sets X and U if there exist functions β ∈ KL and γ ∈ K∞ such that,
for any k ∈ Z≥0, any pair of initial states xa,0 ∈ X and xb,0 ∈ X , and any
pair input sequence ua,0:k ∈ U0:k and ub,0:k ∈ U0:k, it holds that

∥xa,k − xb,k∥p ≤ β(∥xa,0 − xb,0∥p, k) + γ(∥ua,0:k − ub,0:k∥p,∞), (2.6)

where xa,k = xk(xa,0, ua,0:k) and xb,k = xk(xb,0, ub,0:k).

Since the function β is of class KL, this stability property implies that,
for any pair of initial conditions, the resulting state trajectories asymptot-
ically depend only on the input sequences ua and ub. In particular, the
ℓp distance between such state trajectories is bounded by a function that
is strictly increasing with the maximum distance between the two inputs.
This implies that, asymptotically, the effects of initial conditions vanish,
which relieves the problem of correctly initializing the model, and that the
closer two input sequences, the smaller is the maximum distance between
the resulting state trajectories.

At this stage, let us reconcile the provided definitions with the those
available in the literature. To this end, the following Lemma is stated.

Lemma 2.1. For any p ≥ 1 and q ≥ 1, it holds that

i. If the system is ℓp-ISS, then it is also ℓq-ISS;

ii. If the system is ℓp-ISPS, then it is also ℓq-ISPS;

iii. If the system is ℓp-δISS, then it is also ℓq-δISS.

Proof. See Appendix A.1.1.

Notice that Lemma 2.1 implies that the ℓp-ISPS, ℓp-ISS, and ℓp-δISS
properties are equivalent, respectively, to the ISPS [71], the ISS [70], and
the δISS [72] properties proposed in the literature, as these latter are for-
mulated using the ℓ2 norm.

2.1.2 Lyapunov functions

In this section, we introduce the concepts of ℓp-ISS, ℓp-ISPS , and ℓp-δISS
Lyapunov function, based on [70], [71], and [72], respectively.
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Definition 2.7 (ℓp-ISPS Lyapunov function). A continuous function V (x) :
Rnx → R≥0 is said to be an ℓp-ISS Lyapunov function for system (2.1) if
there exist scalars ϱ1 ≥ 0 and ϱ2 ≥ 0, and K∞ functions α1, α2, α3, and
α4, such that, for any state xk ∈ X , and any input uk ∈ U , it holds that

α1(∥xk∥p) ≤ V (xk) ≤ α2(∥xk∥p) + ϱ1,

V (fd(xk, uk))− V (xk) ≤ −α3(∥xk∥p) + α4(∥uk∥p) + ϱ2.
(2.7)

Definition 2.8 (ℓp-ISS Lyapunov function). If a continuous function V (x) :
Rnx → R≥0 is an ℓp-ISPS Lyapunov function for system (2.1) over sets X
and U and ϱ1 = ϱ2 = 0, then it is said to be an ℓp-ISS Lyapunov function.
That is, there exist K∞ functions α1, α2, α3, and α4, such that

α1(∥xk∥p) ≤ V (xk) ≤ α2(∥xk∥p),
V (fd(xk, uk))− V (xk) ≤ −α3(∥xk∥p) + α4(∥uk∥p).

(2.8)

Definition 2.9 (ℓp-δISS Lyapunov function). A continuous function V (xa, xb) :
Rnx × Rnx → R≥0 is said to be an ℓp-δISS Lyapunov function for system
(2.1) if there exist K∞ functions α1, α2, α3, and α4 such that, for any pair
of states xa,k ∈ X and xb,k ∈ X , and any pair of inputs ua,k ∈ U and
ub,k ∈ U , it holds that

α1(∥xa,k − xb,k∥p) ≤ V (xa,k, xb,k) ≤α2(∥xa,k − xb,k∥p)
V (xa,k+1, xb,k+1)− V (xa,k, xb,k) ≤− α3(∥xa,k − xb,k∥p)

+ α4(∥ua,k − ub,k∥p),
(2.9)

where xa,k+1 = fd(xa,k, ua,k) and xb,k+1 = fd(xb,k, ub,k).

We now show that the existence of any ℓp Lyapunov function implies the
existence of any corresponding ℓq Lyapunov function.

Lemma 2.2. For any p ≥ 1 and q ≥ 1, it holds that

i. If the system admits an ℓp-ISPS Lyapunov function, then it also admits
an ℓq-ISPS Lyapunov function;

ii. If the system admits an ℓp-ISS Lyapunov function, then it also admits
an ℓq-ISS Lyapunov function;

iii. If the system admits an ℓp-δISS Lyapunov function, then it also admits
an ℓq-δISS Lyapunov function.

Proof. See Appendix A.1.2.
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Lemma 2.2 allows us to conclude the equivalence between:

• The existence of any ℓp-ISS Lyapunov function and the (ℓ2) ISS Lya-
punov function described in [70];

• The existence of any ℓp-ISPS Lyapunov function and the (ℓ2) ISPS
Lyapunov function adopted in [71];

• The existence of any ℓp-δISS Lyapunov function and the (ℓ2) δISS
Lyapunov function stated in [72].

Owing to such equivalences, we are now in the position to state the re-
lationship between these Lyapunov functions and the associated stability
properties.

Proposition 2.1. If system (2.1) admits an ℓp-ISS Lyapunov function in the
sets X and U , then it is ℓp-ISS with respect to such sets, in the sense speci-
fied by Definition 2.5.

Proof. In light of Lemma 2.2, the existence of an ℓp-ISS Lyapunov function
implies the existence of an ℓ2-ISS Lyapunov function. Lemma 3.5 of [70]
guarantees that the system is ℓ2-ISS which, owing to Lemma 2.1, implies
that it is ℓp-ISS.

Proposition 2.2. If system (2.1) admits an ℓp-ISPS Lyapunov function in
the sets X and U , then it is ℓp-ISPS with respect to such sets, in the sense
specified by Definition 2.4.

Proof. Lemma 2.2 ensures that an ℓ2-ISPS Lyapunov function exists. In
light of Theorem 2.5 of [71] the system is hence ℓ2-ISPS. Owing to Lemma
2.1, the ℓp-ISPS of the system is guaranteed.

Proposition 2.3. If system (2.1) admits an ℓp-δISS Lyapunov function over
the sets X and U , then it is ℓp-δISS with respect to such sets, in the sense
specified by Definition 2.6.

Proof. The existence of an ℓp-δISS Lyapunov function implies, by Lemma
2.2, the existence of an ℓ2-δISS Lyapunov function. The system is therefore
guaranteed to be ℓ2-δISS by Theorem 1 of [72]. In light of Lemma 2.1 one
can thus ensure that the system is ℓp-δISS.

Let us summarize and comment the theoretical framework described
above. In Definitions 2.4, 2.5, and 2.6, generalizations of the popular ISPS,
ISS, and δISS stability properties have been provided. Such generalized
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properties are equivalent to the traditional ones, but that they are some-
times easier to prove for RNNs. Finally, in Propositions 2.1, 2.2, and 2.3
the relationship between ℓp-ISS, ℓp-ISPS, and ℓp-δISS, and their respective
Lyapunov functions is stated coherently with existing literature.

Henceforth, in light of the equivalence of ℓp-ISS notions, ℓp-ISPS no-
tions, and ℓp-δISS notions, for the sake of simplicity, we will henceforth
generically refer to “ISS” and “ISS Lyapunov function” as any generic ℓp-
ISS and ℓp-ISS Lyapunov function, respectively; to “ISPS” and “ISPS Lya-
punov function” as any generic ℓp-ISPS and ℓp-ISPS Lyapunov function,
respectively; to “δISS” and “δISS Lyapunov function” as any generic ℓp-
δISS and ℓp-δISS Lyapunov function. This choice allows to simplify the
exposition of this work and, owing to Lemma 2.1 and 2.2, does not imply
any inaccuracy. Indeed, albeit in general we resort to ℓ2-ISS, ℓ2-ISPS, and
ℓ2-δISS, in Chapter 3 other ℓp norms may be used to attain simpler mathe-
matical developments.

2.1.3 Relationships among properties

Before discussing the implications of ISS, ISPS, and δISS for system iden-
tification and control, it is worth to mention the relationships between these
notions.

Among the three properties, the weakest is the ISPS, which only guar-
antees the boundedness of the state trajectories.

As discussed in Section 2.1.1, the ISS property is a particular, and
stronger, case of ISPS, where ϱ = 0. Notice that, for the considered sys-
tems, when d is null the ISS is always implied by ISPS. Notably, in addition
to guaranteeing the state boundedness, ISS also guarantees its asymptotic
convergence to the origin in case of asymptotically null inputs.

Finally, one can claim that δISS is an even stronger property. When the
origin is an equilibrium of the system, which is always the case if one has
a null d, the δISS implies the system’s ISS. On the other hand, when d is
not null, proving that the δISS implies the ISPS requires to consider further
assumptions, namely, that the equilibrium manifold2 is non-empty, which
is hard to guarantee in general. Nonetheless, in Section 3 we show that the
proposed conditions for the δISS of the systems under analysis also entail
its ISPS, without the need of requiring further conditions.

2The equilibrium manifold is defined as the set Sd = {(x̄, ū) ∈ X × U : x̄ = fd(x̄, ū)}.
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2.2 Other stability notions

In this section we introduce additional stability properties, which were orig-
inally proposed for continuous-time systems [69] and later repurposed for
discrete-time systems, see e.g. [72]. Albeit these stability properties are
weaker than δISS (specifically, they are implied by this latter) they are here
discussed because most of the existing literature on the stability of RNNs
is based on such properties.

In order to present these stability notions, it is useful to first recall the
notion of stability of the motion of a system. Let us therefore consider the
motion xa,k(xa,0, u0:k), associated to the initial state xa,0 ∈ X and to the
input sequence ua,0:k ∈ U0:k. The motion xa,k is said to be asymptotically
stable over X if, for any motion xb,k(xb,0, u0:k), with xb,0 ∈ X , there exists
a KL function β such that, at any time instant k ∈ Z≥0,

∥xa,k − xb,k∥p ≤ β(∥xa,0 − xb,0∥p, k) (2.10)

where, for compactness, xa,k = xa,k(xa,0, u0:k) and xb,k = xb,k(xb,0, u0:k).
When all the motions of system (2.1) satisfy this asymptotic stability def-
inition, the system is said to be incrementally asymptotically stable with
respect to the sets X and U , as shown in the following definition.

Definition 2.10 (δAS). System (2.1) is said to be (ℓp) Incrementally Asymp-
totically Stable (δAS) with respect to X and U if there exists a function
β ∈ KL such that (2.10) holds for any pair of initial states xa,0 ∈ X and
xb,0 ∈ X , for any input sequence u0:k ∈ U0:k, and at any k ∈ Z≥0.

The δAS property implies that, asymptotically, the state trajectory of
the system depends solely on the input sequence applied, as the effects of
different initial condition vanish. Notice that δAS is weaker than δISS, i.e.
if a system is δISS, then it is also δAS. This can be easily verified by taking
ua,0:k = ub,0:k = u0:k, for which specific case the δISS condition (2.6) boils
down to the δAS condition (2.10).

A noteworthy case is when the condition of asymptotic stability (2.10)
applies only to system’s equilibria, as illustrated in the following definition.

Definition 2.11 (AS). Consider the equilibrium (x̄, ū), such that ū ∈ U ,
x̄ ∈ X , and x̄ = fd(x̄, ū). Then, the equilibrium is said to be (ℓp) Asymp-
totically Stable (AS) with respect to X and U if there exists a function β of
class KL such that

∥x̄− xk(x0, ū)∥p ≤ β(∥x̄− x0∥p, k). (2.11)

for any initial state x0 ∈ X and any k ∈ Z≥0.
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2.3. Implications of the introduced stability properties

Remark 2.1. The stability properties stated in Section 2.1 and 2.2 feature
a generic KL function β. When such function β is exponential with respect
to its first argument, i.e., when there exist µ > 0 and λ ∈ (0, 1) such that

β(s, t) ≤ µ s λk, (2.12)

one can speak of exponential ISS, ISPS, δISS, AS, and δAS.

2.3 Implications of the introduced stability properties

Having introduced the stability notions used for the analysis of RNNs, we
can now discuss the main implications of these properties that will be, in
later chapters, exploited for the synthesis of theoretically-sound control
laws based on stable RNN models. The following list, summarized in Ta-
ble 2.1, should therefore not be interpreted as an exhaustive discussion of
the implications of the above-mentioned stability notions, but rather as a
summary of properties which may be exploited in the following chapters.

Boundedness of the output reachable set

As mentioned in Section 2.1.1, under the assumption that the output trans-
formation of the system is Lipschitz-continuous, the ISPS property entails
the boundedness of the system’s state and output trajectories. This property
is usually stated in terms of the output reachable set, defined as follows.

Definition 2.12 (Output reachable set). The set Y ⊆ Rny is an output
reachable set of system (2.1) if, for any k ∈ Z≥0, any initial state x0 ∈ X ,
and any input sequence u0:k ∈ U0:k, it holds that

yτ (x0, u0:τ ) ∈ Y , ∀τ ∈ {0, ..., k},

where, of course, yτ (x0, u0:τ ) = g(xτ (x0, u0:τ )).

The following proposition can hence be stated.

Proposition 2.4. If system (2.1) is ISPS and its output transformation is
Lipschitz-continuous, then the system’s output reachable set Y is bounded.
Moreover, there exist a function γy of class K∞ and a scalar ϱy ≥ 0 such
that, asymptotically,

Y ⊆ Ȳ =

{
y ∈ Rny : ∥y∥p ≤ γy

(
sup
u∈U
∥u∥p

)
+ ϱy

}
. (2.13)

Proof. See Appendix A.1.3.
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Chapter 2. Stability notions

ISPS ISS AS δAS δISS
Output reachable set boundedness ✓ ✓ ✓†

Vanishing of system initialization ✓ ✓
Robustness to input perturbations ✓
Stability of linearized models ✓

Table 2.1: Summary of the implications of the discussed stability properties.

As discussed in [65], Proposition 2.4 implies that the ISPS property al-
lows to compute a conservative bound of the output reachable set of the
system. It is worth noting, however, that this bound may be overly conser-
vative if the function γy is conservatively defined. On the other hand, the
guaranteed boudnedness of the output reachable set provides a strong theo-
retical support for the strategy of computing a probabilistic bound via ran-
domized approaches [65], which results in less conservative bounds. This
idea is further discussed in Section 9.

Lastly, we point out that the boundedness of the output reachable set is
also entailed by the ISS property, as it is a particular case of ISPS.

Vanishing of the system initialization

When the generic system (2.1) represents a black-box model of an unknown
system, the problem suitably initializing its states arises. Indeed, an inac-
curate initialization of the model could, in general, lead to a severe degra-
dation of the modeling performances.

On the other hand, if the system model is δAS or δISS, the modeling
performances are asymptotically independent from the model’s initial con-
ditions. Picking two initial states xa,0 ∈ X and xb,0 ∈ X , for any control
sequence u0:k, one has that the bound on the maximum distance between
the resulting state trajectories converge to zero

∥xa,k − xb,k∥p ≤ β(∥xa,0 − xb,0∥p, k)
k→∞−−−→ 0.

The model’s output is thus asymptotically independent of the initial state.
It is worth noting that whether this behavior is desirable in a model de-

pends on whether the unknown plant displays, in turn, δAS-like or δISS-
like stability properties3, as discussed in Chapter 4.

3Since the plant from which the data are collected is not known, it is generally not possible to analytically
verify that it is δAS or δISS. From the input-output trajectories it is however possible to numerically verify
whether they are compatible with such stability properties.

†Under the mild assumption that the equilibrium manifold of the system is not empty.
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Robustness to input perturbations

One of the well-known problems of neural networks is that of so-called
robustness to adversarial attacks, that is, the ability to certify that small
perturbations on inputs have limited effects on performances. Although
this problem has been addressed for nonrecurrent NNs, see e.g. [74], it is
beyond challenging for RNNs and, in general, for dynamical systems, in
which perturbations can have effects that accumulate over the long term.

In this context, the robustness to input perturbations can be guaranteed
by the δISS property. Indeed, letting du,0:k be the input disturbance, such
that ũ0:k = u0:k+du,0:k ∈ U0:k is the perturbed input, from (2.10) it follows
that

∥xk − x̃k∥p ≤ γ(∥du,0:k∥p,∞), (2.14)

where xk = xk(x0, u0:k) and x̃k = x̃k(x0, ũ0:k) denote the unperturbed
and the perturbed state trajectories, respectively. Equation (2.14) entails
that the deviation of the state trajectories caused by an input perturbation
is bounded by a function γ, which is strictly increasing with the maximum
amplitude of the perturbation itself. Therefore, the smaller the amplitude of
such perturbation, the tighter the bound on the state trajectories deviations.

It is worth noting that, although the γ function of the δISS definition
(2.6) can be used for (2.14), it is often defined very conservatively, to the
point that such bound is too conservative to be usable in practice. However,
once the δISS of the system is assessed, one can numerically compute the
functions β and γ, which provide a tighter (and more useful) bound [20].

Stability of linearized models

An implication of exponential δISS is that it guarantees the asymptotic
stability of the system’s linearization around any equilibrium point. The
asymptotic stability of the linearized system is indeed very useful for the
synthesis of many control laws, see [61].

Let us therefore consider a generic equilibrium Σ̄ = (x̄, ū, ȳ) such that
x̄ = f(x̄, ū) and ȳ = g(x̄), where x̄ ∈ Int(X ) and ū ∈ Int(U). Letting

δxk = xk − x̄, δuk = uk − ū, δyk = yk − ȳ, (2.15a)

the linearized system reads as

δΣ(Σ̄) :

{
δxk+1 = Aδδxk +Bδδuk

δyk = Cδδxk
, (2.15b)
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Chapter 2. Stability notions

where the matrices Aδ = Aδ(Σ̄), Bδ = Bδ(Σ̄), and Cδ = Cδ(Σ̄) are com-
puted as

Aδ(Σ̄) =
∂f(x, u)

∂x

∣∣∣∣
x̄,ū

, Bδ(Σ̄) =
∂f(x, u)

∂u

∣∣∣∣
x̄,ū

, Cδ(Σ̄) =
∂g(x)

∂x

∣∣∣∣
x̄

.

(2.15c)
The following theoretical contribution establishes a relationship between
the exponential δISS property and the local asymptotic stability of the lin-
earized system (2.15).

Theorem 2.1. Let system (2.1) be exponentially δISS, and Σ̄ = (x̄, ū, ȳ)
be a generic equilibrium, such that x̄ = f(x̄, ū) with x̄ ∈ Int(X ) and
ū ∈ Int(U), and ȳ = g(x̄). Then, the linearization of (2.1) around Σ̄, i.e.
(2.15), is locally asymptotically stable. That is, the matrix Aδ(Σ̄) is Schur
stable.

Proof. See Appendix A.1.4.

2.4 Summary

In this chapter, the main stability notions that will be henceforth considered,
i.e. ISPS, ISS, and δISS, have been formally introduced. The relationship
among these properties have been discussed, and their association to other
stability properties such as AS and δAS have been highlighted. Finally,
the implications of these stability properties, which in future chapters will
be leveraged to design theoretically-sound control strategies, have been ex-
plored. In the next chapter, the main RNN architectures are presented, and
sufficient conditions to guarantee their ISPS, ISS, and δISS, are devised.
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CHAPTER3
Stable RNN architectures for system

identification

As extensively discussed in Chapter 1, due to their modeling capabilities,
neural networks have gathered an increasing research interest in the control
systems domain, in particular concerning their use as black-box models for
system identification purposes [2, 20].

Neural networks are nonlinear models, inspired by the operating princi-
ples of biological neural networks, and generally consist of a series of linear
functions followed by nonlinear transformations. In light of their overpa-
rameterization, these models are extremely flexible and powerful, but they
require a numerical optimization procedure – called training procedure –
to determine the parameters, named weights, so as to minimize a loss func-
tion that quantifies how inaccurately the neural network is simulating the
available data.

That of neural networks is a vast topic, and an exhaustive description
of it is certainly beyond the scope of this work. The interested reader is
therefore directed to specific works on the topic [14, 75]. Let it suffice to
note that NNs can be divided into two broad categories: (i) Feed-Forward
Neural Networks (FFNNs), which correspond to static transformations in
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Chapter 3. Stable RNN architectures for system identification

Figure 3.1: Visual comparison of feed-forward and recurrent neural network architec-
tures.

which information flows from the inputs of the network to the outputs in an
instantaneous and unidirectional fashion, with no memory retained of past
data; (ii) Recurrent Neural Networks (RNNs), which feature internal loops,
whose purpose is to maintain memory of past trajectories, that make these
networks stateful, so that they actually are dynamical systems. A simple
visual comparison between these two categories is proposed in Figure 3.1.

Being nonlinear dynamical systems, RNNs are particularly appropriate
for system identification tasks [13,20]. They have been shown to potentially
approximate any dynamical system, see [11]: this property is known as the
universal approximation. However, traditional and simple RNN architec-
tures, also called vanilla RNNs (see [14]), are affected by the so-called
vanishing/exploding gradient problem, which in practice greatly limits the
modeling performances that these architectures can achieve. Examples of
vanilla RNN architectures and an analysis of the vanishing and exploding
gradient issues are reported in [76] and [77]. To some extent, Neural NARX
(NNARX) models [57], i.e. autoregressive models in which the nonlinear
regression function consists of a FFNN, can be considered in this family.
Because of vanishing and exploding gradient problems, these models have
historically been trained by minimizing the one-step ahead prediction er-
ror [21], or the free-run simulation error over a short time horizon.

A first attempt to construct RNNs whose training is not plagued by gra-
dient problems is that of Echo State Networks (ESNs) [78, 79]. This archi-
tecture is peculiar in that the network’s states have fixed (i.e., untrainable)
and randomly generated dynamics at the time of network creation. These
fixed dynamics constitute the so-called dynamic reservoir. Training ESNs
boils down to a linear regression problem, that is simple to solve and, unlike
other RNNs, does not require iterative gradient descent-based algorithm.
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Although their structure makes them particularly interesting, there are
cases where the modeling capabilities of ESNs may prove insufficient,
mainly because of their fixed dynamics. To achieve better performance
while avoiding gradient problems, the gated RNNs have been proposed in
the literature, in which the flow of information and the memory of past data
are regulated by the so-called gates. In particular, the most popular gated
architectures are Long Short-Term Memory networks (LSTMs), proposed
in [80], and Gated Recurrent Units (GRUs), more recently proposed in [81].
In many applications, such as time series prediction [13, 82], natural lan-
guage processing [83], and dynamical systems identification [84, 85], both
architectures have demonstrated vastly superior performances than vanilla
RNNs and ESNs.

In this thesis, we focus on three architectures: NNARXs, LSTMs, and
GRUs. As we will discuss, this choice is due to the their complementary
nature: NNARXs are characterized by the simplest structure, and are the
easiest to train and use for control, but at the same time have more modest
performances; LSTMs are the most complex to train, but have greater rep-
resentational flexibility; finally, GRUs have intermediate performances but
a simpler structure than LSTMs, which facilitates and speeds up the training
procedure, often to the benefit of the modeling performances themselves.

Being nonlinear dynamical systems, we henceforth consider these archi-
tecture to fit the following (generic) state-space form

Σ(Φ) :

{
xk+1 = f(xk, uk; Φ)

yk = g(xk; Φ)
(3.1)

where xk ∈ Rnx denotes the state vector, uk ∈ Rnu the input vector, and
yk ∈ Rny the output vector, while Φ indicate the set of weights of the
network.

Notice that the generic form (3.1) resembles system (2.1) for which
the stability properties of interest have been described in Section 2, where
however the dependence on the term d has been omitted for conciseness.
Nonetheless, for each proposed architecture, it is shown that this term is
represented by a subset of the network’s weights Φ (i.e., d = d(Φ)) whose
nullity ensures that the origin is an equilibrium of Σ(Φ).

In the sections that follow, for each of the three mentioned architectures,
the state-space form is described, and the conditions that guarantee its sta-
bility properties are derived. Before entering into the details of the proposed
stability conditions, it is worth to briefly describe the existing literature on
the stability properties of RNN architectures.
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Chapter 3. Stable RNN architectures for system identification

Existing literature on RNNs stability properties

The problem of ensuring the stability of RNN models has been only par-
tially addressed in the existing literature, which mostly focused on the
stability of continuous-time autonomous RNNs, see [86] and references
therein. Nonetheless, these works are limited to continuous-time vanilla
RNNs that are, on the one hand, continuous time – which turn out to be
harder to train and to use for long-term prediction than their discrete-time
counterpart –, and on the other hand, autonomous, meaning that input vari-
ables are not considered in the stability analysis. The AS and δAS proper-
ties of discrete-time vanilla RNNs have been analyzed in [87–89] and [90],
respectively. In [91], sufficient conditions for the ISS of NNARXs have
been proposed, but they are limited to continuous-time single-layer net-
works.

The stability properties of ESNs have been recently studied. In [92] a
sufficient condition for the global δAS of ESNs has been proposed, while
in [93] conditions guaranteeing the stronger δISS property have been de-
vised and such property has been exploited for the synthesis of a nominally
closed-loop stable NMPC law.

Concerning the gated RNNs, however, little results are available. In par-
ticular, the AS of the origin has been analyzed for single-layer autonomous
LSTMs [94, 95]. Moreover, in [90] sufficient conditions for the δAS of
single-layer LSTMs have been derived. Concerning GRUs, the equilibria
of single-layer networks have been analyzed, and their local AS have been
investigated in [96].

Contributions

Motivated by these gaps in the literature, we address the fundamental is-
sue of guaranteeing the safety and the theoretical soundness of NNARXs,
LSTMs, and GRUs architectures. This is obtained by analyzing the ISPS,
ISS, and δISS properties of the considered architectures. In the sections that
follow we propose, for each of these architectures, sufficient conditions on
its weights that allow to guarantee its ISPS, ISS, and δISS. Such conditions
boil down to a set of nonlinear inequalities in the form

ν(Φ) < 0, (3.2)

where ν(Φ) is a vector of suitable nonlinear transformations which depend
both on the particular RNN architecture and on the specific stability prop-
erty under consideration. Notably, condition (3.2) not only allows one to
certify whether the RNN model (3.1) is ISPS, ISS, or δISS, but also allows
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3.1. NNARXs

to train provenly ISPS, ISS, δISS RNN models. Such suitable training pro-
cedure will be described in Chapter 4. To the best of our knowledge, this
represents a novel and relevant contribution to the existing literature.

This chapter is structured as follows. In Section 3.1, the sufficient con-
ditions for the ISS, ISPS, and δISS of NNARXs are devised, based on the
paper [57]. Section 3.2 deals with the same stability properties for LSTMs.
In particular, based on [22] sufficient conditions are initially devised for
single-layer networks, and then extended to deep LSTMs [59]. Lastly, in
Section 3.3 sufficient conditions for the ISPS, ISS, and δISS of GRUs are
devised, based on [58].

3.1 NNARXs

In Neural NARX models, the output yk+1 is assumed to depend only on the
previous H input and output data (H will be henceforth named regression
horizon), as well as the current input uk. The output yk+1 of the NNARX
model is hence defined by

yk+1 = η(yk, yk−1, ..., yk−H+1, uk, uk−1, ..., uk−H ; Φ), (3.3)

where η is a FFNN, parametrized by the weights Φ, representing the nonlin-
ear regression function which establishes the relationship between the past
data, the control variable, and the future output. For these models, η is as-
sumed to be a vector of ny Lipschitz-continuous functions. Model (3.3) can
be recast as a discrete-time system in normal canonical form [97]. To this
end, let us define zh,k = [y′k−H+h, u

′
k−H−1+h]

′ ∈ Rnz , where nz = nu + ny
and h ∈ {1, ..., H} is an index spanning the regression horizon. Noticing
that zH,k+1 = [y′k+1, u

′
k]

′, (3.3) can be rewritten as

z1,k+1 = z2,k
...

zH−1,k+1 = zH,k

zH,k+1 =

[
η(z1,k, z2,k, ..., zH,k, uk; Φ)

uk

]
yk = [I 0] zH,k

(3.4)

Defining the state of the NNARX model as xk = [z′1,k, ..., z
′
H,k]

′ ∈ Rnx ,
with nx = Hnz, system (3.4) can be compactly represented as{

xk+1 = Axk +Buuk +Bηη(xk, uk)

yk = Cxk
, (3.5a)
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where, with a slight abuse of notation,

η(xk, uk) = η(yk, yk−1, ..., yk−H+1, uk, uk−1, ..., uk−H ; Φ),

and the fixed matrices A, Bu, Bη, and C are defined as follows

A =



0nz ,nz Inz ,nz 0nz ,nz ... 0nz ,nz

0nz ,nz 0nz ,nz Inz ,nz ... 0nz ,nz

... . . . ...
0nz ,nz 0nz ,nz 0nz ,nz ... Inz ,nz

0nz ,nz 0nz ,nz 0nz ,nz ... 0nz ,nz

 , (3.5b)

Bu =


0nz ,nu

...
0nz ,nu

B̃u

 with B̃u =

[
0ny ,nu

Inu,nu

]
, (3.5c)

Bη =


0nz ,ny

...
0nz ,ny

B̃η

 with B̃η =

[
Iny ,ny

0nu,ny

]
, (3.5d)

C =
[
0ny ,nz ... 0ny ,nz C̃

]
with C̃ =

[
Iny ,ny 0ny ,nu

]
. (3.5e)

Being the function η(xk, uk) a FFNN with L layers1, it consists of a series
of function combinations reading as follows

η1 = ψ1

(
U (1)xk +W (1)uk + b(1)

)
,

η2 = ψ2

(
U (2)η1 +W (2)uk + b(2)

)
,

...

ηL = ψL
(
U (L)ηL−1 +W (L)uk + b(L)

)
,

η(xk, uk) = U (0)ηL + b(0),

(3.5f)

where ψl indicates the activation function of the l-th layer which, for the
sake of simplicity, is assumed to be Lipschitz-continuous with constant L(l)

ψ

and zero-centered, i.e. ψl(0) = 0. For example, one may take ψl = ϕ, i.e.
the tanh activation function, having Lipschitz constant L(l)

ψ = 1.
1It is reminded that, for multi-layer networks, the appendix (l) is used to denote a quantity associated to the

l-th layer, l ∈ {1, ..., L}.
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System (3.5) fully describes the state-space NNARX model and falls in
the generic form (3.1), where the set of weights Φ reads as

Φ =
{
U (0), b(0), {U (l),W (l), b(l)}∀l∈{1,...,L}

}
.

Notice that d(Φ) = [b(0)′, ..., b(L)′]′. Indeed, if d is null, it is easy to see
that η(0nx,1, 0nu,1) = 0ny ,1 and hence the origin is an equilibrium of Σ(Φ).

Moreover, it is worth emphasizing that in the NNARX model (3.5), the
state vector xk is a concatenation of the input and output vectors of the last
H time-steps. When this model is used in closed-loop (e.g., in combination
with a model-based control law), the current state of the model is known,
since the past inputs and outputs are known. This means that, although it
is a black-box model, there is no need to design a state observer, which
greatly simplifies the control design.

3.1.1 Sufficient conditions for stability

Having described the NNARX models, we are now in the position to state
their stability properties.

Theorem 3.1 (ISPS of NNARXs). A sufficient condition for the global ex-
ponential ISPS2 of the NNARX (3.5) is that

L∏
l=0

∥U (l)∥2 −
1(∏L

l=1 L
(l)
ψ

)√
H
< 0. (3.6)

Proof. See Appendix A.2.1.

Corollary 3.1 (ISS of NNARXs). If (3.6) holds and the bias b(l) is null for
any l ∈ {0, ..., L}, the NNARX model is globally exponentially ISS.

Proof. As discussed above, if b(l) is null ∀l ∈ {0, ..., L}, i.e., d(Φ) is null,
then the origin is an equilibrium of (3.5). Moreover, taking the same Lya-
pounov function candidate as in Appendix A.2.1, in light of (A.38e) and
(A.38f), one gets ϱ1 = ϱ2 = 0, meaning that it also represents an ℓ2-
ISS Lyapunov function. Invoking Proposition 2.1, the ISS of the NNARX
model can be guaranteed.

Theorem 3.2 (δISS of NNARXs). If the NNARX model (3.5) is ISPS by
Theorem 3.1, i.e., if (3.6) holds, then the system is also globally exponen-
tially δISS.

Proof. See Appendix A.2.2.

2Global ISPS corresponds to the ISPS with respect to the sets X = Rnx and U = Rnu .
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LSTM Cell

Figure 3.2: Schematic of a shallow LSTM network.

It is worth highlighting that the stability condition (3.6) is a nonlinear
inequality on the weights of the network, which falls into the general form
(3.2), since the terms L(l)

ψ are known constants that solely depend on the
chosen activation functions.

3.2 LSTMs

In this section, LSTM models are formulated in the state-space form (3.1),
and their stability properties are investigated. For simplicity of exposition,
we first present the simple case of single-layer LSTMs, after which the
more general case of deep LSTMs is analyzed.

To this end, we introduce a customary assumption when working with
NN models, namely the unity-boundedness of the input variable.

Assumption 3.1. The input is unity-bounded. That is, for any k, the input
satisfies uk ∈ U , where

U = {u ∈ Rnu : ∥u∥∞ ≤ 1}. (3.7)

Notice that, as long as the control input is limited, Assumption 3.1 can
always be satisfied by means of a suitable normalization of the input data.

3.2.1 Shallow LSTMs

The shallow (i.e., single-layer) LSTM model with input u and output y is
described by the following state-space model [22]

ck+1 = fk ◦ ck + ik ◦ ϕ(Wruk + Ur hk + br)

hk+1 = zk ◦ ϕ(ck+1)

yk = Uohk + bo

, (3.8a)
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where the states ck ∈ Rnc and hk ∈ Rnc are usually named cell state and
hidden state, respectively, and nc is the number of neurons of the layer,
which is an hyperparameter (that is, a design knob) of the model. The state
vector of the LSTM model is the concatenation of the cell and hidden states,
i.e.

xk = [c′k, h
′
k]

′. (3.8b)

Notice that the number of states of the layer is defined by the number of
neurons, i.e., nx = 2nc. The terms fk, ik, and zk appearing in (3.8a) are
the gates of the LSTM, that rule the flow of information throughout the net-
work, thus allowing to tackle the vanishing and exploding gradient problem
and to retain long-term memory [77, 80]. These gates are described by the
following equations

fk = σ(Wfuk + Ufhk + bf ),

ik = σ(Wiuk + Uihk + bi),

zk = σ(Wzuk + Uzhk + bz),

(3.8c)

where we recall that σ is the sigmoidal activation function, evaluated element-
wise on its arguments. In the following, for the sake of compactness, we
may also denote rk = ϕ(Wruk+Ur hk+ br), referred to as squashed input,
where ϕ is the tanh activation function.

In Figure 3.2, the shallow LSTM architecture is schematically repre-
sented adopting common deep learning conventions: merging arrows de-
note linear combination operations, whereas branching arrows represent
vector copying operations.

At this stage, let us point out that, since σ(·) ∈ (0, 1), the gates are
vectors of positive subunitary elements. The “aperture” of these gates de-
pend on the cell input and on the hidden state: gates with values close to 0
are referred to as “closed”, since they block the flow of information, while
gates with values close to 1 are referred to as “open”, since they let the
information flow.

It is evident that the LSTM model (3.8) falls into the general form (3.1),
where the set of weights reads as

Φ = {Wf , Uf , bf ,Wi, Ui, bi,Wr, Ur, br,Wz, Uz, bz, Uo, bo}

and d(Φ) = br. Indeed, if br is null, (3.8) admits the origin as equilibrium.
Before analyzing the stability properties of (3.8), let us point out the

following bounds.
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Lemma 3.1. The gates fk, ik, and zk, and the squashed input rk of the
shallow LSTM (3.8) can be bounded, for each component j ∈ {1, ..., nc},
as

0 < 1− σ̌f ≤ [fk]j ≤ σ̌f < 1, (3.9a)
0 < 1− σ̌i ≤ [ik]j ≤ σ̌i < 1, (3.9b)
0 < 1− σ̌z ≤ [zk]j ≤ σ̌z < 1, (3.9c)

−1 < −ϕ̌r ≤ [rk]j ≤ ϕ̌r < 1. (3.9d)

where

σ̌f = σ(∥Wf Uf bf∥∞), (3.10a)
σ̌i = σ(∥Wi Ui bi∥∞), (3.10b)
σ̌z = σ(∥Wz Uz bz∥∞), (3.10c)

ϕ̌r = ϕ(∥Wr Ur br∥∞). (3.10d)

Proof. See Appendix A.2.3.

The bounds discussed in Lemma 3.1 allow to establish a relationship
between the weights and the minimum and maximum values of the gates.

3.2.2 Sufficient conditions for the stability of shallow LSTMs

To establish the stability properties of (3.8), we need to find an invariant set
X within which ISPS, ISS, and δISS can be assessed. Such invariant set is
therefore defined in the following.

Proposition 3.1 (Invariant set of shallow LSTMs). Given Assumption 3.1,
an invariant set of the shallow LSTM (3.8) is

X = C ×H, (3.11a)

where the sets C andH read as

C = {c ∈ Rnc : ∥c∥∞ ≤ č}, (3.11b)

H = {h ∈ Rnc : ∥h∥∞ ≤ ȟ}, (3.11c)

with the component-wise bounds č and ȟ being defined as

č =
σ̌iϕ̌r
1− σ̌f

, (3.12a)

ȟ = ϕ(č) < 1, (3.12b)

and σ̌f , σ̌i, σ̌z, and ϕ̌r being defined in (3.10).

Proof. See Appendix A.2.4.
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We are now in the position of stating the stability conditions of shallow
LSTMs with respect to the invariant set X (3.11) and the input set U (3.7).

Theorem 3.3. A sufficient condition for the exponential ISPS of the shallow
LSTM model (3.8) with respect to the sets X and U is that the matrix A,
defined below, is Schur stable

A =

[
σ̌f σ̌i∥Ur∥2
σ̌zσ̌f σ̌zσ̌i∥Ur∥2,

]
, (3.13)

where σ̌f , σ̌i, σ̌z, and ϕ̌r are defined in (3.10).

Proof. See Appendix A.2.6.

While Theorem 3.3 represents a noteworthy result, the associated con-
dition on Φ does not come in the general form (3.2). In the following,
conditions for the Schur stability of matrix A are therefore formulated is
such form.

Proposition 3.2 (ISPS of shallow LSTMs). The matrix A defined in (3.13)
is Schur stable if and only if

σ̌f + σ̌zσ̌i∥Ur∥2 − 1 < 0. (3.14)

Proof. See Appendix A.2.6.

In view of Theorem 3.3, (3.14) is a sufficient condition for the exponen-
tial ISPS of the shallow LSTM model with respect to X and U . Moreover,
condition (3.14) now falls into the general form (3.2).

Corollary 3.2 (ISS of shallow LSTMs). If (3.14) holds and the bias br is
null, then the LSTM model (3.8) is exponentially ISS with respect to the sets
X and U .

Proof. Let us first notice that if br is null, the origin is an equilibrium of
(3.8). It is easy to verify that, since ∥br∥2 = 0, the ISPS term ϱ, defined in
(A.64c), is null. Therefore, the ISPS condition also implies the (stronger)
ISS.

Theorem 3.4. A sufficient condition for the δISS of the shallow LSTM
model (3.8) with respect to the sets X and U is that the matrix Aδ, defined
below, is Schur stable

Aδ =

[
σ̌f α̌

σ̌zσ̌f σ̌zα̌ + 1
4
ȟ∥Uz∥2

]
, (3.15a)
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where σ̌f , σ̌i, σ̌z, and ϕ̌r are defined in (3.10), č and ȟ are defined in (3.12),
and

α̌ =
1

4
č∥Uf∥2 + σ̌i∥Ur∥2 +

1

4
ϕ̌r∥Ui∥2. (3.15b)

Proof. See Appendix A.2.7.

It is worth noticing that condition (3.15) does not fall into the generic
form (3.2). In the following proposition we thus provide a sufficient condi-
tions in such form which ensures the Schur stability of the matrix Aδ.

Proposition 3.3 (δISS of shallow LSTMs). The matrix Aδ defined in (3.15a)
is Schur stable if and only if

σ̌f + σ̌zα̌ +
1

4
ȟ∥Uz∥2 −

1

4
σ̌f ȟ∥Uz∥2 − 1 < 0, (3.16a)

1

4
σ̌f ȟ∥Uz∥2 − 1 < 0. (3.16b)

Proof. See Appendix A.2.8.

In view of Theorem 3.4, (3.16) represent sufficient conditions for the
exponential δISS of the shallow LSTM model with respect to the setsX and
U . Such conditions consist of a pair of nonlinear nonconvex inequalities on
the weights of the LSTM network. Hence, here ν(Φ) is a vector function

ν1(Φ) < 0,

ν2(Φ) < 0,

where ν1(Φ) is (3.16a) and ν2(Φ) is (3.16b).
Notably, despite being only sufficient conditions, it can be shown that, if

the δISS conditions specified in Proposition 3.3 hold, then the system is also
ISPS by Proposition 3.2. This relationship is formalized in the following
corollary.

Proposition 3.4. The shallow LSTM’s δISS condition (3.16) implies the
ISPS condition (3.14).

Proof. See Appendix A.2.9.

3.2.3 Deep LSTMs

When the model to be learned by the RNN is particularly complex, it is
well known that using deep NNs generally yields better results [98]. At the
price of a slower training procedure, once can therefore resort to the deep
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LSTM layer 1 LSTM layer L

Figure 3.3: Schematic of a deep LSTM network.

(i.e., multi-layer) LSTMs. In this section, such architecture is described,
and novel stability conditions for these models are devised.

Let us consider a deep LSTM with L layers, concatenated as illustrated
in Figure 3.3. Each layer l ∈ {1, ..., L} is of course described by the LSTM
equation (3.8a), i.e., {

c
(l)
k+1 = f

(l)
k ◦ c

(l)
k + i

(l)
k ◦ r

(l)
k

h
(l)
k+1 = z

(l)
k ◦ ϕ(c

(l)
k+1)

, (3.17a)

where, for the first layer (l = 1), the input u(l)k is the network input uk,
while for the following layers (i.e., l ∈ {2, ..., L}), u(l)k is the hidden state
(at time k + 1) of the previous layer. That is,

u
(l)
k =

{
uk if l = 1,

h
(l−1)
k+1 if l ∈ {2, ..., L}.

(3.17b)

Note that taking u(l)k = h
(l−1)
k+1 = z

(l−1)
k ◦ ϕ

(
f
(l−1)
k ◦ c(l−1)

k + i
(l−1)
k ◦ r(l−1)

k

)
instead of u(l)k = h

(l−1)
k is a design choice which allows to avoid the accu-

mulation of time delays throughout layers.
Each layer l has its own cell and hidden states, denoted as c(l)k ∈ Rn

(l)
c

and h(l)k ∈ Rn
(l)
c , respectively, where n(l)

c represents the number of neurons
of the l-th layer. Therefore, each layer has a total of n(l)

x = 2n
(l)
c states. The

l-th layer state vector reads as

x
(l)
k =

[
c
(l)′
k , h

(l)′
k

]′
. (3.17c)

The output of the deep LSTM model is a linear combination of the hidden
states of the last layer,

yk = Uoh
(l)
k + bo. (3.17d)
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The layers’ gates f (l)
k , i(l)k , and z(l)k , and the squashed input r(l)k are de-

fined, for each layer l, as

f
(l)
k = σ(W

(l)
f u

(l)
k + U

(l)
f h

(l)
k + b

(l)
f ),

i
(l)
k = σ(W

(l)
i u

(l)
k + U

(l)
i h

(l)
k + b

(l)
i ),

z
(l)
k = σ(W (l)

z u
(l)
k + U (l)

z h
(l)
k + b(l)z ),

r
(l)
k = ϕ(W (l)

r u
(l)
k + U (l)

r h
(l)
k + b(l)r ).

(3.17e)

It is worth noticing that, as evident from (3.17e), each layer features its own
set of weights, denoted as

Φ(l) = {W (l)
f , U

(l)
f , b

(l)
f ,W

(l)
i , U

(l)
i , b

(l)
i ,W

(l)
r , U (l)

r , b(l)r ,W
(l)
z , U (l)

z , b(l)z }.

The set of weights of the deep LSTM includes the ones of all the layers of
which it is composed and the matrices of the output transformation (3.17d),
i.e.

Φ =
L⋃
l=1

Φ(l) ∪ {Uo, bo}.

The formulation of the deep LSTM (3.17) thus fits the general form (3.1),
where the state vector is defined as

xk =
[
x
(1)′
k , ..., x

(L)′
k

]′
. (3.18)

Finally, let us point out that d(Φ) is here defined as d = [b
(1)′
r , ..., b

(L)′
r ]′.

Indeed, if d is null, (0
n
(l)
x ,1

, 0
n
(l)
u ,1

) is an equilibrium for each layer l ∈
{1, ..., L}, meaning that the origin is guaranteed to be an equilibrium of the
deep LSTM system (3.17).

Remark 3.1. The input of each layer, u(l)k , is unity-bounded. Indeed, re-
calling Assumption 3.1 and the input definition (3.17b), the hidden state
satisfies ∥h(l)k ∥∞ < 1, for any l ∈ {1, ..., L}.

Remark 3.1 is justified by the fact that, for any j ∈ {1, ..., n(l)
c }

[h
(l)
k ]j = [z

(l)
k ]j [ϕ(c

(l)
k+1)]j.

Thus, in light of the boundedness of σ and ϕ, the two terms on the right-
hand side are bounded in (0, 1) and (−1, 1), respectively, meaning that
[h

(l)
k ]j ∈ (−1, 1).
Thanks to Remark 3.1, the gates can be bounded in a similar way as

done for shallow LSTMs.
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Lemma 3.2. Consider the deep LSTM model (3.8). For any layer l ∈
{1, ..., L}, the gates f (l)

k , i(l)k , and z(l)k , and the squashed input r(l)k , defined
in (3.17e), can be bounded component-wise ∀j ∈ {1, ..., n(l)

c } as follows

0 < 1− σ̌(l)
f ≤ [f

(l)
k ]j ≤ σ̌

(l)
f < 1, (3.19a)

0 < 1− σ̌(l)
i ≤ [i

(l)
k ]j ≤ σ̌

(l)
i < 1, (3.19b)

0 < 1− σ̌(l)
z ≤ [z

(l)
k ]j ≤ σ̌(l)

z < 1, (3.19c)

−1 < −ϕ̌(l)
r ≤ [r

(l)
k ]j ≤ ϕ̌(l)

r < 1, (3.19d)

where

σ̌
(l)
f = σ(∥W (l)

f U
(l)
f b

(l)
f ∥∞), (3.20a)

σ̌
(l)
i = σ(∥W (l)

i U
(l)
i b

(l)
i ∥∞), (3.20b)

σ̌(l)
z = σ(∥W (l)

z U (l)
z b(l)z ∥∞), (3.20c)

ϕ̌(l)
r = ϕ(∥W (l)

r U (l)
r b(l)r ∥∞). (3.20d)

Proof. See Appendix A.2.10.

3.2.4 Sufficient conditions for the stability of deep LSTMs

We now define an invariant set for the full state vector (3.17c), with respect
to which the stability properties can be defined.

Proposition 3.5 (Invariant set of deep LSTMs). An invariant set of the deep
LSTM model (3.17) is

X =
L

×
l=1

X (l), (3.21a)

where

X (l) = C(l) ×H(l), (3.21b)

C(l) = {c ∈ Rn
(l)
c : ∥c∥∞ ≤ č(l)}, (3.21c)

H(l) = {h ∈ Rn
(l)
c : ∥h∥∞ ≤ ȟ(l)}, (3.21d)

with the component-wise bounds č(l) and ȟ(l) being defined as

č(l) =
σ̌
(l)
i ϕ̌

(l)
r

1− σ̌(l)
f

, (3.22a)

ȟ(l) = ϕ(č(l)) < 1, (3.22b)

and σ̌(l)
f , σ̌(l)

i , σ̌(l)
z , and ϕ̌(l)

r being defined as in (3.20).
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Proof. See Appendix A.2.11.

In view of the latter result, the sufficient conditions for the ISPS, ISS,
and δISS of the deep LSTM architecture with respect to the invariant set X
(3.21) and the input set U (3.7) can be stated.

Theorem 3.5 (ISPS of deep LSTMs). A sufficient condition for the expo-
nential ISPS of the deep LSTM (3.17) with respect to the sets X and U is
that each layer is ISPS by Proposition 3.2. That is,

σ̌
(l)
f + σ̌(l)

z σ̌
(l)
i ∥U (l)

r ∥2 − 1 < 0 (3.23)

∀l ∈ {1, ..., L}, where σ̌(l)
f , σ̌(l)

i , σ̌(l)
z , and ϕ̌(l)

r are defined in (3.20)

Proof. See Appendix A.2.12.

From Theorem 3.5 it is evident that the proposed conditions for ISPS
consist of L inequalities on weights of the network. In particular, for each
layer l, the condition corresponds to an inequality in the form νl

(
Φ(l)
)
< 0.

By letting ν(Φ) =
[
ν1
(
Φ(1)

)
, ..., νL

(
Φ(L)

)]′, one has that the ISPS condi-
tion given in Theorem 3.5 fits the general form (3.2).

Corollary 3.3 (ISS of deep LSTMs). If, for each layer l ∈ {1, ..., L}, con-
dition (3.23) holds and the bias b(l)r is null, then the LSTM model (3.17) is
ISS with respect to the sets X and U .

Proof. Let us first notice that if b(l)r is null, the deep LSTM admits the origin
as an equilibrium. Letting br =

[
b
(1)′
r , ..., b

(L)′
r

]′, it is easy to notice that
∥br∥2 = 0. Therefore, the ISPS term ϱ, defined in (A.99c), is null, which
means that the ISPS of the deep LSTM implies its ISS.

Theorem 3.6 (δISS of deep LSTMs). A sufficient condition for the expo-
nential δISS of the deep LSTM (3.17) with respect to the sets X and U is
that each layer is δISS by Proposition 3.3. That is, ∀l ∈ {1, ..., L}, the
following conditions are satisfied

σ̌
(l)
f + σ̌(l)

z α̌
(l) +

1

4
ȟ(l)∥U (l)

z ∥2 −
1

4
σ̌
(l)
f ȟ

(l)∥U (l)
z ∥2 − 1 < 0, (3.24a)

1

4
σ̌
(l)
f ȟ

(l)∥U (l)
z ∥2 − 1 < 0, (3.24b)

where α̌(l) is defined layer-wise as in (3.15b), i.e.

α̌(l) =
1

4
č(l)∥U (l)

f ∥2 + σ̌
(l)
i ∥U (l)

r ∥2 +
1

4
ϕ̌(l)
r ∥U

(l)
i ∥2, (3.25)
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with σ̌(l)
f , σ̌(l)

i , σ̌(l)
z , and ϕ̌(l)

r being defined as in (3.20), and č(l) and ȟ(l) as
in (3.22).

Proof. See Appendix A.2.13.

We point out that the conditions (3.24) fit the general form (3.2), since

ν(Φ) =
[
ν1,1(Φ

(1)), ν2,1(Φ
(1)), ..., ν1,L(Φ

(L)), ν2,L(Φ
(L))
]′
,

where ν1,l(Φ
(l)) and ν2,l(Φ

(l)) read as (3.24a) and (3.24b), respectively.
Hence ν(Φ) consists of 2L nonlinear functions.

Remark 3.2. As for shallow LSTMs, despite the proposed conditions are
only sufficient, if the δISS conditions discussed in Theorem 3.6 hold, the
deep LSTM is also ISPS by Theorem 3.5. This implication can be trivially
proven applying Proposition 3.4 layer-wise.

3.3 GRUs

In this section we present GRUs and analyze their stability properties. This
RNN architecture has been conceived in [81] with the goal of combining
the modeling capabilities allowed by the gating mechanism, with a simpli-
fication of the architecture, aimed at reducing the number of weights to be
tuned and to speed up the training procedure. This balance makes GRUs
suitable for learning dynamical system models to be used for control syn-
thesis. This is reflected in this work, where the synthesis of model-based
control laws will be conducted mainly on GRU models.

Following the same approach taken for LSTMs, we first describe shal-
low GRU models and discuss their stability properties. The proposed theo-
retical framework is then extended to the general case of deep GRUs.

Before entering into the details, we remind the reader of the unity-
bounded input assumption (Assumption 3.1), which is still assumed to hold.

3.3.1 Shallow GRUs

Let us consider the following nonlinear discrete-time state-space system,
which implements a shallow GRU model,{

xk+1 = zk ◦ xk + (1− zk) ◦ ϕ (Wr uk + Ur fk ◦ x+ br)

yk = Uo xk + bo
. (3.26a)

Such model consists of a single GRU layer, inspired to [81] yet strictly
causal, and a linear output transformation. Note that xk ∈ Rnx denotes
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GRU Cell

Figure 3.4: Schematic of a shallow GRU network.

the state of the shallow GRU, uk ∈ Rnu its input vector, and yk ∈ Rny its
output. The state dimensionality nx matches the number of neurons nc of
the layer, i.e. nx = nc, which is a design choice of the model.

The terms zk and fk are named update and forget gates, respectively,
and, analogously to LSTMs, they are functions of the inputs and states,
squashed by the sigmoidal activation function:

zk = σ(Wzuk + Uzxk + bz),

fk = σ(Wfuk + Ufxk + bf ).
(3.26b)

For the sake of compactness, we may also denote rk = ϕ(Wr uk + Ur fk ◦
x+br), referred to as squashed input. The resulting architecture is schemat-
ically depicted in Figure 3.4. It is worth noticing that, compared to the
shallow LSTM architecture (3.8), the GRU features one gate less, which
explains why GRUs are deemed to have a simpler architecture3.

The shallow GRU model (3.26) falls into the general form (3.1), where
the set of weights to be trained is

Φ = {Wz, Uz, bz,Wf , Uf , bf ,Wr, Ur, br, Uo, bo}

and d(Φ) = br. Indeed, it is easy to notice that if br is null, the system
(3.26) surely admits the origin as equilibrium.

At this point, let us introduce the following assumption concerning the
boudnedness of the set of the model’s initial states candidates.

Assumption 3.2. The initial state of the shallow GRU (3.26) belongs to an
arbitrarily large, but finite, set

X = {x ∈ Rnx : ∥x∥∞ ≤ x̌}, (3.27)

with x̌ ≥ 1.
3Even simpler GRU variants exist, such as minimal GRUs [99], where another gate is removed by setting

fk = zk . This variant, however, is not here considered.
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3.3.2 Characterization of shallow GRUs’ state trajectories

To analyze the stability properties of GRUs, it is necessary to determine an
invariant set from which the trajectories are confined. For this purpose, we
show that X is an invariant set of the model. In addition, the trajectories of
states within X are characterized.

Lemma 3.3 (Invariant set of shallow GRUs). The setX , defined as in (3.27)
with x̌ ≥ 1, is an invariant set for the shallow GRU model (3.26). In
particular, for any uk ∈ Rnu , it holds that

xk ∈ X =⇒ f(xk, uk) ∈ X .

Proof. See Appendix A.2.14.

It is worth highlighting that the invariant set described above is stated
with respect to inputs extracted from Rnu ⊃ U . Indeed, it is clear from
the proof that the boundedness of the input is not required, so the lemma
is formulated as generally as possible. This choice will prove useful when
deep GRUs are considered.

As apparent from (3.27), the amplitude of the invariant set X depends
on the bound on the initial state x̌. The minimal invariant set is henceforth
denoted as

X̃ = {x ∈ Rnx : ∥x∥∞ ≤ 1}, (3.28)

and corresponds to x̌ = 1. Later in this section we will show how such
set enables significant simplifications of stability conditions. Before that,
however, let us provide a fundamental lemma that allows us to characterize
the trajectories of the GRU states.

Lemma 3.4. Consider the shallow GRU (3.26) fed by any arbitrarily-
bounded input sequence4. Then, for any initial state x0 ∈ X ,

i. if x0 ∈ X \ X̃ , then ∥xk∥∞ is strictly decreasing until xk ∈ X̃ ;

ii. there exists a finite k̄ ≥ 0 such that xk ∈ X̃ , ∀k ≥ k̄;

iii. each component of the state vector [xk]j converges into the invariant
set
[
X̃
]
j
= [−1, 1] in an exponential fashion.

Proof. See Appendix A.2.15.
4By arbitrary-bounded input sequence we mean that there exists a finite ǔ ≥ 1, arbitrarily large, such that

∥uτ∥∞ ≤ ǔ for any τ ∈ {0, ..., k}. Moreover, note that in Lemma 3.4 we compactly denote the state vector as
xk = xk(x0, u0:k).
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Lemma 3.4 makes it clear that, since states converge in finite time into
the invariant set X̃ , one could theoretically limit oneself to studying stabil-
ity properties in such subset. Nonetheless, for the sake of generality, we
will first present the results related to the invariant set X , which leads to
more conservative results. These results are then simplified by considering
only the smaller invariant set X̃ ⊆ X .

Lemma 3.5. Consider the shallow GRU model (3.26). If Assumption 3.1
holds, the gates zk and fk, and the squashed input rk can be bounded over
the invariant set X as

0 < 1− σ̌z ≤ [zk]j ≤ σ̌z < 1, (3.29a)
0 < 1− σ̌f ≤ [fk]j ≤ σ̌f < 1, (3.29b)

−1 < −ϕ̌r ≤ [rk]j ≤ ϕ̌r < 1, (3.29c)

for any component j ∈ {1, ..., nc}, where

σ̌z = σ(∥Wz Uzx̌ bz∥∞), (3.30a)
σ̌f = σ(∥Wf Uf x̌ bf∥∞), (3.30b)

ϕ̌r = ϕ(∥Wr Urx̌ br∥∞). (3.30c)

Proof. See Appendix A.2.16.

Remark 3.3. The bounds of the gates described in Lemma 3.5 are conser-
vative, as they are valid at any time instant, even when x0 ∈ X \ X̃ . How-
ever, Lemma 3.4 guarantees that the GRU states converge in finite time into
the invariant set X̃ . Once inside such an invariant set, less conservative
bounds to the gates can be computed as

σ̃z = σ(∥Wz Uz bz∥∞), (3.31a)
σ̃f = σ(∥Wf Uf bf∥∞), (3.31b)

ϕ̃r = ϕ(∥Wr Ur br∥∞), (3.31c)

such that

0 < 1− σ̃z ≤ [zk]j ≤ σ̃z < 1, (3.32a)
0 < 1− σ̃f ≤ [fk]j ≤ σ̃f < 1, (3.32b)

−1 < −ϕ̃r ≤ [rk]j ≤ ϕ̃r < 1, (3.32c)

is guaranteed ∀j ∈ {1, ..., nc} and for any k ≥ k̄, where k̄ : xk̄ ∈ X̃ .
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3.3.3 Sufficient conditions for the stability of shallow GRUs

Having defined an invariant set of the shallow GRU model, and having
characterized its state trajectories, we are finally in the position to analyze
its stability properties. Unless differently specified, these properties are
intended to be stated with respect to the invariant set X (3.27) and the input
set U (3.7).

Theorem 3.7 (ISPS of shallow GRUs). A sufficient condition for the expo-
nential ISPS of the shallow GRU (3.26) with respect to the sets X and U is
that

σ̃f∥Ur∥∞ − 1 < 0, (3.33)

where σ̃f is defined in (3.31b).

Proof. See Appendix A.2.17.

Let us highlight that the ISPS sufficient condition (3.33) falls into the
general form (3.2).

Corollary 3.4 (ISS of shallow GRUs). Under condition (3.33), if the bias
br is null, then the GRU (3.26) is exponentially ISS over the sets X and U .

Proof. First, we point out that if br is null, the origin is an equilibrium of
(3.26). Then, since ∥br∥∞ = 0, the ISPS term ϱ is null, see (A.131c), which
implies that the system is also ISS.

Theorem 3.8 (δISS of shallow GRUs). A sufficient condition for the expo-
nential δISS of the shallow GRU (3.26) with respect to the sets X and U is
that (

1

4
x̌∥Uf∥∞ + σ̌f

)
∥Ur∥∞ +

1

4

x̌+ ϕ̌r
1− σ̌z

∥Uz∥∞ − 1 < 0, (3.34)

where σ̌z, σ̌f , and ϕ̌r are defined as in (3.30).

Proof. See Appendix A.2.18.

It is worth noticing that condition stated in Theorem 3.8 guarantees the
δISS of the system only inside the invariant set, and – depending on the
scale x̌ of the invariant set – it might be conservative. Since Lemma 3.4
implies that the state trajectories converge into the (smaller) invariant set
X̃ , one may think to relax condition (3.34) by assuming that the system is
initialized within X̃ ⊆ X . This observation leads to the following corollary.
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Corollary 3.5 (Relaxed δISS of shallow GRUs). A relaxed condition for
the δISS of the shallow GRU (3.26) with respect to the sets X̃ and U is that(

1

4
∥Uf∥∞ + σ̃f

)
∥Ur∥∞ +

1

4

1 + ϕ̃r
1− σ̃z

∥Uz∥∞ − 1 < 0, (3.35)

where σ̃z, σ̃f , and ϕ̃r are defined as in (3.31).

Proof. The corollary follows straightforwardly from Theorem (3.8), where
x̌ = 1.

Notice that both (3.34) and (3.35) fit the generic form presented in (3.2).
In the following remark, the relationship between these two sufficient con-
ditions is discussed.

Remark 3.4. The condition (3.35) involved by Corollary 3.5 is less con-
servative than the condition (3.34) required by Theorem 3.8. While Corol-
lary 3.5 ensures the δISS with respect to X̃ ⊆ X , it also allows to attain
a similar (but weaker) δISS-related property also outside X̃ . In fact, when
xa,0 ∈ X \X̃ and/or xb,0 ∈ X \X̃ , it is not possible to show that, during the
exponential convergence of xa,k and xb,k into X̃ (Lemma 3.4), the condition
(3.35) implies that the δISS relation (2.6) holds. However, as soon as both
xa,k ∈ X̃ and xb,k ∈ X̃ – which is guaranteed by Lemma 3.4 to happen in
finite time – the δISS property regularly applies.

Finally, we point out that the δISS sufficient conditions proposed in The-
orem 3.8 (and in Corollary 3.5) also imply the ISPS of the GRU. This rela-
tionship is formalized in the following proposition.

Proposition 3.6. Both the δISS sufficient condition (3.35) and the relaxed
condition (3.34) imply the ISPS condition (3.33).

Proof. See Appendix A.2.19.

3.3.4 Deep GRUs

In this section we describe the deep GRU models. As for LSTMs, the
underlying idea is that adding layers generally lead to significant improve-
ments of the modeling capabilities. Therefore, after having described the
deep GRU architecture, the nontrivial problem of finding an invariant set is
addressed, and sufficient conditions for the stability of deep GRU models
are devised.
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GRU layer LGRU layer 1

Figure 3.5: Schematic of a deep GRU network.

Consider a deep GRU composed of L GRU layers, concatenated as
shown in Figure 3.5. Therefore, each layer l ∈ {1, ..., L} is described by
equation (3.26a), that is

x
(l)
k+1 = z

(l)
k ◦ x

(l)
k + (1− z(l)k ) ◦ r(l)k , (3.36a)

where x(l)k ∈ Rn
(l)
c denotes the state vector of the l-th layer with n(l)

c neu-
rons. The state of the deep GRU is therefore a vector of dimension nx =∑L

l=1 n
(l)
c , defined as the concatenation of the states of all the layers, i.e.

xk =
[
x
(1)′
k , x

(2)′
k , ..., x

(L)′
k

]′
. (3.36b)

The input of the l-th layer, denoted by u(l)k , is represented by model input
itself uk for the first layer (l = 1), while for the following layers it is defined
as the updated state of the preceding layer. That is,

u
(l)
k =

{
uk if l = 1,

x
(l−1)
k+1 if l ∈ {2, ..., L}.

(3.36c)

The gates z(l)k and f (l)
k , and the squashed input r(l)k of layer l are defined as

z
(l)
k = σ

(
W (l)
z u

(l)
k + U (l)

z x
(l)
k + b(l)z

)
,

f
(l)
k = σ

(
W

(l)
f u

(l)
k + U

(l)
f x

(l)
k + b

(l)
f

)
,

r
(l)
k = ϕ

(
W (l)
r u

(l)
k + U (l)

r f
(l)
k ◦ x

(l)
k + b(l)r

)
.

(3.36d)

Finally, the output of the model yk is defined as a linear combination of the
states of the last layer only, i.e.

yk = Uox
(L)
k + bo. (3.36e)
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Note that the deep GRU model described in (3.36) fits the generic form
(3.1), and that it is characterized by the set of weights

Φ =
L⋃
l=1

Φ(l) ∪ {Uo, bo},

where Φ(l) indicates the weights of the l-th layer, i.e.

Φ(l) =
{
W (l)
z , U (l)

z , b(l)z ,W
(l)
f , U

(l)
f , b

(l)
f ,W

(l)
r , U (l)

r , b(l)r
}
.

Finally, letting d(Φ) =
[
b
(1)′
r , ..., b

(L)′
r

]′, it holds that, if d is null, the origin
is an equilibrium of the deep GRU (3.36).

As for shallow GRUs, we now introduce an assumption concerning the
boundedness of the set of initial states candidates.

Assumption 3.3. The initial state of the deep GRU (3.36) belongs to the
set X , defined as

X =
L

×
l=1

X (l), (3.37a)

where, letting x̌(l) ≥ 1,

X (l) =
{
x(l) ∈ Rn

(l)
c : ∥x(l)∥∞ ≤ x̌(l)

}
. (3.37b)

3.3.5 Characterization of deep GRUs’ state trajectories

At this point, in order to analyze the stability properties of interest, an in-
variant set of the deep GRU model needs to be formulated.

Lemma 3.6 (Invariant set of deep GRUs). The set X , defined as in (3.37),
is an invariant set of the deep GRU model (3.36). That is, for any uk ∈ Rnu ,
it holds that

xk ∈ X =⇒ f(xk, uk) ∈ X .

Proof. See Appendix A.2.20.

A fundamental consequence of Lemma 3.6, which will be extensively
exploited in the results that follow, is that, in light of (3.36c), for any uk,
the input of layers l ∈ {2, ..., L} is bounded as

∥u(l)k ∥∞ ≤ x̌(l−1). (3.38)
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A further observation is that, as for shallow GRUs, the amplitude of the
invariant set X defined in (3.37) depends on the bounds x̌(1), ..., x̌(L). The
smallest invariant set is denoted as

X̃ = {x ∈ Rnx : ∥x∥∞ ≤ 1}, (3.39)

which corresponds to (3.37) with x̌(1) = ... = x̌(L) = 1. We now show an
extension of Lemma 3.4 to deep GRUs, which allows to characterize the
trajectories of the deep GRUs’ states.

Lemma 3.7. Consider the deep GRU (3.36) fed by any arbitrarily-bounded
input sequence. Then, for any initial state x0 = [x

(1)′
0 , ..., x

(L)′
0

]′ ∈ X ,

i. for each layer l ∈ {1, ..., L}, if x(l)0 ∈ X (l)\X̃ (l), then ∥x(l)k ∥∞ is strictly
decreasing until x(l)k ∈ X̃ (l), and hence ∥xk∥∞ is strictly decreasing
until xk ∈ X̃ ;

ii. there exists a finite k̄ ≥ 0 such that xk ∈ X̃ , ∀k ≥ k̄;

iii. each component of the state vector [xk]j converges into its invariant set[
X̃
]
j
= [−1, 1] in an exponential fashion.

Proof. See Appendix A.2.21.

In view of Lemma 3.7, we can now provide bounds on the gates of the
network, which will prove useful for devising the stability conditions.

Lemma 3.8. Consider the deep GRU (3.36). If Assumption 3.1 holds, for
each layer l ∈ {1, ..., L}, the gates z(l)k and f (l)

k , and the squashed input
r
(l)
k , can be bounded over the invariant set X as

0 < 1− σ̌(l)
z ≤ [z

(l)
k ]j ≤ σ̌(l)

z < 1, (3.40a)

0 < 1− σ̌(l)
f ≤ [f

(l)
k ]j ≤ σ̌

(l)
f < 1, (3.40b)

−1 < −ϕ̌(l)
r ≤ [r

(l)
k ]j ≤ ϕ̌(l)

r < 1, (3.40c)

for any component j ∈ {1, ..., n(l)
c }. Recalling (3.37b), these bounds can

be computed as

σ̌(l)
z = σ(∥W (l)

z x̌(l−1) U (l)
z x̌(l) b(l)z ∥∞), (3.41a)

σ̌
(l)
f = σ(∥W (l)

f x̌(l−1) U
(l)
f x̌(l) b

(l)
f ∥∞), (3.41b)

ϕ̌(l)
r = ϕ(∥W (l)

r x̌(l−1) U (l)
r x̌(l) b(l)r ∥∞), (3.41c)

where x̌(0) = sup ∥uk∥∞ = 1.

Proof. See Appendix A.2.22.

51



Chapter 3. Stable RNN architectures for system identification

Remark 3.5. The bounds of the gates proposed in Lemma 3.8 are conser-
vative, as they are valid at any time instant, even when x0 ∈ X \ X̃ . On
the other hand, Lemma 3.7 ensures the finite-time convergence of xk into
the (smaller) invariant set X̃ defined in (3.39). Once xk enters such set,
less conservative bounds hold. In particular, for each l ∈ {1, ..., L}, these
relaxed bounds can be computed as

σ̃(l)
z = σ(∥W (l)

z U (l)
z b(l)z ∥∞), (3.42a)

σ̃f = σ(∥W (l)
f U

(l)
f b

(l)
f ∥∞), (3.42b)

ϕ̃r = ϕ(∥W (l)
r U (l)

r b(l)r ∥∞), (3.42c)

such that

0 < 1− σ̃(l)
z ≤ [z

(l)
k ]j ≤ σ̃(l)

z < 1, (3.43a)

0 < 1− σ̃(l)
f ≤ [f

(l)
k ]j ≤ σ̃

(l)
f < 1, (3.43b)

−1 < −ϕ̃(l)
r ≤ [r

(l)
k ]j ≤ ϕ̃(l)

r < 1, (3.43c)

∀j ∈ {1, ..., n(l)
c } and for any k ≥ k̄, where k̄ is such that xk̄ ∈ X̃ .

3.3.6 Sufficient conditions for the stability of deep GRUs

At this point we are in the position to introduce the conditions that ensure
the stability of deep GRUs. Notice that, unless differently specified, such
stability properties are stated with respect to the invariant set X (3.37) and
the input set U (3.7).

Theorem 3.9 (ISPS of deep GRUs). A sufficient condition for the expo-
nential ISPS of the deep GRU (3.36) with respect to the sets X and U is
that

σ̃
(l)
f ∥U

(l)
r ∥∞ − 1 < 0 (3.44)

∀l ∈ {1, ..., L}, where σ̃(l)
f is defined as (3.42b).

Proof. See Appendix A.2.23.

It is worth pointing out that condition (3.44) corresponds to requiring
that every layer satisfies the ISPS sufficient condition (3.33). Moreover, as
stated in the following corollary, these conditions also imply the ISS when
the bias is null.

Corollary 3.6 (ISS of deep GRUs). If, for each layer l ∈ {1, ..., L}, condi-
tion (3.44) holds and the bias b(l)r is null, then the GRU is exponentially ISS
with respect to the sets X and U .
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Proof. Since b(l)r is null, the deep GRU model (3.36) admits the origin as
equilibrium. Moreover, letting br =

[
b
(1)′
r , ..., b

(L)′
r

]′, and observing that
∥br∥∞ = 0, the ISPS term ϱ is null, see (A.160c), meaning that the system
is also ISS.

Theorem 3.10 (δISS of deep GRUs). A sufficient condition for the expo-
nential δISS of the shallow GRU (3.36) with respect to the sets X and U is
that(

1

4
x̌(l)∥U (l)

f ∥∞ + σ̌
(l)
f

)
∥U (l)

r ∥∞ +
1

4

x̌(l) + ϕ̌
(l)
r

1− σ̌(l)
z

∥U (l)
z ∥∞ − 1 < 0, (3.45)

∀l ∈ {1, ..., L}, where σ̌(l)
z , σ̌(l)

f , and ϕ̌(l)
r are defined as in (3.41).

Proof. See Appendix A.2.24.

Note that condition (3.45) can be overly conservative, especially when
the set X is large, since the bounds on the gates increase with the amplitude
of such set, see (3.41). Less conservative conditions, however, can be pro-
vided if the δISS is stated with respect to the smaller invariant set X̃ ⊆ X
defined in (3.39).

Corollary 3.7 (Relaxed δISS of deep GRUs). A relaxed condition for the
exponential δISS of the deep GRU (3.36) with respect to the sets X̃ and U
is that(

1

4
∥U (l)

f ∥∞ + σ̃
(l)
f

)
∥U (l)

r ∥∞ +
1

4

1 + ϕ̃
(l)
r

1− σ̃(l)
z

∥U (l)
z ∥∞ − 1 < 0, (3.46)

∀l ∈ {1, ..., L}, where σ̃(l)
z , σ̃(l)

f , and ϕ̃(l)
r are defined as in (3.42).

Proof. The corollary straightforwardly follows from Theorem 3.10. In-
deed, by taking X = X̃ , i.e. x̌(1) = ... = x̌(L) = 1, condition (3.45) is
equivalent to (3.46).

Similarly to what was pointed out in Remark 3.4, the condition proposed
in Corollary 3.7 is weaker than the one proposed in Theorem 3.10. While
the latter condition implies that the definition of δISS holds throughout the
set X , the former condition merely ensures that the definition of δISS holds
within the set X̃ ⊆ X . In any case, when the deep GRU is initialized
outside X̃ , the relaxed condition (3.46) allows to establish a kind of weaker
δISS, that is, a δISS that holds only after both state trajectories have entered
the set X̃ . This convergence is guaranteed to happen exponentially and in
finite time by Lemma 3.7.
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Note also that the sufficient conditions reported in Theorem 3.9, Theo-
rem 3.10, and Corollary 3.7 fall in the general form (3.2). More specifically,
each of these sufficient conditions consists of L nonlinear inequalities, and
hence

ν(Φ) =
[
ν1(Φ

(1)), ..., νL(Φ
(L))
]′

where νl(Φ(l)) is described by (3.44), (3.45), and (3.46), respectively.

Remark 3.6. The δISS sufficient conditions proposed in Theorem 3.10, as
well as the conditions proposed in Corollary 3.7, can be easily shown to
imply the ISPS condition illustrated in Theorem 3.9. This relationship can
be proven by applying Proposition 3.6 layer-wise.

3.4 Summary

In this chapter the RNN architectures considered in this thesis have been
described. In particular, the NNARX, LSTM, and GRU architectures have
been formulated as strictly proper discrete-time nonlinear dynamical sys-
tems. For each of these architectures, theoretically-sound sufficient condi-
tions guaranteeing their ISPS, ISS, and δISS have been proposed.

As highlighted, these properties are critical to ensure the safety, robust-
ness and generalizability of trained RNN models, yet limited contributions
on this topic are available in the literature to date. The goal of this chapter
has been to fill these gaps with a unified framework and consistent nota-
tion, both for single-layer and multi-layer architectures. All the proposed
sufficient conditions boil down to a vector of nonlinear inequalities on the
RNN’s weights Φ, i.e.

ν(Φ) < 0.

These sufficient conditions can be used a-posteriori to check whether the
ISPS, ISS, or δISS of an already trained RNN can be guaranteed, or – as
discussed in the next chapter – they can be imposed during the training
procedure to a-priori guarantee the stability of the RNNs being trained.
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CHAPTER4
Training procedure

In Section 3, the RNN architectures used in this thesis for black-box system
identification and control have been discussed. In order for them to approx-
imate dynamical systems, RNNs must undergo the so-called training pro-
cedure, in which the weights leading to the “best” modeling performances
are estimated. It is widely known that the training procedure can be time-
consuming, computationally-intensive, and experience-demanding. Indeed,
the training approach and its design parameters, i.e. the so-called hyperpa-
rameters, are generally crucial for a satisfactory outcome of the procedure.
While an exhaustive description of the available training procedures is be-
yond the scope of this thesis, the aim of this chapter is threefold: (i) to
provide a general overview of the goals to be pursued and the issues to be
addressed by the training procedure, (ii) to detail our proposed procedure
for training provenly-stable RNNs, and (iii) to provide guidelines for the
choice of the hyperparameters for such procedure.

4.1 Introduction to the training of RNNs

The general purpose of the training procedure is to make the RNN approx-
imate a specific unknown dynamical system, of which only input-output
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data are available. These data are generally collected during an ad-hoc ex-
periment campaign, or can be collected during online system operations,
and in either case they must carry sufficient information on the plant. The
data consist of pairs of sequences, namely the applied input sequence and
the measured output sequence. For the sake of simplicity of exposition, let
us here consider a single experiment, in which the input u0:T is applied and
the output sequence y0:T is correspondingly measured.

The training problem consists in finding the set of optimal weights Φo

such that the output of the free-run simulation1 of the RNN (3.1), i.e.
y0:T (x0, u0:T ), is as close as possible to the measured output sequence y0:T ,
without incurring in overfitting. In order to conduct the training procedure,
it is necessary to define a metrics that quantifies the goodness of the RNN
simulation with respect to the measured output.

A further well-known challenge is the choice of the optimization algo-
rithm, as well as its hyperparameters, to solve the underlying fitting prob-
lem. Such problem is indeed deeply nonlinear, non-convex and large-scale,
since the dimensionality of the weights grows rapidly with the number of
layers and neurons per layer. This optimization procedure has been his-
torically carried out numerically via the so-called Gradient Descent (GD)
methods [14]. However, its application to RNNs, which also features the
time domain, is not straightforward and thus motivated DL researchers to
develop several training strategies, briefly summarized below.

Historically, NNARX models have been trained by minimizing the one-
step ahead prediction error via GD, see e.g. [16,100]. This was made possi-
ble by the fact that, while in general for RNN models the state xk (needed to
predict the future state yk+1) is not known, in NNARX models it consists of
a collection of past inputs and outputs, and is therefore known. Being based
on one-step ahead prediction techniques, however, this method could lead
to models with inadequate long-term prediction capabilities. Moreover, it
can not be used with other RNN architectures, such as LSTM and GRU, for
which the state vector is not known or defined.

To train these architectures, instead, the most common approach is that
of Back-Propagation Through Time (BPTT) [13]. This approach consists,
roughly speaking, in an iterative numerical procedure in which, at each
iteration, the following computations are carried out

i. Forward Pass – the free-run simulation of the RNN (3.1), denoted as
y0:T (x0, u0:T ) = y0:T (x0, u0:T ; Φ), is first evaluated;

1The term free-run simulation is a deep learning jargon for the open-loop simulation of the system (3.1), fed
by some known input sequence, in this case u0:T .
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ii. Gradient Computation – the gradient of the error between the RNN
simulation y0:T (x0, u0:T ; Φ) and the ground truth y0:T with respect to Φ
is computed, e.g. using Automatic Differentiation software tools;

iii. Backward Pass – a gradient descent step is taken towards the direction
minimizing the gradient, and Φ is updated.

The procedure described above is repeated until convergence.
Although BPTT was originally thought to be an inefficient option be-

cause of the exploding and vanishing gradient problems that plague vanilla
RNNs [77], the advent of GRUs and LSTMs, designed precisely to avoid
such problems, has proven the capabilities of the method. In particular,
a variant of BPTT known as Truncated Back-Propagation Through Time
(TBPTT) is now widely used to train RNNs for long-term time-series fore-
casting and system identification, see [13] and references therein.

As described in Section 4.2, TBPTT consists of splitting the training se-
quences u0:T and y0:T into many shorter partially-overlapping subsequences,
on which a batched BPTT is applied. This approach yields several advan-
tages. First, it better scales with the length of the input-output data, as the
forward pass and gradient computation are carried out on shorter subse-
quences and in a parallel fashion. Secondly, the inherently stochastic2 na-
ture of TBPTT generally allows to better escape local minima, making the
training algorithm more robust with respect to the random initial weights,
and to mitigate for the overfitting phenomenon, at the price of a generally
longer training time.

Before going into the details of the adopted TBPTT-based training pro-
cedure, let us point out that several other approaches have been proposed
in the literature. For example, in [101] the authors propose an Extended
Kalman Filter-based training procedure for single-layer vanilla RNNs, while
in [102, 103] the idea of training RNNs via evolutionary algorithms is ex-
plored. A novel algorithm named Forward Propagation Through Time algo-
rithm has been recently proposed in [104], with the aim of speeding up the
training procedure and obtaining networks with better generalizability and
performance. However, the TBPTT approach is herein considered since
it is currently the standard for RNN training, particularly for GRUs and
LSTMs. There is consensus that, in the majority of cases, this training ap-
proach provides satisfactory outcomes, and that there is considerable poten-
tial to further improve performances with targeted adjustments. To mention
a few of them, accelerated optimization algorithms such as Adam [105] and

2The term “stochastic” is here used in its deep learning acception, and indicates the fact that the training
procedure is performed on randomized batches, see [14].
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RMSProp [106] (as well as their variants) can be used to speed up the con-
vergence; a suitable weights initialization can robustify the training proce-
dure [107]; dropout can drastically improve the generalization capabilities
and avoid overfitting [108]; architecture adjustments can be taken reduce
the number of weights and the parallelizability of the forward pass [109].

4.2 Training provenly stable RNNs via TBPTT

In this section we describe the adopted training procedure, which is a stan-
dard TBPTT procedure with the addition of a suitable regularization term
that enforces the stability of the RNN to be trained. Before continuing, it
is however fundamental to point out that enforcing the stability of the RNN
being trained only makes sense if the system generating the input-output
data enjoys the very same property. The stability of the system may be
known from physical insights, or numerically assessed on the input-output
trajectories, as shown in [58]. In what follows, as also discussed in Re-
mark 4.2, the stability (in a sense better specified below) of the underlying
system generating the data is assumed.

We now consider the problem of training the RNN Σ(Φ), described by
the the state-space form (3.1). Recalling the Notation Addendum 2.1, for
clarity we denote with

yk(x0, u0:k; Φ) = yk(x0, u0:k; Σ(Φ))

the output at time k of the RNN initialized in the state x0, and fed by the
input sequence u0:k, so as to highlight the dependence of the output on the
weights Φ. Moreover, we slightly stretch the Notation Addendum 2.1 and
denote by

yk1:k2(x0, u0:k2 ; Φ) =
{
yk1(x0, u0:k1 ; Φ), ..., yk2(x0, u0:k2 ; Φ)

}
(4.1)

the output sequence of the RNN model between instant k1 and k2.
The proposed training procedure assumes that three pairs of input-output

sequences3 are available, namely

i. One pair for training, indicated by Dtr = (utr,0:Ttr , ytr,0:Ttr);

ii. One pair for validation, indicated by Dval = (uval,0:Tval , yval,0:Tval);

iii. One pair for the independent test, indicated byDte = (ute,0:Tte , yte,0:Tte).
3This standard convention allows for simpler notation in the following, but can be readily extended to the

case of multiple input-output sequences (e.g. collected through a test-campaign), or to the case of a single one.
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As mentioned, it is assumed that these sequences are sufficiently infor-
mative, that is, they adequately explore the operational region of interest
and excite the relevant frequencies of the system to be learned4.

According to the TBPTT principle, we then randomly extract shorter
and partially overlapping subsequences from the above-described sequences.
Specifically, we extract Ntr training subsequences from Dtr and Nval sub-
sequences from Dval, all having the same fixed length Ts < Ttr, Tval. Note
that Ntr and Ts are hyperparameters that need to be carefully selected, as
later discussed. The extracted subsequences are denoted as

u
{i}
0:Ts

= utr,ki:ki+Ts

y
{i}
0:Ts

= ytr,ki:ki+Ts
(4.2a)

for the training dataset, where i ∈ Itr is the index associated to each train-
ing subsequence, and ki is generated randomly such that ki+Ts ≤ Ttr. The
set of training subsequences is indexed by

Itr = {1, ..., Ntr}. (4.2b)

Analogously, the validation subsequences are defined as

u
{i}
0:Ts

= uval,ki:ki+Ts

y
{i}
0:Ts

= yval,ki:ki+Ts
(4.3a)

where again each subsequence is indexed by i ∈ Ival, with

Ival = {Ntr + 1, ..., Ntr +Nval}, (4.3b)

and the index ki is randomly generated so that ki + Ts ≤ Tval. The in-
dependent test set, instead, is not divided into shorter subsequences as its
only purpose is to objectively assess the performances of the RNN after the
training procedure.

The ultimate goal of the training procedure is to minimize an index
quantifying the fitting quality of the RNN over the training set Itr, subject
to the stability of the RNN model, i.e. ν(Φ) < 0, see (3.2). The training
procedure could thus be naively stated as an optimization problem

Φo = argmin
Φ

MSE(Itr; Φ)

s.t. ν(Φ) < 0
(4.4)

4Often the pair (u0:T , y0:T ) is obtained through an open-loop experiment on the system to be identified. In
this case, the design of an input sequence u0:T that satisfies the criteria of informativeness and persistence of
excitation is known as design of experiment problem [2].
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where MSE(Itr; Φ) is the commonly used Mean Square Error (MSE) of
the RNN over Itr, defined in Section 4.2.1. The optimization problem (4.4)
cannot be solved directly, mainly due to the large number of optimization
variables, to the presence of the nonlinear and non-convex stability con-
straint, and – especially – to the generally large number of training se-
quences in the set Itr.

For this reason, an iterative method is applied to solve (4.4). Hence, at
each iteration – referred to as epoch in the deep learning jargon – the train-
ing set Itr is firstly randomly partitioned into batches, i.e., into B random
and non overlapping subsets I{1}tr , ..., I{B}

tr . Then, for each of these batches,
the loss function L is evaluated as

L(I{b}tr ,Φ) = MSE(I{b}tr ; Φ) + ρ(ν(Φ)), (4.5)

where MSE(I{b}tr ; Φ) measures the fitting quality of the RNN onto the b-
th training batch, and ρ(ν(Φ)) is a regularization term whose purpose is
to steer ν(Φ) towards negative values, i.e. towards the RNN guaranteed-
stability region5. Suitable candidate functions ρ(·) are reported later this
chapter in Section 4.2.2. Then, in the spirit of gradient descent-based min-
imization algorithms, the gradient of L with respect to Φ is computed via
Automatic Differentiation softwares, and Φ is updated towards the min-
imum gradient direction6. At the end of each epoch, the performances
of the RNN are evaluated on the validation set Ival, e.g. by computing
MSE(Ival; Φ). The training is stopped when the RNN satisfies the desired
stability condition, i.e. ν(Φ) < 0, and the performance metrics over the
validation set stops improving. This procedure yields the weights of the
trained network, indicated by Φ⋆.

At the end of the training procedure, the performances of the trained
RNN are quantified on the independent test dataset Dte. Unlike the val-
idation dataset, the test dataset is not used during the training procedure,
so it allows RNN’s performances to be objectively evaluated on new data,
obtaining a figure of merit less prone to overfitting. Therefore, the trained
RNN model is simulated using the random initial state x0 and the test input
sequence ute,0:Tte , and the quality of fit is evaluated using the FIT perfor-
mance index [%], defined as7

FIT = 100

(
1−

∑Tte
k=τw
∥yk(x0, ute,0:k; Φ⋆)− yte,k∥2∑Tte
k=τw
∥yte,k − yte,avg∥2

)
, (4.6)

5We recall that, according to (3.2), ν(Φ) < 0 implies the ISPS, ISS, or δISS of the RNN.
6To this end, different GD-based strategies could be adopted, such as traditional Gradient Descent [14], or

the more efficient Adam [105] and RMSProp [106].
7The term τw denotes the washout period, an hyperparameter introduced later this chapter.
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4.2. Training provenly stable RNNs via TBPTT

Algorithm 1 Training Algorithm

Require: Training subsequences (4.2) and validation subsequences (4.3)
Initialize the weights Φ
for epoch e = 1, ..., E do

Randomly partition Itr into batches I{1}tr , ..., I{B}
tr

for batch b = 1, ..., B do
Compute the loss L(I{b}tr ,Φ) using random initial states ▷ Forward pass
Compute its gradient w.r.t. Φ, i.e. ∇ΦL(I{b}tr ,Φ) ▷ Gradient computation
Update Φ using gradient descent algorithms ▷ Backward pass

end for
Compute the validation metrics MSE(Ival; Φ)
if ν(Φ) < 0 and the validation metrics stops improving then

Stop the training procedure
end if

end for
Assess the performances on the test dataset computing FIT

where yte,avg is the empirical average of the output sequence yte,0:k. A FIT
index close to 100% indicates a good accuracy of the RNN on the test
dataset.

The resulting training procedure is summarized in Algorithm 1. To con-
clude the description of the training procedure, it is necessary to describe
the two terms appearing in the loss function (4.5).

4.2.1 Mean Square Error

To define the MSE of the RNN Σ(Φ) over a batch, let us introduce the
MSE over the generic input-output sequences (u{i}0:T , y

{i}
0:T ) of length T . To

this end, the RNN is initialized in a random initial state x0 ∈ X , and
it is fed by the input sequence u{i}0:T , thus obtaining the output sequence
y0:T (x0, u

{i}
0:T ; Φ). The MSE is then defined as

MSE(yτw:T (x0, u
{i}
0:T ; Φ), y

{i}
τw:T ) =

1

ny

1

T − τw + 1

T∑
k=τw

∥∥yk(x0, u{i}0:k; Φ)− y
{i}
k

∥∥2
2

=
1

ny

∥∥yτw:T (x0, u
{i}
0:T ; Φ)− y

{i}
τw:T

∥∥2
2,2
,

(4.7)
where the initial τw steps, known as washout period, are discarded to ac-
commodate the model transient due to the random initialization [14].
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The MSE over a generic batch I is therefore defined as

MSE(I; Φ) = 1

|I|
∑
i∈I

MSE(yτw:T (x0, u
{i}
0:T ; Φ), y

{i}
τw:T ), (4.8)

where |I| indicates the cardinality of the batch I.

4.2.2 Stability-enforcing regularization term

The regularization term ρ(ν(Φ)) arises from a relaxation of the constraint
ν(Φ) < 0 in (4.4), which is motivated by the fact that gradient descent-
based algorithms do not support explicit constraints. In the spirit of a La-
grangian relaxation of such constraint, we thus introduce the term ρ(ν(Φ))
in the loss function, designed to penalize the violation of the stability con-
straint. Letting nν indicate the cardinality of ν(Φ), we point out that ρ :
Rnν → R can be any real-valued function that is strictly increasing with
its argument. Moreover, this function should be designed not to encourage
unnecessarily low values of ν(Φ).

Two function candidates are herein proposed for ρ(·). The former is
more straightforward and simple, but can make the training procedure more
oscillatory due to a gradient discontinuity. The latter allows instead to limit
such oscillations, at the price of an additional hyperparameter to be tuned.

Piecewise-linear function

A straightforward candidate for the function ρ(·) is a piecewise-linear func-
tion. Let us indicate by εν > 0 the constraint clearance. The regularization
function can hence be stated as

ρ(ν(Φ)) =
nν∑
i=1

π̄max([ν(Φ)]i + εν , 0) +
¯
πmin([ν(Φ)]i + εν , 0), (4.9)

where π̄ > 0 and
¯
π > 0 denote the slopes of the piecewise-linear function.

Note that by taking
¯
π ≪ π̄ one can prevent excessively negative values of

ν(Φ) from being rewarded.

Generalized piecewise-linear function

Although the piecewise-linear function introduced in (4.9) allows, if its co-
efficients are properly selected, to steer the RNN model towards its stability
region, it is plagued by the fact that its gradient is, by construction, dis-
continuous in [ν(Φ)]i = −εν . This gradient discontinuity, unfortunately,
may lead to oscillations of the gradient descent algorithms used to perform
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4.2. Training provenly stable RNNs via TBPTT

Figure 4.1: Visual comparison of the generalized piecewise-linear function proposed in
(4.10a) with

¯
π = 0.01 and π̄ = 1, for several values of ω (blue line: ω = 1, red

line: ω = 5, yellow line: ω = 10). Notice that as ω increases ς(x) approaches the
piecewise-linear function depicted as a black-dotted line.

the training procedure. We therefore propose a generalized version of the
piecewise-linear regularization term that features a continuous gradient.

Let us define the function ς(x) as the primitive of a sigmoidal function
ranging from

¯
π to π̄ with steepness ω > 0, i.e.

ς(x) =

∫
¯
π + (π̄ −

¯
π)σ(ωx)dx

=
¯
πx+

π̄ −
¯
π

ω

[
ln
(
1 + eωx

)
+ c
]

=
¯
πx+

π̄ −
¯
π

ω

[
ln
(
1 + eωx

)
− ln 2

]
,

(4.10a)

where c is computed to guarantee that ς(0) = 0. The function ς(x) has been
plotted in Figure 4.1 and compared to a piecewise-linear function. Notice
that as the steepness coefficient ω increases, ς(x) approaches its piecewise-
linear counterpart. Thus, while the smoothness of ς(x) comes at the price
of an additional hyperparameter, it can be easily selected to be sufficiently
large to ensure that ς(x) approximates the piecewise-linear function8.

At last, the proposed smoothed regularization term reads as

ρ(ν(Φ)) =
nν∑
i=1

ς
(
[ν(Φ)]i + εν

)
, (4.10b)

where εν ≥ 0 is the constraint clearance.

8If ω → ∞, σ(ωx) → step(x), whose primitive is a piecewise-linear function with coefficients
¯
π for x ≤ 0

and π̄ for x > 0.
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4.2.3 Challenges and common practices

In the description made above, some of the common practices and chal-
lenges of the training procedure have been neglected for the sake of sim-
plicity. We hence discuss these common practices and provide guidelines
on how to choose some of the many hyperparameters of the proposed train-
ing procedure.

First, it is worth emphasizing how critical it is to normalize the input-
output data used for training, validation, and testing [14]. This holds true
for three reason: (i) different scales of the outputs would mean an unbal-
anced training procedure, as the gradient of L would be mostly determined
by the outputs with the largest scale; (ii) large inputs would easily lead to
the saturation of the activation functions, leading to very small gradients
and hence to a slow and ineffective gradient descent; (iii) most of the in-
troduced stability conditions rely upon the common unity-bounded input
assumption (Assumption 3.1). The datasetsDtr, Dval, andDte are therefore
assumed to be normalized.

Remark 4.1. If Dtr, Dval, and Dte are not normalized one can easily nor-
malize the data as follows. The input sequences can be normalized com-
ponent wise with respect to the generally known saturation values [ū]i and
[
¯
u]i. Letting [mu]i =

[ū]i+[
¯
u]i

2
be the bias of the i-th input component and

[su]i = [ū]i − [mu]i its scale one can compute the normalized input by
applying, for any i ∈ {1, ..., nu}, the transformation

[uα,k]i ←
[uα,k]i − [mu]i

[su]i
, (4.11)

∀k ∈ {0, ..., Tα}, where α ∈ {tr, val, te}. The output sequences are instead
normalized component-wise with respect to the empirical mean and scale
computed over the training set. That is, for any output component i ∈
{1, ..., ny}, we compute

[my]i =
1

Ttr + 1

Ttr∑
k=0

[ytr,k]i,

[sy]i = max
k
|[ytr,k]i − [my]i|,

and the output sequences are then normalized applying the following trans-
formation

[yα,k]i ←
[yα,k]i − [my]i

[sy]i
, (4.12)

∀k ∈ {0, ..., Tα}, where α ∈ {tr, val, te}.
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4.2. Training provenly stable RNNs via TBPTT

Secondly, we would like to steer the attention of the reader to the chal-
lenge of selecting the hyperparameters of the training procedure. These
hyperparameters include

• The length of the subsequences Ts: large Ts generally allow for long-
term modeling performances, but excessively large values lead to cum-
bersome gradient computation and thus a significantly slower training.

• The number of training and validation subsequences, i.e. Ntr andNval:
the number of validation subsequences should be enough to reason-
ably cover the whole validation dataset Dval, hence NvalTs > Tval,
while the number of training subsequences is generally taken so that
NtrTs ≫ Ttr.

• The number of batches B, which is inversely proportional to the so-
called batch size |I{b}tr |: as discussed in [14], large batch sizes allow
to take advantage of parallel computing and to improve the smooth-
ness and stability of the gradient descent, but increase the likeliness
of getting stuck in local minima. On the other hand, small batches
result in less exploitation of parallelization and hence in longer train-
ing times, and may even undermine the convergence of the gradient
descent algorithm.

• The washout period τw, which should as low as possible while accom-
modating the initialization transient [13].

• The GD-based optimization algorithm (Adam, RMSProp, etc.) and
its hyperparameters, which need to be carefully tuned to ensure the
convergence of the training procedure while escaping the local min-
ima [14].

• The stability-related regularization term ρ(·), which should be de-
signed following the guidelines provided in Section 4.2.2, and its co-
efficients, i.e.

¯
π and π̄. Large values of these coefficients could make

this regularization term of the loss function predominant, introducing
a “stability bias” that could harm the effectiveness of the training pro-
cedure, yielding unsatisfactory modeling performances. On the other
hand, values that are too small may be unable to enforce the satisfac-
tion of the stability conditions.

Finding appropriate values of these hyperparameters is usually a result of
the designer’s knowledge, and often several trial-and-error attempts are re-
quired to obtain satisfactory results. In particular, with respect to the last
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point, it is worth noting that the introduction of the stability-related regular-
ization term, if not designed appropriately, may lead to stable models with
worse performance than those that would be attained without such stability
guarantee.

Finally, as mentioned at the beginning of Chapter 4.2, we point out that
training provably stable RNNs is generally desirable only if the system that
generates the input-output training data enjoys the same stability propri-
eties, as discussed in the following remark.

Remark 4.2. The input-output datasets Dtr, Dval, and Dte are assumed to
be generated by a system which enjoys the same stability property that is
being enforced by the regularization term ρ(ν(Φ)). This assumption may
be known from physical arguments, or they could be assessed numerically
on the measured sequences, see e.g. [58]. Obviously, in this latter case,
since only the input-output trajectories are measured, one needs to resort
to ISS, ISPS, and δISS-like properties referred to output variables, such as
the input-to-output stability [73]. On the other hand, enforcing stability
conditions when learning an unsuitable system may lead to poor perfor-
mances of the RNN model, as the regularization term biases the training
procedure towards the space of provenly-stable networks.

4.3 Numerical example

4.3.1 Benchmark system description

The benchmark system here adopted to test the proposed training procedure
is the pH neutralization process described in [110, 111], and depicted in
Figure 4.2. The system is composed of two tanks, i.e. Tank 1 and Tank 2.

Tank 2 is fed by the acid flow rate q1, and its output is the flow rate
q1e. The hydraulic dynamics of Tank 2, being much faster than the others
involved, is neglected, i.e. it is assumed that q1 = q1e.

Tank 1, referred to as reactor tank, is fed by three flows, namely the acid
flow rate q1e, the buffer flow rate q2, and the alkaline base flow rate q3. The
terms q1 and q2 can not be manipulated and represent disturbances. The
alkaline flow rate q3 can be instead modulated by means of a controllable
valve, and thus represent a control variable. The output of the reactor tank
is the fixed flow rate q4, from which the pH is measured. The objective of
the control scheme is to control the pH of the output flow to a (piecewise)
constant setpoints.

A simplified model [111] of this system is described by a third order
continuous-time dynamical system having one input (i.e. u = q3), one
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pH

Tank 2

Tank 1

Figure 4.2: Schematic of the pH neutralization process benchmark system.

output (i.e. y = pH), and two exogenous disturbances (i.e. d = [q1, q2]
′).

The model is described by the following constrained differential equations:

ẋ(t) = fp(x(t), u(t), d(t))

c(x(t), y(t)) = 0,
(4.13a)

where function fp(x(t), u(t), d(t)) describes by the following dynamics

ẋ1 =
q1
A1x3

(Wa1 − x1) +
q2
A1x3

(Wa2 − x1) +
q3
A1x3

(Wa3 − x1), (4.13b)

ẋ2 =
q1
A1x3

(Wb1 − x2) +
q2
A1x3

(Wb2 − x2) +
q3
A1x3

(Wb3 − x2), (4.13c)

ẋ3 =
1

A1

(q1 − Cv4(x3 + z)n) +
q2
A1

+
q3
A1

, (4.13d)

in which the time index has been omitted for the sake of compactness. The
output y is instead determined by the implicit equation c(x(t), y(t)) = 0,
defined as

c(x, y) = x1 + 10y−14 + 10−y + x2
1 + 2 · 10y−pK2

1 + 10pK1−y + 10y−pK2
, (4.13e)

where the parameters pK1 and pK2 are the first and second dissociation
constants of the weak acid H2CO3.
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A1 = 207 cm2 Wa1 = 3 mol/mL q1 = 16.6 mL/s
z = 11.5 cm Wa2 = −3 mol/mL q2 = 0.55 mL/s
Cv4 = 4.59 Wa3 = −3.05 mol/mL q3 = 15.6 mL/s
n = 0.607 Wb1 = 0 mol/mL q4 = 32.8 mL/s
pK1 = 6.35 Wb2 = 30 mol/mL

pK2 = 10.25 Wb3 = 0.05 mol/mL

Table 4.1: Nominal parameters and operating conditions of the pH neutralization process

The nominal parameters of the model are reported in Table 4.1, and the
nominal operating point is

x̄ = [−0.432, 0.528, 14]′ ū = 15.6,

d̄ = [16.6, 0.55]′ ȳ = 7.0.

Moreover, the alkaline flow q3 is subject to a following saturation con-
straint, i.e.

u(t) ∈ [12.5, 17]. (4.14)

A simulator of the plant equations (4.13) has been implemented in Simu-
link in order to collect the necessary data for the RNN training procedure.
Notably, it has been numerically verified that the system displays δISS-like
properties through the inspection of input-output trajectories. The proposed
benchmark system is therefore a good candidate to be learned by a δISS
RNN model.

4.3.2 Training procedure

To collect an informative dataset spanning the operating regions and fre-
quencies of interest, the plant simulator has been fed with Multilevel Pseudo-
Random Signals (MPRS). These signals consist of trains of steps of random
amplitude and duration, to which a white Gaussian noise with standard de-
viation 0.0125 has been superimposed. Note that, before running the simu-
lation for data collection, it should be verified that the randomly generated
input sequences for the validation and test datasets span the entire input
set spanned by the training dataset, so that the network performances are
validated and tested on suitably informative datasets.

The input and output data of the system have been recorded with a sam-
pling time τs = 15s: in this way, enough datapoints are collected dur-
ing transients. Output measurements have also been corrupted by a white
Gaussian noise with standard deviation 0.01. Overall, the training dataset
Dtr consists of a single experiment of duration Ttr = 5000 steps, while both
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Figure 4.3: Training set: applied input sequence (top) and measured pH (bottom).

the validation and test input-output sequences, i.e. Dval and Dte, consist of
one experiment of duration Tval = Tte = 1500 steps each. In Figure 4.3 the
input and output sequences of the training dataset are depicted.

It is worth stressing that before these input-output sequences can be used
to carry out the training procedure of the RNN model, they must be normal-
ized according to the instructions provided in Remark 4.1. For the sake of
interpretability, however, denormalized trajectories (i.e., in their original
scale) are represented in the figures reported below. After normalization,
according to the TBPTT paradigm, partially overlapping subsequences are
randomly extracted from Dtr and Dval. The training and validation datasets
are defined by extracting Ntr = 300 training subsequences and Nval = 50
validation subsequences, respectively, of the same length Ts = 250.

The training procedure described in Algorithm 1 has been implemented
in PyTorch 1.10 [112], using RMSProp as optimization algorithm and an
early stopping criterion, i.e., stopping training after 250 epochs without
performance improvement on the validation dataset. The training procedure
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RNN Layer δISS FIT Average Average Average
arch. units regulariz. [%] ϵ̄ [10−3] ϵ̄ss [10

−3] epochs

GRU

[7]
No 96.83 14.16 12.33 925
Yes 96.28 16.92 14.10 2662

[5, 5]′
No 97.45 11.30 9.80 1098
Yes 96.97 12.03 10.56 2043

[7, 7]′
No 97.09 11.20 9.95 1355
Yes 97.82 8.89 7.96 1985

LSTM

[7]
No 97.36 10.97 9.89 1137
Yes 96.78 14.74 12.17 2707

[5, 5]′
No 97.76 9.35 8.25 1293
Yes 96.70 13.52 12.18 2532

[7, 7]′
No 97.37 11.31 10.45 1080
Yes 97.05 13.51 12.42 1396

Table 4.2: Results of the training procedure

has been tested for a variety of RNN models. Specifically, in Table 4.2
the configurations of the considered architectures and their performance
(averaged over different training instances, characterized by different batch
sizes) are reported. The table is explained below.

• Both shallow and deep architectures have been tested for GRUs and
LSTMs. The column “Layer units” thus denotes the number of units
for each layer, i.e.

[
n
(1)
c , ..., n

(L)
c

]′. Scalar entries denote the number
of units of shallow architectures.

• The above-mentioned architectures have been trained both with and
without including the corresponding δISS regularization term, so as to
assess the impact of the stability conditions on the training procedure.
The inclusion of the δISS condition is reported in the “δISS regulariz.”
column. Where included, the adopted regularization function is the
Generalized Piecewise Function (4.10), with the fixed parameters π̄ =
2 · 10−3,

¯
π = 10−6, ω = 10, and εν = 0.04.

• For each configuration, the average FIT index achieved and the av-
erage training epochs required are reported, alongside other perfor-
mance indexes computed on the independent test set Dte. The first
index, ϵ̄, is the mean simulation error.

ϵ̄ =
1

Tte − τw + 1

Tte∑
k=τw

∥yk(x0, ute,0:k; Φ⋆)− yte,k∥2 (4.15a)
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Figure 4.4: Training procedure of a shallow GRU with nc = 7. On the left, the evolution of
the training loss function is depicted in logarithmic scale. On the right, the evolution of
the MSE metrics on the validation dataset is reported. In both plots, the actual curves
(light-blue lines) and their moving average (bold blue lines) are illustrated.

The second index, ϵ̄ss, denotes the mean post-transient simulation er-
ror. Denoting by Kss the set of time-steps at which the RNN model is
assumed to be settled9, i.e.

ϵ̄ss =
1

|Kss|
∑
k∈Kss

∥yk(x0, ute,0:k; Φ⋆)− yte,k∥2. (4.15b)

Note that the NNARX architecture has not been considered here, as it will
be discussed in Section 7.

The results reported in Table 4.2 demonstrate that, save for minor dif-
ferences, the plant can be learned fairly well by the various architectures
considered. Indeed, in all cases, the FIT index is around 97%, and the av-
erage error indexes are in the range of 1% of the operating range (which, in
terms of denormalized output, correspond to an error on the pH prediction
in the range of 10−2). In light of the results it is possible to provide insights
that may be useful when designing and training RNN models.

i. Shallow RNNs often have enough representational power to identify
dynamical systems. Although one might be tempted to directly re-
sort to deep RNNs, they generally call for a larger number of train-
ing epochs, an increased computational burden (i.e., a longer time-per-

9Kss is determined empirically. In the proposed example, ute,0:Tte is a train of steps with small input noise
superimposed. Having verified that these steps have sufficient duration for the RNN model to converge in the
absence of input noise, the set Kss is hence considered as the last 10 samples of each step.
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Figure 4.5: Evolution of the δISS residual ν(Φ) throughout the training. The light-blue
line indicates the actual residual, while the bold-blue line is its moving average.

epoch), a greater dependence of the attained performances on the ini-
tialization of Φ, see [14], and a greater risk of overfitting.

ii. Despite the conservativeness of the proposed δISS conditions, consis-
tently with the results discussed in [58] the results suggest that the en-
forcement of the RNNs’ δISS property via regularization does not sig-
nificantly harm the RNNs’ modeling performances, but rather it affects
the number of training epochs required. This behavior is explained by
the fact that, if the training hyperparameters are properly designed, the
order of the regularization term ρ(ν(Φ)) is comparable to that of the
MSE. Thus, at the beginning of the training procedure, the optimizer
trades modeling performances with the reduction of the δISS residual.

iii. Albeit the δISS residuals (i.e., ν(Φ⋆)) have been omitted for simplicity,
it has been verified that the RNNs trained without enforcing the δISS
conditions are characterized by positive δISS residuals10. This means
that these networks can not be guaranteed to be δISS. This is not sur-
prising, as the proposed conditions are conservative and only sufficient.

In order to provide a more detailed example of the training procedure,
let us consider a shallow GRU with nc = 7 units. Such model is trained
including the δISS-related regularization term in the loss function, in order
to ensure its δISS. The batch size here adopted is 20.

Figure 4.4 shows the evolution of the loss function and of the valida-
tion MSE performance index is reported. Note that the convergence of the
training procedure is rather smooth. According to the early stopping rule,

10The order of magnitude of these residuals depends on the specific architecture. For GRUs, it generally ranges
from 105 to 108, whereas for LSTMs it is tipically smaller, in the order of 101.
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4.3. Numerical example
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Figure 4.6: Performances of a trained shallow GRU model. In the top plot the test
dataset’s input sequence is depicted, while on the bottom the open-loop simulation
of the model (red solid line) is compared to the actual output (blue dotted line).

the training procedure is halted after 1414 training epochs, since the vali-
dation MSE stops improving. Each epoch takes approximately 0.6s to be
executed on an i7 2.6 GHz processor.

In Figure 4.5 the evolution of the δISS residual ν(Φ) is depicted. Notice
that after epoch 1000 the residual oscillates around −εν , for which values
the network δISS is ensured. Note that these oscillations can be dampened
by decreasing the value of the coefficients

¯
π and π̄, at the price of a possibly

slower convergence of the training procedure.
Finally, the modeling performances of the trained network are assessed

on the independent test set Dte. In Figure 4.6 the test set input sequence
ute,0:Tte is depicted, and open-loop simulation of the trained model, i.e.
y0:k(x0, ute,0:Tte ; Φ

⋆), is compared to the measured output sequence yte,0:Tte .
The FIT index scored by the GRU model is 96.44%, while ϵ̄ = 16.33 ·10−3

and ϵ̄ss = 13.95 · 10−3, indicating satisfactory modeling performances.

73



Chapter 4. Training procedure

4.4 Summary

In this chapter a training procedure of the previously discussed RNN mod-
els has been proposed. This procedure is based on the method of truncated
back-propagation through time and allows RNN models to be trained using
input-output trajectories collected from the plant via experiments. A suit-
ably designed regularization term is also included so that the network meets
the sufficient conditions that guarantee its ISPS, ISS or δISS. Finally, the
effectiveness of the proposed training procedure has been assessed on a pH
neutralization process benchmark system, and guidelines on the selection
of the hyperparameters have been discussed.
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Part II

Control design
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CHAPTER5
Introduction to the control problem

In the previous part of this thesis, the use of stable RNN models for the
identification of nonlinear dynamical systems has been investigated. Spe-
cial attention has been devoted to training provenly ISPS, ISS, and δISS
RNN models, with the pledge of exploiting these stability properties for the
synthesis of control systems with closed-loop stability guarantees. In the
spirit of the indirect data-driven control synthesis approach, model-based
control laws are generally synthesized based on the stable identified model
by relying on the so-called Certainty Equivalence Principle (CEP). This
principle consists of assuming that the unknown plant and its RNN model
coincide.

Under this premise we henceforth assume that a stable RNN model
Σ(Φ⋆) of the plant has been trained by means of the procedure shown in
Chapter 4 using suitably collected input-output data. By invoking the CEP,
the plant is assumed to be described by the same state-space system equa-
tions as Σ(Φ⋆). The control synthesis problem thus boils down to designing
a control law based on the identified RNN model Σ(Φ⋆), for which many
techniques are potentially available [16].
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Chapter 5. Introduction to the control problem

5.1 Problem Statement

Let us consider a generic RNN model of the plant characterized by the
state-space form

Σ(Φ⋆) :

{
xk+1 = f(xk, uk; Φ

⋆)

yk = g(xk; Φ
⋆)

, (5.1)

where the functions f and g depend on the chosen RNN architecture, see
Chapter 3. Model (5.1) is here assumed to be exponentially δISS with
respect to its invariant set X and the input set U . Such stability property
can be guaranteed, e.g., by ensuring that the corresponding δISS sufficient
conditions ν(Φ⋆) < 0 hold true.

The main goal of the controller is to steer the output of the plant to
a reference value ȳ, while fulfilling the input constraint uk ∈ Ũ , where
Ũ ⊆ U represents a potentially tighter input constraint than the input set
U on which the δISS property has been derived. To address the regulation
problem, the existence of a feasible equilibrium corresponding to the output
reference is assumed.

Assumption 5.1. Given the output reference ȳ, there exists x̄ ∈ Int(X ) and
ū ∈ Int(Ũ) such that the triplet Σ̄ = (x̄, ū, ȳ) is a feasible equilibrium, i.e.{

x̄ = f(x̄, ū; Φ⋆)

ȳ = g(x̄; Φ⋆)
(5.2)

In the following, the linearization of Σ(Φ⋆) around the equilibrium Σ̄,
denoted by δΣ(Σ̄), is characterized by the matrices Aδ(Σ̄), Bδ(Σ̄), and
Cδ(Σ̄), computed as described in (2.15). The following customary assump-
tions are therefore taken on δΣ(Σ̄).

Assumption 5.2. The linearized system δΣ(Σ̄), described by the tuple(
Aδ(Σ̄), Bδ(Σ̄), Cδ(Σ̄)

)
,

is reachable, observable, and does not have any invariant zero in z = 1.

Remark 5.1. Owing to Theorem 1 of [113], Assumption 5.2 entails the
existence of an open neighborhood of ȳ, denoted by Γ(ȳ) ⊆ Rny where, for
any ỹ ∈ Γ(ȳ), there exists a feasible equilibrium triplet (x̃(ỹ), ũ(ỹ), ỹ) such
that x̃(ỹ) = f(x̃(ỹ), ũ(ỹ); Φ⋆) and ỹ = g(x̃(ỹ); Φ⋆), with x̃(ỹ) ∈ Int(X )
and ũ(ỹ) ∈ Int(Ũ). This local result allows to conclude that it is possible
to move the output setpoint in a neighborhood of ȳ and still guarantee that
a feasible solution to the control problem exists.
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5.2. Model Predictive Control

At this stage, assume that we have a setpoint ȳ and that Assumptions 5.1
and 5.2 are satisfied.

Problem 5.1. (Regulation problem) Given the model Σ(Φ⋆) and the output
setpoint ȳ, steer the system to the equilibrium Σ̄ by means of a control
action that satisfies the input constraint uk ∈ Ũ .

The main control strategy considered in this thesis to address Prob-
lem 5.1 is Nonlinear Model Predictive Control (NMPC), discussed below.
An alternative strategy, based on Internal Model Control, is also considered.

5.2 Model Predictive Control

In the framework of nonlinear systems’ regulation, nonlinear model pre-
dictive control represents a solid and mature control strategy [114–116],
as it allows to straightforwardly handle the nonlinearity of the model and
the constraints on input, state, and output variables. Many variants of the
traditional NMPC scheme have been proposed, to mention a few, to en-
sure outputs’ offset-free tracking, see [117, 118], robustness against uncer-
tainty, see [119–121], chance-constrained constraint satisfaction, see [122].
The broad applicability of NMPC, the possibility to naturally enforce con-
straints, and its often-superior closed-loop performances have thus led to
its tremendous diffusion in both academia and industry, see [123].

Below, the working principle of NMPC is concisely summarized. Note
that the provided description is not intended to cover the wide variety of
NMPC architectures available in the literature, but is sufficiently abstract to
fit the different NMPC strategies discussed in this thesis.

That of NMPC is a model-based implicit state-feedback control law.
The control action applied to the plant is determined, at each instant k, by
solving a nonlinear Finite Horizon Optimal Control Problem (FHOCP). In
the FHOCP, the availability of the model (i.e., (5.1)) is exploited to relate
the future evolution of the state and output trajectories, along the so-called
prediction horizon, to any given control sequence. Solving the FHOCP
amounts to computing the control sequence which leads to the lowest possi-
ble value of some cost function, which expresses and quantifies the control
objectives, subject to constraints on the future state and input trajectories.
The first optimal control action is applied and then, in accordance to the
receding horizon principle, the entire procedure is repeated at step k + 1.

Note that, in order to use (5.1) to predict future state and output trajec-
tories, at each time step k, it is necessary to know the actual state of such
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Chapter 5. Introduction to the control problem

system. Therefore, since black-box systems are characterized by unmea-
surable states, they call for suitably designed state observers.

5.2.1 State of the art of NN-based MPC

Given its peculiarities, in the realm of indirect data-driven approaches, that
of NMPC based on identified neural models has been a popular choice since
the early days of NN. In [124–126], the authors proposed NMPC laws to
control systems learned by FFNN-based one-step ahead predictor models.
Implementations of this approach on real systems have demonstrated satis-
factory performances [23].

Because MPC performance is related to the accuracy of the underly-
ing model, recent works have considered the use of RNNs as identified
plant models for the synthesis of predictive control laws. This proposal
is motivated by the modeling power of RNNs, which are known to out-
perform FFNN for learning dynamic systems, see e.g. [13]. For example,
in [54] the authors proposed to learn the model of a complex chemical sys-
tem using continuous-time RNNs, which has been then used to design an
NMPC law; in [24] and [25] GRU and LSTM models have been used to
design NMPCs for continuous process industries; in [55] an NMPC law
based on an LSTM model of a business center’s cooling system has been
proposed, showing that the modeling performances of LSTMs allow such
control scheme to outperform a predictive control law based on a grey-box
model; in [127] predictive control laws based on continuous-time RNNs
have been proposed for chemical systems.

While the above contributions are relevant, as they illustrate the potential
of RNN-based NMPC laws, there is a need for a theoretical framework that
sheds light on the closed-loop stability guarantees of this kind of scheme.
A first step towards this aim is [128], in which the author has shown that,
for specific two-layer FFNN structures, by suitably designing an NMPC
scheme one can provide closed-loop stability guarantees. Similarly, in [19]
the authors have shown that single-layer continuous-time vanilla RNNs can
be employed to design NMPC laws with nominal closed-loop stability guar-
antees, under assumptions on the RNN model’s Lipschitzianity and on the
boundedness of the modeling error.

A different approach to ensure nominal closed-loop stability has been
proposed in [93], which relies on the δISS property of the considered ESN
model, and on the design of a provenly convergent state observer for such
model. Note that a state observer is required to operate the RNN predictive
model in closed-loop since, save for the NNARX architecture, RNNs are
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5.2. Model Predictive Control

characterized by unmeasurables states, that therefore need to be estimated.
To attain theoretical closed-loop guarantees, such observer must yield a
state estimation converging to the true, unknown, state of the plant.

In general, it is well known that the static performances of an NMPC
law are closely related to the accuracy of the predictive model. This also
applies to the control scheme mentioned above, which unfortunately does
not guarantee zero-error output regulation to constant references [22]. That
is, a static plant-model mismatch, however small, can lead to a mismatch
between the closed-loop plant’s output and its constant reference value.

The problem of designing offset-free NMPC laws, i.e. that guarantee
both closed-loop asymptotic stability and zero asymptotic output regulation
error to constant references, is well known in the MPC literature, see [129]
for an in-depth survey on the topic. There are two main strategies by which
the problem has been addressed.

A first strategy has been proposed by Morari and Maeder [118], where
the authors propose to enlarge the model of the system with the dynamics
of a fictitious disturbance, generally assumed to be constant and additive to
the inputs or outputs of the system. Such enlarged model is then used both
to design a state observer providing an estimate of the disturbance and as a
predictive model for an NMPC control law which, embedding the dynamics
of the disturbance, is able to reject it. As pointed out in [130], crucial to the
success of this approach is the possibility to suitable model this fictitious
disturbance and to design an appropriate algorithm for its estimation, which
is not always straightforward.

A second strategy is the one devised by Magni et al. [117], in which the
authors propose to enlarge the system model with integrators on the out-
put tracking error, and then to use such augmented model both to design a
weak detector (i.e., a state observer with nominal convergence guarantees)
and to synthesize a suitable NMPC law. This scheme results in a nominally
closed-loop stable offset-free control architecture. Moreover, the asymp-
totic zero-error output regulation is robust to model uncertainty, as long as
the closed-loop stability is preserved [117].

While many offset-free strategies have been proposed based on the two
aforementioned approaches, to the best of the author’s knowledge few works
deal specifically with their synthesis for systems identified by RNN mod-
els. In particular, a disturbance estimation-based NMPC has been proposed
for NNARXs in [131], while in [132] RNN models are used to learn the
mismatch (to be compensated) between the plant and its linear model.
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Chapter 5. Introduction to the control problem

5.3 Internal Model Control

Albeit NMPC-based strategies are capable of achieving remarkable per-
formance, guaranteeing constraint satisfaction and, if properly designed
(e.g., following the procedures proposed in the next chapters), even nominal
closed-loop stability, they call for the solution of an online nonlinear opti-
mization problem at every time-step. This computational burden may be,
in some cases, prohibitive. Therefore, in these cases, the control problem
can be addressed resorting to a completely different control architecture,
i.e., the Internal Model Control (IMC) strategy [133].

In short, this strategy consists of synthesizing a controller that approx-
imates the inverse of the system model. This means that, ideally, the con-
troller, fed with the output reference, should then generate the control se-
quence that steers the model’s output as close as possible to such reference.
In this scheme, to avoid to have a purely open-loop scheme, a negative
feedback of the plant-model mismatch is also included [134], which allows
to improve the static performances and the robustness of the scheme.

The remarkable peculiarity of this scheme is that the controller is syn-
thesized offline based on the system model only, and requires limited online
computations. This architecture is therefore extremely lightweight from the
computational standpoint, which makes it a good complementary alterna-
tive to NMPC.

5.3.1 State of the art of NN-based IMC

Despite the potential of this control strategy, it has mostly been used with
linear systems [135] since, for that class of systems it is easy to guarantee
the existence of the model inverse and to compute it. Extensions to non-
linear systems have also been provided, see [133, 134]. However, attention
is devoted on ensuring the existence of the exact inverse of the model, and
hence the classes of nonlinear systems considered are input-affine ones,
which can nonetheless lead to reasonable closed-loop performance in some
practical cases [136].

In this context, [15] proposed to adopt static FFNN as system’s model
and model’s inverse approximators, relying on their universal approxima-
tion guarantees. A similar approach is undertaken by [137], in which FFNN
networks are used in an autoregressive configuration to approximate the
model and synthesize the controller.

In these approaches, however, the model’s and controller’s dependence
on the past trajectories is encoded by embedding a sufficiently long regres-
sion horizon of past input-output regressors. On the other hand, as exten-
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5.4. Contributions

Architecture NMPC Offset-free NMPC IMC

NNARX - Chapter 7, [61] -
LSTM [22, 63] [138] Chapter 8
GRU Chapter 6.1, [63] Chapter 6.2, [60] Chapter 8, [62]

Table 5.1: Summary of the control schemes proposed by the Author.

sively discussed, RNNs would generally be better candidates for learning
and approximating dynamic systems. Despite their potential, however, to
the best of the author’s knowledge, IMC schemes based on gated RNNs
have not been proposed so far.

5.4 Contributions

Several control schemes, based on the RNN models discussed in Section 3,
have been proposed, see Table 5.1.

In [22] it has been shown that, when the system is learned by shallow
LSTMs, the δISS of the model allows to design nominally converging state
observers which, in turn, allow to synthesize a nominally closed-loop stable
NMPC law. Along this line, in Chapter 6.1 a theoretically-sound NMPC ar-
chitecture has been devised for δISS shallow GRUs. Such scheme is able to
guarantee nominal closed-loop stability under sufficient conditions on the
NMPC’s prediction horizon and weights. The synthesis of this control law
consists of two distinct design steps, i.e. (i) proposing a state observer with
nominal convergence guarantees and (ii) formulating an NMPC law which
exploits such convergent state observation to guarantee nominal stability of
the closed-loop. The proposed strategy can also be extended to other non-
linear δISS systems, provided exponentially converging state observers can
be synthesized – such as in the case of shallow LSTMs –, and will be object
of a future publication [63].

The problem of designing an offset-free NMPC scheme with closed-
loop stability guarantees has been addressed in [138] and [60] for δISS
shallow LSTMs and GRUs, respectively. These control schemes, based on
the control strategy originally introduced in [117], rely upon the model’s
δISS to design the ingredients of the control law, i.e. the gain of the in-
tegral action, as well as a weak detector and a stabilizing control law for
the augmented system model. Albeit being slightly more complex to be
synthesized, we show that this second control scheme is more robust to dis-
turbances affecting the plant. In Chapter 6.2, the synthesis of this control
scheme for δISS shallow GRUs is described.
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A similar control strategy, proposed for δISS NNARX models in [57],
is described in Section 7. In this scheme, the control variable is designed as
the sum of two components, i.e., an integral action related to the tracking
error, which allows to attain asymptotic zero-error output tracking of con-
stant references, and a derivative action, which instead allows to improve
the closed-loop dynamic performances.

Finally, in [62] an IMC scheme based on δISS deep GRUs has been
proposed. Since this approach readily extends to LSTMs, in Chapter 8 it is
described considering any general δISS gated RNN. In particular, a strategy
is proposed to train the controller, described by a RNN, to approximate the
inverse of the model, also described by a RNN. Relying on the δISS of both
networks, the closed-loop properties are discussed.

5.5 Summary

In this chapter the control problem to be addressed in the reminder of this
part has been formulated. Two main control approaches that can be prof-
itably employed for this purpose have been briefly presented, namely the
nonlinear model predictive control and the internal model control. The
available literature on the use of these control architectures on the consid-
ered RNN models has been discussed, and the necessity of leveraging the
devised theoretical stability framework to design control laws with closed-
loop stability guarantees has emerged.

84



CHAPTER6
Model Predictive Control design for shallow

GRU models

In this chapter, two control strategies based on NMPC are proposed for
shallow GRU models. The trained model of the plant, i.e. (5.1), is here con-
sidered to be a shallow GRU characterized by the equations (3.26). More-
over, this model is assumed to be exponentially ℓ∞-δISS with respect to the
invariant set X (3.27) and the input set U (3.7). Such property, which can
be guaranteed, e.g., by means of Theorem 3.8, for GRU models amounts of
assuming the existence of λδ ∈ (0, 1) and µδ > 0 such that Definition 2.6
applies with the function β in the form

β(∥xa,0 − xb,0∥∞, k) = µδλ
k
δ∥xa,0 − xb,0∥∞, (6.1)

and for some function γ of class K∞.

Remark 6.1. Theorem 3.8 allows to conservatively estimate µδ and λδ.
Indeed, from (A.146) it holds that

µδ = 1, (6.2)

while, from (A.140), one can derive that

λδ ≤ max
(
κx(σ̌z), κx(1− σ̌z)

)
(6.3a)
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Optimizer

NMPC

Model Observer

Plant

Figure 6.1: Schematic of the proposed NMPC control architecture.

where κx(z) is

κx(z) = z+(1− z)
(1
4
x̌∥Uf∥∞+ σ̌f

)
∥Ur∥∞+

1

4
(ϕ̌r+ x̌)∥Uz∥∞. (6.3b)

Regardless of how these constants are calculated, numerically or conser-
vatively by (6.2) and (6.3), we assume that they are known. We are now in
the position to describe the proposed control strategies to address Problem
5.1 for the shallow GRU model under consideration.

6.1 Closed-loop stable NMPC design

In this section, the control scheme depicted in Figure 6.1 is formally in-
troduced. Such a scheme is a rather standard one, typically adopted when
NMPC is used for the regulation of systems with unmeasurable states.

Since the state vector xk is not measured, a state observer is needed to
retrieve a state estimate x̂k. Such state estimate is then used to initialize
the predictive model (i.e., the shallow GRU model Σ(Φ⋆)) of the NMPC’s
FHOCP, whose solution leads to the optimal control action uk to be applied.

The synthesis of the control scheme, therefore, boils down to two steps:
(i) the design of a nominally convergent state observer O, i.e., an observer
yielding a state estimate nominally converging to the real, unknown, state;
(ii) the synthesis of an FHOCP that, exploiting this convergent state esti-
mate, allows to guarantee the nominal closed-loop stability.

In the following, these two tasks are therefore described.

6.1.1 State observer design

In the spirit of [22,60], to define a state estimate x̂k with convergence guar-
antees, we propose to adopt a Luenberger-like structure closely resembling
that of the shallow GRU system (3.26) whose states are to be estimated.
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6.1. Closed-loop stable NMPC design

Therefore, the candidate state observer reads as

O(Φo) :

{
x̂k+1 = ẑk ◦ x̂k + (1− ẑk) ◦ r̂k
ŷk = Uox̂k + bo

(6.4a)

where x̂k ∈ Rnx denotes the observer’s state. The observer’s gates ẑk and
f̂k, and the squashed input r̂k are defined as

ẑk = σ(Wzuk + Uzx̂k + bz + Lz(yk − ŷk)),
f̂k = σ(Wfuk + Uf x̂k + bf + Lf (yk − ŷk)),
r̂k = ϕ(Wruk + Uf f̂k ◦ x̂k + bf ).

(6.4b)

The overall set of weights of the GRU observer (6.4) is Φo = Φ⋆∪{Lf , LZ},
where Φ⋆ matches the set of weights of the GRU system to be observed, and
is therefore fixed. The tuning parameters of the observer are the gains Lf
and Lz, that allow to exploit the known innovation yk − ŷk to improve the
future state estimation x̂k+1.

Notation Addendum 6.1. In the following, the observer O(Φo) may be
represented in the compact form

O(Φo) :

{
x̂k+1 = fo(x̂k, uk, yk; Φo)

ŷk = g(x̂k; Φo)
. (6.5)

Moreover, in accordance to Notation Addendum 2.1, we may denote by
x̂k(x̂0, u0:k, y0:k; Φo) the observer state at time k, when (6.5) is initialized
in x̂0 and it is fed by the input sequence u0:k and output measurement y0:k.

We assume that the observer (6.4) satisfies Assumption 3.2. That is, we
assume that the observer’s initial state x̂0 is bounded in the same set X
(3.27) that bounds the initial state of the observed GRU system. This en-
sures that Lemma 3.3 can be applied to (6.4) to show that X is an invariant
set of the observer itself1.

The observer design problem amounts to finding the gains Lz and Lf
that guarantee the convergence of the state estimate to the true state, in the
sense specified by the following definition.

Definition 6.1. The observer O(Φo) is said to be convergent to the GRU
system Σ(Φ⋆) if, for any unknown initial state of the GRU system x0 ∈
X , given the sequence of applied inputs u0:k ∈ U0:k and the sequence of

1The fact that X represents an invariant set for the observer can be easily proven by noticing that the inno-
vation enters the gates as an additive argument, and can thus be regarded as an additive term to the input uk .
Accordingly, the proof of Lemma 3.3 can be straightforwardly applied to O.
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Chapter 6. Model Predictive Control design for shallow GRU models

measured output y0:k(x0, u0:k; Φ⋆), the observed state x̂k(x̂0, u0:k, y0:k; Φo)
converges to the true state xk(x0, u0:k; Φ⋆) for any initial guess x̂0 ∈ X , i.e.

∥x̂k(x̂0, u0:k, y0:k; Φo)− xk(x0, u0:k; Φ⋆)∥2 ≤ βo(∥x̂0 − x0∥2, k) (6.6)

where βo ∈ KL.

If βo takes an exponential form, the observer is said to be exponentially
convergent. In the following theorem we propose a sufficient condition for
the nominal exponential convergence of the observer.

Theorem 6.1 (State observer convergence). Consider the observer gain Lz
and Lf , and assume that there exists λo ∈ (0, 1) such that, ∀z ∈ [1−σ̌z, σ̌z],

κo(z, Lz, Lf ) < λo (6.7a)

where

κo(z, Lz, Lf ) =z + (1− z)
(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
∥Ur∥∞

+
1

4
(ϕ̌r + x̌)∥Uz − LzUo∥∞

(6.7b)

and σ̌z, σ̌f , and ϕ̌r are defined as in (3.30). Then, the state observer (6.4)
is nominally exponentially convergent in the sense specified by Definition
6.1, with function βo in the form

βo(∥x̂0 − x0∥2, k) = µoλ
k
o∥x̂0 − x0∥2, (6.8)

for some µo > 0.

Proof. See Appendix A.3.1.

While Theorem 6.1 allows to assess whether the state observer can be
guaranteed to be convergent for specific gains Lz and Lf , it does not pro-
vide any guidelines on how to select them. It is worth noticing that, accord-
ing to (6.8), λo represents a bound on the worst-case convergence rate of
the observer. Therefore, in the following proposition we recast the observer
design problem as a convex optimization program, in order to retrieve the
gains that ensure the smallest possible bound on the convergence rate λo.

Proposition 6.1 (Optimal tuning of state observer). The gains Lz and Lf
of the state observer (6.4) that allow to fulfill Theorem 6.1 while ensuring
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6.1. Closed-loop stable NMPC design

the fastest worst-case convergence rate λo, can be computed by solving the
following convex optimization problem

λo, L
⋆
z, L

⋆
f = arg min

λ,Lz ,Lf

λ

s.t. κo(σ̌z, Lz, Lf ) ≤ λ

κo(1− σ̌z, Lz, Lf ) ≤ λ

0 < λ < 1

, (6.9)

where κo(z, Lz, Lf ) is defined as in (6.7b).

Proof. See Appendix A.3.2.

Remark 6.2. As discussed in the proof of Proposition 6.1, the δISS of
Σ(Φ⋆) allows to guarantee that the optimization problem (6.9) admits a
feasible solution. This is expected, since the suboptimal open-loop ob-
server (Lz = Lf = 0nx,ny ) corresponds to the GRU model Σ(Φ⋆) itself,
with convergent state trajectories in view of the δISS definition.

6.1.2 FHOCP formulation

Having synthesized a state observer that yields a convergent observation x̂k,
we now propose a formulation of the FHCOP, to be solved at time instant k,
which allows to steer the system to the target equilibrium Σ̄. The FHOCP
is formulated relying on the predictive model of the system, Σ(Φ⋆), which
allows to predict the future state trajectories throughout the prediction hori-
zon N , given the current state estimate and the input sequences applied
along the control horizon Nc < N . This prediction mechanism not only
allows to enforce constraints on future inputs and states, but also to encode
the desired closed-loop behavior in terms of a cost function that depends on
future inputs and states.

For clarity, at time k, we denote by

uk:k+Nc−1|k = {uk|k, ..., uk+Nc−1|k}, (6.10)

the sequence of future inputs applied throughout the control horizon Nc =
{0, ..., Nc − 1}, after which the constant input ū is applied. Similarly, we
denote by

xk:k+N |k = {xk|k, ..., xk+N |k}, (6.11)

the predicted state trajectory throughout the prediction horizonN = {0, ...,
N − 1}, where xk|k = x̂k. Note that, in (6.11), the term xk+t|k denotes
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the predicted state at time k + t given the input sequence2 uk:k+t|k, i.e.
xk+t|k = xk+t(xk|k, uk:k+t|k; Σ(Φ

⋆)). Under this notation, the nonlinear
FHOCP can be therefore stated as follows.

min
uk:k+Nc−1|k

{
Jk =

Nc−1∑
τ=0

(
∥xk+τ |k − x̄∥2Q + ∥uk+τ |k − ū∥2R

)
(6.12a)

+
N∑

τ=Nc

∥xk+τ |k − x̄∥2S
}

s.t. xk|k = x̂k (6.12b)
xk+τ+1|k = f(xk+τ |k, uk+τ |k; Σ(Φ

⋆)) ∀τ ∈ Nc (6.12c)
xk+τ+1|k = f(xk+τ |k, ū; Σ(Φ

⋆)) ∀τ ∈ N \ Nc (6.12d)

uk+τ |k ∈ Ũ ∀τ ∈ Nc (6.12e)

In the above formulation, the dynamics of the shallow GRU predictive
model Σ(Φ⋆) is embedded by means of the constraints (6.12c) and (6.12d).
In particular, throughout the control horizonNc, the state evolution is ruled
by (6.12c), after which the constant control action ū is applied, see (6.12d).
With constraint (6.12b), the predictive model is initialized in the observed
state x̂k, produced by the state observer O(Φo) designed in the previous
section. The input saturation constraint is enforced by (6.12e). It is worth
noticing that, since Ũ ⊆ U , this input constraint also ensures that the model
is operated in accordance with Assumption 3.1.

Moreover, while the states are guaranteed to lie within the invariant set
X , it is not possible to further constrain the states in a tighter set. In any
case, this limitation is not overly restrictive: indeed, since the system is
a black-box model, states have no physical meaning, therefore imposing
constraints on the state is generally not of interest.

The cost function Jk in (6.12a) is a quadratic cost function, which penal-
izes the deviations (throughout the control horizon) of the predicted state
trajectories from the equilibrium x̄, and the deviations of the input sequence
from the equilibrium ū, weighted by the positive-definite weight matrices
Q and R, respectively. Quadratic terms also penalize the displacement of
the state from the target equilibrium x̄ after the control horizon, and they are
weighted by the positive-definite matrix S. The minimum and maximum
singular values of these matrices are respectively denoted by 0 <

¯
ςQ ≤ ς̄Q,

0 <
¯
ςR ≤ ς̄R, and 0 <

¯
ςS ≤ ς̄S .

2For the sake of consistency of notation, uk:k+N|k is here used to denote the control sequence (6.10) con-
catenated with the constant control action ū.
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According to the receding horizon principle, at any instant k the optimal
control sequence u⋆k:k+Nc−1|k is computed by solving the FHOCP (6.12),
and the fist optimal control input uk = u⋆k|k = κMPC(x̂k) is applied.

In the following theorem sufficient conditions for the closed-loop stabil-
ity of the proposed NMPC law are provided.

Theorem 6.2. A sufficient condition for the closed-loop stability of the
NMPC law uk = κMPC(x̂k) associated to the FHOCP (6.12) is that the
weight matrices Q and S are designed such that

ς̄Q <
¯
ςS (6.13a)

and that the prediction horizon N −Nc is large enough to satisfy

N −Nc >
1

2
logλδ

(
¯
ςS − ς̄Q
nxµ2

δ ς̄S

)
− 1. (6.13b)

Proof. See Appendix A.3.3.

At this stage, it is worth to highlight the peculiarities of the proposed
NMPC strategy. First, the weight matrix S, associated with the penalty of
states beyond the control horizon, is arbitrary, as long as it is positive def-
inite and satisfies condition (6.13a). This is rather different from the usual
formulations, where the terminal cost is computed as an approximation of
the so-called cost-to-go, i.e., the cost required to steer the system from the
terminal state xk+N |k to equilibrium under a suitably designed auxiliary
control law [139]. Similarly, no terminal constraint is required in (6.12).
Such constraint generally involves the computation of a terminal set, i.e.,
a set within which an auxiliary control law able to steer the system to the
equilibrium is guaranteed to exist. The absence of these two terminal in-
gredient allows to simplify the control design phase and to avoid an overly
conservative control. Finally, it can be observed that condition (6.13b) im-
plies that the prediction horizon must be sufficiently longer than the control
horizon. In this sense, the control horizon can be designed so as to improve
the dynamic performances of the control scheme, while the prediction hori-
zon, taken sufficiently long, allows the nominal closed-loop stability to be
guaranteed.

Remark 6.3. The attainment of nominal closed-loop stability guarantees
via the adoption of a sufficiently long prediction horizon is reminiscent
of closed-loop stability framework devised in [140], in which the authors
proved that terminal cost and terminal constraint can be removed if quasi-
infinite horizons are adopted. Such strategy conveniently makes it unneces-
sary to include in the NMPC formulation the “terminal ingredients,” which
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Figure 6.2: Proposed offset-free NMPC architecture for shallow GRU models.

are not only difficult and onerous to compute, especially online, but can also
lead to overly conservative control laws [139]. On the other hand, it should
be pointed out that if λδ ≈ 1, condition (6.13b) might imply an excessively
long prediction horizon which, in turn, may yield an high computational
burden.

6.2 Offset-free NMPC design based on augmented system

In the following, a second approach to address Problem 5.1 is proposed.
In particular, we consider an offset-free NMPC law based on the control
architecture devised in [117], whose theoretical framework allows to guar-
antee the nominal closed-loop stability and the asymptotic zero-error output
regulation for square models, i.e. nu = ny.

The control scheme here proposed, depicted in Figure 6.2, has been dis-
cussed in [60]. The design of this control scheme relies on the inclusion
of an integrator on the output tracking error guarantees, in line with the
Internal Model Principle [141]. Namely, if the stability of the augmented
system, consisting of the system model and the integrator, can be ensured,
the control scheme attains asymptotic zero-error output tracking of constant
references. According to the strategy proposed in [117], the closed-loop
nominal asymptotic stability and constraint satisfaction can be guaranteed
through two ingredients, i.e., a weak detector of the augmented system (that
is, as discussed later, a state observer enjoying nominal convergence guar-
antees) and an NMPC scheme stabilizing such augmented system.

Note that, unlike the approach discussed in Section 6.1, the control
scheme discussed here relies on existing results, i.e. the design of stabiliz-
ing NMPC laws, to attain the desired stability and performance guarantees.

The control architecture is detailed in three distinct steps: (i) model en-
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6.2. Offset-free NMPC design based on augmented system

largement with integrators on the output tracking error, (ii) design of a weak
detector for the augmented system, and (iii) synthesis of a suitable NMPC
law stabilizing the augmented system.

6.2.1 System augmentation

Consider the model (5.1) which, we recall, is here assumed to be described
by a shallow GRU architecture, see (3.26). According to Assumption 5.1,
the reference equilibrium triplet is denoted by Σ̄ = (x̄, ū, ȳ). As discussed
in Remark 5.1, under Assumption 5.2 the local solvability of the output
tracking problem can be guaranteed, see also [117]. Therefore, integrators
can be placed on the output tracking error ȳ−yk by augmenting the system
model with the integrator dynamics, i.e.

ξk+1 = ξk + µξ(ȳ − yk). (6.14a)

Here ξk ∈ Rnu denotes the state of the integral action, characterized by the
gain µξ, which is a design parameter of the control scheme whose choice
is discussed in the following. As shown in Figure 6.2, the control action
applied to the system is given by the sum of the integral action ξk and the
exogenous control variable vk, i.e.

uk = ξk + vk. (6.14b)

The rationale behind these two control components is that the integral ac-
tion is intended to achieve the desired static performances, i.e asymptotic
zero-error output tracking, while vk is the NMPC control action which al-
lows to improve the dynamic performances and to ensure constraint satis-
faction during transients.

By combining the components (6.14) with the system model (5.1), the
augmented model is

Σa(Φ
⋆) :


xk+1 = f(xk, uk; Φ

⋆)

ξk+1 = ξk + µξ(ȳ − yk)
uk = vk + ξk

yk = g(xk; Φ
⋆)

, (6.15)

In the following, such augmented model is compactly described by the sys-
tem

Σa(Φ
⋆) :

{
χk+1 = φ(χk, vk, ȳ; Φ

⋆)

ζk = ψ(χk; Φ
⋆)

, (6.16)
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whose state and output vectors are

χk = [x′k, ξ
′
k]

′,

ζk = [y′k, ξ
′
k]

′.
(6.17)

The target equilibrium of the augmented system, indicated by Σ̄a =
(χ̄, v̄, ζ̄), can be straightforwardly defined from Σ̄ by means of the follow-
ing equations

χ̄ = [x̄′, ū′]′,

v̄ = 0nu,1,

ζ̄ = [ȳ′, ū′]′.

(6.18)

Note that, consistently with the definition of the control action given in
(6.14b), the steady-state constant input is assumed to be entirely supplied
by the integral action, i.e. ξ̄ = ū and v̄ = 0nu,1.

Choice of the integrator gain

Before describing the remaining ingredients of the control architecture,
note that the choice of integral action gain µξ is, in practice, crucial to
achieve satisfactory closed-loop performance. Therefore, it is useful to pro-
vide a range of values within which this gain should be chosen.

Since the model Σ(Φ⋆) is described by a shallow GRU that is expo-
nentially δISS with respect to the sets X and U , the Schur stability of the
linearized system matrix Aδ(Σ̄) is guaranteed by Theorem 2.1. This allows
the following corollary to be formulated.

Corollary 6.1. There exists a scalar κ̌µ > 0 such that, for any κµ ∈ (0, κ̌µ),
the integrator gain

µξ = κµ
[
Cδ(Σ̄)

(
Inx,nx − Aδ(Σ̄)

)−1
Bδ(Σ̄)

]−1 (6.19)

makes the augmented system (6.16) locally asymptotically stable around
the equilibrium Σ̄a.

Proof. Since Aδ(Σ̄) is Schur, and in light of Assumption 5.2, the corollary
immediately follows from the results reported in [142].

Corollary 6.1 provides a useful guideline for the tuning of the gain µξ.
As illustrated in [142], large values of κµ lead to a faster convergence of
ξk to its equilibrium, at the price, however, of possible overshoots and of a
reduction in the stability margins of the augmented system. On the other
hand, smaller values of κµ lead to a slower convergence of the output to
its reference value. In the following, we assume that µξ has been suitably
tuned in accordance with Corollary 6.1.

94



6.2. Offset-free NMPC design based on augmented system

6.2.2 Weak detector design

Following the steps of [117], a state observer must be designed for the aug-
mented system. This state observer, here labeled asOd, takes the following
generic form

Od(Φd) :

{
χ̂k+1 = φd(χ̂k, vk, ζk, ȳ; Φd)

ζ̂k = ψ(χ̂k; Φd)
, (6.20)

where Φd is the set of weights of the observer, later detailed. This state
observer must be a weak detector of the augmented system with respect
to the equilibrium Σ̄a = (χ̄, v̄, ζ̄), in the sense specified by the following
definition [143].

Definition 6.2 (Weak detector). The state observer (6.20) is said to be a
weak detector of the augmented system (6.16) with respect to the equilib-
rium Σ̄a = (χ̄, v̄, ζ̄) and to the set Z if

i. χ̄ = φd(χ̄, v̄, ζ̄, ȳ; Φd)

ii. there exists a continuous function Vd, and functions αd1, αd2, and αd3
of class K∞ such that, for (χk, vk) ∈ Z and (χ̂k, vk) ∈ Z , it holds that

αd1(∥χ̂k − χk∥2) ≤ Vd(χ̂k, χk) ≤ αd2(∥χ̂k − χk∥2),
Vd(χ̂k+1, χk+1)− Vd(χ̂k, χk) ≤ −αd3(∥χ̂k − χk∥2),

(6.21)

where χ̂k+1 = φd(χ̂k, vk, ζk, ȳ; Φd) and χk+1 = φ(χk, vk, ȳ; Φ
⋆)

In line with [60], the candidate weak detector here proposed is a Luenberger-
type state observer described by the following equations

Od(Φd) :


x̂k+1 = ẑk ◦ x̂k + (1− ẑk) ◦ r̂k
ξ̂k+1 = ξ̂k + µξ(ȳ − ŷk) + Lξy(yk − ŷk) + Lξξ(ξk − ξ̂k)
ŷk = Uox̂k + bo

(6.22a)
where ẑk, f̂k, and r̂k are defined as

ẑk = σ
(
Wz(vk + ξ̂k) + Uzx̂k + bz + Lzy(yk − ŷk) + Lzξ(ξk − ξ̂k)

)
,

f̂k = σ
(
Wf (vk + ξ̂k) + Uf x̂k + bf + Lfy(yk − ŷk) + Lfξ(ξk − ξ̂k)

)
,

r̂k = ϕ
(
Wr(vk + ξ̂k) + Urf̂k ◦ x̂k + br

)
.

(6.22b)
The observer gains Lzy, Lzξ, Lfy, Lfξ, Lξy, and Lξξ are matrices of

suitable dimensions, and need to be designed to ensure that the observer
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meets Definition 6.2. Overall, the set of weights of the observer is Φd =
Φ⋆ ∪ ΦL, where ΦL denotes the set of gains, i.e.

ΦL = {Lzy, Lzξ, Lfy, Lfξ, Lξy, Lξξ}.

The following theoretical result thus establish sufficient conditions on
ΦL under which (6.22) is guaranteed to be a weak detector of the augmented
system.

Theorem 6.3. Consider the augmented system (6.16), and the state ob-
server (6.22). Let

κ̌dx(Lzy, Lfy) = max
(
κdx(σ̌z, Lzy, Lfy), κdx(1− σ̌z, Lzy, Lfy)

)
,

κ̌dξ(Lzξ, Lfξ) = κdξ(1− σ̌z, Lzξ, Lfξ),
(6.23)

where the functions κdx and κdξ are defined as

κdx(z, Lzy, Lfy) = z + (1− z)∥Ur∥∞
(1
4
x̌∥Uf − LfyUo∥∞ + σ̌f

)
+

1

4
(x̌+ ϕ̌r)∥Uz − LzyUo∥∞

(6.24a)

κdξ(z, Lzξ, Lfξ) =(1− z)
(
∥Wr∥∞ +

1

4
x̌∥Ur∥∞∥Wf − Lfξ∥∞

)
+

1

4
(x̌+ ϕ̌r)∥Wz − Lzξ∥∞

(6.24b)

and σ̌z, σ̌f , and ϕ̌r are defined as in (3.30). Then, if the gains of the observer
are such that the matrix

Ad =

[
κ̌dx(Lzy, Lfy) κ̌dξ(Lzξ, Lfξ)

∥Uo∥∞∥µξ + Lξy∥∞ ∥Iny ,ny − Lξξ∥∞

]
(6.25)

is Schur stable, the state observer is a weak detector of the augmented
system with respect to the equilibrium (χ̄, v̄, ζ̄) and to the set

Z = {(χ, v) : χ = [x′, ξ′]′ ∧ x ∈ X ∧ (ξ + v) ∈ Ũ}, (6.26)

in the sense specified by Definition 6.2.

Proof. See Appendix A.3.4.

We now provide a necessary and sufficient condition for the Schur sta-
bility of matrix Ad, in the form of a pair of explicit inequalities on the
observer gains ΦL.
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Proposition 6.2. A necessary and sufficient condition for the Schur stability
for the matrix Ad defined in (6.25) is that the gains satisfy the following
conditions(
1− κ̌dx(Lzy, Lfy)

)(
1− ∥Iny ,ny − Lξξ∥∞

)
≥ κ̌dξ(Lzξ, Lfξ)∥Uo∥∞∥µξ + Lξy∥∞

(6.27a)
and

κ̌dx(Lzy, Lfy)∥Iny ,ny − Lξξ∥∞ ≤ κ̌dξ(Lzξ, Lfξ)∥Uo∥∞∥µξ + Lξy∥∞ + 1.
(6.27b)

That is, if (6.27) are fulfilled, the state observer (6.22) is a weak detector
of the augmented system (6.16) over Z .

Proof. By applying Lemma A.1, one gets that (6.27) are necessary and
sufficient conditions for the Schur stability of matrix Ad. Therefore, if con-
ditions (6.27) are fulfilled, Theorem 6.3 can be applied to guarantee that
(6.22) is a weak detector of the augmented system.

In light of Proposition 6.2, it is possible to setup a nonlinear optimization
problem to compute the observer gains, which reads as follows

min
ΦL

∥Ad∥2

s.t. (6.27)
(6.28)

In this optimization problem, the gains satisfying Proposition 6.2 that min-
imize the induced 2-norm of the matrix Ad are retrieved. The idea behind
this choice is that the induced 2-norm is an upper bound of the spectral
radius of Ad, and thus minimizing ∥Ad∥2 likely yields a faster detector.
As formalized in the following corollary, the exponential δISS of the GRU
model Σ(Φ⋆) allows to guarantee the existence of a feasible solution to the
optimization problem (6.28), and hence the existence of a weak detector of
the augmented system, which is a requirement of the control architecture
here proposed.

Corollary 6.2. The exponential δISS of the GRU model Σ(Φ⋆) guarantees
the existence of a feasible solution to the conditions (6.27).

Proof. A feasible set of gains satisfying (6.27) is Lzy = Lfy = 0nx,ny ,
Lξy = −µξ, Lξξ = ςξIny ,ny with ςξ ∈ (0, 1), and any Lzξ and Lfξ. Indeed,
under this choice κdx(Lzy, Lfy) = κx(z), see (6.3a) which, in view of Re-
mark 6.1, is guaranteed to be sub-unitary. Then, since the left-hand side of
(6.27a) is non-negative and the right hand-size is zero, condition (6.27a) is
surely fulfilled. Similarly, the left-hand side of (6.27b) is sub-unitary, while
the right hand side is 1, which implies that (6.27b) is fulfilled.
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6.2.3 FHOCP formulation

The last ingredient of the control architecture that needs to be designed is
an NMPC law that stabilizes the augmented system, see again Figure 6.2.
While several NMPC laws can be adopted to this end, here we adopt the
strategy proposed in [139].

Therefore, at the generic time-step k, the state observation χ̂k produced
by the weak detector (6.22) is sampled, as well as the state of the integrator
ξk, and an FHOCP is solved minimizing the cost function over the predic-
tion horizon N = {0, ..., N − 1} to retrieve the optimal control sequence.
In particular, the following standard stabilizing FHOCP formulation is con-
sidered

min
vk:k+N−1|k

N−1∑
τ=0

(
∥χk+τ |k − χ̄∥2Q + ∥vk+τ |k∥2R

)
+ Vf (χk+N |k, χ̄) (6.29a)

s.t. χk|k = χ̂k (6.29b)

ξ̃k|k = ξk (6.29c)
χk+τ+1|k = φ(χk+τ |k, vk+τ |k, ȳ) ∀τ ∈ N (6.29d)

ξ̃k+τ+1|k = ξ̃k+τ |k + µξ(ȳ − Eyψ(χk+τ |k)) ∀τ ∈ N (6.29e)
(χk+τ |k, vk+τ |k) ∈ Z ∀τ ∈ N (6.29f)

vk+τ |k + ξ̃k+τ |k ∈ Ũ ∀τ ∈ N (6.29g)
χk+N |k ∈ Ωχ̄ (6.29h)

In the proposed FHOCP, the augmented system model (6.16) is embed-
ded as predictive model via (6.29d). This model is initialized in the weak
detector’s state χ̂k by means of constraint (6.29b). As illustrated in [117],
the integrator dynamics are also emulated in order to enforce the input con-
straint satisfaction. In (6.29c) the emulated integrator state ξ̃k|k is therefore
initialized in the actual integrator state ξk. The emulated integrator state is
then propagated throughout the prediction horizon by means of constraint
(6.29e), where Ey is a selection matrix that extracts the component yk+τ |k
from ψ(χk+τ |k). The constraint satisfaction is thus enforced throughout the
prediction horizon via (6.29f) and (6.29g).

The cost function to be minimized, stated in (6.29a), penalizes the devi-
ation of the augmented state χk+τ |k from its equilibrium χ̄, weighted by the
positive-definite matrix Q, as well as the input component vk+τ |k, weighted
by the positive-definite matrix R.

The term Vf (χk+N |k, χ̄) appearing in the cost function (6.29a), as well as
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the set Ωχ̄ appearing in (6.29h), are the so-called terminal cost and terminal
set, respectively. The former is defined as the cost-to-go from the terminal
state χk+N |k to the equilibrium χ̄ under some auxiliary control law; the
latter is defined as a set (ideally, as large as possible) within which the
auxiliary control law is guaranteed to steer the system state χk+N |k to the
equilibrium χ̄ while always respecting the input and state constraints. For
formal definitions of these terminal ingredients and practical methods to
numerically approximate them, the reader is addressed to [139, 144].

Lastly, we denote by v⋆k:k+N−1|k the optimal control sequence obtained
by solving the FHOCP (6.29). In light of the RH principle, the input v⋆k|k =
κMPC(χ̂k, ξk) is applied to the augmented system, and hence uk = ξk+v

⋆
k|k.

At the following time instant the entire procedure is then repeated.

Remark 6.4. Under standard assumptions on the Lipschitz continuity of
κMPC, see [117, 145], Theorem 3 of [117] implies that the proposed con-
trol architecture guarantees offset-free output regulation as well as nominal
closed-loop stability in a neighborhood of the equilibrium Σ̄a.

Remark 6.5. A special case of FHOCP (6.29) occurs the terminal set co-
incides with the equilibrium point χ̄, i.e. Ωχ̄ = {χ̄}. In this case, the
terminal cost Vf (χk+N |k, χ̄) is also not necessary, since the χk+N |k = χ̄.
This simplification, however, comes at the price of a significant increase of
the computational burden, since a longer prediction horizon is generally
needed to maintain the feasibility of the resulting FHOCP.

6.3 Numerical example

To evaluate the performance of the proposed control schemes, let us again
consider the pH neutralization process presented in Chapter 4.3. As a model
of this plant, we consider the shallow GRU with nc = 7 units illustrated in
Section 4.3.2. Moreover, the untightned input set Ũ = U is here considered
for the sake of simplicity.

Below, we first discuss the design of the NMPC scheme presented in
Section 6.1. We then focus on the offset-free NMPC scheme proposed in
Section 6.2, and finally the performances of the two schemes are compared.

6.3.1 NMPC synthesis

The synthesis of the NMPC scheme proposed in Section 6.1 boils down to
two tasks, i.e. (i) tuning the state observer (6.5) so as to guarantee its nom-
inal convergence, and (ii) choosing the design parameters of the FHOCP
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Q = I7,7 R = 1 S = 2Q N = 50 Nc = 20

Table 6.1: Design parameters of the NMPC law

(6.12), such as the prediction horizon, the control horizon, and the weight
matrices of the cost function.

As for the state observer design, the Luenberger-like observer (6.4) is
adopted, and its gains are selected as illustrated in Proposition 6.1. In par-
ticular, the observer design problem amounts to solving the convex opti-
mization problem (6.9), carried out with the CVX toolbox [146, 147], re-
sulting in an observer with λo = 0.93.

The FHOCP (6.12) has been setup in accordance to Theorem 6.2. In
particular, the state weight matrix has been selected as Q = Inx,nx , the
input weight matrix as R = 1, and the terminal weight as S = 2Q. Such
selection satisfies (6.13a).

Considering a control horizonNc = 20, in order to design the prediction
horizon via (6.13b), the terms µδ and λδ such that (6.1) holds need to be
computed. A conservative estimate of these quantities can be computed
with (6.2) and (6.3), yielding λδ = 0.997. This choice leads, however, to an
excessively long prediction horizon (N ≥ 460) due to the conservativeness
of this λδ.

Therefore, we opted for a numerical estimation of an upper bound λδ ∈
(0, 1) for which, given µδ = 1 from (6.2), condition (6.1) is satisfied for
a sufficiently large number of pairs of state trajectories. Such trajectories
have been generated by pairs of initial states randomly extracted from X
and pairs of input sequences randomly extracted from U0:T , with T suffi-
ciently high. Note that this numerical approximation is made possible by
the fact that the existence of such λδ is guaranteed by the model’s exponen-
tial δISS, see Remark 6.1. Considering 105 trajectories of length T = 300,
the bound λδ ≈ 0.9 has been computed. In view of (6.13b), this value im-
plies N − Nc ≥ 15. The prediction horizon N = 50 has been therefore
selected.

Overall, the NMPC design parameters here adopted are summarized in
Table 6.1.

6.3.2 Offset-free NMPC synthesis

We now describe the synthesis of the offset-free NMPC scheme proposed
in Section 6.2, which consists in three steps, i.e. (i) augmenting the plant
model with a suitably designed integral action, (ii) finding the gains ΦL
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6.3. Numerical example

Q = diag(I7,7, 5) R = 1 µξ = 0.061 N = 50

Table 6.2: Design parameters of the offset-free NMPC law

of augmented system’s weak detector (6.20), and (iii) choosing the design
parameters of the FHOCP (6.29).

In order to tune the integral action gain µξ, the model Σ(Φ⋆) has been
linearized around the nominal operating condition, i.e. ȳ = 7. To this
end, we used CasADi [148] to compute the corresponding equilibrium
Σ̄ = (x̄, ū, ȳ), such that ȳ = 7, x̄ ∈ X , and ū ∈ Ũ . Using CasADi
automatic differentiation engine, we computed the linearized system δΣ
around such equilibrium, leading to the matrices (Aδ(Σ̄), Bδ(Σ̄), Cδ(Σ̄)),
see (2.15). These matrices have been verified to satisfy Assumption 5.2.
The Schur stability of Aδ(Σ̄), ensured by Theorem 2.1, was also verified.

On these premises, Corollary 6.1 could be invoked to design µξ, where
κ̌µ = 0.86 has been computed numerically. Selecting κµ = 0.043 ∈
(0, 0.86) one has µξ = 0.061. Note that, albeit larger values of κµ could
have been chosen, the adoption of small values allows for greater “robust-
ness” to variations of the target equilibrium Σ̄. That is, if ȳ (and, con-
sequently, Σ̄) changes, the designed µξ still ensures the local asymptotic
stability of the augmented system’s new equilibrium. To this end, we have
verified that such property is ensured by µξ = 0.061 for a broad range of
output setpoints.

Then, the Luenberger-like state observer described in (6.22) has been
tuned to ensure that it is a weak detector of the augmented system. In
particular, the nonlinear non-convex optimization problem (6.28) has been
solved numerically using MATLAB’s fmincon, where the trivial solution
(see Corollary 6.2) has been used to warm-start the solver, so as to ensure
the convergence of the problem to a feasible solution.

Finally, the design parameters of the FHOCP (6.29) have been selected.
For the sake of simplicity, as illustrated in Remark 6.5, a zero-terminal
constraint has been adopted. Consistently with the NMPC synthesized in
Section 6.3.1, a prediction horizon N = 50 has been chosen3. The state
weight matrix has been chosen as Q = diag(I7,7, 5) and the input weight
matrix as R = 1. The design parameters of the synthesized offset-free
NMPC scheme are summarized in Table 6.2.

3In general, when dealing with piecewise-constant references it is hard to guarantee the feasibility of FHOCPs
with zero-terminal constraints. While for the considered reference signal N = 50 turned out to be sufficient to
ensure the feasibility of the FHOCP, one may get infeasibilities for different references. In practice, such case can
be addressed either increasing the prediction horizon or relaxing the zero-terminal constraint (6.29h) by means
of an heavily-penalized slack variable.
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Figure 6.3: Piecewise-constant output reference trajectory adopted to test the closed-loop
performances.
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Figure 6.4: Evolution of the disturbance q2 (buffer flow rate, black solid line) compared
to its nominal value (black dotted line).

6.3.3 Closed-loop results

Both control architectures have been implemented and tested in MATLAB
and Simulink, while the FHOCPs have been solved using CasADi with the
IPOPT solver.

The performances of the control scheme have been tested on the piece-
wise-constant output reference signal depicted in Figure 6.3. To test the
robustness of these schemes against disturbances acting on the plant, the
buffer flow rate q2 (see (4.13)) is changed as depicted in Figure 6.4. Specif-
ically, at time t = 4.38h the buffer flow rate is increased to 0.7 (+27% with
respect to the nominal value), while at time t = 4.8h the buffer flow rate is
decreased to 0.4 (−27% with respect to the nominal value).

The closed-loop output trajectories achieved by both schemes are com-
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Figure 6.5: Closed-loop output trajectory achieved by the NMPC scheme (blue dashed-
dotted line) and by the offset-free NMPC scheme (red solid line) compared to the
piecewise-constant output reference signal (black dotted line).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [h]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

p
H

 t
ra

c
k
in

g
 e

rr
o
r

Figure 6.6: Output tracking error achieved by the NMPC scheme (blue dashed-dotted
line) and by the offset-free NMPC scheme (red solid line). The black dotted line indi-
cates the zero error.

pared to the output reference signal in Figure 6.5. It is easy to notice that,
owing to the high accuracy of the GRU model of the plant, the NMPC
scheme proposed in Section 6.1 allows to achieve a limited output tracking
error. Albeit this error is generally lower than 0.02, for several output ref-
erence values, such as ȳ = 8 and ȳ = 9, the tracking error becomes not
negligible due to the plant-model mismatch, see Figure 6.6. Changes in
the buffer flow rate (t > 4.38h) erode, however, the output tracking perfor-
mances of this first scheme.

On the other hand, the offset-free NMPC scheme allows to achieve
asymptotic zero error output regulation for all the output reference values,
even in presence of disturbances affecting the plant, see again Figure 6.6.
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Figure 6.7: Control variable requested by the NMPC scheme (blue dashed-dotted line)
compared to that requested by the offset-free NMPC scheme (red solid line). The black
dashed lines indicate the saturation constraint (4.14).

This static performance comes, however, at the price of slightly worse dy-
namic performances. In particular, albeit limited, overshoots are present,
although these could be mitigated, e.g., by increasing the prediction hori-
zon or adopting a terminal set and terminal cost configuration in place of the
simpler zero-terminal constraint. This latter, however, requires to recom-
pute the terminal set and terminal cost when the output reference changes.

Lastly, the control action requested by the two schemes is reported in
Figure 6.7. Note that both the control scheme satisfy the input saturation
constraint (4.14). Among the two, the offset-free NMPC is less moderated,
due to the terminal constraint on the state that needs to be fulfilled. Once
more, increasing the prediction horizon or adopting a terminal set and ter-
minal cost configuration may lead to a more moderate control action.

6.4 Summary

In this chapter, two control scheme based on Nonlinear Model Predictive
Control (NMPC) have been proposed for systems identified via shallow
GRU models.

The first control scheme relies upon a suitably designed state observer
with nominal convergence guarantees, which can be easily tuned by solv-
ing a convex optimization problem. The underlying Finite Horizon Optimal
Control Problem (FHOCP) adopted is reminiscent of quasi-infinite horizon
NMPC approaches, and it consists of quadratic stage and terminal costs.
Conditions on the weight matrices and on the prediction horizon that guar-
antee the nominal closed-loop stability of this scheme have been provided.
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6.4. Summary

The second control scheme relies upon the augmentation of the sys-
tem model with a properly tuned integral control action which, owing to
the internal model principle, allows to guarantee offset-free tracking ca-
pabilities. After having provided guidelines for the design of the integral
action, a weak detector, i.e. a nominally converging state observer, has
been proposed for the augmented system. At last, a nominally stabilizing
NMPC law have been formulated. This second scheme guarantees asymp-
totic zero-error output tracking and nominal closed-loop stability.

Finally, the two schemes have been tested on the pH neutralization pro-
cess benchmark system introduced in the previous chapter, demonstrating
remarkable closed-loop performances.
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models

In the previous chapter, two model predictive control schemes have been
proposed for GRU models. As discussed, being GRUs black-box models,
state observer are required in order to employ these models for the synthesis
of closed-loop predictive control laws.

Designing appropriate state observers, however, is not trivial, especially
when theoretical convergence guarantees are sought. To this end, in Chap-
ter 6, it has been shown that the exponential δISS of shallow GRU models
allows to design nominally convergent state observers, and similar results
have been obtained for shallow LSTM models in [22]. When the control
architecture is deployed on the real system, the reliability of the state ob-
server is critical to achieve satisfactory closed-loop performance. In fact, if
the CEP is dropped, an inadequate state observer could, in principle, even
destabilize the closed loop.

The aim of this chapter is to provide an alternative control scheme, tai-
lored for NNARX models of the plant. As discussed in Chapter 3.1, the
main advantage motivating the use of NNARX models is that their state
vector is a collection of past input and output data: the state is therefore
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known at every time instant. This makes the state observer unnecessary,
greatly facilitating the synthesis of the control architecture.

The control scheme here proposed, formulated in [61], relies upon the
augmentation of the system model with two elements: (i) an integrator of
the output tracking error, which allows to attain offset-free tracking capa-
bilities, and (ii) a derivative action, which allows to ensure that – at steady
state – the regulation of the system relies entirely upon the integral action,
while the goal of such derivative action, generated by the NMPC, is to im-
prove the closed-loop dynamic performances and to ensure the constraint
satisfaction during transients. In this context, the δISS of the model allows,
under mild assumptions, to tune the integral control action so as to preserve
the local asymptotic stability of the enlarged system. The closed-loop sta-
bility can thus be guaranteed in nominal conditions.

In the following, the proposed control architecture is formulated to ad-
dress Problem 5.1, and its performances are compared to a traditional dis-
turbance estimation-based NMPC law [118] on a benchmark system. Re-
sults show that the proposed approach is able to attain offset-free control
even in spite of severe disturbances affecting the plant.

7.1 Control architecture

The proposed control architecture assumes that the system model (5.1) is a
square (nu = ny) NNARX model in the form

Σ(Φ⋆) :

{
xk+1 = f(xk, uk; Φ

⋆)

yk = Cxk
, (7.1)

where the state update function f and the fixed matrix C have been de-
scribed in Chapter 3.1, see (3.5). The state of the system, i.e. xk ∈ Rnx ,
is known, since it is a collection of the input and output data of the past H
time-steps. As discussed in Chapter 5, it is here assumed that the model
(7.1) is exponentially δISS, e.g., by Theorem 3.2.

We recall that, given the output setpoint ȳ, according to Assumption 5.1,
there exists a corresponding feasible equilibrium triplet Σ̄ = (x̄, ū, ȳ).
Moreover, owing to Assumption 5.2, the linearization of Σ(Φ⋆) around
Σ̄, which is fully described by the triplet δΣ(Σ̄) = (Aδ(Σ̄), Bδ(Σ̄), C),
is reachable, observable, and has no invariant zero in z = 1. According to
Remark 5.1, this guarantees the solvability of the output tracking problem,
which puts us in a position to introduce the control architecture depicted in
Figure 7.1.
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Figure 7.1: Integral-Derivative NMPC architecture.

As evident from the diagram, the control variable is given by the sum of
two actions:

i. The integral action ξk, given by the integral of the output tracking er-
ror ek = ȳ − yk. The Internal Model Principle [141] guarantees that
the presence of an integral action ensures, as long as the closed-loop
stability is preserved, robust zero-error output regulation for constant
reference signals and under parametric uncertainties in the system.

ii. The derivative action γk, given by the discrete-time derivative of the
MPC output variable vk. This allows to guarantee that, at steady state,
the control variable associated to the MPC law is null, so that the sys-
tem regulation relies entirely upon the integral action. This control ac-
tion is therefore relegated to the improvement of closed-loop dynamic
performance and, as detailed in the following, allows a simple defini-
tion of suitable terminal constraint of the FHOCP problem.

The control input uk is therefore defined as

uk = ξk + γk. (7.2a)

The first term is the integral of the output tracking error, i.e.

ξk+1 = ξk + µξ(ȳ − yk), (7.2b)

where µξ is the integrator’s gain, whose design is later discussed. The latter
term, γk, is the discrete-time derivative of the variable vk, i.e.{

θk+1 = vk

γk = vk − θk
. (7.2c)

109



Chapter 7. Integral-Derivative MPC design for NNARX models

By combining (7.1) and (7.2), one obtains the augmented system Σid(Φ
⋆),

defined as

Σid(Φ
⋆) :



xk+1 = f(xk, uk; Φ
⋆)

ξk+1 = ξk + µξ(ȳ − Cxk)
θk+1 = vk

γk = vk − θk
uk = ξk + γk

yk = Cxk

(7.3)

Defining the enlarged state χk as

χk = [x′k, ξ
′
k, θ

′
k]

′, (7.4a)

the augmented system (7.3) can be compactly re-written as

Σid(Φ
⋆) :

{
χk+1 = φid(χk, vk, ȳ)

yk = ψid(χk)
. (7.4b)

The input definition (7.2a) is hereafter compactly denoted as

uk = πid(χk, vk). (7.4c)

We henceforth denote by Σ̄id = (χ̄, v̄, ȳ) the equilibrium of (7.4) corre-
sponding to Σ̄, which can be easily computed as

χ̄ = [x̄′, ū′, v̄′]′, (7.5)

where v̄ is an arbitrary constant value.

Remark 7.1. It can be easily shown that Corollary 6.1 still applies. That is,
the model’s exponential δISS entails that it is possible to design the integra-
tor gain µξ so as to preserve the local asymptotic stability of the augmented
system (7.4) around the equilibrium Σ̄id. Therefore, it is assumed that µξ is
designed accordingly.

At last, an MPC law is synthesized for the augmented system Σid. Let-
ting N denote the prediction horizon and N = {0, ..., N − 1}, we can
formulate the predictive control law by adopting a standard FHOCP with
zero-terminal constraint, stated as follows.
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min
vk:k+N−1|k

N−1∑
τ=0

(∥∥χk+τ |k − χ̄∥∥2Q +
∥∥uk+τ |k − ū∥∥2R) (7.6a)

s.t. χk|k = χk (7.6b)
χk+τ+1|k = φid(χk+τ |k, vk+τ |k, ȳ) ∀τ ∈ N (7.6c)
uk+τ |k = πid(χk+τ |k, vk) ∀τ ∈ N (7.6d)

uk+τ |k ∈ Ũ ∀τ ∈ N (7.6e)
χk+N |k = χ̄ (7.6f)

In the above-reported FHOCP, the state of the predictive model is initialized
in the state χk via constraint (7.6b). It is worth noticing that χk is known,
since its component are known, see (7.4a). The dynamics of the augmented
model (7.4) are implemented by means of constraints (7.6c) and (7.6d),
where this latter allows to explicitly compute the input applied to the plant.
The input constraint satisfaction is enforced via constraint (7.6e), while in
(7.6f) the terminal equality constraint is imposed.

The cost function adopted, reported in (7.6a), penalizes the deviation of
the augmented state and of the overall control variable from their equilib-
rium. These terms are weighted by the positive definite matrices Q and
R, respectively. More specifically, the state weight matrix is defined as
Q = diag(Qx, Qξ, Qθ), where the blocks Qx, Qξ, and Qθ, are the positive
definite weights associated to the respective components of χ. Note that
the weight Qθ can be chosen so that Qθ ≪ Qx, Qξ, since its sole purpose
is to avoid unnecessarily large deviations of the derivator state θk from its
equilibrium value v̄. The input weight R, instead, penalizes the difference
between the overall control action applied to the system and its equilibrium
value ū.

The solution of the nonlinear FHOCP (7.6) yields the optimal augmented
system’s input sequence v⋆k:k+N−1|k, and the corresponding optimal control
sequence u⋆k:k+N−1|k. In observance of the Receding Horizon principle, the
first optimal control move is applied, i.e. uk = u⋆k|k, and at the succes-
sive time instant the entire procedure is repeated. This yields the implicit
state-feedback MPC law uk = κMPC(χk).

Remark 7.2. The proposed MPC law, characterized by the FHOCP (7.6),
is a standard MPC with zero-terminal constraint. Therefore, its recursive
feasibility and closed-loop stability can be guaranteed in nominal condi-
tions [116].
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metal

Figure 7.2: Scheme of the water heating benchmark system.

Remark 7.3. As the proposed MPC law steers χk to χ̄, θk settles to its
target equilibrium v̄, which in turn implies that γk → 0. Therefore, while
γk allows to improve the dynamic closed-loop performances and to fulfill
the input constraint (7.6e), at steady state the system is regulated by the
integral action ξk only.

7.2 Numerical example

7.2.1 Benchmark system description

The proposed control architecture has been tested on the water-heating
benchmark system depicted in Figure 7.2. The objective of this system
is to control the temperature of the water in a reservoir, so that users can
be supplied with the desired water at the correct temperature. The water
demand from the user is denoted by w, and represent an exogenous dis-
turbance. For simplicity, it is assumed that the water flow rate at the inlet
matches the demand, so that the level dynamics are neglected.

We indicate by Ti the temperature of the water at the inlet, and by T
the temperature of the water served to the users. The water temperature is
assumed to be uniform throughout the tank.

The water is heated through a metal plate placed under the tank, which
is heated by means of a gas burner. More specifically, the metal plate is at
a temperature Tm, and it heats the water inside the tank by conduction. The
metal plate is, in turn, heated by the flames of a gas burner, whose gas flow
rate is denoted by wc.

Then, assuming the absence of heat losses, and that the flame heat is
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Parameter Description Value Units

At Tank’s cross-section π
4 m2

ρw Water’s density 997.8 kg
m3

cw Water’s specific heat 4180.0 J
kg·K

Mm Metal plate’s mass 617.32 kg
cm Metal’s specific heat 481.0 J

kg·K
σr Radiation coefficient 5.67× 10−8 W

m2·K4

klm Heat exchange coefficient 3326.4 kg
s3·K

Tf Flame’s temperature 1200 K

kf Heat exchange coefficient 8.0 m2·s
kg

zw Water level 2.0 m

w̄ Nominal water demand 1.0 kg
s

T̄i Nominal inlet water temperature 298 K

Table 7.1: Parameters of the water-heating benchmark system

exchanged only via radiation, the following model of the system can be
formulated:

Ṫ =
1

ρwAtzw

[
w(Ti − T ) +

klmAt
cw

(Tm − T )
]

Ṫm =
1

Mmcm

[
− klmAt(Tm − T ) + σrkfwc(T

4
f − T 4

m)
] (7.7)

The parameters of the plant model are reported in Table 7.1. The model
is characterized by one controllable input u = [wc], one output y = [T ],
and two states xp = [T, Tm]

′. Two disturbances, whose nominal values are
reported in Table 7.1, also affect the plant, i.e. dp = [w, Ti]

′. The gas flow
rate wc is subject to saturation,

wc ∈ [0.05, 0.18]. (7.8)

Finally, a simulator of the described benchmark system has been imple-
mented in Simulink, so as to collect the training data and to test the pro-
posed control architecture.

7.2.2 System identification

To identify the benchmark system described above by means of the training
procedure described in Chapter 4, the required datasets have been collected
from the simulator of the plant (7.7). Therefore, the plant simulator has
been excited with a multilevel pseudo-random signal spanning the input
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space (7.8). The input-output sequences have been collected with the sam-
pling time τs = 120 s.

Overall, the length of the collected sequences is Ttr = 2500 for the train-
ing data, Tval = 1200 for the validation data, and Tte = 400 for the indepen-
dent test data. Then, according to the TBPTT approach, the training data
has been randomly split in Ntr = 120 subsequences of length Ts = 400,
while the validation data has been split in Nval = 30 subsequences having
the same length Ts. We recall that the input-output data needs to be normal-
ized, which has been done according to Remark 4.1. Nonetheless, in the
figures to follow denormalized input and output trajectories are represented
for the sake of interpretability.

The RNN architecture here considered is a NNARX, see Section 3.1,
with a single-layer (L = 1) FFNN as nonlinear regression function, charac-
terized by 30 neurons. The input-output regression horizon is H = 5. The
training procedure has been carried out using Algorithm 1 implemented in
PyTorch 1.10, adopting a batch size equal to 5 and the piecewise-linear
regularization term (4.9) to enforce the model’s δISS, via Theorem 3.2.
Overall, the training procedure took 1288 epochs.

The trained NNARX model, which is exponentially δISS (ν(Φ⋆) =
−0.06 < 0), has been tested on the independent test set, whose input se-
quence is depicted in Figure 7.3. In Figure 7.4, the corresponding NNARX’s
open-loop prediction is compared to the ground truth, witnessing fair mod-
eling performances. The FIT index scored, computed as in (4.6), is 92.8%.

7.2.3 Control design

The proposed control architecture has been implemented, with the goal of
tracking piecewise-constant water temperature references, and to asymp-
totically reject possible (unmeasured) disturbances associated to variations
of the water demand w or of the water temperature at the inlet Ti. In par-
ticular, the reference signal for the water temperature is depicted in Fig-
ure 7.5, while the disturbances the realizations illustrated in Figure 7.6 have
been considered. Notice that these trajectories allow to assess the nominal
offset-free tracking capabilities, as in the first half of the closed-loop experi-
ment the disturbances match their nominal values, and to test the robustness
against the disturbances injected in the second half of the experiment.

We point out that, being the output reference piecewise constant, at ev-
ery change of the setpoint ȳ the nominal equilibrium triplet Σ̄ = (x̄, ū, ȳ)
needs to be computed via (5.2), and the corresponding nominal equilib-
rium triplet of the augmented system Σ̄id = (χ̄, v̄, ȳ) needs to be defined
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Figure 7.3: Input sequence of the water heating system’s test dataset.
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Figure 7.4: Modeling performances of the trained NNARX model, tested on the indepen-
dent test dataset. The NNARX open-loop simulation (red continuous line) is compared
to the ground truth (blue line).

via (7.5). Moreover, if the new setpoint is not in the neighborhood of the
previous equilibrium, Assumption 5.2 should be verified, and the integrator
gain µξ might need to be recomputed if the local stability around the new
equilibrium is not preserved, see Remark 7.1.

The prediction horizon of the FHOCP (7.6) has been chosen as N = 50,
while the weights of the cost function has been defined as R = 0.1 and
Q = diag(Qx, R,Qθ), with Qθ = 10−5. The submatrix Qx penalizes the
displacement of the predicted model’s state from the equilibrium. Owing to
the particular structure of the NNARX state vector, and recalling that H =
5, we select Qx = diag(Qz, Qz, Qz, Qz, Qz), where Qz = diag(10, 0.1).

The integrator gain µξ has been selected in accordance to Remark 7.1.
Specifically, the NNARX model has been linearized around the nominal
operating condition, corresponding to T̄ = 323◦K. For such equilibrium,
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Figure 7.5: Piecewise-constant output reference signal considered for assessment of the
closed-loop performances.
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Figure 7.6: Realizations of the disturbances affecting the system, i.e. w (black solid line)
and Ti (yellow solid line), compared to their nominal values (dotted lines).

the value κ̌µ = 0.27 has been numerically computed, which ensures the
local asymptotic stability of augmented model’s linearization. In accor-
dance to Corollary 6.1, the choice of κµ = 0.145 ∈ (0, 0.27) has led to
the integrator gain µξ = 0.14. Such integrator gain has been verified to
preserve the local stability also around the other equilibria of interest, i.e.,
those corresponding to T̄ = 318◦K and to T̄ = 330◦K.

Baseline control architecture

The popular offset-free MPC strategy proposed in [118] has also been im-
plemented as a baseline against which to compare the performance achieved
by the control architecture here proposed. This control strategy, henceforth
named Disturbance Estimation Based NMPC (DEB-NMPC), requires to
augment the NNARX model with a fictitious matched disturbance acting on
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Figure 7.7: Comparison between the closed-loop output trajectory achieved by the pro-
posed control architecture (red solid line) and by the DEB-NMPC (green dashed-
dotted line). The output reference has also been reported (blue dotted line).
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Figure 7.8: Output tracking error achieved by the proposed control architecture (red solid
line) versus that of the DEB-NMPC (green dashed-dotted line).

the input variable. Such disturbance, customarily assumed to be constant,
is then estimated by means of a moving horizon estimator [149]. Finally,
a standard state-feedback NMPC law is designed to stabilize the enlarged
system, consisting of the NNARX system model and the (constant) distur-
bance model, featuring a prediction horizon N = 50 and weights in line
with those adopted for the proposed control architecture.

7.2.4 Closed-loop results

The closed-loop output tracking performances achieved by the proposed
approach are compared to those of DEB-NMPC in Figure 7.7, while in
Figure 7.8 the output tracking error is depicted. It is apparent that, while
initially the DEB-NMPC scheme is able to compensate the plant-model
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Figure 7.9: Control action requested by the proposed control architecture (red solid line)
compared to that of the DEB-NMPC (green dashed-dotted line). The black dashed
lines correspond to the input saturation values.
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Figure 7.10: Component γk of the closed-loop control variable.

mismatch thanks to a reliable estimate of the fictitious matched disturbance,
after the instant t = 20h – when disturbances occur, see again Figure 7.6
– the output tracking performances of such control scheme are lost. These
unsatisfactory static performances are likely due to the inability of the mov-
ing horizon estimator to produce a suitable estimate of the disturbance. In
contrast, the proposed control architecture is able to attain zero tracking
error, even in the presence of the severe disturbances that affect the system.

In Figure 7.9, the control action requested by the two scheme is com-
pared. In both schemes the input constraint (7.8) is fulfilled, although it
can be observed that the control action issued by DEB-MPC is less moder-
ate, mainly due to the transients of the disturbance estimator. It should be
noted that in the DEB-NMPC approach, the choice of the fictitious distur-
bance model and its correct estimation are paramount to obtain satisfactory
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closed-loop performances. Recent works proposing alternative disturbance
estimation-based strategies, see [130], will thus be object of future investi-
gations.

Finally, in Figure 7.10 the evolution of the component γk of the control
variable has been reported. From the figure it is apparent that, as expected,
this component is used exclusively during transients to improve the closed-
loop dynamic performance, while at steady-state the control variable relies
entirely on the integral component ξk to fulfill the static performance re-
quirement of asymptotic zero-error output regulation.

7.3 Summary

In this chapter, an NMPC architecture guaranteeing offset-free tracking of
constant reference signals was formulated for NNARX models. This archi-
tecture relies on the idea of enlarging the system model with the integrator
of the output tracking error, which entails asymptotic zero-error output reg-
ulation, and with a derivative action, which allows to improve the closed-
loop dynamic performances while not affecting the static ones. The pro-
posed control scheme attains nominal closed-loop stability and asymptotic
offset-free tracking of constant references. The control law was tested on
a water heating benchmark system, demonstrating satisfactory closed-loop
performance and a good degree of robustness to the disturbances affecting
the plant.
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CHAPTER8
Internal Model Control design

In this chapter, a control architecture based on the internal model control
approach is described, with the main objective of providing a computa-
tionally less onerous alternative to the predictive control laws presented in
previous chapters. As described in Chapter 5, at this stage it is assumed
that an accurate RNN model of the system is available. The IMC approach
boils down to constructing a controller ideally coincident with the model’s
inverse or, at least, a suitably accurate approximation of it. Fed with the out-
put reference signal, the controller should thus generate a control sequence
that drives the model’s output as close as possible to the reference.

In view of their capabilities in approximating dynamical systems, we
here propose to learn the controller by means of a gated RNN, such as
LSTMs or GRUs, see Section 3. This idea is inspired by [15, 137] where,
in the context of SISO systems, static FFNNs in autoregressive configura-
tions have been used to learn the system model and an approximation of its
inverse. With respect to the existing methods, the proposed approach yields
the following advantages:

i. Gated RNNs represent better candidates for learning dynamical sys-
tems (such as the model and its inverse), owing to their long-term mem-
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Plant
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IMC

Figure 8.1: General scheme of IMC.

ory. In contrast, with feed-forward auto-regressive architectures such
memory is enforced by supplying the past input-output data-points as
inputs of the network [137], typically resulting in less accurate long-
term learning compared to gated RNNs [57].

ii. The controller is learned by an inherently strictly-proper gated RNN,
as opposed to feed-forward architectures, for which one needs to deal
with the issue of the controller’s improperness in the controller design
phase [137], e.g. in presence of time delays.

iii. Owing to the model’s and controller’s proposed learning procedures,
the proposed scheme can easily handle MIMO systems, and allows to
account for input saturation.

The clear advantages of using gated RNNs come, however, at the cost of
losing the guarantees of existence of the exact model’s inverse. Nonethe-
less, we show that such inverse can be accurately approximated, and that the
closed-loop stability and satisfactory performances can still be achieved.

The stability properties of the control scheme are also discussed. In
particular, we show how the δISS of the model and the controller allows to
provide stability and performance properties more solid than those available
in the literature for generic nonlinear systems [15, 133].

8.1 Internal model control architecture

To best explain the IMC architecture, let us discuss the control scheme
depicted in Figure 8.1, which represents the core of the IMC approach.
Additional ingredients will be later introduced in the scheme.

At its core, the IMC scheme features three blocks: the unknown plant P
that needs to be controlled, the modelM of such plant, and the controller C,
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8.1. Internal model control architecture

which generates the control action to be applied to the two previous blocks.
The model and the controller are referred to as IMC ingredients.

The plant’sM can be, in general, derived from the first-principle equa-
tions or identified from the data. Consistently with the control problem
discussed in Chapter 5, we here assume that it is described by an exponen-
tially δISS RNN. With a slight abuse of notation, in order to improve the
interpretability of the description to follow, let us recast model (5.1) as

M = Σm(Φ
⋆
m) :

{
xm,k+1 = fm(xm,k, uk; Φ

⋆
m)

ym,k = gm(xm,k; Φ
⋆
m)

, (8.1)

where xm,k ∈ Rnm,x denotes the model’s state, ym,k its output, and Φ⋆
m its

trained weights.
The plant P is an unknown state-space dynamical system, characterized

by the input vector uk and the output vector yk. Such plant is assumed to be
approximated (ideally, very accurately) by the model from an input-output
perspective. More formally, this means that given the input sequence u0:k
applied to the plant and the corresponding measured output y0:k, there exists
an initial state of the model xm,0 such that Σm(Φ

⋆
m) replicates the measured

output sequence exactly, i.e., ym,0:k(xm,0, u0:k; Φ⋆
m) = y0:k. In such case,

the plant-model mismatch feedback, defined as

em,k = yk − ym,k, (8.2)

is constantly null, meaning that the feedback loop is cut and the controller
operates in open-loop.

According to the IMC paradigm, the controller block C is a dynamical
system approximating the inverse of the model (8.1). Here we propose to
implement such controller via a gated RNN, i.e.

C = Σc(Φc) :

{
xc,k+1 = fc(xc,k, ỹ

r
k; Φc)

uk = ϕ(gc(xc,k; Φc))
, (8.3)

where xc,k ∈ Rnc,x denotes the controller state, the reference ỹrk ∈ Rnc,u

its input vector, and the control action uk its output vector. The functions
fc and gc of the controller depend on the chosen RNN architecture. For
example, if Σc(Φc) is described by a deep GRU, fc is described by (3.36a)
and gc by (3.36e). Note that the output transformation of (8.3) includes a
tanh activation function, which allows to ensure that uk ∈ U , see [62]1.

1Note that the controller architecture (8.3) does not straightforwardly allow to consider tightened input con-
straints uk ∈ Ũ ⊂ U . By suitably designing the output transformation of (8.3) one may constrain the generated
control action in an orthotopical tightened input set, but such set needs to be known at the training stage and
time-invariant.
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Figure 8.2: General scheme of IMC with the model reference block.

The training procedure to tune the controller’s weights Φc is described later
this chapter. From Figure 8.1, the term ỹrk is defined as

ỹrk = yrk − em,k. (8.4)

In the controller design phase, in view of the certainty equivalence prin-
ciple, one assumes the modeling error feedback (8.2) null, i.e. ỹrk = yrk.
Ideally, the controller is designed so that, for any output reference signal
yrk, and for any initial state of the model, there exists a controller initializa-
tion xc,0 such that the generated control sequence steers the model’s output
to the reference. Precisely, this condition implies that for any yr0:k and xm,0
there exists xc,0 such that, letting u0:k(xc,0, yr0:k; Φc) be the control sequence
generated by the controller (initialized in xc,0 and fed with the output refer-
ence ỹrk = yr0:k), it holds that

ym,0:k
(
xm,0, u0:k(xc,0, y

r
0:k; Φc); Φ

⋆
m

)
= yr0:k.

In practice, however, the controller is synthesized as a suitable approxima-
tion of the model’s inverse, since the exact inverse may be not proper, not
analytically defined, or even not stable [134].

In the remainder, we consider the modified control scheme shown in
Figure 8.2, where a model reference blockMr has been added [62, 137].
The model reference encodes the desired closed-loop response to the actual
reference signal2 ȳk. Indeed, in the case of perfect control (i.e., yk = yrk),
the relationship between the reference signal ȳk and the system output yk is
exactlyMr.

Remark 8.1. The above-described IMC synthesis procedure takes place
offline. Albeit training a RNN is a computationally-intensive task, it can be
performed on a sufficiently powerful computational platform and then de-
ployed to an embedded controller with limited computational resources. In-
deed, during online system operations the IMC control schemes boils down

2The output reference is here denoted as ȳk for consistency to the notation adopted in Chapter 5.

124



8.1. Internal model control architecture

Controller 
RNN 

Model  
reference 

Training 
algorithm 

Model 
RNN 

Figure 8.3: Scheme of the controller’s learning procedure.

to the propagation of the model M and of the controller C based on the
measured output and the filtered reference signal which, for RNN architec-
tures, corresponds to a sequence of tensor operations that can be efficiently
carried out even in a real-time environment.

We are now in the position to describe the training procedure adopted to
learn the controller (8.3).

8.1.1 Controller learning

Under the certainty equivalence principle, i.e., ỹrk = yrk, the controller
is trained to match the right-inverse of the model, informally denoted by
M−1. While ideally one would retrieve an analytical expression of the in-
verse of the gated RNN model, due to the complexity and nonlinearity of
Σm(Φ

⋆
m), finding such inverse is not possible in general, as its existence is

not even guaranteed.
Instead, along the lines of [15, 137], the controller Σc(Φc) is trained to

approximate the inverse of the model by means of the learning scheme de-
picted in Figure 8.3. The rationale of this scheme is to tune the controller
weights Φc so that Σc(Φc) generates a control action that steers the output
ym,k of the model Σm(Φ

⋆
m) as close as possible to output reference gener-

ated by the model reference block, i.e. yrk. Note that, in this context, the
model’s weights Φ⋆

m are fixed, since it has been already identified.
To describe the controller learning procedure, we first discuss what data

is necessary and how it should be generated, after which the training algo-
rithm is described.

Controller training data

The dataset used for the controller’s learning procedure consists of a set of
reference signals that the controller learns to track, and it is generated syn-
thetically based on the reference signals of interest. The closer these refer-

125



Chapter 8. Internal Model Control design

Piecewise-constant
reference        

Output reference
signal    

Set of feasible
setpoints

Figure 8.4: Sketch of the reference signals’ generation: first, a piecewise-constant output
reference characterized by feasible setpoints is generated; then, such signal is filtered
by the model referenceMr.

ences are to those imposed in closed-loop system operations, the more ac-
curate the learned controller action will be. In this thesis, since the closed-
loop is expected to be operated with constant reference signals, the dataset
is generated as a collection of piece-wise constant references ȳk, which are
then filtered with the selected model reference Mr to obtain the output
reference yrk.

These setpoints, however, can not be generated in a completely random
fashion. First, being the reference signal the input of Σc(Φc), it is assumed
to fulfill Assumption 3.13. Secondly, these references need to be feasi-
ble for the model. This means that, at least asymptotically, the difference
between the filtered reference yrk and the model output ym,k can be made
sufficiently small by means a suitable control sequence. Letting ¯̄y denote a
a setpoint of the piecewise-constant reference ȳk, and by ȳr the correspond-
ing steady-state value4 of yrk, the feasibility condition boils down to requir-
ing that Assumption 5.1 is satisfied for ȳr. That is, the model Σm(Φ

⋆
m)

admits (x̄m, ū, ȳr) as an equilibrium for some ū ∈ U and x̄m ∈ Xm. This
issue is further discussed in the numerical example given in Section 8.2. In
Figure 8.4 the extraction of a random feasible output reference is sketched.

Therefore, the generation of the controller training set amounts to syn-
thetically generating a sufficiently large number of reference signals. We
denote each one of these references as

y
r,{i}
0:Tc,s

(8.5a)

where i ∈ Ic,tr = {1, ..., Nc,tr} represents the index of the sequence, Nc,tr

the number of training sequence, and Tc,s the fixed length of each sequence.

3This assumption is not restrictive. Indeed, the model Σm(Φ⋆
m) itself is trained with output sequences whose

subunitarity is guaranteed by normalization, see Remark 4.1. My means of the same normalization, the output
reference can be guaranteed to have ∥yrk∥∞ ≤ 1.

4In general, the model reference Mr is designed to have a unitary static gain [137], i.e., ¯̄y = ȳr .
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The validation sequences are defined as in (8.5a), but they are indexed by
i ∈ Ic,val = {Nc,tr + 1, ..., Nc,tr + Nc,val}. Similarly, the output reference
trajectory used for testing is denoted as

yrte,0:Tc,te , (8.5b)

where Tc,te denotes the length of the sequence.

Controller’s training algorithm

The controller training procedure is performed along the lines of Algo-
rithm 1. At each training epoch, the training set Ic,tr is partitioned in B
batches, denoted as I{1}c,tr , ..., I{B}

c,tr , sharing the same cardinality, which is
the batch size. The following loss function is then minimized for each
batch b ∈ {1, ..., B}

Lc(Φc) = MSE(I{b}c,tr; Φc) + ρ(ν(Φc)). (8.6)

The first term of (8.6) measures the controller’s performances on the
batch I{b}c,tr. Such performance index measures is defined as

MSE(Ic; Φc) =
1

|Ic|
∑
i∈Ic

MSE
(
y
{i}
m,0:Tc,s

(Φc), y
r,{i}
0:Tc,s

)
, (8.7a)

where, with a slight abuse of notation, we indicate by y{i}m,0:Tc,s(Φc) the out-
put of the model Σm(Φ

⋆
m) when it is controlled by Σc(Φc) to track the ref-

erence yr,{i}0:Tc,s
, i.e,

y
{i}
m,0:Tc,s

(Φc) = ym,0:Tc,s
(
xm,0, u0:k(xc,0, y

r,{i}
0:Tc,s

; Φc); Φ
⋆
m

)
. (8.7b)

Note that, as discussed in Section 4, the initial states of the networks, i.e.
xm,0 and xc,0, are randomly drawn from their invariant sets, denoted as
Xm and Xc, respectively. The MSE introduced in (8.7a) is hence defined
analogously to (4.7), with a suitable washout period to accomodate for the
initialization transient, and it measures the mean square output tracking
error of the model under the control sequence generated by Σc(Φc).

The second term is instead a δISS regularization term, designed accord-
ing to the prescriptions given in Section 4.2.2, which enforces the exponen-
tial δISS of the controller (8.3).

The gradient of Lc(Φc) with respect to Φc is then computed and back-
propagated via gradient descent methods (e.g., Adam or RMSProp). The
training procedure yields the controller’s weights Φ⋆

c . In Algorithm 2 the
resulting training algorithm is reported.

127



Chapter 8. Internal Model Control design

Algorithm 2 Controller training algorithm

Require: Training references Ic,tr and validation references Ic,val
Initialize the weights Φc

for epoch e = 1, ..., E do
Randomly partition Ic,tr into batches I{1}c,tr , ..., I

{B}
c,tr

for batch b = 1, ..., B do
Compute the loss Lc(I{b}c,tr,Φc) using random initial states ▷ Forward pass

Compute the batch gradient∇Φc
Lc(I{b}c,tr,Φc) ▷ Gradient computation

Update Φc using gradient descent algorithms ▷ Backward pass
end for
Compute the validation metrics MSE(Ic,val; Φc)
if ν(Φc) < 0 and the validation metrics stops improving then

Stop the training procedure
end if

end for
Assess the performances on the test reference yr0:Tc,te

8.1.2 Stability properties

In order to describe the stability properties attained by the proposed control
architecture, let us introduce some notion required to the purpose.

First, we point out that a δISS system with a Lipschitz-continuous output
transformation is also Incremental Input-to-Output Stable (δIOS), i.e., it
admits functions βy ∈ KL and γy ∈ K∞ such that

∥ya,k − yb,k∥p ≤ βy(∥xa,0 − xb,0∥p, k) + γy(∥ua,0:k − ub,0:k∥p,∞). (8.8)

In turn, under minor assumptions5, this property implies the Input-Output
Practical Stability (IOPS). This property, which is a generalization of the
Lp-gain stability [150], implies the existence of some finite ϱy > 0 and
γy ∈ K∞ such that

∥yk∥p ≤ γy(∥u0:k∥p,∞) + ϱy. (8.9)

It thus entails that bounded inputs lead to bounded output trajectories.

Ideal closed-loop properties

We are now in the position to state the closed-loop properties commonly
claimed in the IMC literature, see [15, 133].

Property 8.1 (Ideal stability). If the model is exact and both the model and
the controller are IOPS, the closed-loop is IOPS.

5Specifically, it is necessary to assume that the equilibrium manifold of the system is not empty.
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According to this property, in absence of plant-model mismatch and out-
put noise, the modeling error feedback is bounded, and the controller oper-
ates in open-loop. Therefore, the IOPS of the both the controller and of the
plant implies the IOPS of their cascade.

Property 8.2 (Ideal perfect control). Assume that the model is exact and
IOPS, and that the controller matches the model’s inverse, i.e. C =M−1.
Then, if the controller is IOPS, the closed-loop matches the model reference
Mr.

Under the assumption of exactness of the model, and upon its suitable
initialization, the control system operates in open-loop with a constantly
null modeling error feedback. Since C = M−1 = P−1, there exists an
initial state of the controller such that, at any time instant, yk = yrk. The
relationship between ȳk and yk is therefore the model referenceMr itself.

Property 8.3 (Ideal zero offset). Assume that the model is exact and IOPS,
and that the steady state control action generated by the controller matches
the steady-state value of the model’s inverse. Then, if the controller is IOPS,
offset-free tracking is asymptotically attained.

The exactness of the model implies that, upon a suitable model initial-
ization, the control system operates in open-loop with null feedback em,k.
If, at least at steady state, the IOPS controller C matches the model’s in-
verse, there exists a suitable initialization of the controller such that

yk(xp,0, u0:k(xc,0, y
r
0:k; Φ

⋆
c)) −−−→

k→∞
yrk.

That is, asymptotic offset-free control is achieved.
These properties are called “ideal” because they require not only exact-

ness of the model and the controller, but also correct initialization of these
IMC ingredients. In practice, however, these assumptions are difficult to
guarantee. Therefore, in the following we show how the model’s and con-
troller’s δISS helps alleviating the restrictiveness of such premises.

Practical closed-loop properties

Along the lines the properties reported above, let us assume that the model
is exact, i.e., that the plant can be described by the equations of model (8.1)

P :

{
xp,k+1 = fm(xp,k, uk; Φ

⋆
m)

yk = gm(xp,k; Φ
⋆
m)

. (8.10)
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We point out that, since Σm(Φ
⋆
m) is exponentially δISS and δIOS, the

plant (8.10) enjoys the same properties. Therefore, since

em,k = yk(xp,0, u0:k; Φ
⋆
m)− ym,k(xm,0, u0:k; Φ⋆

m), (8.11)

this allows to state that, for any u0:k ∈ U0:k, any xp,0 ∈ Xm, and any
xm,0 ∈ Xm,

∥em,k∥p ≤ βy(∥xp,0 − xm,0∥p, k). (8.12)

Under the model’s exactness assumption, the modeling error feedback ex-
ponentially thus converges to zero even when the initial conditions of the
models are wrongly set.

Property 8.4 (Practical closed-loop stability). If the model is initialized in
a sufficiently small neighborhood of the plant’s state, the closed-loop IMC
scheme (Figure 8.2) is IOPS with respect to the reference trajectory yr.

This property is motivated by the fact that, in view of (8.12), if xm,0 is
sufficiently close to xp,0, the modeling error preserves the unity-boundedness
of ỹrk, i.e., the controller is operated in the input set with respect to which
it is guaranteed to be δISS and IOPS. Since em,k exponentially converges
to zero, the control scheme is asymptotically open-loop. In such configu-
ration, the cascade between two IOPS systems, i.e., the controller and the
plant, ensures the IOPS of the scheme with respect to the reference signal6.

Property 8.5 (Practical perfect control). Assume that

i. the model is initialized in a sufficiently small neighborhood of the plant’s
state;

ii. there exists a possibly unknown initial state of the controller, denoted
by x∗c,0, such that the generated control action matches the model’s
inverse, i.e., for any k ∈ Z≥0 it holds

yk(x0,p, u0:k(x
∗
c,0, y

r; Φ⋆
c); Φ

⋆
m) = yrk. (8.13)

Then closed-loop asymptotically matches the model referenceMr.

As discussed above, regardless of the applied control action, if the model
is exact and δISS, the modeling error feedback asymptotically converges
to zero, and the control scheme is asymptotically open-loop, and ỹrk →
yrk. Moreover, if the model is initialized sufficiently close to the plant’s

6In addition, as discussed in Chapter 3, for the proposed RNN architectures the devised δISS sufficient con-
ditions also imply their ISPS. Therefore, not only the closed-loop is IOPS, but also ISPS.
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state, the unity boundedness of ỹrk is preserved, which guarantees that the
controller is δISS and δIOS.

Therefore, if there exists such a x∗c,0, the generated control sequence is
asymptotically independent of xc,0 and converges to uk(x∗c,0, y

r
0:k; Φ

⋆
c), i.e.

uk(xc,0, ỹ
r; Φ⋆

c);→ uk(x
∗
c,0, y

r; Φ⋆
c).

Then, in view of the plant’s δIOS,

yk(x0,p, u0:k(xc,0, ỹ
r; Φ⋆

c); Φ
⋆
m)→ yk(x0,p, u0:k(x

∗
c,0, y

r; Φ⋆
c); Φ

⋆
m).

That is, the control scheme asymptotically achieves perfect control.

Property 8.6 (Practical zero offset). Assume that

i. the model is initialized in a sufficiently small neighborhood of the plant’s
state;

ii. for any output setpoint ȳr, the unique steady-steady state control action
ū(ȳr) is such that the model admits (x̄m, ū(ȳr), ȳr) as equilibrium.

Then, asymptotic zero-error output tracking is achieved.

Under the exact model assumption, as discussed above, the control
scheme is asymptotically open-loop, and ỹrk → yrk. Moreover, for model
initial states sufficiently close to the plant’s states, the unity-boundedness
of ỹrk is preserved. Let us note that, owing to the controller δISS, for
any constant output setpoint ȳr the controller admits a unique equilibrium
(x̄c, ȳ

r, ū) with x̄c ∈ Xc. Then, since both the model and the plant are
δISS, for any constant input ū = ū(ȳr), they admits a unique equilib-
rium (x̄, ū, ȳ(ū)) with x̄ ∈ Xm. Then, if this equilibrium is such that
ȳ
(
ū(ȳr)

)
= ȳr, asymptotic zero-offset control is achieved.

8.2 Numerical example

8.2.1 Benchmark system description

The performances of the proposed control architecture have been tested on
the Quadruple Tank benchmark system described in [58,151]. This system,
depicted in Figure 8.5, consists of four tanks containing water. The levels
of these tanks are denoted by h1, h2, h3, and h4. The tanks are fed by two
pumps, which deliver the water flow rates qa and qb flows. Specifically, a
triple valve splits the water flow rate qa in q1 = γaqa and q4 = (1 − γa)qa,
supplied to Tank 1 and Tank 4, respectively, and another triple valve splits
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1 2

3 4

Figure 8.5: Quadruple tank benchmark system [58].

the water flow rate qb in q2 = γbqb and q3 = (1− γb)qb, supplied to Tank 2
and Tank 3, respectively.

The system is therefore described by the following equations

ḣ1 = −
a1
S

√
2gh1 +

a3
S

√
2gh3 +

γa
S
qa,

ḣ2 = −
a2
S

√
2gh2 +

a4
S

√
2gh4 +

γb
S
qb,

ḣ3 = −
a3
S

√
2gh3 +

1− γb
S

qb,

ḣ4 = −
a4
S

√
2gh4 +

1− γa
S

qa,

(8.14a)

where the parameters of the system have been reported in Table 8.1. The
water levels, as well as the control variables, are also subject to saturation
limits

hi ∈ [
ˆ
hi, ȟi] ∀i ∈ {1, ..., 4},

qa ∈ [
ˆ
qa, q̌a],

qb ∈ [
ˆ
qb, q̌b].

(8.14b)

In the following it is assumed that only h1 and h2 are measurable. That is,
the output vector of the system is y = [h1, h2]

′, while the control variables
are the pumps flow rates, i.e. u = [qa, qb]

′. The control goal is to steer
the system’s output yk to the reference ȳk mimicking the response of the
reference modelMr, later specified.

The synthesis of the IMC scheme is articulated in three steps: (i) learn-
ing an RNN model of the system, Σm(Φm); (ii) generating a dataset of
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Parameter Value Units Parameter Value Units

a1 1.31 · 10−4 m2 [
ˆ
h1, ȟ1] [0, 1.36] m

a2 1.51 · 10−4 m2 [
ˆ
h2, ȟ2] [0, 1.36] m

a3 9.27 · 10−5 m2 [
ˆ
h3, ȟ3] [0, 1.3] m

a4 8.82 · 10−5 m2 [
ˆ
h4, ȟ4] [0, 1.3] m

S 0.06 m2 [
ˆ
qa, q̌a] [0, 9 · 10−4] m3

s

γa 0.3 [
ˆ
qb, q̌a] [0, 1.3 · 10−3] m3

s

γb 0.4

Table 8.1: Parameters of the quadruple tank benchmark system

feasible reference trajectories; (iii) learning a controller RNN Σc(Φc) that
approximates the model’s inverse for the given output reference trajecto-
ries. In the following subsections, these three tasks are tackled.

8.2.2 Model identification

The Quadruple Tank system described by (8.14) has been implemented in
MATLAB and, in order to collect the data required for the training of the
model, it has been fed with MPRS so as to properly excite the system and
to collect data in a broad operating region. Considering a sampling time
of τs = 25s, a pair of input-output sequences of length Ttr = 15000 has
been collected for training, while pairs sequences of length Tval = 5000
and Tte = 700 have been collected for validation and testing, respectively.
According to the TBPTT paradigm, Ntr = 200 partially-overlapping sub-
sequences of length Ts = 700 have been randomly extracted from the train-
ing sequences, while Nval = 25 subsequences have been extracted from the
validation data. As highlighted in Remark 4.1, the data needs to be normal-
ized in such a way that the saturation constraints (8.14b) translate into the
unity-boundedness of inputs and outputs.

The RNN architecture here considered to identify the plant is a deep
GRU model with L = 2 layers, with n(1)

c = n
(2)
c = 10 units. The training

has been carried out by means of Algorithm 1, implemented in TensorFlow
1.15 [152] using RMSProp as optimizer. In particular, the washout period
and the batch size have been set to τw = 25 and |I{b}tr |= 15, respectively.
The δISS of the model has been also enforced including the piecewise-
linear δISS regularization constraint (4.9) in the loss function, where π̄ =
5 · 10−4,

¯
π = 10−5, and εν = 0.03.

In Figure 8.6 the evolution of the loss function and of the validation MSE
performance index throughout the training procedure is reported. Overall,

133



Chapter 8. Internal Model Control design

0 200 400 600 800

Epoch

10
-4

10
-3

10
-2

10
-1

10
0

T
ra

in
in

g
 l
o

s
s

0 200 400 600 800

Epoch

10
-4

10
-3

10
-2

10
-1

10
0

V
a

lid
a

ti
o

n
 M

S
E

Figure 8.6: Model training procedure: on the left, the evolution of the training loss func-
tion is depicted in logarithmic scale; on the right, the evolution of the validation MSE
metrics is depicted. In both plots, the actual curves (light-blue lines) and their moving
average (bold blue lines) are illustrated.

the training procedure took 823 epochs, and it led to a δISS model, since
the residuals of conditions (3.46) achieved, ν(Φ⋆

m) = [−0.065,−0.088], are
strictly negative. Of course, in view of Remark 3.6, the model is also ISPS.

The performances of the trained RNN model have been tested on the
independent test dataset. In Figure 8.7 the two inputs’ sequences are re-
ported, while in Figure 8.8 the two outputs of the free-run simulation of the
models are compared to the measured ones. The corresponding FIT index
scored by the RNN model Σm(Φ

⋆
m) is 96.5%, which indicates remarkable

modeling performances.

8.2.3 Generation of feasible reference trajectories

Having learned an accurate model of the system, as discussed in Section
8.1.1, it is now necessary to generate a dataset of suitable reference trajec-
tories for the training procedure of the controller RNN Σc(Φc). This dataset
consists of a collection of reference signals that the controller should learn
to track – no data needs to be collected from the real system at this stage.
Since the control system will be employed to track piecewise-constant ref-
erences signals, such dataset is generated by filtering MPRS signals, de-
noted as ȳ{i}0:Tc,s

, with the model reference Mr, yielding the filtered refer-
ence signals (8.5). The model reference here considered is the discrete-time
equivalent of two decoupled first-order systems with unitary static gain and
time constant τr = 2000s.
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Figure 8.7: Test dataset’s input sequences used to assess the performances of the trained
RNN model: the pump flow rate qa is shown on the left, the pump flow rate qb is
reported on the right.
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Figure 8.8: Output of the RNN model’s free-run simulation corresponding to the test
dataset’s input sequences (red solid line) compared to the actual measured outputs
(blue dotted line). The level h1 is depicted, while on the right the level h2 is shown.
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Figure 8.9: Generation of the dataset for the training procedure of the controller RNN.
The setpoints (black dots) are extracted from the set of model’s feasible output set-
points (orange area); the green area corresponds to the set of plant’s feasible outputs,
generally unknown.

We recall that, for a successful controller training procedure, the refer-
ence signals’ dataset must be generated appropriately. Indeed, the inclusion
of unfeasible setpoints ¯̄y, i.e. setpoints which (given the input and output
constraints (8.14b)) do not correspond to any feasible equilibrium of the
model, would inevitably bias the loss function’s gradient. This would lead,
in turn, to poor performances of the trained control scheme [62].

Notably, owing to the δISS of the model (8.1), to check the feasibility
of some setpoint ȳr boils down to assess the existence of a corresponding
feasible equilibrium, i.e., a tuple (x̄m, ū, ȳ

r) such that{
x̄m = fm(x̄m, ū; Φ

⋆
m)

ȳr = gm(x̄m; Φ
⋆
m)

(8.15)

where x̄m ∈ Xm, see (3.39), and ū ∈ U . Moreover, the model’s δISS
guarantees that, if such equilibrium exists, it can be reached starting from
any initial xm,0 ∈ Xm. This consideration allows to further relieve the
computational complexity of solving (8.15), since initial guesses of ū and
x̄m can be retrieved with open-loop simulations of (8.1) and then used to
warm-start the nonlinear problem underlying the equilibrium computation.

Overall, the generated controller’s training set consists of Nc,tr = 380
reference trajectories for training and Nc,val = 40 reference trajectories for
validation. All these trajectories, which have a length Tc,s = 600 time-
steps, are obtained by filtering the feasible piecewise-constants setpoints
ȳ
{i}
0:Tc,s

, where i ∈ {1, ..., Nc,tr + Nc,val}, with the aforementioned model
reference. In Figure 8.9 such randomly-generated training setpoints are
depicted and compared to the set of feasible model outputs, as well as to the
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8.2. Numerical example

set of feasible outputs of the real plant7. A longer reference trajectory is also
generated to be used as an independent test set for assessing the controller’s
nominal performances. Such a sequence, denoted by yrte,0:Tte , satisfies the
same conditions as the training and validation reference trajectories, and
has a length equal to Tte = 1800 time-steps.

8.2.4 Controller training

The controller (8.3) is designed as deep GRU with L = 3 layers with 5
units each. The training procedure of Σc(Φc) follows Algorithm 2, and
has been carried out with TensorFlow 1.15, using RMSProp as optimizer
and a batch size |I{b}c,tr|= 20. Moreover, the δISS of the controller has been
enforced by means of the piecewise-linear δISS regularization term (4.9),
see the loss function (8.6), penalizing the violation of condition (3.46). The
chosen regularizer parameters are π̄ = 3·10−4,

¯
π = 5·10−5, and εν = 0.03.

In Figure 8.10 the evolution of the training loss throughout the con-
troller’s training procedure, as well as the validation MSE performance in-
dex, are depicted. After 1543 epochs, the training was halted when the
performances stopped to improve, yielding the controller weights Φ⋆

c .
Eventually, the nominal performances of the trained controller Σc(Φ

⋆
c)

have been tested on the independent test reference trajectory yrte,0:Tte . To
this end, the output trajectory of the model Σm(Φ

⋆
m) under the open-loop

control law generated by Σc(Φ
⋆
c) has been computed as

ym,0:Tte
(
xm,0, u0:Tte(xc,0, y

r
te,0:Tte ; Φ

⋆
c); Φ

⋆
m

)
. (8.16)

In Figure 8.11 the controlled model’s outputs are compared to the reference
signals. Note that, in addition to limited steady-state tracking errors, cross-
coupling effects between the two outputs are present. Despite being quickly
compensated, these effects may deteriorate the FIT index8. Nonetheless,
FIT = 90.4% index scored, which indicates fair control performances.

8.2.5 Closed-loop results

The closed-loop performances of the proposed control architecture have
been tested on the simulated Quadruple Tank benchmark system. For the
sake of interpretability, no output noise has been considered. Analogous re-
sults featuring white Gaussian noise affecting the plant’s outputs are how-
ever reported in [62].

7This latter set is generally unknown, and is here reported just for comparison purposes.
8The controller’s FIT index is computed between (8.16) and its reference yrte,0:Tte

according to (4.6).
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Figure 8.10: Controller training procedure: on the left, the evolution of the loss function is
depicted in logarithmic scale; on the right, the evolution of the validation MSE metrics
is depicted. In both plots, the actual curves (light-blue lines) and their moving average
(bold blue lines) are illustrated.
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Figure 8.11: Performances of the trained controller on the independent test set reference
trajectory: IMC-controlled nominal output trajectory (red solid line) compared to the
filtered reference (blue dotted line). The level h1 is displayed on the left, the level h2

on the right.

Consistently with the internal model control literature [62, 133], the
modified architecture shown in Figure 8.12 has been considered, where the
modeling error feedback is filtered by a suitably designed low-pass filter.
As customarily done, we here adopt a low-pass filter F with the same time
constant as the model referenceMr, i.e. τr = 2000s. It is worth noticing
that the low-pass filter does not affect the closed-loop stability [133], since
the modeling error feedback em,k acts as an additive disturbance on the ref-
erence yrk, see (8.4), and it converges to the bounded plant-model mismatch
(or to zero, in the case of perfect model), as illustrated in Section 8.1.2.
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Plant

Model

Filter

ControllerModel  
reference 

IMC

Figure 8.12: IMC architecture with filtered modeling error feedback.
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Figure 8.13: Reference trajectories used for assessing the closed-loop performances:
piecewise-constant reference ȳk (light blue solid line) and filtered reference yrk (blue
dotted line). The reference for level h1 is reported on the left, that for level h2 on the
right.

The closed-loop performances of the proposed approach have been tested
and compared to those of two other alternative control architectures:

a. An IMC control architecture realized using FFNNs as system model and
controller, along the lines of [137], adapted to work with MIMO sys-
tems; zero control delay has been assumed and the adopted FFNNs have
been designed to embed the previous H = 6 input-output data points.

b. A standard nonlinear MPC architecture synthesized using the GRU model
Σm(Φ

⋆
m) as predictive model, along the lines of the strategy discussed in

Section 6.1. The adopted prediction horizon is N = 50, whereas the
weight matrices are Q = Inx,nx , R = I2,2, P = 25 · Inx,nx . A control
horizon of Nc = 15 has also been adopted to relieve the computational
complexity.

For this comparison, the reference trajectories depicted in Figure 8.13 have
been adopted. Notice that the reference ȳk is a piecewise-constant signal
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spanning the set of model’s feasible steady states depicted in Figure 8.9.
In Figure 8.14 the closed-loop output tracking performances of the three

implemented control architectures (i.e. the proposed IMC approach, the
NMPC, and the FFNN-based IMC) are depicted. The corresponding out-
put tracking error, yrk − yk, is shown in Figure 8.15. As expected, cross-
couplings are promptly rejected and the controlled outputs are kept close
to their reference values. Moreover, the controller’s architecture allows to
satisfy the input saturation constraint9, as illustrated in Figure 8.16.

Let us now introduce some performance indices to evaluate and compare
the closed-loop performances of the control algorithms here considered.

The first performance index considered is the tracking Root-Means-
Square Error (RMSE), i.e. the RMSE between the output reference and
the controlled output trajectory. Letting Tcl indicate the duration of the
closed-loop experiment, the RMSE is defined as

ϵe =
∥yr0:Tcl − y0:Tcl∥2,2√

Tcl
. (8.17a)

Of course, the smaller ϵe, the better the reference tracking capabilities of
the the control scheme.

Moreover, in order to evaluate the static performances of the three con-
trol architectures, the steady-state output tracking error has been computed.
To this end, each time the output setpoint is changed, it is qualitatively ver-
ified if, after a sufficiently long period of time, the closed-loop output is
settled. In such case, the steady-state ouput tracking error is computed as

ϵss = ∥ȳkss − ykss∥2, (8.17b)

where kss denotes a time index at which the closed-loop is at steady state.
This index, however, has not been computed for the FFNN-IMC since, as
apparent from Figure 8.14, it is generally unable to reach a steady-state
condition. Based on ϵss, two indexes of the closed-loop static performance
have been defined. Namely, the maximum steady-state output tracking er-
ror, i.e. ϵ̌ss = max(ϵss), and its mean value, i.e. ϵ̄ss = E[ϵss]. These
quantities are, of course, empirically computed over all the setpoints issued
in closed-loop operations.

The performance indexes achieved by the three control schemes, as well
as the computational cost, are reported in Table 8.2. Based on the results
obtained, the following conclusions can be drawn concerning the strengths
of the proposed control strategy.

9In the implemented NMPC law, input constraints have been explicitly stated in the optimization problem,
while in the FFNN-based IMC a tanh activation function has been used to constrain the generated control
variable to be unity-bounded.
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Figure 8.14: Closed-loop performances of the three control architectures: plant’s output
under NMPC (yellow solid line), FFNN-IMC (green solid line), and the proposed IMC
approach (red solid line). The controlled outputs are compared to their reference val-
ues (blue dotted line) and constraints (black dashed lines). Level h1 is displayed on
top, level h2 on the bottom.
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Figure 8.15: Closed-loop output tracking error achieved by the NMPC (yellow solid line),
FFNN-IMC (green solid line), and by the proposed IMC approach (red solid line). The
tracking error associated to output h1 is displayed on the left, that associated to output
h2 on the right.
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Figure 8.16: Comparison of the control action requested by NMPC (yellow solid line),
FFNN-IMC (green solid line), and by the proposed IMC approach (red solid line).
Input qa is displayed on the left, qb on the right.

NMPC FFNN-IMC Proposed IMC

Average computational time [s]† 3.82 8.4 · 10−3 1.7 · 10−3

Tracking RMSE ϵe [m] 0.133 0.131 0.128
Average steady-state error ϵ̄ss [m] 0.82 · 10−2 - 0.79 · 10−2

Maximum steady-state error ϵ̌ss [m] 3.46 · 10−2 - 2.35 · 10−2

Closed-loop input-output stability Nominal No Yes

Table 8.2: Performances of the proposed IMC approach

i. Performances – Owing to the superior modeling capabilities of gated
RNNs, the proposed IMC approach outperforms the FFNN-based IMC,
especially from the steady-state tracking error perspective. Surpris-
ingly, it also slightly outperforms NMPC. This is probably due to the
non-ideal performance of the state observer, which is required to syn-
thesize a state-feedback NMPC law with a black-box model such as
the considered GRU network.

ii. Computational time – The computational load of IMC lies entirely
upon the (offline) synthesis stage. Therefore, the proposed IMC ap-
proach requires limited online computational costs, which consist of
the propagation of the model Σm(Φ

⋆
m) and of the controller Σc(Φ

⋆
c).

The proposed approach beats the slightly higher cost of the FFNN-
based IMC, as this latter requires the storage of a sufficient amount of

†Average computational time at each control step. The control architectures have been implemented on a
desktop with a 4x4GHz processor and 16Gb of RAM.
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past data points. As expected, the computational burden of NMPC is
significantly higher, since it requires to solve an online nonlinear opti-
mization problem at each step, that is likely unbearable for low-power
embedded control systems.

iii. Closed-loop stability – In light of Property 8.4, since the model and
controller RNNs are trained with δISS guarantees, the input-output sta-
bility of the closed-loop is guaranteed. The adopted NMPC law allows
instead to guarantee the closed-loop stability in the nominal case by
relying on the arguments discussed in Section 6.1. On the contrary, no
criterion for synthesizing closed-loop stable FFNN-based IMC control
strategies has been provided in [137], especially for MIMO systems.

The advantages of the proposed approach, however, come at the cost of
a more involved training procedure. Indeed, as discussed in Section 4,
training provenly δISS RNNs generally entails a fairly involved and time-
consuming training procedure.

8.3 Summary

In this section, an internal model control strategy based on gated RNNs
has been proposed. The synthesis of such control architecture has been
recast to a rather standard RNN’s training procedure, in which a controller
network is trained to approximate the inverse of the plant’s RNN model for
a given class of output reference trajectories. The δISS stability conditions
discussed in previous chapters have also been exploited to ensure some
degree of closed-loop input-output stability of the scheme.

The proposed approach has been tested on the Quadruple Tank nonlinear
benchmark system, and the achieved closed-loop performances have been
compared to alternative control architectures. The results witness remark-
able static and dynamic performances, and a reduced computational bur-
den, which make the proposed control strategy suitable to contexts where
limited online computational resources are available.
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Towards practical applications of
deep learning for control
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CHAPTER9
Further work and hints for future research

objectives

As discussed in the previous chapters, owing to their modeling capabilities,
RNNs have the potential to play an increasingly important role in the design
and control of dynamical systems. To this end, there is a number of open
issues that, albeit preliminarly addressed, need further research efforts [20].

In the following, these issues are briefly summarized, and hints to the
proposed solutions, as well as to their current limitations, are provided.

9.1 Safety verification

In the context of neural network-based regression, one of the most well-
known problems is that of output range analysis or safety verification [153,
154]. In brief, this problem involves determining a set that encloses all the
possible outputs that correspond to a given set of inputs, and then assessing
whether such output set lies within some known safe set.

In the realm of (recurrent) neural networks approximating dynamical
systems, this problem corresponds to the computation of the output reach-
able set, and is known to be considerably involved, since one would need to
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consider the infinite-horizon evolution of the system’s output for any pos-
sible initial state and input signal from prescribed sets. Once such output
reachable set is available, one certifies the safety/reliability of the model
by checking whether the latter set lies in some space of interest, e.g., that
space of physically meaningful outputs or the space where training, valida-
tion, and testing data were collected.

Unfortunately, due to its infinite dimensionality, the estimation of the
output reachable set is difficult to perform for generic nonlinear dynami-
cal systems. In the context of NNs, most results nowadays available have
been developed for FFNNs, see [155–158]. While in principle these ap-
proaches can be also applied to RNNs by “unrolling” them and then ap-
plying FFNNs’ verification algorithms [159], how to choose the timespan
throughout which the RNN is simulated and unrolled is still unclear.

In the following, two possible solutions to the problem of calculating the
output reachable set of RNNs are outlined. For more details, the interested
reader is addressed to [20, 65].

9.1.1 Analytical bound on the output reachable set

As discussed in Chapter 2.3, the ISPS, ISS, and δISS properties allow to
establish analytical bounds of the output reachable set. For the sake of gen-
erality, let us consider an ISPS1 RNN model in the state space form (3.1).
Under the assumption of Lipschitz-continuity of its output transformation,
the system is also IOPS, see Section 8.1.2. Hence, there exist functions
βy ∈ KL and γy ∈ K∞, and a scalar ϱy > 0 such that

∥yk(x0, u0:k)∥p ≤ βy(∥x0∥p, k) + γy(∥u0:k∥p,∞) + ϱy (9.1)

for any x0 ∈ X and any u0:k ∈ U .
In the context of the safety verification, given a set of candidate input

variables Ũ ⊆ U and a set of candidate initial states X̃0, the aim is to find
a set Ỹ(X̃0, Ũ) within which any possible output trajectory must lie, see
Definition 2.12. Such a set can be analytically computed by means of (9.1).
Indeed, in light of the definitions of βy and γy, it hold that

Ỹ(X̃0, Ũ) =
{
y ∈ Rny : ∥y∥p ≤ βy

(
sup
x0∈X̃0

∥x0∥p, 0
)
+γy

(
sup
u∈Ũ
∥u∥p

)
+ϱy

}
(9.2)

1We recall that, as discussed in Section 2, under minor assumptions both ISS and δISS imply the ISPS
property.
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Figure 9.1: Examples of analytical output reachable set (yellow area) and asymptotic
output reachable set (red area) computed using the ℓ2-IOPS functions, for a system
with ny = 2 output components.

surely encloses any output trajectory generated by the system. Noticing
that βy(·, k) → 0 for k → ∞, one can also neglect the first term of (9.2)
and compute an asymptotic output reachable set Ȳ(Ũ) as

Ȳ(Ũ) =
{
y ∈ Rny : ∥y∥p ≤ γy

(
sup
u∈Ũ
∥u∥p

)
+ ϱy

}
. (9.3)

A graphical interpretation of these sets is provided in Figure 9.1.
Albeit (9.2) and (9.3) represent theoretically-sound bounds on the output

reachable set, these analytical expressions are often overly conservative, to
the point of not being usable for safety verification purposes. Less conser-
vative numerical methods, such as the one discussed below, would therefore
be recommended.

9.1.2 Numerical bound on the output reachable set via randomized
procedures

While the analytical bounds implied by the ISPS, ISS, and δISS may be too
conservative to be employed for safety verification, as pointed out in [20],
these properties represent solid theoretical foundations for the numerical
estimation of the output reachable set, since they imply the continuity at
the equilibrium point, the existence of a uniform asymptotic gain, and ulti-
mately the boundedness itself of the reachability set [160].
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Figure 9.2: Application of the numeric output reachable set computation for S = 2 tra-
jectories and an ellipsoidal convex set ˜̃Y .

Under these premises, tighter bounds can be numerically computed via
randomized algorithms (such as the Scenario Approach, see [161]). These
approaches, which have been illustrated in [20,65,162] consist of two steps.

Given the sets X̃0 and Ũ of initial states and inputs candidates, respec-
tively, a suitably large number of output trajectories is first generated. To
this end, letting s ∈ {1, ..., S}, S pairs (x[s]0 , u

[s]
0:T ) of initial states and input

sequences are randomly extracted from X̃0×Ũ0:T according to some possi-
bly unknown probability distribution, with the simulation horizon T being
sufficiently long.

Then, a suitably designed [162] convex set ˜̃Y ⊂ Rny (containing the ori-
gin) is scaled to ensure that it encloses all the generated output trajectories
y0:T (x

[s]
0 , u

[s]
0:T ). This is done by solving the following optimization problem

κ⋆y(X̃0, Ũ) = argmin
κ

κ

s.t. yk(x
[s]
0 , u

[s]
0:k) ∈ κ

˜̃Y ∀k ∈ {0, ..., T},
∀s ∈ {1, ..., S}.

(9.4a)

The numerically estimated output reachable set then reads as

Ỹ(X̃0, Ũ) = κ⋆y(X̃0, Ũ) ˜̃Y , (9.4b)

see Figure 9.2 for an illustrative graphical representation.
It is worth noting that, owing to the ISPS of the system, it is known that

the output reachable set is asymptotically independent from the initial state.
Therefore, it is possible to obtain an even tighter estimate by enforcing the
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scaled convex set to enclose the output trajectories after a sufficient number
of steps (washout period τw), after which the effects of initial condition are
vanished. This yields the asymptotic output reachable set estimate Ȳ(Ũ).

An advantage of this approach is that, by considering the pairs (x[s]0 , u
[s]
0:T )

as independent identically distributed samples drawn from an unknown
probability distribution, it is also possible to associate, with some confi-
dence, a violation probability to the output reachable set (9.4), see [20,162].
The approaches proposed in [41, 161, 163] indeed provide conditions on
the number of samples S needed to achieve, under the unknown distri-
bution generating the samples, the desired violation probability with the
prescribed confidence level.

9.1.3 Open challenges

Although in [65] we verified that the numerically computed output reach-
able set yields results that are not overly conservative and, hence, are defi-
nitely adequate for the RNN model’s safety verification, the main challenge
of this approach lies in the definition of an appropriate convex set ˜̃Y to be
scaled. An inadequate definition of such set may indeed lead to potentially
conservative results [162].

9.2 Lifelong learning

A common problem in the context of system identification is to ensure that
the identified model remains representative of the learned physical system
throghout its lifespan. In fact, for a multitude of reasons, a model that is ini-
tially extremely accurate may become inaccurate, e.g., in the event that the
plant experiences faults or severe disturbances. Indeed, albeit the control
strategies synthesized in Part II guarantee closed-loop stability and robust-
ness properties in the nominal case, in case the plant undergoes changes,
model adaptation is typically required to preserve the attained closed-loop
stability guarantees and control performances.

This problem has been known for decades. For example, for linear
models such as ARXs, the popular self-tuning approach has been pro-
posed [164], which consists of the online tuning of the model by recursively
solving a least square problem based on the measured output data.

In the machine learning realm, the problem of when and how to up-
date a NN based on the most recently-collected data, known as the lifelong
learning problem, has become increasingly important in recent years, see
the recent reviews [165–168] and references theirein. In the specific case
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of RNNs employed for nonlinear system identification, two main events
may call for such an adaptation framework. Namely, (i) the gradual loss
of modeling performances, that could be due to plant’s time-varying pa-
rameters (e.g., due to wear) or to slight variations of the plant’s operating
conditions; (ii) the dramatic loss of performances, caused by the fact that
the plant moves to new and unexplored operating conditions (e.g., due to a
fault) that the available model is unable to represent.

In the latter case, generally speaking, it may be necessary to adapt the
structure of the model (e.g., adding neurons if necessary), collect data re-
lated to the new operating conditions, and repeat the training procedure
from scratch [168].

On the other hand, in the former case, a reasonable solution is to use the
data collected online to adapt the RNN model over time. How to conduct
this online tuning procedure without storing an increasing amount of data,
and avoiding the problem of catastrophic forgetting (which occurs when,
while learning new data, previous knowledge stored in the model is for-
gotten), is still widely debated and represents a challenging and relevant
research topic.

9.2.1 Moving Horizon Estimation approach

As a preliminary attempt to address case (i), i.e., the adaptation of an ex-
isting RNN model to plant variations associated to slowly time-varying pa-
rameters, in [66] we proposed an approach based on the Moving Horizon
Estimation (MHE) strategy [116,149]. In brief, this approach involves col-
lecting measurements over a time window N after which, in case of an
abnormal reduction of the model’s performances, an optimization problem
is solved to adjust the weights of the network. With a slight abuse of nota-
tion, such optimization problem may be stated as

Φ⋆
k = argmin

Φ
MSE(yk−N :k|k(xk−N , uk−N :k; Φ), yk−N :k) + µ∥Φ− Φ⋆

k−N∥2,

s.t. ν(Φ) < 0,
(9.5)

where the loss function seeks a trade off between the minimization of the
RNN model’s free-run simulation error over the freshly collected data and
the minimization of the regularization term, which penalizes the displace-
ment from the previously tuned weights Φ⋆

k−N . This regularization term can
be interpreted as a prior information that allows to limit the catastrophic for-
getting problem. The constraint allows to preserve the satisfaction of the
sufficient stability conditions, if any.
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By relying on the results reported in [149], in [66] we have shown that
under ideal conditions (i.e., existence of a unique exact parametrization Φo,
no measurement noise, and known state xk−N ), there exists a condition on
the regularization weight µ which guarantees the convergence to the exact
solution Φo.

The approach has been tested on a chemical benchmark system undergo-
ing a parameter drift. In this scenario, we have shown that the modeling per-
formances of the initially trained RNN model would have significantly de-
teriorated in time, whereas the weights’ fine-tuning via the proposed MHE
strategy allowed to preserve the network’s modeling performances.

9.2.2 Open challenges

Albeit the proposed strategy led to good results on the considered bench-
mark system, further research efforts are needed to address the limitations
of this algorithm. First and foremost, as discussed in Chapter 6, the RNNs’
states are often unmeasurable and must be estimated by means of properly
designed state observers. Note that they could alternatively be introduced as
optimization variables in (9.5), but the impact of such strategy needs to be
assessed. Secondly, the proposed approach does not scale well with respect
to network size. In this regard, one might adopt gradient-based strategies,
as proposed in [169]. Finally, one might consider designing an adaptation
strategy in conjunction with a control law that encourages exploration, ac-
cording to the dual control paradigm, so as to improve the informativeness
of the data collected online.

9.3 Physics-based modeling

In recent years, the scientific community has devoted considerable research
interest to the possibility of exploiting the available knowledge of the phys-
ical system to be identified to overcome the limitations of purely black-box
RNN-based identification procedures, such as those discussed in this thesis.

The new branch of machine learning that merges physical knowledge
into RNN modeling takes various names, such as Theory-Guided Data Sci-
ence [26] and Physics-Based Modeling [170, 171]. The idea underlying
these approaches is that by leveraging quantitative or qualitative knowl-
edge of the system under consideration, highly desirable results can be ob-
tained, such as improved model interpretability (e.g., by associating physi-
cal meaning to the states of the identified RNN model), improved general-
izability to new operating conditions for which data are not available in the
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training set, improved modeling performances, and finally a faster training
procedure, see [19, 172].

In [20] an attempt has been made to sketch a classification of the main
strategies for nonlinear system identification via physics-based RNNs, as
outlined in the following. For more details, the interested reader is ad-
dressed to [20].

9.3.1 Overview of the main approaches for physics-based RNNs

Physical knowledge of a system can be exploited in two ways, namely,
during the design of the RNN architecture or during the training of the
network itself.

Physics-based structure design

The first strategy is to encode the physical knowledge in the RNN model
via a suitable design of the network architecture [26,170]. Examples of this
paradigm are reported below.

i. Models with known and measurable states
When the states of the system to be identified are known and measurable,

a simple – yet effective – strategy may rely on FFNN to learn the increments
of the discretized state variables. That is, assume the plant to be described
by the unknown continuous-time system

ẋc(t) = fc(xc(t), u(t)),

where the state variables are fully measured, and t is the continuous time
index. By discretizing such system with the sampling time τ via a generic
explicit method, such as Explicit Runge-Kutta, one obtains the discrete-
time approximation

xk+1 = xk + τf(xk, uk).

Based on this idea, a FFNN can be used to learn the function f(xk, uk) that
describes the discrete-time state increment. This paradigm is that adopted
by the popular ResNet [173] and ODE-NN [174] architectures.
ii. Models with known states and structure parametrized by NN

Another case is that of physical systems that enjoy a model with mea-
surable states and known structure, which however depends on parameters
that are unknown or varying based on the plant’s operating conditions, i.e.

xk+1 = f(xk, uk; Θ(xk, uk)).

In such case, a common and effective choice is to train a neural network,
generally a FFNN one, that approximates the map Θ(xk, uk), see e.g. [29].

154



9.3. Physics-based modeling

iii. Models with known relationships among variables
When used to learn physical systems, the outputs of a model should gen-

erally fulfill physical conditions. Indeed, constraints may affect outputs in-
dividually, such as positivity, monotonicity, and range bounds, or may even
involve relationships between them, such as a zero-sum constraints coming
from mass or energy conservation. An idea for exploiting this rather qual-
itative physical knowledge is to design the RNN model architecture so as
to ensure that these constraints are met. This can ensure the consistency
of the model to the physical system and, by limiting its unnecessary repre-
sentational power, often results in training procedures that converge faster
and more robustly with respect to the weights’ initialization. Some exam-
ples of this paradigm, which we deem very relevant and didactic, are given
in [170, 175, 176].

iv. Models reflecting the plant’s block structure
Many complex processes can be decomposed in sparsely-interconnected

subsystems, that is, subsystems whose dynamics are directly influenced
only by few neighboring ones. If such subsystems can be easily recog-
nized, and the coupling variables that describe their mutual influences are
measured, one can design the architecture of the RNN so as to mimic the
plant’s sparsely-interconnected structure. In this way, non-physical mu-
tual interactions between subsystems are avoided, which allows to obtain
a more reliable model, less subject to overfitting, as well as significantly
faster training procedures, see [30, 177].

Physics-guided loss function formulation

Instead of enforcing the consistency to physical relationships via structure
selection, one may also embed the physical knowledge of the plant by suit-
ably designing the training loss function, with the aim of encouraging the
attainment of the desired behavior by the trained RNN model. Such ap-
proach is particularly useful when the physical relationships to be enforced
can not be easily encoded via architecture design, and is, in a sense, remi-
niscent of constraint relaxation.

From this point of view, the idea of enforcing RNNs’ ISPS, ISS, and
δISS properties by penalizing the violation of their sufficient condition in
the loss function, discussed in Chapter 4, can be regarded as an application
of physics-guided cost function design, which aims to ensure consistency
of the model to the known plant’s stability-like properties [58].
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Figure 9.3: Chemical process used as benchmark for the physics-based RNN design.

Figure 9.4: Architecture of the adopted physics-based RNN model.

9.3.2 Application to a chemical process

To exemplify the application of physics-based RNN principles and assess
its enhanced performance over purely black-box models, in [20] we con-
sidered the chemical system depicted in Figure 9.3. This process is charac-
terized by two continuously stirred reactors, cascaded with a separator. A
fraction of the solution is also fed back to the first reactor.

Even without entering into the details of the process’ model, it can
be easily noticed that the system is composed by three subsystems, each
characterized by its own states and dynamics, which are sparsely intercon-
nected. For example, the second reactor receives a solution from the first
one and feeds, in turn, the separator. Such a case falls naturally into what
has been called “plant’s block structure”. In light of this rather qualitative
insight, one can think to design a RNN model that enjoys the very same
block structure. In particular, we considered the model depicted in Fig-
ure 9.4, which clearly mimics the process structure. This design allows to
rule out unphysical connection between subsystem, meaning that, for ex-
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ample, the output of the separator can not directly affect the states of the
preceding reactor.

A further physical argument that has been exploited for the RNN archi-
tecture design is that the products’ concentrations (denoted as xAi and xBi
in Figure 9.3) lie in the range (0, 1). A sigmoidal function has been there-
fore applied to the corresponding model’s outputs, to guarantee that they
lie in such range.

Finally, the concentration of product C, i.e. xCi, is generally included
neither in the data, nor in the model, since it can be derived from the re-
lationship xAi + xBi + xCi = 1. In order to ensure the physical consis-
tency of the model, one needs to ensure that xAi + xBi ≤ 1 for each vessel
i ∈ {1, 2, 3}. This has been obtained resorting to the physics-guided loss
function design, by including a suitable regularization term in the loss func-
tion.

Overall, this simple, qualitative physical information about the plant to
be identified has led not only to greater physical consistency of the model,
but also to a significant improvement of its accuracy (in particular, the av-
erage inaccuracy is more than halved) and to a remarkable reduction of the
required training epochs [20].

9.3.3 Open challenges

That of physics-based NN is a very relevant research topic since, as dis-
cussed, it allows for safer, more physically consistent, and more accurate
models. On the other hand, however, the design of this model is extremely
application-dependent. A more systematic approach for design and training
would be desirable. Furthermore, it is currently unclear how physics-based
RNN models enjoying stability properties, such as those obtained in this
thesis for black-box RNN models, can be trained.

9.4 Robust control

Albeit the RNN architectures proposed in this thesis can score a remark-
able accuracy, the assumption of no plant-model mismatch, on which the
CEP relies, is often very strong and not acceptable. This holds, in general,
for any black-box model, e.g., because of the lack of direct correspondence
between the states of the models and those of the plant. Although, among
model-based control strategies, MPC is often able to compensate for this
mismatch and to preserve closed-loop stability, nominal guarantees are in-
evitably lost.
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To address this crucial problem, several robust MPC control strategies
have been proposed in the literature for linear systems to ensure closed-
loop stability even in presence of bounded disturbances on the state [178,
179]. In this context, owing to its bearable computational burden, tube-
based MPC [120] is one of the most popular approaches. In the following, a
preliminary application of this control strategy to NNARX models, detailed
in [64], is reported.

9.4.1 Tube-based NMPC for NNARX models

In view of their peculiar structure, a robust tube-based NMPC law can be
easily designed for NNARX models to cope with the plant-model mismatch
in the control synthesis. Indeed, consider the NNARX model (3.5), and
assume that the plant, with state xp,k, can be described by the system{

xp,k+1 = Axp,k +Buuk +Bηη(xp,k, uk) +Bηδ(xp,k, uk)

yp,k = Cxp,k
(9.6)

where the bounded uncertainty δ(xp,k, uk) affects the components of xp,k+1

associated to yp,k+1, see (3.5d). Under this assumption, the state error, ek =
xp,k − xk, evolves according to

ek+1 = Aek +Bη

(
η(xp,k, uk)− η(xk, uk) + δ(xp,k, uk)︸ ︷︷ ︸

wk

)
. (9.7)

Under the definition of wk reported above, the error displays linear dynam-
ics, forced by the bounded term wk ∈ W . In the spirit of data-driven con-
trol, in [64] it is proposed to estimate the boundW from the data, i.e., from
the free-run simulation error. It is then shown that, by means of this bound,
a tube-based NMPC law, similar to the one widely adopted in the linear
case [116], that ensures robust asymptotic zero-error output regulation and
closed-loop stability can be designed.

9.4.2 Open challenges

The application of tube-based NMPC strategies to other RNN architectures,
such as LSTMs and GRUs, remains an open problem and should be inves-
tigated. In this regard, as discussed in [20, 22], the main obstacle lies in
the design of state observers that guarantee the boundedness of the state
estimation error in presence of plant-model mismatch.
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9.5 Summary

In this chapter, the main open challenges in the use of RNNs for model-
based control design are discussed, and the preliminary research efforts we
devoted to these topics have been outlined. Specifically, the issues dis-
cussed are the safety verification of the RNN model and its fine-tuning dur-
ing the plant’s lifespan (i.e., the so-called lifelong learning); the exploita-
tion of physics-based knowledge for the design of physics-based RNN mod-
els, which allow further performance improvement and better consistency
of such model to the underlying physical system; the implementation of
robust control laws that are able to guarantee closed-loop stability and per-
formances even in the presence of plant-model mismatch.
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CHAPTER10
Conclusions

In this doctoral thesis, an attempt was made to reconcile deep learning with
control theory by building a framework to employ Recurrent Neural Net-
works (RNNs) for synthesizing model-based control laws that attain closed-
loop stability guarantees.

The underlying idea of this thesis has been that, in light of their well-
known universal approximation capabilities, RNNs represent good candi-
dates for identifying unknown dynamical systems that display stability-like
properties. Therefore, the first part of the thesis was devoted to the formu-
lation of the main RNN architectures as dynamical system in state-space
form, and to the analysis of their stability properties. In particular, popular
strong stability notions used for nonlinear systems, such as Input-to-State
Stability (ISS), Input-to-State Practical Stability (ISPS), and Incremental
Input-to-State Stability (δISS), were considered. The stability analysis of
the proposed RNN architectures led to sufficient conditions under which the
ISS, ISPS, and δISS of these models can be guaranteed. Such conditions
come in the form of nonlinear inequalities on the network’s weights.

A suitable algorithm, based on the popular truncated back-propagation
through time was proposed to train these RNN models, i.e., to learn the
weights by which the RNN model best identifies the unknown system.
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This training procedure was designed to contextually ensure the ISS, ISPS,
or δISS of the trained RNN. Numerical results confirmed the remarkable
modeling performances of RNNs for nonlinear system identification, also
showing that the enforced stability conditions, despite being only sufficient,
do not harm the approximation capabilities of these networks.

The second part of the thesis was devoted to the synthesis of theoreti-
cally-sound model-based control strategies designed, under the certainty
equivalence principle, based on the trained RNN models. To this end,
two approaches were considered, i.e., Nonlinear Model Predictive Control
(NMPC) and Internal Model Control (IMC).

In particular, three different NMPC-based schemes were proposed. A
first NMPC scheme was proposed for single-layer Gated Recurrent Units
(GRU) models, in which the model’s δISS was shown to enable the design
of a provenly convergent state observer and of a nominally closed-loop
stable control law. Notably, such stability guarantee relies on a condition
on the NMPC’s prediction horizon, rather than on the inclusion of terminal
sets and terminal costs as generally done in the context of NMPC.

For the same single-layer GRU model, another NMPC scheme was also
devised, which relies on the inclusion of a suitably-tuned integrator on the
output tracking error to guarantee asymptotic zero-error output regulation
to constant references, as well as nominal closed-loop stability, in the nom-
inal case. In such context, we showed that the model’s δISS plays a funda-
mental role in the design of the components of the control scheme.

A third predictive-control scheme was then proposed for Neural NARX
(NNARX) models, for which an NMPC law based on the combination of an
integral and a derivative control action was proposed to achieve asymptotic
zero-error regulation and nominal closed-loop stability guarantees.

Finally, an alternative control strategy based on IMC was proposed.
The main advantage of such control scheme is that, unlike NMPC-based
schemes, it involves virtually no online computational cost, since the entire
computational burden occurs during the controller synthesis phase. In this
context, we have shown that the approximation capabilities of RNNs can
be exploited to learn the components of the IMC scheme, namely the sys-
tem model and a stable inverse of such model. Also for this scheme, the
δISS property of said RNNs allowed to attain nominal closed-loop stability
guarantees.

The described RNN architectures and the proposed control schemes
were tested on several nonlinear benchmark systems. In the considered
numerical examples, RNNs confirmed their appeal for the black-box identi-
fication of nonlinear systems characterized by stability-like properties. The
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proposed control laws demonstrated remarkable closed-loop performances,
and they proved to attain the stability – and, if the case, also the asymptotic
zero-error output regulation – guarantees described in the thesis, even in the
non-ideal case of disturbances affecting the plant or moderate inaccuracies
of the model.

As discussed in Chapter 9, the use of neural networks for the synthesis of
model-based control laws still presents many open challenges. In particular,
it is first of all necessary to develop approaches for computing the output
reachable sets for RNN models, for their consequent use for safety verifi-
cation. These models must also be updated and refined over time within
the framework of lifelong learning procedures, so that their modeling per-
formances are preserved even in the presence of expected variations in op-
erating conditions. A further major contribution to the interpretability and
physical consistency of the model with respect to the modeled plant can
be provided by so-called physics-based neural networks. Such approach is
deemed increasingly promising and relevant, not only by the control com-
munity, but also by the machine learning community. Yet, it needs a sys-
tematic approach and theoretical foundations similar to those we here tried
to devise for black-box RNN models. Finally, it is important to investigate
the application of robust control laws, which can ensure closed-loop stabil-
ity and performances, not only in the nominal case, but also in presence of
model-plant mismatch or disturbances, that should in turn be estimated in
a data-based fashion.

Overall, we believe that these challenges can and should be addressed,
in order to foster the application of deep learning-based techniques and
tools to model-based control design problems. Indeed, as great as these
challenges may seem, so great are the possible benefits of their solution to
currently unexplored application domains.

163





Appendices

165





APPENDIXA
Proofs

A.1 Proof of Chapter 2

A.1.1 Proof of Lemma 2.1

First, let us notice that (2.4), (2.5), and (2.6) share the same structure, i.e.

∥χk∥p ≤ β(∥χ0∥p, k) + γ(∥ν0:k∥p,∞) + c, (A.1)

where χ ∈ Rnx and ν ∈ Rnu . Notice that c = ϱ for ISPS and c = 0 for ISS
and δISS. The proof consists of two distinct cases, i.e., q > p and q < p.
Case q > p
Note that, by standard norm arguments, for any vector v ∈ Rn and q > p,
the following chain of inequality holds

∥v∥q ≤ ∥v∥p ≤ n∥v∥q (A.2)

Hence, (A.1) implies that

∥χk∥q ≤ ∥χk∥p ≤ β(∥χ0∥p, k) + γ(∥ν0:k∥p,∞) + c. (A.3)

Recalling that β and γ is strictly increasing with their (first) argument, they
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can be upper-bounded as

β(∥χ0∥p, k) ≤ β(nx∥χ0∥q, k) := β̃(∥χ0∥q, k),
γ(∥ν0:k∥p,∞) ≤ γ(nu∥ν0:k∥q,∞) := γ̃(∥ν0:k∥q,∞).

(A.4)

Thus, upper-bounding (A.3) with (A.4) one gets

∥χk∥q ≤ β̃(∥χ0∥q, k) + γ̃(∥ν0:k∥q,∞) + c, (A.5)

which corresponds to the ℓq formulation of ISS, ISPS, and δISS.
Case q < p
By standard norm arguments, for any vector v ∈ Rn and q < p, the follow-
ing chain of inequalities holds

1

n
∥v∥q ≤ ∥v∥p ≤ ∥v∥q ≤ n∥v∥p. (A.6)

Therefore, (A.1) implies that

∥χk∥q ≤ nx∥χk∥p ≤ nxβ(∥χ0∥p, k) + nxγ(∥ν0:k∥p,∞) + nx c. (A.7)

In light of the monotonicity of β and γ, these terms can be upper-bounded
as

nxβ(∥χ0∥p, k) ≤ nxβ(∥χ0∥q, k) := β̃(∥χ0∥q, k),
nxγ(∥ν0:k∥p,∞) ≤ nxγ(∥ν0:k∥q,∞) := γ̃(∥ν0:k∥q,∞).

(A.8)

Hence, defining c̃ = nx c, by upper-bounding (A.1) with (A.8), one gets

∥χk∥q ≤ β̃(∥χ0∥q, k) + γ̃(∥ν0:k∥q,∞) + c̃, (A.9)

which corresponds to the ℓq formulation of ISS, ISPS, and δISS.

A.1.2 Proof of Lemma 2.2

As done in the proof of Lemma 2.1, we first notice that the conditions (2.7),
(2.8), and (2.9) share the following common structure

α1(∥χk∥p) ≤ V (·) ≤ α2(∥χk∥p) + c1,

∆V (·) ≤ −α3(∥χk∥p) + α4(∥νk∥p) + c2,
(A.10)

where c1 = ϱ1 and c2 = ϱ2 in the case of ISPS Lyapunov function and
c1 = c2 = 0 in the case of ISS and δISS Lyapunov functions. Moreover,
χk ∈ Rnx and νk ∈ Rnu . The two cases q > p and q < p are now discussed.

168



A.1. Proof of Chapter 2

Case q > p
Recalling the norms’ chain of inequality (A.2), since α1, α2, α3, and α4

are of classK∞, and hence strictly increasing with their arguments, it holds
that

α1(∥χk∥p) ≥ α1(∥χk∥q) := α̃1(∥χk∥q),
α2(∥χk∥p) ≤ α2(nx∥χk∥q) := α̃2(∥χk∥q),
−α3(∥χk∥p) ≤ −α3(∥χk∥q) := −α̃3(∥χk∥q),
α4(∥νk∥p) ≤ α4(nu∥νk∥q) := α̃4(∥νk∥q).

(A.11)

By bounding (A.10) with (A.11), one gets

α̃1(∥χk∥q) ≤ V (·) ≤ α̃2(∥χk∥q) + c1,

∆V (·) ≤ −α̃3(∥χk∥q) + α̃4(∥νk∥q) + c2,
(A.12)

which means that V (·) is also an ℓq Lyapunov function.
Case q < p
In light of (A.6), and once more exploiting the strict monotonicity of α1,
α2, α3, and α4, it holds that

α1(∥xk∥p) ≥ α1

( 1

nx
∥xk∥q

)
:= α̃1(∥xk∥q)

α2(∥xk∥p) ≤ α2(∥xk∥q) := α̃2(∥xk∥q)

−α3(∥xk∥p) ≤ −α3

( 1

nx
∥xk∥q

)
:= −α̃3(∥xk∥q)

α4(∥uk∥p) ≤ α4(∥uk∥q) := α̃4(∥uk∥q)

(A.13)

Applying the bounds reported in (A.13) to (A.10), we get

α̃1(∥χk∥q) ≤ V (·) ≤ α̃2(∥χk∥q) + c1,

∆V (·) ≤ −α̃3(∥χk∥q) + α̃4(∥νk∥q) + c2,
(A.14)

which implies that V (·) is an ℓq Lyapunov function.

A.1.3 Proof of Proposition 2.4

In view of the Lipschitz continuity of the output transformation g(xk), there
exists Lg > 0 and ϱg ≥ 0 such that, for any x ∈ X , ∥y∥p ≤ Lg∥x∥p + ϱg.
Therefore, in light of the ISPS condition (2.4), it asymptotically holds that

∥yk∥p ≤ γy(∥u0:k∥p,∞) + ϱy,

where γy(·) = Lgγx(·) and ϱy = ϱg + ϱ.
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A.1.4 Proof of Theorem 2.1

The proof is structured as follows: first, the bound of the linearization error
is characterized; then, the exponential δISS property is shown to entail the
existence of a quadratic Lyapunov function for the nonlinear system (2.1);
finally, such Lyapunov function is shown to be a local ISS Lyapunov func-
tion for the linearized system. For the sake of simplicity, without loss of
generality, the ℓ2 norm is herein considered (see Lemma 2.1).

Exponential δISS property
The exponential δISS property implies the existence of µ > 0 and λ ∈
(0, 1) such that

∥δxk∥2 ≤ µ∥δx0∥2λk + γ(∥δu0:k∥2,∞).

Owing to the boundedness of δu0:k, which is entailed by u0:k ∈ U0:k, there
exists γ̄ > 0 such that the exponential δISS property reads as

∥δxk∥2 ≤ µ∥δx0∥2λk + γ̄∥δu0:k∥2,∞. (A.15)

Consider now initial states δx0 ∈ Dx0 and δuτ ∈ Du, for all τ ∈ Z≥0,
where

Dx0(rx0) = {δx0 ∈ Rnx : ∥δx0∥2 ≤ rx0 ∧ x̄+ δx0 ∈ X},
Du(ru) = {δu ∈ Rnu : ∥δu∥2 ≤ ru ∧ ū+ δu ∈ U}.

(A.16)

Condition (A.15) then implies that, for any τ ∈ Z≥0, δxτ ∈ Dx, where

Dx(rx0 , ru) = {δx ∈ Rnx : ∥δxτ∥2 ≤ µrx0 + γ̄ru}. (A.17)

Characterization of the linearization error
Let i ∈ {1, ..., nx} denote the i-th state vector component. In light of the
Mean Value Theorem, there exist

x̂ ∈
{
v ∈ Rn : min([x̄]i, [x̄]i + [δxk]i) ≤ [v]i ≤ max([x̄]i, [x̄]i + [δxk]i)

}
û ∈

{
v ∈ Rm : min([ū]i, [ū]i + [δuk]i) ≤ [v]i ≤ max([ū]i, [ū]i + [δuk]i)

}
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such that

fi(x̄+ δxk, ū+ δuk)− fi(x̄, ū) =
∂fi
∂x

∣∣∣∣
x̂,û

δxk +
∂fi
∂u

∣∣∣∣
x̂,û

δuk

=
∂fi
∂x

∣∣∣∣
x̄,ū

δxk +
∂fi
∂u

∣∣∣∣
x̄,ū

δuk

+

[
∂fi
∂x

∣∣∣∣
x̂,û

− ∂fi
∂x

∣∣∣∣
x̄,ū

]
δxk

+

[
∂fi
∂u

∣∣∣∣
x̂,û

− ∂fi
∂u

∣∣∣∣
x̄,ū

]
δuk

(A.18)

where fi indicates the i-th component of f(x, u). Equivalently, letting Aδi,
Bδi, and εi(δxk, δuk) denote the i-th row of Aδ, Bδ, and of the linearization
error, respectively, (A.18) can be rewritten as

δxk+1 = fi(x̄+ δxk, ū+ δuk)− fi(x̄, ū)
= Aδi δxk +Bδi δuk + εi(δxk, δuk),

(A.19a)

where

εi(δxk, δuk) =

[
∂fi
∂x

∣∣∣∣
x̂,û

− ∂fi
∂x

∣∣∣∣
x̄,ū

]
δxk︸ ︷︷ ︸

εx,i(δxk,δuk)

+

[
∂fi
∂u

∣∣∣∣
x̂,û

− ∂fi
∂u

∣∣∣∣
x̄,ū

]
δuk︸ ︷︷ ︸

εu,i(δxk,δuk)

.

(A.19b)

Owing to the smoothness of f , over Dx and Du there exist constants
L1,i ≥ 0 and L2,i ≥ 0 such that εx,i can be bounded as

∥εx,i(δxk, δuk)∥22 ≤
∥∥∥∥∂fi∂x

∣∣∣∣
x̂,û

− ∂fi
∂x

∣∣∣∣
x̄,ū

∥∥∥∥2
2

∥δxk∥22

≤

[∥∥∥∥∂fi∂x

∣∣∣∣
x̂,û

− ∂fi
∂x

∣∣∣∣
x̄,û

∥∥∥∥2
2

+

∥∥∥∥∂fi∂x

∣∣∣∣
x̄,û

− ∂fi
∂x

∣∣∣∣
x̄,ū

∥∥∥∥2
2

]
∥δxk∥22

≤
[
L2
1,i∥δxk∥22 + L2

2,i∥δuk∥22
]
∥δxk∥22.

(A.20a)
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Similarly, there exist constants L3,i ≥ 0 and L4,i ≥ 0 such that

∥εu,i(δxk, δuk)∥22 ≤
∥∥∥∥∂fi∂u

∣∣∣∣
x̂,û

− ∂fi
∂u

∣∣∣∣
x̄,ū

∥∥∥∥2
2

∥δuk∥22

≤

[∥∥∥∥∂fi∂u

∣∣∣∣
x̂,û

− ∂fi
∂u

∣∣∣∣
x̄,û

∥∥∥∥2
2

+

∥∥∥∥∂fi∂u

∣∣∣∣
x̄,û

− ∂fi
∂u

∣∣∣∣
x̄,ū

∥∥∥∥2
2

]
∥δuk∥22

≤
[
L2
3,i∥δxk∥22 + L2

4,i∥δuk∥22
]
∥δuk∥22.

(A.20b)
Recalling that εx(δxk, δuk) =

[
εx,1(δxk, δuk), ..., εx,nx(δxk, δuk)

]′, and
defining L2

1 = maxi L
2
1,i and L2

2 = maxi L
2
2,i, the following chain of in-

equalities holds

∥εx(δxk, δuk)∥2 ≤

√√√√ nx∑
i=1

∥∥εx,i(δxk, δuk)∥∥2
≤
√
nx ∥δxk∥2

√
L2
1∥δxk∥22 + L2

2∥δuk∥22
≤
√
nxL1∥δxk∥22 +

√
nx L2∥δxk∥2∥δuk∥2.

(A.21a)

Analogously, letting εu(δxk, δuk) =
[
εu,1(δxk, δuk), ..., εu,nx(δxk, δuk)

]′,
the following chain of inequality holds

∥εu(δxk, δuk)∥2 ≤

√√√√ nx∑
i=1

∥∥εu,i(δxk, δuk)∥∥22
≤
√
nx ∥δuk∥2

√
L2
3∥δxk∥22 + L2

4∥δuk∥22
≤
√
nx L3∥δxk∥2∥δuk∥2 +

√
nx L4∥δuk∥22.

(A.21b)

Therefore, there exist Lεx ≥ 0 and Lεu ≥ 0 such that the linearization error
can be bounded as

∥ε(δxk, δuk)∥2 ≤ ∥εx(δxk, δuk)∥2 + ∥εu(δxk, δuk)∥2
≤
√
nxL1∥δxk∥22 +

√
nx(L2 + L3)∥δxk∥2∥δuk∥2

+
√
nxL4∥δuk∥22

≤ Lεx∥δxk∥22 + Lεu∥δuk∥22.

(A.22)

Lyapunov function definition
Since the system is exponentially δISS, Theorem 5.8 of [180] can be in-
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voked to guarantee the existence of a (δISS) Lyapunov function that satis-
fies the following conditions

c1∥δxk∥22 ≤ V (δxk) ≤ c2∥δxk∥22, (A.23a)

V (Aδδxk +Bδδuk + ε(δxk, δuk))− V (δxk) ≤ −c3∥δxk∥22 + σ3(∥δuk∥2),
(A.23b)

|V (x)− V (y)|≤ c4(∥x∥2 + ∥y∥2) ∥x− y∥2 (A.23c)

where the scalars c1, c2, c3, c4 > 0 and σ3 ∈ K∞. We now show that, in
a sufficiently small neighborhood of the equilibrium (i.e. for sufficiently
small values of rx0 and ru), (A.23) constitutes a suitable ISS Lyapunov
function for the linearized system (2.15). By adding and subtracting the
term V (Aδδxk +Bδδuk) to the left-hand side of (A.23b) we get

V (Aδδxk +Bδδuk)− V (δxk)+

+
[
V (Aδδxk +Bδδuk + ε(δxk, δuk))− V (Aδδxk +Bδδuk)

]
≤ −c3∥δxk∥22 + σ3(∥δuk∥2).

(A.24)

Let us notice that, in light of (A.17), (A.22), and (A.23c), it holds that

∥∥V (Aδδxk +Bδδuk + ε(δxk, δuk))− V (Aδδxk +Bδδuk)
∥∥
2

≤ c4

(∥∥Aδδxk +Bδδuk + ε(δxk, δuk)
∥∥
2
+
∥∥Aδδxk +Bδδuk

∥∥
2

)
∥ε(δxk, δuk)∥2

≤ c4

(
2
∥∥Aδδxk +Bδδuk + ε(δxk, δuk)

∥∥
2
+ ∥ε(δxk, δuk)∥2

)
∥ε(δxk, δuk)∥2

≤ c4

(
2µrx0 + 2γ̄ru + Lεx∥δxk∥22 + Lεu∥δuk∥22

)(
Lεx∥δxk∥22 + Lεu∥δuk∥22

)
(A.25)

Since in a neighborhood of the equilibrium ∥δxk∥22 ≪ ∥δxk∥2 ≤ rx and
∥δuk∥22 ≪ ∥δuk∥2 ≤ ru, there exist µx0 > 0 and µu > 0 such that

∥∥V (Aδδxk +Bδδuk + ε(δxk, δuk))− V (Aδδxk +Bδδuk)
∥∥
2

≤ c4
(
µx0rx0 + µuru

)(
Lεx∥δxk∥22 + Lεu∥δuk∥22

)
.

(A.26)
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In light (A.26), from (A.24) one can obtain

V (Aδδxk +Bδδuk)− V (δxk)

≤ −c3∥δxk∥22 + σ3(∥δuk∥2)
−
[
V (Aδδxk +Bδδuk + ε(δxk, δuk))− V (Aδδxk +Bδδuk)

]
≤ −c3∥δxk∥22 + σ3(∥δuk∥2)

+ c4
(
µx0rx0 + µuru

)(
Lεx∥δxk∥22 + Lεu∥δuk∥22

)
≤ −

[
c3 − c4(µx0rx0 + µuru)Lεx

]
∥δxk∥22

+ σ3(∥δuk∥2) + c4(µx0rx0 + µuru)Lεu∥δuk∥22
≤ −c̃3∥δxk∥22 + σ̃3(∥δuk∥2),

(A.27)
where c̃3 = c3 − c4(µx0rx0 + µuru)Lεx and σ̃3(∥δuk∥2) = σ3(∥δuk∥2) +
c4
(
µx0rx0 + µuru

)(
Lεx∥δxk∥2 + Lεu∥δuk∥22

)
. Notice that σ̃3 ∈ K∞.

Then, there exist sufficiently small ru and rx0 such that c̃3 > 0, which
in turn imply that V (δxk) is a local ISS Lyapunov function for the the lin-
earized system in Dx and Du. Hence, the linearized system is locally ISS.
Since for linear system the ISS property implies the asymptotic stability of
the origin, Aδ is Schur stable.

A.2 Proofs of Chapter 3

A.2.1 Proof of Theorem 3.1

Define P = diag(Inz ,nz , 2 · Inz ,nz , ..., H · Inz ,nz). Recalling (3.5b), it is easy
to see that P is the solution to the Lyapunov equation A′PA − P = −Q,
where Q = I . Let therefore V (x) = x′Px = ∥x∥2P be a candidate ℓ2-ISPS
Lyapunov function. Since the minimum and maximum singular values of
P are

¯
ςP = 1 and ς̄P = H , respectively, it holds that

∥xk∥22 ≤ V (xk) ≤ H∥xk∥22. (A.28)

In light of (3.5a) it holds that

V (xk+1)− V (xk) = x′k+1Pxk+1 − x′kPxk
= x′k(A

′PA− P )xk + u′kB
′
uPBuuk + 2x′kA

′PBuuk

+ η(xk, uk)
′B′

ηPBηη(xk, uk) + 2x′kA
′PBηη(xk, uk)

+ 2u′kB
′
uPBηη(xk, uk).

(A.29)
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Owing to the structure of A, Bu and Bη, see (3.5b), and being P block-
diagonal, it follows that

A′PBu = 0nx,nu , (A.30a)
A′PBη = 0nx,ny , (A.30b)
B′
uPBu = HInu,nu , (A.30c)

B′
ηPBη = HIny ,ny , (A.30d)

B′
uPBη = HB̃′

uB̃η = 0nu,ny . (A.30e)

Combining (A.29) and (A.30) one can hence obtain

V (xk+1)− V (xk) = −x′kxk +Hu′kuk +Hη(xk, uk)
′η(xk, uk) (A.31)

Let us now point out that, since the activation functions ψl are Lipschitz-
continuous, η is Lipschitz-continuous as well. Hence, letting

b = [b(0)′, ..., b(L)′]′

be the concatenation of bias vectors, by standard norms arguments, for any
scalar q ̸= 0 it holds that

∥η(xk, uk)∥22 ≤
(
1 +

1

q2

)
K2
x∥xk∥22 + 2(1 + q2)K2

u∥uk∥22

+ 2(1 + q2)K2
b ∥b∥22

(A.32a)

where the coefficients Kx, Ku, and Kb are defined as

Kx =∥U (0)∥2
L∏
l=1

L
(l)
ψ ∥U

(l)∥2,

Ku =∥U (0)∥2
L∑
l=1

( L∏
j=l+1

L
(j)
ψ ∥U

(j)∥2
)
L
(l)
ψ ∥W

(l)∥2,

Kb =∥U (0)∥2
L∑
l=1

( L∏
j=l+1

L
(j)
ψ ∥U

(j)∥2
)
L
(l)
ψ .

(A.32b)

From (A.32) and (A.31) it follows that

V (xk+1)− V (xk) ≤−
[
1−

(
1 +

1

q2

)
HK2

x

]
∥xk∥22

+H

[
1 + 2(1 + q2)K2

u

]
∥uk∥22

+ 2(1 + q2)HK2
b ∥b∥22.

(A.33)

175



Appendix A. Proofs

We point out that V is an ISPS Lyapunov function if the coefficient
multiplying ∥xk∥22 is strictly negative, i.e.

1− q2 + 1

q2
H∥U (0)∥22

L∏
l=1

(
L
(l)
ψ

)2∥∥U (l)
∥∥2
2
> 0

or, equivalently,

L∏
l=0

∥∥U (l)
∥∥
2
−

√
q2

q2 + 1

1(∏L
l=1 L

(l)
ψ

)√
H
< 0. (A.34)

To show that (A.34) holds, let us point out that, in light of (3.6), by conti-
nuity argument there exists a sufficiently small ε > 0 such that

L∏
l=0

∥∥U (l)
∥∥
2
− (1− ε) 1(∏L

l=1 L
(l)
ψ

)√
H
< 0. (A.35)

Thus, there exists
¯
q large enough such that, 1− ε ≤

√
q2

q2+1
for any q ≥

¯
q,

so that

L∏
l=0

∥∥U (l)
∥∥
2
−

√
q2

q2 + 1

1(∏L
l=1 L

(l)
ψ

)√
H

≤
L∏
l=0

∥∥U (l)
∥∥
2
− (1− ε) 1(∏L

l=1 L
(l)
ψ

)√
H

< 0.

(A.36)

Owing to (A.36), one can hence guarantee the existence of some δ > 0
such that

V (xk+1)− V (xk) ≤− δ∥xk∥22 +H

[
1 + 2(1 + q2)K2

u

]
∥uk∥22

+ 2(1 + q2)HK2
b ∥b∥22.

(A.37)

Given the inequalities (A.28) and (A.37), according to Definition 2.7 V is
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an ISPS Lyapunov function, with

α1(∥xk∥2) = ∥xk∥2, (A.38a)
α2(∥xk∥2) = H∥xk∥2, (A.38b)

α3(∥xk∥2) = δ∥xk∥22, (A.38c)

α4(∥uk∥2) = H
[
1 + 2(1 + q2)K2

u

]
∥uk∥22, (A.38d)

ϱ1 = 0, (A.38e)

ϱ2 = 2(1 + q2)HK2
b ∥b∥22. (A.38f)

By Proposition 2.2, the existence of an ISPS Lyapunov function implies
that the system is ISPS, which concludes the proof.

A.2.2 Proof of Theorem 3.2

To prove the Theorem, we show the existence of an ℓ2-δISS Lyapunov func-
tion consistent with Definition 2.9. To this end, let xa,k and xb,k be two
generic states, and consider the two generic inputs ua,k and ub,k. We denote
xa,k+1 = f(xa,k, ua,k) and xb,k+1 = f(xb,k, ub,k), where f(x, u) is the state
function of the NNARX model (3.5).

Consider V (xa, xb) = (xa−xb)′P (xa−xb) = ∥xa−xb∥2P as a candidate
δISS Lyapunov function, where P is the solution to the Lyapunov equation
A′PA − P = −Q, with Q = I . Then, it is easy to verify that P is a
symmetric block-diagonal matrix, P = diag(Inz ,nz , 2 ·Inz ,nz , ..., H ·Inz ,nz).
Since the minimum and maximum singular value of P are

¯
ςP = 1 and

ς̄P = H , V (xa, xb) can be bounded as follows

∥xa,k − xb,k∥22 ≤ Vδ(xa,k, xb,k) ≤ H∥xa,k − xb,k∥22. (A.39)

Moreover, it holds that
Vδ(xa,k+1, xb,k+1)− Vδ(xa,k, xb,k)

=
[
Axa,k +Buua,k +Bηη(xa,k, ua,k)− Axb,k −Buub,k −Bηη(xb,k, ub,k)

]′·
· P ·

[
Axa,k +Buua,k +Bηη(xa,k, ua,k)− Axb,k −Buub,k −Bηη(xb,k, ub,k)

]
− (xa,k − xb,k)′P (xa,k − xb,k)

(A.40)
Owing to (A.30), the previous equality can be re-written as

Vδ(xa,k+1, xb,k+1)− Vδ(xa,k, xb,k)
= (xa,k − xb,k)′(A′PA− P )(xa,k − xb,k)
+ (ua,k − ub,k)′B′

uPBu(ua,k − ub,k)
+
[
η(xa,k, ua,k)− η(xb,k, ub,k)

]′
B′
ηPBη

[
η(xa,k, ua,k)− η(xb,k, ub,k)

]
(A.41)
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By summing and subtracting η(xb,k, ua,k) to both the square brackets of
the last term of (A.41), and applying standard norm arguments, it holds that[
η(xa,k, ua,k)− η(xb,k, ub,k)± η(xb,k, ua,k)

]′
B′
ηP ·

·Bη

[
η(xa,k, ua,k)− η(xb,k, ub,k)± η(xb,k, ua,k)

]
≤ H

∥∥(η(xa,k, ua,k)− η(xb,k, ua,k))+ (η(xb,k, ua,k)− η(xb,k, ub,k))∥∥22
≤ H

(
1 +

1

q2

)
∥η(xa,k, ua,k)− η(xb,k, ua,k)∥22

+H
(
1 + q2

)
∥η(xb,k, ua,k)− η(xb,k, ub,k)∥22

(A.42)
for any scalar q ̸= 0. Then, in light of the Lipschitzianity of the activation
functions, η(x, u) is also Lipschitz, and specifically

∥η(xa,k, ua,k)− η(xb,k, ua,k)∥22 ≤ K2
x∥xa,k − xb,k∥22,

∥η(xb,k, ua,k)− η(xb,k, ub,k)∥22 ≤ K2
u∥ua,k − ub,k∥22,

(A.43)

where Kx and Ku are defined as in (A.32b).
In light of (A.42) and (A.43), recalling that A′PA− P = −Q = −I , it

holds that

Vδ(xa,k+1, xb,k+1)− Vδ(xa,k, xb,k) ≤−
[
1−

(
1 +

1

q2

)
HK2

x

]
∥xa,k − xb,k∥22

+H
[
1 + (1 + q2)K2

u

]
∥ua,k − ub,k∥22.

(A.44)
Therefore, if the coefficient multiplying ∥xa,k − xb,k∥22 is negative, i.e.

1−
(
1 +

1

q2

)
HK2

x > 0, (A.45)

for some value of q, then Vδ is a δISS Lyapunov function. Recalling (A.32b),
by minor manipulations, (A.45) is equivalent to

L∏
l=0

∥∥U (l)
∥∥
2
−

√
q2

q2 + 1

1(∏L
l=1 L

(l)
ψ

)√
H
< 0. (A.46)

As discussed in the proof of Theorem 3.1 (see Appendix A.2.1), since by
assumption condition (3.6) is satisfied, it can be shown that (A.46) holds
for sufficiently large values of q. Thus, there exists a scalar δ > 0 such that
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(A.44) can be bounded as

Vδ(xa,k+1, xb,k+1)− Vδ(xa,k, xb,k) ≤− δ∥xa,k − xb,k∥22
+H

[
1 + (1 + q2)K2

u

]
∥ua,k − ub,k∥22

(A.47)
In light of (A.39) and (A.47), and according to Definition 2.9, Vδ is a

δISS Lyapunov function, with functions

α1(∥xa,k − xb,k∥2) = ∥xa,k − xb,k∥22, (A.48a)

α2(∥xa,k − xb,k∥2) = H∥xa,k − xb,k∥22, (A.48b)

α3(∥xa,k − xb,k∥2) = δ∥xa,k − xb,k∥22, (A.48c)

α4(∥ua,k − ub,k∥2) = H
[
1 + (1 + q2)K2

u

]
∥ua,k − ub,k∥22. (A.48d)

Invoking Proposition 2.3, the δISS of the NNARX model is thus proven.

A.2.3 Proof of Lemma 3.1

First and foremost, let us notice that hk is surely unity-bounded. Indeed,
from (3.8a) it follows that the j-th component is [hk]j = [zk]j

[
ϕ(ck+1)]j ,

where, in light of the boundedness of σ and ϕ, it holds |[zk]j|< 1 and∣∣[ϕ(ck+1)]j
∣∣ < 1. Hence,

∥hk∥∞ ≤ 1. (A.49)
Now we show that (3.9a) holds. Recalling Assumption 3.1, noticing that

σ is strictly increasing with its argument and that, by definition of infinity
norm,

|[v]j|≤ ∥v∥∞,
the following chain of inequality holds∣∣∣[σ(Wfuk + Ufck + bf )

]
j

∣∣∣ ≤ ∥σ(Wfuk + Ufck + bf )∥∞
≤ max

u∈U ,h:∥h∥∞≤1
∥σ(Wfu+ Ufh+ bf )∥∞

≤
∥∥∥ max
u∈U ,h:∥h∥∞≤1

σ(Wfu+ Ufh+ bf )
∥∥∥
∞

≤
∥∥∥σ( max

u∈U ,h:∥h∥∞≤1
(Wfu+ Ufh+ bf )

)∥∥∥
∞

≤ σ
(

max
u∈U ,h:∥h∥∞≤1

∥Wfu+ Ufh+ bf∥∞
)

≤ σ (∥Wf Uf bf∥∞) = σ̌f .
(A.50)
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Notice that, owing to the boundedness of the sigmoidal function, σ̌f < 1.
Thus, |[fk]j|≤ σ̌f < 1. By similar arguments, in light of the symmetry of σ
with respect to the point (0, 1

2
), it can be shown that∣∣∣[σ(Wfuk + Ufck + bf )

]
j

∣∣∣ ≥ σ (−∥Wf Uf bf∥∞) = 1− σ̌f . (A.51)

Since this implies that 0 < 1 − σ̌f ≤ |[fk]j|, (3.9a) is proven. The same
chain of inequalities can be used to prove (3.9b) and (3.9c).

As far as (3.9d) is concerned, we point out that the tanh activation func-
tion enjoys the same strict monotonicity property than σ, but it is symmetric
with respect to the origin instead of the point (0, 1

2
). This entails that∣∣∣[ϕ(Wruk + Urck + br)

]
j

∣∣∣ ≤ ϕ (∥Wr Ur br∥∞) = ϕ̌r (A.52)

and∣∣∣[ϕ(Wruk + Urck + br)
]
j

∣∣∣ ≥ ϕ (−∥Wr Ur br∥∞) = −ϕ̌r, (A.53)

which proves the bound (3.9d).

A.2.4 Proof of Proposition 3.1

First, we show that C is an invariant set for the cell state c. To this end, one
must show that ck ∈ C =⇒ ck+1 ∈ C for any uk ∈ U .

Consider the j-th component of the ck+1, with j ∈ {1, ..., nc}. In light
of (3.8a), by taking the absolute value we get

|[ck+1]j|≤ |[fk]j| |[ck]j|+|[ik]j| |[rk]j|. (A.54)

Recalling (3.9), and owing to (3.11b), it follows that

|[ck+1]j| ≤ σ̌f |[ck]j|+σ̌i ϕ̌r
≤ σ̌f ∥ck∥∞ + σ̌i ϕ̌r

≤ σ̌f č+ σ̌i ϕ̌r = σ̌f
σ̌i ϕ̌r
1− σ̌f

+ σ̌i ϕ̌r = č,

(A.55)

i.e. C is an invariant set for the state ck.
We now show that hk ∈ H =⇒ hk+1 ∈ H for any uk ∈ U . In light of

(3.8a), for any component j ∈ {1, ..., nc},

|[hk+1]j|≤ |[zk]j| |[ϕ(ck+1)]j|. (A.56)
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Leveraging the bound (3.9c) and the known bound of ck+1 (3.11b), thanks
to the monotonicity of ϕ we get

|[hk+1]j| ≤ ∥zk∥∞∥ϕ(ck+1)∥∞
≤ σ̌zϕ(č)

≤ ϕ(č) = ȟ,

(A.57)

i.e. H is an invariant set for the hidden state hk. The fact that X , defined in
(3.11a), is an invariant set for xk follows intuitively.

A.2.5 Proof of Theorem 3.3

Consider the shallow LSTM equations (3.8). Noticing that, given two vec-
tors v and w their Hadamard product v ◦ w is equivalent to diag(v)w, the
first state equation can be rewritten as

ck+1 = diag(fk)ck + diag(ik)ϕ(Wruk + Urhk + br). (A.58)

We point out that, for any diagonal matrix A = diag(a1, ..., an), it holds
that ∥A∥2 ≤ maxi=1,...,n|ai|. Moreover, being ϕ a 1-Lipschitz function,
∥ϕ(v)∥2 ≤ 1∥v∥2. Thus, applying the 2-norm to both sides of (A.58) we
get

∥ck+1∥2 ≤ ∥diag(fk)∥2∥ck∥2 + ∥diag(ik)∥2∥ϕ(Wruk + Urhk + br)∥2
≤ σ̌f∥ck∥2 + σ̌i

(
∥Wr∥2∥uk∥2 + ∥Ur∥2∥hk∥2 + ∥br∥2

)
,

(A.59)
where the bounds (3.9) have been used. Analogously, by taking the 2-norm
of the second state equation we get

∥hk+1∥2 ≤ ∥diag(zk)∥2∥ϕ(ck+1)∥2
≤ σ̌z∥ck+1∥2
≤ σ̌zσ̌f∥ck∥2 + σ̌zσ̌i

(
∥Wr∥2∥uk∥2 + ∥Ur∥2∥hk∥2 + ∥br∥2

)
(A.60)

In light of (A.59) and (A.60), it holds that[
∥ck+1∥2
∥hk+1∥2

]
≤ A

[
∥ck∥2
∥hk∥2

]
+Bu∥uk∥2 +Bb∥br∥2, (A.61a)

where matrix A is that defined in (3.13), and matrices Bu and Bb are

Bu =

[
σ̌i∥Wr∥2
σ̌zσ̌i∥Wr∥2

]
, Bb =

[
σ̌i

σ̌zσ̌i

]
. (A.61b)
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Iterating (A.61a) we get[
∥ck∥2
∥hk∥2

]
≤ Ak

[
∥c0∥2
∥h0∥2

]
+

k−1∑
τ=0

Ak−τ−1 (Bu∥uτ∥2 +Bb∥br∥2) . (A.62)

Noticing that ∥∥∥∥[∥cτ∥2∥hτ∥2

]∥∥∥∥
2

=

∥∥∥∥[cτhτ
]∥∥∥∥

2

= ∥xτ∥2,

the Schur stability of A implies the existence of µA > 0 and λA ∈ (0, 1)
such that

∥xk∥2 ≤ µA ∥x0∥2 λkA +

∥∥∥∥ k−1∑
τ=0

Ak−τ−1 (Bu∥uτ∥2 +Bb∥br∥2)
∥∥∥∥
2

≤ µA ∥x0∥2 λkA +
∥∥(I2,2 − A)−1Bu

∥∥
2
∥u0:k∥2,∞

+
∥∥(I2,2 − A)−1Bb

∥∥
2
∥br∥2.

(A.63)

Therefore, according to Definition 2.4, the system is ℓ2-ISPS with functions

β(∥x0∥2, k) = µA ∥x0∥2 λkA, (A.64a)

γ(∥u0:k∥2,∞) =
∥∥(I2,2 − A)−1Bu

∥∥
2
∥u0:k∥2,∞, (A.64b)

ϱ =
∥∥(I2,2 − A)−1Bb

∥∥
2
∥br∥2. (A.64c)

A.2.6 Proof of Proposition 3.2

In order to prove the claims of Proposition 3.2, the following auxiliary
lemma is required.

Lemma A.1. Consider a 2-by-2 positive-valued matrixA, with trace(A) >
0. Then A is Schur stable if and only if

−1 + trace(A) < det(A) < 1. (A.65)

Proof of Lemma A.1. To characterize the stability of A, let us compute its
characteristic equation

p(s) = det(sI2,2 − A) = s2 + vs+ w = 0, (A.66)

where v = − trace(A) = −a11 − a22 and w = det(A) = a11a22 − a12a21,
aij denoting the element ofA in position (i, j). Jury’s criterion [181] can be
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used to provide necessary and sufficient conditions for the Schur stability
of A. In particular, the Jury table of p(s) reads as

1 v w

1− w2 v(1− w)
1−w
1+w

(
(1 + w)2 − v2

) (A.67)

According to Jury’s criterion, the entries on the first column must be posi-
tive, i.e. {

1− w2 > 0

1−w
1+w

(
(1 + w)2 − v2

)
> 0

.

Since trace(A) ≥ 0, it holds that v ≤ 0, so that the previous conditions boil
down to {

w < 1

w > −v − 1
, (A.68)

or, equivalently,

−1 + trace(A) < det(A) < 1. (A.69)

At this stage, let us notice that A is a 2-by-2 matrix having trace(A) =
σ̌f + σ̌zσ̌i∥Ur∥2 > 0. Invoking Lemma A.1, we can state that A is Schur
stable if and only if (A.65) is fulfilled, i.e.

−1 + σ̌f + σ̌zσ̌i∥Ur∥2 < 0 < 1, (A.70)

which is the same as (3.14).

A.2.7 Proof of Theorem 3.4

Consider the two states xa,k = [c′a,k, h
′
a,k]

′ ∈ X and xb,k = [c′b,k, h
′
b,k]

′ ∈ X ,
and two inputs ua,k ∈ U and ub,k ∈ U . First, we compute a bound for
∥ca,k+1− cb,k+1∥2 and ∥ha,k+1− hb,k+1∥2, which will be then used to prove
the δISS of the system.
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For the sake of compactness, in the following we denote

fa,k = σ(Wfua,k + Ufha,k + bf ) fb,k = σ(Wfub,k + Ufhb,k + bf )
(A.71a)

ia,k = σ(Wiua,k + Uiha,k + bi) ib,k = σ(Wiub,k + Uihb,k + bi)
(A.71b)

za,k = σ(Wzua,k + Uzha,k + bz) zb,k = σ(Wzub,k + Uzhb,k + bz)
(A.71c)

ra,k = ϕ(Wrua,k + Urha,k + br) rb,k = ϕ(Wrub,k + Urhb,k + br)
(A.71d)

In light of the first state equation (3.8a), ca,k+1 − cb,k+1 reads as

ca,k+1 − cb,k+1 = fa,k ◦ ca,k + ia,k ◦ ra,k − fb,k ◦ cb,k − ib,k ◦ rb,k.
(A.72)

Let us sum and subtract the terms fa,k ◦ cb,k and ia,k ◦ rb,k to the right-hand
side of (A.72). We thus obtain

ca,k+1 − cb,k+1 = fa,k ◦ (ca,k − cb,k) + ia,k ◦ (ra,k − rb,k)
+ (fa,k − fb,k) ◦ cb,k − (ia,k − ib,k) ◦ rb,k.

(A.73)

Recalling (A.71), owing to the 1-Lipschitzianity of ϕ and to the
1

4
-Lipschitzianity

of σ, it holds that

∥fa,k − fb,k∥2 ≤
1

4

∥∥Wfua,k + Ufha,k −Wfub,k − Ufhb,k
∥∥
2

≤ 1

4

(
∥Wf∥2 ∥ua,k − ub,k∥2 + ∥Uf∥2 ∥ha,k − hb,k∥2

) (A.74a)

∥ia,k − ib,k∥2 ≤
1

4

∥∥Wiua,k + Uiha,k −Wiub,k − Uihb,k
∥∥
2

≤ 1

4

(
∥Wi∥2 ∥ua,k − ub,k∥2 + ∥Ui∥2 ∥ha,k − hb,k∥2

) (A.74b)

∥za,k − zb,k∥2 ≤
1

4

∥∥Wzua,k + Uzha,k −Wzub,k − Uzhb,k
∥∥
2

≤ 1

4

(
∥Wz∥2 ∥ua,k − ub,k∥2 + ∥Uz∥2 ∥ha,k − hb,k∥2

) (A.74c)

∥ra,k − rb,k∥2 ≤ 1
∥∥Wrua,k + Urha,k −Wrub,k − Urhb,k

∥∥
2

≤ ∥Wr∥2 ∥ua,k − ub,k∥2 + ∥Ur∥2 ∥ha,k − hb,k∥2
(A.74d)
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Taking the 2-norm of both sides of (A.73), and exploiting (A.74), one gets

∥ca,k+1 − cb,k+1∥2 ≤ ∥ diag(fa,k)∥2 ∥ca,k − cb,k∥2
+ ∥ diag(ia,k)∥2 ∥ra,k − rb,k∥2
+ ∥ diag(cb,k)∥2 ∥fa,k − fb,k∥2
+ ∥ diag(rb,k)∥2 ∥ia,k − ib,k∥2

≤ σ̌f∥ca,k − cb,k∥2
+ σ̌i

(
∥Wr∥2 ∥ua,k − ub,k∥2 + ∥Ur∥2 ∥ha,k − hb,k∥2

)
+

1

4
č
(
∥Wf∥2 ∥ua,k − ub,k∥2 + ∥Uf∥2 ∥ha,k − hb,k∥2

)
+

1

4
ϕ̌r
(
∥Wi∥2 ∥ua,k − ub,k∥2 + ∥Ui∥2 ∥ha,k − hb,k∥2

)
(A.75)

By collecting the common terms we thus get

∥ca,k+1 − cb,k+1∥2 ≤ σ̌f∥ca,k − cb,k∥2

+
(
σ̌i∥Ur∥2 +

1

4
č∥Uf∥2 +

1

4
ϕ̌r∥Ui∥2

)
∥ha,k − hb,k∥2

+
(
σ̌i∥Wr∥2 +

1

4
č∥Wf∥2 +

1

4
ϕ̌r∥Wi∥2

)
∥ua,k − ub,k∥2.

(A.76)
Recalling the definition of č in (3.12a) and the definition of α̌ in (3.15b),
letting

ǩu = σ̌i∥Wr∥2 +
1

4
č∥Wf∥2 +

1

4
ϕ̌r∥Wi∥2, (A.77)

the inequality (A.76) can be rewritten as

∥ca,k+1 − cb,k+1∥2 ≤ σ̌f∥ca,k − cb,k∥2 + α̌∥ha,k − hb,k∥2 + ǩu∥ua,k − ub,k∥2.
(A.78)

Concerning the second state equation of (3.8a), one gets

ha,k+1 − hb,k+1 = za,k ◦ ϕ(ca,k+1)− zb,k ◦ ϕ(cb,k+1). (A.79)

By adding and subtracting the term za,k ◦ϕ(cb,k+1) to the right-hand side of
the equation

ha,k+1 − hb,k+1 = za,k ◦
(
ϕ(ca,k+1)− ϕ(cb,k+1)

)
− (za,k − zb,k) ◦ ϕ(cb,k+1).

(A.80)
At this stage, let us notice that, since ϕ is strictly increasing, it holds that
∥ϕ(cb,k+1)∥∞ ≤ ϕ(č) = ȟ, see (3.12b). Then, recalling the bounds (3.9)
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and (A.74), we now take the 2-norm of both sides of (A.80), which leads to

∥ha,k+1 − hb,k+1∥2 ≤ ∥ diag(za,k)∥2 ∥ϕ(ca,k+1)− ϕ(cb,k+1)∥2
+ ∥ diag(ϕ

(
cb,k+1)

)
∥2 ∥za,k − zb,k∥

≤ σ̌z∥ca,k+1 − cb,k+1∥2

+
1

4
ȟ
[
∥Wz∥2 ∥ua,k − ub,k∥2 + ∥Uz∥2 ∥ha,k − hb,k∥2

]
,

(A.81)
where the 1-Lipschitzianity of ϕ has also been exploited. Applying the
bound (A.78), and collecting the common terms, we thus get

∥ha,k+1 − hb,k+1∥2 ≤ σ̌zσ̌f∥ca,k − cb,k∥2 + σ̌zα̌∥ha,k − hb,k∥2
+ σ̌zǩu∥ua,k − ub,k∥2

+
1

4
ȟ
(
∥Wz∥2 ∥ua,k − ub,k∥2 + ∥Uz∥2 ∥ha,k − hb,k∥2

)
≤ σ̌zσ̌f∥ca,k − cb,k∥2

+
(
σ̌zα̌ +

1

4
ȟ∥Uz∥2

)
∥ha,k − hb,k∥2

+
(
σ̌zǩu +

1

4
ȟ∥Wz∥2

)
∥ua,k − ub,k∥2.

(A.82)
In light of (A.78) and (A.78), it follows[
∥ca,k+1 − cb,k+1∥2
∥ha,k+1 − hb,k+1∥2

]
≤ Aδ

[
∥ca,k − cb,k∥2
∥ha,k − hb,k∥2

]
+Bδ∥ua,k−ub,k∥2, (A.83a)

where the matrix Aδ is defined according to (3.15a) and the matrix Bδ reads
as

Bδ =

[
ǩu

σ̌zǩu +
1
4
ȟ∥Wz∥2

]
. (A.83b)

Iterating (A.83a) we hence obtain[
∥ca,k − cb,k∥2
∥ha,k − hb,k∥2

]
≤ Ak

δ

[
∥ca,0 − cb,0∥2
∥ha,0 − hb,0∥2

]
+

k−1∑
τ=0

Ak−τ−1
δ Bδ∥ua,τ − ub,τ∥2.

(A.84)
Noticing that∥∥∥∥[∥ca,τ − cb,τ∥2∥ha,τ − hb,τ∥2

]∥∥∥∥
2

=

∥∥∥∥[ ca,τ − cb,τha,τ − hb,τ

]∥∥∥∥
2

= ∥xa,τ − xb,τ∥2,
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the Schur stability of Aδ implies the existence of µAδ
> 0 and λAδ

∈ (0, 1)
such that (A.84) can be bounded as

∥xa,k − xb,k∥2 ≤ µAδ
∥xa,0 − xb,0∥2 λkAδ

+

∥∥∥∥ k−1∑
τ=0

Ak−τ−1
δ Bδ∥ua,τ − ub,τ∥2

∥∥∥∥
2

≤ µAδ
∥xa,0 − xb,0∥2 λkAδ

+
∥∥(I2,2 − Aδ)

−1Bδ

∥∥
2
∥ua,0:k − ub,0:k∥2,∞.

(A.85)

Therefore, according to Definition 2.6, the system is ℓ2-δISS with functions

β(∥xa,0 − xb,0∥2, k) = µAδ
∥xa,0 − xb,0∥2 λkAδ

, (A.86a)

γ(∥ua,0:k − ub,0:k∥2,∞) =
∥∥(I2,2 − Aδ)

−1Bδ

∥∥
2
∥ua,0:k − ub,0:k∥2,∞.

(A.86b)

A.2.8 Proof of Proposition 3.3

Let us point out that, since σ̌f > 0, σ̌z > 0, ȟ > 0, and α̌ > 0, it holds that

trace(Aδ) = σ̌f + σ̌zα̌ +
1

4
ȟ∥Uz∥2 > 0. (A.87)

Moreover,

det(Aδ) = σ̌f σ̌zα̌ +
1

4
σ̌f ȟ∥Uz∥2 − σ̌f σ̌zα̌ =

1

4
σ̌f ȟ∥Uz∥2. (A.88)

Therefore, Lemma A.1 can be invoked, which guarantees that a necessary
and sufficient condition for the Schur stability of Aδ is that the following
inequalities hold

σ̌f + σ̌zα̌ +
1

4
ȟ∥Uz∥2 − 1 <

1

4
σ̌f ȟ∥Uz∥2, (A.89a)

1

4
σ̌f ȟ∥Uz∥2 < 1. (A.89b)

Moving all the terms to the left-hand side, one obtains (3.16).
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A.2.9 Proof of Proposition 3.4

Consider (3.16a), and let us move the fourth term to the right-hand side.

σ̌f + σ̌zα̌ +
1

4
ȟ∥Uz∥2 − 1 <

1

4
σ̌f ȟ∥Uz∥2. (A.90)

Let us now replace α̌ with its definition, given in (3.15b).

σ̌f+σ̌z

(
1

4
č∥Uf∥2 + σ̌i∥Ur∥2 +

1

4
ϕ̌r∥Ui∥2

)
+

1

4
ȟ∥Uz∥2 − 1

<
1

4
σ̌f ȟ∥Uz∥2.

(A.91)

By trivial manipulations we get

σ̌f + σ̌zσ̌i∥Ur∥2 − 1

< −
(1
4
č∥Uf∥2 +

1

4
ϕ̌r∥Ui∥2

)
σ̌z −

1

4
(1− σ̌f )ȟ∥Uz∥2,

(A.92)

and since, owing to σ̌f ∈ (0, 1), the right hand side is surely negative, the
inequality (A.92) implies

σ̌f + σ̌zσ̌i∥Ur∥2 − 1 < 0, (A.93)

which is exactly the ISPS sufficient condition (3.14).

A.2.10 Proof of Lemma 3.2

The proof is straightforward from Remark 3.1. Indeed, owing to the unity-
boundedness of the input u(l)k of each layer, Lemma 3.1 can be applied
independently to each layer, which leads to (3.19) and (3.20).

A.2.11 Proof of Proposition 3.5

Owing to Remark 3.1, the proof is straightforward. Since the input of
each layer is unity-bounded, Proposition 3.1 can be applied to each layer
l ∈ {1, ..., L} of the deep LSTM individually and independently from the
others. Thus, Proposition 3.5 yields, for each layer, the invariant set X (l)

defined in (3.21b). In light of the definition of the layer’s state vector given
in (3.17c), (3.21) is an invariant set of the deep LSTM model.

A.2.12 Proof of Theorem 3.5

First, let us point out that owing to Remark 3.1, the layer-wise satisfac-
tion of Proposition 3.2 – that is, the fulfillment of condition (3.23) ∀l ∈
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{1, ..., L} – implies that each layer is ISPS. To ensure that (3.17) is ISPS,
we need however to show that the ISPS definition applies.

To this end, let us consider the l-th layer. Owing to its ISPS, the bound
(A.61) here reads as[

∥c(l)k+1∥2
∥h(l)k+1∥2

]
≤ A(l)

[
∥c(l)k ∥2
∥h(l)k ∥2

]
+B(l)

u ∥u
(l)
k ∥2 +B

(l)
b ∥b

(l)
r ∥2, (A.94a)

where matrices A(l), B(l)
u and B

(l)
b are defined analogously to (3.13) and

(A.61b), i.e.

A(l) =

[
σ̌
(l)
f σ̌

(l)
i ∥U

(l)
r ∥2

σ̌
(l)
z σ̌

(l)
f σ̌

(l)
z σ̌

(l)
i ∥U

(l)
r ∥2,

]
,

B(l)
u =

[
σ̌
(l)
i ∥W

(l)
r ∥2

σ̌
(l)
z σ̌

(l)
i ∥W

(l)
r ∥2

]
, B

(l)
b =

[
σ̌
(l)
i

σ̌
(l)
z σ̌

(l)
i

]
.

(A.94b)

Recalling the definition of the input u(l+1)
k given in (3.17b), it holds that

∥u(l+1)
k ∥2 ≤ ∥h(l)k+1∥2

≤
[
0 1

]
A(l)

[
∥c(l)k ∥2
∥h(l)k ∥2

]
+
[
0 1

]
B(l)
u ∥u

(l)
k ∥2 +

[
0 1

]
B

(l)
b ∥b

(l)
r ∥2.

(A.95)
Thus, letting Ã(l) =

[
0 1

]
A(l), B̃(l)

u =
[
0 1

]
B

(l)
u and B̃

(l)
b =

[
0 1

]
B

(l)
b ,

by iterating (A.94a) over layers l = 1, ..., L one gets

∥c(1)k+1∥2
∥h(1)k+1∥2

...

∥c(L)k+1∥2
∥h(L)k+1∥2


≤ AL



∥c(1)k ∥2
∥h(1)k ∥2

...

∥c(L)k ∥2
∥h(L)k ∥2


+BLu∥uk∥2 +BLb


∥b(1)r ∥2

...

∥b(L)r ∥2

 (A.96a)

where the matrices AL, BLu, and BLb read as follows

AL =


A(1) 02,2 ... 02,2

B
(2)
u Ã(1) A(2) ... 02,2

... . . . ...

B
(L)
u

(∏2
j=L−1 B̃

(j)
u

)
Ã(1) B

(L)
u

(∏3
j=L−1 B̃

(j)
u

)
Ã(2) ... A(L)

 ,
(A.96b)

189



Appendix A. Proofs

BLu =


B

(1)
u

B
(2)
u B̃

(1)
u

...

B
(L)
u

(∏1
j=L−1 B̃

(j)
u

)

 , (A.96c)

BLb =


B

(1)
b 02,1 ... 02,1

B
(2)
b B̃

(1)
b B

(2)
b ... 02,1

... . . . 02,1

B
(L)
b

(∏1
j=L−1 B̃

(j)
b

)
B

(L)
b

(∏2
j=L−1 B̃

(j)
b

)
... B

(L)
b

 .
(A.96d)

Then, by iterating (A.96a) over time we get

∥c(1)k ∥2
∥h(1)k ∥2

...

∥c(L)k ∥2
∥h(L)k ∥2


≤ Ak

L



∥c(1)0 ∥2
∥h(1)0 ∥2

...

∥c(L)0 ∥2
∥h(L)0 ∥2


+

k−1∑
τ=0

Ak−τ−1
L

BLu∥uτ∥2 +BLb


∥b(1)r ∥2

...

∥b(L)r ∥2




(A.97)
Let us observe that∥∥∥∥∥∥∥∥∥∥∥∥∥



∥c(1)τ ∥2
∥h(1)τ ∥2

...

∥c(L)τ ∥2
∥h(L)τ ∥2



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

x
(1)
τ

...

x
(L)
τ


∥∥∥∥∥∥∥∥
2

= ∥xτ∥2

and that, letting br = [b
(1)
r , ..., b

(L)
r ]′, it holds that∥∥∥∥∥∥∥∥


∥b(1)′r ∥2

...

∥b(L)′r ∥2


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

b
(1)
r

...

b
(L)
r


∥∥∥∥∥∥∥∥
2

= ∥br∥2.

Moreover, we point out that AL is Schur stable, since it is block-triangular
with Schur stable blocks on the diagonal. This implies that there exist
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µAL
> 0 and λAL

∈ (0, 1) such that

∥xk∥2 ≤ µAL
λkAL
∥x0∥2 +

∥∥(I2L,2L − AL)
−1BLu

∥∥
2
∥u0:k∥2,∞

+
∥∥(I2L,2L − AL)

−1BLb

∥∥
2
∥br∥2.

(A.98)

According to Definition 2.4, the deep LSTM is hence ℓ2-ISPS with

β(∥x0∥2, k) = µAL
λkAL
∥x0∥2, (A.99a)

γ(∥u0:k∥2,∞) =
∥∥(I2L,2L − AL)

−1BLu

∥∥
2
∥u0:k∥2,∞, (A.99b)

ϱ =
∥∥(I2L,2L − AL)

−1BLb

∥∥
2
∥br∥2. (A.99c)

A.2.13 Proof of Theorem 3.6

In light of Remark 3.1, the layer-wise satisfaction of Proposition 3.3, i.e.
the fulfillment of condition (3.24) ∀l ∈ {1, ..., L}, entails the δISS of each
layer. Therefore, the bound (A.83a) can be here written, for the generic
layer l, as[
∥c(l)a,k+1 − c

(l)
b,k+1∥2

∥h(l)a,k+1 − h
(l)
b,k+1∥2

]
≤ A

(l)
δ

[
∥c(l)a,k − c

(l)
b,k∥2

∥h(l)a,k − h
(l)
b,k∥2

]
+B

(l)
δ ∥u

(l)
a,k − u

(l)
b,k∥2,

(A.100a)
where matrices A(l)

δ and B
(l)
δ are defined analogously to (3.15a) and (A.83b),

respectively, i.e.

A
(l)
δ =

[
σ̌
(l)
f α̌(l)

σ̌
(l)
z σ̌

(l)
f σ̌

(l)
z α̌(l) + 1

4
ȟ(l)∥U (l)

z ∥2

]
,

B
(l)
δ =

[
ǩ
(l)
u

σ̌
(l)
z ǩ

(l)
u + 1

4
ȟ(l)∥W (l)

z ∥2

]
.

(A.100b)

The term ǩ
(l)
u appearing in (A.100b) is defined, accordingly to (A.77), as

ǩ(l)u = σ̌
(l)
i ∥W (l)

r ∥2 +
1

4
č(l)∥W (l)

f ∥2 +
1

4
ϕ̌(l)
r ∥W

(l)
i ∥2, (A.100c)

and the term α̌(l) is that defined in (3.25).
Let us now recall that, owing to (3.17b), the input to the layer l + 1 is

defined, for the two trajectories, as u(l+1)
a,k = h

(l)
a,k+1 and u(l+1)

b,k = h
(l)
b,k+1.
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Therefore, from (A.100) it follows that

∥u(l+1)
a,k − u(l+1)

b,k ∥2 ≤ ∥h
(l)
a,k+1 − h

(l)
b,k+1∥2

≤
[
0 1

]
A

(l)
δ

[
∥c(l)a,k − c

(l)
b,k∥2

∥h(l)a,k − h
(l)
b,k∥2

]
+
[
0 1

]
B

(l)
δ ∥u

(l)
a,k − u

(l)
b,k∥2.

(A.101)
Let, for the sake of compactness, Ã(l)

δ =
[
0 1

]
A

(l)
δ , B̃(l)

δ =
[
0 1

]
B

(l)
δ .

By iterating (A.100a) over layers l ∈ {1, ..., L} one gets

∥c(1)a,k+1 − c
(1)
b,k+1∥2

∥h(1)a,k+1 − h
(1)
b,k+1∥2

...

∥c(L)a,k+1 − c
(L)
b,k+1∥2

∥h(L)a,k+1 − h
(L)
b,k+1∥2


≤ ALδ



∥c(1)a,k − c
(1)
b,k∥2

∥h(1)a,k − h
(1)
b,k∥2

...

∥c(L)a,k − c
(L)
b,k ∥2

∥h(L)a,k − h
(L)
b,k ∥2


+BLδ∥ua,k − ub,k∥2

(A.102a)
where the matrices ALδ and BLδ read as

ALδ =


A

(1)
δ 02,2 ... 02,2

B
(2)
δ Ã

(1)
δ A

(2)
δ ... 02,2

... . . . ...

B
(L)
δ

(∏2
j=L−1 B̃

(j)
δ

)
Ã

(1)
δ B

(L)
δ

(∏3
j=L−1 B̃

(j)
δ

)
Ã

(2)
δ ... A

(L)
δ

 ,
(A.102b)

BLδ =


B

(1)
δ

B
(2)
δ B̃

(1)
δ

...

B
(L)
δ

(∏1
j=L−1 B̃

(j)
δ

)

 . (A.102c)

Iterating (A.102a) over time, we thus get

∥c(1)a,k − c
(1)
b,k∥2

∥h(1)a,k − h
(1)
b,k∥2

...

∥c(L)a,k − c
(L)
b,k ∥2

∥h(L)a,k − h
(L)
b,k ∥2


≤ Ak

L



∥c(1)a,0 − c
(1)
b,0∥2

∥h(1)a,0 − h
(1)
b,0∥2

...

∥c(L)a,0 − c
(L)
b,0 ∥2

∥h(L)a,0 − h
(L)
b,0 ∥2


+

k−1∑
τ=0

Ak−τ−1
L BLδ∥ua,τ − ub,τ∥2.

(A.103)
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Observing that∥∥∥∥∥∥∥∥∥∥∥∥∥



∥c(1)a,τ − c(1)b,τ∥2
∥h(1)a,τ − h(1)b,τ∥2

...

∥c(L)a,τ − c(L)b,τ ∥2
∥h(L)a,τ − h(L)b,τ ∥2



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

x
(1)
a,τ − x(1)b,τ

...

x
(L)
a,τ − x(L)b,τ


∥∥∥∥∥∥∥∥
2

= ∥xa,τ − xb,τ∥2,

and noticing that ALδ is Schur stable (since it it is block-triangular with
Schur stable blocks on the main diagonal), there exist µALδ

> 0 and λALδ
∈

(0, 1) such that

∥xa,k − xb,k∥2 ≤ µALδ
λkALδ
∥xa,0 − xb,0∥2

+
∥∥(I2L,2L − ALδ)

−1BLδ

∥∥
2
∥ua,0:k − ub,0:k∥2,∞.

(A.104)
Therefore, in light of Definition 2.6, the deep LSTM is ℓ2-δISS with

β(∥xa,0 − xb,0∥2, k) = µALδ
λkALδ
∥xa,0 − xb,0∥2, (A.105a)

γ(∥ua,0:k − ub,0:k∥2,∞) =
∥∥(I2L,2L − ALδ)

−1BLδ

∥∥
2
∥ua,0:k − ub,0:k∥2,∞.

(A.105b)

A.2.14 Proof of Lemma 3.3

Consider the j-th state component of the GRU, and let a = [zk]j , the state
equation associated to such component reads as

[xk+1]j = a[xk]j + (1− a)[rk]j. (A.106)

In light of the boundedness of the activation functions, i.e. σ(·) ∈ (0, 1)
and ϕ(·) ∈ (−1, 1), it holds that a ∈ (0, 1) and [rk]j ∈ (−1, 1). Hence,
(A.106) is a convex combination between the term [xk]j and [rk]j . Since
|[rk]j|< 1 ≤ x̌, this implies that |[xk+1]j|≤ x̌. By applying this argument
to all the components j, it follows that ∥xk+1∥∞ ≤ x̌, i.e. xk+1 ∈ X .

A.2.15 Proof of Lemma 3.4

First, let us note that in the trivial case x0 ∈ X̃ , xk ∈ X̃ for any k ≥ 0,
since by Lemma 3.3 X̃ is an invariant set. We hence focus on the case
x0 ∈ X \ X̃ , i.e., 1 < ∥x0∥∞ ≤ x̌.
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We now prove the first claim of the lemma. To this end, let us consider
the generic state component j ∈ {1, ..., nc}. Then, the state equation of
such component reads as

[xk+1]j = [zk]j[xk]j + (1− [zk]j)[rk]j (A.107)

Notably, owing to the boundedness of σ and ϕ, it holds that [zk]j ∈ (0, 1)
and [rk]j ∈ (−1, 1).

More specifically, noticing that by Lemma 3.3 [xk]j ≤ ∥xk∥∞ ≤ x̌, and
recalling the input boundedness assumption, i.e. ∥uτ∥∞ ≤ ǔ for any τ , we
can ensure existence of some strictly positive

¯
z, z̄, and

¯
ε such that, for any

k ≥ 0 and any state component j ∈ {1, ..., nc},

0 <
¯
z ≤ [zk]j ≤ z̄ < 1, (A.108a)
|[rk]j| ≤ 1−

¯
ε < 1. (A.108b)

These bounds can be constructed leveraging the fact that σ and ϕ are
strictly increasing and Lipschitz continuous. The following chain of in-
equality thus holds

[zk]j ≤ ∥zk∥∞

≤ max
u

∥∥∥∥∥∥∥σ
[Wz Uz bz

]  u

xk

1nx,1



∥∥∥∥∥∥∥
∞

≤ max
u

σ

∥∥Wz Uz ∥xk∥∞ bz
∥∥
∞

∥∥∥∥∥∥∥
u

1nx,1

1nx,1

∥∥∥∥∥∥∥
∞


≤ σ

(
ǔ
∥∥Wz Uzx̌ bz

∥∥
∞

)
= z̄

(A.109a)

Moreover, owing to the simmetry of σ with respect to the point (0, 1
2
),

[zk]j ≥ 1− σ
(
ǔ
∥∥Wz Uzx̌ bz

∥∥
∞

)
=
¯
z (A.109b)

By similar arguments it is easy to show that

|[rk]j|≤ ϕ(ǔ
∥∥Wr Urx̌ br

∥∥
∞) = 1−

¯
ε. (A.109c)

Let us now take the absolute value of both sides of (A.107). We thus get

|[xk+1]j| ≤ [zk]j |[xk]j|+(1− [zk]j)|[rk]j|. (A.110)
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If the component j is such that |[xk]j|≤ 1, Lemma 3.3 guarantees that
|[xτ ]j|≤ 1 for any τ ≥ k. If instead 1 < |[xk]j|≤ x̌, by subtracting |[xk]j|
from both sides of (A.110), we get

|[xk+1]j|−|[xk]j|≤ −(1− [zk]j)|[xk]j|+(1− [zk]j) |[rk]j|. (A.111)

Then, recalling that |[rk]j|≤ 1−
¯
ε, since |[xk]j|> 1 implies−|[xk]j|+1 < 0,

the following chain of inequalities holds

|[xk+1]j|−|[xk]j| ≤
(
1− [zk]j

) (
− |[xk+1]j|+|[rk]j|

)
<
¯
z (−|[xk]j|+1−

¯
ε)

< −
¯
z
¯
ε.

(A.112)

This entails that |[xk+1]j|< |[xk]j|. Hence, applying this argument for any
state component, it follows that as long as ∥xk∥∞ > 1, ∥xk+1∥∞ < ∥xk∥∞,
which proves the first claim.

To prove the second claim we notice that, by iterating (A.112) over time,
we get

k−1∑
τ=0

(
|[xτ+1]j|−|[xτ ]j|

)
≤ −k

¯
z
¯
ε. (A.113)

Thus, letting

k̄j =

{ ⌈
|[x0]j |−1

¯
z
¯
ε

⌉
if |[x0]j|> 1

0 if |[x0]j|≤ 1
, (A.114)

we prove the second claim by taking

k̄ = max
j
k̄j ≤

⌈
x̌− 1

¯
z
¯
ε

⌉
. (A.115)

Finally, we show that the convergence of each state component [xk]j
into [X ]j = [−1, 1] is exponential. To this end, let us write the evolution of
(A.107) over the time index k as [xk]j = [xa,k]j + [xb,k]j , where

[xa,k]j =

( k−1∏
τ=0

[zτ ]j

)
[x0]j, (A.116a)

[xb,k]j =
k−1∑
τ=0

( k−1∏
h=τ+1

[zh]j

)
(1− [zτ ]j) [rτ ]j, (A.116b)

where the nonlinearity of the model is buried in the nonlinear dependency
of zk upon xk = xa,k + xb,k and uk. Despite this nonlinear dependence,
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(A.116) can be exploited to characterize the state trajectories of the GRU,
as explained below.

First, we point out that the term [xa,k]j converges to zero. Indeed, ow-
ing to the bounds (A.109), by taking the absolute value of both sides of
(A.116a) it follows that

|[xa,k]j|≤

∣∣∣∣∣
k−1∏
τ=0

[zτ ]j

∣∣∣∣∣ |[x0]j| ≤ z̄k|[x0]j|, (A.117)

which clearly converges to zero as k → ∞. Concerning [xb,k]j , by taking
the absolute values of both sides of taking the absolute value of (A.116b),
and applying once more the bounds (A.109), one gets

|[xb,k]j| ≤

∣∣∣∣∣
k−1∑
τ=0

[
k−1∏

h=τ+1

[zh]j −
k−1∏
h=τ

[zh]j

]
[rτ ]j

∣∣∣∣∣
≤

[
1−

k−1∏
τ=0

[zτ ]j

]
(1−

¯
ε)

≤
(
1−

¯
zk
)
(1−

¯
ε).

(A.118)

By the triangular inequality |[xk]j|≤ |[xa,k]j|+|[xb,k]j|, which leads to

|[xk]j|≤ z̄k |[x0]j|+
(
1−

¯
zk
)
(1−

¯
ε). (A.119)

Recalling (A.108), this proves the third and last claim of the Lemma.

A.2.16 Proof of Lemma 3.5

First, let us compute the bound of the gate zk. In light of the definition of zk
given in (3.26b), since the sigmoidal activation function is strictly increas-
ing and Lipschitz continuous, the following chain of inequality holds for
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any component j ∈ {1, ..., nc}
[zk]j ≤ |[zk]j|≤ ∥zk∥∞

≤

∥∥∥∥∥∥∥max
u∈U

σ

[Wz Uz bz]

 u

xk

1nc,1



∥∥∥∥∥∥∥
∞

≤ max
u∈U

σ


∥∥∥∥∥∥∥[Wz Uz bz]

 u

xk

1nc,1


∥∥∥∥∥∥∥
∞


≤ max

u∈U
σ

∥Wz Uzx̌ bz∥∞

∥∥∥∥∥∥∥
 u

1nc,1

1nc,1


∥∥∥∥∥∥∥
∞


≤ σ(∥Wz Uzx̌ bz∥∞) = σ̌z,

(A.120a)

where Assumption 3.1 and Lemma 3.3 have been exploited. Owing to the
simmetry of σ with respect to point (0, 1

2
) it is easy to verify that

[zk]j ≥ σ(−∥Wz Uzx̌ bz∥∞) = 1− σ̌z. (A.120b)

By applying the same chain of inequalities to fk, one gets

[fk]j ≤ σ(∥Wf Uf x̌ bf∥∞) = σ̌f ,

[fk]j ≥ σ(−∥Wf Uf x̌ bf∥∞) = 1− σ̌f .
(A.121)

Concerning the squashed input rk, by noticing that σ̌f < 1, since ϕ is
monotonically increasing and Lipschitz continuous it holds that

[rk]j ≤ ∥rk∥∞

≤

∥∥∥∥∥∥∥max
u∈U

ϕ

[Wr Ur br]

 u

fk ◦ xk
1nc,1



∥∥∥∥∥∥∥
∞

≤ max
u∈U

ϕ


∥∥∥∥∥∥∥[Wr Ur br]

 u

fk ◦ xk
1nc,1


∥∥∥∥∥∥∥
∞


≤ max

u∈U
ϕ

∥Wr Urσ̌f x̌ br∥∞

∥∥∥∥∥∥∥
 u

1nc,1

1nc,1


∥∥∥∥∥∥∥
∞


≤ ϕ(∥Wr Urx̌ br∥∞) = ϕ̌r.

(A.122a)
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In light of the simmetry of ϕ with respect to the origin, we can also write

[rk]j ≥ ϕ(−∥Wr Urx̌ br∥∞) = −ϕ̌r. (A.122b)

The Lemma is thus proven.

A.2.17 Proof of Theorem 3.7

Case a. x0 ∈ X̃ ⊆ X
Consider the j-th component of xk. From (3.26) it follows that

[xk+1]j = [zk]j [xk]j + (1− [zk]j) [rk]j.

Taking the absolute value, and recalling that [zk]j ∈ (0, 1), the previous
equality becomes

|[xk+1]j|≤ [zk]j |[xk]j|+(1− [zk]j) |[rk]j|. (A.123)

Under Assumption 3.1, in light of (3.28), x0 ∈ X̃ implies ∥xk∥∞ ≤ 1
for any k. The gates’ bounds reported in Remark 3.3 hence apply.

Since by definition |[v]j|≤ ∥v∥∞, inequality (A.123) can thus be recast
as

|[xk+1]j|≤ ∥xk+1∥∞ ≤ [zk]j∥xk∥∞ + (1− [zk]j)∥rk∥∞ (A.124)

Recalling the definition of rk in (3.26b), since ϕ is 1-Lipschitz

∥rk∥∞ ≤ ∥Wr∥∞∥uk∥∞ + ∥Ur∥∞∥fk∥∞∥xk∥∞ + ∥br∥∞
≤ ∥Wr∥∞∥uk∥∞ + ∥Ur∥∞σ̃f∥xk∥∞ + ∥br∥∞.

(A.125)

The inequality (A.124) can be thus bounded as

|[xk+1]j|≤
(
[zk]j + (1− [zk]j)∥Ur∥∞σ̃f

)
∥xk∥∞

+ (1− [zk]j)∥Wr∥∞∥uk∥∞ + (1− [zk]j)∥br∥∞
(A.126)

In light of (3.32a), it holds that [zk]j ∈ [1− σ̃z, σ̃z] ⊂ (0, 1). Therefore,
(3.33) implies that there exists some λ ∈ (0, 1) such that

[zk]j + (1− [zk]j)∥Ur∥∞σ̃f ≤ λ.

This allows us to re-write (A.126) as

∥xk+1∥∞ ≤ λ∥xk∥∞ + σ̃z∥Wr∥∞∥uk∥∞ + σ̃z∥br∥∞. (A.127)

198



A.2. Proofs of Chapter 3

Iterating (A.127), it is possible to derive that

∥xk∥∞ ≤ λk∥x0∥∞ +
σ̃z

1− λ
∥Wr∥∞∥u0:k∥∞,∞ +

σ̃z
1− λ

∥br∥∞, (A.128)

where the coefficients of ∥u0:k∥∞,∞ and of ∥br∥∞ have been majorized by
the geometric series’ limit, i.e.

∑k−1
t=0 λ

t ≤ 1
1−λ . According to Defini-

tion 2.4, the system is thus ℓ∞-ISPS with functions

β(∥x0∥∞, k) = λk∥x0∥∞,

γ(∥u0:k∥∞,∞) =
σ̃z

1− λ
∥Wr∥∞∥u0:k∥∞,∞,

ϱ =
σ̃z

1− λ
∥br∥∞.

Case b. x̄ ∈ X \ X̃
In light of Lemma 3.4, the state trajectory xk converges into the invariant

set X̃ within a finite time instant k̄. Since for k < k̄ the convergence into X̃
is exponential regardless of the input sequence applied, for any λ ∈ (0, 1)
there exists µ > 0, sufficiently large, such that it holds

∥xk∥∞ ≤ µλk∥x0∥∞. (A.129)

As soon as the state enters the invariant set X̃ , i.e. at k = k̄, case a applies.
Within such set, owing to (A.128), for k ≥ k̄ it holds that

∥xk∥∞ ≤λk−k̄∥xk̄∥∞ +
σ̃z

1− λ
∥Wr∥∞∥uk̄:k∥∞,∞ +

σ̃z
1− λ

∥br∥∞.
(A.130)

Noticing that ∥uk̄:k∥∞,∞ ≤ ∥u0:k∥∞,∞, by combining (A.129) and (A.130),
it follows that system is ℓ∞-ISPS with functions

β(∥x0∥∞, k) = µλk∥x0∥∞ (A.131a)

γ(∥u0:k∥∞,∞) =
σ̃z

1− λ
∥Wr∥∞∥u0:k∥∞,∞, (A.131b)

ϱ =
σ̃z

1− λ
∥br∥∞. (A.131c)

A.2.18 Proof of Theorem 3.8

Consider two state trajectories xa,k and xb,k of the shallow GRU (3.26),
defined as xa,k = xk(xa,0, ua,0:k) and xb,k = xk(xb,0, ub,0:k), where xa,0 ∈ X
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and xb,0 ∈ X denote the pair initial state, and ua,0:k ∈ U0:k and ub,0:k ∈ U0:k
denote the pair of input sequences. Let, for the sake of compactness,

za,k = σ(Wzua,k + Uzxa,k + bz) zb,k = σ(Wzub,k + Uzxb,k + bz),

fa,k = σ(Wfua,k + Ufxa,k + bf ) fb,k = σ(Wfub,k + Ufxb,k + bf ),

ra,k = ϕ(Wrua,k + Urfa,k ◦ xa,k + br) rb,k = ϕ(Wrub,k + Urfb,k ◦ xb,k + br).
(A.132)

In light of the state equation (3.26a), the j-th component of the differ-
ence xa,k+1 − xb,k+1, with j ∈ {1, ..., nc}, reads as

[xa,k+1]j − [xb,k+1]j = [za,k]j[xa,k]j + (1− [za,k]j)[ra,k]j

− [zb,k]j[xb,k]j − (1− [zb,k]j)[rb,k]j
(A.133)

By summing and subtracting the terms [za,k]j[xb,k]j and (1− [za,k]j)[rb,k]j ,
and by trivial manipulations, we get

[xa,k+1]j − [xb,k+1]j = [za,k]j
(
[xa,k]j − [xb,k]j

)
+ (1− [za,k]j)

(
[ra,k]j − [rb,k]j

)
+
(
[za,k]j − [zb,k]j

)
[xb,k]j

+ ([za,k]j − [zb,k]j)[rb,k]j.

(A.134)

Recalling that [za,k]j ∈ (0, 1), and taking the absolute value of both sides
of (A.134), one thus gets∣∣xa,k+1]j − [xb,k+1]j

∣∣ ≤ [za,k]j
∣∣[xa,k]j − [xb,k]j

∣∣
+ (1− [za,k]j)

∣∣[ra,k]j − [rb,k]j
∣∣

+ |[xb,k]j|
∣∣[za,k]j − [zb,k]j

∣∣
+ |[rb,k]j|

∣∣[za,k]j − [zb,k]j
∣∣.

(A.135)

Owing to Lemma 3.3, and by its definition (3.27), it holds that

|[xa,k]j| ≤ ∥xa,k∥∞ ≤ x̌ |[xb,k]j| ≤ ∥xb,k∥∞ ≤ x̌. (A.136a)

Moreover, in light of the unity-boundedness of the input, the bounds intro-
duced in Lemma 3.5 hold, i.e.

|[za,k]j| ≤ ∥za,k∥∞ ≤ σ̌z |[zb,k]j| ≤ ∥zb,k∥∞ ≤ σ̌z, (A.136b)
|[fa,k]j| ≤ ∥fa,k∥∞ ≤ σ̌f |[fb,k]j| ≤ ∥fb,k∥∞ ≤ σ̌f , (A.136c)

|[ra,k]j| ≤ ∥ra,k∥∞ ≤ ϕ̌r |[rb,k]j| ≤ ∥rb,k∥∞ ≤ ϕ̌r, (A.136d)

where σ̌z, σ̌f , and ϕ̌r are defined in (3.30).

200



A.2. Proofs of Chapter 3

In order to bound the term |[za,k]j − [zb,k]j|, we recall that the sigmoidal
activation function is 1

4
-Lipschitz. Therefore, by standard norms arguments,

|[za,k]j − [zb,k]j| ≤ ∥za,k − zb,k∥∞

≤ 1

4

∥∥Wz(ua,k − ub,k) + Uz(xa,k − xb,k)
∥∥
∞

≤ 1

4
∥Wz∥∞∥ua,k − ub,k∥∞ +

1

4
∥Uz∥∞∥xa,k − xb,k∥∞.

(A.137)
Similarly, one gets that

|[fa,k]j − [fb,k]j| ≤ ∥fa,k − fb,k∥∞

≤ 1

4
∥Wf∥∞∥ua,k − ub,k∥∞ +

1

4
∥Uf∥∞∥xa,k − xb,k∥∞.

(A.138)
We now aim to bound the term |[ra,k]j− [rb,k]j|. Since ϕ is 1-Lipschitz, and
in light of the bounds (A.136),(A.137), and (A.138), the following chain of
inequalities holds∣∣[ra,k]j − [rb,k]j

∣∣ ≤ ∥∥ra,k − rb,k∥∥∞
≤ ∥Wr(ua,k − ub,k) + Ur(fa,k ◦ xa,k − fb,k ◦ xb,k)∥∞
≤ ∥Wr∥∞∥ua,k − ub,k∥∞

+ ∥Ur∥∞∥(fa,k − fb,k) ◦ xa,k + fb,k ◦ (xa,k − xa,k)∥∞
≤ ∥Wr∥∞∥ua,k − ub,k∥∞

+ ∥Ur∥∞
(
∥fa,k − fb,k∥∞∥xa,k∥∞ + ∥fb,k∥∞∥xa,k − xb,k∥∞

)
≤ ∥Wr∥∞∥ua,k − ub,k∥∞ +

1

4
x̌∥Ur∥∞∥Wf∥∞∥ua,k − ub,k∥∞

+
1

4
x̌∥Ur∥∞∥Uf∥∞∥xa,k − xb,k∥∞

+ σ̌f∥Ur∥∞∥xa,k − xb,k∥∞

≤ ∥Ur∥∞
(
1

4
x̌∥Uf∥∞ + σ̌f

)
∥xa,k − xb,k∥∞

+

(
∥Wr∥∞ +

1

4
x̌∥Ur∥∞∥Wf∥∞

)
∥ua,k − ub,k∥∞.

(A.139)
Applying the bounds (A.136)-(A.139) to the inequality (A.135) we ob-

tain

|[xa,k+1]j − [xb,k+1]j|≤ κx∥xa,k − xb,k∥∞ + κu∥ua,k − ub,k∥∞, (A.140a)
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where κx and κu are defined as

κx =[za,k]j +
1

4
(x̌+ ϕ̌r)∥Uz∥∞ + (1− [za,k]j)∥Ur∥∞

(1
4
x̌∥Uf∥∞ + σ̌f

)
,

κu =
1

4
(x̌+ ϕ̌r)∥Wz∥∞ + (1− [za,k]j)

(
∥Wr∥∞ +

1

4
x̌∥Ur∥∞∥Wf∥∞

)
.

(A.140b)
We now show that the condition (3.34) implies the existence of some

λδ ∈ (0, 1) such that 0 ≤ κx ≤ λδ < 1, and that this, in turn, implies the
δISS of the system. To this end, let us consider the inequality κx < 1, i.e.

[za,k]j +
1

4
(x̌+ ϕ̌r)∥Uz∥∞ + (1− [za,k]j)∥Ur∥∞

(1
4
x̌∥Uf∥∞ + σ̌f

)
< 1.

(A.141)
Moving [za,k]j to the right-hand side, and dividing by 1 − [za,k]j (which is
surely positive) one obtains

1

4

x̌+ ϕ̌r
1− [za,k]j

∥Uz∥∞ + ∥Ur∥∞
(1
4
x̌∥Uf∥∞ + σ̌f

)
< 1. (A.142)

We now observe that, since [za,k]j ∈ (1 − σ̌z, σ̌z), (A.142) surely holds if
the following condition is fulfilled

1

4

x̌+ ϕ̌r
1− σ̌z

∥Uz∥∞ + ∥Ur∥∞
(1
4
x̌∥Uf∥∞ + σ̌f

)
< 1, (A.143)

which is equivalent to condition (3.34).
Therefore, since (A.140) holds for any component j, for any [za,k]j it

holds that κx ≤ λδ < 1, we can write

∥xa,k+1 − xb,k+1∥∞ ≤ λδ∥xa,k − xb,k∥∞ + κ̌u∥ua,k − ub,k∥∞, (A.144a)

where κ̌u is the supremum of κu, computed as

κ̌u =
1

4
(x̌+ ϕ̌r)∥Wz∥∞ + σ̌z

(
∥Wr∥∞ +

1

4
x̌∥Ur∥∞∥Wf∥∞

)
. (A.144b)

By iterating (A.144a) over the time index k, it follows that

∥xa,k − xb,k∥∞ ≤ λkδ∥xa,0 − xb,0∥∞ +
k−1∑
τ=0

λk−τ−1
δ κ̌u∥ua,τ − ub,τ∥∞

≤ λkδ∥xa,0 − xb,0∥∞ +
κ̌u

1− λδ
∥ua,0:k − ub,0:k∥∞,∞,

(A.145)
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where the geometric series limit has been exploited to bound the second
term. Therefore, according to Definition 2.6, the system is ℓ∞-δISS with
functions

β(∥xa,0 − xb,0∥∞, k) = λkδ∥xa,0 − xb,0∥∞, (A.146a)

γ(∥ua,0:k − ub,0:k∥∞,∞) =
κ̌u

1− λδ
∥ua,0:k − ub,0:k∥∞,∞. (A.146b)

A.2.19 Proof of Proposition 3.6

By definition of σ̌z and σ̃z, see (3.30) and (3.31), it follows that

0 < 1− σ̌z ≤ 1− σ̃z ≤ σ̃z ≤ σ̌z < 1.

The same relationship holds between σ̌f and σ̃f . Hence, since ∥Uz∥∞ ≥ 0
and x̌ ≥ 1, from (3.34) and (3.35) it follows that

∥Ur∥∞
(1
4
∥Uf∥∞ + σ̃f

)
≤ ∥Ur∥∞

(1
4
x̌∥Uf∥∞ + σ̌f

)
< 1− 1

4

x̌+ ϕ̌r
1− σ̌z

∥Uz∥∞

≤ 1− 1

4

1 + ϕ̃r
1− σ̃z

∥Uz∥∞ < 1.

(A.147)

Noting that 1
4
∥Uf∥∞ ≥ 0, (A.147) entails that

∥Ur∥∞ σ̃f < 1, (A.148)

which is the ISPS condition (3.33).

A.2.20 Proof of Lemma 3.6

Consider the first layer, l = 1. Since x(1)k ∈ X (1), Lemma 3.3 implies
that X (1) is an invariant set of the state component x(1)k . The second layer,
l = 2, is thus characterized by an input bounded by x̌(1). Since x(2)k ∈
X (2), Lemma 3.3 entails that X (2) is an invariant set of x(2)k . Iterating this
argument, we show that ∀l ∈ {1, ..., L}, X (l) is the invariant set of x(l)k . By
recalling (3.36b) and (3.37a), we can conclude that the Cartesian product
of these sets, i.e. X , is an invariant set of the state vector xk.
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A.2.21 Proof of Lemma 3.7

The strategy adopted to prove this Lemma is to show that Lemma 3.4 can
be applied layer-wise.

Let us therefore consider the first layer (l = 1). Then, since u(1)k = uk is
finite, Lemma 3.4 can be straightforwardly applied. Concerning the second
layer (l = 2), as pointed out in (3.38), its input is bounded as ∥u(2)k ∥∞ ≤
x̌(1). Lemma 3.4 can therefore be applied to the second layer using such
input bound. Iterating this argument to all layers we can easily prove all the
claims of this Lemma.

Indeed, from the first claim of Lemma 3.4 we get that if x(l)0 ∈ X (l) \
X̃ (l), then ∥x(l)k ∥∞ is strictly decreasing until x(l)k ∈ X̃ (l). By noting that
∥xk∥∞ = maxl ∥x(l)k ∥∞, this implies that ∥xk∥∞ is strictly decreasing until
xk ∈ X̃ , which proves the first claim.

From the second claim of Lemma 3.4 we get that the state of each layer
l ∈ {1, ..., L} converges into X̃ (l) in finite time, i.e., within k̄(l) steps.
Hence, letting k̄ = maxl k̄

(l), for any k ≥ k̄ it surely holds that xk ∈ X̃ ,
which proves the second claim.

Lastly, in light of (3.36b), the third claim of Lemma 3.4 straightfor-
wardly implies the third claim of Lemma 3.7.

A.2.22 Proof of Lemma 3.8

Let us consider the generic layer l ∈ {1, ..., L}. We observe that, in view
of (3.38), it holds that ∥u(l)k ∥∞ ≤ x̌(l−1), where for consistency we de-
note ∥u(1)k ∥∞ = ∥uk∥∞ ≤ x̌(0) = 1, see Assumption 3.1. Therefore,
since σ is strictly increasing and Lipschitz-continuous, each component
j ∈ {1, ..., n(l)

c } can be bounded as follows

[z
(l)
k ]j ≤ |[z(l)k ]j|≤ ∥z(l)k ∥∞

≤

∥∥∥∥∥∥∥ max
u:∥u∥∞≤x̌(l−1)

σ

[W (l)
z U (l)

z b(l)z ]

 u

x
(l)
k

1
n
(l)
c ,1



∥∥∥∥∥∥∥
∞

≤ max
ũ:∥ũ∥∞≤1

σ

∥W (l)
z x̌(l−1) U (l)

z x̌(l) b(l)z ∥∞

∥∥∥∥∥∥∥
 ũ

1
n
(l)
c ,1

1
n
(l)
c ,1


∥∥∥∥∥∥∥
∞


≤ σ(∥W (l)

z x̌(l−1) U (l)
z x̌(l) b(l)z ∥∞) = σ̌(l)

z ,
(A.149a)
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where Lemma 3.6 has also been exploited. Moreover, since σ is symmetric
with respect to point (0, 1

2
),

[z
(l)
k ]j ≥ σ(−∥W (l)

z x̌(l−1) U (l)
z x̌(l) b(l)z ∥∞) = 1− σ̌(l)

z . (A.149b)

By similar arguments, the gate f (l)
k can be bounded as

[f
(l)
k ]j ≤ σ(∥W (l)

f x̌(l−1) U
(l)
f x̌(l) b

(l)
f ∥∞) = σ̌

(l)
f ,

[f
(l)
k ]j ≥ σ(−∥W (l)

f x̌(l−1) U
(l)
f x̌(l) b

(l)
f ∥∞) = 1− σ̌(l)

f .
(A.150)

Therefore, being ∥f (l)
k ∥∞ ≤ σ̌

(l)
f , the following chain of inequalities holds

[r
(l)
k ]j ≤ ∥r(l)k ∥∞

≤

∥∥∥∥∥∥∥ max
u:∥u∥∞≤x̌(l−1)

ϕ

[W (l)
r U (l)

r b(l)r ]

 u

f
(l)
k ◦ x

(l)
k

1
n
(l)
c ,1



∥∥∥∥∥∥∥
∞

≤ max
ũ:∥ũ∥∞≤1

ϕ

∥W (l)
r x̌(l) U (l)

r σ̌
(l)
f x̌

(l) b(l)r ∥∞

∥∥∥∥∥∥∥
 ũ

1
n
(l)
c ,1

1
n
(l)
c ,1


∥∥∥∥∥∥∥
∞


≤ ϕ(∥W (l)

r x̌(l−1) U (l)
r x̌(l) b(l)r ∥∞) = ϕ̌(l)

r .
(A.151a)

In light of the simmetry of ϕ with respect to the origin, we can also write

[r
(l)
k ]j ≥ ϕ(−∥W (l)

r x̌(l−1) U (l)
r x̌(l) b(l)r ∥∞) = −ϕ̌(l)

r . (A.151b)

A.2.23 Proof of Theorem 3.9

Consider the generic layer l ∈ {1, ..., L}. We observe that, in light of the
definition of u(l)k , owing to Lemma 3.6 and Assumption 3.1,

u
(l)
k ∈ U

(l) =

{ U if l = 1,

X (l−1) if l ∈ {2, ..., L}.
(A.152)

That is, ∥u(l)k ∥∞ ≤ x̌(l−1), where for the sake of consistency, we denote
∥u(1)k ∥∞ = ∥uk∥∞ ≤ x̌(0) = 1. Along the lines of the proof of Theorem 3.7,
we prove this theorem in two steps.
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Case a. x0 ∈ X̃ ⊆ X
Since ∥x0∥∞ = maxl∈{1,...,L} ∥x(l)0 ∥∞ ≤ 1, Remark 3.5 applies, i.e. the

gates of each layer can be bounded as in (3.42)-(3.43). Hence, along the
lines of Case a of Theorem 3.7’s proof, by adopting a suitable notation we
get that

|[x(l)k+1]j|≤
(
[z

(l)
k ]j + (1− [z

(l)
k ]j)∥U (l)

r ∥∞σ̃
(l)
f

)
∥x(l)k ∥∞

+ (1− [z
(l)
k ]j)∥W (l)

r ∥∞∥u
(l)
k ∥∞ + (1− [z

(l)
k ]j)∥b(l)r ∥∞

(A.153)
for any component j ∈ {1, ..., n(l)

c }. Owing to (3.43a) we can write [z(l)k ]j ∈
[1− σ̃(l)

z , σ̃
(l)
z ] ⊂ (0, 1). The fulfillment of condition (3.44) thus implies the

existence of λ(l) ∈ (0, 1) such that

∥x(l)k+1∥∞ ≤ λ(l)∥x(l)k ∥∞ + g̃(l)u ∥u
(l)
k ∥∞ + g̃

(l)
b ∥b

(l)
r ∥∞, (A.154a)

where, for compactness,

g̃(l)u = σ̃(l)
z ∥W (l)

r ∥∞,
g̃
(l)
b = σ̃(l)

z .
(A.154b)

Since (A.154a) holds for each layer, recalling the definition of u(l)k we
can write
∥x(1)k+1∥∞
∥x(2)k+1∥∞

...

∥x(L)k+1∥∞

 ≤ HL


∥x(1)k ∥∞
∥x(2)k ∥∞

...

∥x(L)k ∥∞

+GLu∥uk∥∞+GLb


∥b(1)r ∥∞
∥b(2)r ∥∞

...

∥b(L)r ∥∞

 , (A.155a)

where, HL, GLu, and GLu read as

HL =


λ(1) 0 ... 0

g̃
(2)
u λ(1) λ(2) ... 0

... . . . ...(∏2
j=L g̃

(j)
u

)
λ(1)

(∏3
j=L g̃

(j)
u

)
λ(2) ... λ(L)

 , (A.155b)
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GLu =


g̃
(1)
u

g̃
(2)
u g̃

(1)
u

...∏1
j=L−1 g̃

(j)
u

 , GLb =


g̃
(1)
u 0 ... 0

g̃
(2)
u g̃

(1)
u g̃

(2)
u ... 0

... . . . ...∏1
j=L g̃

(j)
u

∏2
j=L g̃

(j)
u ... g̃

(L)
u

 .
(A.155c)

By iterating (A.155) over the time index k we obtain
∥x(1)k ∥∞
∥x(2)k ∥∞

...

∥x(L)k ∥∞

 ≤ Hk
L


∥x(1)0 ∥∞
∥x(2)0 ∥∞

...

∥x(L)0 ∥∞

+
k−1∑
τ=0

Hτ−k−1
L

GLu∥uτ∥∞ +GLb


∥b(1)r ∥∞
∥b(2)r ∥∞

...

∥b(L)r ∥∞



 .

(A.156)
At this stage, let us notice that∥∥∥∥∥∥∥∥∥∥∥


∥x(1)k ∥∞
∥x(2)k ∥∞

...

∥x(L)k ∥∞



∥∥∥∥∥∥∥∥∥∥∥
∞

= ∥xk∥∞,

∥∥∥∥∥∥∥∥∥∥∥


∥b(1)r ∥∞
∥b(2)r ∥∞

...

∥b(L)r ∥∞



∥∥∥∥∥∥∥∥∥∥∥
∞

= ∥br∥∞,

where br =
[
b
(1)′
r , ..., b

(L)′
r

]′. Then, since HL is diagonal, the elements on
the main diagonal are the eigenvalues of the matrix, and thus HL is Schur
stable. This implies that there exist µHL

> 0 such that, letting λHL
=

maxl∈{1,...,L} λ
(l) ∈ (0, 1), from (A.156) it follows that

∥xk∥∞ ≤ µHL
λkHL
∥x0∥∞ + ∥(IL,L − HL)

−1GLu∥∞∥u0:k∥∞,∞

+ ∥(IL,L − HL)
−1GLb∥∞∥br∥∞.

(A.157)

According to Definition 2.4, this implies that the system is ℓ∞-ISPS with

β(∥x0∥∞, k) = µHL
λkHL
∥x0∥∞

γ(∥u0:k∥∞) = ∥(IL,L − HL)
−1GLu∥∞∥u0:k∥∞,∞

ϱ = ∥(IL,L − HL)
−1GLb∥∞∥br∥∞.

Case b. x0 ∈ X \ X̃
In light of Lemma 3.7, each component of [x(l)k ]j into [−1, 1] is exponen-

tial and happens in a finite number of time-steps, denoted by k̄, regardless
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of the input sequence applied. Therefore, for any λHL
∈ (0, 1) there exists

a sufficiently large µ > 0 such that, ∀k < k̄,

∥xk∥∞ ≤ µλkHL
∥x0∥∞. (A.158)

Then, for any k ≥ k̄, since xk ∈ X̃ , Case a applies, i.e.

∥xk∥∞ ≤ µHL
λk−k̄HL
∥xk̄∥∞ + ∥(IL,L − HL)

−1GLu∥∞∥uk̄:k∥∞
+ ∥(IL,L − HL)

−1GLb∥∞∥br∥∞.
(A.159)

Thus, noticing that ∥uk̄:k∥∞,∞ ≤ ∥u0:k∥∞,∞, and letting µ̃HL
= max(µHL

, µ),
by combining (A.158) and (A.159) we get that the deep GRU is ℓ∞-ISPS
with functions

β(∥x0∥∞, k) = µ̃HL
λkHL
∥x0∥∞ (A.160a)

γ(∥u0:k∥∞) = ∥(IL,L − HL)
−1GLu∥∞∥u0:k∥∞,∞ (A.160b)

ϱ = ∥(IL,L − HL)
−1GLb∥∞∥br∥∞. (A.160c)

A.2.24 Proof of Theorem 3.10

Consider two initial states xa,0 ∈ X and xb,0 ∈ X , and two input sequences
ua,0:k ∈ U0:k and ub,0:k ∈ U0:k. The goal is to show that Definition 2.6
applies. To this end, consider the generic layer l ∈ {1, ..., L}. Along the
lines of the proof reported in Appendix A.2.18, we define

z
(l)
a,k = σ(W (l)

z u
(l)
a,k + U (l)

z x
(l)
a,k + b(l)z ),

z
(l)
b,k = σ(W (l)

z u
(l)
b,k + U (l)

z x
(l)
b,k + b(l)z ),

f
(l)
a,k = σ(W

(l)
f u

(l)
a,k + U

(l)
f x

(l)
a,k + b

(l)
f ),

f
(l)
b,k = σ(W

(l)
f u

(l)
b,k + U

(l)
f x

(l)
b,k + b

(l)
f ),

r
(l)
a,k = ϕ(W (l)

r u
(l)
a,k + U (l)

r f
(l)
a,k ◦ x

(l)
a,k + b(l)r ),

r
(l)
b,k = ϕ(W (l)

r u
(l)
b,k + U (l)

r f
(l)
b,k ◦ x

(l)
b,k + b(l)r ).

(A.161)

We recall Lemma 3.8, in which the bounds to the gates (A.161), denoted as
σ̌
(l)
z , σ̌(l)

f , and ϕ̌(l)
z , are established, see (3.40).

Hence, by following the steps illustrated in (A.133)-(A.140), one can
easily get the following inequality holding ∀j ∈ {1, ..., n(l)

c }

|[x(l)a,k+1]j − [x
(l)
b,k+1]j|≤ κ(l)x ∥x

(l)
a,k−x

(l)
b,k∥∞+κ(l)u ∥u

(l)
a,k−u

(l)
b,k∥∞, (A.162a)
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where κ(l)x and κ(l)u are defined as

κ(l)x =[z
(l)
a,k]j +

1

4
(x̌(l) + ϕ̌(l)

r )∥U (l)
z ∥∞

+ (1− [z
(l)
a,k]j)∥U

(l)
r ∥∞

(1
4
x̌(l)∥U (l)

f ∥∞ + σ̌
(l)
f

)
,

κ(l)u =
1

4
(x̌(l) + ϕ̌(l)

r )∥W (l)
z ∥∞

+ (1− [z
(l)
a,k]j)

(
∥W (l)

r ∥∞ +
1

4
x̌(l)∥U (l)

r ∥∞∥W
(l)
f ∥∞

)
.

(A.162b)
As shown in (A.141)-(A.143), if condition (3.45) is satisfied, there exists
λ
(l)
δ ∈ (0, 1) such that

0 < κ(l)x ≤ λ
(l)
δ < 1. (A.163a)

Moreover, in light of (3.40a), by letting

κ̌(l)u =
1

4
(x̌(l) + ϕ̌(l)

r )∥W (l)
z ∥∞ + σ̌(l)

z

(
∥W (l)

r ∥∞ +
1

4
x̌(l)∥U (l)

r ∥∞∥W
(l)
f ∥∞

)
,

(A.163b)
it holds that

κ(l)u ≤ κ̌(l)u . (A.163c)

Applying (A.163) to (A.162) one gets that

∥x(l)a,k+1 − x
(l)
b,k+1∥∞ ≤ λ

(l)
δ ∥x

(l)
a,k − x

(l)
b,k∥∞ + κ̌(l)u ∥u

(l)
a,k − u

(l)
b,k∥∞. (A.164)

In light of the input vector definition (3.36c), by iterating (A.164) over
l ∈ {1, ..., L}, we get
∥x(1)a,k+1 − x

(1)
b,k+1∥∞

∥x(2)a,k+1 − x
(2)
b,k+1∥∞

...

∥x(L)a,k+1 − x
(L)
b,k+1∥∞

 ≤ HLδ


∥x(1)a,k − x

(1)
b,k∥∞

∥x(2)a,k − x
(2)
b,k∥∞

...

∥x(L)a,k − x
(L)
b,k ∥∞

+GLδ∥ua,k − ub,k∥∞,

(A.165a)
where HLδ and GLδ are defined as

HLδ =


λ
(1)
δ 0 ... 0

κ̌
(2)
u λ

(1)
δ λ

(2)
δ ... 0

... . . . ...(∏2
j=L κ̌

(j)
u

)
λ
(1)
δ

(∏3
j=L κ̌

(j)
u

)
λ
(2)
δ ... λ

(L)
δ

 , (A.165b)
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GLδ =


κ̌
(1)
u

κ̌
(2)
u κ̌

(1)
u

...∏1
j=L−1 κ̌

(j)
u

 . (A.165c)

Then, by iterating (A.165) over the time index k, we obtain
∥x(1)a,k − x

(1)
b,k∥∞

∥x(2)a,k − x
(2)
b,k∥∞

...

∥x(L)a,k − x
(L)
b,k ∥∞

 ≤ Hk
Lδ


∥x(1)a,0 − x

(1)
b,0∥∞

∥x(2)a,0 − x
(2)
b,0∥∞

...

∥x(L)a,0 − x
(L)
b,0 ∥∞

+
k−1∑
τ=0

Hk−τ−1
Lδ GLδ∥ua,τ − ub,τ∥∞.

(A.166)
Being triangular, the matrix HLδ has λ(1)δ , ..., λ

(L)
δ as eigenvalues, and hence

it is Schur stable, since λ(l)δ ∈ (0, 1). This implies that, letting λHLδ
=

maxl∈{1,...,L} λ
(l)
δ , there exists µHLδ

> 0 such that

∥xa,k − xb,k∥∞ ≤ µHLδ
λkHLδ
∥xa,0 − xb,0∥∞

+
k−1∑
τ=0

Hk−τ−1
Lδ GLδ∥ua,τ − ub,τ∥∞.

≤ µHLδ
λkHLδ
∥xa,0 − xb,0∥∞

+ ∥(IL,L − HLδ)
−1GLδ∥∞∥ua,0:k − ub,0:k∥∞,∞.

(A.167)
Therefore, in light of Definition 2.6, the deep GRU is ℓ∞-δISS with func-
tions

β(∥xa,0 − xb,0∥∞, k) = µHLδ
λkHLδ
∥xa,0 − xb,0∥∞, (A.168a)

γ(∥ua,0:k − ub,0:k∥∞) = ∥(IL,L − HLδ)
−1GLδ∥∞∥ua,0:k − ub,0:k∥∞,∞.

(A.168b)
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A.3 Proofs of Chapter 6

A.3.1 Proof of Theorem 6.1

The goal of the proof is to show that Definition 6.1 applies. To this end,
we consider the shallow GRU system to be initialized in the unknown
initial state x0 ∈ X and fed by the input sequence u0:k. We denote the
resulting state of the system by xk = xk(x0, u0:k; Σ(Φ

⋆)), while yk =
yk(x0, u0:k; Σ(Φ

⋆)) indicates its measured output. As discussed in Notation
Addendum 6.1, x̂k = x̂k(x̂0, u0:k, y0:k;O(Φo)) denotes the state of observer
(6.4) at time k when it is initialized in x̂0 ∈ X , and it is fed with the known
input sequence u0:k and the measured output y0:k.

Let us therefore consider the j-th component of the state observation
error at the generic time instant k + 1, obtained by subtracting (6.4a) from
(3.26a). By summing and subtracting the terms [zk]j[x̂k]j and (1−[zk]j)[r̂k]j
we get

[xk+1]j − [x̂k+1]j = [zk]j[xk]j + (1− [zk]j)[rk]j − [ẑk]j[x̂k]j − (1− [ẑk]j)[r̂k]j

= [zk]j
(
[xk]j − [x̂k]j

)
+
(
[zk]j − [ẑk]j

)
[x̂k]j

+ (1− [zk]j)
(
[rk]j − [r̂k]j

)
+
(
[zk]j − [ẑk]j

)
[r̂k]j

(A.169)
Along the lines of the Proof of Theorem 3.8, we take the absolute value of
both sides of (A.169). Recalling that [zk]j ∈ (0, 1) and [ẑk]j ∈ (0, 1), it
follows that∣∣[xk+1]j − [x̂k+1]j

∣∣ ≤ [zk]j
∣∣[xk]j − [x̂k]j

∣∣+ ∣∣[zk]j − [ẑk]j
∣∣ |[x̂k]j|

+ (1− [zk]j)
∣∣[rk]j − [r̂k]j

∣∣+ ∣∣[zk]j − [ẑk]j
∣∣ |[r̂k]j|
(A.170)

Recalling that X is an invariant set for x̂, and hence

|[x̂k]j|≤ ∥x̂k∥∞ ≤ x̌. (A.171a)

Similarly, the term [r̂k]j can be bounded as in (A.122), i.e.

|[r̂k]j|≤ ∥r̂k∥∞ ≤ ϕ̌r. (A.171b)

Exploiting the 1
4
-Lipschitzianity of σ and the linearity of output transfor-

mation, see (3.26a) and (6.4a), the following bound holds∣∣[zk]j − [ẑk]j
∣∣ ≤ ∥zk − ẑk∥∞
≤ 1

4
∥Uz(xk − x̂k)− Lz(yk − ŷk)∥∞

≤ 1

4
∥Uz − LzUo∥∞∥xk − x̂k∥∞.

(A.171c)
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Analogously,∣∣[fk]j − [f̂k]j
∣∣ ≤ ∥fk − f̂k∥∞
≤ 1

4
∥Uf (xk − x̂k)− Lf (yk − ŷk)∥∞

≤ 1

4
∥Uf − LfUo∥∞∥xk − x̂k∥∞.

(A.171d)

Moreover, since ϕ is 1-Lipschitz, the following chain of inequalities holds
true ∣∣[rk]j − [r̂k]j

∣∣ ≤ ∥rk − r̂k∥∞
≤ ∥Ur∥∞

∥∥f̂k ◦ x̂k − fk ◦ xk∥∥∞
≤ ∥Ur∥∞

∥∥(fk − f̂k) ◦ x̂k + fk ◦ (xk − x̂k)
∥∥
∞

≤ ∥Ur∥∞
[
x̌∥fk − f̂k∥∞ + σ̌f∥xk − x̂k∥∞

]
≤ ∥Ur∥∞

(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
∥xk − x̂k∥∞

(A.171e)
Therefore, in light of the bounds (A.171), the inequality (A.170) reads as∣∣[xk+1]j − [x̂k+1]j

∣∣ ≤ κo∥xk − x̂k∥∞, (A.172)

where

κo = [zk]j + (1− [zk]j)∥Ur∥∞
(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
+

1

4
(x̌+ ϕ̌r)∥Uz − LzUo∥∞

(A.173)

Since [zk]j ∈ [1 − σ̌z, σ̌z], if condition (6.7) is fulfilled, it follows that
(A.172) implies

∥xk+1 − x̂k+1∥∞ ≤ λo∥xk − x̂k∥∞ (A.174)

Since λo ∈ (0, 1), by iterating (A.174) over time we get

∥xk − x̂k∥∞ ≤ λko∥x0 − x̂0∥∞. (A.175)

Therefore, the observer is nominally exponentially (ℓ2) convergent with
function

βo(∥x0 − x̂0∥2, k) =
√
nxλ

k
o∥x0 − x̂0∥2. (A.176)
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A.3.2 Proof of Proposition 6.1

First, let us point out that, as evident from equations (A.173)-(A.176), λo
represents a bound on the observer’s worst-case convergence rate. There-
fore, the “optimal” gains of the observer are those that entail the smallest
possible λo.

We therefore setup a min-max optimization problem, where the observer
gains are selected as those that minimize the worst-case observer conver-
gence rate

λo = min
Lz ,Lf

{
max

z∈[1−σ̌z ,σ̌z ]
κo(z, Lz, Lf )

}
. (A.177)

Notice that the δISS of the observed GRU model implies that the optimal
solution of (A.177) satisfies Theorem 6.1, i.e. λo ∈ (0, 1). Indeed, by
taking the suboptimal gains Lz = 0nc,ny and Lf = 0nc,ny , it can be easily
notice that

κo(z, Lz, Lf ) = κx ≤ λδ < 1 (A.178)
where κx is defined in (A.140b) and κx < λδ is entailed by the δISS prop-
erty, see (A.141)-(A.144). By definition, the optimal solution of (A.177) is
characterized by λo ≤ λδ < 1, meaning that the optimal gains L⋆z and L⋆f
satisfy Theorem 6.1.

In order to ease the solution of (A.177) we can notice that
∂κo
∂z

= 1−
(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
does not depend upon z, and hence

max
z∈[1−σ̌z ,σ̌z ]

κo(z, Lz, Lf ) = max
(
κo(σ̌z, Lz, Lf ), κo(1− σ̌z, Lz, Lf )

)
.

(A.179)
The optimization problem (A.177) can be therefore recast in the form (6.9),
which – in light of the convexity of the max operator and of the ℓ∞ norm –
is convex.

A.3.3 Proof of Theorem 6.2

The goal is to prove that the observed state x̂k admits a Lyapunov function
centered at the target equilibrium x̄. To this end, we introduce the following
auxiliary Lemma.

Lemma A.2. If (5.1) is exponentially ℓ∞-δISS with functions β, defined as
in (6.1), and γ, then it is also exponentially ℓ2-δISS with functions

β2(∥xa,0 − xb,0∥2, k) =
√
nxµδλ

k
δ∥xa,0 − xb,0∥2,

γ2(∥ua,0:k − ub,0:k∥2,∞) =
√
nuγ(∥ua,0:k − ub,0:k∥∞,∞).

(A.180)
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Proof. Recalling the definition of the ℓ∞-δISS functions β and γ, see (A.146),
and noticing that

∥xk∥2 ≤
√
nx∥xk∥∞ ≤

√
nx∥xk∥2,

∥uk∥2 ≤
√
nu∥uk∥∞ ≤

√
nu∥uk∥2,

Lemma 2.1 can be invoked to guarantee that the shallow GRU is ℓ2-δISS
with functions β2 and γ2 defined as in (A.180). Hence, it satisfies1

∥xa,k − xb,k∥2 ≤ β2(∥xa,0− xb,0∥2, k) + γ2(∥ua,0:k − ub,0:k∥2,∞). (A.181)

Consider the optimal solution of (6.12) at time k. Let us denote the
optimal control sequence as

u⋆k:k+Nc−1|k = {u⋆k|k, ..., u⋆k+Nc−1|k},

and the corresponding state trajectories as

x⋆k:k+N |k = {x⋆k|k, ..., x⋆k+N |k}.

Then, the optimal cost function J⋆k = Jk(u
⋆
k:k+Nc−1|k, x

⋆
k:k+N |k) reads as

J⋆k =
Nc−1∑
τ=0

(
∥x⋆k+τ |k−x̄∥2Q+∥u⋆k+τ |k−ū∥2R

)
+

N∑
τ=Nc

∥x⋆k+τ |k−x̄∥2S (A.182)

where x⋆k|k = x̂k due to (6.12b).
We now show that J⋆k is a Lyapunov function for the closed-loop system.

To this end, let us point out that

J⋆k ≥ ∥x̂k − x̄∥2Q ≥
¯
ςQ∥x̂k − x̄∥22. (A.183)

We then consider a suboptimal – yet feasible – control sequence constantly
equal to ū, i.e.

ũk:k+Nc−1|k = {ū, ..., ū},

and we denote by

x̃k:k+N |k = {x̃k|k, ..., x̃k+N |k},
1We recall that xa,k and xb,k are a compact notation for xk(xa,0, ua,0:k; Σ(Φ⋆)) and

xk(xb,0, ub,0:k,Σ(Φ⋆)), respectively.
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the corresponding state trajectory. The suboptimality of ũk:k+Nc−1|k and
x̃k:k+N |k entails that

J⋆k ≤
Nc−1∑
τ=0

∥x̃k+τ |k − x̄∥2Q +

Np∑
τ=Nc

∥x̃k+τ |k − x̄∥2S (A.184)

Since ς̄Q ≤
¯
ςS ≤ ς̄S , recalling that the GRU is ℓ2-δISS by Lemma A.2,

it holds that

J⋆k ≤ ς̄S

N∑
τ=0

∥x̃k+τ |k − x̄∥22 ≤ ς̄S
nxµ

2
δ

1− λ2δ
∥x̂k − x̄∥22, (A.185)

where the geometric series bound has been applied. Combining (A.183)
and (A.185) we get that the Lyapunov function candidate is bounded as

¯
ςQ∥x̂k − x̄∥22 ≤ J⋆k ≤ ς̄S

nxµ
2
δ

1− λ2δ
∥x̂k − x̄k∥22. (A.186)

At time k+1 the state observation x̂k+1 is available, and the optimization
problem (6.12) is solved, yielding the optimal control sequence

u⋆k+1:k+Nc|k+1 = {u⋆k+1|k+1, ..., u
⋆
k+Nc|k+1}

and the optimal state trajectory

x⋆k+1:k+N+1|k+1 = {x⋆k+1|k+1, ..., x
⋆
k+N+1|k+1}.

The corresponding optimal cost function is denoted by

J⋆k+1 = Jk+1(x
⋆
k+1:k+N+1|k+1, u

⋆
k+1:k+Nc|k+1).

Let us notice that the optimal sequence computed at the previous iteration
can be adopted as a suboptimal control sequence by letting

uk+1:k+N |k+1 = {u⋆k+1|k, ..., u
⋆
k+Nc−1|k, ū}. (A.187a)

The corresponding suboptimal state trajectory hence reads as

xk+1:k+N+1|k = {xk+1|k+1, ..., xk+N |k+1, xk+N+1|k+1}, (A.187b)

where it is worth stressing that xk+1|k+1 = x̂k+1 ̸= x⋆k+1|k. Owing to the
suboptimality of (A.187), J⋆k+1 can be bounded as

J⋆k+1 ≤
Nc−1∑
τ=1

(
∥xk+τ |k+1 − x̄∥2Q + ∥u⋆k+τ |k − ū∥2R

)
+ ∥xk+Nc|k+1 − x̄∥2Q +

N+1∑
τ=Nc+1

∥xk+τ |k+1 − x̄∥2S

(A.188)
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Then, letting x⋆k+N+1|k = f(x⋆k+N |k, ū), by defining ∀τ ∈ {1, ..., N + 1}

ek+τ |k+1 = xk+τ |k+1 − x⋆k+τ |k, (A.189)

the bound (A.188) can be rewritten as

J⋆k+1 ≤
Nc∑
τ=1

∥∥(x⋆k+τ |k − x̄)+ ek+τ |k+1

∥∥2
Q
+

Nc−1∑
τ=1

∥∥u⋆k+τ |k − ū∥∥2R
+
∥∥(x⋆k+Nc+1|k − x̄

)
+ ek+Nc|k+1

∥∥2
Q

+
N+1∑

τ=Nc+1

∥∥(x⋆k+τ |k − x̄)+ ek+τ |k+1

∥∥2
S

(A.190)

In light of (A.182) and (A.190), it follows that

J⋆k+1 − J⋆k ≤ −∥x⋆k|k − x̄∥2Q − ∥u⋆k|k − ū∥2R +∆Ja +∆Jb (A.191a)

where

∆Ja =
Nc−1∑
τ=1

(∥∥(x⋆k+τ |k − x̄)+ ek+τ |k+1

∥∥2
Q
− ∥x⋆k+t|k − x̄∥2Q

)
+

N∑
τ=Nc+1

(∥∥(x⋆k+τ |k − x̄)+ ek+τ |k+1

∥∥2
S
− ∥x⋆k+t|k − x̄∥2S

)
(A.191b)

and

∆Jb =
∥∥(x⋆k+Nc|k − x̄

)
+ ek+Nc|k+1

∥∥2
Q
− ∥x⋆k+Nc|k − x̄∥

2
S

+
∥∥(x⋆k+N+1|k − x̄

)
+ ek+N+1|k+1

∥∥2
S
.

(A.191c)

Let us derive a bound for the term ∆Ja. By noticing that ∥v + w∥2Q =
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∥v∥2Q + ∥w∥2Q + 2v′Qw, it holds that

∆Ja ≤
Nc−1∑
τ=1

(
∥x⋆k+τ |k − x̄

∥∥2
Q
+ ∥ek+τ |k+1∥2Q

+ 2(x⋆k+τ |k − x̄)′Qek+τ |k+1 − ∥x⋆k+t|k − x̄∥2Q
)

+
N∑

τ=Nc+1

(
∥x⋆k+τ |k − x̄

∥∥2
S
+ ∥ek+τ |k+1∥2S

+ 2(x⋆k+τ |k − x̄)′Sek+τ |k+1 − ∥x⋆k+t|k − x̄∥2S
)

≤
Nc−1∑
t=1

(
∥ek+τ |k+1∥2Q + 2(x⋆k+τ |k − x̄)′Qek+τ |k+1

)
+

N∑
t=Nc+1

(
∥ek+τ |k+1∥2S + 2(x⋆k+τ |k − x̄)′Sek+τ |k+1

)
.

(A.192)

In view of the boundedness of x⋆k+t|k in the invariant set X , there exist finite
µa1 > 0 and µa2 > 0 such that (A.192) can be upper bounded as

∆Ja ≤ µa1ς̄Q

Nc−1∑
t=1

(
∥ek+τ |k+1∥22 + ∥ek+τ |k+1∥2

)
+ µa2ς̄S

N∑
t=Nc+1

(
∥ek+τ |k+1∥22 + ∥ek+τ |k+1∥2

)
.

(A.193)

Concerning the term ∆Jb, it holds that

∆Jb ≤∥x⋆k+Nc|k − x̄∥
2
Q − ∥x⋆k+Nc|k − x̄∥

2
S + ∥x⋆k+N+1|k − x̄∥2S

+ ∥ek+Nc|k+1∥2Q + ∥ek+N+1|k+1∥2S
+ 2(x⋆k+Nc|k − x̄)

′Qek+Nc|k+1 + 2(x⋆k+N+1|k − x̄)′Sek+N+1|k+1

(A.194)
We now show that if (6.13) holds, then

∥x⋆k+Nc|k − x̄∥
2
Q − ∥x⋆k+Nc|k − x̄∥

2
S + ∥x⋆k+N+1|k − x̄∥2S < 0, (A.195)

or, equivalently,

∥x⋆k+N+1|k − x̄∥2S < ∥x⋆k+Nc|k − x̄∥
2
S−Q, (A.196)

where S −Q ≻ 0 due to (6.13a). Let us point out that if

ς̄S∥x⋆k+N+1|k − x̄∥22 < (
¯
ςS − ς̄Q)∥x⋆k+Nc|k − x̄∥

2
2, (A.197)
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then (A.196) surely holds. Since for τ ≥ Nc the constant input ū is applied,
see (6.12d), Lemma A.2 can now be invoked to show that

∥x⋆k+N+1|k − x̄∥2 ≤
√
nxµδλ

N−Nc+1
δ ∥x⋆k+Nc|k − x̄∥2,

which implies that the following bound holds

ς̄S∥x⋆k+N+1|k − x̄∥22 ≤ nxµ
2
δ ς̄Sλ

2(N−Nc+1)
δ ∥x⋆k+Nc|k − x̄∥

2
2. (A.198)

Under (6.13b), one can therefore guarantee that

nxµ
2
δ ς̄Sλ

2(N−Nc+1)
δ ∥x⋆k+Nc|k − x̄∥

2
2 ≤ (

¯
ςS − ς̄Q)∥x⋆k+Nc|k − x̄∥

2
2, (A.199)

which, by means of a chain of inequalities, entails that (A.195) holds.
Therefore, owing to the boundedness of xk+Nc|k in X , there exist finite
µb1 > 0 and µb2 > 0 such that (A.194) can be upper bounded by

∆Jb ≤ µb1ς̄Q
(
∥ek+Nc|k+1∥22 + ∥ek+Nc|k+1∥2

)
+ µb2ς̄S

(
∥ek+N+1|k+1∥22 + ∥ek+N+1|k+1∥2

)
.

(A.200)

By combining (A.191), (A.193), and (A.200), and recalling (6.13a), it
holds that there exists a finite µe > 0 such that

J⋆k+1 − J⋆k ≤− ∥x⋆k|k − x̄∥2Q + µe

N+1∑
τ=1

(
∥ek+Nc|k+1∥22 + ∥ek+Nc|k+1∥2

)
︸ ︷︷ ︸

ϱe,k

.

(A.201)
To conclude the proof, we show that the term ϱe,k exponentially con-

verges to zero with k. To this end, let us point out that, by definition,

ek+1|k+1 = xk+1|k+1 − x⋆k+1|k = fo(x̂k, u
⋆
k|k, yk)− f(x̂, u⋆k|k), (A.202)

where fo(x̂k, uk, yk) is the state update function of the observerO, see (6.5).
Since by Theorem 6.1 the observer is nominally converging, from (6.8) it
follows that

∥ek+1|k+1∥22 ≤ µ2
oλ

2
o∥x̂k − xk∥22. (A.203)

Let now, for the sake of compactness,

u⋆k+1:k+N |k = {u⋆k+1|k, ..., u
⋆
k+Nc|k, ū, ..., ū}.

For any t ∈ {2, ..., N + 1} by definition we have that

ek+t|k+1 = xk+t|k+1 − x⋆k+t|k, (A.204a)
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where

xk+t|k+1 = xk+t(xk+1|k+1, u
⋆
k+1:k+t|k; Σ(Φ

⋆)), (A.204b)

x⋆k+t|k = xk+t(x
⋆
k+1|k, u

⋆
k+1:k+t|k; Σ(Φ

⋆)). (A.204c)

Invoking Lemma A.2, ∥ek+t|k+1∥2 can be bounded as

∥ek+t|k+1∥22 ≤ nxµ
2
δλ

2(t−1)
δ ∥xk+1|k+1 − x⋆k+1|k∥22

≤ nxµ
2
δµ

2
o λ

2
oλ

2(t−1)
δ ∥x̂k − xk∥22.

(A.205)

Therefore, owing to (A.203) and (A.205), and since the observer is expo-
nentially converging, there exists µϱ > 0 such that

ϱe,k ≤ µϱ∥x̂k − xk∥22 ≤ µϱλ
2k
o ∥x̂0 − x0∥22. (A.206)

That is, the perturbation term ϱe,k of (A.201) exponentially converges to
zero. The nominal closed-loop asymptotic stability can be therefore proven
following [182].

A.3.4 Proof of Theorem 6.3

The goal of the proof is to show that the observer (6.22) satisfies Defini-
tion 6.2 with respect to the set Z . In the following, consistently with the
notation adopted so far, we denote by χk = χk(χ0, v0:k; Σa(Φ

⋆)) and by
χ̂k = χ̂k(χ̂0, v0:k, ζ0:k, ȳ;Od(Φd)), where the state definition (6.17) is re-
minded.

Consider now the j-th component of the observation error of the state
x at the generic time instant k + 1, obtained by subtracting (6.22a) from
(3.26a). By summing and subtracting the terms [zk]j[x̂k]j and (1−[zk]j)[r̂k]j
we get

[xk+1]j − [x̂k+1]j = [zk]j[xk]j + (1− [zk]j)[rk]j − [ẑk]j[x̂k]j − (1− [ẑk]j)[r̂k]j

= [zk]j
(
[xk]j − [x̂k]j

)
+
(
[zk]j − [ẑk]j

)
[x̂k]j

+ (1− [zk]j)
(
[rk]j − [r̂k]j

)
+
(
[zk]j − [ẑk]j

)
[r̂k]j

(A.207)
Along the lines of the Proof of Theorem 6.1, we take the absolute value of
both sides of (A.207), which leads to∣∣[xk+1]j − [x̂k+1]j

∣∣ ≤ [zk]j
∣∣[xk]j − [x̂k]j

∣∣+ ∣∣[zk]j − [ẑk]j
∣∣ |[x̂k]j|

+ (1− [zk]j)
∣∣[rk]j − [r̂k]j

∣∣+ ∣∣[zk]j − [ẑk]j
∣∣ |[r̂k]j|
(A.208)
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Recalling the bounds (3.30), since (χk, vk) ∈ Z it holds that

|[x̂k]j|≤ ∥x̂k∥∞ ≤ x̌,

|[r̂k]j|≤ ∥r̂k∥∞ ≤ ϕ̌r.
(A.209a)

Moreover, since σ is 1
4
-Lipschitz, it holds that

∣∣[zk]j − [ẑk]j
∣∣ ≤ ∥zk − ẑk∥∞
≤ 1

4
∥Wz(ξk − ξ̂k) + Uz(xk − x̂k)

− Lzy(yk − ŷk)− Lzξ(ξk − ξ̂k)∥∞

≤ 1

4

(
∥Uz − LzyUo∥∞∥xk − x̂k∥∞

+ ∥Wz − Lzξ∥∞∥ξk − ξ̂k∥∞
)

(A.209b)

and

∣∣[fk]j − [f̂k]j
∣∣ ≤ ∥fk − f̂k∥∞
≤ 1

4
∥Wf (ξk − ξ̂k) + Uf (xk − x̂k)

− Lfy(yk − ŷk)− Lfξ(ξk − ξ̂k)∥∞

≤ 1

4

(
∥Uf − LfyUo∥∞∥xk − x̂k∥∞

+ ∥Wf − Lfξ∥∞∥ξk − ξ̂k∥∞
)

(A.209c)

Moreover, since ϕ is 1-Lipschitz, the following chain of inequalities holds
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true∣∣[rk]j − [r̂k]j
∣∣ ≤ ∥rk − r̂k∥∞
≤ ∥Wr∥∞∥ξk − ξ̂k∥∞

+ ∥Ur∥∞
∥∥f̂k ◦ x̂k − fk ◦ xk∥∥∞

≤ ∥Wr∥∞∥ξk − ξ̂k∥∞
+ ∥Ur∥∞

∥∥(fk − f̂k) ◦ x̂k + fk ◦ (xk − x̂k)
∥∥
∞

≤ ∥Wr∥∞∥ξk − ξ̂k∥∞
+ ∥Ur∥∞

[
x̌∥fk − f̂k∥∞ + σ̌f∥xk − x̂k∥∞

]
≤
(
∥Wr∥∞ +

1

4
x̌∥Ur∥∞∥Wf − Lfξ∥∞

)
∥ξk − ξ̂k∥∞

+ ∥Ur∥∞
(1
4
x̌∥Uf − LfyUo∥∞ + σ̌f

)
∥xk − x̂k∥∞

(A.209d)
Owing to (A.209), the inequality (A.208) reads as∣∣[xk+1]j − [x̂k+1]j

∣∣ ≤κdx([zk]j, Lzy, Lfy)∥xk − x̂k∥∞
+ κdξ([zk]j, Lzξ, Lfξ)∥ξk − ξ̂k∥∞,

(A.210)

where κdx and κdξ are defined as in (6.24). Then, noticing that the bounds
in (6.23) satisfy

κ̌dx(Lzy, Lfy) = sup
z∈[1−σ̌z ,σz ]

κdx(z, Lzy, Lfy)

κ̌dξ(Lzξ, Lfξ) = sup
z∈[1−σ̌z ,σz ]

κdξ(z, Lzξ, Lfξ)
(A.211)

the inequality (A.210) entails

∥xk+1 − x̂k+1∥∞ ≤κ̌dξ(Lzy, Lfy)∥xk − x̂k∥∞ + κ̌dξ(Lzξ, Lfξ)∥ξk − ξ̂k∥∞.
(A.212)

Moreover, by taking the infinity norm of the difference between ξk+1

and ξ̂k+1 we get

∥ξk+1 − ξ̂k+1∥∞ ≤∥Uo∥∞∥µξ − Lξy∥∞∥xk − x̂k∥∞
+ ∥Iny ,ny − Lξξ∥∞∥ξk − ξ̂k∥∞

(A.213)

From (A.212) and (A.213), it follows that[
∥xk+1 − x̂k+1∥∞
∥ξk+1 − ξ̂k+1∥∞

]
≤ Ad

[
∥xk − x̂k∥∞
∥ξk − ξ̂k∥∞

]
, (A.214)
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where Ad is defined as in (6.25). Since the matrix Ad is Schur stable, there
exists a positive-definite matrix P that solves the Lyapunov equation

A′
d P Ad − Ad = −I2,2. (A.215)

Consider the candidate function

Vd(χk, χ̂k) =

∥∥∥∥∥
[
∥xk − x̂k∥∞
∥ξk − ξ̂k∥∞

]∥∥∥∥∥
2

P

. (A.216)

By standard norm arguments, one can easily show that

¯
ςP

nx + ny
∥χk − χ̂k∥22 ≤ Vd(χk, χ̂k) ≤ ς̄P (nx + ny)∥χk − χ̂k∥22. (A.217)

Moreover, it holds that

Vd(χk+1, χ̂k+1) ≤ −

∥∥∥∥∥
[
∥xk − x̂k∥∞
∥ξk − ξ̂k∥∞

]∥∥∥∥∥
2

2

≤ − 1

nx + ny
∥χk − χ̂k∥22.

(A.218)
Therefore, (6.22) is a weak detector of (6.16) with respect to the setZ .
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