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Abstract 

Under the fourth industrial revolution, many technologies have emerged and 

contributed to a substantial advancement of the automation and data exchange in the 

manufacturing industry. Parallelly, the competition and uncertainty of the global 

markets have forced a continuous evolution in production systems. The 

digitalization of processes and the demanding industrial context has sparked an 

interest towards the research of Digital Twin (DT). It is defined as a virtual 

representation of a production system, providing the capabilities to improve 

productivity and support decision-making, using Discrete Event Simulations (DES). 

One of the challenges of this technology is to make the DT able to represent in real-

time the complete behaviour of the physical system and adapt to possible 

transformations. This work aims at determining the most critical factors causing 

divergency between the two objects, and developing a methodology based the 

concept of “alignment”, introduced as the capability of the DT to completely reflect 

the physical system’s conditions. An indicator-based control manages efficiently the 

procedures of automatic DES model update, synchronisation, and stochastic input 

model update, integrated into a digital architecture applied to a lab-scale model. 

Experiments are performed to evaluate the limits and capabilities of the services 

provided by the DT in real-time, consisting of the monitoring of current 

performances and prediction of future ones. In conclusion a case study is developed 

to apply the techniques in the context of a proof-of-concept Digital Twin. The results 

of this work demonstrate that the methodology is effective in keeping the alignment 

between a digital model and the physical system.  
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Abstract in lingua italiana 

Durante la quarta rivoluzione industriale molte tecnologie sono emerse e hanno 

contribuito a un sostanziale progresso dell'automazione e dello scambio di dati nel 

settore manifatturiero. In parallelo, la concorrenza e l'incertezza dei mercati globali 

hanno richiesto una continua evoluzione dei sistemi di produzione. La 

digitalizzazione dei processi e l'esigente contesto industriale ha suscitato un interesse 

verso la ricerca riguardo il Digital Twin (DT). Questo è definito come una 

rappresentazione virtuale di un sistema produttivo, che fornisce le funzionalità per 

migliorare la produttività e supportare il processo decisionale, utilizzando 

simulazioni ad eventi discreti (DES). Una delle sfide di questa tecnologia è quella di 

rendere il DT in grado di rappresentare completamente in tempo reale il 

funzionamento del sistema fisico e adattarsi alle possibili trasformazioni. Questo 

lavoro mira a determinare i fattori più critici che causano la divergenza tra le due 

entità e a sviluppare una metodologia basata sul concetto di "allineamento", 

introdotto come la capacità della DT di riflettere completamente le condizioni del 

sistema fisico. Un controllo basato su indicatori gestisce in modo efficiente le 

procedure di generazione automatica del modello DES, sincronizzazione, e 

aggiornamento dei parametri stocastici, integrate in un'architettura digitale applicate 

ad un modello di produzione in scala. Vengono eseguiti esperimenti per valutare i 

limiti e le capacità dei servizi forniti dal DT in tempo reale, consistenti nel 

monitoraggio delle prestazioni attuali e nella previsione di quelle future. In 

conclusione, un caso di studio è stato ideato per applicare le tecniche sviluppate nel 

contesto di un proof-of-concept Digital Twin. I risultati di questo lavoro dimostrano 

che la metodologia è efficace nel mantenere l'allineamento tra un modello digitale e il 

sistema fisico. 
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1. Introduction 

Under the fourth industrial revolution, many technologies have emerged and 

contributed to a substantial advancement of the automation and data exchange in the 

manufacturing industry. Parallelly, the competition and uncertainty of the global 

markets have forced a continuous evolution in production systems.  

The digitalization of processes and the demanding industrial context has sparked an 

interest towards the research of Digital Twin (DT). The concept extends from the 

integration of technologies like Cyber Physical Systems (CPS) and Internet of Things 

(IoT), providing the capabilities to improve productivity and support decision-

making. This thesis investigates the DT framework and in particular the aspects 

involved In real-time synchronisation of Discrete Event Simulation (DES) models. 

1.1. Digital Twin 

The concept of Digital Twin, once known as conceptual ideal for Product Lifecycle 

Management (PLM), is first presented to the industry in 2002 by Dr. Grieves at the 

University of Michigan. Figure 1.1 shows all the fundamental structures of a modern 

DT: a real space linked to a virtual space, a bi-directional flow of information, and 

also a connection from virtual to following sub-spaces.  

 

The physical system is defined as an always present entity while the virtual side as 

constantly fed with all the information of the other. The terminology once used for 

Figure 1.1: Conceptual ideal for a PLM. [Dr. Michael Grieves, University of 

Michigan, Luries Engineering Center, Dec 3, 2001] 
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PLM wanted to underline the distance from a static representation, but instead, a 

linkage throughout the whole lifecycle of the system. A complete definition of Digital 

Twin is proposed by Dr. Grieves and Vickers [3]: “The Digital Twin is a set of virtual 

information constructs that fully describes a potential or actual physical manufactured 

product from the micro atomic level to the macro geometric level”. Ideally, any information 

obtainable from physical system’s inspections could be equally taken from its Digital 

Twin. Also the NASA has been fundamental in paving the way of the Digital Twin 

evolution. As highlighted by Negri et al. 2017 [1], its contribution has introduced 

capabilities such as: the use of integrated sub-models to mirror the life of air vehicles, 

considering their interactions with the real world; also, a life-cycle view and the 

ability to conduct prognostic and diagnostic activities. While initially the DT is 

mainly applied at product level, the evolution of this technology has allowed the 

introduction on entire systems. As a matter of fact, this will be the context of 

application of this study.  

Due to multiple existing solutions and applications causing misleading 

interpretations, Kritzinger et al. in [4] proposed a classification focused on the level 

of data interconnections. Figure 1.2 shows the three categories of digital 

architectures. 

 

Figure 1.2: Classification based on data interconnections adapted from ref. [Kritzinger et 

al.2018] 

 A Digital Model virtually represents an existing or planned physical object. 

Simulation models of any other type can be used for this scope, however data 

are manually exchanged. Furthermore, a possible variation in the physical 

system is not directly reflected in the digital one and vice versa. 

 If an automated one-way exchange of data between the state of the physical 

object and the digital one exists, this is defined as Digital Shadow. Thus, a 

change in state in the physical only affect the digital counterpart. 

 Once data flows are bi-directional between the two entities, the Digital Twin is 

achieved. Adding to the previous explained potentialities, now the digital 

object is enhanced by the capability of acting as controller over the physical 

system. 
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As shown in Figure 1.1, the dynamic model is intended to be able to follow the 

changes over the lifecycle of the system. During the design phase, the DT supports 

developers to test and understand how the real model will behave. In the 

development phase specific and potentially unique configurations are built on the 

physical system. These are reflected as instances in the virtual space, providing the 

means to perform analysis among the real objects while still in development. Next is 

the operational phase, during which the data interconnections are crucial to maintain 

the network between the two entities. This capability allows the continuous 

mirroring of the physical system conditions, also the prediction of performances and 

the reaction to solve failures. The application of the Digital Twin framework may be 

even more exploited by the creation of multiple virtual spaces (see Figure 1.1 

𝑉𝑆1, 𝑉𝑆2 … 𝑉𝑆𝑛) allowing to put the system through destructive test inexpensively. 

1.1.1. Digital Twin applications 

The DT provides the opportunities to optimize activities and support decision-

making. This aspect makes it largely applicable in many contexts of application. For 

instance, in the aerospace field, to investigate, through conspicuous time history of 

flights, future maintenance’s needs and interventions; also, in robotic industries and 

especially for virtual commissioning, to optimize the control algorithms during the 

development phase of robots. In particular, this work focuses on the applications 

within production and manufacturing systems where the DTs are employed mostly 

to detect and tackle disruptive events, as well as providing supplementary 

performance measurements. In addition, they can be potentially deployed at various 

levels, from single components to the entire system, and in many disciplines such as: 

production planning and control, maintenance, and layout designing.  Ultimately the 

provided means contribute to elevate competitiveness, productivity and efficiency 

[4]. 

1.1.2. DT and online DES model 

Practically, the DT is consistent with a CPS type architecture, which involves a series 

of virtual components interconnected and communicating with a physical system’s 

infostructure. The digital tools deployed are highly dependent on the results and 

type of physical system that are intended to be handled. Despite the several 

differences between implementations, some challenges are common for the virtual 

counterpart. Firstly, it must be able to perform rapidly in conditions of high 

complexity and randomness. Furthermore, it is required to handle the processing of 

vast amount of data given by the information source provided. Although adopting 

closed-form analytical algorithms would allow to achieve accurate and fast 

computing solutions, they are also limited in their deployment. Simulation is on the 

other hand a better candidate for flexibility and less restrained assumptions. 

However, considering the computational effort requested, it might show some 



4 Introduction 

 

 

criticalities given the high solving speed required.  

Differently from a classic approach, where often simulation is performed in the early 

stage of designing the physical object and then disposed. In a DT the application is 

carried throughout the operational phase, in the so called “Real-Time”/”Online” 

conditions.  

Online simulation is a concept developed earlier than the DT, but for several 

characteristics it covers an essential role in the framework. Davis et al. [5] underlines 

the conditions which distinguish an “online simulation” from the others. Firstly, the 

simulation horizon is shorter relatively to the dynamic of the system. Consequently, 

the initial state of the system in the simulation represents a very influential point on 

the results and on the decision-making process. In particular, distancing from 

traditional “non terminating“ simulation, the online one cannot have an initial 

transient phase for tuning purposes but must deliver results right from the start [6]. 

Thus, the simulation model has to be aligned in real-time with the physical system 

and every feature must be reflected digitally. Secondly, results are required to be 

delivered within a reasonable timeframe; therefore, the simulation engine has to be 

fast. Summarising, while this particular type of simulation becomes a fundamental 

piece of the technological puzzle it also adds further requirements and challenges 

that must be taken into account. 

1.2. Problem introduction 

Modern production plants are affected by a rapid evolution, the consequent 

transformations introduce several expected and unexpected changes between the 

Digital Twin and the physical system. In particular, while the introduction of new 

resources and the modification of the facility’s layout are known and planned events, 

factors such as components aging, and degradation may not be predicted. The DT is 

required to consistently mirror the dynamic system for it to be a support tool during 

the operational phase. Specifically, the process of reflecting real-time conditions 

necessitates the DT to adapt to disruptions and evolutions affecting the physical 

plant. This is a challenging task and requires the study of numerous leading factors 

that might influence the Digital Twin’s ability to correctly mirror the physical system. 

The research about this precise topic is scarce and a structured discussion addressing 

it is not present. Thus, the authors have originally defined the term “alignment”, 

identifying the status of the DT as completely mirroring the real-time conditions of 

the physical system. Three distinct challenges are identified, each one of them 

producing a possible cause of misalignment: 

 Challenge 1 – Topological Misalignment. 

The topology and layout of a manufacturing plant might vary, together with 

the functioning logic of the production processes. Classically these aspects are 

addressed during the design phase of the digital model, and assuming a non-

changing system this would be enough. However, since disruptive 
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disturbances are part of modern real systems’ life cycles, investigating 

methodologies applicable during the operational phase becomes of high 

interest. 

 Challenge 2 – Instant conditions 

Instant conditions are defined by the real-time status of the elements and 

resources that compose a manufacturing system. These are affected by a 

various range of influencing factors; therefore, information related to their 

variations must be transmitted to the digital model satisfying all the 

constraints and requests needed for the conduction of an online simulation.  

 Challenge 3 – Stochastic behaviours 

The third and conclusive element is determined by the stochastic behaviours 

of the processes that characterize the real system. These are implemented in 

the digital model as distributions and are required to be correct when 

performing predictive simulations.  

These elements need to be addressed separately for the alignment action to be 

effective. 

Ultimately, Kritzinger et al. [9] asses that the development of real case-studies with 

regards to Digital twin with bi-directional data transfer is still at its infancy. A 

majority of the papers reviewed show that the level of integration achieved is quite 

often not as in a Digital Twin, but more Digital shadow and Digital model 

highlighting the lack of maturity when it comes to defining the Digital twin term. In 

addition, the almost absence of concrete case studies shows the complexity of 

creating the data connections and platforms to perform the technology within real 

conditions. 

1.3. Aim of the work 

The aim of this work is to analyse the alignment between a Digital Twin and the 

physical system. The concept develops on multiple levels and contexts of application, 

therefore, considering the previously introduced potential causes of divergency, 

three distinct solving actions have been developed:  

 Automatic model update of DES models, when they no longer reflect the 

physical system’s logic.  

 Synchronisation of the instant conditions, aligning the real-time status of the 

elements on the production plant with the corresponding objects in the DT. 

 Input model update, involving a distribution fitting of the information 

provided within the historical data. 

The actions are managed by means of an integrated control based on indicators, 

which are the outcomes of comparison procedures between the real and digital 
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objects and identify the alignment status. The result is an efficient solution, with 

alignment procedures deployed only when necessary, limiting the computational 

effort. Also, it is integrated in a digital architecture which provides the DT services of 

monitoring and forecasting. An aligned model assures the correctness of the 

provided monitoring service, consisting of using the simulating capabilities of the 

Digital Twin to obtain the real-time performances of the physical system. 

Furthermore, the predictions obtained by the forecast analyses are precise and 

updated to the changes affecting the production plant.  

Finally a proof-of-concept Digital Twin is demonstrated with a case study, in which  

bi-directional data exchange features allow to perform monitoring, forecasting and 

what-If analyses on a lab-scale manufacturing system. 

1.4. Thesis outline  

Chapter 2 introduces a literature overview on the subjects of model generation and 

conversion, synchronisation, and initialisation. Chapters 3 and 4 outline respectively 

the proposed methodology aimed at addressing the alignment issue, and the 

physical system used to test it, together with the developed software architecture. In 

chapter 5 the single components are validated and tested, with the aim of 

understanding their capabilities and limitations. Furthermore, three experimental 

campaigns are introduced, analysing the behaviour of the synchronisation and 

forecast functions.  Chapter 6 presents a case study, composed of a demonstration 

aimed at testing the developed methodology in its entirety, together with additional 

components that make up a proof-of-concept Digital Twin. Finally, the conclusions of 

this work, including the limitations and potential future developments, are outlined 

in chapter 7. 
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2. State of the Art 

This chapter presents the state of the research regarding the alignment of a physical 

system and its digital counterpart. This originally introduced concept allows to 

consider the multiple factors causing lack of real conditions reflection in the DT. 

Contributions found in literature expands on one front, which consider automatic 

generation of DES models to align the logic and layout of the physical system. 

Alternatively, a significant work is done to tackle the evolution of instant conditions 

and the variation of stochastic behaviors by synchronising the appropriate 

parameters.  

Section 2.1 introduces to automatic model generation and illustrates the methods of 

conversion. Consequently, section 2.2 presents the synchronisation techniques, 

anticipating the concept of initialisation. 

2.1. Generation  

In a simulation project, the procedure is to firstly generate a model representing the 

physical system’s behavior, and then use it to perform analyses. The standard 

approach for the development of a simulation model is creating it manually using 

commercial software programs.  

Chance, Robinson, and Fowler [11] as well as Yucesan and Fowler [12] define a 

process for the simulation of manufacturing system, composed of three major steps: 

1. Model Design 

2. Model Development 

3. Model Deployment 

In the design phase the scope of the project is identified, and a conceptual model is 

developed. An important aspect is the complexity of the behavior of the physical 

system and how that is modelled. A too detailed model may increase its accuracy, 

but it will render it too complex and hard to develop and maintain. Therefore 

understating the required detail of the simulation model is a crucial step in the 

design phase. 

The model development phase consists of converting the conceptual model 

developed previously into a digital model, which is required to be tested and 

validated. 
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The last phase, defined as model deployment, is when the digital model created is 

used to perform experiments and subsequent analyses on the result obtained 

through discrete event simulations. 

The first two phases of the simulation project are usually performed manually, which 

is a task that is very time and labor intensive. In fact, these operations require 

specialized personnel, in the form of simulation experts. A solution to this issue 

would be to implement an automatic discrete event model generation method, 

reducing the time and effort required for the design and development phase of a 

simulation project. Automatic Model Generation would also simplify the modelling 

of increasingly complex and larger systems. Vieira et al. [13] defines the automatic 

model generation as one of the major features of discrete event simulation that 

should contribute to the industry 4.0 revolution. 

The automatic generation of a discrete event simulation model using data collected 

from the production floor has been partly solved by the work of Lugaresi et al. [14].  

 

The authors develop a method for the generation and tuning of a graph model 

representing a production system behavior logic from information gathered from an 

events log. In Figure 2.1 is depicted a schema of the generation method at different 

levels. 

The obtained model can be converted to other modelling formalization, i.e., petri 

nets, but unfortunately there still isn’t a method to automatically translate it into a 

language able to perform discrete event simulations. This type of conversion would 

complete the procedure that generates an executable simulation model. 

In their research they define the automatic model generation procedure as a sequence 

of six steps: 

1. Data collection 

2. Process topological discovery 

3. Statistical analysis 

4. Control policies identification 

5. Model conversion 

Figure 2.1: Schema of the generation and tuning method ref. [Lugaresi et al. 2020] 
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6. Model validation  

 

This thesis work focuses on the model conversion phase, which is composed of all 

the necessary steps in order to obtain an executable simulation code of the designed 

system.  

Research is conducted on the different proposed methodologies for the conversion of 

input data into an executable simulation model, either using commercial off-the-shelf 

programs or open source methods based on programming languages like Python or 

Java. 

2.1.1. Input source 

To generate an executable simulation model, the necessary information regarding the 

system’s topology and logic must be given to the conversion method. This includes 

data about all the resources, entities, policies, and their parameters. Since the 

necessary information is collected from different sources within the company, a file 

standard that is compatible with different applications surely helps the information 

exchange.  

Literature presents different standards for the information exchange between 

manufacturing applications. One of the most used formats is XML (eXtensible 

Markup Language). Many standards use this format as modelling language. Lee et 

al. [15] analyze and compared three data exchange interface standards, precisely 

CMSD (Core Manufacturing Simulation Data), OAGIS (Open Application Group 

Integration Specification) and ISA-95 (Instrumentation, Systems and Automation 

Figure 2.2: Typical procedure for automatic model generation, adapted from ref. 

[Lugaresi et al. 2020]  
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society). All these standards use as file exchange format XML. The authors’ goals 

were to evaluate the CMSD standard in a case study regarding the operations of a car 

manufacturing plant.  

2.1.2. Methods for model conversion 

Mathewson in [16] elaborated the concept of translating a logic of a model from 

general symbolism into code that a computer can simulate. The author referred to 

this type of software as a “program generator”. In the research an entity cycle 

diagram, shown in Figure 2.3, is transformed through the developed program 

DRAFT (based on FORTRAN) into an error-free code ready for a simulation. 

 

Krenczyk et al. in [17] propose a solution that allows the semi-automatic conversion 

of external data into a discrete event simulation model. The focus of the paper is to 

implement an adaptable framework for the integration of ERP systems with 

simulation systems. The method is able to convert data about the production system, 

processes and plan into an executable model built using the FlexSim simulation 

software. The information exchange is done using files in XML format, which is then 

loaded into a custom developed software called RapidSim, which generates an input 

file for the FlexSim simulation system, containing all the objects which compose the 

model, data on the production system and the flow of production orders.  

Haraszkó et al [18] develop a method for the automatic conversion of custom layouts 

of manufacturing systems into the simulation software Plant Simulation. The 

information regarding the type and order of operations, the type of manufacturing 

equipment, the type of material flow solutions and the material handling systems, 

the layout type (species and sub-species or sub-types), and the product mix. The data 

is manually introduced into the translator by using a custom GUI, where the user 

specifies the necessary information. The developed tool aids the design phase of a 

manufacturing system since it allows for easy and fast generation of simulation 

models with different layouts. 

Figure 2.3:  Entity cycle diagram ref. [Mathewson 1985] 
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Bloomfield et al. in [19] develop a software called UA Translator, which is able to 

convert the information about an assembly process into a simulation model in 

ProModel and Arena. All the data exchange is done using XML files using the CMSD 

standard. The UA Translator is a VBA application, which through its processing logic 

is able to convert the assembly files (from Design Profit software) into a DES model, 

by populating it into the simulation software. The author presents two case studies, 

testing the translator’s ability to convert correctly the data into a simulation model in 

the first one, and the interoperability with other applications, specifically a job shop 

scheduler and an order and inventory system. The benefit of the proposed solution is 

a saving in time and cost regarding the DES development. 

Popovics et al. in [20] propose the framework EasySim for the automatic generation 

and conversion of a DES model. The information regarding elements composing a 

job shop manufacturing systems are stored in files (either excel sheets or XML files) 

which are then imported into the EasySim program, where model building 

algorithms generate the executable model. The framework, schematized in Figure 

2.4,uses ISA-95 standard for data input and output between the simulation model 

and data sources. There is the added capability of validation by comparing the 

simulation results with the input data. The framework is tested with experiments in 

both EasySim and Plant Simulation.  

 

Figure 2.4: The architecture of the EasySim framework, adapted from ref. [Popovics 

et al. 2016] 

Krenczyk et al. in [21] developed a method for the conversion of the information 

regarding a manufacturing system into a DES model. The information regarding the 

resources and production processes are stored in an XML file which uses a custom 

developed structure. Using an XSLT (Extensible Stylesheet Language 

Transformations) processor, the data is automatically transformed into a format 
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readable by simulation systems. The algorithm which generates the simulation code 

is a sequential process, generating different elements at each stage. Figure 2.5 

describes the proposed framework was tested using the software Enterprise 

Dynamics, but the author suggests that other commercial programs could be used. 

 

Meng et al in  [22] propose a method for the automatic generation of material 

handling systems in coal mines. The author models the behavior of different 

equipment and resources as custom-built Petri nets. The information necessary to 

model the MHS is gathered from different production servers and stored into an 

excel file, which is then loaded into Arena using VBA. The simulation model is then 

populated with the necessary objects, verified, validated, and finally used to perform 

what ifs analyses. The developed framework was then implemented using real 

production data coming from a real open pit mine in the USA.  

To summarise, eventhough some methodologies do exist they are either very specific 

to a use-case or only conceptualisations. In particular, they are lacking of capabilites 

allowing them to be used in a DT context.  

2.1.3. Conversion requirements and software selection 

Research is conducted on the main commercial simulation software programs as well 

as open source methods for the conversion of the graph model into an executable 

program able to perform discrete event simulations. 

The requirements for the conversion method have been established, and are: 

 Modelling capability: many production processes are really complex; therefore 

the simulator needs to be capable of replicating it. 

 Operability: the software needs to be easy to use. Commercial software 

provides a pick and place interface that allows easy modelling, while most 

open-source solutions require an understanding of the code. 

Figure 2.5: XML document transformation ref. [Krenczyk et al. 2014] 
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 Availability: commercial software can be expensive, an open-source solution 

may provide the necessary utility free of charge. 

 Interoperability: since the digital model needs to be able to communicate with 

external functions, its ability to do that is required. 

 Level of automation: the conversion and simulation processes need to be 

completely automatic, there should be no manual intervention required. 

Based on these requirements a list of possible solutions has been created, presented 

in Table 2.1, and ranked with a qualitative score of low, medium, or high. A first 

distinction is between commercial software and open-source methods (based on 

Python and Java).  

The research is constrained to only open-source software or available for academic 

use. 

2.1.4. Commercial software 

Arena: is one of the most used discrete event simulation programs. The software has 

very extensive modelling capabilities, being able to replicate very complex behaviors. 

The main shortcoming is the fact that Arena has limited automation capabilities. 

VBA can be used to perform simple tasks, like gathering data from excel sheets or 

text files or opening and closing a selected model. The ability to place block objects 

and connecting them not very accessible thus making impossible a complete 

automation of the model generation. The software also has limited interoperability 

with other applications. 

Siemens Tecnomatix Plant Simulation: the other commercial software tested is 

Plant Simulation, offered by Siemens. Similarly to Arena, the software is able to 

replicate the behaviors of very complex systems. Plant Simulation offers 

interoperability with other application, for example Oracle databases or PLCs, 

through its interface package. Furthermore, the internal programming language of 

the software, SimTalk, allows for the creation of the simulation objects and 

connections. The biggest disadvantage of this solution is the fact that in order to run 

the model it is required to access Plant Simulation, rendering the automatic 

conversion and simulation impossible.  

2.1.5. Open-source methods 

JSimIO: It is a Python library able to generate JSIM simulation models and perform 

simulation with the JMT engine [23]. This framework can model different 

manufacturing system layouts and can output analytical results in the form of 

throughput at system and node level. The main limitations of JSimIO are the 

necessity of using the JMT software outside of Python to see the results of the 

simulations and the lack of customizability of the objects functioning. Since it is 
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based on Python, this library has some level of interoperability with different 

applications and programs.  

SimPy: it is a framework based on Python which creates an environment for 

performing discrete event simulations. The main objects are the environment, 

resources. The main advantage of this framework is the incredible customizability it 

offers. Custom classes and resources can be created allowing the ability to model 

complex behaviors. It is main advantage is also the biggest limit, since every single 

process must be developed from scratch. This means manually coding every single 

class composing the model.  

ManPy: it is a Python library built on SimPy which includes custom classes 

specifically built for simulating manufacturing processes. The scope of this library is 

to replicate the object of commercial software, thus easing the model development 

phase. The advantage of using this framework it is the fact that is completely open 

source, allowing the creation of new classes and the modifications of the existing 

ones. The fact of it being built on Python creates the possibility of connecting with 

different applications.  

 

 Commercial off-the-shelf Open-source 

 Arena Plant Simulation JSimIO SimPy ManPy 

Modelling Capabilities High High Low High Medium 

Operability Easy Easy Medium Difficult Medium 

Availability Paid Paid Free Free Free 

Interoperability Low Medium Medium High High 

Automation Level Low Medium Medium High High 

Table 2.1: Software classification for conversion 

Considering the proposed requirements of the conversion method and the 

application in which it will be implemented, an open source solution based on 

Python is identified as the better choice. ManPy, with its custom objects and 

functions, is selected as the optimal framework for the required application. 

2.2. Synchronisation 

The concept of synchronisation is dealt in literature, also various methodologies have 

been developed considering the type of application and the factors which influence 
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it. In addition, there is not still a clear definition about this procedure, but most of the 

authors agree that the common purpose is to reflect the real system conditions into 

the digital one. 

This work focuses mainly on applications at a system level, which enclose those 

concentrating on the single or multiple products. While the latter has been discretely 

studied through scientific papers and conferences, the first is still fairly undeveloped. 

2.2.1. Synchronisation methodologies 

Yang et al [24] study a standard application of synchronisation, namely the 

implementation of a trace driven simulation, as soon as the data from the real system 

is available, then the digital model can be realigned and reflect the real conditions in 

the shortest time possible.  

In the paper a very simple real system is used: a mini vehicle driven by dry battery 

and controlled by an on-off switch. It is implemented as a representation of a flow 

production line with a defined point assumed to represent a processing point.  

 

The defined point is characterised by a light sensor, which record a passage when its 

intensity of light is affected by the passage of the vehicle underneath; This procedure 

is implemented in Excel VBA. Thus, the time difference between two succeeding 

signals will define the system cycle time, composing the real-time data then 

communicated to the digital counterpart. 

The results of the paper shows the composition of a dashboard showing the effective 

shadowing in real-time of the digital model with respect to the real system. Also, a 

list of the cycle time from the real system and digital is given, showing the 

correctness of the results. 

In Table 2.2 column A shows the real cycle time acquired by  the real system in real 

time, column B the input data fed to the digital system and C the acquired cycle time 

from the digital model. Trivially column B and C will be equal, but this validates the 

actual functioning of the digital model. 

 

 

Figure 2.6: Image of the distributed model ref. [W. Yang et al. 2017] 
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A B C 

6.13 6.13 6.13 

6.09 6.09 6.09 

6.02 6.02 6.02 

6.05 6.05 6.05 

6.04 6.04 6.04 

6.16 6.16 6.16 

6.10 6.10 6.10 

6.08 6.08 6.08 

6.16 6.16 6.16 

6.18 6.18 6.18 

Table 2.2: Experimental results ref. [W. Yang et al. 2017] 

The type of methodology is therefore illustrated in Figure 2.7 and Figure 2.8. While 

the real system, identified in the mini vehicle running through the circuit complete a 

cycle, the digital model waits to receive the information.  

 

When the cycle is complete the information is computed using the difference 

between the two succeeding recordings then sent to the digital model. Simulation can 

be then run and aligned. 

 

Figure 2.8: (b) Methodology developed, adapted from ref. [W. Yang et al. 2017] 

Figure 2.7: (a) Methodology developed adapted from ref. [W. Yang et al. 2017] 
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Ideally the transmission of information should be instantaneous and therefore the 

synchronisation is achieved just for an instant of time, as the real system continues its 

cycle. It is possible to understand that with this methodology the digital model is 

only able to represent the past and present conditions. 

Hanisch et al. [7] conceptualise this type of methodology as a permanent 

synchronisation. As it can be understood by the aforementioned explanation the time 

advance mechanism of the simulation has to be the same as for the real system. 

In this paper the authors introduce also a methodology named Requested 

synchronisation.  

The simulation works in sleep mode by being in stand-by between updating modes, 

during which a realignment of the conditions is obtained.  

 

This type of synchronisation becomes more important in using the digital 

counterpart to conduct forecast and interrogative actions. 

 

Figure 2.10: Correlation real and digital system, adapted from ref. [W. Yang et al. 

2017]  

Figure 2.10 shows the correlation between the digital simulation time and the real 

time. As it is possible to see when the synchronisation is requested, the simulation is 

run beginning from the initial condition of 𝑡𝑖 to reach the conditions of the real 

system at Tnow. 

Cardin et al. [25] implement the Digital Twin for the case study of decision process 

upon allocation of transporters to fabricate an order. 

Figure 2.9: Requested synchronisation, adapted from ref. [W. Yang et al. 2017] 
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The first case sees the observer being ahead of time of the physical system. The 

progress of those parts, which information from the physical system is available, 

keeps on going, while the others hold until the information is communicated. On the 

other hand, the observer is late: in this condition, the authors propose a local 

acceleration of time in order to reach the real system’s state.  

 

Figure 2.11 shows 𝑠1, 𝑠2 which represent the synchronisation points, while 1 and 2 

indicate the parcels whether simulated in the digital system or followed in the real 

one.  

Another important aspect to consider, is that information between the two 

synchronisation points in real system cannot be acquired. A Digital twin correctly 

validated and synchronised used for shadowing purposes can additionally give 

information which otherwise would not be acquired from the real system. 

From an implementation point of view the paper uses a Petri Net to introduce the 

synchronisation function principles.  

Figure 2.11: A synchronization example, adapted from ref. [Cardin et al. 2011] 
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In Figure 2.12, the token in P1 indicates that the real event in A did not happen, in P2 

that the real event in A happened. In P3 the token signals that there is the possibility 

that the event A has happened. The P4 function is quite particular, in fact it deletes 

the occurrence of the event and considers as it has happened for the purpose putting 

the simulated system in a “waiting” mode. Finally, in P5 the simulated system is 

synchronised. 

The illustrated figure allows to introduce the topic of synchronisation points. Defined 

whether in time or space either on the physical or digital side, they are used as 

indicator of where the two systems must be able to reflect identical conditions. They 

are positioned consistently with the applications and the performance expectations. 

2.2.2. Hardware in the loop and co-simulation 

In the context of control systems, some literature works have developed interesting 

methodologies. Although the field of application might be characterised by different 

conditions and inputs, it completely presents the possible solutions to the 

synchronisation. 

The use of a digital infrastructure in supporting the control system, can be 

incapsulated in the term hardware in the loop. This have been categorised by 

Wünsch G. [26], distinguishing between HILS (Hardware In The Loop Simulation) 

approaches for different control cycle times, in the range of 100, 10 and 1 millisecond. 

From the slower applications to the faster ones, windows operating system and real-

time operating system (RTOS) can be used respectively [26].  

The authors introduce a new architecture to be used in the contest of the digital 

factory for the virtual commissioning of production systems. The aim is to be able to 

model and control a production system at multiple levels, therefore integrate the 

Figure 2.12: The observer synchronization function principles ref. [Cardin et al. 2013] 
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several interactions between the process, machine, control system and operator 

satisfying the requirements of a HILS (cycle time ~ 1ms). 

Pritschow G. et al. 2004 [27] states that a machine simulation has to process the 

output of the control to then manage the inputs within the deterministic control cycle 

time to be able to satisfy the constraints of time-synchronous and lossless data 

processing.  This Architecture is indicated as closed simulation architecture by Schmoll 

R. [28], shown in Figure 2.13. 

 

Figure 2.13: Closed simulation architecture ref. [Schmoll et al. 2015] 

The individual solver executed as RTOS (Real-Time Operating System), although 

highly time performant, limits the computing capacity. The control inputs are then 

submitted to a simulation clock, synchronised with the control system. 

A solution to this disadvantage is the introduction of a real-time co-simulation, a 

term quite often used in other areas then production systems. A simple 

comprehension of this architecture is the partitioning of the overall model and 

parallelization of the simulation calculation by coupled and synchronised partial 

model solvers. 

The final result with regards to the application of a real-time co-simulation platform 

for virtual commissioning of production systems is illustrated by Scheifele et al [26]. 



State of the Art 21 

 

 

 

While for Offline co-simulation, a virtual time axis for the simulation time is assumed 

and partial solvers are calculated one after the other. On the other hand, for Real-

time co-simulation, each solver is executed parallelly and with independent timing. 

The numerous solvers must be synchronised satisfying the requirements of HILS. It 

is although quite interesting to underline the possibility of managing multiple levels 

of synchronisation, even though for this illustrated logic the purpose is of only 

controlling the various multidisciplinary systems; however, not much is done with 

regards of DT applications such as monitoring or interrogative actions. 

Zipper H. 2019 [29] Introduces an architecture and an algorithm to synchronise the 

states of a plant with its Digital Twin while at the same time detecting changes. The 

concept of synchronisation is handled as an optimization problem for physical plant. 

This type of methodology is applied to synchronise especially manufacturing 

processes defined particularly by continuous evolving conditions due to aging, 

faults, and wear. 

An example of possible architecture to develop an online simulation platform having 

knowledge of the input given by the controller to the physical system is shown in 

Figure 2.15.  

Figure 2.14: Real-Time co-simulation architecture ref. [Scheifele et al.] 
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Figure 2.15: Online simulation ref. [Zipper et al. 2021] 

With:   �̂� : output measured from the physical plant 

𝑦 : output acquired from the simulation model  

�̂� : input of the controller 

Depending on the actual problem to be solved, the signals given to the physical plant 

to be parallelly inserted in the simulation are chosen. A possible difference between 

the two sides, thus is used to calculate the error.  

An innovative solution developed by Zipper et al. is to tackle the problems of 

missing feedback to the controller by auto-tuning the simulations inputs and 

parameters. This is indeed achieved by applying a dynamic optimization focused on 

minimizing the aforementioned difference, defining the concept of state 

synchronisation.  

 

 

Figure 2.16: Real-time co-simulation ref. [Zipper et al. 2021]  
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The great potential which characterises this original architecture is the continuous 

adaptation of u for each time step i, iteration of the optimization algorithm, of the 

online simulation in order to minimise the  difference ∆𝑦 = 𝑦 − �̂�. 

The overall algorithm which determine the simulation logic is modelled as co-

simulation, this allows the possibilities and advantages explained earlier and 

especially the independency between the two levels, thus using multiple iterations to 

acquire the outputs from the simulation. In addition, it can be used to work as 

predictor of behaviours. 

To summarise, the inputs coming from the controller are adapted, receiving the 

correction estimated by the difference of the outputs of the Digital and physical 

plant. Since unpredictable changes can affect the output of the physical plant, the 

parameters and inputs in the simulation will be adapted as a consequence to 

dynamically minimize the error. Results have been shown in context of physical 

system such as electrical motors and pneumatic cylinder acting on a horizontal beam 

2.2.3. Initialisation 

Although this work will not concentrate on the methodologies for the purpose of 

predicting with the highest precision the future behaviours, some aspects of the 

synchronisation related to forecast analyses in the context of Digital Twin application 

remain fundamental. 

A fairly minor and extensive challenge in the context of digital and real objects 

alignment is the initialisation of the conditions in the real-time simulation models. 

Particularly challenging and fundamental to allow the digital model to be ready to 

give correct results right from the start and avoid any initial transient phase.  

Reporting a quite explanatory example from the work of Hanish et al. [7] which 

study the flow of pedestrians in a train station. Initialising a correct model at the 

wrong time, e.g., 7 am when the station is closed, would surely give wrong results 

given that the real time is 8 am and the station is opened.  

Hanish et. al [6] introduce an architecture when it comes to correlate synchronised 

models for forecasting actions, similar in logic to the co-simulation explained in 

Section 2.2. Parent and child models: the first reflects the real system, while the latter 

inherits all system variables including values from the parent model. Based on the 

simulation software capabilities and operating systems, multiple child models might 

be used to execute forecasts. Their time advance mechanism must be as fast as 

possible and different from the parent model. 
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Figure 2.17: Parent and child model architecture, adapted from ref. [Hanish et. al 

2005]  

Synchronisation in the parent model can be maintained using the aforementioned 

methodologies, thus permanently or upon request. 

 

To be considered is that if the synchronisation upon request is used, then it is a major 

constraint that the child model, entitled for forecasting, finishes its run before the 

parent model is updated again. 

 

Figure 2.19: Request synchronisation, adapted from ref. [Hanish et. al 2005]  

Figure 2.18: Permanent synchronisation,, adapted from ref. [Hanish et. al 

2005]  
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A further comparison when the parent model has been updated is incorporated, 

measured values from the real system are used to adjust the simulated ones before a 

forecast is run. 

A third and the simplest approach for initialising online simulation models is the 

generation of a new model to conduct forecast analyses using historical data as in 

classic simulations. 

 

A comparison between these three methodologies, underlines that: generating a new 

model when needed it is surely simpler, however the data inputs must be complete 

and if not possible to be all acquired then they necessarily have to be assumed 

compromising the correctness of the results.  Alternatively, synchronisation allows 

for the incompleteness of data, but a higher computational effort must be 

implemented. 

2.3. Literature gap identification  

The illustrated methodologies summarised from the literature are certainly a step 

forward in the research and for this must be taken into account. Furthermore, the 

works done seem to highlight that implementations have been performed only in 

certain stages of the DT application.  

In Figure 2.21 a categorisation in consistency with the phases of the digital twin is 

illustrated. 

 

 

Figure 2.21: Summary of alignment methodologies & phases 

Figure 2.20: Initialisation with model generation, adapted from ref. [Hanish et. 

al 2005]  
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In addition, previous works only concentrate on specific actions aim to achieve either 

monitoring  or forecast. 

While the methodologies are addressing the same issue with distanced perspectives 

and results, some common grounds can be highlighted. To commence, all practices 

underline a great need for interoperability between the various systems involved. 

Also, the flow of data transferred between the several technologies must follow a 

protocol which guarantees an effective comprehension of the information. A 

dynamic storage built or provided by external services is a fundamental component, 

given the great amount of data and the possibility of looking in the past to gain 

essential information. The components integrated in a digital twin framework should 

also reflect highly automated characteristics. Additionally, a previous knowledge 

about the possible variables involved is at the core of the methodologies 

implemented. 

However, the authors of this study have been able to identify some gaps that are 

present in the literature. A lack of flexibility in solving the alignment is surely visible. 

Although each method developed optimally tackle a misalignment issue, they 

become inefficient when other multiple behaviours come into play affecting the real 

system. Furthermore, the actions are set to achieve the optimal results given a 

constant frequency and no decisional process is done, whether to act or not and what 

strategy to apply. In addition, the resolution for the alignment is focused on 

achieving the best performance. However, no consideration is done regarding the 

efficiency of the process, for instance the amount of data used or the relationship 

between computational effort and results obtained. In conclusion, although some real 

implementations are found in the literature, they are often referred to other context 

than production systems.  

In the following chapter 3 a new methodology is introduced with the aim of tackling 

the explained limitations and contribute to the scientific community. 
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3. Proposed methodology for the 

alignment of the DT 

3.1. Methodology overview 

In this section a methodology is presented that aims at developing an adaptable and 

intelligent alignment function, which collects data from the physical and digital 

objects and acts on the DT. A scheme of the proposed alignment methodology is 

pictured in Figure 3.1. 

 

Figure 3.1: Scheme of the proposed alignment methodology 

Some assumptions must be made regarding the data collected from the physical 

system, in fact information acquired are considered as: 

 Correct: data acquired by the physical system are assumed as valid, thus 

lacking in inaccuracy or noise. 

 Incomplete: the data collected does not represent all the information regarding 

the state of the physical system at a given moment in time.  

 Intermittent: the data acquisition points in the production line are limited, 

therefore the physical system collects data exclusively when they are 
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encountered. They also act as “synchronisation points” defined as key 

moments in time and space where comparisons between the two entities can 

be performed. 

This study focuses on solving three major kinds of misalignments: the model logic, 

the model’s instant conditions and the model’s stochastic behaviors. There could be 

other types of discrepancies between the two objects, but this framework would be 

still applicable, as long as a corresponding aligning action is implemented. 

 The logic of a production line is described by the plant’s layout, the number, 

and types of resources, and how the workpieces flow through them. The 

digital model must reflect these features to be used for performing useful and 

correct analysis.  

 The instant conditions represent a static snapshot of the actual status of the 

production system at a given moment in time.  

 The stochastic behaviors are defined by the parameters which model the time 

duration of the different activities characterizing a production system. They 

are obtained through a statistical analysis on the processes and afterwards are 

given as input to the digital object in the form of stochastic distributions.  

The problem of misalignment is tackled with a methodology that enables a 

continuous control on the status of the digital model in relation to the real 

counterpart. For an evaluation of the alignment between the two objects, data from 

the physical system are collected and used in comparison procedures. The results are 

then summarized in a series of markers. Based on these, a component named 

Controller chooses if and which action needs to be deployed to re-align the digital 

model. The comparison techniques can vary depending on the kind of misalignment 

they analyze. In this work the procedures used are three: one for the logic of the 

model, one for the stochastic behaviors and one for the instant conditions. These 

measures elaborate a single marker that indicates whether the physical system and 

the digital model are aligned and if that is not the case, it indicates the type of 

discrepancy between the two. 

The actions illustrated in Figure 3.1 to re-align the model are managed by the 

controller and are: 

 Action 1: Model update, when the logic of the digital object no longer 

replicates the behavior of the physical system. 

 Action 2: Synchronisation, when the instant conditions of the digital model 

differ from the ones of the real counterpart. 

 Action 3: Input model update, when the stochastic behaviors implemented in 

the digital model are not able to describe anymore those characterizing the 

physical system. 
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This solution is innovative because it targets multiple kinds of misalignments, not 

only specific ones, and the control system calls the different actions only when they 

are needed. This way the computational effort is efficiently managed. 

3.2. Comparison procedures and markers 

Different comparison procedures are used to assess the alignment status between the 

physical system and the digital model. In this work three comparison procedures 

have been chosen to determine the level of discrepancy between the two objects: 

 The logic validation compares the topology and general behavior of the two 

systems by comparing the real with the simulated performance obtained with 

a trace-driven simulation. 

 The input validation functions in the same way; however, it modifies the trace 

by correlating it with the digital model’s stochastic behaviors. It checks 

whether the stochastic behaviors of the two objects are equal or not. 

 A synchronisation check determines if the instant conditions of the digital 

model are the same as the ones of the physical system. This measures the 

discrepancy using the results of a particular positioning function. In appendix 

A.2.4 an example is given. 

The result is that these markers convey a binary indication whether the DT alignment 

is validated particularly to a specific factor.  

3.3. Controller 

The controller works on pre-defined request frequency 𝑓𝑟𝑒𝑞 , in which every cycle it 

collects the input information in the form of markers and then it decides if deploying 

the corresponding alignment action. The request frequency can vary, depending on 

the use case of the framework, and also the required performance the platform has to 

satisfy.  
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Figure 3.2: Flowchart of the behavior of the Controller in the case of un-coupled 

request frequencies 

The check on the different markers can also be de-coupled, depending on the system 

analyzed and if the process of creating the marker is time-consuming. For example, 

the check on the model’s logic can happen less frequently compared to the check on 

the model’s instant conditions, because the latter evolves far more frequently than 

the former. In this case there will be multiple request frequencies 𝑓𝑟𝑒𝑞,𝑖, as shown in 

Figure 3.2. The markers can also be neglected, this happens in the case in which there 

is no information regarding the alignment status of the physical and digital systems. 

In this configuration the different actions are always deployed, but since there is no 

comparison between the two objects, it remains uncertain the effectiveness of the 

alignment process. 

In the next sections the re-aligning actions are explained, together with a running 

example to better explain the different procedures. The system in question is 

composed of two servers in series, as shown in Figure 3.3(a). 

3.3.1. Model update  

The simulation model automatic update is composed of two steps. First, a graph 

model containing all the necessary information for replicating the physical system’s 

logic is generated. Consequently, the graph is converted into a simulation model 

using a conversion algorithm. The result of each phase of the two servers’ system is 

shown in Figure 3.3. 
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Figure 3.3: Original two-server system (a), representation of the generated graph 

model (b), representation of the converted simulation model (c). 

3.3.1.1. Model Generation 

The model generation procedure is based on the work of Lugaresi et al.[13], where a 

model discovery procedure generates a graph model Ω, which is defined as a tuple 

Ω=(N, A) where N is the set of nodes and A is the set of arcs. Each node represents 

one activity which compose the production system, while arcs are the connections 

between the different activities. Each node 𝑛 ∈ 𝑁 and each arc 𝑎 ∈ 𝐴 is defined by a 

set of attributes, summarized in Table 3.1 and Table 3.2. 

Node parameter  

Pn Predecessor node set 

Sn Successor node set 

kn Capacity of a node 

ϕn Frequency of a node 

Table 3.1: Node parameters notation 

Arc parameter  

ηa = (n, m) Nodes connected by an arc 

ca Buffer capacity of an arc 

fa Frequency on an arc 

Table 3.2: Arc parameters notation 

The relevant parameters of each node are:  
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 Predecessor and successor node sets, Pn and Sn, which indicate the other nodes 

in the model which the node in question is connected with. 

 The capacity kn of the node, which illustrate the maximum number of 

workpieces that can be processed at the same time. 

 Frequency ϕn of the node, which depicts the number of times the activity was 

found in the event log. 

The relevant parameters of each arc are: 

 The tuple ηa, which contains the two nodes connected by the arc. 

 The buffer capacity ca, which indicates the maximum number of workpieces 

that stayed in the arc at the same time. 

 Frequency fa, which is the total number of workpieces that flowed through the 

arc. 

In Figure 3.3(b) is shown the resulting graph model of the two-server system, 

composed of two nodes, 𝑛1 and 𝑛2, representing the two servers, and the arc 

𝑎1 connecting them.  

3.3.1.2. Model Conversion 

The graph model Ω is then converted into a simulation model. The conversion 

method takes each element of the graphs and creates the suitable objects to populate 

the simulation model. These are: Part, Machine, Queue, Source and Exit, all 

composing the digital model, as shown in Figure 3.4. 

 

Figure 3.4: Diagram of the Digital Model components 
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 The Part object represents the workpieces that flow through the production 

system. Each Part object has a set of attributes that summarize its 

characteristics: id and name of the workpiece, its current location in the model 

and the timestamp associated to its creation. 

 The Machine object is used to simulate the behavior of the different resources 

that perform activities on each workpiece. The processing action is 

summarized in a time delay that simulates the activity. Each Machine object is 

characterized by its name and ID, the other objects it is connected to, its 

frequency value, which is used to determine the probability of receiving a 

workpiece if it is part of a parallel system, and finally information regarding 

the processing times (divided in loading, unloading and actual processing 

times), in the form of a distribution and its parameters. 

 The Queue object is used to replicate the behavior of a buffer, which is a 

resource that holds a certain number of workpieces. Every Queue object holds 

information regarding its identification (ID and name), its capacity, which is 

the maximum number of parts it can hold, the other object it is connected to, 

its scheduling rule, and finally its frequency value, which has the same use as 

in the Machine object. 

 The Source object generates the Part objects in the digital model, is used to 

simulate the inter-arrival of workpieces into the system. 

 The Exit object removes the Part object from the digital model, simulating the 

workpieces exiting the production system. 

The methodology for the automatic conversion of the graph model Ω into a 

simulation model is composed of a series of steps shown in Figure 3.5. 

 

Figure 3.5: Flowchart of the model conversion procedure 
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The first phase consists of counting the number of nodes and arcs that compose the 

graph model. These values are used to create the correct number of simulation object 

to place in the digital object. The nodes represent each activity that takes place in the 

production system, therefore in a simulation model they must be represented by an 

object which is able to replicate the processing time of the activity. Consequently, for 

every node in the graph model the conversion algorithm creates a Machine object. 

On the other hand, the arcs represent the connections between the different nodes, 

but they also have the ability to hold a certain number of work-pieces. Because of this 

reason, they must be represented by a buffer-type simulation object, that is able to 

replicate the behavior as a temporary storage of workpieces. Therefore, the 

conversion procedure creates a Queue object for every arc in the graph model. The 

next step is composed of the analysis of the connections between the different objects 

in the simulation model. The arc represents the connection between the nodes; 

therefore this information is used in the conversion procedure to define the correct 

predecessor and successor object for each Machine and Queue. In open models, 

where workpieces enter the system, are processed, and then exit, there needs to be 

something that simulates the arrival and the disposal of parts. If a node does not 

have any element in the predecessor set Pn, then a Source object will be placed in the 

digital model and connected before the corresponding Machine. In the same way, if 

the successor set Sn of a node is empty, an Exit object will be placed in the simulation 

model after the corresponding Machine. In Figure 3.3(c) is shown a representation of 

the simulation model generated and converted from the original two-server system. 

The two nodes are converted into two Machine objects, M1 and M2, while the arc is 

replaced by one Queue, Q1. Since 𝑛1 has no predecessor nodes, the Source object S1 

has been added to the model, together with SQ1. Furthermore, and Exit object E1 has 

been placed after M2, because 𝑛2 doesn’t have successors. 

The final output of the conversion procedure is a discrete event simulation model of 

the physical system in analysis. The model can be executed in two different ways, 

either through a stochastic or a trace-driven simulation. In both cases some 

parameters must be specified before. In the case of a standard stochastic simulation, 

the distributions generating the processing times of the different Machine objects 

must be given as input. The length of the simulation and the number of replicates is 

also necessary. Considering trace-driven simulations, where the processing time 

values of the Machine objects are taken from a list given as input, the number of 

replicates is just one, while the simulation runs up until there the processing time 

values are finished. In this mode also hybrid simulations can be performed, where 

some Machine objects take processing time values from a distribution, while others 

use values given as input. In both cases the output of the simulation are the average 

throughput and system time, the number of parts produced; together with the 

resources’ utilization, starvation and blocking ratio. 
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3.3.2. Synchronisation 

The second action called by the controller is the synchronization which addresses the 

re-establishment of the instant conditions of to the physical system into the digital 

model. These include the immediate status of the resources and the workpieces that 

compose the production line, as well as the information regarding the instantaneous 

performances that the real system has been able to obtain. In particular, the 

workpiece position and the actual number of parts produced are the subject of 

synchronisation. 

The procedure is structured as a request type synchronisation, as illustrated in Figure 

3.6. 

 

 

Figure 3.6: Logic of synchronisation method 

The dark grey box in the physical system represents a newly acquired processing 

parameter, e.g., a processing time from a machine of the production line, thus the 

digital model is run with a trace driven simulation. To start the simulation, the initial 

instant conditions found before the last processing parameter are used to initialize. 

The processing parameters are used as input trace. Ideally when the digital system 

has simulated the real behaviors, it should be able to reflect the final conditions also 

find in the real system. This mark instantaneously that the synchronisation has been 

reached. In Figure 3.7 is shown the result of the procedure in the two-server line. 

Before the synchronisation the instant conditions of the simulation model are 

different from the ones on the real system, while after both the positioning of the 

parts and the number of produced parts are equal. 
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Figure 3.7: Two-server system instant conditions (a), digital model instant conditions 

before synchronisation (b), digital model instant conditions after synchronisation (c) 

3.3.2.1. Synchronisation implementation 

When a synchronisation request is performed at time T, the procedure is as follows: 

1. The trace of the most recent processing time values of the entire system is 

acquired. The amount of data used determines a time interval dt. 

2. The initial instant conditions at T-dt are computed using a part positioning 

function, introduced later in this section. 

3. A trace-driven simulation is executed using the gathered traces, from T-dt to 

T. 

4. The final position of the digital model at the instant T, and the respective 

digital performances are therefore obtained. 

Given the type of system analysed, during operations the workpieces can either be: 

in a machine, where they are being processed, in a buffer, or in transport between 

two resources. A generalisation is introduced in the positioning procedure, as shown 

in Figure 3.8, where the production system is divided into zones, each include a 

machine and its downstream buffer.  

 

Figure 3.8: General production system layout and zones division 

In order to compute the position of the workpieces from the information provided by 

the event log, the function acquires the last event for each part id still in the system. If 

the relative tag is a start, the part is placed in the buffer of the zone containing the 
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machine, otherwise if it signals a finish the part is placed in the subsequent zone. 

This procedure allows to identify the positions for both the real and digital system.  

To summarise, the factors required to conduct this type of procedure are the input 

process parameters, which allow to describe the evolution of the physical system, 

and the initial conditions. The former is extrapolated from the physical system and 

are dependent on the type of simulation tool implemented as well the purposes and 

digital twin performance’ expectations. They are required to completely be able to let 

the simulation advance and reach the physical system conditions. The latter have to 

be able to depict the instantaneous conditions that are essential to initialise the digital 

model and thus make it avoiding the initial transitory phase. This type of 

methodology is consistent with the so-called Online simulation. 

3.3.3. Input model update 

The last action tackles the issue related to the misalignment reflected by the deviation 

in the stochastic behaviors. This is certainly of great influence for forecast purposes, 

where fitted parameters are used to predict future conditions.  

 

Figure 3.9: Example of the input model update method on the two-server system, 

where a new distribution replicating the processing times of S2 is fitted and 

implemented in the corresponding element of the simulation model. 

The historical data from the physical object are acquired and consequently fitted in 

order to find a stochastic pattern. This is updated into the digital model which is then 

ready to give any predictive results. The action of input model update is entirely 

determined by the controller not only in terms of frequency but also on the length of 
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historical data acquired. Figure 3.9 illustrates an example of the input model update 

logic on the two-server system. Specifically, the procedure works in three steps: 

1. A trace containing the most recent processing time values of the machine is 

acquired. 

2. The distribution that better fits the acquired values is found, by applying the 

Maximum Likelihood Estimation (MLE) method. 

3. The new distribution is implemented in the correct object of the simulation 

model. 

3.4. Services 

The methodology introduced in the previous sections makes the digital twin meet 

the alignment requirement, enabling the services of monitoring, which provides real-

time analysis of the current performances, and forecast, to predict future behaviors. 

In Figure 3.10 are shown the conditions that must be kept aligned by the controller 

for correctly performing each service. 

 

Figure 3.10: Alignment conditions that the controller must satisfy to perform the two 

services. 

3.4.1. Monitoring 

The monitoring service consists of using the simulating capabilities of the digital 

twin to obtain the real-time performances of the physical system. Trace-driven 

simulations are performed using the actual processing parameters collected from the 

physical plant. The result is a more complete knowledge of the current status of the 

production system, allowing the calculation of performances that are too costly or 

impossible to obtain directly from the real object. An example would be the 

computation of the machine utilization values. As shown in Figure 3.10, for the 

monitoring action to be correct, both the logic and the instant condition of the digital 

model must be kept aligned by the controller. 
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3.4.2. Forecasting 

The forecast service consists of the prediction of future performances of the 

production system. The main benefit that an aligned Digital Twin provides is the 

ability to perform real-time simulations at any time, allowing the prevention and 

reaction to unpredictable and disruptive events. As an example, an aligned digital 

model can perform what if analysis after a failure of a machine in the manufacturing 

line, by simulating possible solutions and implementing the better performing one. 

As Figure 3.10 shows, the requirement for the correct activity of the forecast function 

is the alignment of the logic, the instant conditions, and the stochastic behaviors of 

the digital model. 

In conclusion, the controller is built to manage the alignment of the digital and the 

real object through the whole life cycle. The gaps found in the literature are satisfied 

by the capabilities and characteristics of the conceptualized solution. As a first 

contribution to the literature, the control logic is surely very flexible. In particular, 

the controller triggers the several actions in charge of realigning the digital model. 

The decisional process followed by the component is based on markers which 

summarize the various degrees of misalignment. In addition, the use of indicators 

allows to act only when necessary and save computational effort. 

Although the methodology introduced is applicable to several kinds of production 

systems, it needs to be furtherly adapted based on the physical system’s features and 

the digital tools’ characteristics. 
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4. Alignment components 

implementation 

This chapter introduces the implementation of the proposed methodology. This acts 

as a cyber-physical system including multiple entities interconnected. On one side 

the physical system, a lab-scale model which simulates the behavior of a real 

production line. On the other, the components correlated to the Digital Twin. The 

connection between the two objects is made possible by supporting services. 

4.1. Physical system 

The physical system is built using Lego MINDSTORMS. This and other types lab-

scale models are available in the “Digital Twin lab” at Politecnico di Milano. The 

adoption of this kind of system has the advantage of being able to test multiple 

configurations of production systems, by changing the number and position of the 

different elements. This capability, together with the simplicity in its use and upkeep, 

is the reason for its selection. 

The model is composed of stations connected by conveyors, which act also as buffer 

for the circulating pallets. Each component of the physical system is built using the 

MINDSTORMS components pictured in Figure 4.1. 

 

Figure 4.1: Lego MINDSTORMS components: motors (a), optical sensors (b), EV3 (c) 

Stations include three sensors, pictured in Figure 4.1 (b), a pusher, and a dedicated 

conveyor. Figure 4.2 pictures a station. Both the pusher and the conveyors are moved 

by motors, shown in Figure 4.1 (a). 
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Figure 4.2: Example of a station and its components: the internal sensor (A), the 

upstream sensor (B), the pusher (C), the buffer sensor (D), the transport conveyor (E), 

and the internal conveyor (F) 

The functioning of the stations aims to reproduce the behavior of a real processing 

machine. Each one has four states: idle, working, blocked, and failed. The logic of the 

station is explained in the flowchart pictured in Figure 4.3. 

 

 

Figure 4.3: Station logic flowchart 

Buffers are modelled as the areas between the upstream and the buffer sensor, and 

the distance between them defines the capacity. Pallets are represented by wooden 

discs with a diameter of 35mm. They present a colored marking on the top, which is 

necessary for the recognition by the sensors. The MINDSTORMS components are 

controlled by programmable logic controllers, pictured in Figure 4.1 (c), also called 

EV3. 

For the implementation of this work a two-station closed-loop model has been 

chosen, pictured in Figure 4.4. The system is characterized by: processing of a part 

one at the time, Blocking After Service (BAS) discipline, buffers capacity of 8 pallet, 

and 12 pallets circulating the line.  
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Figure 4.4: Lab-scale model of closed-loop, two-station line 

4.2. Communication logic 

Communications are managed by the EV3, which receives the signals from the 

sensors and controls the actuation of the motors. A scheme of the communication 

logic of an EV3 is shown in Figure 4.5. The device’s logic requires a configuration 

input, it also sends out the information it collects. The EV3 bricks and the PCs are 

connected to a network router, the connection is established using a Secure Shell 

Host (SSH) protocol. The communication channel between the physical system and 

the other components is achieved using Message Queue Telemetry Transport 

(MQTT), a publish-subscribe network protocol, where each message is structured in 

JSON format. Mosquitto is used as broker.  

                       

Figure 4.5: EV3 messaging logic scheme, with MQTT and proprietary connections 

The EV3 is controlled through a Python script which determines all the logic of the 

inbound and outbound messages [29]. The latter interprets the information received 

by the sensor, specifically the buffers level, the stations’ state, and the events. For 
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instance, a message published on the topic/activity, corresponding to an event on the 

system, can be: {“id”: 16, “activity”: 1, “tag”: “s”, “ts”: 1578443734.169}, where: 

 “id” is used to identify which workpiece is being processed. 

 “activity” is a number corresponding to the machine which is doing the 

processing.  

 “tag” identifies the type of activity. It can either be “s” or “f”, corresponding 

respectively to the start and finish of the processing operation. 

 “ts” is the timestamp of the event, saved in UNIX format. 

The inbound messages are the configuration files, which are sent to each EV3 when 

the system is started. These parameters define the logic of the station, specifically the 

processing times, the failure probability, and the repair times. These values of the 

stochastic quantities (i.e., the processing and failure times) are generated by a RNG 

contained in the Python script, which uses as seed value defined in the configuration 

file. In Table 4.1 an example of configuration parameters is shown. 

 

Table 4.1: Configuration parameters 

4.3. Digital architecture 

Figure 4.6 depicts a class diagram containing all the main components of the digital 

architecture and their connections. These are developed using different software 

platforms, all interconnected and controlled through the use of Python script. The 

simulation capabilities are provided by Arena Rockwell and ManPy. Furthermore, 

InfluxDB is used to provide the database. MobaXTerm and Mosquitto handle the 

MQTT messaging, while a dashboard has been developed using Grafana. 
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Figure 4.6: Supervisor class diagram 

The Supervisor class manages the functioning of all the other components. With the 

method “start()” it initializes all the necessary objects and activates them. The 

database stores all the data coming from the physical and digital systems. The broker 

object has two functions: it manages the communication from and to the physical 

system and it also populates the event log with collected messages. Its attributes 

define the IP address and port number of the machine where it is located, while the 

methods perform the two functions. Raw data from the real system are manipulated 

to compose in real time derived performances by the Analyser. The components 

starts with the method “run()”, and works on a frequency defined by the “t_horizon” 

attribute. Finally, the InterfaceDB class is used to handle the connection between the 

database and the other components. The Validator component is in charge of 

performing the comparison procedures and will be furtherly explained in section 6. 

A flow chart of the supervisor is illustrated in Appendix A.2.2. A dedicated 

description of the controller and database is provided in the following chapters. 
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4.3.1. Controller 

In Figure 4.7 is shown the class diagram of all the components that make up the 

Controller. With “run()” the object starts its function, calling the methods which 

check on the markers and, if needed, deploy the aligning action. “Model_Update()” 

checks the logic validation marker, generating and converting a new simulation 

model if needed, “Synchronisation()” controls the instant conditions and potentially 

performs a synchronisation, and “Forecast()”, which checks on the stochastic 

parameters, updates them when requested, and performs predictive simulations. 

 

Figure 4.7: Class diagram of the components that make up the controller 

 The Simulator component is in charge of performing simulations and operates 

using either ManPy or Arena Simulation software. In the first case, the model 

is automatically generated and converted, in the second it has to be purposely 

built for each physical system. It can perform either trace-driven simulations, 

where the processing parameters are given as trace, or using stochastic 

distributions. 

 The implementation of the model update function is done through two 

classes, respectively the Graph_Model_Generator and the Model_Converter, 

aggregated in the Model_Update component. The procedure starts by 
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collecting datapoints from the event log included in the database. The 

“t_horizon_gen” parameter defines the amount of data to query. The update 

method then takes as input this information and a configuration file, 

containing possible manual modifications, and creates a graph model in the 

format of a JSON file with the method “gen_model_init()”, which is then 

uploaded on the database. The method “model_convert()” is then activated, 

which produces a simulation model in the same format, also uploaded to the 

database. In Section 4.3.1.1 the flow chart illustrates in details the procedure to 

achieve a correct update. 

 The Synchroniser is in charge of re-aligning the instant conditions of the 

digital model. It is activated by the Controller and the attribute 

“t_horizon_trace” determines the time interval dt in the procedure explained 

in section 3.3.2. The final position and the performances obtained are then 

uploaded to the Database. Section 4.3.1.2 proposes a flowchart to explain 

furtherly the process. 

 The Forecaster component handles the update of stochastic parameters, with 

the method “best_fit_distribution()” in the Input_Model_Update component, 

and predicts the future performances of the line. The attribute of the controller 

“time_horizon_dist” determines the length of the processing times trace to 

query from the Database. Furthermore, before each forecast, the instant 

position computed by the synchronisation must be downloaded. With regards 

to Input_Model_Update the Section 4.3.1.3 illustrates in detail the process 

involved. 

A sequence diagram of the controller and broker is depicted in Appendix A.2.3. A2.7. 

4.3.1.1. Implementation of Model Update 

The update of the model’s layout and logic is performed through procedures 

implemented in Python, theses are illustrated in the flow chart of Figure 4.8.  

The event log is first used by the Model Discovery Procedure to generate a graph 

model JSON file. This is read and to initialize the ModelConverter a configuration 

file is introduced. The method of convertModel() is activated by first having 

computed the number of nodes and arcs from the graph model generated. These are 

used as explained in Section 3.3.1.2 to create the Machine, Queue and Exit objects. 

Once the executable model is finalized with the connections between the objects, the 

simulation Model JSON file is uploaded in the Database.  
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Figure 4.8: Model update flowchart 

4.3.1.2. Implementation of Synchronisation 

Through the synchroniser’s methods and attributes, the instant conditions are 

aligned.  

 

Figure 4.9: Synchroniser flowchart 

Figure 4.9 pictures the sequence of performed procedures. Two inputs are acquired 

by the Database: the processing parameters acquired up until a certain time Tquery 

in the past composing the trace. Then, the event log is acquired using also Tquery so 

the initial positions of the pallet at the beginning of the acquisition is computed, then 

imposed in the Trace Driven simulation.  

The simulation is run until Tnow so the instant conditions are aligned, the positions 

of the pallets and the parts produced are uploaded in the Database.  
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4.3.1.3. Implementation of Input Model Update 

The process of input model update allows to align the stochastic behaviors. Figure 

4.10 illustrates the procedure implemented. 

 

Figure 4.10: Input model update flowchart 

Initially a determined trace of processing parameters is acquired by the Database. 

Using MLE (Maximum likelihood Estimation) method multiple types of distributions 

parameters are fitted e.g. Uniform, Triangular, Gamma, Normal etc.  

The distribution parameters as well the type of distributions better fitting the trace 

are found using the SSE (Sum Squared Error) evaluation. 

4.3.2. Database 

InfluxDB is chosen for the database infostructure. It is an open-source time series 

database, based on InfluxQL query language. Its connection with the other 

components is handled by the Interface Database object, which contains functions for 

writing and querying the correct datasets. A class diagram containing the Interface 

Database and Database is shown in Figure 4.11. The methods “queryData()” and 

“writeData()” are used to respectively download and upload data to the database, 

while the attributes refer to values like the IP address and port number of the 

machine where the Database is located. 
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Figure 4.11: Class diagram of database and interface component 

As shown in Figure 4.11 the database is organized in different tables, each containing 

data obtained from several sources. The objective is to separate the different 

information sets, simplifying the writing and querying processes. In Table 4.2 are 

shown two examples of how the tables are structured. 

Table Tags Fields 

eventlog activity[str], part_id[int] type[str] 

real_perf measures[str], activity[int], part_id[int] value[int] 

Table 4.2: Structure of the eventlog and real_perf tables 

Every entry of the database has a set of tag and field values, which depend on the 

table, together with the associated UNIX timestamp. For example, as shown in Table 

4.2, every entry in the table “eventlog” will have a value for each tag (“activity” and 

“part_id”), and one for each field (“type”), together with the time at which it is saved 

on the Database.  

In the following chapter the platform is tested to validate the presented components, 

together with three experimental campaigns. 
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5. Numerical Experiments 

This chapter presents in Section 5.1 the numerical experiments obtained with the 

purpose of assessing the functioning of the single components explained Chapter 4. 

Additionally, Section 5.2  illustrates a series of test cases performed to investigate the 

benefits of an aligned model in the context of forecasting.  

5.1. Validation of the single components  

This chapter deals with testing and validating the functionality of the single 

components. In section 5.1.1 model configurations used for this phase are presented. 

Different production scenarios are introduced with the objective of testing the 

developed methodology in multiple conditions. In section 5.1.2 the conversion 

procedure and the simulation model are analyzed, by comparing it to models 

developed in Arena. Then, the generated and converted model of the lab-scale 

production line is tested. In section 5.1.3 the synchronisation capabilities of the model 

are investigated. Finally in section 5.1.4 the forecast function is evaluated, together 

with how it is affected by the synchronisation of the parts positioning. 

5.1.1. Intro to scenarios 

Three configurations of the physical system are introduced in these sections, 

corresponding to different production scenarios of increasing variability.  The lab-

scale model presented in section 4.1 is used, and the variability is introduced by 

choosing the distribution parameters and the seed used by the random number 

generator, influencing the processing variables of the two stations. 

In Table 5.1 the scenarios which will be dealt with during this testing phase are 

presented. Scenario 1 is characterized by deterministic processing times and is used 

to test the prediction capabilities in context without variability. For scenario 2 are 

used stochastic distributions, introducing variability in the behavior of the system. 

Scenario 3 substitutes the triangular distribution with a Weibull, which is 

characterized by a higher value of standard deviation, increasing furtherly the 

variability of the physical system. 
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 Station 1 Station 2 Demonstration length 

Scenario 1 Det: 10  Det: 12 40 min 

Scenario 2 Triang: [10,18,14] Triang: [11,19,15] 40 min 

Scenario 3 Weibull: [18,3] Triang: [10,21,20] 40 min 

Table 5.1: Scenarios list for validation and test bench 

5.1.2. Conversion 

In this section the capabilities and limitations of the conversion procedure and the 

resulting simulation model. Different manufacturing system configurations are 

tested, first by manually creating a model on Arena Rockwell simulation, then 

collecting the data from the simulations, use it to generate a graph model and finally 

converting it into ManPy. The two models are simulated and compared with the t-

paired technique. Since the objective is to identify whether the logic of the ManPy 

model is the same as the Arena one, the same distributions and buffer capacity are 

used in both models. Additionally, the generated and converted digital model of the 

two-station lab-scale model, presented in section 4.1, is tested in trace-driven 

conditions. The results of the tests are detailly illustrated in Appendix A.3.1. 

A six-machine flowline configuration is used to test the conversion procedure for a 

more demanding system, compared to the running example presented in section 

3.3.1. Parts arrive at the first station, then are processed by other five subsequent 

machines before being disposed. Six fixed capacity buffers are positioned between 

the processing stations, which process one part at a time, with Blocking After Service 

(BAS) discipline. The Arena model is used to generate the events used by the 

generation algorithm. Figure 5.1 shows the blocks used in Arena to model one station 

of the system. 

 

Figure 5.1: Arena six machine flow line model 

Write blocks are placed before and after the machine, generating a text file containing 

the event log of the processes. In Table 5.2 is shown an extract of the file obtained 

from the Arena model. In the first column is recorded the timestamp of the activity, 
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the second refers to the station that performs the processing, in the third are recorded 

the activity types, “s” for start and “f” for finish, and finally in the last column are 

saved the processed part ID.  

 

Timestamp [s] Resource Activity type Part ID 

190.8121 4 “s” 7 

191.0250 5 “f” 5 

191.0250 5 “s” 6 

162.1587 6 “f” 4 

162.1587 6 “s” 5 

205.6218 3 “f” 8 

207.9275 2 “f” 9 

207.9275 3 “s” 9 

211.0631 6 “f” 5 

211.3121 4 “f” 7 

211.3121 4 “s” 8 

211.7133 1 “f” 10 

Table 5.2: Example of the resulting event log file obtained from the Arena model, 

showing timestamp, station number, activity type, and part ID for each processing 

event. 

One replication has been executed; the gathered event log file is then used to create 

the graph model through the generation algorithm. The result model, shown in 

Figure 5.2 (a), is composed of 6 nodes, representing the stations, with 5 arcs 

connecting them. 

 

Figure 5.2: Six machine flowline generated graph model (a) and converted simulation 

model (b) 

The resulting simulation model is pictured in Figure 5.2 (b), and is composed of six 

Machine objects, six Queue elements, one Source, and one Exit.  
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To assess the performance of the conversion algorithm, the ManPy model and the 

Arena one have been compared by calculating two performance indicators: the 

system and inter-departure times. Both models were executed for 5 replications with 

length of 24 hours, and the KPIs were collected and analyzed. The results are shown 

in Figure 5.3. 

 

Figure 5.3: Comparison between the Arena and ManPy models for the six-machine 

flowline. KPIs used are system time (a) and inter-departure time (b) 

The 95% confidence interval of the difference is equal [-0.4907  0.5491] for the system 

time and [-0.0206   0.0161] for the inter-departure time. Both these result show that 

there is not a significant difference between the logic of the two models. 

The third tested configuration involves the analysis of a system with parallel servers. 

This has been done to check the capabilities of the parallel machine selection logic in 

the ManPy simulator.  As previously, the assessment has been performed comparing 

two digital systems, with Arena as benchmark. 
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Figure 5.4: Arena parallel servers’ model (a), generated graph model (b), and 

converted simulation model (c) 

The production line is composed by three parallel servers followed and preceded by 

a single machine. A simplified representation of the Arena model is pictured in 

Figure 5.4 (a). The branch block determines the path which parts go through within 

the parallel servers. Parts flow is directed with equal split probability. The generated 

graph model (Figure 5.4 (b)) and the converted one (Figure 5.4 (c)) are shown. The 

first is composed of 5 nodes, equal to the number of machines, and 6 arcs, while the 

latter adds the Source and Exit objects. 

The results are shown in Figure 5.5, showing the comparison between the two 

simulation models in terms of system time (a) and inter-departure time (b). 
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Figure 5.5: Comparison between the Arena and ManPy models for parallel servers’ 

configuration. KPIs used are system time (a) and inter-departure time (b) 

The 95% confidence interval of the difference is equal [-3.8296  1.5062] for the system 

time and [-0.0656  0.0517] for the inter-departure time. These result show that also the 

parallel logic of the ManPy model is comparable to the Arena one. 

Finally, the conversion procedure is tested using data gathered from the two-station 

lab-scale model presented in section 4.1. A segment of the event log recorded in the 

database is given as input to the model discovery procedure. Due to the limitation of 

the data available and the capability of the generation method, the graph model 

cannot replicate some characteristics of the real system. This means that those 

parameters have to be inserted manually in the conversion function, allowing the 

final simulation model to perform at its highest in simulating the real system 

conditions. 

The graph model generated is composed of two nodes and two arcs connecting them 

as a closed loop, as shown in Figure 5.6 (a). Unfortunately, due to the fact that the 

model generation method is optimized for open models, the capacity of the arc 2 

cannot be correctly computed. Furthermore, the transportation conveyors are not 

discovered, and have to be manually added. To overcome this limitation a 

configuration file is given as input to the conversion procedure. Transportation time, 

conveyor capacity, buffer capacity and unload times have to be specified. The result, 

shown in Figure 5.6 (b) is a two-machine closed-loop line, with two buffers, each 

composed of one Queue object and three transportation objects, composed by 

modified Machine objects, simulating the behavior of the conveyors. 
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Figure 5.6: Simple converted model 

The simulation model is tested in its capabilities of replicating the lab-scale model 

behavior in trace-driven conditions. Figure 5.7 shows an excerpt of a production 

demonstration, with the digital model replicating the physical system in trace-driven 

conditions. The simulation model system time trend is very similar to the one 

obtained by the real production line. Some discrepancies of maximum 2 seconds are 

present but can be explained either by imperfect behavior of the lab-scale model, 

such as pallets getting stuck, or by the different unloading logics during blocking 

conditions of the two systems. 

 

Figure 5.7: Comparison between physical system and digital model system time 

trend. 



58 Numerical Experiments 

 

 

5.1.3. Synchronisation 

The synchronisation procedure aims at maintaining the instant conditions present in 

DT aligned with those of the physical system during operations. As Section 3.2.3 

explains, processing parameters are used as trace, while the initial positions of the 

pallet within the line are acquired at the beginning of the acquired trace.  Every time 

is requested by the controller, a trace-driven simulation is run, and the instant 

conditions are recovered. 

The following sections allows to validate and test the procedure of syncrhonisation 

and the control algorithm managing it. In addition, all tests are performed applying 

the platform on the lab-scale model introduced in Section 4.1. 

First, a simple test using deterministic configuration setting, Scenario 1, presented in 

Table 5.1, is demonstrated. Subsequently, scenarios of higher variability are 

introduced and also results obtained by monitoring are illustrated.  

At this stage the synchronisation component is used with a constant frequency and 

the indicator developed is not implemented.  

With the deployment of the syncrhonisation, the DT is able to be aligned with the 

advance of the physical system. The trace-driven simulation uses the processing 

times computed by the events log acquired from the database. This implies that the 

precision of the results obtained from the simulation are directly dependent by that 

one of the sensors.  

For this assessment the control is imposed to trigger the syncrhonisation every 10 

seconds.  With the aim of showing the two entities performance, the system time is 

acquired. Figure 5.8 shows the system time obtain from the digital model and the one 

from the real system.  

 

Figure 5.8:  Scenario 1, synchronisation system time 

Figure 5.8 confirms the capability of the procedure. Firstly, the real system time is 

appropriately reflected by the simulation results. Also, the final conditions depicted 

allows to demonstrate the efficacy in maintaining aligned the two entities. 

As previously introduced the indicator is not used, for this test, by the control 
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algorithm to decide whether or not to trigger a syncrhonisation action. However, the 

indicator is anyway computed and allows to show the conditions of alignment when 

a request for synchronisation is made. Figure 5.9 shows the variation of the 

synchronisation check indicator with respect to time. 

 

 

Figure 5.9: Scenario 1, synchronisation check indicator 

For not aligned instant conditions the indicator is greater than 0. Ideally, the 

indicator should signal first a misalignment, then with the synchronisation the 

indicator should reach 0. However, since for this test no control is applied, as Figure 

5.9 shows, the synchronisation is requested when the instant conditions are already 

aligned. i.e., indicator remains 0. In the next paragraph the syncrhonisation 

procedure is tested with Scenario 3 offering more variability, also the additional 

performance provided are shown to demonstrate the monitoring service. 

The synchronisation procedure should be able to reflect the real conditions 

independently from the variability of the results obtained from the physical systems. 

For this reason, a test is performed using the synchronisation component in parallel 

with the lab-scale model set with Scenario 3 configuration settings (Table 5.1). Other 

Scenarios have been tested, performing similarly. The related results and for the 

entire evolution of synchronisation in time is illustrated in Appendix A.3.2. 
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Figure 5.10: Scenario 3, synchronisation system time 

Figure 5.10 illustrates the system time obtained from the real system and the digital 

model during synchronisation. Synchronisation are performed based on the request 

of the controller. As anticipated in section 3.3.2, the information gained by the 

syncrhonisation check about the alignment of the instant conditions are used by the 

controller to request a synchronisation. During the validation tests, this indicator is 

not deployed, in fact using a constant frequency imply the synchronisation to be 

used even if not necessary. The opposite is done for this case, the utilisation of the 

synchronisation check to assess the alignment allows the synchronisation to be 

requested only when needed and this effectively reduce the computational effort 

required.  

In Figure 5.10 “sync@40min”, the synchronisation performed at 40th min, illustrates, 

the trace used is of 20 min for this test. Specifically, the first results are delivered 

from the 25th min because the first pallet takes almost 5 minutes to complete a cycle. 

This setting is applied for two reasons: firstly, the simulation is able to perform quite 

quickly and realign with the final instant conditions. Secondly, by simulating 20 min 

of production it is possible to monitor the performance of the real system in real-

time. In particular it is far easier to gain additional information from the simulation 

model rather than from the physical system. The comparison illustrated in Figure 

5.10 demonstrates that the performance of system time obtained from the two entities 

are similar, thus also the digital performance used to monitor can be considered 

reliable. Although the performance indicators which can be acquired from the digital 

model are multiple, in this case the utilisation of the two stations is acquired. The 

final objective of this representation is to demonstrate the contribution that 

monitoring the performances of the real system with an aligned simulation model 

can provide.  
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Figure 5.11: Utilisation obtained for station 1 and station 2 every synchronisation 

Figure 5.11 depicts the utilisation of the two stations computed for the 

synchronisations spaced 5 min from each other. As the graph shows, machine 2 at 

presents a higher values at the beginning, since pallets are all loaded in buffer 1 at 

the start of the demonstration. As the production continues, the utilisation of station 

1 decreases, while it increases for station 2. This is caused by the fact that the latter is 

the slower machine, causing it is to be the bottleneck of the line.  

This section validates the alignment of instant conditions performed with 

synchronisation. Additionally, it shows how monitoring is performed and what 

additional outcomes are provided. 

5.1.4. Forecasting 

In this section the forecast capabilities of the aligned digital model are investigated. 

Test are performed on the two-station system with three different scenarios, 

presented in Table 5.1. 

Firstly, scenario 1 has been used to validate how the forecast analyses are computed. 

A comparison is made with forecasts made at 5 mins of distance between each other 

and predicting the number of parts produced at two fixed moments in time, in 

particular, the 20th min and 40th min, corresponding respectively to the middle and 

end of the demonstration. Every simulation uses 5 replicates and runs until the end 

of production. It is important to underline that every time a forecast analyses is run, 

the model is previously synchronised, computing the initial positioning and the 

amount of parts produced until that moment. Figure 5.12 and Figure 5.13 illustrate 

the cumulative production and the results of the prediction for the 20th and 40th 

minutes. 
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Figure 5.12: Cumulative production and prediction results at the 20th minute for 

scenario 1. 

 

Figure 5.13: Cumulative production and prediction results at the 40th minute for 

scenario 1. 

Due to the deterministic nature of this test, the results do not show any kind of trend 

in terms of accuracy of prediction.  

The same test is performed for scenario 2, which presents a higher overall variability. 
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Figure 5.14 : Cumulative production and prediction results at the 20th minute for 

scenario 2. 

 

Figure 5.15: Cumulative production and prediction results at the 40th minute for 

scenario 2. 

Differently from the previous test, a higher variability introduces some discrepancies 

in the results. However, it is majorly fundamental to highlight that for increasingly 

closer prediction to the moment, thanks to the synchronisation becomes more 

precise.  

Finally, scenario 3 is tested, and the results are shown in Figure 5.16 and Figure 5.17. 
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Figure 5.16: Cumulative production and prediction results at the 40th minute for 

scenario 3. 

 

Figure 5.17: Cumulative production and prediction results at the 40th minute for 

scenario 3. 

This scenario is more variable than the previous two, and an increasing trend in 

terms of forecast accuracy can be seen, particularly in the results for the 40th minute 

prediction. The predictions get closer to the actual production value as the forecast 

time gets closer to the end of the demonstration, the only outlier value is the forecast 

made at the fifth minute. 

Further tests were performed without synchronizing the initial position before each 

forecast. The pallets were all located before station 1 in each forecast run. The aim of 

these experiments is to show the effect of not initializing the correct part position on 

the forecast. The results are pictured in Figure 5.18 and Figure 5.19.  
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Figure 5.18: Cumulative production and prediction results at the 20th minute for 

scenario 3 with no part positioning synchronisation 

 

Figure 5.19: Cumulative production and prediction results at the 40th minute for 

scenario 3 with no part positioning synchronisation 

These results show that by not initializing the correct initial position of the part at the 

start of each forecast, the predicted number of parts is overstimated.  

5.2. Test cases 

In this section experiments will be presented to assess the effect of parameters on the 

performances of the developed methodology. Three different campaigns were 

conceived and they are summarized in Table 5.3. The objective is to analyze the 

behavior of the integrated functions of synchronisation and forecast. The developed 

architecture presented in chapter 4 and validated in section 5.1 is utilized. 
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Experimental campaign 

1 

Experimental campaign 

2 

Experimental campaign 

3 

Objective 

Evaluate the 

relationship between the 

instant of 

synchronisation and the 

prediction. 

Evaluate the effect of a 

partially misaligned 

model on the 

synchronisation and 

forecast. 

Understand the impact 

of the forecast frequency 

parameter on prediction 

error. 

Investigated 

factor 
Time of forecast Statistical parameters Forecast frequency 

Reference 

KPI 
Prediction error 

Prediction error 

Normalized error area 
Normalized error area 

Setting 

scenarios 
Scenario 3 Scenario 3 

Scenario 3 

Scenario 4 

Table 5.3: Description and objective of experimental phase 

5.2.1. Reference KPIs 

Given that the studied application is the forecast, the key performance indicators 

used as reference to analyze the result are based on the number of parts produced in 

a given time frame. More precisely, a prediction error 𝐸𝑝 is the subject of evaluation, 

and it is computed for each simulation as the absolute difference between the 

forecasted value 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  and effective number of parts produced by the real system 

𝑁𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 .  

𝐸𝑝 = |𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑁𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 |     ( 5.1 ) 

Where 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is defined as: 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

𝑛𝑟𝑒𝑝
𝑖

𝑛𝑟𝑒𝑝
        𝑖 = 1,2, … , 𝑛𝑟𝑒𝑝    ( 5.2 ) 

Where 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 is the prediction for the i-th replication of the simulation. 

 

Figure 5.20: Graphical computational illustration of the prediction error 
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As a result each prediction analysis conveys into a single error value 𝐸𝑝, as shown in 

Figure 5.20. In following campaigns, the complexity increases and multiple results 

are obtained from a single experiment. The latter are made comparable by 

computing them into a single value, the normalized area error 𝐸𝑎𝑟𝑒𝑎 . The 

computation of this proposed solution follows Equation (2.2), where 𝐸𝑝,𝑖 is the 

prediction error for the i-th forecast, and 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖 is the moment in time at which the 

simulation is performed. Figure 5.21 shows two examples of normalized error area 

calculations. 

 

𝐸𝑎𝑟𝑒𝑎 =  ∑
𝐸𝑝,𝑖

(𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖+1−𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖)

𝑛
𝑖                     𝑖 = 1, 2, … , 𝑛                             ( 5.3 ) 

 

 

Figure 5.21: Normalized area error description 

5.2.2. Experimental campaign 1: time of forecast 

The first experimental campaign seeks to solidify the beneficial contributions of an 

aligned model when it comes to conduct forecast analyses. Through the tests 

presented, the aim is to demonstrate the effectiveness of the implemented 

methodology in being accurate to predict future performances. 

5.2.2.1. Experimental setup 

Scenario 3, introduced in section 4.1, is used as the configuration for the physical 

system. The mean and variance of the distribution parameters are shown in Table 

5.4. 
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Station 
Distribution 

type 
Parameters Mean [s] Variance [s2] 

Station 1 Weibull [18, 3] 16.07 34.128 

Station 2 Triangular [10, 21, 20] 17.00 6.167 

Table 5.4: Distribution settings used in Scenario 3 

A real situation is replicated by performing 5 experiments of 40 min each during 

distinct moments of production. After 5 minutes of warm-up, the corresponding 

digital platform is activated.  The length of the demonstration is limited by the lab-

scale model, which starts to malfunction (i.e. parts get stuck in the system) when it 

remains active for too much time. 

On the other hand, the forecast analyses are run with a 5 minute interval. To mitigate 

the influence of incorrect fitting, the imposed distributions for the physical object are 

also implemented in the digital one. Therefore, only the variability of the production 

processes can cause forecast errors. 

For each prediction  𝐸𝑝 is computed for the 20th and 40th minute, then gathered with 

the others made at same instant but from different experiments. 

5.2.2.2. Results 

The value 𝐸𝑝(𝑡, 𝑇) indicates the error for the predicted production at time T when the 

forecast is started at time t. 

The results obtained for the experimental campaign are shown in Figure 5.22 and 

Figure 5.23. 

 

Figure 5.22: Boxplot of the forecast error of the parts produced at the 20th minute 
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Figure 5.23: Boxplot of the forecast error of the parts produced at the 40th minute 

One-way ANOVA is used, with the prediction error as response variable and 

significance level α=0.05, with the objective of understanding if the results are 

significantly different. For the analysis on 𝐸𝑝(𝑡, 20) the p-value is equal to 0.022, 

therefore the null hypothesis stating that all means are equal is rejected. Furthermore 

the results are grouped using Fisher LSD Method, as shown in Table 5.5. 

t Average 𝑬𝒑(𝒕, 𝟐𝟎) Grouping 

5 2.920 A 

10 1.120 B 

15 0.440 B 

Table 5.5: Grouping using Fisher pairwise comparison. 

For the analysis on 𝐸𝑝(𝑡, 40) the p-value is equal to 0.236, therefore the null 

hypothesis of all means being equal cannot be rejected.  

These experiments aim to illustrate that as the prediction analysis gets closer to the 

target the error reduces.  The results are only significant for the 𝐸𝑝(𝑡, 20) but not for 

𝐸𝑝(𝑡, 40). These findings can be caused by the overall low variability characterizing 

the experiments, caused by factors such as the short demonstration time and the 

reduced layout complexity. 

5.2.3. Experimental campaign 2: input mis-alignment 

In this experimental campaign the aim is to analyze the behavior of the 

synchronisation and forecast functions when the available digital model is partially 

misaligned. The expected result is to understand the mitigation given by the 
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contributing action of synchronisation in the context of forecasting, given a 

prediction error caused by the imposed misalignment. 

5.2.3.1. Experimental setup 

To simulate the use of a partially misaligned model, non-valid distributions for the 

processing times are given as input to the digital object. These do not replicate the 

stochastic behavior of the physical system in question; therefore a prediction error of 

the future performances is expected. Predictions are performed every 15 minutes, 

therefore three simulation experiments are executed, precisely at the 5th, 20th, and 35th 

minute. The synchronisation function, introduced in section 3.3.2, is executed before 

each forecast, initialising the parts positions, and computing the number of parts 

produced until that moment. The time between forecasts is arbitrarily chosen to 

obtain a balance between the computational effort of the digital system, which runs 

both the synchronizing and predicting functions, and the number of simulations. To 

study the effect of this parameter is not the scope of this experiment, but it is 

investigated in the following experimental campaign. 

5.2.3.2. Design of experiments 

The physical system’s settings are the same as the ones utilized in the first 

experimental campaign. The parameters of the configuration are shown in Table 5.4. 

The stochastic behavior of the processing activity is defined by three parameters: 

distribution mean, variance, and type. Those values will be modified in the 

experiments to simulate a discrepancy between the real and digital systems. A 

factorial design is used to set up the multiple experiments in this campaign. The 

three parameters mentioned in the previous paragraph are considered as the factors, 

with two levels indicating the correct and incorrect value. Therefore, a 23 full factorial 

design is obtained, composed of 8 different experimental configurations. This 

experimental campaign is designed following a 23 full factorial design including: the 

three previously explained factors and as levels the correct and incorrect values. 

Table 5.6 shows the eight resulting configurations. 

 

Table 5.6: 23 full factorial design table  

The modifications to the factors are chosen with the objective of overturning the 

dynamical behaviors in the digital model. In fact, the mean is increased so that the 
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bottleneck of the production line is moved from Station 2 to Station 1; the new 

variance is doubled; and a uniform distribution has a different shape from the 

triangular used. For each configuration five experiments are performed, changing the 

starting conditions and the seed parameter. The effect is to simulate different 

production conditions, obtained from analyzing the system in distinct moments. The 

resulting number of experimental runs is therefore 40. Table 5.7 shows the 

distributions used in each experiment configuration. 

Configuration M V T Distribution 

1 L L L Weibull(18, 3) 

2 H L L Weibull(18, 3) + 4 

3 L H L Weibull(18.1350, 2) 

4 H H L Weibull(18.1350, 2) + 4 

5 L L H Uniform(5.9515, 26.1885) 

6 H L H Uniform(5.9515, 26.1885) + 4 

7 L H H Weibull(18, 3) 

8 H H H Weibull(18, 3) + 4 

Table 5.7: Distribution used in the configurations of the factorial design 

5.2.3.3. Results 

The average results for each configuration are shown in Table 5.8, where the average 

error for the predictions performed at the different times are presented, together with 

the normalized area error. 

Configuration 𝑬𝒑(𝟓, 𝟒𝟎) 𝑬𝒑(𝟐𝟎, 𝟒𝟎) 𝑬𝒑(𝟑𝟓, 𝟒𝟎) 𝑬𝒂𝒓𝒆𝒂 

1 0,88 0,72 0,88 0,81 

2 11,24 5,84 1 7,46 

3 1,16 1 0,84 1,05 

4 11,52 5,56 1,16 7,49 

5 1,44 0,72 0,76 1,03 

6 11,32 5,92 1,04 7,54 

7 1,84 1 0,84 1,34 

8 11,6 5,36 1,24 7,45 

Table 5.8: Numerical results of the experimental campaign 

One-way ANOVA is used, with the normalized area error as response variable and 

significance level 𝛼 = 0,05. The results highlight the most influencing factors and 

possible combinate effects. 
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The first part of the analysis focuses on discovering which is the main influencing 

factor between the mean, the variance, and the distribution type. In Figure 5.24 are 

shown the main effects boxplots, indicating the impact of the factors. 

 

Figure 5.24: Boxplots of main effects on the normalized area error 

From Figure 5.24 is noticeable the clear impact of the mean of the distribution on the 

prediction error. The other two factors, while still showing an increase in the 

normalized area error, do not show a significant influence on the results. 

The combinate effects plots are shown in Figure 5.25.  
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Figure 5.25: Combinate effects plot of normalized area error 

This analysis is aimed at understanding if there is the presence of combinate effects, 

where the modification of two factors together impacts the result in a different way 

compared to the single effect. The results do not show the presence of significant 

combinate effects. The p-values of the analyses are shown in Table 5.9. 
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Configuration M V T P-Value 

1 L L L 0.000 

2 H L L 0.000 

3 L H L 0.587 

4 H H L 0.525 

5 L L H 0.483 

6 H L H 0.578 

7 L H H 0.958 

8 H H H 0.832 

Table 5.9: P-values of experiments 

5.2.4. Experimental campaign 3: forecast frequency 

The object of experimentation is to investigate how the frequency at which the 

predictions are performed during production affects the forecast error. Therefore, 

these experiments are aimed at understanding if there is an optimal value for the 

time between forecasts that provides lower prediction error while still being 

computationally efficient. 

5.2.4.1. Experimental setup 

The physical system configured as introduced in section 4.1, with the same initial 

parameters present in Table 5.4, for the same reasons as the first experimental 

campaign. The demonstrations have length equal to 40 minutes, with 5 minutes of 

warm up, and the predictions initiated are at different frequencies. Two scenarios are 

tested, the Scenario 3 and the Scenario 4. The latter presents unpredictable disruptive 

events in the form of failures initiated in one of the stations at random times. The 

stations’ configuration is the same for both scenarios, with the parameters presented 

in Table 5.3. 

Five values of frequency are investigated, each corresponding to a time between 

forecasts, as shown in Table 5.10. 

Forecast 

Frequency [min-1] 

Time Between 

Forecasts [min] 

Number of Forecast per 

Demonstration 

0.200 5 7 

0.100 10 4 

0.667 15 3 

0.050 20 2 

0.025 40 1 

Table 5.10: Selected values of forecast frequency and corresponding time between 

forecasts and number of predictions per 40 minute demonstration 
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These values are selected with the objective of having a different number of 

predictions during the 40 minute demonstration.  

As already mentioned, the second scenario tested in this experimental campaign is 

characterized by random disruptive events unknown to the digital model. These are 

introduced into the system as machine failures, manually initiated at predetermined 

times. The length of each event is equal to two minutes, after which the stations 

return to normal conditions, and are meant to replicate minor stoppages on a 

production line. These are introduced only to one of the machines, to better control 

the experiment. Station 1 is chosen, in this way during the failures the bottleneck 

shifts.  

For each demonstration the selected number of failures is two, happening at different 

moments in the five replications. The minute at which the event is initiated is 

selected basing on a predetermined structure: the 35 minutes of activation of the 

synchronizing and forecasting functions is divided into four time intervals, as shown 

in Figure 5.26. The objective is to obtain five demonstration with failures happening 

at different times, mitigating the effect of the time of failure on the experiments. 

 

Figure 5.26: Division of the demonstration into periods 

Five different combinations of time of failure are obtained, one for each replication of 

the experiment, as shown in Table 5.11. To obtain them, it was chosen to not initiate 

the failures in the same time interval for each experiment. The result are 6 possible 

combinations, out of which one is randomly discarded. 

Experiment 
Interval 

Combination 
Time of 1st event [min] Time of 2nd event [min] 

1 EM-LM 18 30 

2 E-L 11.5 32 

3 EM-L 14 37 

4 E-LM 10 27 

5 LM-L 24 36 

Table 5.11: Event timestamps for the 5 experiments (E = early, EM = early-medium, 

LM = late-medium, L = late) 

The failures greatly influence the performance of the production line, as shown in 

Figure 5.27, where the system time trend and cumulative production of one 

experiment are plotted. 
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(a) 

 

(b) 

Figure 5.27: Effect of disruptive events on system time trend (a) and cumulative 

production curve (b). 

5.2.4.2. Results 

The results of the experiments conducted for scenario 3 are presented in Table 5.12 

and Figure 5.28. Similarly to the previous experiment campaign the analyzed value is 

the normalized area error. 

Forecast 

Frequency [min-1] 

Time Between 

Forecasts [min] 

Normalized Area 

Error 

0.200 5 1,07 

0.100 10 1,47 

0.667 15 0,99 

0.050 20 1,69 

0.025 40 1,72 

Table 5.12: Numerical results of the experiments on scenario without failures 

(scenario 3) 
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Figure 5.28: Boxplot of results of experiments using scenario 3 

One-way ANOVA is used, with the normalized area error as response variable, with 

the objective of understanding if the results are significantly different. With a 

significance level α=0.05, the obtained p-value is 0.836. Therefore, the null hypothesis 

stating that all means are equal cannot be rejected. The overall result can be caused 

by the low variability which characterizes the physical system in this configuration. 

The results of scenario 4 present more interesting findings, given the much higher 

variability in the performances. The normalized area errors are shown in Table 5.13. 

Forecast 

Frequency [min-1] 

Time Between 

Forecasts [min] 

Normalized Area 

Error 

0.200 5 6,41 

0.100 10 6,67 

0.667 15 6,77 

0.050 20 7,51 

0.025 40 8,52 

Table 5.13: Numerical results of the experiments on scenario with failures (scenario 4) 
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Figure 5.29: Boxplot of results of experiments on scenario 4 

For scenario the obtained p-value is 0.021. Therefore, the null hypothesis stating that 

all means are equal is rejected. The values for the different forecast are grouped using 

Fisher pairwise comparisons, as shown in Table 5.14. 

Forecast 

Frequency [min-1] 

Time Between 

Forecasts [min] 
Grouping 

0.200 5 A 

0.100 10 A 

0.667 15 A 

0.050 20 A  B 

0.025 40 B 

Table 5.14: Grouping using Fisher pairwise comparison. 

The overall results of this experimental campaign prove the hypothesis that forecasts 

performed with a higher frequency result in more accurate predictions only in 

contexts with high variability, such as scenario 4. In lower variability contexts, the 

benefit is not significant. 

5.2.5. Experimental campaign conclusions 

The overall finding and results of the three experimental campaigns are summarized: 

 Experimental campaign 1 aims to prove that the utilisation of an alignment 

model during prediction in operational phase is able to produce increasingly 

precise results, the closer the analyses get to the target point. The results 

obtained predicting the parts produced at the 20th min prove this hypothesis 

while for predictions targeting 40th min the results is not significant.  

 Experimental campaign 2 tests the context of prediction with a misaligned 

model. While the mean of the distribution replicating the processing has 
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significant influence, the variance and distribution type factors do not show 

significant impact. 

 Experimental campaign 3 intends to prove that an higher forecast frequency 

leads to an overall lower value of prediction error. Although in low variability 

contexts the results are rejected, a significant confirmation of the hypothesis is 

obtained in a context with unpredictable events.  

In conclusion, some features characterizing the physical system affect the results of 

this experimental phase. The low variability offered by the production processes, the 

relatively short demonstration time, together with the simplicity of the lab-scale 

model do not allow to concretely determined the benefits provided by an aligned 

digital model in the context of forecasting.  

In the next chapter the implementation of the proposed methodology in an industrial 

case scenario is presented. A fully functioning Digital Twin is implemented with the 

functionalities of real-time monitoring, prediction, what-if analysis, and subsequent 

feedback reaction to an unpredictable disruptive event. 
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6. Case study 

This section illustrates a case study in which the methodology described in chapter 3 

is applied. The work aims to produce a proof-of-concept Digital Twin of a 

manufacturing system. In particular, it extends the opportunity to test the developed 

platform in a more demanding and unstable context. Differently from chapter 4, the 

controller component is tested in its multitasking ability to manage all the three 

alignment actions of: model update, synchronisation, and input model update. 

6.1. Use cases definition 

Through a demonstration, a wide range of services is provided. Figure 6.1 shows the 

use cases which are meant to be assessed, clustered in three main categories: 

1. Analytics, where historical performances and forecast evaluations can be 

found, together with the eventual what if analyses. For example, the manager 

requests the calculation of the future production rate of the analyzed system 

in its current configuration. 

2. Monitoring deals with the real-time status of the manufacturing plant. For 

instance, the possibility of the manager to obtain information on the 

production status that would otherwise be impossible to directly acquire from 

the real system. 

3. Reaction to unpredictable events that disrupt normal operations. For 

example, a failure on one element of the production line is detected, and the 

manager requests the analysis of possible solving actions that would be 

automatically implemented into the real system. 
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Figure 6.1: Use case diagram for the Digital Twin of a manufacturing system 

Additional components, in particular the Evaluator developed by the authors and 

the Validator built by Gangemi et al. [30] are integrated to realize a complete DT 

framework. 

The elements that compose the Digital Twin are shown in the component diagram 

pictured in Figure 6.2, where in white are the ones already presented in chapters 3  

and 4, while shadowed are the ones introduced for this implementation. 

 

Figure 6.2: Component diagram of the Digital Twin 

The physical system is interfaced with the database through the Broker, which 

transmits the inbound and outbound MQTT messages introduced in section 4.2. 
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The interconnection between the Supervisor and the Database is realized though the 

InterfaceDB. The Supervisor component administers several subcomponents: 

 Simulator. 

 Controller, which manages eventual aligning actions. 

 Analyser, which is in charge of computing derivate performance values of the 

physical system in real time. 

 Validator, in charge of the comparison procedure between the digital and 

physical objects. 

 Evaluator, which detects disruptive events, performs what-if analyses, and 

introduces eventual feedback actions on the real system through the Broker. 

The last two components have been specifically developed for this implementation 

and are furtherly explained in the following sections.  

The complete class diagram of the architecture is present in Appendix A.4.1. 

The real-time data and performances coming from the Database are visualized in the 

Dashboard. 

6.1.1. Validator 

The Validator component works in parallel with the Controller. It is in charge of all 

the necessary procedures for the computation of the markers indicating the 

alignment status between the physical and digital systems. Specifically, it performs 

the “logic validation” and “input validation” functions. The first uses trace-driven 

simulations to determines if the logic of the digital model is correct. The second 

performs quasi trace-driven simulations to check the alignment of the stochastic 

parameters. The procedures give as output two numerical indicators. These are 

numbers in the interval ∈ [0, 1] and indicate the alignment level between the two 

objects. For values lower than certain thresholds, the corresponding marker is set to 

indicate a failed alignment and is uploaded to the Database. These are consequently 

used by the Controller to trigger the re-aligning actions of Model update and Input 

model update. 

The component is activated with a fixed and pre-determined frequency, and it 

performs the two validation procedures in sequence. In Figure 6.3 is shown the class 

diagram of the Validator. 

 

Figure 6.3: Class diagram of the Validator component 
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The attributes determine which type of validation is preformed and the 

corresponding threshold value, while the three methods are used to activate the 

procedures. In addition, the values of the loop frequency and query time must be 

given as input. 

6.1.2. Evaluator 

The Evaluator is in charge of three actions: 

 Detection of disruptive events that may affect the physical system. 

 What-if analysis, to determine if possible pre-determined solution actions can 

be executed to mitigate the effect of the detected events. 

 Implementation of the selected feedback action on the physical system. 

 

Figure 6.4: Class diagram of the Evaluator component 

The class diagram of the component is shown in Figure 6.4. The “state” attribute can 

have three values: “waiting”, “standby”, and “evaluate”.  

During normal operations, the state is set to “standby”, where periodically the 

marker indicating the alignment status of the stochastic behaviors is extracted from 

the Database, with a frequency determined by the “loop_freq” attribute.  

If the distribution of the model are no longer validated, the Evaluator is set to the 

“waiting” state, where it still checks on the same marker, although this time it is 

waiting for new fitted distributions to be validated. 

Eventually, when the marker indicates that the model is valid again, the component 

is set to the “evaluate” state and the “perf_analysis()” method is called, which starts a 

series of steps, shown in the sequence diagram pictured in Figure 6.5: 

1. Performance analysis: a stochastic simulation is executed, with the objective of 

computing the new performance of the system, specifically the average 

throughput until the end of the shift. This value is then compared, using a 

paired t-test, to the one obtained before the event that disrupted the behavior 

of the production line. The objective is to detect if the new performance is 

significantly different from the old one, particularly if it is worse. If that is the 

case, the what-if phase is initiated by calling the “what_if()” method. 

2. During the what-if phase, all the pre-defined solutions, contained in the 

“what_if_config” dictionary, are evaluated by simulating the system behavior 

until the end of the shift. Each scenario is replicated 10 times, and the best 
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performing solution is chosen as the one to be implemented in the physical 

system. 

3. In the reaction phase, the command for the implementation of the selected 

solution is transmitted to the physical system’s PLCs through the Broker, 

using a MQTT message. This is done by the “feedback()” method. Finally, the 

Evaluator is set back to the “standby” state. 
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Figure 6.5: Sequence diagram of the Evaluator component 
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6.1.3. Dashboard 

The Dashboard is developed using Grafana, which allows the real-time visualization 

of the results shown in Figure 6.6. 

 

Figure 6.6: Dashboard layout 

As the image shows, it is divided into four sections. 

In the “Physical system performances” area the performance indicators of the real 

system are presented, all computed in real time by the Analyser component: 

 1 and 2 show the histograms of the processing times of Station 1 and Station 2 

respectively of the last 5 minutes of acquired data. Below each graph is 

reported the last updated distribution.  

 3 depicts the system time values in seconds, calculated every time a part 

completes the processing loop. 

 4 depicts the instant throughput, calculated in parts/seconds. 
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The sector “Digital system performances” shows the performances calculated by the 

digital model. These are the results of the monitoring function. 

 The last acquisition for system time and throughput indicators are shown in 5 

and 6. By comparing them with the real performance, 3 and 4 respectively, it is 

possible to validate the aligned behavior. 

 7 represents the utilization values of the two machines. These cannot be 

calculated from the real system alone. 

The “Validation results” area is dedicated to the validation functions: 

 8 shows the results of the input validation. 

 9 shows the results of the logic validation. 

Finally, the section “Mean performances and what-if” depicts information regarding 

the results of the Evaluator component: 

 10 are the current average performances of the system, calculated as the 

throughput in parts/hour. 

 11 is dedicated to the eventual what-if analysis, with the “case in action” value 

indicating the happening of the disruptive event. 

 12 are the sub-sections dedicated to the two solution scenarios, with the 

forecasted performances and an indicator showing which of the two is 

implemented. 

6.2. The demonstration: settings and results 

A demonstration is set in order to verify the functioning and study the contributions 

of the platform. The purpose is to prove the capabilities of the DT framework to 

autonomously monitor the performance of the system, provide forecast analyses and 

react to solve possible deteriorating productive patterns. 

The lab-scale production line explained in Section 4.1 has been set to represent a 

system operating for limited time-shifts distanced by switched-off periods. For this 

demonstration an operating shift of 50 minutes is used. The physical system is 

characterized by: perfectly reliable machines, processing of a part one at the time, 

Blocking After Service (BAS) discipline and buffers capacity of 8 pallet with 12 pallets 

circulating. The two stations are configured to process pallets with defined 

distribution parameters: Machine 1: Triangular(3,8,5) and Machine 2: Triangular(2,5,3).  

The digital components’ settings are tuned, with the knowledge acquired from the 

previous tests, to effectively and efficiently achieve the introduced purposes. Further 

studies might support the definition of the optimal parameters, although they would 

strictly be related to the objectives and real conditions of the system. The parameters 

used for the demonstration are presented in Table 6.1. 

 



Case study 89 

 

 

Components Sub-components Settings 

Controller 

Model_update t_horizon: 10m, freq: marker dependant 

Synchroniser t_horizon: 5m, freq: marker dependant 

Input_Model_Update t_horizon_dist: 10m, freq: marker dependant 

Simulator  
Simulator_type: “Manpy”,  

use_type: ”sync/forecast” 

Evaluator  
Forecast_rep: 20,  

sim_length: remaining time of demonstration 

Analyser  t_horizon: 10 m, freq: 0.5s 

Validator  t_hozion: 10 m, freq: 1/60 s 

Table 6.1: Components’ settings 

During one shift an instantaneous degradation event is applied to one of the stations. 

This can represent a deterioration of an element in a real production machine, which 

is then required to produce at a slower pace. Once the event is detected, the digital 

platform runs a series of forecast analyses. Different options scenarios are tried with 

the aim of mitigating the disruptive effect and optimizing the production within the 

end of the shift: 

 Scenario 1: do not stop the operations and repair the machine only when the 

shift ends. This way the production is not interrupted, but the line produces at 

an overall slower pace.  

 Scenario 2: stop the line and allow the repair of the machine to its original 

conditions. When the intervention is done, operations are restarted.  

The best solution, based only on the number of parts produced, is automatically 

implemented to the real system, without considering any cost-based information. 

The steps which compose the demonstration timeline are shown in Figure 6.7.  
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Figure 6.7: Demonstration events timeline 

Each event is detailly explained below: 

0. The physical system is started and initially all pallets are positioned in the 

queue of machine 1. Also, the Analyser begins computing in real-time the 

derivate KPIs shown in Figure 6.8, respectively: the histograms of the 

processing times from Station 1 (a) and 2 (b), the system time (c), and the 

throughput (d). 

 

Figure 6.8: Dashboard illustration of real performance at real system start (at event 0) 

1. After 10 minutes of operation, the controller has enough data to start the 

actions to align the digital system. Since the Validator is not activated yet, two 

markers are missing, but the controller acts anyway in the following sequence: 

it generates and converts the digital model, updates the stochastic 

distributions related to the processing times for machine 1 and machine 2, and 

finally begins to synchronise the instant conditions. 

2. The Validator is activated, examining both the logic and the input of the 

digital system. All markers are checked; therefore, the alignment is completely 

confirmed and the monitoring of the real system performance is to be 
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considered correct. Also, the Evaluator can perform the first forecast analysis 

predicting the average production rate of the line. 

In Figure 6.9  the instant system time and throughput calculated for the real 

system can be compared with the digital performance obtained through the 

implementation of trace-driven simulations. In particular the last value 

computed through the simulation is shown validating the alignment and 

resulting performances.  

 

Figure 6.9: Dashboard illustration comparing system time and throughput both on 

the real and digital system (at event 2) 

 

Figure 6.10: Dashboard illustration of additional digital performance (utilisation) and 

validator outcomes (at event 2) 

Figure 6.10 illustrates the additional information provided through 

monitoring the real system’s conditions. In particular, as (a) indicates, station 1 

is the bottleneck initially. 
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3. An instantaneous degradation of machine 2 happens. By monitoring the 

digital performance, it is possible to appreciate that the bottleneck now is 

shifted to machine 1.  

Figure 6.11 shows the change in the dynamic of the system, while Figure 6.12 

illustrates how the digital performance acquired by the monitoring action 

highlight this event. 

 

Figure 6.11: Real system state before and after the disruptive event  

 

Figure 6.12: Dashboard illustration of digital performance after disruptive event (at 

event 3) 

4. Consequently, the distribution parameters previously fitted are not valid 

anymore. This is signalled by the marker indicating the input validation.  

The controller is triggered into updating the stochastic parameters by fitting 

the processing times acquired from the real system historical data.  

5. After some iterations, the Controller is able to correctly update the stochastic 

parameters, validated by the input marker. This activates the performance 

analysis function of the Evaluator, which detects a degradation of the 

performances, triggering the what-if analysis 

6. The what-if analysis uses two predictive simulations based on the stochastic 

parameters validated and test the two scenarios pre-defined. The number of 

parts produced by the end of the demonstration are computed and the best 

scenario performing is found, Scenario 2 highlighted in green in Figure 6.13 is 

the resulting best choice. 
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Figure 6.13: What if analyses results (at event 6) 

7. The new configuration is sent as message by the broker component and 

applied onto the real system 

6.3. Case study conclusions 

This case study confirms the alignment capabilities of the developed methodology, 

integrating the actions managed by the controller and the information obtained 

through the comparison of real and digital systems. 

The utilisation of particular indicators to identify the misalignment between real and 

digital conditions have effectively activated the expected actions. The performed 

automatic model update of a DES model demonstrates the opportunity of aligning 

morphological and logic characteristics when required. The synchronisation of 

instant conditions using the trace provided by processing parameters demonstrates 

the contribution of online simulation in the context of this precise framework. 

Additionally, the update of the distribution inputs by fitting the historical data 

allows the alignment of stochastic behaviours. 

The introduction of other developed components, Evaluator and Validator allows the 

adoption of a complete Digital Twin framework offering many essential services. 

Through the demonstration, a continuous monitoring and prediction of the 

performances is accomplished. In addition, the detection of disruptive events offered 

by the Evaluator contributes to perform what-if analyses and the automatic 

deployment of corrective actions on the real system. 

The application is characterized by a bi-directional flow of information supporting 

the several potentialities mentioned. Therefore, it can be considered as a proof-of-

concept Digital Twin and as a starting point for future DT research. In conclusion, 

further implementations could be tested, extending the architecture developed on 

real industrial scenario and integrating additional components to foster extensive 

capabilities. 

 

 





Conclusions & future developments 95 

 

 

7. Conclusions & future developments 

This work focuses on the challenge of maintaining aligned a Digital Twin and the 

production system. It is now evident that to reflect the real conditions is not only an 

essential requirement for every DT application, but it is of great impact on the 

results. 

The methodology developed allows to expand the limited solutions found in 

literature. Also, it efficiently contrasts the critical causes of loss of alignment 

identified in the transformation of layout and logic, the advance of the instant 

conditions and the shift of stochastic behaviors. In particular, an indicator based 

control algorithm is integrated in a digital architecture to effectively administer the 

aligning actions. The digital platform developed includes several components which 

appropriately operate to provide the services of monitoring the performance of the 

real system, forecast future behaviors and conduct what-if analyses to anticipate and 

tackle possible disruptive productive patterns. A complete assessment of the DT 

capabilities is provided through several experiments a case study adopting a lab-

scale model as physical representation of a real manufacturing system.  

7.1. Main achievements 

The most important contributions of this work concern the alignment between the 

DT and the physical system during the operational phase. In particular the 

procedures integrated in the architecture tackle three challenges causing 

misalignment between the two entities. The automatic model update of DES model 

solves the discrepancy in layout and logic, while the syncrhonisation allows the 

instant conditions present in the real system to be reflected in Real-Time in the DT. 

As process patterns evolve, the update of stochastic inputs based on historical data 

permits to achieve more precise predictions.  

The control algorithm uses three indicators detecting modifications in the layout and 

logic, advance of instant conditions and the evolution of stochastic behaviours. Thus, 

only if a misalignment is detected than the related procedure is triggered. The 

integration of such management implies a better efficiency when procedures are 

deployed and at the same time creates room for new techniques and indicators to be 

introduced. In addition, the platform built shows great flexibility by interoperating 

with multiple digital tools allowing the introduction for the scope of the case study of 

new components. The Validator is introduced to compute the logic and input 
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indicators, while the Evaluator detect disruptive events and transmit the best 

alternative chosen, as a result of what-if analyses. The last achievement of this work 

is the realisation of a proof-of-concept DT with bi-directional capabilities applied on 

a lab-scale manufacturing system. 

7.2. Limitations 

The results obtained are a step forward for the exploration of DT applications in the 

manufacturing field. However, some limitations are to be highlighted to comprehend 

the direction of future works on the alignment concept.  

Within the integrated procedures: the automatic model update is limited when 

deployed on more complex model’s logics e.g., assembly or mixed products 

manufacturing. Also, synchronisation is dependent on the type of data received. This 

not only requires data to be complete otherwise results will be affected, but might 

induce some criticalities in applications with more complex systems. As a matter of 

fact, this work has been experimented on a fairly simple production line, therefore 

challenges related to more complicated systems have not been investigated. 

Finally, the architecture is impacted strongly in precision by the hardware sensors 

installed onto the production plant.  

7.3. Future developments 

The next steps of this study might focus on the elaboration of procedures able to 

approach more challenging systems. The synchronisation as of now is highly 

dependent on the precision and completeness of the data acquired by the physical 

system. Thus, the introduction of machine learning algorithms could be used to 

reduce this dependency and therefore generate a new research discussion towards 

the decrease of cost maintaining reliable results. The indicators used by the control 

algorithm are the outcomes of particular functions intended to measure the 

divergency between the DT and the production system. Therefore, further studies 

related to these root-causes analyses might be helpful to improve the techniques used 

and introduce new ones. A conclusive further development would target the 

application of the methodology onto a real manufacturing system and the integration 

with other industrial software. 

In conclusion, this thesis work aims at exploring the alignment of DT and physical 

system and proposes an initial methodology to achieve more flexible and adaptable 

applications. The further components implemented has allowed to build a proof-of-

concept DT integrated onto a lab-scale model and pave the way for future research 

works. 
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A. Appendix 

A.1 Paired t-test 

The paired t-test is a statistical procedure applied to determine if the mean difference 

between paired of observations is close to zero. 

The test hypothesis are:  

 𝐻0: the mean difference is equal to 0 

 𝐻1: the mean difference is different from 0 

The test assumptions are: 

 Independence of observations. 

 Variables approximately normally distributed. 

 

The procedure of the test is composed by three steps: 

1. Given n replications for both groups, compute the differences: 

 
𝐷𝑗 = 𝑌1,𝑗 − 𝑌2,𝑗  for j =  1, … , n assuming 𝐷1, 𝐷2, … , 𝐷𝑛 i. i. d. normal  

 

Where 𝑌1,𝑗 and 𝑌2,𝑗 are the observations of the j-th replication respectively of 

group 1 and group 2. 

2. Calculate the sample mean and the variance of the differences 𝐷𝑗 

 

�̅�(𝑛) =  
1

𝑛
∑ 𝐷𝑗      

𝑛

𝑗=1

    𝑆2(𝑛) =
1

𝑛 − 1
∑(𝐷𝑗 − �̅�(𝑛))2

𝑛

𝑗=1

 

3. Compute the confidence interval based on the mean of the differences, given a 

significance level α: 

 

𝜇1 − 𝜇2 ∈ �̅�(𝑛) ± 𝑡
𝑛−1,1− 

𝛼
2

√
𝑆2(𝑛)

𝑛
 

 

If the confidence interval contains the value, the null hypothesis 𝐻0 cannot be 

rejected. 
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A.2 Physical system and software implementation 

A.2.1 Software code 

The software code of all the digital components is available in the following GitHub 

repository: https://github.com/digital-twin-lab/ 

A.2.2 Supervisor 

Figure A.1 illustrates the class diagram of the supervisor simplified, i.e., Evaluator 

and Validator components are not present.  

                

Figure A.1: Supervisor simplified class diagram 
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A.2.3 Controller 

 

Figure A.2: controller sequence diagram 
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A.2.4 Synch check 

 

Figure A.3: Scheme of the synchronisation check function 

A.2.5 Model update 

 

Figure A.4: Model Update Flow chart 
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Figure A.5: Simulator flowchart 

A.2.6 Synchronisation 

 

Figure A.6: Synchronisation flowchart 
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A.2.7 Broker 

 

Figure A.7: Broker sequence diagram 

 

 

A.2.8 Analyser 

 

Figure A.8: Analyser flowchart 
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A.2.9 Forecast 

 

 

Figure A.9: Forecast flow chart 

  



VIII Appendix 

 

 

A.3 Test Bench 

A.3.1 Conversion tables 

 

 System Time [s] Inter-arrival Time [s] 

 Mean St. Dev. 95%CI Mean St. Dev. 95%CI 

Arena 127.7295 0.2429 [127.4597  127.9993] 21.0039 
0.011

1 
[20.9916  21.0162] 

ManPy 127.7003 0.3411 [127.3215  128.0791] 21.0061 
0.009

8 
[20.9952  21.0170] 

Difference 0.0292 - [-0.4907  0.5491] -0.0022 - [-0.0206  0.0161] 

Table A.1: Conversion test results, Flowline 

 System Time [s] Inter-arrival Time [s] 

 Mean St. Dev. 95%CI Mean St. Dev. 95%CI 

Arena 
134.4550 1.3552 [132.9500  135.9600] 30.5074 0.032

9 

[30.4708  30.5440] 

ManPy 
135.6167 1.6674 [133.7649  137.4685] 30.5143 0.033

9 

[30.47767  

30.5519] 

Difference -1.1617 - [-3.8296  1.5062] -0.0069 - [-0.0656  0.0517] 

Table A.2: Conversion test results, Parallel 

 

 Mean [s] St. Deviation [s] 95% CI [s] 
%95 CI for 

Difference [s] 

Arena 302.88 0.74 [301.44, 304.31] [-3.07, 0.63] 

ManPy 304.0949 1.2916 [303.27, 304.31]  

Table A.3: Conversion test results, Real system LEGO 
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A.3.2 Synchronisation  

8.1.1.1. Scenario 1 

 

 

Table A.4: (a) Scenario 1, synchronisation system time 

 

Table A.5: (b) Scenario 1, synchronisation system time 
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Table A.6: (c) Scenario 1, synchronisation system time 

 

Table A.7: (d) Scenario 1, synchronisation system time 
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Table A.8: Indicator synchronisation check timeline 

8.1.1.2. Scenario 2 

 

Figure A.10: (a) Scenario 2, synchronisation system time 

 

Figure A.11: (b) Scenario 2, synchronisation system time 
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Figure A.12: (c) Scenario 2, synchronisation system time 

 

Figure A.13: (d) Scenario 2, synchronisation system time 

 

Figure A.14: (e) Scenario 2, synchronisation system time 
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Figure A.15: (f) Scenario 2, synchronisation system time 

 

Figure A.16: (e) Scenario 2, synchronisation system time 

8.1.1.3. Scenario 3 

 

Figure A.17: (a) Scenario 3, synchronisation system time. 
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Figure A.18: (b) Scenario 3, synchronisation system time. 

 

Figure A.19: (c) Scenario 3, synchronisation system time. 

 

Figure A.20: (d) Scenario 3, synchronisation system time. 
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Figure A.21: (e) Scenario 3, synchronisation system time. 
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A.4 Case study 

A.4.1 Supervisor new 

 

Figure A.22: Supervisor class diagram, Evaluator and Validator components 

highlighted 
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