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Abstract

The aim of this Thesis Work is to understand the behaviour of a supercapacitor subjected
to a temperature gradient and the way in which this gradient can be used to charge the su-
percapacitor. The application of a temperature gradient to an electrolyte generates a drift
motion of the ions, the cations and the anions having different thermal responses, a charge
unbalance is generated and consequently a potential difference can be measured. This
effect can be used to exploit a temperature difference to charge an electrode-electrolyte
system, such as a battery or a supercapacitor. The origin of the ion’s thermal drift are
not completely clear as well as the inner mechanisms that take place during the thermal
charging of a supercapacitor.
Different theoretical approaches can be applied to study these phenomena, but the
restricted literature present on this topic coerces to use simple methods, in order to
compare the results to physical intuition. More profound knowledge of these systems
could help in the development of better thermal energy conversion devices, which exploit
low-temperature heat waste to produce carbon-free electrical energy.
In this Thesis Work, I have analysed the thermal charging of a supercapacitor with
analytical calculations, numerical simulations and equivalent circuits. Different approxi-
mations were made in order to describe a complex three-dimensional system, such it is a
supercapacitor, with a computationally fast and conceptually effective one-dimensional
model.
The capacity and charging dynamics of a thermally rechargeable supercapacitor were
theoretically explained. In particular, surprising analogies between the cases of electrical
and thermal charging cycles were found through the development of an equivalent electrical
circuit, that can effectively describe thermo-charged systems. With these results, some
experimental observations were interpreted and the device was optimized to maximize its
energy efficiency.
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Sommario

Obbiettivo di questo lavoro di Tesi è capire il comportamento di un supercapacitore
sottoposto a un gradiente di temperatura e il modo nel quale questo gradiente può essere
usto per caricare un supercapacitore. L’applicazione di un gradiente di temperatura a un
elettrolita genera un moto di deriva degli ioni, avendo cationi e anioni riposte differenti ad
effetti termici, si genera così uno sbilanciamento di carica e di conseguenza si può misurare
una differenza di potenziale. Questo effetto può quindi essere usato per sfruttare una
differenza di temperatura per caricare una sistema elettrodo-elettrolita, come una batteria
o un supercapacitore. Le origini della deriva termica degli ioni non sono completamente
chiare, così come non lo sono i meccanismi interni che accadono durante un ricarica
termica di un supercapacitore.
Diversi approcci teorici possono essere applicati allo studio di questo fenomeno, ma la
scarsa letteratura in merito obbliga ad usare metodi semplici, per comparare i risultati
con l’intuizione fisica. Una conoscenza più profonda di questi sistemi può aiutare nello
sviluppo di migliori dispositivi per la conversione dell’energia termica, che sfruttino il
calore di scarto a bassa temperatura per produrre energia elettrica carbon-free.
In questo lavoro di Tesi, ho analizzato il caricamento termico di un supercapacitore con
calcoli analitici, simulazioni numeriche e circuiti equivalenti. Sono state fatte diverse
approssimazioni per descrivere un sistema tridimensionale complesso, tal’è un superca-
pacitore, con un modello monodimensionale veloce dal punto di vista computazionale e
efficace da quello concettuale.
Sono state spiegate la capacità e la dinamica di ricarica di un supercapacitore ricaricabile
termicamente. In particolare, attraverso lo sviluppo di un circuito elettrico equivalente che
possa descrivere sistemi termo-caricati, sono state trovate sorprendenti analogie tra il caso
di ricarica elettrica e quello di ricarica termica. Con questi risultati alcune osservazioni
sperimentali sono state interpretate e il dispositivo è stato ottimizzato per massimizzare
la sua efficienza energetica.
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Estratto

Questo lavoro di Tesi è stato svolto in collaborazione con l’istituto di fisica teorica
di Utrecht, in particolare con il gruppo di ricerca del Prof. René van Roij, che si
occupa da diversi anni di indagini teorico-simulative nel campo degli elettroliti. Il lavoro
verte sull’analisi teorica dei fenomeni che accadono quando un supercapacitore, cioè una
capacitare elettrochimico con elettrodi nanotrutturati, è posto in un gradiente termico. In
quanto segue, introdurrò dapprima i concetti teorici atti a comprendere i fenomeni fisici in
gioco, per poi mostrare come questi siano stati analizzati e modellizzati per ottenere una
spiegazione efficace del comportamento di un supercapacitore, nel momento in cui questo
viene utilizzato come dispositivo atto a convertire energia termica a bassa temperature in
energia elettrica.

É noto come certe sostanze, ad esempio i sali, tendono a dissociare spontaneamente
in contatto con un eccesso di solvente, creando cationi positivi e anioni negativi liberi
di muoversi all’interno del fluido. Questo fenomeno è dato dal bilanciamento fra la
componente entropica dell’energia libera dovuta alla maggiore libertà di movimento
degli ioni, e la componente Coulombiana che tende a far si che ioni di carica opposta si
attraggano.

Gli ioni in un elettrolita interagiscono quindi principalmente attraverso forze di natura
elettrostatica, essendo però influenzati anche da fenomeni di origine statistica, quindi
diffusivi, e fenomeni fluidodinamici, in quanto il moto del solvente modifica ed è modificato
da quello degli ioni. Tra questi effetti da qualche anno hanno suscitato interesse gli effetti
di natura termoforetica. É infatti noto da quasi cento anni che una particella di soluto
posta in un solvente non isotermo, ma nel quale è presente un gradiente di temperatura,
avrà un moto di deriva lungo la direzione del gradiente. Questo è chiamato effetto Soret.
I meccanismi alla base di questo fenomeno non sono completamente chiari, difatti la
maggior parte delle sostanze ha un comportamento termofobico, muovendosi quindi verso
la zona a temperatura minore; altre hanno invece un comportamento termofilico. Qualche
analisi teorica è stata fatta nel caso di ioni in soluzioni acquose, Agar ha difatti usato il
modello di Born per l’interazione ione-solvente per calcolare il valore di questo coefficiente
Soret. Da questa, seppur basilare, teoria è possibile individuare nel fatto che costante
dielettrica del solvente sia dipendente dalla temperatura una delle cuase principali del
moto degli ioni sotto gradiente termico.

Nel contesto della transizione energetica verso una produzione più efficiente e meno
inquinantne, è importate sfruttare il calore di scarto a bassa temperatura per produrre
ulteriore energia elettrica. Nello stesso modo in cui la ricerca ha sviluppato materiali e
dispositivi in grado di utilizzare l’effetto Seebeck nei solidi per questo scopo, così negli
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ultimi anni è cresciuto l’interesse nello sfruttamento di questo effetto equivalente nei
liquidi. Sfruttando le evidenze sperimentali, che mostrano un coefficiente equivalente di
Seebeck in alcuni elettroliti di ordini di grandezza superiore a quello dei solidi, sono state
progettate e sperimentate numerose tipologie di dispositivi, con lo scopo di raggiungere
efficienze di conversione pari o superiori a quelle dei semiconduttori. Oltre all’utilizzo
di celle elettrochimiche, le cui specie reagiscono con gli elettrodi per creare una corrente
elettrica continua, sono stati studiati anche dispositivi basati su cicli termodinamici. In
particolare, interessanti risultati sperimentali sono stati osservati nell’uso di supercapacitori
ricaricati tramite una differenza di temperatura fra gli elettrodi. La presenza di elettrodi
nanostrutturati, che possono quindi ospitare una rilevante quantità di carica, e l’assenza
di reazioni chimiche, rendono i supercapacitori in grado di generare potenze elettriche
sufficienti all’uso industriale per quasi infiniti cicli di carica e scarica. Queste loro proprietà,
e l’economicità dei loro materiali, li rendono ideali per la conversione energetica sopra
citata.

Seppur sono presenti studi sperimentali su questi cicli termodinamici, nessun modello
è stato proposto per valutare a priori il comportamento degli stessi in base alla scelta dei
materiali e alla configurazione del dispositivo. A tal fine ho cercato di modellizzare un
supercapacitore ricaricabile termicamente, con l’utlizzo di calcoli analitici, simulazioni
numeriche e circuiti equivalenti. Prima di esporre il lavoro è necessario ricordare che un
capacitore elettrochimico conserva la carica in un doppio strato elettronico formato da ioni
a contatto con l’elettrodo la cui carica è specchiata nella carica superficiale dello stesso.
Va poi presentato il ciclo di ricarica termica di un supercapacitore, che consta di quattro
fasi distinte: la fase i in cui si impone la differenza di temperatura ai capi a circuito aperto,
in cui quindi si osserva una differenza di potenziale fra gli elettrodi; la fase ii in cui si
chiude il circuito lasciando il gradiente termico, caricando così il dispositivo; la fase iii in
cui si apre il circuito e si riporta il sistema in condizione isoterma, ottenendo quindi un
normale supercapacitore carico; infine l’energia elettrica accumulata viene utilizzata su un
carico elettrico durante la fase iv. Per analizzare questo sistema, ho dapprima utilizzato
le soluzioni analitiche delle equazioni che governano la fisica dei liquidi carichi (equazioni
di Poisson-Nernst-Plank), risolte nel caso di un capacitare elettrochimico ad elettrodi
piani e paralleli. Con quei risultati, e le simulazioni numeriche che li confermano, è stato
sviluppato un circuito elettrico equivalente che permette di risolvere il sistema dinamico in
modo veloce ed efficace. Il circuito equivalente da me ottenuto è quindi composto da due
capacitori che rappresentano il doppio strato elettronico, una resistenza per considerare
la conducibilità elettrica dell’elettrolita e da un generatore di potenziale che tiene conto
dell’effetto Seebeck che si origina quando il gradiente termico è applicato. Osservando
successivamente il comportamento di un supercapacitore è evidente come sia complesso e
numericamente oneroso, volendolo simulare nella sua interezza sarebbe richiesta un’analisi
tridimensionale che prenda in considerazione la nanostruttura degli elettrodi. Lo "Stack
Electrodes Model", usato in questa tesi, considera invece un solo macroporo che idealmente
collega la zona centrale del supercapacitore con l’estremo ultimo dell’elettrodo, a cui sono
perpendicolarmente collegati n micro o nano pori. La dimensione dei micropori è quindi
rappresentata nella distanza fra elettrodi permeabili messi in fila. Questo modello è già
stato utilizzato in letteratura per comprendere la dinamica dei supercapacitori caricati da
una sorgente elettrica esterna.

Con questo lavoro è stato invece dimostrato come lo Stack Electrodes Model permetta



un’analisi dinamica anche nel caso di ricarica termica. In particolare, si deve considerare
che per simulare un supercapacitore intero sarebbe necessario risolvere le equzioni di stato
del sistema per un numero n di elettrodi dell’ordine di grandezza dei milioni. Risulterebbe
quindi computazionalmente molto oneroso, se non impossibilie. Similmente a quanto fatto
nel caso del capacitore piano, si è sfruttato il circuito elettrico equivalente che lo Stack
Electrodes Model genera. Il sistema lineare da esso creato è quindi stato risolto, ottenendo
relazioni algebriche valide per ogni numero n di elettrodi.

Sono quindi stati ottenuti sia risultati soprendenti e inaspettati che spiegazioni a
fenomeni osservati sperimentalmente.

Dapprima si è osservato che durante la prima fase a circuito aperto è presente una
particolare distribuzione della densità di carica: all’interno dello stesso elettrodo nanos-
trutturato sono presenti zone a carica positiva e zone a carica negativa. Questo fenomeno
è dovuto al bilanciamento fra la necessità elettrostatica di mantenere la neutralità elettrica
nell’elettrodo a circuito aperto e il potenziale generato dall’effetto Seebeck nello stesso.
Inoltre le curve che descrivono il potenziale fra gli elettrodi sono ben diverse da quelle che
si ottengono solitamente negli studi isotermici, il motivo è stato individuato e dimostrato
nella sovrapposizione degli effetti: sommando la funzione del potenziale o della densità di
carica della fase i, in cui principalmente dominano gli effetti termici, con quella della fase
iii, in cui il sistema è carico ed isotermo, si ottengono le soluzioni per la fase ii che consta
sia di effetti termi che di quelli elettrici.

Oltre a queste particolarità fisiche, il circuito sviluppato è stato fondamentale nel
calcolo della dinamica delle varie fasi, dimostrando in particolare come i tempi caratteristici
della fase ii di carica coincidono con quelli della ricarica “classica” attraverso una batteria
esterna. Oltre alla dinamica sono state anche evidenziate le particolarità riguardo la
capacità di un sistema caricato con gradiente termico, dato che la presenza del gradiente
attraverso gli elettrodi stessi rende la carica superficiale non omogenea. Questo effetto
obbliga a riconsiderare la quantità di carica totale accumulabile dal capactiore e rende
la stessa dipendente dai parametri strutturali. In particolare si può dimostrare come un
supercapacitore con un elettrodo spesso rispetto alla lunghezza totale del sistema perda
la metà della capacità originale.

Con queste informazioni è stato infine possibile calcolare l’efficienza del ciclo termodi-
namico. Dato il ciclo descritto precedentemente composto da quattro fasi, le prime due
consumeranno energia termica dovendo mantenere una differenza di temperatura. La
dinamica di queste fasi è quindi fondamentale per calcolare l’efficienza, dato che la maggior
parte del calore è utilizzato nel come flusso termico la cui energia termica totale sarà quindi
direttamente proporzionale al tempo di ricarica. Solo una parte trascurabile di calore è
invece assorbita dall’elettrolita, la quale può essere comunque recuperata attraverso cicli
rigenerativi. La carica totale accumulata è invece proporzionale alla superficie totale degli
elettrodi. Si è quindi potuta ottimizzare la geometria del dispositivo, in base al numero
di pori e alle dimensioni degli elettrodi rispetto alla lunghezza totale. Si osserva come
l’efficienza non aumenti aumentando il numero di pori dell’elettrodo, in quanto l’energia
elettrica accumulata cresce insieme ai tempi di ricarica, ottenendo, imprevedibilmente,
che un capacitare ad elettrodi piani ha la stessa efficienza totale di un supercapacitore
ad elettrodi nanostrutturati sottili. É invece evidente come l’uso di elettrodi spessi sia
svantaggioso in quanto i tempi di ricarica non sono più compensati da un aumento di



capacità dovuto alle considerazioni precedentemente esposte. Da questa ottimizzazione si
ricava una semplice relazione che lega l’efficienza assoluta totale al parametro di merito
adimensionale ZT ∗.

ZT ∗ è una valore, solitamente utilizzato nell’ambito dei semiconduttori, che mostra
quanto quel materiale sia adatto a scopi termoelettrici, è direttamente proporzionale al
quadrato del coefficiente di Seebeck, alla conducibilità termica e alla temperatura massima
raggiunta dal ciclo termodinamico, è invece inversamente proporzionale alla conducibilità
termica. Nonostante gli ottimi valori sperimentali dei coefficienti di Seebeck e la bassa
conducibilità termica dei liquidi, la conducibilità elettrica è il fattore limitante che rende
l’efficienza totale non ancora in linea con altre tecnologie termoelettriche. In particolare
si mostra come attualmente i migliori liquidi termoelettrici abbiano valori di ZT ∗ di 0.01
quando invece, dall’analisi compiuta, sarebbe necessario raggiungere valori vicini all’unità
per ottenere il 20% dell’efficienza di Carnot equivalente e addirittura avvicinarsi a 5
per ottenerne il 100%, il tutto considerando un supercapacitore ideale, privo di reazioni
parassite irreversibili.

Va infine considerato che il lavoro svolto è stato ideato e calcolato pensando ad elettroliti
diluiti, nei quali è possibile risolvere le direttamente o numericamente le equazioni di
Poisson-Nernst-Plank. I migliori risultati sperimentali in termini di efficienza sono invece
stati ottenuti con elettroliti più complessi da modellizzare, come polielettroliti semi-solidi
o liquidi ionici. Questi ultimi presentano effetti Soret non ancora spiegati a livello teorico
e quindi difficili da applicare a un sistema complesso. Sarà quindi compito di futuri studi,
una volta poste basi teoriche più solide, adattare il modello qui sviluppato, in modo da
ottimizzare ulteriormente il dispositivo e stabilire se questo filone di ricerca potrà produrre
un nuovo sistema di conversione di energia da calore di scarto a bassa temperatura.
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Introduction

One of the main challenges of this century is to reach carbon neutrality for the year 2050.
This challenge can be addressed in numerous ways, which is the right route to follow is an
object of debate all around the world. However, the one thing on which everyone agrees is
that it is necessary to use every possible drop of clean energy that is produced. Knowing
that, due to the usual thermodynamic cycles applied, almost two-third of the thermal
energy produced is lost, a question arises: how can we exploit that energy?

In the last years, countless technologies were proposed to face this challenge, among
which thermoelectric materials seem to be the most promising. They use the property of
some materials, usually semiconductors, to generate a current or a potential difference
when a temperature gradient is applied: this is called Seebeck effect. In the context of
thermoelectricity, the good experimental results for the Seebeck effect in some electrolytes
opened the doors to the use of liquid thermoelectric technologies. A complete theoretical
description of the Seebeck effect in electrolytes is still missing, however its origins can
be classified as chemical or physical. In the case of a redox reaction, the temperature
dependence of the reactions are responsible for the voltage difference between the cold
and the hot side. In a non-Faradaic system the Seebeck effect originates only from the
thermophoresis of the ions. The thermophoresis, also called Soret effect, is a particle
motion induced by a thermal gradient, the Soret coefficient permits to calculate the drift
ion velocity knowing the thermal gradient. The mechanisms of thermophoresis are not
completely clear, it is only known that the particle-solvent interaction is the main driver of
the thermophoresis and that te temperature dependence of the dielectric constant is a key
factor in the case of ions in polar solvents. However, the values of the Soret coefficients
can be experimentally measured, so that they can be used to calculate the behaviour of an
electrolyte posed in a temperature gradient. Nevertheless, the subject remains challenging,
almost all the parameters that describe a liquid system, depend on temperature: varying
the temperature means changing the dielectric constant, the diffusivity, the density, the
thermal conductivity, and the Soret coefficient itself.

For these reasons, namely for possibility to analyse only the physical behaviour and
to be able to solve analytically the equations, the study of a thermally rechargeable
supercapacitor was chosen. A thermally rechargeable supercapacitor is an electrochemical
capacitor, with nanoporous electrodes, that is charged with an imposed temperature
gradient. From a conceptual point of view, the Soret effect mentioned above, acting with
different intensity on anions and cations, permits to charge the supercapacitor. It was
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1. Introduction

decided to model and simulate a thermodynamic cycle capable of charge the supercapacitor
with the least amount of thermal energy, in order to understand the internal behaviour and
the impact of the nanoporous electrodes on the system. The analysis of the interactions
between a system subjected to thermophoretic forces and a nanostructure is, as far as we
know, still missing in literature. To do so, it will be first necessary to solve and model
the entire cycle for a planar electrochemical capacitor, and then to expand the model for
accommodating the particularities of a nanoporous electrodes device. Analytical solutions,
numerical simulation and equivalent circuits analysis will be exposed and the results will
be used to optimize the efficiency of the thermodynamic cycle. It is, therefore, worth
outlining the structure of this Thesis:

• In the second chapter will be exposed the broad range of solid-based and liquid-based
technologies that aim to convert efficiently low-temperature heat waste into electrical
energy. The advantages and disadvantages of these methods will be exposed, showing
the importance of further study in the liquid-based field. Moreover, specific attention
will be placed on the capacitive systems, batteries and especially supercapacitor,
to have a clearer picture of the device considered and the models that describe it.
Finally, a reference experiment will be exposed.

• The third chapter will be composed of the theoretical framework needed to under-
stand the system quantitatively. The physics of the electrostatic interactions that
govern electrolytes will therefore be explained. Moreover, some hints on irreversible
thermodynamics will be exposed to describe the cross effects responsible for the
Soret effect, and consequently for the Seebeck effect. Various methods to model a
charged system will be explained, as well as the original Agar’s theory for the Soret
effect in electrolytes.

• The actual Thesis Work will start in the fourth chapter, in which it will be presented
the study of an electrochemical capacitor, with planar electrodes, subjected to a
temperature gradient. Analytical solutions, confirmed by numerical simulations,
will placed the basis from which an equivalent electrical circuit will be developed to
describe the system.

• The model of the fourth chapter will be expanded in the fifth one. From a simple
planar electrode, the complexity will be increased with a stack electrode model that
can simulate a nanoporous electrodes system. First, a two-electrodes solution will be
done to pose again the basis of this new configuration, then a n-electrodes solution
will be achieved using the electrical circuit developed before.

• In the sixth chapter, the linear, low temperature, system of the previous chapters
will be taken to extreme conditions, in order to address the validity of the model.
Some consideration will then be drawn on the limits of the model.
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• The considerations and the relations found above will then be used in the seventh
chapter to calculate and optimize the energy conversion efficiency of the thermally
rechargeable supercapacitor.
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Phenomenology and Applications

Nowadays, the ever-increasing energy demand needs to be shifted towards carbon-free and
sustainable production. Due to the economic growth the energy to be produced increases
and the majority of that, today, comes from fossil fuels. The fossil fuels emissions are
responsible for the global warming due to the high quantity of CO2 that these technologies
produce, and they are also responsible for millions of deaths every year due to the damages
the other chemical compounds emitted create.

Figure 2.1: Global energy consumption from 1800 to 2019 [1].

As it is possible to see in figure 2.1 the energy sources that emit carbon dioxide are still
the vast majority and this needs to be changed in order to prevent the climate crisis. To
achieve this goal, we need to change the energy sources (nuclear, wind and solar must be
improved), reduce energy consumption, and improve the efficiency of production. Almost
two-third of the energy produced is indeed lost due to the low average efficiency of the
technologies adopted nowadays, the majority of which is converted into low-temperature
heat waste [7].
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Figure 2.2: Sketch of the main production sources of waste heat.

Some examples could be low-concentration solar heat collectors, household co-generation,
low temperature geothermal heat, car engines, industrial and thermal power plants waste
heat. These kinds of sources provide fluids with temperatures below 100 °C that are
not useful in the usual thermodynamic cycles. Some estimates calculated that only the
potential of industrial heat waste in Europe is around 23 TWh/year [7].

Various physical phenomena are studied to develop a device that could convert this heat
into electricity, with a good efficiency: thermoelectric materials, heat engines based on Stir-
ling cycle or organic Rankine cycle, thermo-magnetic motors, and thermoelectrochemical
processes.

The thermoelectric materials can convert heat directly into electricity; the organic heat
engines try to use thermodynamic cycles similar to the water-based ones but with low
boiling temperature organic mixtures; the thermo-magnetic motors use the paramagnetic-
ferromagnetic transitions at the right temperature to create mechanical torque [8]; the
thermoelectrochemical processes combine thermal mechanism and electrochemical ones to
convert heat into electricity [9].

The goal of the research is to create small, durable, scalable and cheap devices that
produce energy with low maintenance and simple installation.

This work is part of this research. In particular, the solid-state thermoelectric materials
have reached a high level of technological advancement and an optimal level of physical
comprehension of their mechanisms. By contrast, the thermoelectric technologies based
on electrochemical processes are still not optimized and understood. The promising
experimental results on this topic create the need for further theoretical comprehension of
it. This work will try to understand if a thermoelectrochemical technology is a useful tool
for exploiting the low-temperature heat waste, simulating and calculating the behaviour
of a thermally rechargeable supercapacitor.
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2.1 Solid-State Thermoelectric Technologies
Certainly, the thermoelectric technologies are the most researched technologies that have
the scope of exploit the low-temperature heat source. In particular, the historically most
studied ones are the thermoelectric solid-state materials.

Phenomenology

The solid-state thermoelectric materials utilize the Seebeck effect to generate a potential
difference between the sides of a material when a temperature difference is applied.

The Seebeck effect was discovered by Thomas Johann Seebeck in 1821 who found out
that a circuit made from two different metals, with junctions at different temperatures
would deflect a compass magnet [10], and then discovered that a temperature difference
in the metal could drive an electric current. The Seebeck effect is part of a group of
thermoelectric (and magnetic) phenomena that are originated when fluxes of heat or
particles are present in a material.

• When we keep the two ends of a conductor at different temperatures, a voltage
difference is established, this is called Seebeck effect.

• When a current is imposed in a conductor a difference in temperature between the
two ends can be measured, this is the Peltier effect.

• When a difference in temperature and a current are imposed the material will absorb
or release heat, this is the Thomson effect.

To explain the phenomena it is possible to imagine the charge carriers inside the
material (electrons or holes) as ideal gas particles. When a current is imposed the particles
(so the charges) will carry some energy from one side to the other generating a temperature
difference, this explains the Peltier effect. Inversely, when a temperature difference ∆T is
imposed, the particles will gain kinetic energy in the hot end, so they will accumulate in
the cold end, producing a repulsive interaction force. These two forces, balancing each
other, are in steady-state when a voltage difference ∆V is generated.

The relation is simple:
∆V = Se∆T , (2.1.1)

where Se is the Seebeck coefficient.
From solid-state physics it is possible to demonstrate that metals are very poor ther-

moelectric materials, with usually low Seebeck coefficient and high thermal conductivity.
The metals are therefore only useful for thermocouples or other instrumentation.

The best choice for energy generations are instead the semiconductors. These materials
can be engineered in order to achieve low thermal conductivity, high Seebeck coefficient
and high electrical conductivity. Moreover, the possibility exists to chose the signs of Se:
the n-type semiconductors (that uses electrons as charge carriers) have negative Se, the
p-type semiconductor (that uses holes as charge carriers) have positive Se.
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These features allow us to create a thermoelectric generator device (TEG): the ther-
moelectric elements are connected thermally in parallel and electrically in series (figure
2.3). This setup creates the conditions to either use a heat flux to generate electric power
or to use an electric current to cool a device.

Figure 2.3: Sketch of a thermoelectric current generator device composed by a p semicon-
ductor (green), a n semiconductor (purple) electrically connected and thermally in parallel,
in which the heat is absorbed in the blue zone and realised in the orange zone.

Efficiency

Like all heat engines, the TEGs obey the laws of thermodynamics: to calculate the
efficiency it is necessary to calculate the ratio between the thermal energy used and the
electrical energy produced.

ηabs = Pel
Qin

, (2.1.2)

where ηabs is the absolute efficiency, Pel is the electric power produced per unit area
and Qin is the heat flux that goes through the device. The power produced is of course
the current times the voltage; the heat flux is composed of the heat conducted by the
materials, the joule heat developed by the current and the Peltier heat exchanged.

Selecting an optimal load and optimal dimensions for the modules the overall efficiency
can be calculated as:

ηmax =
Th[
√

1 + ZT − Th
Tl

]
(Th − Tl)[

√
1 + ZT + 1]

(2.1.3)

where ZT is called dimensionless figure of merit, Th and Tl are the higher and the lower
temperature respectively [11]. The value of ZT can be calculated from the material
properties:
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ZT = S2
eσelT

k
, (2.1.4)

where Se is the Seebeck coefficient, σel the electrical conductivity, k the thermal conduc-
tivity and T the absolute temperature.

To have an idea of the average efficiency of a thermoelectric material, it is necessary
consider the usual values that the parameters cited above have: Se = 102µV K−1 ,
σel = 105S/m and k = 1Wm−1K−1. This leads to an average ZT of 1 for the common
materials.

Figure 2.4: Efficiency vs Temperature of the heat source at various theoretical dimensionless
figure of merit of thermoelectric materials, compared with the efficiencies of classic
thermodynamic cycles [2].

Figure 2.4 shows then the efficiencies that can be reached by the various energy
production methods, compared with the equivalent efficiency that a material with a
specific ZT can achieve. If the average ZT of 1 is considered, the obtainable efficiency
is particularly low, especially if the heat source is in the order of 400 K. In particular
the efficiency of a thermoelectric device with ZT = 1 working between 300K and 400K
is ηmax = 13%, which is the 52% of the Carnot efficiency. The Carnot efficiency is the
maximum efficiency which can be reached when an ideal thermodynamic cycle is run
between two temperature and it is calculated as

ηCarnot = 1− Tl
Th

. (2.1.5)

It is clear that, to have competitive energy production from thermoelectric technologies,
the figure of merit needs to be improved, at least up to 2 or 3.
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Advance Technologies

The research in the field of new and efficient thermoelectric materials is focused on the
development of materials with a high Seebeck coefficient, high electrical conductivity, but
low thermal conductivity. Stating that the thermal conductivity is related to the mobility
of the carries, the goal is ambitious. Two main routes are now researched with the aim
to develop a phonon-glass electron-crystal materials (so a material that is disordered for
phonon but ordered for electrons).

The first is the use of particular structured materials with cages or substructures that
interfere with the motion of phonons, but which leave the electrons travel through the
crystalline structure. The second are nanostructured materials which either have grain
dimensions between the phonon and electron scattering lengths or utilize band confinement
to create superlattices with the use of ordered nanoparticles. These last advancements
achieved a ZT of 3.5 at 575 K [2], but the creation of the material is very difficult and
expensive in a laboratory and practically impossible at an industrial scale.

A good industrial process can produce a thermoelectric material today that has only a
ZT of 1.5, for example a micro-structured bismuth-telluride.

For these reasons the semiconductor thermoelectric materials are now used only in
some particular applications such as space or electronics, but not in the exploitation of
the large amount of low-temperature heat waste. Given the many years of research and
advancements on the solid-state thermoelectric technologies, that have reached incredible,
but always expensive, results, one is tempted to believe that the improvements in this
field are destined to be limited and an industrial-scale device cannot be achieved.

2.2 Liquid-Based Thermoelectric Technologies
During the last ten years, some experiments opened the doors for new devices [12], based
on liquid-based electrochemical cells instead of solid semiconductors.

The thermoelectrochemical technologies developed are various and use a wide range
of physical phenomena to convert heat into electricity, going from direct thermoelectric
systems to osmotic gradient exploitation. They can be divided into two major groups:
direct and indirect utilization of low temperature heat waste. Thermoelectrochemical cells
(TECs) [9] , thermo-osmotic conversion devices (TOEC) [13], and thermally regenerative
electrochemical cycles (TRECs)[14] use low-grade heat generating directly electrical power.
The indirect utilization exploits instead low grade-heat to produce solutions at different
concentrations which are used in salinity gradient energy systems (SGE) [15] or thermally
regenerative batteries (TRBs) [16]. A summary, taken from the work of Rahimi and Co
[4], of the existing methods is presented below, in order to give a wide prospective on the
routes the research is following now.

Salinity Gradient Energy Systems

Several technologies have been developed to extract energy from two solutions of different
concentrations [17]. These technologies could be used both to extract energy from natural
(e.g., seawater – river water) or industrial salinity gradients and to exploit heat waste. The
low-grade heat is used in the distillation process to obtain streams with different salinities.
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These streams can be used to produce energy with pressure retarded osmosis (PRO)
[18], reverse electrodialysis (RED) [19] or capacitive mixing (CapMix) [20]. The modern
cheap and effective membranes opened the doors for the first two methods, the renewed
nanostructured electrodes allowed CapMix to be a possible way to generate electricity from
concentration differences. The overall efficiency of these devices is estimated to be around
5-10% of the Carnot efficiency [4]. Improvements in the salinity gradient technology are
so strictly related to improvements in low-grade heat exploitation. In particular, it is
interesting to track the development of the supercapacitors because, as this work explains,
they can be used both as direct and indirect low-temperature energy conversion devices.

Thermally regenerative batteries

The thermally regenerative batteries (TRB) are based on oxidation and reduction of metal
electrodes. The device is composed of two chambers separated of an anion exchange
membrane, in one a ligand (e.g., ammonia) is present hat becomes the anode. The cell
after the discharging cycle, it is heated to distil the ligand, which is then added to the
electrolyte in the other side of the cell, making the other side now the anode.

The TRBs can perform at high temperatures and are relatively cheap. The efficiency
nowadays goes from 6.2% to 12% of the Carnot efficiency, but the research on this topic
is in its early days (the first proposal was made in 2015). The main challenge is the long
term stability of the electrodes that are rapidly damaged by the cycles.

Thermo-osmotic energy conversion

The thermo-osmotic direct energy conversion (TOEC) is based on the use of waste heat
to create a temperature difference between two reservoirs divided by a membrane. As the
thermo-osmotic liquid of the hot reservoir flows across the membrane the cold reservoir
becomes pressurized, the pressurized liquid then flows through a turbine that generates
electricity. The membrane transforms thermal energy in hydraulic energy.

Some models have been used to calculate the theoretical efficiency: the maximum one
should be 4.1%. The system is not well optimized, other membranes and liquids should
be tested. The aim is to achieve a pressure of 50 bar obtaining an efficiency of 6,8% [21].

Thermoelectrochemical Cells

The thermogalvanic effect is very similar to the thermoelectric effect of a semiconductor:
a redox electrolyte is positioned in an electrochemical cell and a temperature difference
between the electrodes is applied, generating a voltage difference or a current. The current
is originated from the temperature dependence of the redox reaction: the redox couple
will be oxidized at the hot anode and reduced at the cold cathode. The reduced species
are then transported by convection, diffusion, and thermophoresis to the anode creating a
continuous current (see figure 2.5).

The magnitude of the voltage difference arising is proportional to the entropy difference
of the reactions

S∗e = dV

dT
= (SB + S

′
B)− (SA + S

′
A)− nSel

nF
, (2.2.1)
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Figure 2.5: Sketch of the mechanism inside of a thermogalvanic cell.

where V is the electrode potential, n is the number of electron involved in the reaction,
F is the Faraday’s constant, SA and SB are the partial molar entropies of species A and
B, S ′A and S

′
B are the Eastman 1 entropies and Sel is the entropy transported by the

electrons in the external circuit. Usually S ′A, S
′
B and Sel are negligible so the Seebeck-like

coefficient is approximable as

S∗e = −∆SA,B
nF

(2.2.2)

The main difference between this cell and a solid-state material is that, in this case, the
reaction and the material transport are involved. This consideration is important in order
to analyse the problems of this technology: the reactions can damage the electrodes in the
long run and the limiting factors to optimal efficiency are multiple. The most important
ones are the ohmic, charge transfer, and mass transport overpotentials 2, the temperature
effects on the solvent and the side reactions. All these aspects are linked together and are
non-linearly dependent on the temperature.

To evaluate the performance of a thermogalvanic cell it is possible to adapt the
dimensionless figure of merit, considering that the overall conductivity will be proportional
to the most limiting factor from the cited above and the concentration of the redox couple.
The figure of merit proposed by Abraham et al. [22] is

ZT ∗ =
(
z2F 2

R

)
S2
eDlimc

k
(2.2.3)

1The Eastman entropy is the entropy transported due to the Dufour’s heat, this topic will be discussed
in details in the next chapter.

2The overpotential is the potential difference between the thermodynamic determined potential at
which the reaction should take place and the measured potential difference at which it is observed, this
effect is due to irresponsibilities of the process taken into account.

12



2. Phenomenology and Applications

where R is the gas constant, Dlim is the limiting diffusion coefficient and c is the redox
couple concentration. From this figure of merit it is trivial to see that the main problems
are the ones related to the overpotentials inside the cell, they could be overcome modifying
the electrolyte or the electrodes.

The final setup of the thermogalvanic cells is very similar to the one of the solid-state
systems in which we use a sort of p-type and n-type cell, selecting the reactions, to create
an electrically in series – thermally in parallel system, which can provide a good amount
of voltage and current.

The Seebeck-like coefficient of these kinds of cells are very high with respect to the
semiconductor materials, in the order of some mVK−1, but the overall figure of merit is
usually limited by the low electric conductivity, so the average efficiency in the research
are in the order of 1% with some reported ones near 4% [9].

The thermogalvanic cells can be classified by the redox couple, the solvent, or by the
electrodes used.

• The choice of the redox couple can change significantly the magnitude and even
the sing of the Seebeck coefficient: these values are determined by the interaction
between the species and the salvation shell. One of the most promising and studied
redox couple is the ferricyanide/ferrocyanide couple that has a Seebeck coefficient
of −1.4mVK−1 [23]. The cells obtained with this couples have good electrode
resistance and high current densities. Another important redox couple is the I−/I−3
couple, it was studied in aqueous and non-aqueous solvent, with stainless steel
electrode or with platinum electrodes [23]. Other couples are cobalt-based [24] or
mixes of different inorganic redox couples. Some organics redox couples are studied
too.

• A wide spectrum of aqueous and non-aqueous solvents are used [25] [24]. The
aqueous electrolytes have high power output but the low boiling point of water can
limit the use to only certain ranges of temperature. Ionic liquids (ILs) have instead
high boiling points, high ionic conductivity and can produce high Seebeck coeffi-
cients (up to 2.9mVK−1), achieving similar ZT to the semiconductor thermoelectric
materials, despite the low viscosity. Some additives are tried to overcome this issue.
Moreover, organic molecular solvent, gels and quasi-solid-state polyelectrolytes are
experimented as promising for application with particular geometry (for example
body heat exploitation) having a high viscosity and good Seebeck coefficient of the
order of 1mVK−1.

• The most studied electrode materials are platinum and carbon, but a lot of different
materials are now considered [26]. The platinum ones have high catalytic activity
but the cost is a limit for industrial application. The most promising ones are the
carbon nanostructured that posses a large surface area, increasing the number of
reaction sites, this provides higher specific power and an efficiency of 3.95% was
achieved [27]. The carbon nanostructures can be doped or coated to improve the
catalytic characteristic or the conductivity. The orientation and the thickness of
the cell can be varied depending on the balance between the thermal and electrical
conductivity improvements due to the convection effect. Similar considerations can
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be applied to the use of selective membranes that can block the heat flux of the
solvent but can also reduce ion mobility.

The list of new technologies is far larger than the one cited above, for example,
interesting studies are trying to combine membranes or colloidal effects with the right
redox couples. The aim of this section is therefore only to give some hints on the vast
research present in the field of thermoelectrochemical cells.

Thermally Regenerative Electrochemical Cycles

The final direct method to convert heat into electricity is based on a more conventional
strategy, but applied to electrochemical cells: thermodynamic cycles.

It is called thermally regenerative electrochemical cycle (TREC). The core of the
process is to create a Stirling-like thermodynamic cycle using a capacitor or a battery.
In particular, the usual cycle uses the difference in charging energy obtainable when the
device is charged at high temperature and discharged at low temperature [28]. The cycle is
so composed of cooling-discharging-heating-charging. This mechanism produces electrical
power because the charging voltage is lower than the discharging one. The cycle is called
regenerative because is possible to regenerate part of the heat absorbed inn order to heat
the upcoming cold fluid, improving the efficiency.

Figure 2.6: V-Q and T-S thermodynamic cycles of a TREC based device [3].

Even if the main framework is the same, several other similar mechanisms are studied.
Batteries or the supercapacitors can be also charged using a temperature gradient in

the cell, or using a mix of thermal and electrical charge. It is so possible to modify the
temperature of just one electrode in order to use the Seebeck effect to let the cell charge
itself.

Other systems use membranes inside to limit the heat transfer or to modify the ionic
motion. The problem with the membranes is that they are temperature sensitive and can
lose effectiveness or be damaged by the high temperatures. The membranes can so be
replaced by ion separators, which are less expensive ad more durable.
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Moreover, several electrode-electrolyte interaction mechanisms can be chosen. A
battery-type cell will use intercalation and chemical reaction of ions at the surface, instead,
a supercapacitor-like cell will have more capacitive or pseudocapacitive mechanisms.

The advantages of these technologies are mainly in the efficiency that can be ideally
calculated to be up to 50% of the Carnot efficiency. Some drawbacks are the cost and the
maintenance of the membranes systems, the need for an external charge or the complex
thermohydraulic design. These problems prevent the use in light and transportable
applications such as cars or body heat recovery.

Some experimental examples of different devices proposed are listed below:
Author Year Description

Hartel [28] 2015 Supercapacitor with porous carbon electrode and organic electrolyte,
immersed in a temperature changing fluid. Theoretical efficiency:
80% w.r.t. Carnot efficiency

Linford [29] 2018 LiCoO2/Li self-charging cells in two configurations, one with the
cells under temperature gradient and one with the cells at the same
temperature that varies with time. Efficiency: 0,22%

Reynold [30] 2018 New develop redox flow battery based with Vanadium salts in a
heating-charging-cooling-discharging cycle obtaining an increase in
energy density and efficiency of the battery

Yang [3] 2014 Membrane free NiHCF cathode and Ag/AgCl anode with cheat
porous separator. Efficiency 30% w.r.t Carnot efficiency

Yang [31] 2014 External charging-free cycle with Fe(CN)3−/4−
6 redox pair and solid

Prussian blue which has the particular propriety of inversing the
reaction under a certain temperature.

Atlas [32] 2018 Supercapacitor with one electrode at fixed temperature and the
other at varying temperature keeping the potential difference with
an external charge

Wang [33] 2017 Ionic thermoelectric supercapacitor with poly-electrolyte polystyrene
sulfonate sodium

Zhao [34] 2016 Polymeric electrolyte supercapacitor charged with a temperature
gradient

As stated above the examples reported are just a hint of the studies done on the topic,
both theoretical thermodynamic cycles studies and experimental examples are present in
literature.

Prospects

The advantages of liquid-based technologies with respect to the solid-state ones are multiple.
Within the first years of research good power densities, efficiencies and cost-effectiveness
are already developed.

A brief comparison can be made between these new technologies in terms of power den-
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sity and efficiency (fig. 2.7). It can be noticed how the TRB, which are the newest are also
the ones that now obtain the better (theoretical) performances. The theoretical efficiency
is already at the levels of the solid-state materials, and it will only improve during the
years. Focusing now on the TRECs, it is obvious that these efficiencies seem promising but
a lot of work must be done in order to bring it to practical use. It is necessary to improve
power density and reduce the cost of materials. The improvements in power density
can be made by optimizing the cell configuration, charge concentration, and transport
kinetics. In this context, a better physical model of the behaviour of these devices is needed.

This work aims so to develop a theoretical model that can describe the physical
interactions inside a thermo-charged system, in particular a supercapacitor. This model
must be sufficiently precise and simple, so that it can be used to optimize the supercapacitor,
hoping that a further theoretical and numerical analysis permits to reach higher levels of
power density and efficiency.

Figure 2.7: Comparison in terms of efficiency w.r.t Canot efficiency and power density of
the various liquid-base thermoelectric technologies [4].

2.3 Thermocapacitive Systems
As stated above, within all the possible systems available that can extract electrical energy
from a low-temperature heat source, this works focuses on the thermally regenerative
electrochemical cycle techniques.

The proposed devices are usually based on capacitive systems such as batteries and
capacitors. In particular, the electrical energy is extracted either using the difference
in charging potential between a hot and a cold state, or using the voltage generated by
the temperature difference between the electrodes. This last mechanism was used in the
inspiring work of Zhao and al. and can be seen as a Seebeck-like coefficient in electrolytes
[34]. There is however a main difference: a capacitive system under a temperature gradient
creates a potential difference, but the current cannot flow continuously. Therefore,
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energy storage devices can be recharged by a temperature difference, leading to the
thermocapacitive effect.

The roots of this effect are to be found in the multiples phenomena governing the physics
of charged liquids: diffusion, thermophoresis, electrophoresis, convection, dispersion,
depletion forces, etc.

To understand the principles of these approaches is first necessary to analyse the energy
storage systems available. This chapter aims so to depict the working mechanisms of an
energy storage system so that it will be easier to understand the effects of a temperature
gradient on them.

Figure 2.8: Ragone plot, the classic energy storage systems are compared in terms of
specific power and specific energy.

The need for energy storage systems is growing in recent years due to the development
of renewable energy sources that are aleatory and to the growing need for the automotive
and IT sectors. The electrical energy can be stored directly in two ways: in batteries
as chemical energy that require Faradaic oxidation and reduction, or in a non-Faradaic
way as negative and positive charges on the plates of a capacitor. The former has large
capacity but low specific power due to the slow kinetics of the redox reactions, the latter
has low capacity but can deliver stored charges very rapidly as it is possible to see in the
Ragone plot (figure 2.8).

2.3.1 Batteries
Batteries are the most used energy storage system, they are capable of store a good
amount of energy per unit volume and are reliable for a high number of charge-discharge
cycles.

They are usually made of two electrodes divided by a membrane that contains the
electrolyte. During the charging cycle, the ions contained in the electrolyte are attracted
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by the potential difference according to their sign. Once reached the electrode they react
with it, changing their oxidation state, these compounds created are now stable and
available to invert their oxidation state. This charged battery will have its own voltage
and a maximum discharge rate. When the battery is then connected to an external load,
the voltage difference between the two electrodes lets the compound counter-react and
release electrons in the circuit and ions in the solution.

There are different types of batteries available now and countless ones in development.
Depending on the goal it is necessary to choose the right type of battery. Considering that
a part of them are not rechargeable (zinc-carbon, alkaline, metallic lithium) it is obvious
that they cannot be useful for a TREC, which needs a high number of cycles without
losing capacity. The origins of the impossibility to recharge them are in the non-reversible
reactions that take place, it is therefore important to select the right type of reaction to
have a compact and durable battery.

Other important characteristics to consider are the discharge power and the charging
times. These values are related: the diffusion of the ions in the electrolyte and the
reactions rates are the main factors to consider in order to improve those aspects. For the
case of a thermally recharged battery, the time needed to charge the system is directly
proportional to the thermal energy used, so it is a very important factor.

To give a complete description of a battery can be useful to explain the working
principle of the most used ones. Lithium-ion batteries (LIBs) rely on ion intercalation
rather then simple surface reaction. Intercalation is a physical phenomenon that can be
described as ions of small sizes, such as the lithium ones, going into the various layer
of layered materials. In particular, in the LIBs the anode is usually made by graphite
powder and the cathode by a LiCoO2 compound, both are 2D-layered materials. During
the charging cycle, the lithium ions intercalate in the graphite with a reaction that can be
described as

Cx + Li+ + e− −→ LiCx

during multiples of these reactions, the LiC6 compound is formed such that every graphite
cell contains a lithium-ion. During the discharge, a similar intercalation happens in the
LiCoO2 cathode electrode. This battery has so a good charging rate thanks to this
particular reaction, and the high energy density of the lithium ions makes it the most
used in the world.

A specification must be made: the batteries commercially available are composed of
thin foils of conductive materials and electrolytes wrapped in spiral form. This does not
allow to apply directly a temperature difference, to be so studied for this scope it is also
necessary to rethink the geometry of a battery, which creates other interesting challenges.

2.3.2 Supercapacitors

If the batteries use chemical reactions to store electrical energy, the supercapacitors are
instead based on purely physical phenomena. The classical capacitors are made by two
conducting plates divided by a dielectric, applying an external voltage, one side will have
an excess of electrons and the other will have a deficiency. The energy is stored then in
the electric field in the dielectric.
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Figure 2.9: Sketch of a capacitor of area A and distance between the conductive plates d,
separated by a dielectric.

The relation between the voltage applied (∆V ) and the charge accumulated (Q) is
called capacitance (C), so that

Q = C∆V (2.3.1)

In a planar capacitor as the one in figure 2.9 the capacitance can be simply calculated as

C = A
ε

d
(2.3.2)

where d is the distance between the plate, A is the area of the capacitors, and ε is the total
dielectric constant the is calculated as ε = ε0εr: ε0 is the void vacuum permittivity and
εr is the relative permittivity of the dielectric material. These kinds of planar dielectric
capacitors are only useful in electronic context because the energy that can be stored is
limited.

In order to use the capacitors to store a good amount of energy for other scopes,
such as cars, electrochemical capacitors were developed. Instead of a dielectric solid
material an electrolytic solution is present between two electrodes. Imposing an external
potential difference between the electrodes, the ions migrate towards electrodes according
to their sign, but instead of reacting with the conductive parts, they remain on the surface,
attracted by the surface charge. What is created at the interface between the electrodes
and the electrolyte is called "electric double layer" (EDL) which is a well defined-structure
created by the ions in this conditions. This EDL is the most important part of the
capacitor because it is the zone in which the charges accumulate and the electrical energy
is conserved. The precise physical description of the structure and the properties of an
EDL will be carried out in the next chapter, but in order to understand the behaviour of
a supercapacitor is necessary to give a simple phenomenological description.
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Figure 2.10: Sketch of an EDL created by a negative charged surface in contact with an
electrolyte. It is possible to visualize the Stern layer of thickness δ and the diffuse layer
which charge density decays in the distance d.

In general, when a charged object is placed in an electrolyte, the electric field it
generates will attract the ions of opposite charge with respect to the surface charge of the
object (counter-ions). When the system reaches equilibrium near the charged object there
will be a charged cloud of ions that, in general, will counterbalance the surface charge.
This zone of the electrolyte it is the diffuse layer. Depending on the characteristic of
the electrolyte (type of solvent and ions and concentration) different theories explain the
phenomena mathematically.

One of the first that was developed is based on the Poisson-Boltzmann equations
and the results for both the potential and the ion densities result in exponential-shaped
functions. Thus, the potential decays from the value that it has on the surface to the bulk
potential with a precise characteristic length. This length is called Debye length and, if
the ions in the solution have the same valency z, it can be calculated as:

λD =
√

εkBT

2e2n0z2 (2.3.3)

where kB is the Boltzmann constant, e is the electron charge and n0 is the bulk ion
concentration. Also a Stern theory exists, which is visible in figure 2.10, that includes
also a layer of adsorbed ions at the surface which length (in this case δ) is the diameter of
the ions and its solvation shell. In fact, it must be remembered that the charged ions in a
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polar solvent will attract strongly the solvent molecules on them creating a sphere which
radius include also the molecule’s dimension.

A capacitance of the diffuse layer can be defined as well because the quantity of charges
inside of it is proportional to the potential difference between the electrode and the bulk
fluid. The simplest way to model the EDL capacitance is to imagine it as a capacitor with
plates at a distance λD so that the capacitance of the single EDL is

C = A
ε

λD
(2.3.4)

This model of capacitance only holds for dilute solutions, more complex descriptions are
needed if the ions cannot be considered dilute.

A planar electrode electrochemical capacitor can then be thought of as an electrical
circuit composed by a resistance R, that accounts for the ion limited mobility in the
electrolyte, and two capacitors with capacitance C representing the EDLs. This model is
called "equivalent electrical circuit" (EEC) and it is commonly used in electrochemistry to
model dilute solutions.

Finally, a supercapacitor is simply an electrochemical capacitor with nanostructured
electrodes. This electrodes permit the capacitor to have a very high electrode surface area.
Usually, nanoporous carbon electrodes are used, they can provide a surface area exceeding
1000 m2g−1. The supercapacitors, as can be seen in figure 2.8, have high power densities
and good charge-discharge rates, with an industrial-scale useful energy density. The
absence of the reactions at the electrodes permits an almost indefinite use of the device
because the process is quasi completely reversible. These devices are usually implemented
in couple with lithium-ion batteries to realize high energy - high power systems.

Nanoporous Electrodes

Figure 2.11: Sketch of a the nanopores present usually in a nanoporous carbon electrode.

Specific attention must be paid to the structure of a nanoporous electrode. Remembering
that the electric double layer is formed only on the surface of a conductive medium in an
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electrolyte, it is trivial to realize that it is important to have the higher possible specific
surface area in an electrode to maximize the presence of double layers and consequently
the capacitance of the device. To do so, nanostructuring an electrode with a large network
of interconnected holes permits the optimization of the specific surface area, preserving
an optimal electrical conductivity of both the electrolyte and the electrode. The process
is made possible from the enormous technological advancements made in the last years in
the nanotechnology field, leading to cheap and size controllable nanoporous electrodes.

The carbon nanoporous electrodes are produced in different forms [35]. The most
common ones are: activated carbon, produced from physical or chemical activation of
carbonaceous materials, carbon nanotubes, which are deposited after the formation in
solution, templated carbon, which offers well-controlled narrow pores size, and other less
used carbon structures as carbon aerogels.

Figure 2.12: Experimental data from and fitting curves from ref [5], the normalized
capacitance vs the average pore size of a nanoporous electrodes are represented.

The pore can be classified in macropores, mesopores and micropores which have
respectively average dimensions over 50 nm, between 50 nm and 2 nm and under 2 nm.
The capacitance of the device can be so studied by modifying the average pore size,
obtaining the results in figure 2.12. These results underlined the fact that when the pore
size it is under 5 nm the normalized capacitance (so taking into account the fact that
the surface area changes) it is reduced because the electric double layers cannot be fully
developed. When the size goes under 1 nm instead the normalized capacitance grows,
this seems to originate from the presence of a single ion species in the pore that it is not
screened by the counter-ions that are physically blocked by the pores [5].

The number and the size of the nanopores affect the charging time, in particular, it is
known that a supercapacitor with a high number of pores takes a long time to be charged,
as it is possible for example to see in the experiment of Janssen and al.[36].

The model that explains these results, and in general a model that describes a
nanoporous carbon device, is not unique. The models are optimized for different times
and length scales, for example, it is possible to use a molecular dynamics model to
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understand the precise interaction between the electrolyte and the carbon structure, but
the simulation is confined in a few nanometres [37]. To understand, instead, the overall
capacitance a good method is to calculate the pores-electrolyte interaction with classical
density functional theory [38] and average it on the entire electrode [39].

The simulation techniques expressed so far are not useful in the charging time cal-
culations. The reason for the slow charging of a supercapacitor is still not completely
modelled, but a good approximation was done by Lian and Co [40]. Starting from the
transmission line (TL) models [41], in which the pores and the electrolyte in between are
represented respectively by series of capacitor in parallel and by a linear resistor, they
modified the system, in order to have a direct interpretation of the microscopic properties
of the supercapacitor. In particular, the TL models fit the curve with experimental data,
instead, the stack-electrode model (SEM) of Lian and Co, use a series of planar permeable
electrodes posed at a distance h that represent the pores mean size.

Figure 2.13: (a) Sketch of a supercapacitor containing 1:1 electrolyte, the porous electrodes
and an external power source providing a potential difference of 2Ψ. (b) Stack electrode
model sketch in which the n electrodes per side are divided by the distance h, stating from
±L and reaching ±L ± H. The initial ions concentrations are ρb for both anions and
cations (green dashed line) and the time 0 applied potential ±Ψ (blue line). (c) Equivalent
electrical circuit with reservoir resistance R, pore resistance R′, electrode capacitance 2C,
a part from the last electrode of capacitance C.

The model is physically explained by a macropore that goes from the reservoir to the
end of the electrode with a series of parallel micro or nanopores perpendicular to it. It is so
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possible to understand microscopically the behaviour of a supercapacitor during charging,
expanding then the results for a macroscopic system. Being also a one-dimensional model
the visualization of the space dependants motion of the ions permits to grasp the physical
reason for the slow charging times. The calculations are also made easier developing an
equivalent electrical circuit, that works similarly to the TL models, but the values of the
capacitance and the resistance are calculated from the physical governing equations of the
electrolyte, giving the possibility to model in principle every type of supercapacitor just
changing the electrolytes and geometrical parameters.

The EEC of the SEM permits so to calculate the charging time as a function of the
number of electrodes n, so the number of pores, the size of the pores h, and the ratio
between the part occupied by the nanoporous electrode and the reservoir part H/L. The
function found is

τn = LλD
D
·
[(

2 + 0.75H
L

)
n− 1− 0.91H

L

]
(2.3.5)

This value is found solving the ordinary differential equations system the solution of the
circuit in figure 2.13 creates. It must be stated that the time calculated, even if much closer
than the rest of the methods, does not match the experimental results quantitatively. In
particular, the τn found is one order of magnitude less than the experimental one. These
results are however satisfying, mostly because, in principle, the model can be improved if
a more profound understanding of the diffusivity and the permittivity of the electrolyte in
the electrodes will be developed. With these improvements the SEM is able to simulate a
very complex system such as a nanoporous carbon electrode in an electrolyte. The SEM
will be essential to the aim of this work because being a one-dimensional model permits
to simulate the behaviour of the ions throughout the length of the cell. This makes it
easy to impose a temperature difference between the electrodes and so simulate a thermal
charging.

2.3.3 Thermo-charging
Once the energy storage devices are explained, it is relatively simple to understand what
happens when a temperature gradient is imposed across them.

To be more precise, it is necessary to explain the physical origin of the motion of
the ions in a temperature gradient: the Soret effect. The Soret effect can be described
phenomenologically as the motion of particles driven by a temperature gradient. The
nature of the of the particle-solvent interaction is responsible for this effect. The majority
of the particles are pushed by the Soret effect towards the colder side of the system. There
are exceptions to this behaviour because the totality of the phenomena happening is
more complicated and not totally known. However it will be discussed within the limits
of the current knowledge in the next chapter. With this notions is however possible to
describe the concept of thermo-charging, which differs from the thermoelectrochemical
cells explained before. If the TECs rely on the entropy difference in the reactions, a
thermo-charged battery or supercapacitor are moved only by the Soret effect, but the
mechanisms at the interface are different.

The battery-type electrochemical cells are composed of two electrodes made of the
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same active material and an electrolyte with one ionic specie. This material can also
be a layered material in which the ions intercalates. The intercalation is driven by the
temperature difference: simplifying, the Soret effect drives the ions to the cold electrodes
and the chemical potential created allows the intercalation and the reaction. The battery
results now charged, so that the energy used to establish the temperature difference is now
stored as electrochemical energy, the battery can so be used as a current generator. The
Seebeck-like coefficients of these processes go from -6.8 µV K−1 up to -29.7 µV K−1[42].
These mechanisms promise possible high charging efficiency once the other parameters
are optimized.

The thermally-chargeable supercapacitors work differently. Due to the charged nature
of the ions and the difference in their Soret motion, an electric potential difference can
be measured between the hot and the cold electrode. This can so be classified as a
Seebeck-like effect. So that when a temperature gradient is applied a potential difference
and a non-neutral zone are created near the electrodes. Then when the circuit is closed,
and the electrons can flow to equilibrate the charge unbalance, an EDL is formed on the
surface, and the supercapacitor results charged. Some experiments were made regarding
this phenomena and are listed in a review from Al-zubaidi and al. [43]: Qiao 2008 [44],
Lim 2013 [45], Lim 2018 [46], Bonetti 2015 [47], Zhao 2016 [34], Kim 2016 [48]. To
understand the choice of focusing in particular to the thermo-charging of a supercapacitor
is useful to review a particular experiment.

Analysis of a TREC with a supercapacitor

Zhao and al. experimentally evaluated the efficiency of a TREC using a supercapacitor [34].
The supercapacitor was composed of a polymeric electrolyte based on polyethyleneoxide
(PEO) treated by NaOH posed in between two electrodes.

The PEO-NaOH was characterized and a Seebeck coefficient of 11.1 mV K−1 was
measured. This value is remarkably high with respect to the usual Seebeck coefficients
values found in literature, and it is origin are not well explained by the few physical
relations known.

The electrodes were also structured and characterized. Three kinds of electrodes
were used: planar gold electrode, a thin carbon nanotubes electrode and a thick carbon
nanotubes electrode. The carbon nanotubes posed on the gold electrode improve the
surface area and so the capacitance of the device. The capacitances C of the various
electrodes were measured with classical electrochemical methods such as impedance
spectroscopy and cyclic voltammetry. These characterizations revealed a leakage current
present (that can be modelled as a parallel resistance Rp) and gave also the values for the
equivalent internal resistance of the electrolyte (Rs).

Once the system was known it was charged in two ways: the first was a simple charging
from an external voltage applied ∆Vext, and the second was a thermo-charging, with a
temperature difference that generated the same voltage ∆T = ∆Vext/Se.

To be more specific PEO-NaOH has a particular characteristic: the OH− ions remain
absorbed in the polymer, letting only the Na+ diffuse and so be affected by the Soret
effect. This means that the cold side will be full of positive ions.

The thermo-charging process was divided into four phases:
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i) A temperature gradient is applied over the supercapacitor, maintaining the elec-
trodes isolated. This moves the ions present in the electrolyte towards the cold side
and, to balance the charge accumulation, a voltage difference is established and
measured with an external voltmeter Vthermo = Se∆T . The fact that the electrodes
are isolated means that no charge is accumulated inside of them.

ii) Charging phase: keeping the temperature difference applied the electrodes are
connected through a load Rload and the thermo-voltage is used to charge the superca-
pacitor. Having now the possibility to move, the electrons go into the cold electrode
and create a surface charge. This consequently let the positive ions minimize their
energy creating an EDL. The supercapacitor can be now considered charged. The
detected presence of the leakage current does not allow the measured potential
difference to go to 0, limiting the efficiency of the cycle. Without this leakage
current, the final condition would be a short circuit condition in which the potential
difference is 0 and no current flows.

iii) Once the electrodes are charged the load is disconnected, creating an open circuit
condition, and the heater can be switched off. The charge that remained in the
electrodes will now be stored and can be used for generating electrical power.

iv) When the supercapacitor is connected to a load it will discharge returning to the
initial condition.

Figure 2.14: Graph of the voltage measured across the supercapacitor in the various phases
of the experiment. The internal behaviour of the supercapacitor is also sketched.
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The thermally regenerative electrochemical cycle is now completed.
The voltage difference across the device is recorded and it is compared to the charging

behaviour of the supercapacitor charged with the external ∆V .
As it is possible to see in figure 2.14 the voltage vs time curves coincide, this means

that it is possible to consider the thermo-voltage as an effective potential generator inside
the supercapacitor. An equivalent circuit is so modelled.

Figure 2.15: Circuit used to model the charging behaviour of the supercapacitor under a
temperature gradient.

From this circuit is possible to simply calculate the efficiency, considering the leakage
current too. Solving the circuit, the effective voltage difference Veffective that can be used
in the discharging phase is

Veffective = Se∆T
(

1− Rload +Rs

Rload +Rp +Rs

)
, (2.3.6)

and the total charge accumulated is

Qch = CVeffective (2.3.7)
During phase iii a self-discharge mechanism was detected, with the final charge accu-
mulated before the discharging measured to be 27% of the Qch, lowering further the
efficiency. Considering this factor the final potential difference across the cell after
phase iii (Vequilibration) is far less than the original thermo-voltage. The electrical energy
accumulated is so Eel = 1/2CV 2

equilibration.
The thermal energy required to charge the capacitor Ethermal can be calculated by

integrating the thermal flux during the time required to complete phases i and ii and
summing the heat absorbed by the electrolyte, neglecting other contributions.

The ratio between the two energies is the efficiency of the cycle, the measured efficiency
is 6 · 10−6%. It is important to consider that the device is not optimized, so the heat
used in phase i is not the minimum possible and the leakages can be improved with
better dynamics optimization and materials choice. An optimized device can reach an
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efficiency of 0.1%, which is not commercially useful, but it is 2500 times higher than that
of a supercapacitor charged with the potential obtained by a standard thermoelectric
generator. Moreover, this is one of the first experiments in the field, and both electrolytes
and electrodes can be improved with the goal to obtain higher Seebeck coefficients, lower
thermal conductivity, lower charging times, and higher ionic conductivity.

This experiment is particularly important to the aim of this thesis because the pure
physical behaviour of the system, without important chemical reaction, permits to isolate
the phenomena. In particular, the precise thermo-diffusion of the ions can be understood
and modelled with the equations governing the behaviour of an electrolyte in a thermal
gradient.

The main problem is on the nature of the Seebeck coefficient in polyelectrolytes which
is not known yet. It is then convenient to start analysing the behaviour of a supercapacitor
with aqueous solvent, so that the larger literature on the Seebeck effect in this field can
be used as starting point.
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Theoretical Framework

To complete the background necessary to fully understand the results of the present work,
here is presented an overview of the basic physical phenomena that take place in an
electrolyte subjected to a temperature gradient or an applied electric potential.

3.1 Electrostatics in charged fluids
If a charged object is posed in a polar liquid containing ions, the ions with opposite
charge with respect to the surface charge present on the object (counterions) will be
attracted by its surface, but for entropic reasons, they have also a tendency to distribute
as homogeneously as possible [6]. The balance between the electrostatic and the entropic
effects creates the so-called electric double layer (EDL). It consists in a well-localized
charge and a diffusely distributed cloud of ions with a typical thickness, called Debye
length.

The structure of the EDL and the nature of the phenomena it produces are well studied
with a variety of theories. The most important works are form Guoy [49], Chapman [50],
Debye nd Huckel [51]. The first and more simple solutions are based on mean-field theories
that ignore ion-ion correlations, the modern and more complete ones utilize innovative
methods like classical density functional theory [52] or molecular simulations [53].

This work aims to develop a basic model of thermoelectricity in electrolytes, so the
mean-field theories are sufficient to describe the system and they are so used and explained
below.

The Poisson-Boltzmann Equation

Considering now a planar homogeneous impenetrable surface of area A in a plane in z = 0,
in contact with a solvent in the half-space z > 0, it is possible to calculate the behaviour
of the ions in the solvent once the surface charge density σ is known, the function of the
surface charge density is so σδ(z). The solvent is viewed as a structureless medium of
dielectric constant ε0εr = ε and temperature T , and the solute is composed by monovalent
pointlike (no finite-size effects) cations and anions of charge ±e with a concentration n0.
The calculation aims to find the electrostatic potential φ(z) and the ionic density profiles
n±(z). The system can be modelled with a set of three equations. The first links the
potential of the system with the charges present in it, it is called Poisson equation:

ε∇2φ = −Qext − e
∑
i

zini (3.1.1)
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where Qext is an external charge and, in general, ezini are the products for every specie i
of valencies zi, the electron charge e and the local number density ni.

For the purposes of the one-dimensional problem, with two ions species of valency
z = ±1 and no external charge, the Poisson equation can be restated as

∂2φ

∂z2 = −e
ε

(n+(z)− n−(z)) (3.1.2)

The next relations are the mean-field Boltzmann distributions of the ions:

n±(z) = n0 exp
[
∓eφ(z)
kBT

]
(3.1.3)

To solve the problem two boundary conditions (BCs) are needed. The need for the ionic
densities of reach, far from the plane (z →∞), the initial concentration n0, translates into

lim
z→∞

φ(z) = 0 (3.1.4)

The global charge neutrality expect moreover that the total ionic charge is the exact
opposite of the total charge on the surface:

σ = −
∫ ∞

0
e(n+(z)− n−(z))dz = ε

∫ ∞
0

∂2φ

∂z2 dz = −ε ∂φ
∂z

∣∣∣∣∣
z=0+

(3.1.5)

The relations (3.1.2)-(3.1.5) form a closed set of equations for φ(z) and n±(z). In particular
the last one is important to calculate the charge density of the surface knowing the
potential function and vice versa. It is convenient to introduce the dimensionless potential
ψ(z) = eφ(z)/kBT so that the Poisson-Boltzmann equation (PB) and its boundary
conditions (B.C.s) can be cast in the form

∂2ψ

∂z2 = κ2 sinhψ(z) , (3.1.6)

ψ(z →∞) = 0 , (3.1.7)
∂ψ

∂z

∣∣∣∣∣
z=0+

= − e2σ

εkBT
, (3.1.8)

with the screening length λD = κ−1, also called Debye length defined by

λD =
√
εkBT

2e2n0
(3.1.9)

The Debye length λD is, for a given solvent and temperature, a function of the salt
concentration n0, and it sets the length scale over which charge imbalance can persist. To
give a sense of the value of this parameter, if a solution with a concentration of 1mM is
taken, the Debye length results 9.6 nm.

The nonlinear Poisson-Boltzmann problem in equations (3.1.6)-(3.1.8) can be solved
analytically, finding the Guoy-Chapman solution

ψ(z) = 2 ln 1 + γ exp[−κz]
1− γ exp[−κz] (3.1.10)

30



3. Theoretical Framework

where γ is an integration constant fized by the surface charge so that

4γ
1− γ2 = σ√

2εkBTn0
≡ y (3.1.11)

The variable y can be seen as a dimensionless surface charge density and it is useful
because with a simple calculation it can be seen that the far-field (κz) solution for small
y << 1 is simply

ψ(z) = y exp(−κz) (3.1.12)

The ion density profiles are so

n±(z) = n0

(
1∓ γ exp(−κz)

1± γ(−κz)

)2

(3.1.13)

From these solutions, it is shown that the Debye length λD sets the length scale of the
decay of both the potential and the ionic densities.

Figure 3.1: Dimensionless electrostatic potential φ and charge density (n+−n−)/n0 as ob-
tained from the nonlinear and the linear PB equations for different values of dimensionless
surface charge y. It can be notice how the linear solution is accurate only for y < 1. [6]

The geometry chosen, a single charged planar wall, is the only geometry from which
the analytical solution can be found exactly. The other geometries create nonlinear
Poisson-Boltzmann sets of equations which must be linearised for small absolute values of
the dimensionless potential ψ(z). The equation (3.1.6) can so be written as

∂2ψ

∂z2 = κ2ψ(z) , (3.1.14)

which can now be solved not only for an imposed surface charge, but for an imposed
potential difference between the electrolyte and the electrodes. So if the electrolyte is
considered at 0 potential and the electrode is posed at ψ0 the solution of the previous
equation is simply ψ(z) = ψ0 exp(−κz). This trivial solution is important because from
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it it is possible to calculate what is the surface charge that the electrodes accumulates
deriving it in z = 0+, so from equation (3.1.5) which always holds,

σ = −ε ∂ψ(z)
∂z

∣∣∣∣∣
z=0+

= εκψ0 , (3.1.15)

Recalling the concept of capacitance of equation 2.3.1 the capacitance of the EDL is
demonstrated to be

C = ∂σ

∂ψ0
= ε

λD
(3.1.16)

Advanced EDLs Models

As stated above, the Poisson-Boltzmann solution, and in particular the linearised one,
it is valid only for small potentials and low salt concentration. The structure and the
properties of the EDL are more complicated and some models are summarized below, so
that a clearer picture of the system is depicted.

Remaining in the Gouy-Chapman approximation a more complete calculation of the
capacitance of the EDL reveals that the former it is not independent on the potential
applied. In particular, it is possible to demonstrate the capacitance is proportional to
coshψ0. For low potentials, this term is approximable to 1, but when the potential grows
it is no more valid. This model’s limits are consistent, it is in fact easy to see that for a
high value of ψ0 the capacitance grows indefinitely. This comes from the pointlike ion
approach that permits an infinite number of ions to be accumulated at the surface. In the
real system, the ion’s volume or the volume of the ion and its solvation shell (the polar
solvent it is attracted by the charge) prevents the ions to reach certain densities.

An important improvement can be found in Stern’s theory for the EDL. He united the
primitive Helmholtz concept of a compact layer of counterions that fill the charged surface,
with the diffuse layer found above. This approximation is valid when the potential is high
enough to attract almost an entire layer of ions on the surface, it has its own capacitance
dependent on the thickness of the layer itself (so the radius of the ions plus solvation
shell). The rest of the electrolyte behaves as depicted in the PB theory with a maximum
potential that is reduced by the Helmholz layer. The final capacitance will be modelled
as two capacitors in series.

In the case of a high concentration of ions the pointlike approximation fails completely
in the capacitance calculations. To overcome this barrier different methods are used. The
simpler ones maintain the mean-field approach adding simply a repulsive hard-sphere
term. These methods are called Modified Poisson-Boltzmann methods [54]. The most
precise one is the Carnahan-Starling model which considers a steric force of

F CS = −kBT
8− 2χ

(1− χ)4∇χ (3.1.17)

where χ is the volume fraction of the ions. This model reproduce the experimental results
of the capacitance in the range of χ ∼ 0.5 and φ ∼ 0− 200mV .
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The most precise and modern approaches overcome the mean-field theories and use
the classical density functional theory to calculate the density profile of the ions in prox-
imity of a charged surface. This approach is based on the iterative minimization of the
grand-canonical potential and it permits to find the correlations between the positions of
the ions and to apply a more precise hard-sphere potential. The results are very precise
and usually reproduce the molecular simulations with far less numerical operations. it is
so used to model ionic liquids, which high concentrations require advanced methods [52].

The summary of the models that explain the behaviour of the EDLs has just an
informational purpose, in this thesis, the potentials and the concentrations are sufficiently
low to permits the PB solution to hold.

3.2 Irreversible Thermodynamics
The phenomena that are present in this thesis are out of thermal equilibrium. This implies
that the equilibrium thermodynamics cannot describe the system in analysis, it is so
necessary to complete the theoretical framework with some basic concepts on irreversible
thermodynamics.

Starting from the first principle of thermodynamics for a mono component system of
N particles in a volume V , pressure p, temperature T , chemical potential µ and internal
energy U

dU = TdS − pdV + µdN , (3.2.1)
isolating the entropy S,

dS = dU

T
+ pdV

T
− µdN

T
, (3.2.2)

applying then the concept of local equilibrium, so analysing what happened in the small
volume dV

ds = 1
T
du− µ

T
dn , (3.2.3)

where s is the entropy per unit volume and n is the number of particle per unit volume. ds
can be seen as sum of a generalized force Fk = ds

dxk
( ds
du

= 1
T

; ds
dn

= − µ
T
) times an extensive

parameters dxk:

ds =
∑
k

Fkdxk (3.2.4)

Defining now a flux of entropy, J s, the previous formula lead us to

J s =
∑
k

FkJk (3.2.5)

In which Jk is the current density of the extensive parameter xk. In the same way an
entropy production can be defined as σs = ds

dt
obtaining

σs = ∂s

∂t
+∇ · J s (3.2.6)
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It can be notice how the irreversible phenomena that take place in the volume dV increase
the entropy of the system. If the extensive parameter of interest are conserved, for the
continuity equation

0 = ∂xk
∂t

+∇ · Jk (3.2.7)

Using the previous definitions and equations it is easy to see how σs can be written as

σs =
∑
k

∇Fk · Jk (3.2.8)

The ∇Fk are called thermodynamic affinities, written usually as χk, and they can be
calculated, as done before, from the entropy production of the system. For a purely
resistive system, by definition, each local flux depends on all the local affinities and upon
the local intensive parameter Jk = Jk(χ1, χ2, . . . , χj, . . . ;F1, F2, . . . , Fj, . . .).

In particular in linear or linearised systems

Jk =
∑
j

Ljkχj , (3.2.9)

when Ljk is known as kinetic coefficient and it is a function of the local intensive parameter.
A matrix that connects the fluxes Jk and affinities χj is so created with the kinetic
coefficients Ljk as elements.

For the Osanger theorem it is possible to state that

Ljk(Be) = Lkj(−Be) , (3.2.10)

when Be is the external magnetic field. For our purposes the external magnetic field is
always 0 so the matrix of the kinetic coefficients is symmetrical.

Thermoelectric Effects

Recalling equation (3.2.8), for the case considered in equation (3.2.3), it becomes

σs = ∇ 1
T
· Ju −∇

µ

T
· Jn (3.2.11)

So the affinities are ∇ 1
T
and ∇ µ

T
. Assuming a single component flux in direction x the

linear laws become
− Jn = L

′

nn∇
µ

T
+ L

′

nu∇
1
T

(3.2.12)

Ju = L
′

un∇
µ

T
+ L

′

uu∇
1
T

(3.2.13)

In analogy with the fundamental relation dQ = TdS we can define

JQ = TJ s , (3.2.14)

and so by equation (3.2.5),
Ju = JQ + µJn (3.2.15)
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With the current definition of the internal energy flux the entropy production of eq.
(3.2.11) can be recalculated so that new affinities are found , it is so possible to rewrite
the equations (3.2.12) and (3.2.13) as

− Jn = Lnn
1
T
∇µ+ Lnq∇

1
T

(3.2.16)

JQ = Lqn
1
T
∇µ+ Lqq∇

1
T

(3.2.17)

Where Lnq = Lqn for the Onsager relations.
When an electric field, E = −∇ψ is present and acts on the particles of valency z, the

system’s energy depends also on the energy generated by it in the volume dV , so that

du = Tds+ µ0dn+ zeφdn (3.2.18)

The electrochemical potential is now defined as

µ ≡ µ0 + zeφ (3.2.19)

The electrochemical potential is so composed by a ideal gas term µ0 and a electrostatic
term zeφ, remembering that the ideal gas term is known to be

µ0(r, t) = kBT lnn(r, t) (3.2.20)

In order to determine the values of the kinetic coefficients, it must be stated that the flux
equations have to be equal to the phenomenological equations derived from the isolated
cases. Following this route it is simple to state that the heat flux must follow the Fourier’s
law JQ = −k∇T in absence of chemical potential differences, so

Lqq = kT 2 . (3.2.21)

In absence of a temperature gradient and electric fields the particle flux follow the Fick’s
law of diffusion Jn = −D∇n so that, using equation (3.2.20), it is trivial to find

Lnn = D

kB
n (3.2.22)

The direct parts of the matrix are so defined in terms phenomenological equations and
experimental parameters.

It can be notice that, in the case of an isothermal system, the particle flux results now

Jn = −D
(
∇n+ ze

kBT
n∇φ

)
(3.2.23)

This is the Nernst-Planck equation for static electromagnetic conditions. It is important
to state this because the Nernst-Planck equation, coupled with the Poisson equation,
regulates the dilute electrolytes behaviour, forming the famous set of Poisson-Nernst-Plank
equations (PNP).

35



3. Theoretical Framework

For the sake of clearness, the complete formulation of this problem can also involve
external potentials and convective contribution, modelled usually with an extra term.
The general potential U adds a generic term J ext

n = −(D/kBT )n∇U , the convective
contribution is instead more complicated and can be summarised by J conv

n = nu, when u
is the fluid velocity and can be calculated with the Navier-Stokes equations. The complete
set of equations for mixtures of different species i is so

∂ni(r, t)
∂t

+∇ · Jni(r, t) = 0 , (3.2.24)

Jni = −Di(∇ni + zie

kBT
ni∇φ+ 1

kBT
ni∇Ui) + niu , (3.2.25)

ε∇2φ = −Qext − e
∑
i

zini , (3.2.26)

m
∂u

∂t
+m(u · ∇)u = −∇p+ η∇2u + f , (3.2.27)

∇ · u = 0 , (3.2.28)
where f is an additional body force that may act on fluid elements, m is the mass density
of the fluid and η is the viscosity.

The set of equations just mentioned works for constant temperature systems. To
understand the physics of an electrolyte in the presence of a temperature gradient it is so
necessary to find a phenomenological description of the last kinetic coefficients remained
Lqn and Lnq.

A two species mixtures is taken into account with a solute of density n1 and a solvent
of density n2, at constant pressure, no convective motion and no viscous dissipation, the
entropy production is rewritten as follow

σs = ∇ 1
T
· Ju −∇

µ1

T
· Jn1 −∇

µ2

T
· Jn2 (3.2.29)

From the Gibbs-Duhem relation,

n1∇µ1 + n2∇µ2 = 0 , (3.2.30)

and for the assumption of no convective motion

M1Jn1 +M2Jn2 = 0 , (3.2.31)

where M1 and M2 are molecular weights respectively of the solute and the solvent, the
entropy production can be rewrote as function of the solute flux

σs = ∇ 1
T
· Ju −

(
1 + n1M1

n2M2

)
∇µ1

T
· Jn1 (3.2.32)

In a dilute system the solvent is the dominant specie present so n1 << n2. Neglecting
also the thermal expansions of the solvent leads to the possibility to approximate the
thermodynamic affinity of the system again as

χ
′

n1 = ∇µ1

T
, (3.2.33)

36



3. Theoretical Framework

if the entropy production rate σs is again rewritten in terms of the heat flux JQ it returns
to be

χn1 = 1
T
∇µ1 , (3.2.34)

In this way the bi-component system studied is reduced to a mono-component one, giving
also the possibility to drop the subscript "1". The flux of the solute is so composed :

Jn = −Lnq
∇T
T 2 −D

(
∇n+ ze

kBT
n∇φ

)
(3.2.35)

In the same spirit of the Fick’s law, which helped define Lnn in equation (3.2.22), another
phenomenological coefficient can be linked to the non diagonal term of the Lnq:

DT = Lnq
nT 2 (3.2.36)

DT is called thermophoretic mobility.
Thus, the solute flow can finally be written as:

Jn = −D
(
∇n+ ze

kBT
n∇φ+ DT

D
n∇T

)
(3.2.37)

The ratio between the thermophoretic mobility DT and the diffusivity of the solute D is
defined as the Soret coefficinet:

ST = DT

D
(3.2.38)

The Soret coefficient it is a very important quantity in the context of the study of the
Seebeck effect in the electrolytes. It can be experimentally measured by applying a
temperature difference and analysing the particle densities once the system reached the
steady-state. Its unit of measure is 1/K.

The Soret effect acts on a various range of particles, from gasses to colloids. Its sign is
not always positive, it depends on the particle and the solvent considered. The reasons
are not completely clear and a physical model that can calculate it is still missing. For
the special case of dilute ions in a solvent, a primitive model was however developed by
Agar [55].

It deserves a note the possibility to think of the Soret effect as an external potential
that acts on the particles, so that eq.(3.2.25) still holds with a potential U which gradient
is

∇U = kBTST∇T (3.2.39)

Before going in-depth with Agar’s model for the Soret coefficient, other general consid-
erations about cross effects in the framework of irreversible thermodynamics should be
mentioned.

Taking a more general approach, the equality of the off-diagonal kinetic coefficients
Lqn = Lnq make evident how, for example in (3.2.17), the presence of a chemical potential
gradient ∇µ between two part of a system, besides creating a particle flux, creates also
a heat flux following the kinetic coefficient Lqn which can now be written in terms of
the thermophoretic mobility DT . When the chemical potential difference is only due to
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the concentration gradient, so only when the ideal part µ0 of the chemical potential is
considered, this effect is called Dufour effect.

When instead an electric field is present and the particles are charged, as in the case
of eq.(3.2.23), the heat flux generated by the chemical potential gradient is also due to
the potential difference. So the heat flow is directly connected to the electric field, this is
the Peltier effect.

Finally, a charged particle flux can be seen as an electric current where J e = −zeJn.
It is so clear how from this perspective the kinetic coefficient Lnq multiplied by ze can
link an electric current to a temperature difference. This effect is called Seebeck effect.

If to find the phenomenological connection between the heat and the particle flux
was sufficient to take the case of no electric field, the correlation between the heat flux
and the electric current cannot be found in the same way because the diffusion term is
always present, so that the phenomenological coefficients found cannot be put together
to return a precise function for the Seebeck coefficient (and so the Peltier coefficient). It
will be necessary to solve the overall problem to find the correct solution, in the case of
electrolyte, the PNP set of equations will be solved.

Agar’s Theory of Soret Coefficient

In order to have a useful quantity to model the Soret effect it is frequent in literature to
use the reduced Soret coefficient α, defined as

α = TDT

2D (3.2.40)

It is usually defined for the advantage to have a dimensionless coefficient and because it
takes values of the order of the unity for common ions in an electrolyte. For example the
reduced Soret coefficient of KCl in water are αK = 0.5 and αCl = 0.1.

The reduced Soret coefficient, from now on called only Soret coefficient because it is
the only one used in this work, is in turn defined from the Eastman’s heat of transport
Q∗, as

α = Q∗

2kBT
(3.2.41)

This definition comes from the ideas of Eastman [56]. He understood that in a non-
isothermal solution the transport of matter and heat are connected. When a solute particle
is transferred between regions at different temperatures a quantity of heat Q∗ must be
absorbed by the particle from the heat reservoir and transported ahead. This concept is a
simple statement that comes from the Onsager relations of the cross phenomenological
coefficients. Q∗ must be identical to the Dufour heat because, if the system must remain
isothermal during a particle motion, the energy transported by the particles has to be
compensated by equivalent thermal energy. Quoting Agar himself: "Q∗ may be regarded
as the amount of heat which must be supplied behind or evolved ahead of the diffusing
particle in order to keep the temperature constant". Agar tried so to calculate this value
from hydrodynamic consideration, starting from the thermodynamic formula founded by
Eastman:

Q∗ = −
(
∂µ

∂m

)
P,T

(
dm

d lnT

)
s.s.

(3.2.42)
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where m is the molality of the solute specie and s.s. denote the steady state. The
hydrodynamic theory relies on the idea of analysing a spherical ion motion, which volume
includes the solvation shell, in an solvent along the axis x across the plane BB as sketched
in figure 3.2.

Figure 3.2: Sketch of the ion position along the x axis, considering the plane BB and the
angle θ.

The ion moves a constant velocity V under a force F . The solvent relative velocity is
U so that in stationary state

dS

dt
= ∂S

∂t
+ U · ∇S = U · ∇S (3.2.43)

The local heat rate evolution q is so

− T dS
dt

= q = −TUr
∂S

∂r
(3.2.44)

where ∂S/∂r is the entropy density gradient induced by the ionic motions and Ur is the
radial velocity of the solvent with respect to the ion and can be expressed as

Ur = U∞f(r) cos θ (3.2.45)

where θ is the angle between V and r, U∞ = −V is the velocity at infinite distance and
f(r) determines the solvent velocity field induced by the ionic motion. To determine the
entropy gradient the Born theory for the ion-solvent interaction [57] was used, so that

S(r)− S(∞) = e2z2

8πr4ε2
∂ε

∂T
(3.2.46)

This equation allowed Agar to integrate equation (3.2.44) for θ that goes from θ = 0 to
θ = π, t that goes from t = −r/V to t = r/V and for r that goes from the ion radius Ri

to infinite. These integrations lead to

Q∗ = − T

bRi

e2z2

ε2
∂ε

∂T
(3.2.47)
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where b is 3 for stick hydrodynamic boundary condition and 4 for slip boundary condition.

This demonstration shows the limits of this approach. The Born model is a simpli-
fication of the physics of the system, it is only valid for an isolated ion and it does not
consider the collective interactions in a finite concentration solution. This model is just a
way to understand what is the most important factor for the heat of transport, so the
dielectric constant, without the aim of calculating the values precisely. It also gives the
right order of magnitude for simple ions in aqueous solvent, as it’s possible to see in the
table below, but it is completely out of scale for more complicated electrolytes such as the
polymeric electrolyte used in the experiments cited.

Ion Q∗ theoretical Q∗ experimental Reference

K+ 2.131 · 10−21 4.11 · 10−21 [58]

Na+ 2.893 · 10−21 4.98 · 10−21 [34]

Cl− 1.566 · 10−21 0.823 · 10−21 [58]
To overcome this limitation some computational approaches were developed, for example,
the work of Di Lecce [59] permitted to calculate the Soret coefficient of a 0.5M solution
of LiCl, varying the temperature and the concentration.

The explanation for the value of the Eastman heat of transport, ergo for the Soret
coefficient, is not essential to the aim of this work, but it shows the amount of work
that is still necessary to understand deeply the behaviour of electrolyte subjected to a
temperature gradient. It is also explained why the simulations, made with the theoretical
framework now available in literature, cannot match the experimental values, but they can
only understand the behaviour of the system. It seems however promising the possibility
to overcome these theoretical limits to predict the values of the coefficients and so to
optimize solvents and solutes.
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Henceforward it will be discussed the Thesis Work done. The following model was devel-
oped aiming to understand the behaviour of a supercapacitor subjected to a temperature
gradient .

The experiment cited in Chapter 2 is taken as reference and an equivalent water-based
system was modelled and simulated focusing on the internal behaviour of the system. This
overcomes the limits of the experimental procedure that can only base the information on
the parameters obtained measuring the system from an external point of view.

The experiment, as explained, was divided into four phases. The same approach was
taken in this work, in which the phases behaviours are first analytically calculated, then
simulated, and finally modelled with an equivalent circuit. The main difference between
the experiment and the model here explained, besides the electrolyte, is the choice not
to pose any resistance in the external circuit. If the experiment needed it to measure
a voltage difference between the electrode once the circuit was closed, the simulation
permits to "observe" the system in short circuit even without the load, this also permits
to understand the pure internal dynamics that can then be coupled with an external load
when necessary.

In order to fully understand what happens in a thermally rechargeable supercapacitor,
it is first necessary to start solving the PNP equations in a simpler case: a planar
electrochemical capacitor subjected to a temperature gradient.

The solution adopted was developed originally by Stout and Khair [58] that linearised
the PNP equations for a dilute electrolyte in a small temperature gradient in order to
calculate the dynamics of the potential and the charge density. That solution can be
perfectly applied to a planar electrochemical capacitor during phase i in open circuit.
Using that method, it is then possible to analytically solve the distribution of charges and
potentials in the other phases of the recharge cycle.

4.1 Analytical Results
Considering an electrolytic cell (figure 4.1) with the two parallel flat electrodes positioned
at x = ±L, with L much larger than their separation, the edge effects can be neglected and
the system can be solved as one-dimensional. The convection effect is ignored due to the
L being sufficiently small to avoid these phenomena. A system composed of monovalent
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4. Planar Electrochemical Capacitor Under Temperature Gradient

Figure 4.1: Sketch of a planar electrochemical capacitor: visualization of the intuitive
difference between heated condition (a) and initial state (b).

ions, which data are based on the values of KCl in an aqueous solute. The solute has a
dielectric permittivity ε = ε0 · εr, a density η and a specific thermal capacitance cp. The
cations and the anions have a Soret coefficient α+ and α− respectively and a diffusion
coefficient D+ = D− = D. The electrostatic potential φ(x, t), the ionic number densities
n±(x, t), the ionic particle fluxes j± and the local temperature T (x, t) are studied with
the following equations:

∂n±(x, t)
∂t

= −∂j±(x, t)
∂x

(4.1.1)

j±(x, t) = −D
(
∂n±
∂x
± e

kBT
n±

∂φ

∂x
+ 2α±n±

T

∂T

∂x

)
(4.1.2)

− ∂

∂x

(
ε
∂φ(x, t)
∂x

)
= e(n+ − n−) (4.1.3)

∂

∂t
(ηcpT (x, t)) = ∂

∂x

(
k
∂T (x, t)
∂x

)
− e(j+ − j−)∂φ(x, t)

∂x
(4.1.4)

The continuity equation (4.1.1), the Nernst-Plank equation (4.1.2) and the Poisson
equation (4.1.3) are used as stated, instead the heat equation (4.1.4) contains a heat source
term that is discussed in in the works of Janssen and Co [60] [61] . This contribution will
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4. Planar Electrochemical Capacitor Under Temperature Gradient

be neglected in the present work because it can be demonstrated to be a second-order term
which only complicates calculus without adding more precision. Moreover, these equations
are valid in the linear dilute regime used to create them, as exposed in the introduction.
From that type of approximation, another consideration must be made: the Debye length
is much smaller than the length of the system (κL >> 1) and the electric double layers
are fully developed (thin diffuse layer condition). This holds for the geometries used in
this work and has some implication on the results that will be exposed later.

Figure 4.2: Sketch of planar electrodes electrochemical capacitor. The green line represent
the initial ion concentration n0, the red line represent the temperature gradient established
inside the cell after the beginning of the cycle. The dimension of the cell is 2L with the
origin x = 0 is posed in the center.

The initial conditions consider impermeable and inert boundaries, no surface charge or
potential applied, a charge neutral electrolyte with equal ions densities n0 and constant
initial ambient temperature T0:

T (x, t < 0) = T0

n±(x, t < 0) = n0

j±(x = ±L, t) = 0
As done by Putnam and Cahill [62], as first approximation ,for a binary electrolyte in

small temperature gradient, it is possible to consider that

∂n+

∂x

1
n+
' ∂n−

∂x

1
n−

the physical reason is that the Soret effect acts on both the ion species, creating similar
density profiles and the need for local charge neutrality maintains the ions densities
coupled.

By subtracting the single ion particle flux of the positive ions from the one of the
negative ions, it is possible to relate a potential difference between tow points of the
electrolyte ∆V and the temperature difference between the same points ∆T :

43



4. Planar Electrochemical Capacitor Under Temperature Gradient

∆V = −(α+ − α−)kB
e

∆T (4.1.5)

The Seebeck coefficient (Se) for a binary mixture can so be estimated to be

Se = (α+ − α−)
e

kB (4.1.6)

From now on the Seebeck coefficient will be defined in this way, even if the overall electric
potential generated by the system may vary from the former approximated result.

To be more precise, it is necessary to solve the complete set of equations, considering
the time and space dependence of the temperature and densities distributions. Being the
temperature an important part of the physics it is necessary to do some clarifications.
The temperature on the right side (in +L) will be modelled as brought instantly from T0
to T0 + ∆T , not considering the thermal flux and the time necessary to heat the electrode
itself.

To reach an analytical time-dependent solution of the previous equation another strong
assumption is made: the time constant for the build-up of the temperature gradient inside
the electrolyte is much smaller than the diffusion time. This approximation is usually
valid in an electrolyte due to the heat diffusivity being much greater than the ion diffusion
coefficient: k/ηcp >> D. T (x, t) becomes now a time-independent linear equation:

T (x, t) = T0 + ∆T
2L (x+ L) (4.1.7)

that it is instantly applied to the system when the thermodynamic cycle starts. In order to
have a clearer picture, the time constants of the heat equation and of the PNP equations
will be compared in the next sections. It is so important to cite Jannsen’s temperature
timescale constant [63]:

τT = 4L2ηcp
π2k

, (4.1.8)

to have a reference time to compare.
Successively, assuming a weak temperature gradient, in particular assuming ∆T/T0 <<

1, it is possible to linearise the equations and consider ε, k, η ,cp, α± and D as temperate
independent, and consequently space and time independent. For convenience the potential
can be restated in its dimensionless form ψ = eφ/kBT0.

The linearisation permits to consider the ion densities as composed by the initial value
plus a perturbation term n±(x, t) = n0 + δn±(x, t), so that, it is possible to neglect second
order terms as δn± ·∆T/(T02L) and δn± · ∂ψ/∂x.

The flux equation can now be written a linear equation:

j± = −D
(
∂δn±
∂x
± n0

∂ψ

∂x
+ α±n0

T0

∆T
L

)
(4.1.9)

Rephrasing the problem with dimensionless variables:

ρ = n+ − n−
2n0

= δn+ − δn−
2n0

, (4.1.10)
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cabs = n+ + n−
2n0

= δn+ + δn− + 2n0

2n0
= δn+ + δn−

2n0
+ 1 , (4.1.11)

where ρ is the dimensionless charge density and cabs is the dimensionless absolute neutral
density. It is also convenient to call c the dimensionless difference of the neutral density
with respect to the bulk initial state

c = δn+ + δn−
2n0

= cabs − 1 (4.1.12)

A new set of equations is so obtained:

∂c

∂t
= D

∂2c

∂x2 (4.1.13)

∂ρ

∂t
= D

∂2ρ

∂x2 −Dκ
2ρ (4.1.14)

∂2ψ

∂x2 = −κ2ρ (4.1.15)

defining κ = 1/λD, where λD =
√

(εkBT )/(2e2n0) is the Debye Length. The impermeable
electrode conditions are consequently rephrased as

∂ρ

∂x

∣∣∣∣∣
x=±L

= − ∂ψ

∂x

∣∣∣∣∣
x=±L

− αd
L

∆T
T0

(4.1.16)

∂c

∂x

∣∣∣∣∣
x=±L

= −αm
L

∆T
T0

(4.1.17)

where αm = (α+ + α−)/2 and αd = (α+ − α−)/2.
The Soret coefficients are now present only in the boundary conditions, and the

derivative of the charge density ρ is different from 0 at the electrodes, even in case the
surface is 0 (ergo ∂ψ/∂x = 0). This implies that the system will have a charge density at
the boundaries even with the absence of a surface charge in the electrode material.

In order to calculate the variables during the phases of the recharge cycle, it is now
sufficient to select the right boundary conditions.

Phase i

As exposed in the work of Stout and Khair in case of no surface charge, ergo open circuit
condition the B.C.s become:

∂c

∂x

∣∣∣∣∣
x=±L

= −αm
L

∆T
T0

(4.1.18)

∂ρ

∂x

∣∣∣∣∣
x=±L

= −αd
L

∆T
T0

(4.1.19)

T (x, t ≥ 0) = T0 + ∆T
2L (x+ L) (4.1.20)
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ψ(L) = 0 (4.1.21)

when the right electrode in L is grounded and the temperature is imposed instantly.

The solutions for phase i are reported considering the space dependent behaviour after
the transient and the time dependent behaviour in the left electrode in -L:

ci(x) = −αm
∆T
T0

x

L
(4.1.22)

ci(−L, t) = αm
∆T
T0

(1− e−t/τc) (4.1.23)

ρi(x) = −αd∆T
κLT0

sinh κx
cosh κL (4.1.24)

ρi(−L, t) = αd∆T tanh(κL)
T0κL

(1− et/τρ) (4.1.25)

ψi(x) = −αd∆T
LT0

(
sinh κL
κ cosh κL −

sinh κx
κ cosh κL − L+ x

)
(4.1.26)

ψi(−L, t) = −2αd∆T
T0

(
1− tanh κL

κL

)
(1− e−t/τψ) (4.1.27)

The neutral density, which solution is a simple linear plot proportional to αm∆T/T0, is
poorly affected by the temperature gradient applied, being ∆T << T0. This permits the
validation of the approximation made to find equation (4.1.5).

The charge density follows a "sinh profile" with characteristic length 1/κ = λD, the
value in the left electrode (in −L) is proportional to αd∆T/T0 divided by 1/κL, which, for
hypothesis, is much bigger than 1. This means that the charge density at the boundary is
different from 0, but it is very low due to the physical repulsion between same-sign ions
not balanced by a surface charge.

Rewriting the potential to calculate the absolute potential difference between the
electrodes as ∆V = − (α+−α−)kB

e
∆T

(
1− tanh(κL)

κL

)
, it is possible to see how the See-

beck coefficient defined in equation (4.1.5) is confirmed, due to the possibility to ap-
proximate tanh (κL)/κL as 0. We can now be sure to define the Seebeck coefficient
Se = (α+ − α−)kB/e as a constant of the system.

The characteristic times were also found in literature:

τc = L2

3D (4.1.28)

τρ = 1
2Dκ2

(
1− 2κL

sinh 2κL

)
(4.1.29)
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τψ = 1
2Dκ2

3 tanh κL+ κL(tanh2 κL− 3)
tanh κL− κL (4.1.30)

The time constants make clear how the dynamics of the neutral charge is a pure diffusion
dynamics, instead the potential and charge density dynamics are less trivial. They depend
on the square of the Debye length, in particular considering that κL >> 1, τρ ∼ λ2

D/2D
and τψ ∼ λ2

D/D.
This condition is usually satisfied in a microscopical electrochemical capacitor in which

the Debye length is of the order of the nanometres and the thickness of the device is of
micrometers or millimetres. These time constants imply that the times required to obtain
a potential difference from the Seebeck effect in an electrolyte is much shorter than the
diffusion time leading to an optimal condition for the use of this technology in various
field, among which the production of electrical energy.

Must be also stated that the time constants were found considering a late-time ap-
proximation and neglecting the temperature gradient dynamics, in particular, the Laplace
transform of the solution was expanded for s ∼ 0. This leads to a good approximation for
the time required to reach the steady-state once the temperature profile is stable, leaving
some uncertainty in the initial phase of the transient.

Regarding this issue the work of Jannsen and Bier [63] analysed the short term
dynamics more precisely and the temperature timescales, but this level of precision goes
beyond the scope of this work, where it is sufficient to consider the order magnitude of
the time constants found.

Pase ii

Considering now a new configuration in which the electrodes are connected in short
circuit and the temperature gradient is still active, it is necessary to apply new boundary
conditions. The surface charge is now present so the equation (4.1.16) hold, but the
potential is 0 in both sides: ψ(±L, t) = 0. This leads to new solutions, in which the
neutral charge is unaffected, not being dependent on the electrical configuration of the
system, but the potential and the charge density are modified. Starting analysing the
steady state, the solutions are:

ci(x) = cii(x) = −αm
∆T
T0

x

L
(4.1.31)

ρii(x) = −αd∆T
T0

sinh κx
sinh κL (4.1.32)

ψii(x) = αd∆T
T0

(
sinh κx
sinh κL −

x

L

)
(4.1.33)

The solution for the neutral density difference is unchanged. The charge density and the
potential are instead modified from the new boundary conditions. The charge density is
still proportional to αd∆T/T0, but it is now present at the denominator only a sinh κL
term. This means that at −L the charge density will be

ρii(−L) = αd∆T
T0

(4.1.34)
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which is κL times greater than the one of the phase i solution. In the case of thin double
layer, this difference is of some order of magnitude. The physical interpretation of this
difference is that the presence of a surface charge permits the ions to approach closer the
electrode, being attracted by the opposite charges. The potential function is a combination
of a sinh term and a linear trend which are physically related to the electrostatic field
and the thermal effects respectively.

It is now possible to find the surface charge that is collected, and so stored, in the
supercapacitor:

σii(±L) = ±εSe∆T2

(
κ cosh κL
sinh κL −

1
L

)
(4.1.35)

Considering the potential difference close to the electrode ∆Vlocal = Se∆T/2, already
thinking about the EDL created as a capacitor in a two capacitor system powered by
Se∆V , the specific capacitance C = ∂σs/∂∆Vloacal, in thin diffusion layer condition, is

C = ε
( 1
λD
− 1
L

)
(4.1.36)

Neglecting the 1/L term the capacitance coincides with the specific capacitance of a
double layer in a normal electrolyte system with an imposed potential. This demonstrates
the experimental results, that observe how the behaviour of a thermally recharged electro-
chemical capacitor is the same as the one of a capacitor charged externally imposing the
same potential ∆V = Se∆T .

It is interesting to notice how both the charge density and the surface charge are not
dependent on the temperature gradient ∆T/2L but only on the absolute temperature
difference between the extremes. This means that it is not important the length of
the system in order to obtain the maximum charge stored. Unfortunately, the Laplace
transform of equations (4.1.13)-(4.1.15) can be solved, but not anti-transformed, this
implies that the dynamic behaviour of the phase ii must be found in other ways.

Phase iii

Once the capacitor is charged, it is sufficient to open the circuit so that, when the
temperature gradient is removed, the surface charge is maintained, and the capacitor is
ready to be used to power an external device. The ion densities distribution respond
now as a simple Gouy-Chapman solution for a double layer with an imposed surface
charge equal to the one found in the phase ii solution. The temperature profile is now flat
T (x) = T0 and the neutral density has of course a flat solution in absence of a temperature
gradient.

Regarding the charge density and the potential, the cited boundary conditions lead to
the following solutions:

ρiii(x) = −αd∆T
T0

( 1
sinh κL −

1
κL cosh κL

)
sinh κx (4.1.37)

ψiii(x) = αd∆T
T0

(
κL− tanh κL
κL sinh κL

)
(sinh κx− sinh κL) (4.1.38)
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Can be also noticed how ψi(−L) of the charged capacitor is equal in modulus and
opposite in sign of the ψiii(−L) of phase i. This trivial result further confirms how the
mechanism of charging is comparable to an external potential of value ∆V , despite the
very different potential profile for the phase i potential.

Considering the dynamics, we can affirm that the double layer is already formed so it
does not affect the time behaviour, instead, the charge density and the neutral density
should change following the time scale found in the phase i solution.

4.2 Numerical Results
In order to confirm the analytical results, it is necessary to solve the equations numerically.
In particular, Comsol Multiphysics® was used. It is a finite element method (FEM)
dynamic multiphysics simulation program. The FEM guarantees optimal results once the
mesh and the time stepping is correctly set: the mesh was chosen to be of ∼ 3000 domains
taking care of positioning a higher number of elements near the boundaries so that the
EDL can be better calculated. The dynamic solution was obtained using a backward
differentiation formula method of order 5. Some issued occurred due to computational
and program limits: it was not possible to store and plot a high number of time steps, due
to the limit of the computer (low RAM), and the program is not optimized for different
steps simulations in which the boundary conditions charges multiple times. These limits
were overcome by balancing mesh and time-stepping, and simulating one step at a time.

The solution was carried out for a specific set of parameter in order to obtain results
which are comparable with the approximation made in the analytic formulation and
permits a clear view of the solution. In particular, the length of the cell was chosen in
a way that the EDL can be seen but there is no risk of overlapping: κL = 100. The
other parameters were chosen to represent an KCl solution of 1 mol/m3: T0 = 298.15K,
∆T = 0.3K, z+ = −z− = 1 (from ref. [58]). Particular attention was given to the choice
of the temperature-dependent properties of the solution: the diffusion coefficient, the
Soret coefficient, the thermal conductivity and the dielectric constant are dependent on
both temperature and, especially for the dielectric constant, ion concentration. Some
simulations were made using this dependence but the results were identical (within the
numerical error margin) to the ones made with constant properties. The only sensible
difference was in the case of concentration-dependent dielectric constant, but only in the
case of high concentration (1000mol/m3) and high temperature differences (80K).Instead,
for the previous data the concentration shift, due to the temperature gradient, was not
sufficient to obtain a change in the results. The parameter were so posed constant of values:
α+ = 0.5, α− = 0.1 [64] , D+ = D− = 10−9m2/s [65] , εr = 78.5 , k = 0.6 W/(m ·K),
ηH2O = 1000 kg/m3, cp = 4186 J/(Kg ·K). Where εr is the relative permittivity, k the
thermal conductivity, ηH2O the density of the electrolyte and cp the specific heat of water.
With the previous values the Debye length results to be λD = 9.62nm.

49



4. Planar Electrochemical Capacitor Under Temperature Gradient

Figure 4.3: Numerical solution (solid lines) and analytical solution (symbols) of the
dimensionless neutral density difference cT0/2αm∆T vs the dimensionless length x/L, the
single decoupled positive and negative ions density profiles are also plotted.

The solution for the neutral density, as represented in figure 4.3, is a trivial linear profile.
The slope is directly proportional to the temperature difference and the Soret coefficients.
Physically this variable can be easily described as a neutral set of particles pushed by the
Soret force against the impenetrable electrode. The absence of electromagnetic effects
on this variable guarantees the same solution for phase i and ii, in phase iii c returns to
the flat profile initial condition (c(x) = 0). It is also possible to analyse the behaviour of
the single positive and negative species noticing how they follow a linear trend up to the
electrode in which, separating due to the electric forces, give origin to the charge density
profile.

More interesting is the behaviour of the charge density in figure 4.4. During phase i
the charge density near the electrode is different from 0, even in case of no surface charge
in the electrode, as visible in the zoom of the phase i solution in figure 4.4. The reason is
that the Soret coefficient for the positive ion is greater than the one of the negative ones
permitting a charge unbalance to be sustained in steady-state. The ρ function goes to 0 in
some Debye length as confirming that the characteristic length in which the charge density
can be different from 0 is the Debye length even in the case of a temperature gradient.
The absolute value of this charge density is much lower than its value in phases ii and iii
because the absence of a counter charge on the surface does not allow the positive ions to
get closer to the electrode due to the electrostatic repulsion.
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Figure 4.4: Numerical solution (solid lines) and analytical solution (symbols) of the
dimensionless surface charge ρT0/2αd∆T vs the dimensionless length x/L in the three
phases of the cycle: phase i blue, phase ii green, phase iii red. Differences between phase i,
phase ii and phase iii are represented in the zoom schemes.
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The phase ii solution for the charge density is instead similar to a more classical
solution for an EDL of an electrolyte in contact with a charged electrode, because in this
phase the electrons can flow in the circuit and the electrode can be charged.

Remembering that in phase ii, the temperature gradient is still applied, it is not so
trivial to state that the shape of the ρ function near the electrodes is the same of the
classical Guoy-Chapman one.

This effect is due to the high κL chosen and to the low ∆T present. A lot of interesting
theoretical work could be done indeed on temperature gradients inside the EDL, especially
for high ion concentrations. For the aim of this thesis, it is not necessary to go further
than state the presence of the sinh κL in the denominator of the analytical solution that
shows a difference with respect to the usual cosh κL. This difference is, as previously
stated, negligible for a thin EDL.

As it is possible to see in the zoom of figure 4.4, there is a difference between the phase
ii and phase iii solution. This difference can be analytically calculated to be

ρii(−L)− ρiii(−L) = αd∆T
T0

tanh κL
κL

= ρi(−L) ,

that is exactly the value of the charge density in on the electrode during phase i. This
can be physically explained as a superposition of the electrostatic effect and the Soret
effect that acts on the charge density. This is confirmed thinking that the surface charge
of phase ii and iii is the same and the only difference is due to the temperature gradient
that creates the Soret effect.

Figure 4.5: Numerical solutions (solid lines) and analytical solutions (symbols) of the
dimensionless potential ψT0/2αd∆T vs the dimensionless length x/L, in the three phases
of the cycle: phase i blue, phase ii green, phase iii red.

52



4. Planar Electrochemical Capacitor Under Temperature Gradient

The dimensionless potential ψ plotted in figure 4.5 shows the particular behaviour
that is obtained in the presence of a temperature gradient. To be clearer is necessary to
note that ψT0/2αd∆T = V/Se∆T so that it is obvious to check that Se∆T can be used
as the maximum potential for the system.

The phase i solution is strongly different from a usual potential shape in an electrolyte.
The profile is almost perfectly straight, apart from the zone near the electrodes in which it
must become flat to accommodate the 0 surface charge condition. This particular potential
shape is due to the necessity of the system to equilibrate itself in order to compensate for
the charge unbalance created.

The phase ii potential behaviour is particular too. Near the electrodes, it is an
almost perfect EDL solution, apart from the fact that the EDL appears to be not
completely developed because its peak is not at Se∆T/2. This is due to the presence
of the Seebeck potential that, being proportional to −x/L, deflects the curve before the
complete development of the exponential part.

The phase iii it is instead a usual Gouy-Chapman solution for a double EDL system
with imposed surface charge. The superposition of the effect is clearly visible in the poten-
tial shape too, the phase ii solution is analytically equivalent to ψii(x) = ψi(x) + ψiii(x),
as in the the case of the charge density.

The numerical results confirm perfectly the analytical approximation made and assure
the possibility to treat the system as a sum of Soret-driven and electrostatic driven effects.
The superposition of effects found is fundamental in order to simplify the equations in a
more complex system in which, as we will soon see, the electrodes can be multiples.

4.3 Equivalent Electrical Circuit
A well-established method to analyse an electrode-electrolyte system consists of comparing
the latter to an equivalent electrical circuit (EEC). Regarding a simple electrochemical
capacitor it is sufficient to represent the electrode-EDL interaction on either side, with
a capacitor of specific capacitance C, the value of which depends on the Debye length.
The electrolyte in between becomes a resistance that accounts for the conductivity of the
electrolyte and the distance between the electrodes.

The value of the capacitance per unit area can be simply considered C = ε/λD
as usually done in a dilute electrochemical system, this approximation was previously
demonstrated to be valid in the thermal charging case too, so it will be used in this work.

The value of the resistance can be calculated starting from the Nernst-Plank equations.
The specific electrical current Jel is proportional to the difference between the flux of
positive and negative ions,

Jel = e(j+ − j−) (4.3.1)

Considering now the potential and the temperature functions as linear profiles the deriva-
tives can be approximated as follow: ∂φ/∂x ' ∆φ/d and ∂T/∂x ' ∆T/d where d is the
distance in which the gradient is calculated.

This consideration allows us to write the specific electrical current in terms of the
electrolyte parameters:
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Jel = −2σel
d

(∆φ+ Se∆T ) (4.3.2)

where σel = (De2n0)/(kBT0) is the electrical conductivity of the electrolyte and the overall
resistance per unit area of the electrolyte is confirmed to be

R = d

2σel
(4.3.3)

as in the usual electrolyte system.
The particularity regarding this system is that the potential is not applied by an

external source, but it can be modelled as an internal voltage generator of value Φ0 = Se∆T
positioned in the lower connector, ergo in the electrolyte.

Figure 4.6: Equivalent electrical circuit for a planar electrode capacitor subjected to a
temperature gradient.

Applying the previous formulas to the geometry of this device, Ω, the resistance of
the electrolyte reservoir, is Ω = L/σel. ΩC, the time constant of the system, is equal to
2L/κD.

The electrical circuit can be solved in the various phases of the cycle, giving the
possibility to obtain rapidly the behaviour of the thermally charged capacitor with simple
algebraic equations. ∆V is defined as the potential experimentally measured connecting
the 2 electrodes of the electrochemical capacitor to a voltameter, it is so possible to rapidly
calculate ∆V considering the difference between the upper part of the fictitious capacitors,
ergo the part representing the electrodes. To distinguish the analytical results for the
surface charge from the EEC ones the charge per unit area accumulated in the electrodes
will be referred as Q instead of σ and the absolute value of voltage over the capacitors is
∆Ψ so that Q = C∆Ψ.
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4.3.1 EEC Solutions
The phase i circuit configuration is composed of the switch positioned on "open" and the
voltage generator on. In open circuit no current is flowing so the capacitor will not be
charged. This prevents the EEC to be useful in the study of the phase i dynamics, but it
predicts efficiently the steady-state:

Q = C∆Ψ = 0 −→ ∆Ψ = 0 (4.3.4)

∆V = Φ0 = Se∆T (4.3.5)
The interesting part of this representation is mostly in the phase ii dynamic solution: the
current can now flow because the circuit is closed and the solution can be achieved using
Ohm’s law.

Φ0 − ΩI − 2∆Ψ = 0 (4.3.6)

dQ

dt
= I = C

d∆Ψ
dt

(4.3.7)

∆Ψ̇ = Φ0 − 2∆Ψ
ΩC (4.3.8)

This ordinary differential equation is readily solved,

∆Ψ = Φ0

2 (1− e 2t
ΩC ) (4.3.9)

It is so possible to calculate the charge stored at the end of the transient as Q = CΦ0/2.
For clearness here rewritten in explicit form:

Q = − ε

λD

Se∆T
2 (1− e−

tD
LλD ) (4.3.10)

This equation, in thin double layer condition, coincides with the equation 4.1.35, confirming
the possibility to use the equivalent electrical circuit.

The characteristic time of the system is therefore

τRC = ΩC
2 = LλD

D
(4.3.11)

that, from now on, will be the reference time that will be compared to the others in the
nano-structured electrode cases. After the transient, the voltage measured ∆V will be 0
and its time behaviour will coincide with the one of ∆Ψ.

The phase iii starts when the switch is again open and the internal voltage generator is
removed, corresponding to the temperature gradient removal. In open circuit the charge
accumulated in the capacitors remains stored, it is therefore equivalent to the charge
of the previous phase Q. The potential measured ∆V will be calculated as the sum of
the two potentials drops, resulting in ∆V = −Se∆T , as expected from the simulations.
Unfortunately, the phase iii dynamics too is not grasped by the EEC because there is no
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current flow.

The EEC confirms the possibility to use this kind of simplification for electrochemical
systems subjected to temperature gradients, both from a dynamics (in case of flowing
current) and a steady-state points of view.

4.4 Dynamics
In order to verify the accuracy of the solutions, a complete comparison between the
analytical solutions, numerical simulation and equivalent circuit representation must be
made in the time domain.

Phase i

The phase i dynamics for a planar electrode capacitor was already studied both by Janssen
[63] and Stout [58]. The comparison is here made to have a clearer view, especially in
the comparison between an "instant temperature gradient" approximation, in which the
temperature gradient in the electrolyte is considered built instantaneously, and "dynamic
temperature gradient", in which the right electrode temperature is imposed to be T0 + ∆T
and the electrolyte approaches the thermal final steady-state dynamically.

Figure 4.7: Dimensionless neutral density cT0/2αm∆T at the left electrode surface (−L)
vs the dimensionless time 3Dt/L2, in the two case: "instant temperature gradient" and
"dynamic temperature gradient". The single positive and negative dimensionless ion
densities ((n±(−L)/n0 − 1)T0/2αm∆T )at the left electrode are plotted too.
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Regarding the EEC, phase i cannot be studied with that method due to the absence
of surface charge development, so only a comparison between simulations and analytical
results will be made.

The time behaviour of the neutral density at the left electrode was taken into account
and plotted in figure 4.7. The simulation was carried out considering both the possible
time behaviour of temperature profile. The analytical solution indicated a time constant
of L2/3D, which is confirmed by the simulation, both in the case of instantaneous and
dynamic temperature gradient. This is due to the long time required to reach the
equilibrium for the neutral charge which is much longer than τT (eq 4.1.8). The differences
between the two cases is so negligible, so, from now, on the neutral charge will be
considered respecting the analytical time constant found.

A last comment can be done on the single-ions densities at the electrode which grows
almost identically in phase i, both pushed by the Soret force. Even if the force is different
due to different Soret coefficients, the electrostatic attraction between the two species
imposes a common dynamic, the separation is present only when the two species are in
contact with a surface as the electrode.

Figure 4.8: Dimensionless charge density in the left electrode ρ(−L)T0/2αd∆T vs the
dimensionless time tDκ2. In blue is represented the dynamics in case of instant temperature
gradient, in green in case of dynamic temperature gradient.

The charge density behaviour (fig. 4.8) is instead strongly affected by the temperature
time constant. The dynamics of the instant temperature gradient case respect precisely
the time constant analytically found (1/κ2D). Instead, if the simulation is done simply
imposing the right electrode to be at T0+∆T at t = 0, the need to wait for the temperature
profile to be developed shifts the charge density dynamics toward much higher times.
In particular, calculating the temperature’s time constant with the data inserted in the
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simulation τT = 2.8 · 106L2 and the charge density time constant τρ = 109/κ2, having
chosen Lκ = 100, results

τT ' 28τρ (4.4.1)

Considering 5 · τT as the time needed to reach the steady-state, it is clear when the
140/Dκ2 visible in the graph comes from. The surface charge is 0 in phase i, so its time
behaviour cannot be analysed.

The dynamics of the potential was already found in the analytic solution and the
Poisson equation, that connects the functions, is time-independent so the dynamics of
the potential and the charge density are linked. The work of Stout and al. already
demonstrated that, in the case of instantaneous temperature gradient, the characteristic
time is half of one for the charge density. If a dynamic temperature gradient is considered,
the limiting factor will be again the temperature time.

Phase ii

The phase ii is, instead, a good field in which the equivalent electrical circuit can be tested,
in order to assure its feasibility for the next improvements to the model.

Figure 4.9: Dimensionless surface charge density in the left electrode σλD/εSe∆T ) is
plotted vs the dimensionless time tDκ/L. The numerical result is plotted with the blue
solid line, the equivalent electrical circuit solution is plotted with the red asterisks.

As it is possible to see in figure 4.9, the evolution in time of phase ii is well approximated
by the circuit solution which final equation is eq.(4.3.10). It is important to state that,
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for the phase ii, only the solution in which the temperature gradient is applied instantly
has sense, since in the experiments the system passes in phase ii only when phase i is
completed and so the temperature gradient is established.

The time needed to reach the steady-state is 5 · L/Dκ in the numerical simulation
and in the EEC solution. The final value is almost perfectly in accordance between the
simulation and the analytical result: 0.492 in dimensionless units from the simulation and
0.495 from the equations. A slight difference between with the EEC solution is present
(the value is 0.5), but it must be considered that the circuit resulting use an electrode
capacitance that holds perfectly only for a completely ideal EDL (eq. 4.3.10), but it is
already been underlined the particular shape of the potential in phase ii and the presence
of the term 1/L in the analytic solution, which explains the differences obtained.

The overall approximation with the EEC it is satisfying, so it can be used from now
on as a reference method.

The electrical potential will follow necessarily the same dynamics as the surface charge,
but a comparison between numerical and analytical results cannot be made here due to
the necessity of the FEM program. Comsol can support two steps solution, but in this
specific case the B.C. changes abruptly between the steps, it is so necessary to choose
for the second steps ψ(−L) = 0, so that the dynamics of the other variables is physically
realistic. This provides a step-like function for the potential that goes from Se∆T to 0
instantly. The other possibility was to choose a change of the surface charge, from 0 to
the steady-state value of phase ii, imposed by the program user, but it would modify the
physical dynamic behaviour of the system.

Figure 4.10: Dimensionless charge density in the left electrode ρ(−L)T0/2αd∆T vs the
dimensionless time tDκ/L.

59



4. Planar Electrochemical Capacitor Under Temperature Gradient

Regarding the charge density in −L, which is taken as a reference value, the EEC does
not provide a solution, but a comparison can be made between the numerical and the
analytical solution. In this case, the match between them is almost perfect considering
the absolute value.

Figure 4.11: Dimensionless neutral density c(−L)T0/2αm∆T vs the dimensionless time
3Dt/L2 (red line). The single positive (blue line) and negative(red line) dimensionless ion
densities at the left electrode ((n±(−L)(n0 − 1)T0/2αm∆T ) are plotted too.

Considering now the behaviour of c in −L during phase ii in figure 4.11, we can observe
how the neutral density it is not affected by the change in the boundary conditions, that
happens when phase ii is started, and it continues to migrate towards the cold electrode
pushed by the Soret force. In particular, a two-step simulation is done and phase ii starts
after letting the neutral density reach the steady-state. It is evident how the start of
phase ii changes the curves of n+ and n−, which are responsible for the charge density
build-up at the cold electrode, without affecting the curve for c that follows, as expected,
an exponential behaviour with a time constant τc = L2/3D. The big difference existing
between τρ and τC creates a situation in which it is convenient starting phase ii just after
the development of the charge density, without waiting for the neutral charge to reach an
equilibrium. This does not permit the full development of the neutral density in the time
required to charge the capacitor. The fact that the successive phases start before this full
development seems to not create a particular effect on the behaviour of the charge density
and the potential.

It could be interesting to analyse the behaviour of this system with an high-frequency
cycle, in which the circuit is open and closed and the temperature is varied before the
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variables reach the steady state-values, but this goes beyond the scope of this work.

Phase iii

Figure 4.12: Dimensionless charge density at the left electrode ρ(−L)T0/2αd∆T vs the
dimensionless time tDκ2.

The dynamics of the phase iii charge density should be the same of phase i with a
time constant of 1/Dκ2. Unfortunately, in the numerical simulation visible in figure 4.12,
it is only possible to impose initial values with a temperature gradient already set. To
simulate phase iii it was instead necessary to start from phase ii and add a step, that
used the precedent final state as initial condition. This method does not provide a precise
analysis, but, to grasp the behaviour of phase iii, it was necessary. Starting from the
steady-state of phase ii and imposing at the right electrode a sudden temperature drop
from T0 + ∆T to T0, while imposing the conservation of the surface charge, the system
takes time to reach a constant temperature profile. The temperature-time affects greatly
the dynamics of phase iii, as it is possible to see in figure 4.12, in which the small drop in
the charge density at the left electrode is represented.

It is however relatively less important to understand the behaviour of the third phase
because the goal to charge the capacitor completes in phase ii, the rest of the process does
not use external energies or inputs. For the reasons exposed so far the phase iii study will
not be developed more.
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To have a clearer overall picture, figure 4.13 represents the behaviour of the charge
density value in −L during the three phases. The figure was plotted superimposing a
phase ii-phase iii transition over the phase i dynamics. This was done to overcome the
limitations of the program that permits only a two-step dynamic simulation.

Figure 4.13: Dimensionless charge density at the left electrode ρ(−L)T0/2αd∆T vs the
dimensionless time tDκ2.

Despite this problem, the result clears how the charge density initially builds up only
due to the Soret effect, then grows when the circuit is open, and finally drops the part
related to the temperature effects when the gradient is removed.
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Supercapacitor Under Temperature Gra-
dient

If the behaviour of an electrochemical capacitor with planar electrodes is trivial, once the
equations are known, the same thing cannot be said for the case of nanoporous electrodes.
The various ways in which it is possible to model a nanoporous electrode are summarized
in Chapter 2.

In order to obtain a result that is expandable on large scales, and can predict easily the
space-dependent and time-dependent behaviour of a nanoporous electrode supercapacitor,
subjected to a temperature gradient, the "stack electrode model" (SEM) was chosen. This
method permits to analyse the impact of a temperature gradient, not only in the bulk
electrolyte, but in the nanostructured electrode as well. The possibility to expand the
solution to a high number of pores and to macroscopic distances, permits also us to
understand what could be the optimal geometry, in terms of pore size and electrodes
thickness.

The dynamics can also be well studied using the SEM method, permitting to make the
same considerations done with the planar electrode device and so to compare the results.
It is also possible to reproduce the system with an EEC, providing a strong tool to model
in general an electrolyte in a temperature gradient.

Figure 5.1: Sketch of a nanoporous carbon electrode modelled as simplified in a stack
electrode model.
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Within the advantages of the SEM, there is the fact that it replicates a simple system
in which a neutral macropore goes from the reservoir to the impermeable end of the
electrode, with a series of micropores perpendicular to it. This simplification allows us to
imagine the system as represented in figure 5.1.

The simple visualization of the system is a key tool that permits to understand if
the simulation results are physically reasonable. In fact, the scarce scientific literature
present on electrolyte’s Seebeck effect is of little use to check the results, letting only to
the physical intuition the task to confirm what will be obtained.

Figure 5.2: Sketch of a stack electrode model in a temperature gradient. The green line
represents the initial ion concentration, the red line represents the temperature profile.
The cell has a length of 2L + 2H in which the origin x = 0 is posed in the center, L is
half the length of the reservoir, H is the length of the nanoporous carbon electrodes and h
is the pore length.

The geometry of the nanoporous electrode is rapidly defined: the reservoir, as for the
planar electrode, extends from −L to +L, the n stack electrodes will be separated by the
length h, going from −L to −L−H and from +L to +L+H respectively. Obviously H
can be defined as

H = (n− 1)h

The electrodes are fully permeable with the exception of the nth ones, which close the
system.

Parameters

The presence of a nanoporous electrode arises some questions on the relationship between
the thermodynamic parameters in the electrode with respect to their value in the bulk
electrolyte.

The thermal conductivity choice becomes important: it modifies the temperature
gradient, so its value has a big impact on the overall temperature-related effect in the
electrodes. Considering the most common choice of carbon electrodes, it is logical to think
that the carbon electrode thermal conductivity is much higher than the one of the aqueous
electrolyte, leading to almost no temperature difference in the nanostructure. It is instead
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surprising the experimental result of Burehim and al.[66] that found a much lower thermal
conductivity than expected. In particular the similarity between the conductivity of the
soaked carbon electrode (0.47 WK−1m−1) and the electrolyte (TEA-BF4), together with
dry carbon conductivity (0.09-0.19 WK−1m−1) that is even lower than the soaked one, let
think that the main heat driver in the electrode is the electrolyte. This can be physically
explained by thinking about the high phonon scattering present in a nanostructured
carbon and the low heat transfer at the carbon-electrolyte interface. A complete model
that describes this system and can calculate this data is not present in literature, when
the electrolyte is different from the one experimentally studied it is therefore only possible
to make educated guesses.

The previous considerations are however sufficient to state that it is possible to use as
thermal conductivity, for the nanoporous carbon electrode, the one of the electrolyte. This
choice simplifies the computational work eliminating a discontinuous derivative without
losing excessive precision in the results.

Regarding the other parameters, the choice is related to the space scale studied:
remembering that the SEM is a representation of a large macropore that connects the
micropores, it is possible to conclude that the diffusion D coefficient is not affected by
the nanoporous electrode because the ions are free to move in the macropore. This can
be seen as a strong approximation, but considering instead the diffusion coefficient of
a bulk nanoporous material it is not correct, because a part of the nanoporosity effect
on the ion motion is already included in the presence of the multiple electrodes and
because its value is found averaging on multiple pores. The optimal value should be
something in between the bulk electrode’s and the reservoir’s values, but in absence of
further theoretical consideration it is more physically reasonable to choose the reservoir’s
value.

Same considerations can be applied to the Soret coefficient α and dielectric permittivity
ε. The value of the latter is affected by the presence of the carbon, but the studies always
consider the mean value averaging on the entire bulk electrolyte-electrode system. The stan-
dard values are then used in the electrode part, in absence of better theoretical evaluations.

Once the correct theoretical interpretation of the parameters exposed so far will be
done, it will be possible to modify the present model obtaining more precise results,
without the need to develop entirely a new method.

5.1 Simple System: Two-Electrodes Solution
Before explaining a complete stack electrode model with n electrodes, it is necessary to
examine an n = 2 system.

This simplification permits to grasp the main differences between a planar and a
nanostructured electrode, posing all the new physical effects in an easy and intuitive
solution. It is also possible to solve analytically the equivalent electrical circuit for n = 2,
understanding precisely the relations between the various parameters present. The initial
boundary condition are still valid, considering now the new geometry of the problem:
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Figure 5.3: Sketch of a two electrode model in a temperature gradient. The green line
represent the initial ion concentration n0, the red line represent the temperature profile.
The cell has length of 2L+ 2H in which x = 0 is posed in the center, L is half the length
of the reservoir, H is the distance between the electrodes.

T (x, t < 0) = T0

n±(x, t < 0) = n0

j±(±L±H, t) = 0

The presence of two electrodes per side imposes new boundary conditions, in particular
related to the electrical part of the problem. These conditions vary during the phases and
are summarized below. It is useful to consider the symmetry of the problem, this allows
us to study in-depth just one side of the capacitor knowing that the behaviour of the
other electrode will be symmetrical. For these reasons the B.C.s exposed below considers
only the left part of the capacitor (the cold one). The outer electrode in −L−H will be
referred to as the electrode 2, the inner electrode in −L will be referred to as the electrode
1, and consequently they will be called the variables related to those electrodes.

The new boundary conditions, in the various phases, will be so presented.
Regarding the temperature, the condition for phase i remains the same:

T (+L+H, t) = T0 + ∆T .

The major difference between the planar electrodes capacitor and the nanoporous one is
instead related to zero surface charge condition of the phase i. It must be remembered
indeed that in phase i the overall surface charge in both the nanopours electrodes must be
0 because the electrodes are not connected to each other, this has an important implication
for the nanoporous system. In the two-electrodes case this means:

σ1 + σ2 = 0 (5.1.1)
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Moreover, the two electrodes on the same side are connected being part of the same
conductive structure. In the approximation of infinite electrically conductive carbon (that
holds if compared to the electrolyte conductivity), their potential must be the same:

φ2(−L−H, t) = φ1(−L, t) (5.1.2)
It is important to consider that now the inner electrode is in contact with the electrolyte
on both sides. This means that an EDL will develop on both sides too, giving the first
electrode, in case of fully developed EDLs, double the capacitance of the second, which
has only one part facing the electrolyte. The difference in the capacitance is a key factor,
that is crucial to understand the particular shapes the charge density and the potential
will acquire.

The phase ii is characterized by the connection of the two electrodes. This implies
that all the electrodes in the supercapacitor will have the same potential, in particular, it
is set to 0 by the ground connection. The electrons can now flow so no surface charge
limitation is present. Considering, as usual, the left electrode the B.C. results:

φ2(−L−H, t) = φ1(−L, t) = 0 (5.1.3)
The temperature remains the same with the imposition of T0 + ∆T in +L+H.

The phase iii for nanoporous electrode shows a new equilibration behaviour. Once the
temperature gradient is removed in open circuit, the overall surface charge accumulated
in the electrodes will be conserved and it will be distributed according to the capacitance
of the electrodes. In particular, the electrodes on the same side will still have the same
potential

φ2(−L−H, t) = φ1(−L, t) , (5.1.4)
and regarding the charge equilibration, it is sufficient to state that

σ1, phase ii + σ2, phase ii = σ1, phase iii + σ2, phase iii (5.1.5)
to have automatically, from the set of the governing equations, the correct redistribution
of charges in the various electrodes.

5.1.1 Numerical Results
The presence of a second electrode in the stack arises a series of complications for the
analytic solution. In fact, with just two electrodes per side, the system must be divided
into three parts, posing the boundary conditions expressed so far, in order to be solved
analytically. The linearised PNP equations are so, in principle, solvable for any number of
electrodes in steady-state.

The analytical results, that can be obtained with just two electrodes, is however
composed by pretty long equations, not simplifiable, from which is hard to grasp any
physical interpretations. Moreover, antitransform the Laplace transform calculated, in
order to obtain the time-dependent behaviour, is not possible. Imaging to do the same
for n electrodes, it is natural to conclude that the analytical solution is not a useful tool
for the aim to model a high number of electrodes.
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The obvious conclusion is to use again a FEM numerical method and an equivalent
electrical circuit, to compare the two and to understand the physics behind the results.

The parameters chosen for the simulation are the same as for the planar electrode
except for L and H, which are chosen respectively so that κL = 75 and κH = 25, to have
the same overall length as before.

The numerical results are exposed below

Figure 5.4: Numerical solutions of the dimensionless neutral density cT0/2αm∆T vs
the dimensionless length x/(L + H) during the phases. The ions distribution are also
represented in the graph.

As it is possible to see in fig. 5.4, the neutral charge is not affected by the presence of
a second electrode so, having the same parameters, it will have the same behaviour as in
planar electrode. This statement can be already generalized to any number of electrodes.
It is also possible to visualize the ions distributions in phases and to see how they deviate
from the perfectly linear graphs in correspondence of the electrodes.

The charge density, pictured in fig. 5.5, has instead a peculiar behaviour: during phase
i the first electrode has a negative charge density accumulated on its sides. The origin of
this phenomenon must be traced in the condition of charge neutrality during the open
circuit phase. It is easier to understand the reasons looking at the figure 5.6.
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Figure 5.5: Numerical solutions of the dimensionless charge density ρT0/2αd∆T vs the
dimensionless length x/(L+H). A zoom of the left electrode is also present.
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Figure 5.6: Sketch of the model. Phase i representation figure (a), when the conservation
of surface charges is present. The holes are meant to represent the average positive charges
on that electrodes, not actual holes. Phase ii is represented in figure (b) when the circuit
is closed and the electrons can flow freely inside the carbon.

The ions are pushed from the reservoir to the impermeable boundary, ergo to the
second electrode. The positive ions, having a higher Soret coefficient, will reach the last
electrode in a greater number than the negative ions, attracting the electrons present in
the carbon and creating a negative surface charge on the second electrode. Due to the
neutrality condition, the first electrode will be positively charged, attracting consequently
the negative ions on its surface, until a steady-state condition is reached.

Physically the Soret effect is present in the pore too, especially in this case in which the
pore is relatively large. The potential it creates must be balanced by an electric potential
that is sufficient when an opposite charges are present in the two electrodes.

Another interesting phenomenon is that, in the nanoporous electrode case, an EDL is
developed at the electrodes even during phase i. This, as will be seen, modifies sensibly
the dynamics of the phase i.

Concerning the phase ii, the short circuit condition, let the EDLs be fully developed
at the end of the transitory. The Soret potential clearly shifts the charge density dis-
tribution, now totally positive, against the colder side. It is interesting to notice how
the maximum charge density of the second electrode coincides with the one obtained in
the planar-electrodes simulation, and consequently, the surface charge accumulated also
coincides. The reason relies on the fact that the ions are continuously pushed by the Soret
force to the cold electrodes and the main force that stops this motion is the electrostatic
repulsion. When an electrode is present and connected to the ground it will be charged
minimizing the electrostatic repulsion, independently from the presence of other electrodes
connected.

The phase iii is now simply an equilibration phase in which, removing the temperature
gradient, the charges equilibrate according to their capacitance. Remembering that the
capacitance of the first. Is two times the one of the second electrode, having the two the
same potential, it is natural to observe the same values of the peak charge density on the
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electrodes.

The superposition of effects is confirmed too: it is observable in the numerical solution
and, thinking about the motion of the ions as done in figure 5.6, it is logical to conclude
that the charge unbalance developed in phase i will be present in phase ii too and it will
be removed in the third phase.

Figure 5.7: Numerical results of the dimensionless potential ψT0/2αd∆T vs the dimen-
sionless length x/(L+H).

The results for the potential represented in figure 5.7, are no surprise once the system
is understood.

The phase i function presents the same slope as in the planar-electrodes case, with the
exception of the peaks corresponding to the electrodes. The two peaks can be interpreted
both mathematically and physically: mathematically the necessity to preserve the same
slope present in the bulk, combined with the needs to have the same potential in the
two points give origin to the peaks; physically they are the results of the double layers
created in the process and their pointing up or down is related needed to accommodate
respectively for negative and positive ions.

An interesting aspect is that the value of the potential in contact with the second
electrode is slightly lower with respect to the planar-electrodes case, due to the formation
of a double layer. This small difference is hardly detectable experimentally if a realistic
high thickness device is considered, this explains why the experiments show almost the
same behaviour for planar and nanostructured electrodes.
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Analysing now the phase ii, it is clear how the slope is not modified, and the maximum
values near the second electrode are the same observable in the planar electrode case. The
overall function is practically the same as the planar electrode case, with the exception of
the first electrode presence, which creates a second downward peak.

The phase iii potential is again a simple potential of a charge supercapacitor as found
in the work of Lian and Co [40], and the superposition of effects is confirmed.

The numerical results for the two-electrodes set-up have found non-trivial behaviours,
especially for the charge density. The similarities with the planar-electrodes case allow
to generalize the informations obtained, including the analytical solutions, to a multiple
electrodes system, using them to have an idea of the behaviour during the phases.

5.1.2 Equivalent Electrical Circuit
As previously done for the planar-electrodes case, an equivalent electrical circuit for a
nanoporous electrodes case, in particular for two electrodes, can be developed.

Figure 5.8: Equivalent electrical circuit for a n = 2 electrode nanoporous carbon superca-
pacitor subjected to a temperature gradient.

As represented in figure 5.8 this EEC will have a voltage generator in the reservoir
and in between every electrodes, to express the presence of the Seebeck effect in all
the electrolyte, including the part in the pores. Of course, the voltage applied by the
generators will be proportional to the local temperature difference, so that

Φ0 = Se
∆T
L+H

L (5.1.6)

Φ1 = Se
∆T

2(L+H)H (5.1.7)

Same considerations hold for the resistances present:

Ω = L

σel
(5.1.8)
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R = H

2σel
(5.1.9)

Another difference with respect to the planar-electrodes case, is that the specific capacitance
of the capacitors, which accounts for the EDLs developed in the inner electrodes, is double
respect to one of the outer capacitors. So that

C1 = 2C2 = 2 ε

λD
(5.1.10)

The circuit can now be solved.

Phase i

Starting from the phase i in which the circuit is open, it appears immediately that, for the
two-electrodes set-up, this phase has now a time-dependent solution and the capacitors
result charged at the end of the transitory.

The physical charge neutrality condition in the carbon nanostructure is reformulated
here in terms of an EEC:

Q1 = 2C∆Ψ1 (5.1.11)

Q2 = C∆Ψ2 (5.1.12)

Q1 +Q2 = 0 (5.1.13)
Applying Kirchhoff’s laws to the left circuits

I1R = ∆Ψ2 −∆Ψ1 + Φ1 (5.1.14)
Where I1 is the current flowing, remembering that the direction of the current must be
considered carefully because, in this case, it modifies the values of the voltage drops
derivatives:

I1 = 2C∆Ψ̇1 (5.1.15)

I1 = −C∆Ψ̇2 (5.1.16)
Substituting the variables and solving the ordinary differential equation the results are
straightforward :

∆Ψ1 = 1
3Φ1(1− e− 3t

2RC ) (5.1.17)

∆Ψ2 = −2
3Φ1(1− e− 3t

2RC ) (5.1.18)

Thus, the time constant of the system is τ = 2RC/3 with RC = H/κD. This time
constant is very different from the one of the same phase of the planar-electrodes case.
This can be explained considering that, in this case, the double layers can be formed in
phase i and, as it is known, the formation of an EDL has its particular time constant
proportional to the RC time of the system.
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To calculate the absolute values of the potential at the ends of the capacitor, the
voltage generators Φ0 and the Φ1 on the right side must be considered, even if the central
circuit is open. This provides us with the values found in figure 5.7.

For example to calculate the voltage measured experimentally it is sufficient to look
for the voltage in the outer left electrode:

∆V = Φ0 + 2
3Φ1 = Se

∆T
L+H

(
L+ 1

3H
)

that, with H = 1/3 · L as in the simulation above, becomes

∆V = 5
6Se∆T

demonstrating why the presence of the nanoporous electrodes does not effect excessively
the voltage measured in the experiments.

Turning now to discuss the surface charge density, here represented by the values of
Q1 and Q2, in steady-state we obtain an equal end opposite surface charge in the two
electrodes:

Q1 = 2
3CΦ1 = 1

12CSe∆T , Q2 = −2
3CΦ1 = − 1

12CSe∆T

as observed in the simulations. Of course, the right circuit behaves symmetrically.

Phase ii

To solve the circuit representing the phase ii, it is sufficient to solve it once it is closed.
Calling I0 the current flowing in the reservoir resistance Ω, I1 and I2 the currents

flowing respectively in the inner and the outer capacitors, from the definition of current

I1 = −2C∆Ψ̇1 , I2 = −C∆Ψ̇2

so that the following system of equations is obtained:

I0 = I1 + I2 (5.1.19)

2∆Ψ1 + Φ0 − ΩI0 = 0 (5.1.20)

∆Ψ2 −∆Ψ1 + Φ1 −RI2 = 0 (5.1.21)

which can be rewritten in a more convenient form:

∆Ψ̇1 = − I1

2C = −∆Ψ1

( 1
ΩC + 1

2RC

)
+ ∆Ψ2

1
2RC −

Φ0

2ΩC + Φ1

2RC (5.1.22)

∆Ψ̇2 = −I2

C
= ∆Ψ1

1
RC
−∆Ψ2

1
RC
− Φ1

RC
(5.1.23)
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With these informations, the system can be solved by substituting the variables, but the
matrix form permits to extract useful informations and it can be applied subsequently to
more complex solutions.

˙∆Ψ1

∆Ψ2

 = − 1
2RC

1 + H
L
−1

−2 2


∆Ψ1

∆Ψ2

− Φ1

2RC

0

2

 (5.1.24)

Where the 0 in the last matrix comes from the fact that
Φ0

2ΩC = Φ1

2RC ,

because the resistances R and Ω are proportional respectively to H and 2L as are the
voltages Φ0 and Φ1.

This set of equation can be written in state space form as Ẋ = Y −MX with

X ≡

∆Ψ1

∆Ψ2

 , Y ≡ − Φ1

2RC

0

2

 , M ≡ 1
2RC

1 + H
L
−1

−2 2

 ≡ UDU−1 (5.1.25)

with UU−1 = U−1U = 1 and D = 1
2RC

λ1 0

0 λ2

.
U is composed by the orthonormal eigenvectors of M , with eigenvalues λ1 , λ2 .

The complete solution should consider an initial condition in which the capacitors
are charged with the charge calculated in phase i, but this precaution complicates the
calculation, without changing the time constants and the final values of the system. For
this reason the equations will be solved considering an initial state in which the capacitors
are not charged: X(t = 0) = 0. To find the formal solution to the problem in equation
(5.1.24), it is sufficient to find

X(t) = U

[1− e−
λ1t
2RC ] 1

λ1
0

0 [1− e−
λ2t
2RC ] 1

λ2

U−1Y (5.1.26)

because U−1Ẋ(t) = U−1Y −DU−1X(t) is solved by U−1X(t) = e−Dta+D−1U−1Y with
the constant a, fixed by the boundary condition U−1X(t = 0) = 0, to be a = −D−1U−1Y .

The time constant of the overall system is determined by the lower eigenvalues of M ,
which provides the higher characteristic time of the transitory. When the data of the
simulation are chosen, so H = 1/3 · L, the eigenvalues can be found:

λ1 = 3.12 , λ2 = 0.213 .

Selecting λ2 because it is the lower one, the time constant is obtained to be

τ = 2RC
λ2

= 9.38 H
Dκ

.

The following steady-state values are so found:

∆Ψ1 = −Φ0

2 = −3
8Se∆T , ∆Ψ2 = −Φ0

2 − Φ1 = −1
2Se∆T

75



5. Supercapacitor Under Temperature Gradient

as expected from the simulations. The final charges accumulated must be explicitly stated
because they are the ones conserved in phase iii:

Q1 = 2C∆Ψ1 = −CΦ0 = −3
4CSe∆T , Q2 = −C

(
Φ0

2 + Φ1

)
= −1

2CSe∆T

Note how the charge in the second electrode is the same as the one found for the planar-
electrodes case at the end of phase ii. This means that the presence of other electrodes, so
other pores, only improves the final capacitance of the system, as it is known to happen
for an externally charged supercapacitor.

Phase iii

The phase iii analysis is now trivial: first, the conservation of the charges is imposed

Q1(phase ii) +Q2(phase ii) = Q1(phase iii) +Q2(phase iii) = −C
(3

2Φ0 + Φ1

)
(5.1.27)

then, the new charges will distribute according to their capacitance:

Q1 = −C
(

Φ0 + 2
3Φ1

)
= −5

6CSe∆T (5.1.28)

Q2 = −C
(

Φ0

2 + Φ1

3

)
= − 5

12CSe∆T (5.1.29)

The time constants of phase iii will be equal to the one of phase i because the circuit
representing the equilibration is the same representing the phase i charge. Looking now at
the potential measured at the electrodes at the end of phase iii, a circuit analysis reveals
it to be

∆V = −Φ0 −
2
3Φ1 = −5

6Se∆T (5.1.30)

exactly equal and opposite to the one of the phase i.

5.1.3 Dynamics

Having now found both the numerical results and the EEC solutions for the two-electrodes
set-up, a comparison it is necessary. In this case, the dynamic behaviour of both phases
i and ii are described by the EEC so the results can be analysed. Another difference
with respect to the planar electrode condition is that the time constants for the phases
i and ii are proportional to H/Dκ that is much greater than the 1/Dκ2 found in the
precedent case. This means that the characteristic times related to the heat equation τT
are comparable to the time constants of the phases i and ii.
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Phase i

Figure 5.9: Numerical results for the dimensionless charge density ρT0/2αd∆T for the
first (−L) and the second (−L−H) electrode vs the dimensionless time t3κD/2H, during
the phase i transitory.

Starting analysing the phase i dynamics of the charge density at the electrodes (fig.
5.9), it is possible to demonstrate numerically that in this case, the temperature-time
is of the order of the charge density time, providing a similar solution in the cases of
instant temperature gradient and dynamic temperature gradient. For the instantaneous
temperature gradient solution it is clearly visible how the charge density perfectly follows
the time constant found in the equivalent electrical circuit, taking 5 times 2H/3κD to
complete the transitory. Regarding the case for a time-dependent heat equation, the
precise time constant of the temperature is, using the parameters of the simulation,
τT = 1, 60 · 2H/(3κD), which explains why the difference is small.

Looking at the surface charge in figure 5.10 it is clear how the dynamics is the same
as the charge density one.

In this case, it is also possible to make a comparison between the numerical values and
the EEC results. In the circuit representation, the potential generators are immediately
turned on, and so the solution of the EEC must be compared to the instant temperature
gradient case. The accordance between the EEC and the numerical solution is clear for
both the dynamics and the steady-state values, considering also that the surface charge is
calculated deriving the potential slope which adds numerical errors.

From the comparison between the charge density and the surface charge, it is more
clear the role of the Soret effect on the ions that creates a charge unbalance.
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Figure 5.10: Numerical results (solid lines) and equivalent electrical circuit (dots) for the
dimensionless surface charge σλD/εSe∆T for the first (−L) and the second (−L − H)
electrode, vs the dimensionless time t3κD/2H, during the phase i transitory.

Phase ii

The comparison of the phase ii could be done with two different initial conditions: using
the results of phase i as starting point or letting the system evolve from a completely
discharged state. The second option was chosen for various reasons: first, the FEM
simulation program used is not optimized for multi-steps solution in which the boundary
conditions changes, leading to a better simulation if all the phases are simulated separately;
second, the EEC analytical solution was found from the discharge state for the reasons
mentioned above. It is also known that the time constants and the final values are
independent from the initial conditions, so the accuracy of the analysis holds for every
initial state chosen. Moreover, the supercapacitor can be in principle charged directly in
close circuit reproducing the conditions used in this simulation, making this choice also
physically valid.

The simulation is also done only for the instantaneous temperature gradient case
because the gradient builds up in phase i and it is simple to calculate how the much longer
characteristic times of phase ii make negligible the temperature needed to establish the
gradient.

The dynamics of the phase ii charge density is well described, as it is possible to see in
figure 5.11, and it is well fitted by the EEC time found of 9.38H/Dκ.
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Figure 5.11: Numerical results for the dimensionless charge density ρT0/2αd∆T for the
first (−L) and the second (−L − H) electrode vs the dimensionless time tκD/9.38H,
during the phase ii transitory.

Figure 5.12: Numerical results (solid lines) and equivalent electrical circuit (dots) for the
dimensionless surface charge σλD/εSe∆T for the first (−L) and the second (−L − H)
electrode vs the dimensionless time tκD/9.38H, during the phase ii transitory.

No particular surprise comes from this simulation, the two charge densities grow,
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remaining different due to the Soret effect that acts on the ions.

To complete the phase ii analysis a comparison between the surface charge of EEC
solution and the numerical results is made in figure 5.12. The two graphs can be perfectly
superimposed, confirming the utility of the EEC.

Even if the steady-state results made clear the asymmetries between the electrodes in
phase ii, the image of the surface charges makes clearer the particular charging behaviour
of a thermally charged supercapacitor. In fact, usually all the electrodes charge with the
same amount of surface charge, once the potential is imposed. In this case, it is clearly
visible how instead the Soret effect unbalances the surface charges making it imprecise to
consider the total capacity of the cell as the sum of the capacity of the pores. This is es-
pecially true in the case of a high number of electrodes, as it will be seen in the next section.

Complete cycle

The development of the EEC permits also to diversify the software utilization, so that
Simulink® can be used to solve very rapidly all the cycle, including phases iii and iv,
thanks to the possibility to virtually open and close circuits.

Figure 5.13: Equivalent electrical circuit results for the dimensionless surface charge
σλD/εSe∆T of the electrodes vs time (s). The entire charging and discharging cycle is
represented.

The figure 5.13 shows a picture of the overall cycle, from the point of view of the
surface charge of the electrodes. The four phases are clearly visible, as it is the big
difference in characteristic times between the charging and discharging steps (phase ii and
iv respectively) and the intermediate steps (phase i and iii).

It is also clearly visible the different behaviours between the charging phase under
temperature gradient, which shifts the curves, and the discharging phase in an isothermal
system, in which the curves almost superimpose.

To validate further the model it is useful to evaluate the potential difference that could
be experimentally measured if a voltmeter is connected at the two sides of the capacitor.
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Figure 5.14: Equivalent electrical circuit results for the dimensionless potential difference
between the nths electrodes ∆V/Se∆T vs time (s). The entire charging and discharging
cycle is represented.

To observe the dynamics it is necessary to insert a resistance in the upper circuit, that
connects the two electrodes. A resistance of the same value of Ω was inserted in the
simulated circuit, and the results for the overall cycle are exposed in figure 5.14.

The figure resembles the experiments found in literature, confirming that the method
used is capable of model a real system. Of course, the presence of only two electrodes
makes the system still far from a real supercapacitor, but the route towards a complete
model is clear and it is now just sufficient to expand it to higher numbers of electrodes.
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5.2 Advance System: n-Electrodes Solution
Having posed all the physical and mathematical bases in the two-electrodes solution, the
next step is to expand the solution for arbitrary n electrodes. The electrodes will be
positioned at a distance h = H/(n − 1) so that the first electrode (i = 1) is posed at
X1 = ±L, the ith electrode is posed at Xi = ±L ± h(i − 1) and the outer electrode in
contact with the electrolyte only on one side is at Xn = ±L± h(n− 1) = ±L±H.

The boundary conditions for the temperature and the ions limits are the same as
before:

T (−Xn, t) = T0 , T (+Xn, t ≥ 0) = T0 + ∆T (5.2.1)

n±(x, t < 0) = n0 (5.2.2)

j±(±Xn, t) = 0 (5.2.3)

where ∆T is present only in the phases i and ii.

Moreover, the electrical boundary conditions for the various phases are:
Phase i

n∑
i=1

σi = 0 , (5.2.4)

φ1(±X1, t) = φ2(±X2, t) = ... = φi(±Xi, t) = ... = φn(±Xn, t) (5.2.5)

Phase ii

φ1(±X1, t) = φ2(±X2, t) = ... = φi(±Xi, t) = ... = φn(±Xn, t) = 0 (5.2.6)

Phase iii
n∑
i=1

σi, phase ii =
n∑
i=1

σi, phase iii , (5.2.7)

φ1(±X1, t) = φ2(±X2, t) = ... = φi(±Xi, t) = ... = φn(±Xn, t) (5.2.8)

5.2.1 Numerical Results
As previously stated the analytical solution for the linearised problem can be found for
every n chosen, but it results too complicated to get physical information from it, so the
task will be carried out by the numerical simulations.

The parameters chosen in the simulation are the same as for the two-electrodes case,
with the exceptions of n = 5 so that the effects that multiples electrodes create are
present, but the computational time remains similar. Moreover, the lengths are modified:
H = 60λD and L = 180λD, this choice was made in order to preserve the H/L ratio having
simultaneously a big enough pore length h to let the EDLs be fully developed. This is
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important because the theory constructed so far is valid only if the specific capacitance is
approximable with ε/λD.

Figure 5.15: Numerical solutions of the dimensionless neutral density cT0/2αm∆T vs the
dimensionless length x/(L+H). The ions’ distributions are also represented in the graph.

Starting analysing the c variable graph in the various phases in figure 5.15, comes with
no surprise that it is the same as in the previous cases because the neutral charge is not
affected by the presence of the electrodes. Of course, the single ions distributions have
now peaks in correspondence of the five electrodes.

The charge density behaviour, that can be seen in 5.16, is fairly predictable. The phase
i plot is an extension of the two-electrodes results, in which the charge density is shifted
towards the outer electrode by the Seebeck effect present in the pores. Regarding the
phase ii ρ profile, it confirms the superposition of the effects: it is clear how it is composed
by the Seebeck shift and the normal stack charged electrodes plot, visible in phase iii.
The maximum value is again αd∆T/T0 (the dimensionless charge density plotted touches
0.5 in the graph) confirming that the presence of other electrodes only adds maximum
capacitance for the thermally chargeable supercapacitor.

The potential in figure 5.17 conserves its shape and slope, with local maximum and
minimum in correspondence respectively of negative and positive charge density at the
electrodes. We can assume this behaviour will be conserved for every number n of
electrodes.

It is possible to observe that some characteristics of the two electrodes results are
conserved. In particular, the value of the potential in phase i at the nth electrode is the
same, as it is the peak value of the potential in second phase near the nth electrode.
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Figure 5.16: Numerical solutions of the dimensionless charge density ρT0/2αd∆T vs the
dimensionless length x/(L+H).

Figure 5.17: Numerical results of the dimensionless potential ψT0/2αd∆T vs the dimen-
sionless length x/(L+H).
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5.2.2 Equivalent Electrical Circuit
In order to finally complete the model and to be able to predict the outcomes for a broad
range of parameters, such as temperature differences, various lengths and high number of
electrodes, it is necessary a complete calculation of a circuit with n capacitors per side.

Figure 5.18: Equivalent electrical circuit for the n-electrodes case, the dashed lines represent
the numerous electrodes present between the first and the nth one.

The setup is the same as the two electrodes case, but here we have n− 1 electrodes per
side with capacitance 2C and the outer nth with capacitance C. Moreover n− 1 potential
generator Φ1 are present, coupled with n− 1 resistor of value R.

The values of the generators and the resistances are proportional to h so that:

Φ1 = Se
∆T

2(L+H)h = Se
∆T

2(L+H)
H

n− 1 (5.2.9)

R = h

2σel
= H

2(n− 1)σel
(5.2.10)

Obtaining and RC time that is now

RC = H

(n− 1)κD (5.2.11)

Again ∆Ψi stands for the voltage over the capacitor i, Qi for the charge on the same
capacitor and Ii for the current through it. The reservoir part of the circuit is again
defined with Φ0 for the generator, Ω for the resistance and I0 for the current through it.

The charges are so defined as

Q1(t) = 2C∆Ψ1(t) (5.2.12)

...

Qi(t) = 2C∆Ψi(t) : 2 ≤ i ≤ n− 1 (5.2.13)

...

Qn−1(t) = 2C∆Ψn−1(t) (5.2.14)
Qn(t) = C∆Ψn(t) (5.2.15)
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Phase i

Regarding the currents, a distinction must be made between phase i and ii. In phase
i, the open circuit condition implies that the current I1 coming from the charge of the
capacitor i = 1 flows in the resistanceR from the inner to the outer side. The direction of
the current flowing in the = 1 capacitor is so inverse respect to the currents flowing in the
others so that the currents are defined in the following way:

I1 = 2C∆Ψ̇1 (5.2.16)

...

Ii = −2C∆Ψ̇i : 2 ≤ i ≤ n− 1 (5.2.17)

...

In = −C∆Ψ̇n (5.2.18)
The conservation of charges is also imposed in phase i:

n∑
i=1

Qi(t) = 0 (5.2.19)

from the point of view of the currents this condition implies that the current flowing in
the second resistance is I1− I2, the one flowing in the ith resistance is I1− I2− ...− Ii and
the current flowing in the last resistance (remembering there are n− 1 total resistances)
is I1 − ...Ii − ...In−1 = In.
Using now the Kirchhoff’s laws in the various meshes the following system of equations is
obtained:

RI1 = −∆Ψ1 + ∆Ψ2 + Φ1 (5.2.20)
R(I1 − I2) = −∆Ψ2 + ∆Ψ3 + Φ1 (5.2.21)

...

R(I1 − I2 − ...− Ii) = −∆Ψi + ∆Ψi+1 + Φ1 : 3 ≤ i ≤ n− 1 (5.2.22)

...

R(I1 − I2 − ...− In−1) = RIn = −∆Ψn−1 + ∆Ψn + Phi1 (5.2.23)
Using now the definitions of current the system can be rephrased as

∆Ψ̇1(t) = I1

2C = −∆Ψ1 −∆Ψ2 − Φ1

2RC (5.2.24)

∆Ψ̇2(t) = − I2

2C = −−∆Ψ1 + 2∆Ψ2 −∆Ψ3

2RC (5.2.25)
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...

∆Ψ̇i(t) = − Ii
2C = −−∆Ψi−1 + 2∆Ψi −∆Ψi+1

2RC : 3 ≤ i ≤ n− 1 (5.2.26)

...

∆Ψ̇n−1(t) = −In−1

2C = −−∆Ψn−2 + 2∆Ψn−1 −∆Ψn

2RC (5.2.27)

∆Ψ̇n(t) = −In
C

= −−∆Ψn−1 + ∆Ψn + Φ1

RC
(5.2.28)

The system can be posed in matrix form:

˙

∆Ψ1

∆Ψ2
...

∆Ψi

...

∆Ψn


= − 1

2RC ·



1 −1

−1 2 −1

−1 . . . . . .
. . . . . .

−1 2 −1

−2 2


·



∆Ψ1

∆Ψ2
...

∆Ψi

...

∆Ψn


− Φ1

2RC ·



−1

0
...
...

0

2


(5.2.29)

The system written above is not made of independent equations because the presence
of the charge conservation (eq. 5.2.19) makes the nth equation linearly dependent on
the others. The matrices written are instead useful for a comparison with the phase ii
solution because the same form is maintained. In order to be able to solve the system for
every n number of equations, it is better to rewrite it as an independent set. To do this it
is necessary to use equation (5.2.19), rephrased as ∆Ψn = −2∑n−1

i=1 ∆Ψi and substitute it
in equation (5.2.27) obtaining

∆Ψ̇n−1 = −2∑n−3
i=1 ∆Ψi + ∆Ψn−2 + 4∆Ψn−1

2RC (5.2.30)

So that an independent set of n− 1 equations with n− 1 variables is found and written
in the form Ẋ = Y −MX with

X ≡



∆Ψ1

∆Ψ2
...

∆Ψi

...

∆Ψn−1


, Y ≡ − Φ1

2RC ·



−1

0
...
...
...

0


, M ≡ 1

2RC



1 −1

−1 2 −1

−1 . . . . . .
. . . . . .

−1 2 −1

2 2 ... 2 ... 1 4


(5.2.31)
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The value of ∆Ψn will be calculated consequently. Notice how the matrix M depends
only on R, C and the number of electrodes n, without being affected by the H/L ratio.

The matrix form permits us to use the same method used in the two electrode case
(eq. 5.1.26) expandened to n− 1 equations. The solution therefore is:

X(t) = U(1− e−Dt)D−1U−1Y (5.2.32)

with

1− e−Dt = 1−


e−

tλ1
2RC

. . .

e−
tλn
2RC

 (5.2.33)

where λi are the eigenvalues of the matrix M .
To find the time constant as a function of n, the eigenvalues where found numerically

from n = 3 to n = 100. After selecting the smallest eigenvalue λ− = min{λ1, ..., λn}, the
characteristic time of the system is known to be τn = 2RC/λ−. Remembering that i this
case RC = hλD/D = HλD/D(n− 1), it is convenient to plot 1/λ− · 1/(n− 1) for every n.

Figure 5.19: 1/λ− · 1/(n − 1) vs the number of electrode n (blue diamonds), with the
interpolating line (red line).

So that graphically we can see how

1/λ− · 1/(n− 1) ' 0.1013n (5.2.34)
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Obtaining now the characteristic time for the phase i τn,i, as

τn,i = 2HλD
D

1
λ−

1
n− 1 (5.2.35)

That, using the relation (5.2.34), permits to obtain the time constant of the phase i for
every number of electrodes:

τn,i = HλD
D
· 0.2026 · n (5.2.36)

To obtain the steady-state solution, instead of calculating the complete solution for every
n, it is simpler to analyse directly the circuit in the final state in which the capacitors are
considered as open circuits and no current is flowing. This simplifies the calculation and,
summed with the time constant found, permits to have a clear view of the behaviour of
the supercapacitor.

Unfortunately a unique solution, that correlates the geometrical parameters and the
number of electrodes to the various charges accumulated in the electrodes, cannot be
found. In order to verify the accuracy of the solution, the values of the charges are
calculated for n = 5 and compared with the results of the simulation. So that, selecting
for example the first and the last electrode,

Q1 = 2C∆Ψ1 = 2C 16
9 Φ1 = 32

9 CΦ1 , (5.2.37)

Q5 = C∆Ψ5 = −20
9 CΦ1 , (5.2.38)

that with the simulation parameters becomes

Q1 = 0.111 CSe∆T , (5.2.39)

Q5 = 0.0694 CSe∆T , (5.2.40)
which, as it will be seen, is relatively close to the numerical results. The experimentally
measurable potential difference is instead

∆V = Φ0 + 4Φ1 + ∆Ψ5 = Φ0 + ∆Ψ1 = Φ0 + 16
9 Φ1 , (5.2.41)

which, again, applying the definitions of the voltage generators, becomes

∆V = 0.805Se∆T (5.2.42)

coinciding almost perfectly to the value of the phase i simulation.

Phase ii

The solution for the second phase is similar to the phase ii solution of the two-electrodes
system. As in that case, all the currents passing through the capacitors are now pointing
upwards so that the currents can be easily defined as

Ii = −2C∆Ψ̇i : 1 ≤ i ≤ n− 1 (5.2.43)
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In = −C∆Ψ̇n (5.2.44)
The Kirchhoff’s laws are applied considering, this time, the central mesh: the current
passing trough Ω is called again I0 so that the current through the first resistor R is
I0 − I1 up to the last that is I0 − I1 − ...− Ii − ...− In−1 = In. The mash laws are now:

ΩI0 = 2∆Ψ1 + Φ0 (5.2.45)

R(I0 − I1) = −∆Ψ1 + ∆Ψ2 + Φ1 (5.2.46)

...

R(I0 − I1 − ...− Ii) = −∆Ψi + ∆Ψi+1 + Φ1 : 2 ≤ i ≤ n− 1 (5.2.47)

...

RIn = −∆Ψn−1 + ∆Ψn + Φ1 (5.2.48)
Combining the above equations with eq. (5.2.43) and eq. (5.2.44), n coupled differential
equations are obtained:

∆Ψ̇1 = − I1

2C = −
( 1

ΩC + 1
2RC

)
∆Ψ1 + 1

2RC∆Ψ2 −
Φ0

2RC + Φ1

2RC (5.2.49)

...

∆Ψ̇i = − I2

2C = −−∆Ψi−1 + 2∆Ψi −∆Ψi+1

2RC : 2 ≤ i ≤ n− 1 (5.2.50)

...

∆Ψ̇n = −In
C

= −−∆Ψn−1 + ∆Ψn + ∆Φ1

RC
(5.2.51)

Written in matrix form as

˙

∆Ψ1

∆Ψ2
...

∆Ψi

...

∆Ψn


= − 1

2RC ·



1 + H
L(n−1) −1

−1 2 −1

−1 . . . . . .
. . . . . . −1

−1 2 −1

−2 2


·



∆Ψ1

∆Ψ2
...

∆Ψi

...

∆Ψn


− Φ1

2RC ·



0

0
...
...

0

2


(5.2.52)
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In which the terms Φ0
2RC and Φ1

2RC cancels again, the proportion between Ω and R is reflected
in the top left term of the dynamic matrix with H/L(n− 1) and the other terms of that
matrix are the same of the matrices of (5.2.29).

The solution method just used for the phase i can be applied to the system (5.2.52)
founding numerically, for every n, H and L selected, the corresponding results.

Studying the matrix M to find the eigenvalues, hence the dynamics of the system, it
is simply to observe the agreement with the matrix found by Lian and al. in the first
development of the stack electrode model [40]. That matrix share the same scope as the
matrix find in this work: describing the charging dynamics of a supercapacitor.

This is a demonstration of how a thermally charged supercapacitor has the same dynamic
behaviour as an externally charged one.

In particular the work cited found a relation between the time constant and the
geometrical variables of the system, that is still valid:

τn,ii = LλD
D
·
[(

2 + 0.75H
L

)
n− 1− 0.91H

L

]
(5.2.53)

It was obtained finding numerically the smallest eigenvalues of M , λ− = min{λ1, ..., λn},
for various n, in order to find different τn = 2RC/λ−. Then, observing graphically that
τn could be written as τn = LλD/D · (f1 + f2n), where f1 and f2 were obtained selecting
different H/L and performing two least-squares fits.

It is also important to remember that, in general, τn,ii is not the actual time constant
for all the electrodes, but it is the late time behaviour of them. In particular, the functions
of the surface charge of the different electrodes will contain a sum of exponential decays
terms of time constant τi = 2RC/λi, with the slowest term τn,ii, which guarantees the
necessity of wait ∼ 5τn,ii to have a complete charge.

As previously done, the capacitors are now considered as open circuit to calculate the
steady-state solution. For the phase ii it is possible to obtain a general result:

∆Ψi = Φ0

2 + (i− 1)Φ1 = Se∆T
2(1 + H

L
)

(
1 + i− 1

n− 1
H

L

)
: 1 ≤ i ≤ n (5.2.54)

It is interesting to notice how for the nth electrode in phase ii the potential is independent
on the geometry: ∆Ψn = Se∆T/2, confirming what was observed in the simulations.

From the notion of the potential differences, it is possible to calculate the total charge
present in the left electrode:

Qleft = 2C
n−1∑
i=1

∆Ψi + C∆Ψn (5.2.55)

substituting,

Qleft = C
[
Φ0

(
n− 1

2

)
+ Φ1(n− 1)2

]
, (5.2.56)

considering now the relation between Φ0 and Φ1 in the n electrode case,
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Φ0 = 2L(n− 1)
H

Φ1 :, (5.2.57)

including the definition of Φ0 (eq. 5.1.6), the total charge of the left electrode as function
of the applied temperature difference and geometry of the system is obtained:

Qleft = CSe∆T
1 + H

L

(
n− 1

2 + H

2L (n− 1)
)

(5.2.58)

If the complete n electrode circuit is thought as composed by one equivalent capacitor
per side, Cleft and Cright, in which the voltage generator in the center apply a voltage
equal to Se∆T , the potential drop over the two capacitors will be Se∆T/2. This permits
to divide the total charge accumulated in an electrode by the potential drop across it
to obtain the equivalent capacitance of the nanoporous electrode when a temperature
gradient is present. Following this route, the left equivalent capacitance is obtained.

Cleft = C
1

1 + H
L

(
2n− 1 + H

L
(n− 1)

)
(5.2.59)

In the case of a real supercapacitor in which n >> 1 the total left equivalent capacitance
is approximated as

Cleft ' 2nC
1 + H

2L
1 + H

L

(5.2.60)

This capacitance results quite different from the one of a supercapacitor charged by an
external potential, that it (2n− 1)C + C which, for high h can be simply approximated
as 2nC.

In particular, in the case of H/L >> 1, the thermo-charged supercapacitor reveals a
capacitance of nC, which is half the expected one. Conversely, in the case of thin electrodes
(H/L << 1) the capacitance is approximable to 2nC, which is equal to the original one.
Intuitively a large electrode will be affected more by the temperature difference inside it,
so the actual capacitance will be diminished by a shift in the charge density distribution
due to the Seebeck effect. The total capacitance of the two identical capacitors connected
in series is simply half the single ones

Ctot = Cleft
2 = C

1
2
(
1 + H

L

) (2n− 1 + H

L
(n− 1)

)
(5.2.61)

The experiments are used to measure separately the internal resistance of the circuit and
the capacitance and use then the RC value as time constant. For the case here presented
the time constant and the total capacitance were found directly from the EEC so that it
is is possible inversely to find the effective internal resistance as

Rint = τn,ii
Ctot
' Ω

(
1 + H

L

) 2 + 0.75H
L

2 + H
L

, (5.2.62)

where the equivalence LλD/D = ΩC/2 was used and the approximation for n >> 1 was
done. This effective internal resistance can be compared to the resistance that is ideally
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calculated applying simply the definition of resistance at this geometry

Rideal = L

Aσel

(
1 + H

L

)
= Ω

(
1 + H

L

)
, (5.2.63)

noticing that a coefficient (2 + 0.75H/L)/(2 +H/L) appears in the effective resistance,
showing how the presence of multiples electrodes slow down the dynamics with respect to
the expected one.

These conclusions are far from being experimentally proven, but it could results
interesting a thick electrodes supercapacitor which capacitance changes if thermally
charged (instead of externally charged), but it preserves the same dynamic of an electrically
charged one.

Phase iii

All the elements are now posed to calculate the phase iii behaviour of an n electrodes
circuit. The fact that the circuit is again open, assure that the dynamic matrix M for
phase i is valid to calculate the time dependence of phase iii, obtaining so the exact same
time constants τn found in equation 5.2.36.

To find the steady state-values, it is sufficient to divide the total charge Qtot by the
total capacitance of the electrodes 2C(n− 1) +C and multiply it by the single capacitance
of the electrode i, so that the charge will be distributed in the electrodes according to the
capacitance:

Qi = Qtot

2C(n− 1) + C
· 2C : 1 ≤ i ≤ (n− 1) (5.2.64)

Qn = Qtot

2C(n− 1) + C
· C (5.2.65)

from this values the potential difference is readily found for every i:

∆Ψi = Qtot

(2n− 1)C = Se∆T
1 + H

L

[n− 1
2 + H

2L (n− 1)]
2n− 1 (5.2.66)

The final potential difference measured between the electrodes at the end of the phase iii
will be so ∆V = 2∆Ψi, which if the same parameter of the simulation (H/L = 1/3 , n = 5)
are inserted, is

∆V = 0.8611Se∆T ,
very close to the value of the phase i and of the simulation (fig. 5.17).

5.2.3 Dynamics
The equivalent electrical circuit model developed and studied must be validated comparing
the results with the time-dependent FEM numerical results. The 5 electrode system
analysed in the previous sections is now compared with the corresponding EEC.

The figure 5.20 shows three different ways to model the development of the surface
charge in phase i: the dynamic simulation in which the temperature gradient builds up
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Figure 5.20: Numerical results (thin lines) and equivalent electrical circuit (thick lines)
for the dimensionless surface charge σλD/εSe∆T of electrodes vs the dimensionless time
tκD/n0.206H, during the phase i transitory.

just imposing T0 +∆T in +L+H, the simulation with instantaneous temperature gradient
and the EEC results.

The difference between the time-dependent heat equation results and the time-
independent one are comparable to the discrepancies seen in the two-electrodes case.
The time required to reach the steady-state is of the same order of magnitude, with a
difference of ∼ 10τn. This comes with no surprises: even if the number of electrodes
increases the charging time constant (τn ∼ n), the selected larger length of the system
increases the temperature-time (τT ∼ (L+H)2).

The accordance between the EEC and the simulation is good in terms of characteristic
times, but it misses some precision in the final steady-state values. The order of magnitude
is nevertheless the same, and the differences could arise from the numerical derivative
errors. The phase ii graph in figure 5.21 compares the phase ii EEC solution with the
simulation results. The accordance of the final steady-state values is now precise, probably
due to the sharper peaks of this phase, which permit the derivative near the electrodes to
be more precise and less influenced by the point of the mesh used to do it.

The dynamics was studied comparing the time constant resulting directly from the
eigenvalues of the matrix that represents the circuit. From those values the time constant
of the system results to be τ = 6.8L/Dκ. This was done in order to be more precise
remembering that, as stated in the original article, the precision of the formula (5.2.53)
is limited to a high number of electrodes and it deviates for small numbers, as 5. The
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Figure 5.21: Numerical results (thin lines) and equivalent electrical circuit (thick lines)
for the dimensionless surface charge σλD/εSe∆T for electrodes vs the dimensionless time
tκD/6.8L, during the phase ii transitory.

dynamic accordance is not perfect, the simulation required some time constants more to
reach the equilibrium, but the discrepancies are acceptable.

Figure 5.22: Equivalent electrical circuit results for the dimensionless surface charge
σλD/εSe∆T of the electrodes vs the time (s). The entire charging and discharging cycle
is represented.

The graphs of the charge density are no more necessary and they could result re-
dundant. In the two electrodes system, it was established the dynamic correspondence
with the surface charge, and no equivalent circuit can be used for comparison. The same
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consideration can be applied to the dynamic behaviour of the neutral density which is not
influenced by the presence of more electrodes.

To have a clearer picture of the complete cycle the EEC solution of all the four phases
combined is plotted in figure 5.22.

The four phases are clearly distinguishable, and the big difference in the dynamics of
phase i and iii with respect to the phase ii and iv is visible. It is also interesting to notice
how, in the third phase, the absence of the thermal effects permits the surface charges to
be superimposed and to discharge simultaneously.

From these graphs is also simple to imagine the behaviour of a high number of
electrodes. Apart from the nth one, which has half the capacitance and it is so separated
from the others, all the remaining n−1 electrodes will create a beam according to equation
(5.2.54), the lines will result separated by a surface charge difference ∆σ of

∆σ = CSe∆T
h

L+H
(5.2.67)

When the temperature gradient is then removed the beam will compact into a single
line with every n− 1 electrode having the same surface charge. They will consequently
discharge simultaneously.

Figure 5.23: Equivalent electrical circuit results for the dimensionless potential difference
between the nths electrodes ∆V/Se∆T vs time (s). The entire charging and discharging
cycle is represented.

The figure 5.23 confirms the experimentally measurable voltage difference observed in
phase ii, even in this case a resistance of value Ω was posed in the external circuit.
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Non-linear Systems

This chapter was developed in the context of the ASPRI project that aims to complete
the education with a research-focused approach. Thus, it intends to complete the work
done considering cases that go beyond the simple linear approximation used hereto, for
these reasons more "extreme" simulations were done. In particular, two non-linear cases
were analysed: the case of a high temperature and high concentration of solute, and the
case of a pore length that does not permit the full development of the EDLs, so a small
pores case.

6.1 High Temperature and High Concentration Sys-
tem

For the first case, the simulations were made with a temperature differences ∆T = 80K and
an initial concentrations of ions n0 = 1000mol/m3. The temperature and concentration
dependence of the other parameters must be now taken into account, and the Soret
coefficient is expressed in terms of the Eastman heat of transport for more precision (
α± = Q∗±/2kBT ). Here are listed the parameters chosen with their dependences:

Parameter Reference

D± = 1 · 10−9 + 5 · 10−11(T − T0)m2s−1 KCl in water [65]

Q∗− = 8.23 · 10−22 + 0.07 · 10−21(T − T0) J Cl in water [58]

Q∗+ = 4.11 · 10−21 + 0.07 · 10−21(T − T0) J K in water [58]

k = 0.6 + 1.34 · 10−3(T − T0)Wm−1K−1 Distilled water [67]

εr(T ) = 249.4− 0.78 T + 7.2 · 10−4 T 2 Distilled water [68]

εr(n+, n−) = 1− .5 · 10−4〈n〉+ 5.1 · 10−8〈n〉2 − 6.8 · 10−11〈n〉3 KCl in water [68]

Where 〈n〉 = (n++n−)/2. The geometry was also modified to reproduce a thin nanoporous
electrodes device: L = 500 nm , H = 50 nm and n = 5, so h = 12 nm.

The presence of a high concentration of ions shortens the Debye Length to 0.3 nm
letting the system be approximable with the model developed so far. In particular, the
short Debye length permits the EDLs to be fully developed in the smaller pores present
here, preserving the main hypothesis made.

97



6. Non-linear Systems

6.1.1 Numerical Results

Figure 6.1: Numerical solutions of the dimensionless neutral density cT0/2αm∆T vs
the dimensionless length x/(L+H) during the phases. The ions’ distributions are also
represented in the graph.

The presence of a high number of non-linearities in the parameters slightly modifies
the shape of the neutral concentration graph (fig. 6.1). When the temperature gradient is
present the solution is not flat but it is slightly deflected.

The charge density preserves its normal shape in the various phases represented in
figure 6.2, but the graph is no more perfectly symmetrical with respect to x = 0, due to the
temperature dependence of the parameters. In fact, the phase iii results are symmetrical
because the temperature difference is removed. The phase i maintains similar shape with
respect to the linearizable condition, but the absolute values of the maximum charge
density at the outer electrode is lower (0.03 vs 0.1).

The maximum values for phase ii are slightly lower than the usual (0.41 vs 0.5 at
the outer electrode, in dimensionless units), the origin of this difference is in the strong
dependence of the Debye length from the dielectric constant, that is dependent, in this
case, from temperature and concentration. The values of the third phase are instead
comparable (0.35 vs 0.41), signalling that the total charge accumulated in this case can
be calculated as before.

The charge conservation of the phase ii - phase iii transition is present only in the left
electrode. In particular, it is noticeable that in the right electrode the phase ii graph is
completely covered by the phase iii graph. This means intuitively that the integral of
the charge density (so the surface charge accumulated) is not conserved in the passage
between the phases.
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Figure 6.2: Numerical solutions of the dimensionless charge density ρT0/2αd∆T vs the
dimensionless length x/(L+H). A zoom of the left electrode is also represented.

This has a physical origin: the right electrode is connected to the ground so it can
balance its charge with respect to the left one, even after the circuit is open. This means
that modelling only the electrode not connected to the ground, to calculate the final
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charge present at the end of the charging cycle, permits us to understand the behaviour
of the entire device.

Figure 6.3: Numerical results of the dimensionless potential ψT0/2αd∆T vs the dimen-
sionless length x/(L+H). Zooms for the phase i and ii are also represented.

The potential follows the behaviour of the charge density obtaining results similar to
the more linear case, but with asymmetries and some differences (fig. 6.3). In phase i, the
potential in contact with the outer electrode is practically the same found before, instead,
in phase ii, the maximum value of the potential is lower than the one expected from
previous simulations, this is linked to the differences in the charge density distribution in
phase ii.

The absolute lower value of phase iii is instead similar to the one obtained previously,
confirming again the possibility to use the linear EEC model to understand the behaviour
of a real system.
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6.1.2 Dynamics
Regarding the dynamic behaviour a comparison must be made in order to address the
validity of the EEC for a more realistic model. As above, the simulations of the phase
i and ii dynamics will be done from the discharged state to have a more precise FEM
simulation.

Figure 6.4: Numerical results (thin lines) and equivalent electrical circuit (thick lines)
for the dimensionless surface charge σλD/εSe∆T for electrodes vs the dimensionless time
tκD/n0.206H, during the phase i transitory.

The phase i dynamics (fig. 6.4) is fairly similar to the one observed previously, but
the much smaller Debye length (0.3 nm vs 9.62 nm) alters the time needed to reach the
equilibrium. The temperature’s time constant is now two orders of magnitude bigger than
τn. From this data some conclusions can be drawn: the role that is played by the time
constant of the heat equation depends on the balance between the overall length of the
supercapacitor, the concentration, and the number of electrodes. Observing instead the
case of the instantaneous temperature gradient, compared to the EEC, it is possible to
state that the circuit reproduces clearly the simulation results, both in the dynamics and
in the final steady-state values.

A note must be made on the shape of the surface charge plot: taking as reference "σ1
instant T gradient", it is observable a change in the slope of the function, that deviates
from the pure exponential behaviour (visible in the σ1 EEC) due to the modification of
the dielectric constant during the charging, in response to the increase in the local density
of ions.
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Figure 6.5: Numerical results (thin lines) and equivalent electrical circuit (thick lines)
for the dimensionless surface charge σλD/εSe∆T for electrodes vs the dimensionless time
tκD/9.284L, during the phase ii transitory.

The figure 6.5 shows the comparison between the EEC and the numerical results of
phase ii. The vertical axes normalization and the values of the capacitances of the EEC
were done with the original parameter, so their values were not affected by the change in
temperature and concentrations.

The accordance both on the characteristic times and the absolute steady-state values,
it is not complete, but the order of magnitude is respected. This is due to the highly
non-linear behaviour of the system with all the parameters dependences. In particular,
the difference in the times can be understood with a simple exercise of scaling:

τn ∼ 1/κ ∼
√
ε ,

so that it is clear how the presence of a high concentration of ions reduces the dielectric
constant and consequently the characteristic times. Regarding the steady state values the
situation is similar:

σ ∼ ε

λD
∼
√
ε ,

which is reduced for the same reasons.
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6.2 Small Pores System
To Complete the possible cases that can be simulated, a numerical result in which
the double layers are not fully developed must be shown. The parameters, except for
L = 500 nm and H = 50 nm, are the same of the five-electrodes low-temperature analysis,
so the temperature dependence is not affecting the symmetry of the system. Having again
the Debye length λD = 9.62 nm and an h = 12 nm, it is obvious to conclude that the
EDLs will overlap in the pores. The simulations show the results listed below.

6.2.1 Numerical Results

Figure 6.6: Numerical solutions of the dimensionless neutral density cT0/2αm∆T vs
the dimensionless length x/(L+H) during the phases. The ions’ distributions are also
represented in the graph.

It is now trivial to state that the neutral charge (fig.6.6) is not affected by the new condition
and follows a linear trend, but the single ions density profiles are clearly overlapping.

Big differences arise when the charge density is plotted (fig.6.7): during phase i the
charge density behaves as expected, with the usual negative and positive parts. In phase
ii the maximum of the charge density in the outer electrode is almost identical to the
usual one, indicating that this parameter is particularly stable. It is curious that after the
equilibration of charges the maximum surface charge is slightly higher than in the non-
overlapping EDLs condition, but this does not mean that the surface charge accumulated
is higher.
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Figure 6.7: Numerical solutions of the dimensionless charge density ρT0/2αd∆T vs the
dimensionless length x/(L+H).

Figure 6.8: Numerical results of the dimensionless potential ψT0/2αd∆T vs the dimen-
sionless length x/(L+H).
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Looking at the potential (fig. 6.8), in phase i the difficulties in the development of
the EDLs create an almost flat profile, with a maximum value higher than previously
found. The profile of the potential in phase ii is not trivial, and difficult to understand:
the reservoir part is predictable, instead the nanoporous part cannot develop the usual
shape, which lets us conclude that a lower surface charge in the electrodes is present. The
phase iii potential is however respecting the superposition of effect.

6.2.2 Dynamics

Figure 6.9: Numerical results for the dimensionless surface charge σλD/εSe∆T of the
electrodes vs the dimensionless time tκD/n0.206H, during the phase i transitory.

In figure 6.9 is shown the dynamic behaviour of phase i for the small pores case, the
figure compares only the dynamic temperature gradient to the instantaneous temperature
gradient. This choice was made because the approximation used for the capacity in the
EEC is completely breached in this case and the comparison has no more sense. It is
therefore interesting to notice how, for the time-independent heat equation case, the need
to wait 5τn,i it is perfectly respected and the dynamic temperature case varies the results
of some units, but respect the order of magnitude.

The same accordance to the EEC time scale is observable in figure 6.10, which represent
the phase ii dynamics.
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Figure 6.10: Numerical results for the dimensionless surface charge σλD/εSe∆T of the
electrodes vs the dimensionless time tκD/9.284L, during the phase ii transitory.

Commenting now on the values of the surface charge both in phase i and ii, it is
noticeable that they are lower than the ones expected from the EEC. This happens
because, when the double layers are not complete, it is not necessary the same amount of
surface charge to compensate for the charge density, so the overall capacity accumulated
in the electrode is lower, making the system not useful in terms of efficiency.

The physical interpretation of these results it is difficult to state, in general when the
EDLs overlaps the system becomes highly non-linear and not analytically solvable.

Moreover, an electrochemical system in which both the potential and the surface
charge are not imposed does not have a clear solution, the two related quantities modify
themself in order to minimize the free energy, but the stable solution is not trivial. In
this case, the origin of both the potential and the surface charge is the Soret effect, which
relations with the electrical properties of a system are not totally clear.

Fortunately, this small pores systems are not ideal in order to exploit the maximum
energy from a temperature difference, with an exception cited in the introduction: cylin-
drical pores with a pore diameter of the order of 1nm. This particular case experimentally
evaluated and theoretically analysed to provide better specific capacitance can be useful
for a thermally chargeable supercapacitor. The idea is that, if the pores can contain
only the ions of the same charge, the ions with a higher Soret coefficient could results
inserted in the pore, and the ones with lower Soret coefficient remain outside. This could
improve a lot the surface charge stored, and consequently the efficiency. Further research
is necessary to demonstrate this hypothesis.

An overall conclusion on the limits in which the EEC is valid can be now made. The
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time constants found approximate reliably the simulation results, they only deviate in
phase i due to the time needed to establish the temperature gradient. This deviation is
not so relevant for the aim of the device because the majority of the charging time is
spent during phase ii. Moreover, to have optimal accordance with the numerical results,
it would be sufficient to use time-dependent voltage generators, which values grow over
time following the temperature time constant. Regarding the final values for the potential
and the surface charges, the accordance is optimal in case of low a temperature difference,
it deviates instead for the high ∆T case, preserving however the order of magnitude. The
case of small-pores electrodes deviates greatly from the EEC, but its importance is limited
due to the low surface charge this kind of system can contain, which makes it less useful
as a device for thermal energy conversion.
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Efficiency Analysis

Also this chapter was developed in the context of the ASPRI project, considering important
that the physic-focused study done previously was applied to a more engineering point of
view.

As declared in the introduction, the need for reliable, cheap ,and sustainable energy
sources give the fundamental reason to the work here presented. The system described
has the possibility to expand the range of these sources. In order to verify if this is the
case, it is so necessary to use the theoretical and numerical analysis made to calculate the
efficiency of the thermodynamic cycle. Understanding then if it could be enough to make
a thermally rechargeable supercapacitor a useful device to convert low-temperature heat
waste into electricity.

Some studies that calculate the efficiency of this kind of cycle were made [33]. The
disadvantage of these studies is however the necessity to base their data on the experiments
done. In particular, the capacitance and the charging times were taken from literature
and the geometries of the device, so the thickness of the nanoporus electrode with respect
to the reservoir, and the pore dimensions were fixed. The analysis that this work has
done permits now to use the correlation demonstrated, in terms of charging times and the
overall charge accumulated, to optimize the efficiency of the device.

The main difference between the efficiency calculation of a thermodynamic cycle of
this kind and the one for a solid-state thermoelectric device is that in the first case the
efficiency is the ratio between the overall thermal energy used Eth and the electrical energy
that is used inside a load Eel, instead of being the powers’ ratio:

η = Eel
Eth

The evaluation of these energies is less trivial than expected, especially if the aim is to
optimize the geometry of the supercapacitor.

7.1 Thermal Energy
The contributions to the thermal energy are four:

• The energy needed to keep the temperature difference between the sides of the
supercapacitor, so the heat flux times the time in which the gradient is maintained
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• The heat absorbed by the electrolyte during the initial temperature rise. More pre-
cisely the heat absorbed by the electrodes should be calculated too, but the carbon
electrodes have far less heat capacity than the electrolyte so it can be declarable
negligible.

• The Peltier heat: the particle flux generated during the charging process due to the
possibility of the ions to move towards the electrode creates a Peltier heat flux.

• The Joule heat, originated from the heat dissipation of the current flow, can be
considered to flow in both the direction so that only half of it helps to maintain the
temperature difference constant.

The heat flow can be simply calculated considering the thermal conductivity of the
electrolyte k and the temperature difference ∆T ,

q′′th = A

2(L+H)k∆T , (7.1.1)

This flux is multiplied by the time required to complete the charging process,

Eflux = A

2(L+H)k∆Ttch (7.1.2)

It is so evident how the dynamic study of the system becomes fundamental in order to
calculate the efficiency. The charging time tch is not unique, it depends on the various
configurations and timing the phases take but the order of magnitude can be safely
considered the one of 5τn,ii.

The heat absorbed by the electrolyte is trivially

Eabs = A(L+H)ηelectrolytecp∆T , (7.1.3)

that strongly depends on the geometry of the cell and the electrolyte choice, so its specific
heat capacity cp and its density ηelectrolyte

The Peltier heat is calculated as

EPel = Se(T0 + ∆T )
∫ tch

0
Ichdt (7.1.4)

where Ich is the charging current that flows in the circuit during phase ii. The integral
of the current in the charging time is therefore the total charge accumulated by the
supercapacitor, that, recalling equation (5.2.58), permits to express the Peltier energy in
terms of the geometry of the system

EPel = Se(T0 + ∆T )ACSe∆T
2
(
1 + H

L

) (2n− 1 + H

L
(n− 1)

)
' 3

4S
2
e (T0 + ∆T )∆TnAC , (7.1.5)

in which the approximation was don for high n and L = H.
The Joule heat is generated by the current flow in the supercapacitor and can be

calculated as
EJ = 1

2Rint

∫ tch

0
I2
chdt (7.1.6)
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where Rint is the total internal resistance of the supercapacitor, that considers the
slowdown of the ions due to the presence of multiples electrodes. Considering now a
current that decreases exponentially during the charging starting from the initial value
I0 = Se∆T/Rint, with a time constant RintCtot. From this consideration, the value of the
Joule heat recovered in the charging process is trivially

EJ = 1
4S

2
e∆T 2ACtot '

1
4S

2
e∆T 2nAC , (7.1.7)

where the time constant was the consider the one of the phase ii previously approximated
(eq (5.2.53)), neglecting the phase i timing and other configuration of the circuit in order
to obtain simply the right order of magnitude.

The comparison between these energies is fundamental to understand the relative
importance for the calculation of the efficiency. The main contribution is intuitively the
heat flux energy so it is necessary to compare the others with respect to it.

The ratio between the flux energy and the absorbed one depends on the geometry of
the system is

Eflux
Eabs

= k

ηelectrolytecp

5τn
2(L+H)2 , (7.1.8)

but it can be easily verified that, for the case of an aqueous electrolyte, so with the
parameter used in the simulations, the ratio between the fluxes is about Eflux/Eabs =
10−6n/L. Using now the parameters of a supercapacitor characterized and used to verify
the stack electrode model by Lian and al. [40], which shows an equivalent number of
electrode n ∼ 6 · 105 the ration becomes Eflux/Eabs = 6 · 10−1/L. The absorbed heat can
so be a relevant part of the heat necessary to complete the charging cycle. Help comes
from the possibility to recover that energy with complicated thermohydraulic cycles and
form the usual dimension of a supercapacitor, which, being of some millimetres, make the
absorbed heat thousandths times less than the flux heat, permitting to fully neglect it in
these cases.

To have an idea of the order of magnitude of the energy used, taking again the data
from Lian’s article, the heat used to maintain the temperature gradient it is on the order
of 21 · 106 J , where the area is chosen to be 1m2, the temperature difference 80K, the
conductivity 0.6Wm−1K−1 and the overall length of 3.2mm.

Another comparison can be made between the Peltier heat and the Joule heat, that,
using the approximations made, results simply

EPel = 3
(
T0

∆T + 1
)
EJ , (7.1.9)

To calculate the order of magnitude of these energies it is necessary to do some strong
approximations. The value of the Seebeck coefficient Se and the capacitance of the
single nanopore C are related to the electrolyte chosen. To do a general analysis of the
efficiency that can be valid for all kinds of thermally rechargeable supercapacitors it is
safer to use the maximum values found in literature. The Seebeck coefficient can be so
posed to the value of 10 mV/K, the relative dielectric constant to be the same of the
water (εr = 78.5), the Debye length of the order of the nm and the area of 1m2. These
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values are not connected in particular to any kind of electrolyte because, for example, the
polyelectrolytes or the ionic liquids have those values of Seebeck coefficient, but lower
values of the dielectric constant. The result for the Joule and Peltier energies obtained is
safely more than the one experimentally expected. With the parameters above declared
and a temperature difference of 80K, the Joule heat is EJ = 7.5 · 104 J . Consequently
the Peltier heat is EPel = 106 J .

These rounded up values are so negligible with respect to the flux heat, finally giving
the possibility to individuate safely in that component of the thermal energy the main
one that must be compared to the electrical energy.

7.2 Electrical Energy

The experiment taken as reference highlighted the presence of a leakage current during
charging and a loss of charge due to irreversible processes. The model of this work
considers instead an ideal case in which no irreversible processes take place. Thus, the
electrical energy stored in the thermodynamics cycle is easily calculated as Eel = Q2

tot/2Ctot.
However, the particularity of the system analysed affects the modalities in which this
energy is used. In particular, the load, so the object that uses the electric energy or the
national grid, can be posed in the external circuit either only in the discharging phase or
in both the charging and discharging phase. The first case respects the dynamics studied
for phase ii so that the charging time, that affects the thermal energy needed, coincides
with the one calculated, but the energy is used in the load only in the discharging phase.
The second case has the drawback of a longer charging time, so more thermal energy used,
but a current pass in the load both in phase ii and iv.

Figure 7.1: Electro-capacitive cycle for thermal energy harvesting.
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Another choice that can be made is related to phase i: it is possible to charge the
supercapacitor directly with the electrodes connected, avoiding the need for phase i. This
saves time, but the potential difference across the cell is not completely developed when
the cycle starts. As previously observed the characteristic time of phase i is however some
order of magnitude lower than the one of phase ii, so it does not affect excessively the
thermal energy needed to charge the supercapacitor. From a grid perspective it is better
to pass through phase i before charging the capacitor and let the current flow through the
load, in this way the potential during the charging decrease perfectly exponentially. If
instead the heat flux is used only for charging and then the load is connected, the phase i
can be avoided without risks.

For the sake of clearness, the two kinds o thermodynamics cycles are represented in
figure 7.1, in which the various phases are represented in a voltage-charge graph. From
the value of the potential differences across the electrodes at the end of phase iii found in
equation (5.2.66), the values of the maximum and the minimum of the effective voltage in
the graph are respectively

∆Veff = ±2Se∆T
1 + H

L

(
n− 1

2 + H
2L(n− 1)

)
2n− 1 , (7.2.1)

and the value of the total charge accumulated is Qtot = Se∆TCtot as previously.

The energy that passes in the load during the charging must be the same that is
discharged in the last phase, this explains the symmetry of the graph and the possibility
to use the voltage of the last phase as the one of the first. The graph of the short circuit
charge is represented so that phase i is absent and the energy used in the load is only
the one in the second quadrant. The graphical representation permits so to clearly see
that the electric energy exploited in the case in which a load is positioned in phase ii is
doubled with respect to the case of short circuit in phase ii.

To be more explicit the electric energy for each quadrant is

E∗el = C
(Se∆T )2(
1 + H

L

)2

(
n− 1

2 + H
2L(n− 1)

)2

2n− 1 (7.2.2)

7.3 Efficiency
From the concept of effective internal resistance Rint, effective total capacitance Ctot and
effective potential difference ∆Veff above explained it is possible to restate the dynamic
problem in terms of the equivalent circuit in figure 7.2.

This simple circuit permits to calculate the time constant τeff of the charging and
discharging phases as

τeff = (Rint +Rload)Ctot (7.3.1)
where Rload is the resistance of the load inserted in the external circuit.
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Figure 7.2: Sketch of the equivalent circuit in terms of total capacitance Ctot, internal
resistance Rint, load resistance Rload and effective voltage Veff .

Having established that the thermal energy used to maintain the temperature gradient
is the main contribution and it depends on the charging time, considering a time of 5 τeff
to charge the supercapacitor, the thermal energy used is so

Eth = A

2(L+H)k∆T5τeff (7.3.2)

τeff depends on two factors: the value of Rload and the choice on whether to pass through
phase i or not. It is so possible to define a generic τn that depends on this choice and can
be written as

τn = LλD
D

(
f
H

L
n+ 2n− 1− 0.91H

L

)
(7.3.3)

the parameter f is 0.75 if phase i is omitted, it is instead 0.95 if phase i is completed.
This discrepancy comes from the expression of τn,i of eq.(5.2.36), rewritten as τn,i =
(LλD/D)0.2n(H/L), and summed to τn,ii of eq.(5.2.53). The difference is however small
compared to the overall charging time. Once that this choice is made τeff depends only
on the load, in particular it depends on the ratio between the internal resistance and the
load resistance a = Rload/Rint, by

τeff = τn(1 + a) (7.3.4)

so that the efficiency η becomes

η =
bLCS2

e∆T
(
2n− 1 + H

L
(n− 1)

)2

5kτn
(
1 + H

L

)
(2n− 1)(1 + a)

(7.3.5)

where b is equal to 1 if the load is connected only in phase iv and it is 2 is it connected in
both the charging and discharging phase.
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It is so clear that two optimal situations are possible: the absence of the load, so b = 1
and a = 0 or the presence of a load that has the same resistance of the effective internal
one of the supercapacitor, obtaining b = 2 and a = 1. A bigger load in the charging
phase will increase the charging time leading to a more thermally expensive charging.
Both these situations lead to the same efficiency, which can be restated as an equivalent
dimensionless figure of merit ZT ∗ which depends only on the properties of the electrolyte
multiplied by a geometrical factor G and the Carnot efficiency ηCarnot:

η = ZT ∗GηCarnot , (7.3.6)

in which
ZT ∗ = S2

eσel(T0 + ∆T )
k

, (7.3.7)

G = 4
5

(
n− 1

2 + H
2L(n− 1)

)2

(2n− 1)(1 + H
L

)(f H
L
n+ 2n− 1− 0.91H

L
)
, (7.3.8)

ηCarnot = ∆T
T0 + ∆T (7.3.9)

The geometrical factor G is so the absent factor of the efficiency analysis done in literature,
and it justifies the strong approximations made to calculate the formula for the efficiency.
G is a function of the ratio between the electrode dimension, the reservoir dimension
and of the number of electrodes. The ratio H/L distinguishes between thick and thin
electrodes giving some hints on the optimal geometry, the number of electrodes n is
inversely proportional to the pore dimension. This factor does not take into account the
physical limits of the problem, for example, the pore dimension cannot be less than about
1 nm and it is known that if it is small enough to limit the development of the EDL the
capacitance used is no more valid, so when the evaluation of the optimal geometry is done,
some limits on the parameters must be posed.

Before starting the optimization a first look at the formula permits to notice that both
the numerator and the denominator are proportional to n2 and (H/L)2. This means that
for low pore dimensions and thick nanoporous electrodes the efficiency reaches a plateau
because the gains in the charge accumulated are balanced by the higher charging times
and so in the greater thermal energy used.

The limits of the factor G are readily calculated:

• if a planar capacitor is used, n = 1 and H = 0 so that

G = 1/5 = 0.2 (7.3.10)

• if a nanoporous electrode capacitor is used, n is much bigger than 1, so that the
terms that are not multiplied by n can be neglected, obtaining

G ' 2
5

(
1 + H

2L

)2(
1 + H

L

) (
2 + f H

L

) (7.3.11)

distinguishing the case for thin nanoporous electrodes (H/L << 1) and thick
nanoporous electrodes (H/L >> 1) we found respectively G = 1/5 = 0.2 and
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G = 1/(10f) which varies between 0.133 and 0.105 selecting the two different values
of f . The function is monotonous and decreasing so that no maximums can be
found in this approximation.

Figure 7.3: Geometrical factor G vs the ratio between the nanoporous electrode and the
reservoir length H/L.

These considerations on the geometrical factor lead to the particular conclusion that a
planar capacitor can have better efficiency than a nanoporous carbon one. This is partially
due to the approximation made, but it is also linked to the intrinsic high charging times
of a supercapacitor. However as it is possible to see in figure 7.3 for a thin nanoporous
electrode supercapacitor the loss in efficiency is very limited and it is compensated by the
practical need to increase the total charge accumulated and the possibility to optimize
the dynamics linked to, for example, the thermohydraulic time constants.

The geometrical factor G becomes so a useful tool in order to build a device that can
be adapted to the needs of the overall plant, so that it is easy to imagine a supercapacitor
with a large reservoir L and a thin nanoporous electrode in which the pores’ dimensions
are small enough to have a high number of it, but big enough to accommodate for the full
development of the EDL.

The dimensionless figure of merit ZT ∗ is related only to the physical behaviour of the
electrolyte, in particular, as for the case of the thermoelectric semiconductors devices, it
is proportional to the squared Seebeck coefficient Se, the electrical conductivity σel and
inversely proportional to the thermal conductivity k.

The big difference with respect to the solid-state case is that the electrical and the
thermal conductivity are not strictly related as in the case of the metals in which the
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electrons bring both heat and charge linking the two conductivities. The thermal con-
ductivity of molecular liquids is instead much poorly linked to the electrical conductivity,
in fact, some models show that the thermal conductivity is directly proportional to the
viscosity [69], instead the electrical conductivity is proportional to the mobility and the
concentration of the ions. Moreover, the thermal conductivity of the liquids are always
on the order of 0.1− 1Wm−1K−1 and the Seebeck coefficients can reach values of tens
of mVK−1 which are respectively much lower and much higher than the usual values
of a solid material. However these advantages are compensated by the low electrical
conductivity of the electrolytes, in fact, that is usually far smaller than the ones of a
semiconductor which are of the order of 105 Sm−1, a typical value of an ionic liquid is
for example 0.1− 3 Sm−1 [70], which is similar to the one of a 1M potassium chloride
solution in water that is about 3 Sm−1. Some exceptions can be obtained by mixing ionic
liquids and water reaching conductivities of even 100Sm−1, but these solutions don’t have
the high Seebeck coefficient values needed [71].

With the values above cited and considering that the application of the device is
in the temperature range of 100 °C so 373 K, the dimensionless figure of merit of a
hypothetical optimal electrolyte can be 0.373 where a Seebeck coefficient of 10mVK−1,
thermal conductivity of 0.1Wm−1K−1 and a conductivity of 1 Sm−1 were chosen. This
example is made to have a clearer perspective of the actual possible efficiency of this
kind of device, which, considering an optimization of the geometrical factor that makes it
G = 0.2, is in the range of 7% of the Carnot efficiency. It must be noticed that the figure
of merit in analysis comes from the EEC, so it holds with good precision only in case of
dilute electrolyte in low thermal gradient in which the solution can be linearised. If others
types of electrolyte such ionic liquids or polyelectrolytes are chosen, the values obtained
can only approximate the order of magnitude. Moreover, as stated above, the system is
ideal so a real system, with irreversible processes, will have an even lower efficiency.

In addition, these hypothetical values are not present in the current literature, the
best electrolytes present have ZT ∗ of the order of 10−2 which returns the 0.2% of the
Carnot efficiency [33].

It is so clear that, in order to have a device that can help in the production of energy,
an electrolyte with a figure of merit in the order of the unity must be found. Considering
that the thermal conductivity for the liquids cannot be reduced too much, it is necessary
to increase the electrical conductivity maintaining the already optimal results for the
Seebeck coefficients.

The efficiency formula here calculated can so help principally for the purpose of the
geometry optimization, in particular in the choice of thin electrodes. Is instead beyond
the scope of this thesis to overcome the limitation of the dimensionless figure of merit,
being mainly a matter of materials choices and chemical optimization.
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This Thesis Work was developed in the framework of the Seebeck effect in liquid systems.
The aim was to understand the microscopic internal behaviour of a supercapacitor charged
with low-temperature heat sources. Different methods were applied and modified in order
to fulfill the needs of this particular device.
Starting from the linearisation used by Stout and al.[58] to solve the PNP equations
between two planar electrodes in open circuit, a novel analytical solution was found for
the case of short circuit condition. This solution, confirmed then by numerical simulations,
permitted to evaluate the potential and, more importantly, the surface charge accumulated
at the electrodes as a function of the temperature difference applied. Consequently, the
capacitance of this particular kind of double layer was found to be approximable by the
usual Poisson-Boltzmann EDL specific capacitance C = ε/λD. Thanks to this finding, an
equivalent electrical circuit, that represents the electrochemical capacitor, was developed.
In particular, this EEC has the new characteristic of having the voltage generator inside
the electrolyte part of the circuit, to account for the thermo-voltage that the Seebeck
effect produces. This circuit was then numerically validated, both from a dynamic and a
steady-state point of view, showing how, with its simple algebraic solution, it is possible to
understand the overall behaviour of a complex system such as a thermoelectric capacitor.
The focus was then shifted towards the nanoporous electrodes scenario, modelled with the
Stack Electrodes Model (SEM), previously developed by Lian and al. [40]. The SEM was
initially simulated in the simple case of a two-electrodes system, finding surprisingly that a
negative charge density appears in the cold electrode. This result was firstly considered an
error of the boundary conditions imposed, but then, after some discussions in the research
group, it was explained considering the balance between the charge conservation in the
nanoporous electrode and the potential induced by the Seebeck effect. The two-electrodes
setup was so fully simulated and represented by the EEC, in which, in this case, voltage
generators were present also between the electrodes.
Thus, with the basis posed by the simple systems studied before, a general solution for an
n-electrodes system was found. The dynamics and the steady-state of both the open and
closed circuit conditions was then analysed. It was found that the charge dynamics of a
thermally recharged supercapacitor coincides with the one of an electrically charged one,
confirming the experimental results. This was proven simply by noticing how the ordinary
differential equations systems originated by the EEC is solved by a dynamic matrix, that
coincides with the one found by Lian and al. The validity of the time constants found is
so linked to the validity of Lian’s model. Starting from the EEC, it was also possible to
evaluate the effective capacitance, noticing how the thermal gradient present inside the
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nanoporous electrodes reduces it from its original value, due to the non-constant potential
inside the electrodes.
In the context of the deepening of the ASPRI project in which this Thesis was made, the
limits of the linear EEC were found, simulating the cases of high temperature gradients,
together with high concentrations, and the case of electrodes with small pores. The
accordance between the circuit solution and these "extreme" cases is surprisingly good.
The circuit can predict the right order of magnitude of both the time constants and the
steady-state values in the case of high temperature and high concentrations, explaining
instead only the dynamic of the system in the small pores case.
Also in the context of ASPRI project, the efficiency of the thermodynamic cycle was
calculated and optimized. The importance of the definition of the charging times is evident
when the thermal energy used must be calculated because the majority of the thermal
energy is spent for maintaining the thermal flux. The effective capacitance resulted
instead fundamental to calculate the actual electrical energy accumulated by the system,
that differs from the one expected if a voltage equivalent to Se∆T is applied. These
two contributions permitted to find a function for the efficiency which is the product of
an equivalent dimensionless figure of merit ZT ∗, a geometrical factor G and the Carnot
efficiency. The geometrical factor was used to optimize the configuration of the system to
obtain the maximum efficiency, in particular, it can be noticed how both the charging
time and the electrical energy depends linearly on the number of pores n− 1, so that in a
real supercapacitor these factors compensate each other, leaving only to the proportion
between the nanoporous electrodes’ thickness and the overall length the task to optimize
the efficiency. It was surprisingly found that the optimal configuration consists of either a
thin nanoporous electrode or a planar electrode, both of which have G = 0.2. Thus, it
is ZT ∗ the factor to work on. Considering that the liquids have already a low thermal
conductivity and some experiments showed Seebeck coefficients of the order of 10mV , it
is necessary to work on the electrical conductivity that, being different order of magnitude
lower than the semiconductor’s one, limits the ZT ∗.

Beyond the, already cited, lack of knowledge on the origin of the Soret effect, other
future researches are hoped to expand and complete the model presented in this work.
The experiments show that the systems with higher Seebeck coefficients are not based
on aqueous solvent, but instead on ionic liquids or on polyelectrolytes. The effects of a
temperature gradient on these kinds of electrolyte should be investigated and the stack
electrodes model should be so adapted.
It is also known that the Seebeck effect is increased, or decreased, by the temperature
dependence of the interaction potential between the particles and the surfaces of the
electrodes [47]. In certain cases, this interaction is so strong that the same electrolyte can
have a negative Seebeck coefficient, instead of a calculated positive one, when a particular
material is used as electrode [45]. This added potential should be so taken into account,
the EEC developed can be a strong tool to model the system because it should be sufficient
to modify the voltage generated to consider the added potential difference.
Furthermore, some experimental measures and their theoretical interpretations show
how supercapacitors with an average pores size of some nanometre, when charged, don’t
develop an EDL at the interface, accommodating only the counterions inside the pore. It
should be so investigated if the same effect happens in case the of a thermal charge and if
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this can increase the efficiency of the cycle.
Finally, it would be also interesting to evaluate the dynamics of the system if the tempera-
ture gradient is alternated harmonically. Considering the high thermal-voltages obtainable,
an alternating temperature difference could lead to an alternated voltage which could, in
turn, save thermal energy and increase efficiency.

In conclusion, it is hoped that the present Thesis Work could give a contribution to the
novel research field of the study of thermoelectric effects in liquids. As highlighted above,
multiples routes are being followed with the aim to create a reliable and cheap device
that could convert low-temperature heat waste into electricity. The model here developed
should so be improved in order to establish if a thermally rechargeable supercapacitor
should be one of the paths to follow.
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