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CHAPTER 1

Introduction

1.1 Background and significance

Over the past few decades, the paradigm of personalized medicine has revolutionized
the healthcare industry. At the cornerstone of this transformation is the widespread
adoption of medical imaging techniques, such as computed tomography (CT) and mag-
netic resonance imaging (MRI). These advanced imaging systems, in conjunction with
efficient image reconstruction algorithms, offer high-resolution 3D anatomical visual-
izations and functional tissue information. In recent years, medical imaging has pro-
gressed beyond its traditional role as a diagnostic tool, and it has now become a preva-
lent component in the realm of clinical sciences, central in patient care and treatment
planning. The integration of medical imaging into clinical practice has opened up new
avenues for personalized and precise medical treatment, allowing for the individual-
ized evaluation of each patient’s unique anatomy and physiology.
The utilization of medical imaging goes beyond mere visual inspection, it provides a
vast amount of data that can be analyzed for quantifiable information. The field of
radiomics has seen the development of computer-aided tools that are capable of ana-
lyzing digital medical images and extracting meaningful quantitative features. These
features, which can be based on attributes such as object intensity, shape, texture and
wavelets, provide valuable information that can be used to improve healthcare out-
comes in a multitude of applications [1]. Furthermore, the extraction of more complex
quantitative features and biomarkers from medical images holds immense potential for
advancing the field of personalized medicine. The ability to extract and analyze such
information from medical images can significantly enhance the accuracy of clinical de-
cision making, facilitate early disease detection and characterization, and provide more
individualized treatment options for patients.

When designing an intervention, medical professionals must assess the internal
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anatomical structures of the patient, in order to formulate a plan that optimizes the
procedure’s strategy and steps. Medical imaging provides a visual representation of
the targeted area, allowing clinicians to identify the optimal approach. Moreover, an
integrated use of medical imaging becomes critical in the context of minimally invasive
procedures, where the field of view is restricted during the intervention [2]. In such
scenarios, pre-procedural planning based on medical images becomes indispensable.
A detailed analysis of a patient’s pre-procedural scans is essential when the treatment
involves the implantation of prosthetic devices. The proper sizing of these devices is
contingent upon the patient’s anatomy, and as such, a thorough analysis and evalua-
tion of medical images is mandatory in order to make an informed decision. In essence,
the integration of medical imaging into the decision-making process is of utmost im-
portance and plays a pivotal role in ensuring the success of the intervention.
Medical imaging is also used during minimally invasive procedures as it serves as a vi-
sual aid for physicians to accurately place instruments and devices within the body of
the patient [3]. The use of medical imaging enables the identification of key anatomical
landmarks and structures to target, supporting the surgeon in making more informed
decisions during the intervention. This leads to an improvement in the success rate of
the procedure and reduction in the associated risks. Overall, medical imaging plays
an integral role in facilitating minimally invasive procedures, contributing to improved
patient outcomes and a safer medical environment.
Medical images have been widely utilized to create and inform computational mod-
els for non-invasive functional characterization of tissue with an emphasis on preci-
sion. These image-based numerical simulations leverage patient-specific image data to
construct high-fidelity digital replicas of the patient, referred to as "digital twins" [4].
This approach enables the development of large-scale in silico trials, which provide a
cost-effective alternative for validating medical devices. The integration of medical im-
ages in the formation of these digital twins enables a more accurate representation of
a patient’s anatomy and physiology, providing a robust foundation for simulating the
functional properties of tissues. These simulations are critical in advancing the field of
medical technology, as they allow for the evaluation of medical devices under a wide
range of conditions without the need for costly and time-consuming physical trials.
This approach has the potential to significantly reduce the costs associated with medi-
cal device validation, while also accelerating the development and implementation of
new technologies [5, 6].
Medical imaging has become an indispensable tool for functional assessment of pa-
tients, particularly in the context of risk stratification [7]. Different functional imaging
modalities can provide valuable insights into the function of various organs and sys-
tems in the body, including oxygen consumption of a tissue, blood flow dynamics,
electrophysiology, enabling medical professionals to make better informed decisions
regarding patient care.

The advancement of clinical care has led to a significant increase in the variety and
amount of biomarkers and features that can be extracted from modern medical imag-
ing. This has resulted in an increasingly complex and task-specific landscape for the
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analysis of medical imaging data. Traditional radiomics analysis tools are not well-
suited to address this issue, creating a gap between the image data and the physician
responsible for making informed treatment and care decisions. To bridge this gap, there
is a need for the development of new tools that can improve upon four key character-
istics: accuracy, automation, speed, and consistency. Machine learning (ML) and data-
driven approaches have the potential to greatly enhance these properties and provide
improved analysis of medical imaging data.

1.2 Machine learning

ML is a discipline within the field of artificial intelligence (AI) that focuses on the de-
velopment of algorithms that can learn from data and make predictions or decisions
without being explicitly programmed. The goal of ML is to map inputs to outputs, and
to do so, ML models extract features from the input data that are relevant to the specific
task at hand. The performance of a model in ML is defined as a loss (or cost) func-
tion that measures the discrepancy between the model’s predictions and the ground
truth. The parameters of the ML model are then adjusted in order to minimize the loss
function, with the most commonly used approach being gradient-based optimization
algorithms. Based on the nature of the training data, ML can be divided into two main
approaches: supervised and unsupervised learning.
In supervised learning, the model is trained using a labeled dataset where the ground
truth outputs are known. Supervised models learn by being explicitly exposed to a
large number of inputs-outputs pairs, known as training set. Validation is then carried
out by evaluating the trained models on new, unseen data samples. One of the most
successful applications of supervised learning in medical image analysis is automatic
semantic segmentation. The introduction of convolutional neural networks (CNNs)
has enabled automatic segmentation of a wide range of anatomical structures in med-
ical images [8]. The main building blocks of a CNN are convolutional layers, which
apply a series of filters to the input image to extract features. These filters slide over the
input, generating feature maps that are progressively aggregated within the deep lay-
ers of the model. The application of non-linear activation functions on the feature maps
allows a CNN to learn complex relations between input and output. During training,
a CNN processes a large number of sample images and compares the automatically
segmented anatomy with the corresponding ground truth segmentation. After train-
ing, the CNN can be validated on a test set, which consists of images that were not
used during training, to assess its performance. However, it is important to note that
semantic segmentation only provides direct quantitative information on the volume of
the segmented object and does not fully bridge the gap between images and the quan-
tification of features that are directly involved in the task at hand.
In unsupervised learning, the model is trained using an unlabeled dataset, and the
goal is to learn a useful representation of the data. Unsupervised learning approaches
enable the extraction of information from data without prior knowledge or explicit su-
pervision. This approach is designed to uncover underlying patterns and relationships
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within the data, ultimately learning to map inputs to outputs through the identifica-
tion of informative features. The learning process is accomplished without the use of
a ground truth-dependent loss function, which is a hallmark of supervised learning.
Instead, unsupervised methods often involve clustering, dimensionality reduction, or
generative models to create a useful representation of the data. One of the key ad-
vantages of unsupervised learning is its ability to identify patterns and structures in
the data that are representative of the data. Successful applications of unsupervised
learning also include denoising approaches based on neural networks.

1.3 Structure of the thesis

The present thesis is highly interdisciplinary in its nature, and various biomedical ap-
plications are at the center of this work. In each chapter, a specific application is ad-
dressed. The overarching rationale behind the development of this thesis was to devise
novel solutions to challenges that emerge in precision medicine. In particular, we focus
on improving the extraction of biomedical quantities from medical image data. Two
imaging modalities are herein taken into account: 3D CT (for quantification of mor-
phological biomarkers, Part I) and 4D flow MRI (for quantification of hemodynamic
biomarkers, Part II). To do so, we employ data-driven methods, including both super-
vised (Part I) and unsupervised techniques (Part II). A graphical overview of the imag-
ing modalities, methods, computed biomarkers and addressed applications is shown
in Figure 1.1.

‎Data-driven 
‎approaches for 

‎quantification of 
‎complex biomarkers 
‎from medical imaging

‎Methods

‎Supervised
‎(Part I)

‎Convolutional neural 
‎networks

‎Unsupervised
‎(Part II)

‎Statistical shape modeling

‎Implicit neural 
‎representations

‎Biomarkers

‎Morphology
‎(Part I)

‎Aortic arch
‎(Chapter 2)

‎Aortic root
‎(Chapter 3)

‎Brain ventricles
‎(Chapter 4)

‎Hemodynamics
‎(Part II)

‎Aortic velocity profiles
‎(Chapter 5)

‎Aortic flow and wall shear stress
‎(Chapter 6)

‎Applications

‎Thoracic endovascular 
‎aortic repair (TEVAR)

‎(Chapter 2)

‎Transcatheter aortic valve 
‎implantation (TAVI)

‎(Chapter 3)

‎External ventricular 
‎drainage (EVD)

‎(Chapter 4)

‎In silico trials
‎(Chapter 5)

‎Risk stratification
‎(Chapter 6)

‎Imaging

‎3D CT
‎(Part I)

‎4D flow MRI
‎(Part II)

Figure 1.1: Graphical overview of the methods, applications and anatomical districts
covered in this thesis.

1.3.1 Addressed applications

This thesis is divided in two parts, and each part is divided into chapters. An outline
of the biomedical applications addressed in this work is shown in Figure 1.2
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Part I presents three distinct applications of supervised learning techniques for accu-
rately quantifying anatomical features to facilitate intervention planning and execution.

Chapter 2 focuses on the morphological characterization of the aortic arch for pre-
procedural planning of thoracic endovascular aortic repair (TEVAR), a minimally inva-
sive procedure used to repair a thoracic aortic aneurysm or dissection. During TEVAR,
a stent is fit inside the damaged part of the aorta to provide reinforcement. Feasibil-
ity assessment and planning of TEVAR require CT-based analysis of geometric aortic
features to identify adequate landing zones (LZs) for endograft deployment. However,
taking the necessary measurements is complex, time-consuming and suffers from low
repeatability. This chapter describes the development of a fully automatic pipeline pro-
cessing CT images of the thorax, performs automatic segmentation of the aorta and
pulmonary artery via a CNN with a 3D Unet architecture, and operates a sequence of
differential geometry post-processing steps to extract aortic morphological features that
are relevant for planning TEVAR.

Chapter 3 follows the development of Chapter 2 and concerns the automatic anatom-
ical analysis of the aortic root from CT images, aimed at improving transcatheter aortic
valve implantation (TAVI) pre-procedural planning. TAVI is a minimally invasive heart
procedure to replace a stenonic aortic valve. During this intervention, a new valve
is inserted without removing the old, damaged valve. Choosing the correct device
and understanding the patient-specific anatomy is crucial for the success of the pro-
cedure, and a proper planning is based on morphological measurements of the aortic
root. However, performing a meticulous pre-procedural assessment is time-consuming
and affected by inter-operator variability. This chapter describes a devised solution that
includes two CNNs for segmentation of the aortic root and robust landmark detection,
allowing for quantification of aortic root metrics involved in planning of TAVI.

Chapter 4 describes a metholodogy to support neurosurgeons during external ven-
tricular drain (EVD). EVD is the procedure of choice for treating hydrocephalus, a neu-
rological disorder caused by an abnormal buildup of cerebrospinal fluid in the ventri-
cles (cavities) deep within the brain. During EVD, the neurosurgeon inserts a draining
catheter into the brain aiming at the Foramen of Monro (FoM), a small area at the turn
of the brain ventricles. Given the extremely limited visibility of the operating field and
the small dimensions of the procedural target, EVD is associated to a high chance of
complications. This chapter described a workflow for EVD support based on a CNN
for automatic segmentation of the brain ventricles, detection of procedural target, and
integration within a mixed reality application for holographic visualization of brain
structures.

Part II focuses on extraction of hemodynamic characteristics in the ascending aorta
using unsupervised data-driven methods.

Chapter 5 concerns the development of computational models for in silico trials and
addresses the scarcity of realistic flow conditions for building digital twins. In fact,
computational models can drastically accelerate the development of new drugs and
medical devices, to reduce, refine and replace tests on animals and clinical trials, and
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to improve the safety of medical products. To obtain reliable results from numerical
simulations of blood flow, using realistic inflow boundary conditions plays a crucial
role. Nonetheless, such data are difficult to find and limited in their number. This
chapter describes the usage of principal component analysis (PCA) to build a statistical
shape model of blood flow velocity profiles in thoracic aortic aneurysm, suitable to be
used for realistic numerical simulations and in silico trials.

Chapter 6 concerns the quantification of hemodynamics from 4D flow MRI, an
imaging technique that provides time-resolved, 3-directional blood flow velocity field
measurements in an anatomical district of interest. Velocity fields measured by 4D
flow are affected by noise and suffer from low spatio-temporal resolution, dramati-
cally limiting the applicability of this imaging modality for near-wall quantity (e.g.
wall shear stress (WSS)) extraction and hemodynamics-based risk stratification. This
chapter describes the development of a neural network-based approach for denoising
and super-resolution of blood flow velocity fields measured by 4D flow MRI; the de-
scribed method is a novel solution for rapid and accurate quantification of hemody-
namic biomarkers in thoracic aortic aneurysm.
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Figure 1.2: Graphical outline of the thesis. The present work encompasses a variety of
biomedical applications; the addressed clinical problem, employed methods and solu-
tions are outlined for each chapter.
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1.3.2 Aim of the thesis

The overarching objective of this thesis is to develop data-driven and ML-based tools
for analyzing medical images, with the aim of extracting quantitative features that are
quickly and effectively utilized for a specific biomedical application. The approaches
devised in the present work aimed to provide automatic assessment of both anatomical
(Part I) and functional (Part II) features and biomarkers. We employ supervised learn-
ing approaches to address anatomical or morphological assessment to either support
pre-procedural planning for minimally invasive cardiovascular interventions (Chap-
ters 1 and 2), or assist neurosurgeons during procedures (Chapter 3). Then, we make
use of unsupervised learning methods to extract functional characteristics, namely,
hemodynamic features in the ascending aorta, with the aim to boost accurate develop-
ment of digital twins for in silico trials (Chapter 4), and compute biomarkers for more
accurate risk stratification (Chapter 5).
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CHAPTER 2

A deep learning-based and fully automated pipeline for thoracic aorta

geometric analysis and planning for endovascular repair from computed

tomography

Based on:
Saitta, S., Sturla, F., Caimi, A., Riva, A., Palumbo, M. C., Nano, G., Votta, E., Della Corte, A.,
Glauber, M., Chiappino, D., Marrocco-Trischitta, M., & Redaelli, A. (2022). A deep learning-
based and fully automated pipeline for thoracic aorta geometric analysis and planning for en-
dovascular repair from computed tomography. Journal of Digital Imaging, 35(2), 226-239.



Chapter Summary

Feasibility assessment and planning of TEVAR require CT-based analysis of geomet-
ric aortic features to identify adequate LZs for endograft deployment. However, no
consensus exists on how to take the necessary measurements from CT image data. We
trained and applied a fully automated pipeline embedding a CNN, which feeds on 3D
CT images to automatically segment the thoracic aorta, detects proximal landing zones
(PLZs), and quantifies geometric features that are relevant for TEVAR planning. For 465
CT scans, the thoracic aorta and pulmonary arteries were manually segmented; 395 ran-
domly selected scans with the corresponding ground truth segmentations were used
to train a CNN with a 3D U-Net architecture. The remaining 70 scans were used for
testing. The trained CNN was embedded within computational geometry processing
pipeline which provides aortic metrics of interest for TEVAR planning. The resulting
metrics included aortic arch centerline radius of curvature, PLZ maximum diameters,
angulation and tortuosity. These parameters were statistically analyzed to compare
standard arches vs. arches with a common origin of the innominate and left carotid
artery (CILCA). The trained CNN yielded a mean Dice score of 0.95 and was able
to generalize to 9 pathological cases of thoracic aortic aneurysm, providing accurate
segmentations. CILCA arches were characterized by significantly greater angulation
(p=0.015) and tortuosity (p=0.048) in PLZPLZ 3 vs. standard arches. For both arch con-
figurations, comparisons among PLZs revealed statistically significant differences in
maximum zone diameters (p<0.0001), angulation (p<0.0001) and tortuosity (p<0.0001).
Our tool allows clinicians to obtain objective and repeatable PLZs mapping, and a range
of automatically derived complex aortic metrics.
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2.1 TEVAR preprocedural planning

TEVAR represents the preferred approach for the treatment of pathologies of the de-
scending thoracic aorta, including aortic aneurysm and dissection [9] . Advancements
in endograft engineering and design have allowed the application of this minimally
invasive technique also for the treatment of aortic disease involving the proximal tract
of this vessel, namely the aortic arch. However, despite the favorable short-term out-
comes with respect to surgery, TEVAR of the aortic arch still carries a significant risk of
medium- and long-term complications, including endoleak, endograft migration and
collapse [10, 11], likely due to its peculiar geometric and fluid-dynamic features [12].
As of today, no standard risk assessment tool exists for arch TEVAR, but a thorough
preoperative decision-making process is considered crucial for an uneventful endograft
deployment, and a durable clinical success [13, 14, 15]. Feasibility of TEVAR and cor-
rect endograft sizing are based on measurements of Ishimaru’s proximal landing zones
[16], i.e., the aortic wall sections corresponding to potential endograft apposition sites,
during pre-procedural planning. A minimum length of 20 mm, and maximum diame-
ter of 40 mm are required for the proximal and distal landing zones to ensure adequate
endograft apposition, and a variable stent graft diameter oversizing is recommended
based on aortic disease [13, 14]. These criteria, however, neglect additional geometric
parameters, such as angulation and tortuosity, which proved to be associated with an
increased risk of endograft failure after repair, and therefore allow to identify hostile
landing zones for TEVAR [11, 17, 18]. Moreover, the presence of anomalous aortic arch
configurations may further complicate TEVAR planning. Of note, arches with a com-
mon origin of the innominate and left carotid arteries (CILCA) were shown to have a
higher risk of developing thoracic aorta disease [19], and to be associated with dismal
clinical outcome after TEVAR [20]. Interestingly, both findings are apparently related to
the consistent and peculiar geometric and fluid-dynamic pattern of proximal landing
zones of the CILCA arch [21, 22]. Contrast-enhanced CT represents the preferred imag-
ing modality [13, 23] to assess the pre-procedural aortic geometry, but no consensus
nor detailed guidelines exist on how to extract the necessary measurements from CT
image data. Such an analysis requires manual detection and definition of anatomical
landmarks [23], and in some cases measurements are manually taken directly on 2D CT
image slices, thus preventing a true and accurate 3D characterization [24]. In fact, the
inherent 3D nature and complexity of the anatomical data, together with the high inter-
operator variability, can significantly affect the measurements, thus hindering a repeat-
able geometry-based pre-procedural planning for TEVAR. Nonetheless, volumetric CT-
based segmentation of the thoracic aorta can provide a 3D model on which the relevant
geometric parameters can be measured objectively and systematically. However, this
is a time-consuming process which is rarely carried out in clinical practice. Recent ad-
vances in deep learning algorithms for computer vision have allowed for automating
complex tasks involved in medical image analysis, including fully automatic segmen-
tation [25]. In particular, CNNs have achieved state-of-the-art results on a wide range
of anatomical structures, including brain tumor [26], left atrium [27], liver [28] and oth-
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ers belonging to the Medical Segmentation Decathlon Dataset [29]. A CNN can learn
to perform segmentation through a training set, i.e., by iteratively processing a large
amount of sample images, comparing the automatically segmented anatomy vs. the
corresponding ground truth segmentation, and refining the tuning of the parameters to
minimize the observed mismatch. After training, a CNN can be validated with a test
set, i.e., by processing completely new images unused during training. In this study,
we developed and applied a fully automated pipeline that feeds on 3D CT images and
provides a comprehensive geometric analysis of the aortic arch, for both standard and
CILCA arch configurations. Our pipeline allows clinicians to obtain automated seg-
mentation of the thoracic aorta, automated proximal landing zones mapping, and a
range of automatically derived aortic metrics. Our tool is also suitable to be used for
unbiased quantitative analyses of geometric parameters in population studies.

2.2 Building an automatic pipeline from CT data to complex
geometric characterization of the thoracic aorta

2.2.1 Data Collection

We retrospectively retrieved 3D CT scans of 515 subjects, acquired between 2010 and
2020, from three Italian referral center for aortic disease. Acquisitions with artifacts due
to movement, presence of metal devices, or with slice thickness greater than 1.5 mm
were excluded. Accordingly, 465 subjects were eventually included in this study and,
among them, 219 subjects presented a CILCA arch. Within the entire dataset, 9 cases
had thoracic aortic aneurysm (TAA). For the collected CT scans, pixel spacing ranged
from 0.29 x 0.29 mm2 to 0.976 x 0.976 mm2, while slice thickness ranged between 0.29
and 1.5 mm. The study was approved by the local ethics committee and informed
consent was waived because of the retrospective nature of the study and the analysis
of anonymized data.

2.2.2 Image Pre-analysis and Manual Segmentation

To standardize the dataset, images were cropped to exclude regions below the celiac
trunk, when present. Subsequently, all the CT volumes were manually segmented by
five independent and experienced operators, guaranteeing that each acquisition was
segmented by at least one operator to reduce single operator bias and ensuring an al-
most even/balanced split of the dataset among them. To avoid potential bias due to
the choice of a specific segmentation software, manual segmentations were performed
either using ITK-snap [30], 3D Slicer [31] or Materialise Mimics Medical v.22.0 (Ma-
terialise, Leuven, Belgium), and using gold standard segmentation methods such as
level-sets, region growing and thresholding.
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2.2.3 Neural Network Training

The dataset was subsequently divided into training and test sets: 395 (85%) scans of
healthy subjects with their corresponding ground truth segmentations were randomly
selected and used for neural network training (training set), while the remaining 70
scans (15%), including 61 healthy subjects and 9 patients, were kept out for testing
(test set). The training set included both standard and CILCA aortic arches in ran-
dom amounts. To investigate the network’s generalization capability in real clinical
scenarios, all the 9 pathological cases were included in the test set. Herein, the trained
CNN was based on the 3D U-Net architecture proposed in [32], which is composed of
a input layer of 16 filters, encoder and decoder branches of 5 resolution levels each, a
bottleneck block and skip connections via concatenation. Training was accomplished
through a patch/batch-based strategy, which consists in subdividing the image volume
into fixed-size subvolumes (patches), and processing groups of N patches (batches)
separately [33]. Patch size was set to 128x128x128 pixels, while batch size (N) was set
equal to 2. A data augmentation routine was used to increase dataset diversity. The
random transformations applied to the processed patches included rotation, mirroring
and elastic deformation [33]. The network was implemented in Pytorch and trained in
parallel on 2 NVIDIA V100 GPUs over 300 epochs, each one defined as an iteration over
300 batches. A combination of Lovsz-Softmax loss [34] and focal loss [35] was used to
trained the network end-to-end to perform multi-structure segmentation of the thoracic
aorta and pulmonary arteries.

2.2.4 Pipeline Implementation

We implemented a fully automated pipeline, embedding the trained CNN, for the geo-
metrical characterization of the aortic arch anatomy (Figure 2.1). The pipeline consists
of the following main processing steps: i) segmentation, ii) detection of vessel ends and
extraction of centerlines, iii) landing zone mapping and v) parameter computation.

Segmentation

The trained CNN receives a stack of 3D CT images and automatically segments the
thoracic aorta and the pulmonary trunk and arteries, yielding a multi-label mask image.

Vessel end detection and centerline extraction

Triangulated surface meshes for the aorta and pulmonary vessels are obtained from
the multi-label segmentation image using a marching cubes algorithm [36]. Center-
lines of the aorta and of the pulmonary arteries are extracted from the corresponding
surface meshes using the vascular modeling toolkit (VMTK) library [37], according to
which vessel centerlines are computed as the locus of the centers of maximal inscribed
spheres [38]. Centerline computation requires definition of a seed and target points
on the surface of interest, which are automatically found by taking advantage of the

15
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Step 1

Step 2

Step 3

Step 4

Z1

Z0

Z1 Z2 Z3

Zone Metric                   Zone 0   Zone 1  Zone 2   Zone 3
---------------------------- -------- -------- -------- ----------
arcLength          [mm]     20.00     12.24     16.16     20.00
maxDiameter [mm]     28.88     26.08     24.48      27.21
betaAngle               [°]     47.64     65.33     72.48     64.11
tauAngle      [°]     20.67     34.88     40.01     31.95
-------------------------------------------------------------------------
Arch Metric
---------------------------------------------- --------
outer_center_curvature_ratio     [-]       1.39
outerCurvatureRadius   [mm]     60.01
centerlineCurvatureRadius      [mm]     51.43
centerlineTortuosity                       [-]       2.53

Figure 2.1: Schematic representation of the implemented automatic pipeline. In steps
1-3, red domains and surfaces represent the thoracic aorta; green domains and surfaces
represent the pulmonary artery.
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Laplace-Beltrami operator (LBO) [39]. Eigenfunctions of LBO provide a set of bases
for continuous functions defined on the surface manifold, allowing one to form a basis
which is descriptive of the analyzed shape [40].

Detection of seed and target points for the aortic centerline. The LBO of the trian-
gulated aortic surface is computed. For tubular surfaces with a dominant longitudinal
direction, such as the thoracic aorta, the first eigenvector of the LBO provides for each
point on the surface a scalar measure of its proximity to the left ventricle (Figure 2.2).
The points on the aortic surface associated with the minimum and maximum of this
shape descriptor were used as centerline seed and target.

Algorithm 1: Detection of seed and target points for pulmonary vessel center-
lines

Data: Reference surface (Sr), processed surface (Sp)
Result: Coordinates and indices of seed and target points on the processed

surface
Previous manual annotation of:
sidx ← seed index;
lidx ← left pulmonary artery target index;
ridx ← right pulmonary artery target index;
for idx ∈ [sidx, lidx, ridx] do

Find the point’s transformed coordinate on Sr;
Find the closest point on Sp;
Store point coordinates and index;

end

Detection of seed and target points for pulmonary vessels centerlines. In this case,
the bifurcated nature of the pulmonary trunk and arteries does not allow for a straight-
forward identification of seed and target points by computing the LBO eigenfunctions.
The automation of this step required prior processing of a reference pulmonary artery
surface that was randomly selected from the dataset. For the reference geometry, cen-
terline seed and targets points are manually identified, and their indices stored. Then,
for every processed case, the reference surface is morphed into the processed surface us-
ing a previously implemented large deformation diffeomorphic metric mapping (LD-
DMM) [41]. After registration, a soft point-to-point correspondence is achieved be-
tween the processed and the reference surfaces. The three points corresponding to seed
and targets are then defined on the processed surface as the nearest to the previously
stored point indices on the reference surface (Figure 2.2b, Algorithm 1).

Detection of Target Points for Supra-Aortic Branch Centerlines Computation The
definition of the LBO on the aortic surface is used to solve a heat equation and to com-
pute, for every point on the processed surface, the HKS descriptor [42]. The computed
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Figure 2.2: Representation of the algorithms for automatic detection of centerlines seed
and target points. a) the first normalized eigenvector of the Laplace-Beltrami opera-
tor used to find seed (yellow circle) and target (grey circle) points for the main aortic
centerline. b) seed (green cross) and targets (red crosses) are manually annotated on
the reference surface, which is morphed into the processed surface. From the morphed
surface, left and right pulmonary arteries centerlines are computed. c) the normalized
HKS is computed on the aortic surface and recursively thresholded to isolate supraaor-
tic branch ends; tube surfaces are generated for the aorta (grey), brachiocephalic trunk
(green), left carotid artery (red) and subclavian artery (blue)
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HKS is normalized with respect to its maximum value. The HKS gives a scalar ap-
proximation of the local curvature of the surface by measuring the amount of heat that
remains after a specified time at each point after application of a unit heat impulse.
The normalized HKS can be visualized on the surface mesh (left panel of Figure 2.2c).
A recursive thresholding approach is used to identify supra-aortic branch extremities.
Briefly, a thresholding filter is initialized to extract the surface regions with an asso-
ciated normalized HKS between 1 and 1˘δ, with δ = 0.01. The value of δ is then re-
cursively increased by a factor of 2 until the number of connected regions extracted
after thresholding is equal to 3. To filter out undesired points characterized by a high
curvature, candidate target regions are constrained to lie above the main aortic center-
line. Finally, for each of the 3 extracted regions, the point with the highest associated
normalized HKS is identified as a branch centerline target and 3 centerlines are finally
computed (Figure 2.2c, Algorithm 2).

Algorithm 2: Detection of seed and target points for supra-aortic branches cen-
terlines

Data: Triangulated surface manifold of the thoracic aorta (M)
Result: Coordinates and indices of target points on the aortic surface
HKS descriptor← solution of the heat equation;
HKS← HKS/max(HKS);
Nc ← 0;
δ← 0.01;
while Nc < 3 do

Find subregions of M where HKS > 1− δ;
Nc ← number of connected extracted regions;
δ← 2δ;

end
for all extracted subregions do

Find point with highest HKS;
Store point coordinates and index;

end

Landing zone mapping

Once calculated, centerlines are separated according to the vessel to which they corre-
spond and a tube surface inscribed in the vessel is generated for each centerline [37].
Herein, a tube is defined as a centerline envelope whose cross-sections are circles with
radius locally equal to the radius of the maximal inscribed sphere within the vessel.
Intersections between tubes corresponding to supra-aortic branches and the tube of the
main aortic centerline are computed (Figure 2.2c, right). In this way, three bounded
lines silhouetting branch origins on the arch are generated (cyan rings in Figure 2.2c,
right). For each edge, the landing zone landmark on the aortic centerline is identified
as the projection of the most distal point in the edge onto the aortic centerline. Two

19



additional landmarks (brown and yellow circles, Figure 2.2c, right) are automatically
placed on the centerline to delimit zone 0, proximally, and zone 3, distally. To auto-
matically detect the landmark delimiting zone 0 proximally, the bifurcation point of the
pulmonary vessels is identified (brown cross, Figure 2.2c, bottom right) and projected
onto the aortic centerline, keeping the axial coordinate fixed (brown circle, Figure 2.2c,
bottom right). The landmark delimiting zone 3 distally is automatically placed on the
aortic centerline so as to fix the length of this zone to 20 mm, which is considered as the
minimum length to identify a stable landing zone for TEVAR [23] (yellow circle, Figure
2.2c, bottom right).

Parameter computation

In this step (Figure 2.1 - step 4), two kinds of metrics are automatically quantified to
characterize the aortic arch morphology.

Whole-arch metrics For quantitative characterization of the whole arch, two points
are defined (Figure 2.3). Point A is identified as the most proximal point in the vessel
centerline, falling within the ascending aorta. Point B is the point of the aortic center-
line that lies on the same CT image axial plane passing through point A. The portion
of the centerline bounded between A and B is considered. The outer curvature path
corresponding to this centerline tract is found as the diametrically opposed path to the
Dijkstra path [43] with respect to the aortic centerline. For both the centerline tract and
the outer curvature path, the radius of curvature is computed in two steps; first, by pro-
jecting the 3D curve onto its best-fitting plane found by singular value decomposition
and, second, by finding the radius of the best-fitting circle to the curve in a least-square
sense (Figure 2.3, left). Additionally, arch centerline tortuosity is calculated as the ratio
of the curvilinear length between A and B to their straight-line distance.

Zone-based metrics Arc length along the centerline, maximum diameter, β angle and
tortuosity angle are calculated for each zone according to [23] (Figure 2.3, right).. Max-
imum zone diameters are calculated as the diameters of the largest inscribed spheres
within each zone [37]. Briefly, for each zone, the most proximal point (p0) is identified
together with its tangent unitary vector. Two other points, p20 and p40, located 20 mm
and 40 mm distal to p0 along the centerline, respectively, are selected with their tangent
unitary vectors. β is the angle formed by the tangent unitary vectors to p0 and p40. The
tortuosity angle (referred to as τ in Figure 2.3, right) is defined as the angle formed by
the vectors connecting p0 to p20 and p20 to p40.
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Figure 2.3: Automatic computation of geometric descriptors. A standard arch configu-
ration (left) exemplifying centerline curvature radius (RC) and outer curvature radius
(RO) (in blue). A CILCA arch (right) reporting β and tortuosity (τ) angles. N.B.: dis-
tances not to scale for display purposes

21



2.2.5 Statistical Analysis

Statistical analyses were performed using the Python scipy 1.5.1 statistics library. Data
normality was determined using the Shapiro-Wilk test. Normally distributed variables
are expressed as mean ± standard deviation; non-normally distributed variables are
expressed as median [min, max]. Comparison between standard and CILCA arches
was accomplished using unpaired t-tests for normally distributed variables and Mann-
Whitney U tests for non-normally distributed data. Comparison among zone-based
geometric parameters for standard and CILCA arches were carried out using one-way
ANOVA for normally distributed data and Kruskal-Wallis tests for non-normally dis-
tributed data. A p value lower than 0.05 was considered statistically significant.

2.2.6 Comparison with semi-automated measurements

Out of the 70 test cases, 30 were randomly selected and processed by an experienced
operator using the semi-automated commercial software 3Mensio Vascular 8.0 (3Men-
sio Medical Imaging B.V., Bilthoven, The Netherlands). The results of the geometric
analysis obtained with the proposed methodology were compared against the corre-
sponding measurements taken through the commercial software.

2.3 Performance Evaluation

2.3.1 Test set results

The trained CNN was employed to run inference on the test set made of 70 CT scans, 9
of which presented TAA. The automatic segmentation algorithm proved able to accu-
rately extract the thoracic aorta and pulmonary vasculature anatomies for all the sub-
jects of the test subjects (Figure2.4). CNN performance was quantitatively assessed, in
terms of Dice coefficients and Hausdorff distances [44], with respect to manual ground
truth segmentations. For the thoracic aorta, Dice score and Hausdorff distance were
equal to of 0.954 [0.873, 0.999] and 11.97 [1.96, 68.83] mm, respectively. For the pul-
monary trunk and arteries, mean Dice score and Hausdorff distance were equal to
0.906 [0.710, 0.999] and 11.55 [0.94, 29.86] mm. The CT acquisition phase was chosen
to specifically visualize aortic structures via the injection of a contrast-enhancing agent.
The reduced presence of contrast agent in the pulmonary vasculature limited the rela-
tive brightness of these vessels with respect to the background. Thus, the trained neural
network was considerably better at segmenting the thoracic aorta as compared to the
pulmonary arteries. Nonetheless, the worse performance in pulmonary artery segmen-
tation did not invalidate the automated detection of the bifurcation landmark, relevant
for the identification of zone 0. The automatic pipeline effectively identified Ishimaru’s
landing zones for all the 70 test subjects, including the 9 pathological cases, as detailed
in Figure 2.5.
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Figure 2.4: Comparison of manual (ground truth, GT) segmentation in bright red (aorta,
Ao) and bright green (pulmonary arteries, PA), vs. automatic segmentation obtained by
the trained neural network (CNN) in dark red (aorta, Ao) and dark green (pulmonary
arteries, PA) on a test case. Four axial slices with color fill are shown on the left. A
sagittal and a coronal slices with dashed contours are shown on the right

Geometric and Statistical analysis

The developed automated geometric analysis (steps 2 to 4 of the pipeline) was applied
to the entire dataset of manually segmented CT scans (n = 465).

Comparison of CILCA vs. standard arches Statistically significant differences were
observed for whole arch metrics in centerline curvature radius (p=0.001), outer curva-
ture radius (p=0.004) and centerline tortuosity (p=0.021), with CILCA arches exhibit-
ing lower values (Table 2.1). Focusing on zone-based metrics, zone 0 was found to be
significantly longer in CILCA than standard arches (p<0.001), whereas no significant
difference was observed for zone 2 (Table 2.2). Within each landing zone, maximum
diameter (Table 2.3) remained comparable (p>0.089) between standard and CILCA aor-
tic arches. However, both standard and CILCA configurations exhibited progressive
maximum diameter reduction from zone 0 to zone 3 (p<0.0001). In particular, CILCA
arches showed a slightly greater variation of maximum diameter between adjacent
zones (zone 0 – zone 2) with respect to standard arches (zone 0 – zone 1). In stan-
dard arches, the mean value of the maximum diameters ranged between 34.7 mm in
zone 0 and 28.43 mm in zone 1. In CILCA arches, the mean value of the maximum
diameters varied between 34.0 mm in zone 0 and 26.30 mm in zone 2. To better analyze
this difference in vessel tapering, a 120 mm arch tract was extracted from every arch
centerline starting from the most proximal point of zone 0 (Figure 2.6), and pointwise
vessel diameters were plotted as means with 95% confidence intervals (Figure 2.6). In
CILCA arches, a steeper curve was observed between 30 and 80 mm, indicating a more
markedly tapered geometry of the vessel lumen. Significant differences were found in β
angles (Table 2.4) between standard and CILCA aortic arch configurations in both zone
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Variable Standard CILCA p value
Centerline curvature radius [mm] 50.26[27.94, 71.31] 48.19[26.47, 68.45] 0.001
Outer curvature radius [mm] 65.94± 8.37 63.68± 8.19 0.004
Outer/centerline curvature ratio 1.14[0.97, 2.68] 1.13[0.95, 2.28] 0.153
Centerline tortuosity 3.10[1.82, 6.38] 2.96[1.63, 9.15] 0.021

Table 2.1: Whole arch-based geometric parameters calculated by the automatic tool for
standard and CILCA arch cases. Median [min, max] or mean± standard deviations are
reported together with the p values obtained by the statistical analysis

Variable Standard CILCA p-valuea

Arc length [mm]
Zone 0 48.63[21.46, 112.15] 53.02[22.49, 103.67] < 0.001
Zone 1 8.08[2.25, 20.82] − −
Zone 2 16.66[3.36, 80.53] 16.87[0.64, 36.17] 0.142
p-valueb < 0.0001 < 0.0001

Table 2.2: Zone arc lengths in mm calculated by the developed automatic tool for stan-
dard and CILCA arch cases. Median [min, max] are reported together with p values
obtained from the statistical analyses.
a Standard vs. CILCA. b Anova among landing zones.

0 (p=0.001) and zone 3 (p=0.015), with CILCA arches reporting larger median values.
For both arches, β angles significantly differed (p<0.0001) among the arch zones, with
zone 3 reaching the highest values (Table 2.4). Similarly, a statistically significant differ-
ence in tortuosity angle between the two configurations was found in landing zones 0
(p=0.001) and 3 (p=0.048), with larger angles observed in CILCA arches (Table 2.5). Tor-
tuosity angles were observed to be significantly different among landing zones for both
standard and CILCA arches (p<0.0001). In both arch types, tortuosity angle reached the
highest mean values in zone 3.

Measurements on TAA cases In ordered to be considered suitable, the proximal land-
ing zone for TEVAR must be at least 20 mm long [13]. For the 9 TAA cases, β and tor-
tuosity angles of zones fulfilling this criterion are reported in Figure 2.5. Among these
anatomies, only 3 cases had a sufficiently long zone 2 (Figure 2.5 c, e, i). Severe angu-
lation (β < 60◦) was observed in zone 0 (Fig. 5 b), in zone 2 (Fig.5 e), and in zone 3 of
one arch (Figure 2.5, a). Tortuosity angles greater than 30◦ were observed in zone 0 for
two arches (Figure 2.5b, g) and in zone 3 for one arch (Figure 2.5a).

Comparison vs. Semi-Automated Measurements

The differences between the measurements yielded by the proposed automated tool
and those obtained by an experienced operator using the semi-automated software
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Variable Standard CILCA p-valuea

Maximum diameter [mm]
Zone 0 34.70[21.03, 52.78] 34.00[21.36, 53.32] 0.247
Zone 1 28.43[17.09, 43.47] − −
Zone 2 26.49[15.25, 42.66] 26.30[14.23, 52.75] 0.089
Zone 3 25.22[7.13, 36.04] 24.76[12.19, 50.35] 0.152
p-valueb < 0.0001 < 0.0001

Table 2.3: Zone maximum diameters in mm calculated by the developed automatic tool
for standard and CILCA arch cases. Median [min, max] are reported together with p
values obtained from the statistical analyses.
a Standard vs. CILCA. b Anova among landing zones.

Variable Standard CILCA p-valuea

β angle [°]
Zone 0 50.17[13.22, 102.66] 54.13[21.90, 77.38] 0.001
Zone 1 46.07[9.68, 104.49] − −
Zone 2 54.55± 14.07 53.15± 14.92 0.297
Zone 3 57.09[13.69, 132.41] 59.61[15.45, 98.88] 0.015
p-valueb < 0.0001 < 0.0001

Table 2.4: Zone β angles in degrees calculated by the developed automatic tool for
standard and CILCA arch cases. Mean ± standard deviations are reported together
with p values obtained from the statistical analyses.
a Standard vs. CILCA. b Anova among landing zones.

Variable Standard CILCA p-valuea

Tortuosity angle [°]
Zone 0 24.81[6.06, 53.70] 27.18[11.63, 39.94] 0.001
Zone 1 24.05[5.58, 60.25] − −
Zone 2 27.14± 7.53 26.60± 8.14 0.462
Zone 3 28.68[6.74, 76.38] 29.85[10.75, 54.19] 0.048
p-valueb < 0.0001 < 0.0001

Table 2.5: Zone tortuosity angles in degrees calculated by the developed automatic tool
for standard and CILCA arch cases. Mean ± standard deviations are reported together
with p values obtained from the statistical analyses.
a Standard vs. CILCA. b Anova among landing zones.
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Figure 2.5: Aortic arches with thoracic aortic aneurysm from the test set with center-
lines colored by landing zone. Six arches present a standard configuration with the
presence of zone 1; all other arches present a CILCA arch configuration without zone 1.
β and tortuosity (τ) angles for zones longer than 20 mm are reported, with subscripts
indicating the zone they refer to. 26



package 3Mensio are detailed in Table 2.6. Notably, 3Mensio does not allow to com-
pute a best-fitting circle to estimate curvature radii; hence, these were calculated by
dividing the centerline (or outer curvature) tract by π, thus considering it equal to a
semicircle. Furthermore, the commercial software now calculates the tortuosity angle
using an arm length of 15 mm, rather than 20 mm (used by our tool), and it does not al-
low for changing this parameter. Overall, good agreement was found between the two
measurement approaches, with linear measurements (lengths and diameters) differing
by less than 5.4 mm, and angular measurements (β and tortuosity angles) differing by
less than 6.5°.

120 mmAbscissa = 0 mm

Figure 2.6: Representation of a 60 mm centerline tract covering the landing zones (left),
and maximum diameter plotted against the centerline abscissa (right). Values for stan-
dard (orange) and CILCA (blue) cases are plotted as mean (solid lines) with 95% confi-
dence intervals (transparent bands)
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3Mensio Our tool
Bias

(3Mensio – our tool)
95% limits of agreement

Centerline curvature radius [mm] 52.31 52.27 0.05 [-2.1, 2.19]
Outer curvature radius [mm] 67.31 68.41 -1.09 [-4.03, 1.84]
Outer/centerline curvatures ratio 1.29 1.31 -0.02 [-0.03, 0.0]
Centerline tortuosity 1.66 3.05 -1.39 [-1.63, -1.15]
Arc length [mm]
Zone 0 50.67 50.24 0.43 [-2.7, 3.56]
Zone 1 10.06 7.52 2.55 [0.89, 4.2]
Zone 2 23.28 17.89 5.39 [-1.43, 12.22]

Maximum diameter [mm]
Zone 0 37.82 36.43 1.39 [0.37, 2.42]
Zone 1 30.09 28.73 1.36 [0.22, 2.5]
Zone 2 27.41 26.95 0.47 [-0.04, 0.97]
Zone 3 25.74 25.54 0.19 [-0.43, 0.82]

Beta angle [°]
Zone 0 56.4 49.95 6.46 [2.76, 10.15]
Zone 1 45.18 46.82 -1.64 [-6.21, 2.92]
Zone 2 49.37 51.47 -2.11 [-5.85, 1.63]
Zone 3 57.07 56.68 0.39 [-2.3, 3.08]

Tortuosity angle [°]
Zone 0 22.4 24.72 -2.31 [-4.75, 0.12]
Zone 1 15.41 25.1 -9.69 [-13.0, -6.37]
Zone 2 17.03 26.2 -9.17 [-11.61, 6.72]
Zone 3 24.2 28.6 -4.4 [-6.46, -2.33]

Table 2.6: Comparison between geometric measurements obtained with the commercial
software 3Mensio vs. our tool. Mean of differences and 95% limits of agreement are
reported. Zone 1 metrics refer to standard arches only, while all other metrics refer to
both standard and CILCA arches

2.4 Comparison with state of the art and solutions

In the present work, we developed, applied and evaluated a fully automated pipeline
for TEVAR pre-procedural planning support and aortic arch geometric analysis from
CT. Our pipeline hinges on a CNN with a 3D U-Net architecture to perform automatic
thoracic aorta segmentation, and on a series of geometrical computations to quantify
several aortic metrics of interest for TEVAR pre-procedural planning. The adopted 3D
CNN is at the base of the developed application, providing multi-structure end-to-end
segmentation that does not require any manual input nor parameter fine-tuning, thus
ruling out any dependency on the operator. This proved sufficient to correctly identify
supra-aortic related landmarks in all 70 test cases in our dataset. For the thoracic aorta,
average Dice score, Hausdorff distance and intersection-over-union (IoU) coefficient
were 0.954, 11.97 mm and 0.91, respectively. This level of accuracy is higher than the
results reported by other studies focusing on CNNs for automatic aorta segmentation,
including Noothout et al. [45] who reported Dice scores of 0.88, and [46] who obtained
Dice scores and Hausdorff distances up to 0.93 and 50.0 mm, respectively. Nonetheless,
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results from [45] refer to a different test set of low-dose, non-contrast enhanced CT data,
hence a direct comparison cannot be made. Our IoU coefficients are greater than the
scores obtained by other studies focusing on lung nodule segmentation [47]. Despite
being trained only with CT scans of healthy subjects, our network was also able to per-
form an accurate segmentation of a small subset of diseased aortas. In fact, our training
strategy, including non-rigid image deformation and scaling during data augmenta-
tion, allowed the trained U-Net to generalize to 9 pathological TAA cases, yielding an
average Dice score of 0.94. After automated segmentation, a series of algorithms for
detection of anatomical landmarks were implemented through differential geometry
solutions. Computation of the LBO and its eigenvalues, was essential to achieve a ro-
bust workflow that enabled fully automated mapping of proximal landing zones for all
the subjects in our cohort. To our knowledge, the developed methodologies represent a
unique application of complex digital surface processing algorithms to subject-specific
anatomies in a real and relevant clinical context. From a clinical standpoint, our work
addresses three relevant issues in pre-procedural TEVAR planning. First, extraction of
clinically relevant geometric parameters [10, 16, 17], namely angulation and tortuosity,
is technically difficult and time consuming, and may require ad hoc commercial soft-
ware. Our approach does not require any specific skill from the user, as it allows quan-
tifying automatically β and tortuosity angles of proximal landing zones, thus proving
clinicians with more comprehensive information on the anatomy to treat by TEVAR.
Second, current commercial solutions always require manual input, which introduces
inter-operator variability. This is not the case in our tool, which delivers an objective,
fully repeatable and systematic framework. Third, our solution shortens the process-
ing time, making it compatible with the clinical routine, and applicable to large CT
series for research purposes. On average, the time required by the user to process one
case using commercially available software is around 30 minutes, whereas less than
7 minutes are required by our tool, i.e., about 4 and 3 minutes for segmentation and
geometric analysis, respectively. The reliability of our automated tool was confirmed
by the comparison with geometric measurements obtained with the commercial 3Men-
sio Vascular 8.0 software (3Mensio Medical Imaging B.V., Bilthoven, The Netherlands).
Good agreement was found between arch curvature radii, zone lengths and maximum
diameters. Given the average voxel spacings of our dataset (0.75 x 0.75 x 1.25 mm3), the
obtained difference biases never exceeded a length equal to twice the voxel diagonal.
Larger discrepancies were observed between zone angles and centerline tortuosity. The
reason behind these differences lies in the way the aortic centerlines are calculated by
the two methodologies. On the one hand, in our tool, centerlines are defined as the
geometric locus of the points that are centers of the maximum spheres inscribed in the
vessel surface. On the other hand, 3Mensio does not require a segmented aortic sur-
face, but allows for manual placement of centerline points on 2D views. In complex
anatomies, this may lead to an oversimplified centerline characterized by remarkably
lower values of tortuosity and tortuosity angles, thus requiring additional and man-
ual correction. Our objective analysis framework allowed investigating in a systematic
fashion the differences between standard and CILCA arches in terms of metrics that
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are relevant for TEVAR planning. The extracted geometric parameters were compared
with aortic features generally quantified using dedicated commercial software as pro-
posed in previous works [21, 23]. With our approach, we found relevant differences in
whole-arch metrics between standard and CILCA arches, with the latter showing sig-
nificantly lower centerline curvature radius (p=0.001), outer curvature radius (p=0.004)
and centerline tortuosity (p=0.021). The average radii of curvature were 48.6 mm and
53.0 mm for standard and CILCA arches, respectively. Marrocco-Trischitta et al. [23],
reported radii of curvature between 22.7 mm and 37.1 mm for a cohort of 60 standard
arches. Such a considerable difference is due to the different methodologies adopted
for the geometric analyses. In particular, in the previously referred studies the center-
line radius of curvature was approximated as half the distance between two points, on
the same axial plane, one in the ascending and one in the descending aorta. Implicitly,
that approach assumes that the arch centerline delimited by these two points is exactly
a half circumference, which is inherently planar. Our approach improves upon this,
by computing the least squares best fitting circle to approximate aortic arch curvature
radius, thus accounting for the actual deviations from the idealized profile assumed in
the previous work [23]. Our analysis involving zone-based metrics revealed statisti-
cally significant geometrical differences in zones 0 and 3 between standard and CILCA
arches. Zone 0 of CILCA arches had greater arc length (p<0.001), β angle (p=0.001) and
tortuosity angle (p=0.001). Furthermore, greater β and tortuosity angles were found
in zone 3 of CILCA arches. For standard arches, zone 3 β and tortuosity angles were
equal to 57.09°[13.69°, 132.41°] and 28.68°[6.74°, 76.38°], respectively. Similar ranges of
values were found by Marrocco-Trischitta et al. [23], who obtained β angles going from
52.3± 14.9 to 71.1± 14.1 and tortuosity angles between 25.9± 8.1 and 39.5± 8.2 on a
cohort of 60 subjects. In a previous study from our group [11], zone 3 was found to be
consistently associated with hostile geometric and hemodynamic features in terms of
angulation, tortuosity and hemodynamic displacement forces [12]. The present analy-
sis confirms those conclusions, highlighting the role of the β and tortuosity angles for
CILCA arches. Furthermore, in the present study, the unfavorable geometric pattern
displayed by CILCA arches is also suggested by the more noticeably tapered configu-
ration followed by lumen enlargement (Figure 2.6). This feature may explain the ten-
dency of CILCA arches to develop mild aortic dilation proximal to the aortic isthmus
[10, 17, 18, 48].

Limitations. The obtained segmentation results were computed with respect to ground
truth labels that were obtained using semi-automated tools, e.g. level-sets, region grow-
ing and thresholding. These tools also carry some inherent bias as opposed to a purely
manual voxel-by-voxel labeling.
The CNN training, which requires a large number of CT scans, was performed on im-
ages of healthy subjects, and therefore our work must be conservatively regarded as a
proof-of-concept study. Nevertheless, the CNN was successfully tested also for patho-
logical CT scans, even though in a small group of aneurismatic patients. Regarding the
applicability of our finding in a clinical scenario, however, previous confirmatory stud-
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ies [49] showed that the aortic arch proximal landing zones present the same geometric
pattern in both healthy and diseased aorta in aneurismatic patients. This is related to
the fact that our analyses are based on centerline measurements, which are less likely to
be affected by the modification of the aortic wall induced by the onset of pathological
derangements. Notably, this applies only to patients affected with aneurysm and pen-
etrating aortic ulcer [49], while the applicability of CNN training in aortic dissections
remains to be proven, considering the peculiar anatomical features of this pathology.

2.5 Conclusions

In this work, we developed a new tool specifically tailored to automatically compute
geometric parameters relevant to TEVAR planning. Our CNN successfully segmented
the thoracic aorta and pulmonary vasculature of 70 CT scans unseen during training,
including 9 pathological cases of TAA. Our fully automated and systematic analysis
pinpointed significant differences in geometric aortic features that may explain the less
satisfactory clinical results obtained by TEVAR in CILCA arches compared to standard
ones. The reported tool is automated, quick and reliable, and appears to be an inno-
vative solution to improve the decision-making process before TEVAR. Future efforts
will be aimed at including more and diverse pathological anatomies in the training set,
including namely aortic dissections, thus broadening the clinical scope of this method-
ology.
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CHAPTER 3

A CT-based deep learning system for automatic assessment of aortic

root morphology for TAVI planning

Based on:
Saitta, S., Sturla, F., Gorla, R., Oliva, O.A., Votta, E., Bedogni, F. & Redaelli, A. (2023). A
CT-based deep learning system for automatic assessment of aortic root morphology for TAVI
planning. arXiv preprint arXiv:2302.05378



Chapter Summary

An accurate planning of TAVI is important to minimize complications, and it requires
anatomic evaluation of the aortic root (AR), commonly done through 3D CT image anal-
ysis. Currently, there is no standard automated solution for this process. Two CNNs
with 3D U-Net architectures (model 1 and model 2) were trained on 310 CT scans for
AR analysis. Model 1 performed AR segmentation and model 2 identified the aortic
annulus and sino-tubular junction (STJ) contours. After training, the two models were
integrated into a fully automated pipeline for geometric analysis of the AR. Results
were validated against manual measurements of 178 TAVI candidates. The trained
CNNs effectively segmented the AR, annulus and STJ, resulting in mean Dice scores of
0.93 for the AR, and mean surface distances of 0.73 mm and 0.99 mm for the annulus
and STJ, respectively. Automatic measurements were in good agreement with manual
annotations, yielding annulus diameters that differed by 0.52 [-2.96, 4.00] mm (bias and
95% limits of agreement for manual minus algorithm). Evaluating the area-derived
diameter, bias and limits of agreement were 0.07 [-0.25, 0.39] mm. STJ and sinuses di-
ameters computed by the automatic method yielded differences of 0.16 [-2.03, 2.34] and
0.1 [-2.93, 3.13] mm, respectively. The proposed tool is a fully automatic solution to
quantify morphological biomarkers for pre-TAVI planning. The method was validated
against manual annotation from clinical experts and showed to be quick and effective
in assessing AR anatomy, with potential for time and cost savings.
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3.1 TAVI planning and state of the art

TAVI has emerged as an alternative to traditional open-heart surgery to treat severe
aortic stenosis, proving effective in reducing morbidity and mortality in high-risk pa-
tients [50, 51]. Despite its benefits, TAVI still carries risk of post-operative complica-
tions, including paravalvular leakage, device migration, annulus rupture and conduc-
tive disturbances [52, 53, 54]. A meticulous preprocedural planning is thus crucial for
minimizing the risk of complications and should envisage an accurate anatomic assess-
ment of the AR apparatus, which is essential for selecting the optimal prosthetic device
size [55]. Accurate preoperative assessment is centered around the aortic annulus, and
includes quantification of its diameters [56], angulation [57] and perimeter [58]. Fur-
thermore, a comprehensive analysis of the whole AR can provide anatomical measure-
ments of the STJ and sinuses of Valsalva [57, 58, 59]. To this purpose, three-dimensional
(3D) CT angiography is the preferred imaging modality to quantify AR anatomy before
a TAVI [60]. A comprehensive CT-based TAVI planning involves three main opera-
tions: segmentation of the anatomy, landmark detection, and measurement extraction
[55, 59, 61, 62, 63]. However, there is currently no standardized fully automated solu-
tion, and taking the necessary measurements can be a time-consuming process which
often involves several manual operations that introduce operator-dependency and may
limit reproducibility. Automatic and semi-automatic systems have already been pro-
posed to identify and quantitatively assess AR features from CT images. Lalys et al.
[61] exploited semi-automatic segmentation tools relying on atlas-based methods to
segment the AR, localize a wide range of anatomical landmarks (e.g., leaflet and coro-
nary ostium positions) and obtain accurate quantification of annulus diameter. More
recent approaches have taken advantage of CNNs to fully automate the detection of AR
landmarks from 3D CT [55, 62]. Given the black-box nature of deep neural networks,
when employing these tools extensive validation against manual landmark tracing by
experts should be performed. To date, the largest patient validation set has been re-
ported by Astudillo et al. [55], who proved the feasibility of building fast and accurate
CNN-based systems for detection of the three aortic cusp nadirs and coronary ostia,
training their model on 444 CT scans and validating their landmark detection accuracy
on 100 patients. Nonetheless, the proposed approach could only be applied to contrast-
enhanced CT images and did not include automatic measurement extraction. Hence,
full automation of the entire process, including segmentation, landmark detection and
extraction of aortic features relevant for TAVI, is still lacking. Given the increasing
adoption of TAVI also for intermediate and low-risk patients [50], a reliable, fast and ef-
ficient method for assessing AR anatomy and determining the appropriate device size
could have an increasingly broad impact by making TAVI planning faster, reliable and
fully repeatable.
The main contribution of the present work was the development of an automatic work-
flow that combines deep learning techniques and tools from differential geometry to
segment the AR from 3D CT data, extract AR-specific anatomical landmarks and com-
pute clinically relevant measurements for TAVI planning. The effectiveness of the pro-
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posed method was extensively evaluated on a group of 178 patients.

3.2 Development of an automatic method for aortic root char-
acterization

3.2.1 Data collection and manual annotation

CT scans of 512 subjects acquired between 2010 and 2022 were retrospectively collected.
Pixel spacing ranged from 0.26 x 0.26 mm2 to 0.87 x 0.87 mm2, while slice thickness
ranged between 0.25 and 1 mm. 24 acquisitions were excluded because of reconstruc-
tion artifacts, presence of metal devices, or with slice thickness greater than 1 mm.
Accordingly, the dataset was split in two subsets: dataset A, for which no AR mea-
surement was available (N=310), and dataset B (N=178), for which an expert operator
manually took measurements of the aortic annulus, STJ and Valsalva sinuses plane
using the commercial software 3mensio Structural Heart (v8.2, Pie Medical Imaging,
Maastricht, Netherlands) (Figure 3.1). After manual positioning, 3mensio allowed to
compute maximum and minimum diameters, area, and perimeter of each plane. All
patients in dataset B were TAVI candidates with severe aortic stenosis. For all CT scans
in dataset A, an initial segmentation of the ascending aorta was obtained using a neu-
ral network previously trained by our group [64]. Segmentations that were erroneously
inferred (e.g. incomplete filling) by the pre-trained model were adjusted by an experi-
enced operator using a semi-automatic region growing algorithm [65]. All the resulting
aortic segmentations include the left ventricle outflow tract (LVOT), the whole AR and
the proximal portion of the ascending aorta according to the scan-specific field-of-view.
Both aortic annulus and STJ were manually segmented for all CT scans in dataset A.
To expedite the annotation process, a graphic-user interface (GUI) was appositely de-
veloped using VTK [66]. Through the designed GUI, the user could easily position a
plane in the 3D image space and, exploiting the previously obtained segmentation of
the aorta, the annulus or STJ labels were automatically assigned to the image points
within an Euclidean distance of 3 mm the chosen plane and inside the aorta. All im-
age data used in the present study were collected from IRCCS Policlinico San Donato
(Milan, Italy). The study was approved by the local ethics committee and informed
consent was waived because of the retrospective nature of the study and the analysis
of anonymized data.
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• Model 1

Segmentation of aortic root
• Model 2

Segmentation of aortic annulus & sinotubular junction

Training set 

(N=279)
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(N=31)

Full dataset (N=512)
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Semi-automatic segmentation:

• Aortic root
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Validation of segmentation performance

Validation of aortic root assessment

Model 1 & 2 deployment in morphological analysis pipeline

Availability of 

manual aortic root 
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Dataset A (N=310)
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Exclusion of scans 

with artifacts

Figure 3.1: Schematic representation of the adopted workflow. Dataset A includes man-
ual segmentations of the aortic root, annulus and STJ; it was used to train and validate
two neural networks (model 1 and model 2) for automatic segmentation. Dataset B
included manual annotations of aortic root measurements, used to validate the devel-
oped morphological analysis pipeline.
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3.2.2 Analysis of inter-operator variability

To obtain an unbiased assessment of the inter-operator variability of aortic segmenta-
tion, a randomly selected subset of 20 CT scans belonging to dataset B was segmented
by three experienced, completely independent operators (Op1, Op2 and Op3). Op1 and
Op3 used the open-source segmentation software ITK-snap [65], exploiting a combina-
tion of region growing and paintbrush tools to annotate the images. Op2 was a certified
user and used the CE-marked commercial software Mimics Medical v21.0 (Materialise,
Leuven).

3.2.3 Image preprocessing: aortic root region detection

For each 3D CT scan in our datasets, a region of interest (ROI) encompassing the aortic
root was cropped out (Figure 3.2). The detection of the ROI to crop is fully automatic
and was achieved through a 3D template-matching approach [67]. An image X with its
ground truth aortic root segmentation S was previously selected from dataset A. When
processing a new case (target image, Y), the image X is roughly aligned to the target
image using a rigid transformation (R) followed by an affine transformation (A) able to
account for scaling and shear deformations. Defining the generic final transformation:

Tα∗(X) = (A ◦R)(X), (3.1)

parameterized by α∗, the optimal mapping is found as:

α∗ = arg max
α

I(Tα∗(X), Y), (3.2)

where I(Tα∗(X), Y) is the mutual information between the two images, which can be
considered a nonlinear generalization of cross-correlation [68]. α∗ is found using a gra-
dient descent algorithm. Once found, Tα∗ is used to map the known ground truth aortic
root segmentation into the target image domain, obtaining Tα∗(S). The bounding box
of Tα∗(S) is dilated outward in each direction by 20 pixels and the resulting ROI is
cropped out from the original image.
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Figure 3.2: Template-matching approach for automatic identification of the ROI from
3D CT. A template image (X) for which aortic segmentation (S) is known, is affinely
registered to the processed image (Y). The transformation mapping X to Y (Tα∗) is
applied to S and the bounding box of Tα∗(S) is used to crop the ROI from Y.

3.2.4 Automatic segmentation

Dataset A was divided into training and test sets: 279 (90%) scans with their corre-
sponding ground truth segmentations of the aorta, annulus and STJ were randomly
selected and used to train two different neural networks, respectively dedicated to the
segmentation of the aorta (model 1) and to the multi-class segmentation of the aortic
annulus and STJ (model 2). The remaining 31 (10%) scans were used for validation
(Figure 3.1). Both models were based on the 3D U-Net architecture proposed in [33],
with encoding and decoding branches of 5 resolution levels each, defined using resid-
ual units as introduced by [69]. The number of filters used for the encoding branch was
32, 64, 128, 256, 512. Each encoding block consisted of a convolution layer with kernel
size of 3x3x3 and stride of 2, followed by parametric rectified linear units (PReLUs) [70]
and instance normalization. The encode and decode paths were connected with skip
connections via concatenation. Model 1 and model 2 only differed by the number of
output channels; given the different tasks, model 1 outputs a tensor with one channel,
whereas model 2 returns a tensor with three channels (background, annulus and STJ).
The number of trainable parameters for each of the two models was approximately
20M.
For comparison, we considered two additional automatic approaches for semantic seg-
mentation of the aorta and of the aortic annulus and STJ.

Atlas-based

As a baseline, an atlas-based segmentation method was implemented. Similar to the
ROI detection solution previously described, this approach exploits the registration of
a reference image with its associated labels of the aorta, annulus and STJ, with the
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image to segment. With respect to the approach described in the previous section, a
free form deformation D, based on cubic b-splines is added to the final transformation
Fβ∗ parameterized by β∗ such that:

Fβ∗(X) = (D ◦A ◦R)(X). (3.3)

Similar to the formalization presented in equation 3.2, the β∗ that maximizes I(Fβ∗(X), Y)
is found using a gradient descent algorithm. More details of the algorithm can be found
in [71]. Once found, Fβ∗ is used to map the known labels of the aorta, annulus and STJ
into the target image domain.

3D U-Net Transformer

Similarly to what was described above, two additional separate models with a 3D U-
Net transformer architecture were implemented; model 3 for segmentation of the aorta
and model 4 for segmentation of the annulus and STJ. Models 3 and 4 were based
on the transformer architecture proposed in [72]. During a forward pass of a U-Net
transformer, the 3D tensor is divided into a series of non-overlapping patches of size
16x16x16. These patches are projected into an embedding space using a linear layer
with 128 hidden channels. A position embedding is added to the resulting sequence,
which is then used as input to a transformer model with 4 attention heads. The trans-
former model’s various encoded representations are extracted from different layers,
and they are combined with a decoder using skip connections. Finally, this process is
used to predict the final segmentation. During training of all neural networks, an on-
line data augmentation routine including random Gaussian noise, cropping, mirroring
and rotation was implemented in the MONAI framework [73]. A Dice loss was used to
train model 1 and 3, while a combination of Dice and Focal loss [74] with equal weights
was used to train model 2 and 4. Training was carried out on an NVIDIA A100 GPU
over 1000 epochs, using an Adam optimizer with learning rate of 0.0001.

3.2.5 Pipeline implementation

After training, models 1 and 2 were embedded in a fully automated pipeline for AR
analysis and TAVI pre-procedural planning. The different sequential steps of the im-
plemented pipeline are described below and exemplified in Figure 3.3.

Aortic surface processing

After ROI cropping, the CT scan is processed by model 1, generating a binary mask
of the ascending aorta including the LVOT. A marching cubes algorithm extracts the
corresponding contour as a triangulated surface; surface smoothing is applied with
a windowed sinc function interpolation kernel with passband of 0.01, and adaptive
remeshing is performed following the approach described in [75]. For each processed
surface, the LBO [39] is computed. LBO eigenvectors form a set of bases for the defi-
nition of continuous functions on the surface manifold. For tubular structures with a
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Figure 3.3: Schematic representation of the implemented automatic pipeline. The ROI
is detected from the input CT scan. Model 1 infers the segmentation of the AR with the
left ventricle outflow tract (LVOT), shown as the red label (left side). Model 2 infers the
segmentation of the aortic annulus and STJ (in green and blue, respectively) (right side).
The aortic surface processing step computes the second eigenvector of the LBO and its
contours (left side). The annulus and STJ processing step performs refinement of model
2 segmentation. In the AR analysis step (bottom), the AR is isolated, and the Sinuses of
Valsalva are detected. Anatomical measurements are computed together with calcium
volume (shown in white, bottom panel).
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dominant longitudinal direction, the second LBO eigenvector (E1) represents a scalar
field approximating the curvilinear abscissa of the surface centerline; E1 isocontours on
the aortic surface are shown in Figure 3.3.

Annulus and STJ processing

The cropped CT scan is processed by model 2, which infers the masks and the corre-
sponding set of points Xann and XSTJ for the annulus and STJ, respectively (Figure 3.4).
Using a random sample consesus (RANSAC) iterative algorithm with inlier threshold
of 1.5 mm, two best-fitting planes are identified, namely Πann and ΠSTJ from Xann and
XSTJ , respectively. Specifically, a generic plane Π is represented by a bounded rectan-
gular mesh grid identified by its normal vector n and center of mass c : Π = Π(n, c).
The normal vector and center of mass of both Πann and ΠSTJ , are refined (rotated and
shifted) following a constrained optimization procedure, initialized using n and c com-
puted by RANSAC. The optimal plane normal vector n∗ and center of mass c + δ are
defined as the ones that minimize the area of intersection with the aortic surface:

Π∗ = min
n∗,δ

area(Π(n∗, c + δ) ∩ Γ),

subject to∥δ∥ < K,
(3.4)

where Γ represents the AR and LVOT surface and K = 5mm. The described procedure
is applied to both Πann and ΠSTJ and the yielded planes are used to clip and isolate the
AR (Figure 3.4.d). Within the extracted AR surface, the E1 isocontour with maximum
area is used to identify the plane of the sinuses of Valsalva (Figure 3.4e).

Aortic root analysis

For the annulus, the STJ and the plane of Valsalva sinuses, the following metrics are
automatically computed: i) area; ii) perimeter; iii) the maximum (Dmax), iv) minimum
(Dmin) and v) mean (Dmean = (Dmax + Dmin)/2) diameters. Maximum and minimum
diameters are defined as the lengths of the largest and shortest segments connecting
two opposite points of the perimeter while passing through the center of mass. In ad-
dition, for the aortic annulus the annulus angle, i.e., the angle formed by the plane
normal to the foot-head image axis [57], is extracted. The AR calcium score is automat-
ically quantified as the volume enclosing pixels with Hounsfield units (HUs) greater
than 800 by a simple thresholding of the corresponding segmented AR [76].
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Figure 3.4: steps implemented for aortic annulus and STJ plane detection refinement.
a) the point sets yielded by model 2 for the annulus (green) and STJ (blue), visualized
with the aortic segmentation produced by model 1 (transparent gray). b) the best fitting
planes for the two structures (Πann and ΠSTJ), together with the region inside which
their center of mass is allowed to move during the refinement procedure (magenta
spheres). c) the resulting planes (Π∗ann and Π∗STJ) after the optimization procedure. d)
visualization of the refined planes in dark gray and the initialization planes obtained
by model 2. e) the isolated AR with the contours of the second eigenvalue of the LBO
(in black) and the plane identifying the sinuses of Valsalva (yellow).

3.2.6 Statistical analysis

Measurements based on expert manual annotations were used as reference values in as-
sessing the proposed method’s accuracy. Accuracy of areas, perimeters and diameters
was evaluated using Bland-Altman analysis. Analyses were performed using python
scipy 1.5.1 statistics library.

3.3 Results

3.3.1 Evaluation of segmentation performance

The generalization performance of the segmentation models was evaluated on the val-
idation set (n=31), for which manual ground truth labels of the aorta, annulus and STJ
were available (dataset A). For all subjects in the validation set, both models 1 and 2
proved able to accurately trace the region encompassing the AR, annulus and STJ. Seg-
mentation performance was quantitatively assessed, in terms of Dice coefficient and
MSD with respect to manual ground truth segmentations; for both indices, mean value
and [min, max] range were computed. Model 1 and 2 outputs were compared against
model 3 and 4, respectively, and on the atlas-based method on the same validation set.
Results are reported in Table 3.1. For the AR, the U-Net architecture (model 1) gave
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0.02 higher Dice scores and 0.08 mm lower MSDs than the U-Net transformer (model
3). For the aortic annulus and STJ, model 1 slightly outperformed model 3, yielding
0.03 higher Dice scores and 0.1 mm lower MSDs. In general, the atlas-based method
gave the worst segmentation performance, reaching the lowest Dice score of 0.16 for
the STJ.

Aorta Annulus STJ
Model 1
(U-Net)

Model 3
(UNETR)

Atlas
based

Model 2
(U-Net)

Model 4
(UNETR)

Atlas
based

Model 2
(U-Net)

Model 4
(UNETR)

Atlas
based

Dice 0.93 [0.80, 0.97] 0.91 [0.77, 0.97] 0.53 [0.0, 0.91] 0.57 [0.34, 0.87] 0.54 [0.18, 0.71] 0.25 [0.0, 0.78] 0.66 [0.29, 0.90] 0.54 [0.18, 0.73] 0.16 [0.0, 0.66]
MSD [mm] 0.39 [0.0, 4.7] 0.31 [0.0, 6.4] 3.6 [0.1, 18] 0.73 [0.0, 3.9] 0.63 [0.0, 4.3] 12 [0.2, 76] 0.99 [0.0, 1.5] 0.85 [0.0, 4.3] 14 [0.2, 91]

Table 3.1: Comparison between automatic segmentation approaches and ground truth
manual segmentations for the AR, annulus and STJ. Mean value and [min, max] ranges
of Dice score and mean surface distance (MSD) are reported.

The test cases corresponding to the best and worst performance of models 1 and 2
are shown in Figure 3.5.

Figure 3.5: Comparison of manual (ground truth, GT) segmentation in bright red
(aorta), bright green (annulus) and light blue (STJ) vs. automatic segmentation ob-
tained by the trained neural networks (CNN) in dark red (aorta), dark green (annulus)
and dark blue (STJ) on four test cases: the best (top row) and the worst (bottom row)
for the two models. Coronal slices with color fill and with dashed contours are shown.

Inter-operator variability

For the 20 randomly selected subjects, the aortic segmentations obtained by the three
independent operators were compared pairwise, in terms of Dice scores, MSDs and
physical volume differences (∆V). For a generic comparison OpX vs. OpY, ∆V is com-
puted by subtracting the label mask created by OpY from the one of OpX. Comparison
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Op1 vs. Op2 Op1 vs. Op3 Op2 vs. Op3
Dice 0.96 [0.93, 0.99] 0.89 [0.78, 0.95] 0.91 [0.78, 0.96]
MSD 0.11 [-0.58, 0.67] 1.0 [-0.02, 5.3] 1.2 [-0.21, 6.1]
∆V 1.6 [-10, 4.9] 7.7 [-4.1, 37] 7.7 [-7.7, 38]

Table 3.2: Inter-operator variability analysis results. Dice scores, mean surface distance
(MSD) and physical volume differences (∆V) are computed for each pairwise compari-
son. Median [minimum, maximum] values are reported.

results are reported in Table 3.2. In general, good Op1 and Op2 produced almost identi-
cal segmentations (mean Dice of 0.96), whereas Op1 and Op3 had the lowest agreement
(0.89 mean Dice score).

3.3.2 Comparison vs. manual measurements

Bland-Altman plots (Figure 3.6) allowed to analyze the agreement between the auto-
matic pipeline output and manual measurements. Herein, we report comparisons as bi-
ases and 95% limits of agreement, i.e., bias [lower limit, upper limit], where differences
were computed as manual – algorithm. In general, automatic and manual anatomical
measurements were in good agreement. A tendency of the automatic system to un-
derestimate annulus diameters vs. manual measurements was observed, as evidenced
by positive biases (solid horizontal lines in Figure 3.6). For Dmax, measurement differ-
ences were 0.51 [-2.79, 3.81] mm. A similar trend was found for Dmin, resulting in 0.89
[-2.8, 4.62] mm. Significantly smaller discrepancies between the two measurement tech-
niques were obtained for the annulus area. Evaluating the area-derived diameter, bias
and limits of agreement were 0.07 [-0.24, 0.38] mm. For the annulus angle, an average
difference <3°was found between measurements, while limits of agreement were [-17°,
11°]. Dmean computed at the STJ and Sinuses by the automatic method slightly underes-
timated manual measurements, yielding differences of 0.05 [-1.98, 2.07] and 0.17 [-2.63,
2.97] mm, respectively. As compared to diameter measurements, perimeter measure-
ments showed larger differences: -1.8 [-8.06, 11.74] mm for the annulus perimeter, and
1.09 [-6.18, 8.37] mm for the STJ perimeter.

Critical cases

For few cases, a large discrepancy was observed between the automatic and expert
measurements. The largest differences in annulus diameters were observed for patient
057 and were equal to ∆Dmax = −4.9mm and ∆Dmin = −5.7mm, where ∆ is defined
as (expert minus algorithm). However, a detailed analysis of case 057 showed that
AR segmentation was precise; thus, discrepancies are not due to errors in automated
segmentation (Figure 3.7, top row). Concerning STJ measurements, the largest discrep-
ancies were obtained for patient 029 (∆Dmean = 4.4mm); these were likely due to the
presence of calcifications around the aortic bulb (Figure 3.7, mid row), possibly intro-
ducing larger uncertainty in STJ measurements. The largest difference in Dmean for the
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Figure 3.6: Bland–Altman plots of the proposed algorithm versus expert manual mea-
surements. Mean differences are shown as continuous horizontal lines, while 95% lim-
its of agreement are shown as dashed horizontal lines. Critical cases are highlighted
with a red arrow and identification number.

sinuses of Valsalva was obtained for patient 140 (∆Dmean = −4.3mm). In this case, the
high curvature of the aortic bulb surface could cause larger discrepancies between the
two methods (Figure 3.7, bottom row).
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Figure 3.7: Results of the implemented automatic pipeline for 3 cases for which the
discrepancies between expert and automatic measurements were largest. The first col-
umn shows the segmentation inferred by model 1 and bounded to the AR region (in
red). The second column shows the 3D anatomy reconstructions together with either
the annulus (green), STJ (blue) or sinuses plane (yellow). The third column shows an
interpolation of the image onto the plane identified by either the annulus, STJ or sinuses
planes. Segmentation contours are show in green (annulus), blue (STJ) and yellow (si-
nuses), together with Dmax (dashed arrows, black) and Dmin (dashed arrows, white).
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3.4 Discussion and comparison with existing approaches

In this work, we presented a fully automatic pipeline for AR morphological analy-
sis and TAVI pre-procedural planning support from 3D CT. Our system provides 3D
segmentations of the anatomical structures of interest without requiring any human
supervision and extracts quantitative morphological parameters of the AR with good
accuracy as compared to manual annotations performed by a clinical expert. To ob-
tain a quantitative morphometric assessment of the AR, our approach relies on two
CNNs trained to perform automatic 3D segmentation of the ascending aorta including
the LVOT (model 1), and of the aortic annulus and STJ (model 2). The CNN trained to
segment the aorta and LVOT (model 1) proved able to accurately delineate the anatom-
ical region of interest in all 31 validation cases from dataset A and all 178 test cases in
dataset B. For the validation cases, the average Dice score and MSDs were comparable
to state-of-the-art approaches focusing on similar anatomical districts, with values of
0.93 [0.80, 0.97] and 0.39 [0.0, 4.7] mm, respectively. In a previous paper by our group
dealing with automatic segmentation of the thoracic aorta from CT, a mean Dice score
of 0.954 was reported [64]. Elattar et al. [77] adopted an AR segmentation approach
based on normalized cuts and achieved Dice scores of 0.95 [0.85, 0.98] and MSDs of
0.74 ± 0.39 mm. In our study, model 1 was trained on ground truth segmentations
encompassing different portions of the left ventricle due to CT scan field of view or
inter-operator variability. This led to label map predictions with variable extents (as
it is visible in Figure 5), entailing slightly worse accuracy with respect to other similar
studies. This inconsistency was irrelevant to the downstream tasks of our pipeline and
did not invalidate the overall effectiveness of our approach, which only requires the
LVOT to be segmented correctly. In addition, when considering only the AR region
mean values of Dice score and MSD of 0.96 and 0.14 mm were found. These errors
are in the range of twice the average pixel spacing of 0.56 mm of our image dataset.
In our experiments, models with 3D U-Net architectures (models 1 and 2) performed
slightly better than transformer-based architectures (models 3 and 4), and significantly
better than the implemented atlas-based approach. In some cases, the b-spline regis-
tration method underlying the atlas-based approach proved to be unsuitable for the
task at hand, yielding segmentations with no overlap with the ground truth. The realm
of neural networks for image segmentation is vast, and further studies are necessary
to investigate whether different architectures such as UNet++ [78] or models based on
atrous convolutions [79] may provide better performance. Concerning the identifica-
tion of the aortic annulus and STJ, our approach (model 2) differs from previously pub-
lished techniques since it derives anatomical landmarks from image segmentation and
differential geometry. Elattar et al. [59] based their methodology on extracting the AR
centerline, computing the Gaussian curvature and an harmonic decomposition of the
aortic shape. Their automatic measurements were in excellent agreement with manual
ones, with differences in annulus radii of 0.24 ± 0.70 mm and 0.37 ± 0.82 mm for two ob-
servers, respectively, and differences in annulus angles of 6.86 ± 5.39 ° and 6.34 ± 4.00 °.
We obtained slightly larger differences for annulus mean radii (0.34 ± 0.78 mm), lower

48



differences for annulus area-derived radii (0.006 ± 0.16 mm), and similar discrepancies
for annulus angles (-3.07 ± 7.15 °). However, [59] still represents a proof of concept, lack-
ing generality, since automatic measurements are validated against a limited set of 40
patients. In our experience, Gaussian curvature-based criteria for landmark detection
would perform suboptimally or fail for anatomies with less pronounced bulb curva-
ture. Atlas-based methods could be an alternative, but could still be limited in their
capability to generalize to very heterogeneous anatomies unless the reference atlas is
heterogeneous enough [61]. The significantly larger number of test patients included
in our study allowed us to devise robust solutions that proved able to deal with great
anatomical variability among subjects. To date, with 178 patients, our study presents
the most comprehensive validation of an automatic AR assessment system. Another
type of landmark detection approach implies training a neural network to directly lo-
calize key anatomical points. Astudillo et al. [55] adopt this kind of strategy using a
DenseVNet architecture to detect coronary ostia position and height with respect to the
annulus, validating their accuracy against manual annotations on 100 patients. Com-
pared to manual annotations, they report mean differences of 0.54 mm and -0.16 mm
in left and right coronary heights, and of 1.4 mm in 3D Euclidean distances of coronary
ostia. However, when utilizing a landmark-based method for anatomical measurement
quantification, an error in identifying even one landmark can result in significant errors
in more complex anatomical metrics. In contrast, in our approach we did not rely on
direct neural network-based landmark detection, but rather on a series of geometric
computations for robust identification of the aortic annulus and STJ. In particular, the
annulus and STJ plane refinement step, enabled our system to cope with segmentation
errors, requiring only a rough localization of the two anatomical regions. This makes
the results of our pipeline more dependent on the accuracy of AR and LVOT segmenta-
tion, which are more clearly defined and visible from CT scans, and thus pose an easier
challenge to deep learning segmentation systems. Given the large number of cases on
which we tested our automatic measurement method, it is reasonable to expect some
large discrepancies with respect to manual measurements. In the critical cases reported
in Figure 3.7, the automatic segmentation algorithms were able to segment the anatom-
ical structures with good precision. However, some anatomical features such as high
curvature of the aortic bulb, and presence of abundant calcium deposits could cause dif-
ferences in how diameters are computed by the two approaches. Being able to automat-
ically segment calcium, our system potentially enables the end-user to choose whether
to include or exclude calcifications in the computed measurements. Overall, our ap-
proach is significantly faster than commercially available semi-automated tools [60],
requiring less than 45 seconds to run from CT to measurements on a GPU-accelerated
workstation, therefore it shortens the processing time, making it compatible with the
clinical routine, and applicable to large population studies. On average, the time re-
quired by the user for a full aortic assessment using commercially available software is
around 30 minutes.
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3.5 Final remarks

We have presented a pipeline for automating quantification of complex morphological
biomarkers that are relevant for preprocedural planning of TAVI from CT images, pro-
viding an unprecedented validation of our approach against 178 patients, the largest to
date. Our proposed method demonstrates a quick, accurate, and consistent assessment
of AR anatomy from CT data, yielding 3D segmentations of the AR (mean Dice score
0.96). Incorporating this deep learning-based tool into the preoperative planning rou-
tine in TAVI environments could potentially lead to time and cost savings, as well as
improved accuracy.
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CHAPTER 4

Mixed Reality and Deep Learning for External Ventricular Drainage

Placement: A Fast and Automatic Work�ow for Emergency Treatments

Based on:
Palumbo, M. C., Saitta, S., Schiariti, M., Sbarra, M. C., Turconi, E., Raccuia, G., Fu, J., Dal-
lolio, V., Ferroli, P., Votta, E., De Momi, E. & Redaelli, A. Mixed Reality and Deep Learning
for External Ventricular Drainage Placement: A Fast and Automatic Workflow for Emergency
Treatments. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2022:
25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VII (pp.
147-156).



Summary

The treatment of hydrocephalus is based on anatomical landmarks to guide the inser-
tion of an EVD. This procedure can benefit from the adoption of mixed reality (MR)
technology. In this study, we assess the feasibility of a fully automatic MR and deep
learning-based workflow to support emergency EVD placement, for which CT images
are available and a fast and automatic workflow is needed. The proposed study pro-
vides a tool to automatically i) segment the skull, face skin, ventricles and FoM from
CT scans; ii) import the segmented model in the MR application; iii) register holograms
on the patient’s head via a marker-less approach. An ad-hoc evaluation approach in-
cluding 3D-printed anatomical structures was developed to quantitatively assess the
accuracy and usability of the registration workflow.

52



4.1 Clinical problem and current solutions

EVD represents the optimal surgical treatment for emergency cases of hydrocephalus
[80]. This procedure consists in draining cerebrospinal fluid by inserting a catheter into
the brain ventricles, positioning the tip on the FoM. EVD placement is usually per-
formed blindly, relying on paradigmatic anatomical landmarks localized freehand on
the patient’s head, thus carrying the risk of catheter malpositioning that can lead to
hemorrhage, infections, brain tissue damage, multiple passes and reinsertion, entail-
ing unnecessary brain trauma. Despite being a relatively simple procedure, a nearly
50% inaccuracy rate has been reported [80]. To address these issues, pre-operative im-
ages can provide helpful guidance during EVD placement and insertion [80, 81], for
instance, when combined with neuronavigation systems [82]. However, the high cost
and significant encumbrance of these systems makes them hard to be adopted in the
operating room. MR-based solutions can represent a low-cost, easily portable guidance
system for EVD placement. Previous studies have shown the feasibility of adopting
MR based solutions for ventriculostomy procedures, providing visualization of inter-
nal brain structures [83], or to register the manually segmented holographic content
on the patient’s anatomy using marker based methods [84, 85, 86]. Nonetheless, these
approaches do not represent adequate solutions for emergency cases where both auto-
matic segmentation and quick registration need to coexist in a fast multistep routine.
A first attempt to superimpose holograms on real world object using HoloLens2 (H2)
head mounted display (HMD) (Microsoft, Redmond, WA) and its depth camera via a
marker-less approach, has been reported [87], resulting in low accuracy. The goal of
this study was to assess the feasibility and accuracy of a MR and deep learning-based
workflow to support EVD placement, in emergency procedures for which preoperative
CT images are only available and a fast and automatic workflow is critical. The pro-
posed study provides a tool to automatically i) segment the skull, skin, ventricles and
FoM from CT scans; ii) import the segmented model in the MR application; iii) register
holograms on the patient’s head via a marker-less approach.

4.2 Approach

The envisioned surgical workflow graphically depicted in Figure 4.1 is divided into
consecutive steps resulting in a final MR application specifically tailored for H2 de-
vice. The following sections provide a detailed description on the development of the
automatic segmentation (Section 4.2.1), automatic registration (Section 4.2.2) and regis-
tration accuracy assessment (Section 4.2.3) methods.
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Figure 4.1: Schematic representation of the developed workflow: the 3D CT images are
automatically segmented to obtain the brain structures that will be sent to H2 device
through an internet connection protocol. The user is then able to visualize the holo-
graphic models and set a path between the FoM and an entry point on the skin layer.
The PtC of the skin surface of the patient is acquired using H2 depth camera and this
data is used to estimate the transformation matrix TH2

CT.

4.2.1 Automatic Segmentation

3D CT scans of 200 subjects (including 41 cases of hydrocephalus) acquired between
2018 and 2022 were used as benchmark (pixel spacing ranging from 0.543x0.543 to
0.625x0.625 mm2, slice thickness between 0.625 and 1.25 mm). The study was approved
by the local ethical committee and informed consent was waived because of the retro-
spective nature of the study and the analysis of anonymized data.

Skin and Skull Segmentation was performed through i) automatic elimination of
the mouth region in case of dental implant inducing artifacts; ii) thresholding (bone
tissue: high-pass filter, threshold of 500 Hounsfield units (HU) [88]; skin: band-pass
filter, lower and upper thresholds of -100 HU and 50 HU, respectively); iii) hole filling
and smoothing.

Ventricle Segmentation was performed by a neural network (NN) based on a
3D UNET architecture, composed of an input layer of 16 filters, encoder and decoder
branches of 5 resolution levels each, a bottleneck block and skip connections via con-
catenation [32]. The NN was trained and tested using all the CT volumes: the two
lateral ventricles and the third ventricle were manually segmented by two experienced
operators, guaranteeing that each acquisition was segmented by at least one user. The
whole dataset was divided into training and test sets: 180 (90%) scans with their corre-
sponding ground truth segmentations were randomly selected and used for NN train-
ing. A data augmentation routine was implemented to increase dataset diversity. Ran-
dom rotations, mirroring and affine transformations were applied to the processed
patches. A combination of Lovasz-Softmax loss and focal loss [64] was used to trained
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the NN to perform simultaneous segmentation of the lateral and third ventricles. The
remaining 20 scans (10%), including 5 cases of hydrocephalus, were used for testing.

Detection of FoM, which is the target for the tip of the catheter during EVD, was
performed by a recursive thresholding approach [64].

4.2.2 Automatic Registration

The registration process was conceived to allow the end user to reliably superimpose
the MR representation of the segmented skin model (SCT) on the head of the real pa-
tient, whose face is acquired as a 3D PtC using the H2 depth sensing camera. This
step was conceived to be performed before any surgical draping, once the position of
the head is already fixed for the entire duration of the procedure. The holographic in-
terface that permits the surgeon to acquire the 3D PtC and then run the registration
algorithm, was designed in Unity3D (Unity Technologies, version 2020.3.1LTS) using
the MR toolkit library MRTK v2.7.0. The algorithm consisted of the following steps
(Figure 4.2):

• Acquire the PtC of the facing surface {pi,H2}, using H2 research mode [89], and
the position of the H2 device itself (pcamera,H2), both referred to the H2 global
coordinate reference system.

• Initialize the position of SCT with respect to the target {pi,H2} based on pcamera,H2.

• Apply an Hidden Point Removal algorithm [90] to SCT to filter out points in the
back of the head to avoid unnecessary computations.

• Extract {pi,H2} points belonging to the face through a DBSCAN density based
clustering algorithm [91].

• Apply a Fast Global Registration algorithm [92] between the simplified SCT and
the cleaned {pi,H2}, obtaining a first alignment, which is then refined via Local Re-
fined Registration method based on a Point-to-Plane iterative closest point (ICP)
algorithm [93] to obtain TH2

CT. All the described steps related to the PtC tweaking
and registration were implemented using the open3D library [94].

• Send back TH2
CT to H2 and apply it to the holographic model of SCT, thus allowing

the surgeon to visualize the segmented model aligned with the patient face SH2 =
TH2

CTSCT.

55



Figure 4.2: A. Detailed representation of the registration workflow for the MR environ-
ment with B. the considered coordinate systems and transformation matrices.

4.2.3 Registration Accuracy Assessment

An experimental setup to evaluate the automatic registration accuracy was developed
(Figure 4.3A). The evaluation was divided into two different procedures to evaluate:
1. the accuracy of the hologram-to-phantom registration; 2. the targeting accuracy in
a ventriculostomy-like procedure. For both tests, a 3D model of a patient with hydro-
cephalus was reconstructed from automated CT scan segmentation. The extracted skin
model was modified to add four markers consisting in conical cavities on the skin sur-
face at the left eye, right eye, nose and forehead, respectively. The modified model was
3D-printed and used to simulate a real patient’s head. An optical tracker (OT) system
(NDI Polaris Vicra) equipped with a trackable probe was used to acquire the position
of the conical markers on the phantom, designed to accommodate the tip in a unique
manner. The position of the markers was also reported in the holographic model where
four red spheres of 1mm of diameter were added to highlight each marker position.
To evaluate the accuracy of the hologram-to-phantom registration, an H2 expert user
was asked to repeat the following procedure 10 times:

• Acquire the 4 markers position on the printed phantom in the OT space (Fi,OT,
with i = 1, ..4) (Figure 4.3B).

• Wearing the H2 device execute the automatic registration and then, moving away
the phantom, place the tip of the probe in correspondence of the 4 holographic
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marker to obtain their positions in the OT space (Hi,OT, with i = 1, ..4). For this
phase the probe is attached to a tripod which stabilizes the probe movement not
limiting its orientation in the space (Figure 4.3C).

Figure 4.3: A. Experimental setup showing the hardware and physical components
needed to test the registration accuracy; user executing the first test is evaluating the
position of the 4 marker on the printed phantom B., and on the registered holographic
model C.; D. phantom used by neurosurgeons for the second test while E. trying to
insert the OT probe to match the holographic trajectory.

The distance between the phantom and holographic model was assessed both by
computing the Euclidean distance eij = ∥Fij,OT − Hij,OT∥ of the i− th marker and j− th
coordinate (x, y, z), but also providing an estimate of the error for each point of the skin
surface and ventricle. To do this, a first transformation matrix TPhOT

CT was computed
to map SCT with the 4 markers of the printed phantom Fi,OT, and a second one THoOT

CT
to map SCT with the 4 markers of the registered hologram Hi,OT (Figure 4.2B). A least-
square solution based on the singular value decomposition algorithm [95] was applied
to compute the transformation matrices. Finally, the point-to-point distance dj with
j = 1, ..N vertices, was computed as:

dj = ∥TPhOT
CT mj,CT − THoOT

CT mj,CT∥ (4.1)

with mj,CT being the vertices of the segmented model of the skin and ventricles in
the CT space. The root mean square error (RMSE) was computed as:

RMSE =

√
1
N

ΣN
j=1d2

j (4.2)

To evaluate targeting accuracy, another phantom was 3D-printed from the same
segmented model, provided with a large hole in proximity of a common entry point
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for a ventriculostomy procedure and with an internal box full of gelatin mimicking
brain tissue (6% gelatin in water) (Figure 4.3D). A membrane was placed on top of the
hole entrance to reduce the bias experienced by the users when choosing the point of
entrance. For this test, 7 experienced neurosurgeons were asked to:

• acquire the positions of the 4 conical markers on the phantom with the OT probe
Fi,OT.

• do a blind (i.e., without wearing the H2) ventriculostomy procedure using the OT
probe as a catheter, trying to reach the FoM based on anatomical references. Once
deemed arrived to the target, the tip position of the probe was acquired in the OT
space (pblind,OT)

• wear the H2 in which the segmented model is visualized to perform a registration
procedure on the phantom annotating TH2

CT.

• guided by the visualization of an holographic path that goes from the skin to the
FoM, insert the probe and try matching the holographic trajectory (Figure 4.3E).
Again, once the FoM was deemed reached, the position of the probe in the OT
space was acquired (pHguided,OT).

The transformation matrix TPhOT
CT was computed to refer the position of the in-

serted probe to the internal structures of the brain, thus evaluating the tip position
in the blind and hologram guided procedure. To quantify the improvement brought
by adopting the proposed methodology, 7 neurosurgeons independently simulated
EVD procedures on the gelatin phantom. Of note, none of the participant was familiar
with the mixed reality device. The targeting accuracy improvement was computed as:

∆% =
( |pblind,OT−pHguided,OT |

|pblind,OT−pt,OT | × 100
)

%, where pt,OT is the target position in OT space.

4.3 Result assessment

4.3.1 Automatic segmentation

For each 3D image, all the processing steps of automatic segmentation, from reading
raw data to post-processing 3D surfaces, required less than 2 minutes, on average.
Skin and skull 20 subjects were randomly selected and for both the face skin and skull,
the distance from every point in the automatically obtained surface mesh to its closest
point in the ground truth manually reconstructed mesh was computed. For the skin,
mean and maximum distances of 1.75 mm and 17.6 mm were found, whereas for the
skull, mean and maximum distances of 0.44 mm and 3.50 mm were found, respectively.

Brain ventricles test set results The trained NN was applied to run inference on
the test set made of 20 CT scans, 5 of which presented hydrocephalus. Our automatic
segmentation algorithm was able to generalize to new cases, extracting the 3D ventricle
regions with accuracy (Figure 4.4), requiring approximately 130 seconds per scan. For
the lateral ventricles, mean Dice score and 95% Hausdorff distance were equal to of 0.88
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and 14.4 mm, respectively. For the third ventricle, mean Dice score and 95% Hausdorff
distance were equal to 0.62 and 19.4 mm. Considering the five test cases with hydro-
cephalus, a mean Dice score of 0.94 was obtained for the lateral ventricles and a mean
value of 0.81 for the third ventricles, while 95% Hausdorff distances were equal to 18.3
mm and 7.48 mm, respectively.
For all test cases with hydrocephalus, the ventricle surface reconstruction accuracy was
sufficient to automatically detect the FoM.

Figure 4.4: Comparison of manual (ground truth, GT) segmentation in bright red (lat-
eral ventricles, LV) and bright green (third ventricle, TV), vs. automatic segmentation
obtained by the trained neural network (NN) in dark red (lateral ventricles, LV) and
dark green (third ventricle, TV) on a test case.

4.3.2 Registration Accuracy Assessment

Hologram-to-Phantom registration The global time required by the algorithm to com-
pute the transformation matrix TH2

CT and send it back to H2 was 0.26 ± 0.02 s, with
a fitness of 92.93± 3.91% which measures the overlapping area between the cleaned
PtC and the processed skin model, averaged over the 10 measurements. The me-
dian distance with interquartile range between Fi,OT and Hi,OT for the 4 markers, in
the 10 repeated procedures, resulted in 1.25(0.65− 1.72) mm , 1.75(0.98− 2.42) mm,
1.35(0.41 − 1.83) mm, for the x, y, z coordinates in the OT space respectively (corre-
sponding to the axial, sagittal and coronal plane of the phantom). The distances re-
ferred to each of the 4 markers in the 3 coordinates are reported in Figure 4.5A. The
average 3D Euclidean distance for all the markers over the 10 procedures resulted in
2.72± 0.67 mm. The point-to-point accuracy over the whole model as obtained from
Eq. 4.2 showed a RMSE of 3.19± 0.69 mm and 3.61± 1.13 mm for the face and ventri-
cle surfaces respectively. Point-to-point distance maps between the surfaces are repre-
sented in Figure 4.5C.

Ventriculostomy procedure To quantify the improvement brought by adopting the
proposed methodology, 7 neurosurgeons independently simulated EVD procedures on
the gelatin phantom, aiming at the FoM blindly, i.e. relying on anatomical landmarks,
and subsequently with the holographic guidance displaying the FoM target and the
trajectory to follow. To note, none of the participant was familiar with the MR device.
The targeting accuracy improvement was computed as: ∆% = |dblind−dholo |

dblind
· 100, where

dblind and dholo are the target distances of the probe tip without and with holographic
support, respectively. Guided by the holographic system, a 42% higher accuracy was
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Figure 4.5: Experimental results from evaluation tests. A: hologram-to-phantom accu-
racy evaluated on the 4 markers; B: quantitative targeting accuracy from the tests done
by 7 neurosurgeons; C: hologram to phantom accuracy evaluated over the whole model
surface; D: visualization of catheter tip positions and target from the EVD simulations.

shown, on average. Euclidean target distances of blind vs. holographically-guided
simulations are reported in Figure 4.5B. In the blind procedure, the mean distance to
the target was equal to 16.2± 3.48 mm, compared to a mean distance of 9.26± 3.27 mm
for the hologram guided procedure, resulting in a statistically significant improvement
on a paired t-test (p=0.001). Figure 4.5D graphically shows the final tip position in all
the procedures done by the neurosurgeons compared to the FoM target in the ventricle.

4.4 Conclusions

The present study proposed a novel solution for supporting neurosurgeons during
EVD procedures. Our system leverages a deep NN for automatic image segmentation
and a markerless registration method based on a HMD depth sensor to align internal
brain structures with the physical position of the patient. We quantitatively assessed
the accuracy of our workflow at each of its steps, proving the added value to ventricu-
lostomy procedures under experimental settings; adopting our technology, neurosur-
geons targeting accuracy improved by 42%, on average. Of note, all the described steps
require little or no manual intervention, and computations required globally less than
3 minutes, thus making our system suitable for emergency procedures where timing
can be crucial. Our future efforts will focus on including an holographic navigation of
the probe using electromagnetic sensors and evaluate the accuracy of adding a further,
independent, Azure Kinect (Microsoft, Redmond, WA) depth camera to achieve a more
stable and robust point cloud acquisition. Moreover, a phantom reproducing the dif-
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ferent resistance of the ventricles with respect to the brain will be adopted to simulate
the surgical procedure in a more realistic way.
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Part II

Unsupervised approaches for
hemodynamic assessment
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CHAPTER 5

Data-driven generation of 4D velocity pro�les in the aneurysmal

ascending aorta

Based on:
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Weinsaft, J.W., Xu, Y.X., Pirola, S. & Redaelli, A. (2022). Data-driven generation of 4D velocity
profiles in the aneurysmal ascending aorta. Computer Methods and Programs in Biomedicine



Chapter Summary

Background and Objective: Numerical simulations of blood flow are a valuable tool to in-
vestigate the pathophysiology of ascending thoracic aortic aneurysms (ATAA). To accu-
rately reproduce in vivo hemodynamics, computational fluid dynamics (CFD) models
must employ realistic inflow boundary conditions (BCs). However, the limited avail-
ability of in vivo velocity measurements, still makes researchers resort to idealized BCs.
The aim of this study was to generate and thoroughly characterize a large dataset of
synthetic 4D aortic velocity profiles sampled on a 2D cross-section along the ascending
aorta with features similar to clinical cohorts of patients with ATAA.
Methods: Time-resolved 3D phase contrast magnetic resonance (4D flow MRI) scans of
30 subjects with ATAA were processed through in-house code to extract anatomically
consistent cross-sectional planes along the ascending aorta, ensuring spatial alignment
among all planes and interpolating all velocity fields to a reference configuration. Ve-
locity profiles of the clinical cohort were extensively characterized by computing flow
morphology descriptors of both spatial and temporal features. By exploiting PCA, a
statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of
437 synthetic cases with realistic properties was generated.
Results: Comparison between clinical and synthetic datasets showed that the synthetic
data presented similar characteristics as the clinical population in terms of key morpho-
logical parameters. The average velocity profile qualitatively resembled a parabolic-
shaped profile, but was quantitatively characterized by more complex flow patterns
which an idealized profile would not replicate. Statistically significant correlations
were found between PCA principal modes of variation and flow descriptors.
Conclusions: We built a data-driven generative model of 4D aortic inlet velocity profiles,
suitable to be used in computational studies of blood flow. The proposed software sys-
tem also allows to map any of the generated velocity profiles to the inlet plane of any
virtual subject given its coordinate set.
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5.1 Significance and state of the art

Thoracic aortic aneurysms (TAA) is a life-threatening condition involving an abnor-
mal dilatation of the aortic wall [96]. An accurate assessment of blood flow plays an
essential role in clinical diagnosis, risk stratification and treatment planning of TAA
[97, 98, 99]. CFD is a well established tool to quantify hemodynamics [100, 101] through
in silico trials [102, 103]. To achieve a high level of fidelity, CFD models need to account
for patient-specific BCs. When choosing inflow BCs, prescribing patient-specific data
in the form of 3-directional velocity profiles allows to obtain significantly more accu-
rate results compared to using idealized profiles, as amply shown by several recent
studies that make use of velocity information extracted from phase-contrast magnetic
resonance imaging (PC-MRI) [104, 105, 106, 107]. Nonetheless, the limited availability
of in vivo velocity measurements, still makes researchers resort to idealized BCs. More-
over, such lack of clinical data represents an obstacle for setting up population-based
in silico trials and for building datasets for training ML models. Generative models can
be used to overcome this limitation by creating larger data-driven synthetic datasets
[108]. In particular, SSMs have been adopted in the cardiovascular field [109, 110].
SSMs are data-driven approaches for assessing shape variability and creating large vir-
tual cohorts from clinical ones. An SSM is typically based on PCA and describes the
shape probability distribution of the input data by a mean shape and modes of shape
variations [111]. Several studies have effectively applied SSMs to study TAA geometry
[112, 113, 114]. Nonetheless, aortic hemodynamics, which have been shown to play a
key role in pathophysiology of this disease [101, 115, 116], have not received the same
attention. An exception is the work of Catalano et al., who exploited SSMs to build
an atlas of aortic hemodynamics in subjects with by bicuspid aortic valve (BAV) and
triscuspid aortic valve (TAV) [97]. However, the authors imposed an idealized parabolic
velocity profile as inlet BC for their CFD models. Despite revealing important insights
on BAV vs. TAV biomarkers, the study is hampered by the use of such simplified in-
let BCs, which significantly affect the computed aortic blood flow, especially in regions
that are close to the inlet, namely the ascending aorta [106, 107, 117].
Motivated by the need for boosting the impact and the fidelity of numerical studies
involving ATAA hemodynamics, the present work leverages a SSM to pursue three
specific aims. We provide: i) a quantitative and detailed characterization of a repre-
sentative 4D ATAA inlet velocity profile as a valid alternative to idealized inlet BCs for
numerical simulations; ii) a synthetic virtual cohort of 4D ATAA inlet velocity profiles
with features that are consistent with those of real ATAA inlet profiles and potentially
large enough to allow for ML approaches to be used; iii) insights into both spatial and
temporal hemodynamic features of ATAA velocity fields in the ascending aorta.
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5.2 Statistical shape model of aortic velocity profile

5.2.1 Image data

Thoracic 4D flow MRI scans of 30 subjects with ATAA acquired between 2017 and
2019 were retrospectively retrieved. Our dataset included fully deintentified images
provided by Weill Cornell Medicine, (NY, USA) and Hammersmith Hospital (London,
United Kingdom). None of the subjects in our cohort were BAV-affected. Respiratory
compensated 4D flow acquisitions were performed with the following settings: spatial
resolution (voxel size) 1.4 – 2.0 mm (range), field of view = 360 mm, flip angle = 15°,
VENC = 150 – 200 cm/s (range), time resolution 20 – 28 frames/cardiac cycle (range).
Data usage was approved by the Weill Cornell Medicine Institutional Review Board
(New York, NY, USA) and by the Health Research Authority (HRA) (17/NI/0160) in
the UK and was sponsored by the Imperial College London Joint Research and Com-
pliance Office, as defined under the sponsorship requirements of the Research Gover-
nance Framework (2005). The participants provided their written informed consent to
participate in this study.

5.2.2 Data preprocessing

4D flow MRI data were preprocessed using in-house Python code and following the
workflow presented in Figure 5.1. No correction for eddy currents was applied, based
on the high VENC values set in the acquisitions and on the dimensions and position
of the ascending aorta within the scanner [118]. Visual assessment of the measured ve-
locity data was performed to verify that no aliasing was present. For each patient, a
3D binary mask of the aorta was extracted from phase-contrast magnetic resonance an-
giography (PC-MRA) images using semi-automatic tools available in the open source
software ITK-SNAP [30]. Aortic centerlines were extracted using the VMTK [37]. To
guarantee consistency of inlet plane location among all ATAA subjects, inlet planes
were defined with respect to a commonly used anatomical landmark represented by
the bifurcation of the pulmonary artery (PA) [64]. Briefly, the PA bifurcation point (PB)
was identified from the PC-MRA images (in green in Figure 5.2). Then, the point (PBAo)
on the aortic centerline with the same axial (foot-head) coordinate of PB was identified
(pink sphere in Figure 5.2). An inlet point (Pin) was extracted 30 mm upstream of PBAo
along the centerline curvilinear abscissa; the inlet plane was defined as the plane pass-
ing through Pin and locally perpendicular to the centerline. Being aware of the inter-
variability among patient-specific geometries, this methodology was preferred rather
than extracting the inlet plane at the STJ. In fact, the limited space-resolution of 4D flow
MRI does not allow to locate the STJ as clearly as in, e.g., CT images. A triangulated
mesh of the selected plane within the aortic lumen was generated; 4D flow velocity
data were then probed at inlet plane nodal locations. For the generic subject indexed
by j, we defined the inlet plane nodal coordinates as Ξ̃(j) = [ξ̃

(j)
1 , ..., ξ̃

(j)
τ , ..., ξ̃

(j)
T (j) ]

⊺, and

the corresponding measured velocity vector field as Ṽ (j) = [ṽ(j)
1 , ..., ṽ(j)

τ , ..., ṽ(j)
T (j) ]

⊺, with
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ξ̃
(j)
τ , ṽ(j)

τ ∈ RN
(j)×3 and where T (j) and N (j) are the number of frames in the cardiac

cycle of subject j and the number of probed nodal locations on the inlet plane, respec-
tively; therefore, in general, the dimensions of Ξ̃(j) and Ṽ (j) vary among subjects.

4D flow 
acquisitons of 

30 TAA patients

Segmentation
Centerline 
extraction

Raw velocity profile 
extraction 

Preprocessing

SSM

4D velocity profiles 
of 30 subjects

Alignment
Spatial and temporal 

resampling
PCA

Combination 
of modes

500 4D velocity 
profiles generated

Acceptance 
criteria

63 profiles discarded

437 sampled 4D 
velocity profiles

Unmet

Met

Figure 5.1: Schematic representation of the adopted workflow. All 4D flow acquisitions
go through a preprocessing pipeline for the extraction of velocity profiles. The SSM
process consists in a common alignment and spatiotemporal resampling of the profiles
and then a combination of PCA modes to generate new ones. Only the profiles that
meet specific acceptance criteria are included in the final dataset.
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Figure 5.2: Method for ascending aortic plane selection. The pulmonary artery bifurca-
tion point (PB, green) is selected from the PC-MRA images. The corresponding point
on the aortic centerline (PBAo) is identified (pink, bottom right), and the selected plane
(red, bottom right) is chosen at a 30 mm arc length upstream along the centerline and
locally normal to the centerline.

5.2.3 Statistical shape modeling of inlet velocity profiles

Alignment Consistent spatial orientation among the extracted inlet velocity profiles
was ensured through two steps: first, each inlet plane was centered at the origin by
applying the translation T(j) to transform the nodal coordinates ξ̃

(j)
τ into x̃(j)

τ = ξ̃
(j)
τ +

T(j). Second, two consecutive rigid rotations were applied to the translated coordinates
x̃(j)

τ and to the corresponding velocities ṽ(j)
τ . The first rotation (R1 ∈ R3×3) transformed

x̃(j)
τ and the corresponding velocity profile ṽ(j)

τ to x̂(j)
τ = R(j)

1 x̃(j)
τ and v̂(j)

τ = R(j)
1 ṽ(j)

τ ,

respectively, so to make the inlet plane containing x̂(j)
τ normal to the z-axis. The second

rigid rotation (R2 ∈ R3×3) transformed x̂(j)
τ and v̂(j)

τ to x(j)
τ = R(j)

2 x̂(j)
τ and v(j)

τ = R(j)
2 v̂(j)

τ ,
and it ensured that the x-axis was aligned with the right-to-left direction of the subject.

Resampling After alignment, each velocity profile v(j)
τ was mapped onto a reference

disk with unit radius using linear radial basis functions (RBFs), effectively enabling
the resampling of each velocity profile at N = 1071 fixed spatial locations uniformly
distributed over the reference disk (Figure 5.3a and b). For points of the reference disk
that did not fall within the original plane (as it would happen for non-circular cross-
sections) zero velocity vectors were set, limiting alterations from the original flow rate.
Each velocity profile time sequence was temporally interpolated to a reference temporal
interval t ∈ [0, 1] discretized in T = 20 frames, using cubic polynomials. Finally, for
the generic subject j, the spatiotemporally aligned and resampled velocity profiles are
defined as: V(j) = [v(j)

1 , ..., v(j)
t , ..., v(j)

T ]⊺, with v(j)
t ∈ RN×3.

Principal component analysis The 30 aligned 4D velocity profiles were rearranged
into column vectors and assembled into a matrix V = [V(1), ..., V(j), ..., V(30)], with V ∈
RP×J where J is the number of subjects (30) and P = 3× N × T. Matrix V was used as
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Figure 5.3: a) Representation of an inlet plane coordinate set from a representative sub-
ject in the clinical cohort (red), as obtained upon rigid roto-translation, and of the cor-
responding point set in the fixed disk domain (green). b) A velocity profile from the
clinical cohort (top), resampled to the fixed reference disk using RBFs (bottom). c) Ex-
emplification of the computed flow descriptors. FDI (top): areatop15% is highlighted in
black; FJA (middle): angle between plane normal (black) and mean velocity direction
(magenta); SFD (bottom): ratio between the normal component (black) and in-plane
component (cyan) of the mean velocity vector (magenta).

71



input for a PCA. Standard PCA begins by computing the mean velocity profile defined
as:

V̄ =
1
J

J

∑
j=1

V(j), (5.1)

and by assembling the covariance matrix C, given by:

C =
1
J

J

∑
j=1

(V(j) − V̄)(V(j) − V̄⊺). (5.2)

The eigenvalues and eigenvectors of C were sorted in descending order to obtain a
sequence of eigenvectors that progressively maximize the explained variance. The first
18 eigenvectors were considered since their cumulative variance was ≥ 90%. Each
mode represents a shape direction of variation from the mean velocity profile that is
representative of data variability.

Shape sampling Starting from the mean shape V̄, the SSM can be built, and a syn-
thetic 4D profile U can be generated by adding to V̄ a shape variation, i.e., a linear
combination of the selected modes [112] as:

U = V̄ +
M

∑
m=1

b(m)
√

λ(m)a(m) (5.3)

where M denotes the number of selected modes, a(m) is the eigenvector of C associ-
ated to the m-th selected mode, and λ(m) is the corresponding eigenvalue. New pro-
file shapes can be sampled from the SSM by using a set of coefficients, or weights,
b = [b(1), ..., b(m), ..., b(M)]. In particular, to study the shape variations captured by a
specific mode, one can sample shapes by considering only the selected mode and vary-
ing the coefficient b(m).
A uniform sampling technique for the first 18 modes of variation of the PCA was used
to generate the virtual dataset of inlet velocity profiles:

b(m) ∼ U (−1.5, 1.5). (5.4)

5.2.4 Flow morphology descriptors

To quantitatively characterize inlet velocity profiles belonging to the clinical cohort and
to the synthetic one, several descriptors of flow morphology were computed, both at
systolic peak and as time-averaged quantities: positive peak velocity (PPV), flow dis-
persion index (FDI), flow jet angle (FJA), secondary flow degree (SFD), and retrograde
flow index (RFI). Representations of FDI, FJA and SFD is included in Figure 5.3c. For
a generic profile v(j)

t consisting of nodal velocity vectors v(j)
t,n , with n = 1, ..., N, flow

descriptors were computed as follows.
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Flow dispersion (FDI) was calculated to determine whether flow displayed a broad or
peaked in-plane distribution. FDI was computed as the ratio between the area of
the region characterized by the top 15% of peak velocity magnitudes (areatop15%)
and the inlet area [106]:

FDI =
areatop15%

area
× 100%, (5.5)

Accordingly, the higher the FDI value the more homogeneous the velocity profile;
the lower the FDI value the sharper the velocity profile.

Flow jet angle (FJA) represents the angle formed by the mean velocity direction (jet
direction vmean) and the unit vector orthogonal to the inlet surface n:

FJA = arccos(vmean · n), (5.6)

FJA quantifies the skewness of the inlet flow towards aortic walls. An FJA value
of 0◦ represents a mean jet direction perpendicular to the inlet plane.

Secondary flow degree (SFD) is computed as the ratio between the mean in-plane (ra-
dial) velocity magnitude v∥ and the mean axial velocity magnitude (through-
plane velocity) v⊥ as:

SFD =
||v∥||
||v⊥||

, (5.7)

Retrograde flow index (RFI) was calculated as the fraction of negative area under the
curve of the flow rate time-course over the whole area under the curve [119]:

RFI =

∣∣∣∫ T
0 Qrdt

∣∣∣∣∣∣∫ T
0 Qadt

∣∣∣+ ∣∣∣∫ T
0 Qrdt

∣∣∣ × 100%, (5.8)

where Qr and Qa are the total retrograde and antegrade flow rate, respectively. A
higher RFI value implies an increasing flow direction inversion during the cardiac
cycle.

5.2.5 Acceptance criteria

To avoid generation of unrealistic velocity profiles and restrict the synthetic population
only to plausible cases acceptance criteria were introduced. Such criteria were based on
the flow features of the clinical profiles. Specifically, intervals of acceptance Id were de-
fined based on the statistical distributions of the flow descriptors defined in section 5.2.4
and computed as:

Id =
[
µd − 2

√
λd

]
∪
[
µd + 2

√
λd

]
(5.9)
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where µd denotes the mean value of the considered flow descriptor d:

µd =
1
J ∑

j

1
T ∑

t
d(j)

t , (5.10)

and
√

λd its standard deviation. Flow descriptors were extracted from the synthetic
velocity profiles; those synthetic profiles characterized by at least one parameter falling
outside the acceptance intervals were automatically rejected.

5.2.6 Statistical analysis

To assess statistical differences between the clinical and synthetic sets, comparisons
were made using unpaired t-tests for normally distributed variables and Mann–Whitney
U tests for non-normally distributed data. Data normality was determined using the
Shapiro–Wilk test.
Pearson’s correlation coefficients were calculated to assess correlations between shape
modes and flow descriptors. p-values <0.05 were considered statistically significant.

5.3 Results

5.3.1 Statistical shape model analysis

Characterization of the clinical cohort For the original cohort, the mean 4D profile V̄
was obtained and characterized in terms of flow descriptors. Time-averaged descrip-
tors for the mean profile of the clinical cohort were: PPV = 0.42 m/s, FDI = 13.34%,
FJA = 0.42◦ and SFD = 7.57. Values at peak systole (PS) were: PPV = 1.47 m/s,
FDI = 12.8%, FJA = 13◦, SFD = 0.23; while RFI = 2%. V̄ (orientated as in Figure
5.4b) can be visualized at three key time points through the cardiac cycle: early systole
(ES), PS and late systole (LS) (Figure 5.4c); colormaps visualizations were generated
using the warp by vector filter available in the open-source Python library pyvista.

Generation of the synthetic inlet velocity profiles The sampling of the SSM through
the process described in section 5.2.3 led to generate 500 synthetic 4D profiles. Out of
these, the acceptance criteria led to accepting 437 velocity profiles that constituted the
final synthetic cohort.

Comparison of synthetic vs. clinical velocity profiles Synthetic and clinical inlet
velocity profiles were compared based on time-averaged flow descriptors shown in
Table 5.1 and Figure 5.5. No statistically significant differences were found between the
two cohorts, except for PPV (p = 0.040). Nonetheless, PPV mean values only differed
by 0.03 m/s and similar standard deviations were observed (0.12 and 0.08 for clinical
and synthetic cohorts, respectively).
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Descriptor Clinical cohort Synthetic cohort p value
PPV [m/s] 0.59± 0.12 0.56± 0.08 0.040†

FDI [%] 10.36[5.78, 18.53] 9.72[6.30, 16.11] 0.187
FJA [°] 66.77[27.94, 106.29] 68.74[30.09, 101.60] 0.929
SFD [-] 3.84[0.62, 20.45] 2.85[0.65, 15.72] 0.190
RFI [%] 4.11[0.00, 32.10] 5.86[0.00, 27.74] 0.728

Table 5.1: Comparison of time-averaged flow descriptors between real and synthetic
cohorts. Normally distributed variables are expressed as mean ± standard deviation;
non-normally distributed variables are expressed as median [min, max]. † indicates
statistical significance p ≤ 0.05.
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Figure 5.4: a. Individual and cumulative variance associated with each principal com-
ponent. b. Orientation of the displayed planes and profiles in with respect to the sub-
ject in 2D and 3D. c. Mean velocity profile (V̄) colored by velocity magnitude in 2D
(top row) and 3D (bottom row) at early systole (ES), peak systole (PS) and late systole
(LS). d. 2D and 3D visualizations of velocity profiles deformed towards minimum and
maximum for the first 4 modes and colored by velocity magnitude; color scale shown
in panel b.
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Figure 5.5: Box plots showing distributions of time-averaged flow descriptors for real
and synthetic cohorts. Similar medians and ranges were observed. No significant dif-
ferences (p ≥ 0.05) were found except for PPV (p = 0.040). Whiskers indicate 1.5
interquartile ranges; diamonds highlight outliers.
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5.3.2 Associations of velocity profile modes with flow morphology descrip-
tors

The devised SSM was exploited to analyze the modes of variation and assess their cor-
relation with flow morphological features. By containing the majority of statistical in-
formation, the first four modes were responsible for approximately 45% of the total
dataset variability (Figure 5.4a). For the first four modes, the obtained extreme shape
variations are visualized in Figure 5.4d. Although it is not straightforward to associate
each mode of variation with a specific flow feature, it can be hypothesized that the
first PCA modes are related to some physically meaningful characteristic of the profile.
In practice, the potential physical meaning of each mode was assessed by evaluating
equation 5.3 taking into account only one mode at a time and choosing a set of 10
evenly spaced coefficients b(m) ∈ [−3, 3] as described in [97]. The flow morphology de-
scriptors introduced in section 5.2.4, were computed for each generated profile as b(m)

was gradually increased. For simplicity, correlations with spatial and temporal flow
features were analyzed separately. Correlations with spatial features were computed at
PS.

Modes correlation with spatial features at peak systole Correlation results at PS are
reported in Table 5.2. Mode 1 seemed related to the spatial heterogeneity of velocity
magnitude and FDI, with larger high velocity regions observed when b(1) = 3. This was
confirmed by the statistically significant positive correlations of mode 1 with PPV (r =
0.94, p < 0.0001) and FDI (r = 0.99, p < 0.0001). Overall, with increasing b(1), PPV, FDI,
SFD, and FJA increased, indicating a tendency of the profile to be less aligned with the
plane normal. Similar trends were obtained for velocity profiles generated by varying
b(2), which appeared related to overall flow rate together with the size of the region with
intermediate velocity as it can be visualized by the less pronounced jet for b(2) = −3
in Figure 5.4. With increasing b(2), PPV, SFD, and FJA significantly increased (r = 0.86,
p = 0.001; r > 0.99, p < 0.0001; r > 0.99, p < 0.0001, respectively). No statistically
significant correlation was found between mode 2 and FDI (r = −0.14, p = 0.702).
Profiles corresponding to b(3) = −3 showed a more spatially concentrated velocity jet
than profiles sampled at b(3) = 3. Quantitatively, this was reflected in increasing SFD
(r = 0.88, p = 0.001) and FJA (r = 0.88, p = 0.001) and in decreasing PPV (r = −0.67,
p = 0.032) as b(3) increased. No correlation was found between mode 3. Finally, profiles
generated by varying b(4) showed differences in the shape of the high velocity region
and in jet orientation. Specifically, with increasing b(4), FJA (r = −0.91, p < 0.0001) and
SFD (r = −0.90, p < 0.0001) decreased while FDI increased (r = 0.96, p < 0.0001). No
correlation was found between mode 4 and PPV (r = −0.27, p = 0.458).

Modes correlation with temporal features For each of the first four modes, the flow
rates computed on the 10 evenly spaced coefficients b(m) ∈ [−3, 3] were analyzed (fig-
ure 5.6). Profiles corresponding to mode 1 showed the largest variation in peak flow
rate, ranging from 0.62 for b(1) = −3 to 2.37 for b(1) = 3, and the largest temporal shift
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b(m) r p
-3.00 -2.33 -1.67 -1.00 -0.33 0.33 1.00 1.67 2.33 3.00

Mode 1
PPV [m/s] 1.34 1.35 1.37 1.39 1.42 1.52 1.62 1.73 1.87 2.03 0.94 < 0.0001
FDI [%] 7.42 8.09 8.86 9.83 11.78 14.01 15.92 17.53 18.70 19.59 0.99 < 0.0001
FJA [°] 9.48 11.54 13.08 14.25 12.61 13.44 14.09 14.61 15.02 15.36 0.88 0.001
SFD [-] 0.16 0.20 0.23 0.25 0.22 0.23 0.25 0.26 0.26 0.27 0.88 0.001

Mode 2
PPV [m/s] 1.53 1.40 1.31 1.28 1.38 1.56 1.76 1.96 2.16 2.37 0.86 0.001
FDI [%] 8.93 9.86 11.63 14.66 13.76 12.02 11.01 10.30 9.78 9.54 -0.14 0.702
FJA [°] 7.56 8.82 10.06 11.27 12.47 13.64 14.78 15.91 17.01 18.09 >0.99 < 0.0001
SFD [-] 0.13 0.15 0.17 0.20 0.22 0.24 0.26 0.28 0.30 0.32 >0.99 < 0.0001

Mode 3
PPV [m/s] 2.03 1.83 1.65 1.53 1.49 1.46 1.43 1.43 1.51 1.64 -0.67 0.032
FDI [%] 12.40 14.16 15.33 15.25 13.38 12.40 12.75 13.45 12.94 11.29 -0.52 0.122
FJA [°] 12.86 12.79 12.78 12.82 12.95 13.19 13.56 14.09 14.82 15.78 0.88 0.001
SFD [-] 0.22 0.22 0.22 0.22 0.23 0.23 0.24 0.25 0.26 0.28 0.88 0.001

Mode 4
PPV [m/s] 1.66 1.58 1.51 1.49 1.47 1.47 1.47 1.50 1.54 1.60 -0.27 0.458
FDI [%] 11.60 11.50 11.43 12.21 12.31 13.14 14.12 15.09 16.08 16.52 0.96 < 0.0001
FJA [°] 41.68 35.70 28.65 21.83 15.74 10.66 7.13 6.26 7.90 10.40 -0.91 < 0.0001
SFD [-] 0.89 0.71 0.54 0.40 0.28 0.18 0.12 0.10 0.13 0.18 -0.90 < 0.0001

Table 5.2: PCA modes correlations with velocity profile flow descriptors at peak sys-
tole. Results of Pearson correlation analyses are reported. p < 0.05 indicates statistical
significance.

(∆t = 0.096). Furthermore, a negative linear correlation was found between b(1) and
RFI (r = −0.87, p = 0.001), with larger portions of retrograde flow corresponding to
lower values of b(1). A similar trend was observed for mode 4, whose associated flow
rate peaks increased with increasing b(4), but within a narrower range ([0.90, 1.76]) and
with a smaller temporal shift (∆t = 0.04). On the other hand, an opposite trend was
found for mode 3, with higher flow rates for decreasing b(3), and with negligible tempo-
ral shifts. Flow rates associated to profiles generated by varying b(2) all showed similar
flow rate curves over time.
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Figure 5.6: Plots of normalized flow rates over time computed for the first four modes
by varying their corresponding coefficient b(m). Mean flow rate over time correspond-
ing to V̄ is shown in red for all subplots.

5.4 Results impact and comparison with previous work

The lack of patient-specific information on in vivo flow features has led to the widespread
use of simplified inlet velocity profile BCs when setting up CFD models. However, this
assumption can significantly impact results, particularly when modeling the ascending
aorta [104, 105, 106]. The present work addressed the issue of scarcity of patient-specific
hemodynamic data by proposing a valid alternative to idealized inlet velocity profiles.
In particular, we focused on cases of ATAA. The first key achievement of the present
work was exploiting SSMs to generate a dataset of 437 synthetic velocity profiles start-
ing from a clinical cohort of 30 ATAA subjects. The proposed methodology allowed to
create aortic inlet velocity fields that presented similar spatiotemporal characteristics as
compared to real ATAA patients, and that are suitable to be prescribed as inlet BC for
CFD simulations. We found an average velocity profile V̄ that qualitatively resembled
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a 3D paraboloid-like shape (Figure 5.4c). This finding suggests that imposing an ide-
alized parabolic profile as inflow BC of an ATAA CFD model is the best choice in the
absence of patient-specific flow data. Similar findings were reported by [106], who also
suggested that a parabolic profile is a reasonable choice when patient-specific data are
missing and in case of TAV. Nonetheless, our V̄ was characterized by FJA = 13°and
SFD = 0.23 at PS, whereas a perfectly symmetric and centered paraboloid would have
null FJA and SFD values. In particular, the velocity jet was directed toward the right
side of the subject, i.e., the extrados of the ascending aorta. As recognized by [106] and
confirmed by additional studies ([105, 107]), including in-plane velocity components
significantly affects flow dynamics predictions in the ascending aorta. Therefore, for an
accurate assessment of ATAA hemodynamics, the mean profile proposed in this study
represents a better baseline choice for inlet BC specification in CFD simulations.
Our SSM was also sampled to generate new realistic 4D profiles; the individual vari-
ance associated to the first mode was equal to ≈ 13%, whereas the first four modes
accounted for ≈ 45% of cumulative variance (Figure 5.4a). Thamsen et al. [113] built an
SSM of aortic coarctation anatomy and found that the first mode covered 43.7% of the
total variation, while the first three modes were responsible for its 70%. The authors
also built an SSM of inlet vector fields based on 4D flow MRI data, but did not provide
full insights into profile variability and only considered PS, limiting their analysis to
steady conditions. Our results indicate substantially lower individual mode explained
variance. Such discrepancy can be attributed mainly to the fact that we dealt with 3D
velocity vectors that change over time, which represent considerably more complex,
higher dimensional features as compared to 3D positions describing static geometries.

The second key achievement of this study was providing insights into the hemo-
dynamic features that are responsible for the most significant variations of ascending
aorta spatiotemporal velocity profiles. Although it was not possible to find a one to one
correspondence between shape modes and flow descriptors, we were able to demon-
strate that the first four modes can be related to a unique combinations of spatial flow
morphology descriptors (Table 5.2 and Figure 5.4). A more straightforward interpreta-
tion of PCA modes has been reported in studies dealing with aortic anatomy [110, 114].
In our results, an overlapping of feature contributions to PCA modes is likely due to
the complexity and high dimensionality of our 4D velocity vector fields that makes our
data significantly more heterogeneous. Nonetheless, it is interesting to note that mode 1
was clearly linked to a temporal feature: flow rate over time (Figure 5.6). Spatially, this
resulted in a positive correlation between b(1) and systolic PPV (r = 0.94, p < 0.0001)
and FDI (r = 0.99, p < 0.0001), which both contribute to increase net flow rate. There-
fore, when exploiting the proposed SSMs, users that wish to investigate the impact of
specific flow features will be able to adjust mode weights to generate profiles with the
desired characteristics.

Limitations It is important to address the limitations of the present study. First, a
clinical cohort size of 30 subjects limits the statistical power of our conclusions. This
downside is related to the retrospective nature of the study and to the choice of con-
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sidering only subjects with TAV and ATAA. Future studies could focus on analyzing
aortic velocity profiles in BAV patients, which are known to display considerably dif-
ferent flow features [106]. Second, our choice of plane positioning may result in slightly
different anatomical locations among subjects. Having an additional imaging modality,
such as CT or MRA, aligned with 4D flow images, one could select a plane at the level
of the STJ. In general, the low quality of 4D flow images does not allow to detect the STJ
with certainty, whereas the chosen anatomical landmark (bifurcation of the pulmonary
artery) was always clearly visible in our flow-encoded images. Finally, PCA is funda-
mentally a linear transformation. Non-linear approaches based on deep learning could
potentially increase the effectiveness of data-driven hemodynamic features extraction
[120].

5.5 Conclusions

In this work we built the first data-driven generative model of time-dependent 3D aor-
tic inlet velocity profiles, suitable to be used in numerical simulations of blood flow.
With the aim of expediting the development of future in silico analyses, the proposed
software system also allows to map any of the generated velocity profiles to the in-
let plane of any virtual subject given its coordinate set. The present work thus sets a
new standard for the computational bioengineering community, allowing to replace the
common practice of prescribing idealized inflow BC in numerical simulations of blood
flow with more realistic conditions.

Data availability and usability

We provide the generated synthetic cohort of 4D velocity profiles ready to be used for
time-dependent CFD simulations with a Github repository also containing the neces-
sary scripts to replicate our study. The code can be found at: https://github.com/

saitta-s/flow4D and all synthetic velocity profiles can be downloaded from https:

//doi.org/10.5281/zenodo.7251987.
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CHAPTER 6

Implicit neural representations for unsupervised super-resolution and

denoising of 4D �ow MRI

Based on:
Saitta, S., Carioni, M., Mukherjee, S., Schönlieb, C.B. & Redaelli, A. (2022). Implicit neural
representations for unsupervised super-resolution and denoising of 4D flow MRI. arXiv:2302.12835



Summary

Context. 4D flow magnetic resonance imaging (4D flow MRI) is the only non-invasive
imaging method that can provide time-resolved measurements of blood flow velocities.
However, velocity fields detected by this technique have significant limitations that
prevent accurate quantification of blood flow markers. These limitations are mainly
related to low spatio-temporal resolution and measurement noise. Several lines of re-
search have been pursued to overcome the main limitations. Among these, coordinate-
based neural networks have shown to be able to represent complex signals as con-
tinuous functions, making them suitable for super-resolution tasks. In this work we
investigate sinusoidal representation networks (SIRENs) for time-varying 3-directional
velocity fields measured in the aorta by 4D flow MRI, achieving denoising and super-
resolution.
Method. We trained our method on 4D voxel coordinates and enforce the no-slip con-
dition at the vessel wall. First, we benchmarked our approach using synthetic mea-
surements generated from a CFD simulation for which ground truth velocity fields are
available. Three different levels of noise were simulated: mild, medium and extreme.
Then, we test our method on a real 4D flow MRI scan of a patient with aneurysm of the
ascending aorta. We assessed both velocity and WSS fields obtained with our method.
Results. The performance of different SIREN architectures was evaluated on synthetic
measurements. The best configuration was chosen as the one that minimized the sum
of velocity normalized root mean square error (vNRMSE), magnitude normalized root
mean square error (mNRSME) and direction error (DE). A SIREN with 20 layers and
300 neurons per layer gave the lowest error for all levels of noise. The results of the
SIREN with the chosen configuration were compared against state-of-the-art methods
for 4D flow denoising and super-resolution. Our approach outperformed all existing
techniques, giving up to 50% lower vNRMSE, 42% lower mNRSME and 15% lower DE
on velocity and WSS fields. Additionally, the developed approach produced denoised
and super-resolved velocity fields from clinical data, while maintaining low discrepan-
cies in macroscopic flow measurements.
Conclusions. We showed the feasibility of SIRENs to representing complex and multi-
dimensional blood flow velocity fields obtained from 4D flow MRI. Our approach is
both quick to execute and straightforward to implement for novel cases. By metic-
ulously optimizing our SIREN architecture, we leverage the spectral bias to generate
a functional representation of our data with minimized noise, surpassing current so-
lutions. Our method produces continuous velocity fields that can be queried at any
spatio-temporal location, effectively achieving 4D super-resolution.
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6.1 Background and significance

Accurate hemodynamic assessment is essential for having a deeper understanding of
cardiovascular pathophysiology [121, 122]. For certain cardiovascular conditions such
as aortic coarctation, valvular disfunction and vascular aneurysm, disease diagnosis
and management are based on in vivo hemodynamic biomarkers [123, 124] that can be
obtained by either catheter insertion or non-invasive blood flow imaging methodolo-
gies. To date, 4-dimensional flow encoded magnetic resonance imaging (4D flow MRI
or 4D flow) is the only existing non-invasive imaging technique that provides true time-
resolved 3-dimensional (3D) and 3-directional blood flow velocity measurements [125].
4D flow is based on the PC-MRI principle, which makes use of bipolar magnetic gra-
dients to calculate the phase shift of moving protons. PC-MRI encodes tissue velocity
v(x, t) ∈ R3 at spatial location x during cardiac phase t(1 ≤ t ≤ Nt) according to:

ρi(x, t) = ρ0(x, t) exp
(

jπ
(Φv(x, t)))i

VENC

)
, (6.1)

where VENC is a manually set parameter determining the maximum velocity that can
be recorded, i = 0, ..., 3 are the encoded velocity components, and adopting a four-point
velocity encoding, Φ is defined as:

Φ =


0 0 0
1 0 0
0 1 0
0 0 1

 . (6.2)

Hence, the measured tissue velocity component i is proportional to the phase shift of
the reconstructed images ρi [126].
Considering ρit ∈ RNr×Nc×Ns a discretized complex PC image on a Cartesian Nr ×Nc×
Ns grid corresponding to cardiac phase t and velocity component i, the reconstructed
image H(ρit) ∈ RNr×Nc×Ns can be modeled as:

H(ρit) = F−1(M(F(ρit) + ϵ)), (6.3)

where F is the Fourier transform, M ∈ {0, 1}Nr×Nc×Ns defines the undersampling mask
in k-space, and ϵ ∈ CNr×Nc×Ns is the additive complex noise. Herein, we have neglected
coil sensitivity maps for simplicity, a more rigorous description of the PC-MRI mea-
surement operator can be found in [126].
Velocity fields measured by 4D flow MRI can be processed after reconstruction to quan-
tify more complex and clinically relevant hemodynamic biomarkers such as WSS [127,
128, 129], relative pressure [130, 131] and vortex structure [132]. Nonetheless, the large
amount of raw data collected during a 4D flow MRI scan limits this imaging technique,
entailing longer image reconstruction time and more difficult image analysis with re-
spect to standard magnetic resonance angiography (MRA). Modern compressed sens-
ing has enabled substantial shortening of 4D flow MRI acquisition time [133, 134] by
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undersampling k-space data and exploiting priors about data regularity during recon-
struction [135, 136]. Although modern techniques could achieve 4D flow MRI recon-
structions in under 5 minutes [137], the resulting flow images still suffer from important
limitations that make them inadequate for accurate quantification of blood flow mark-
ers. These limitations mainly concern spatio-temporal resolution, velocity encoding
(VENC) related signal to noise ratio (SNR) and k-space noise [138]. For cardiothoracic
acquisitions, image spacing is usually isotropic and in the range of 1.5-3 mm3, whilst
typical temporal resolution is 30-50 ms [139]. Furthermore, 4D flow MR images are cor-
rupted by noise, which is commonly assumed to be zero-mean Gaussian in frequency
space [140]. Overcoming 4D flow limitations by reducing noise levels and enhancing
its spatio-temporal resolution, would lead to more accurate hemodynamic assessment,
boosting its widespread adoption and increasing its clinical usefulness. In this work,
we present a novel application of implicit neural representations (INRs) [141] to achieve
super-resolution (SR) and denoising of 4D flow MRI velocity fields. Our approach pro-
vides a continuous reconstruction of blood flow in both space and time, showing supe-
rior performance with respect to state-of-the-art methods for 4D flow denoising.

6.1.1 Related Work

Over the past two decades, several lines of research have been pursued to overcome the
main limitations of 4D flow MRI velocity measurements and provide more accurate
non-invasive hemodynamic assessment. Herein, we categorize these efforts broadly
into two groups: model-based and data-based approaches. Model-based methods are
based on CFD informed using MR images, whereas data-based methods directly oper-
ate on image data and apply regularized interpolation to enhance flow-encoded images
[142, 143, 144, 145, 146, 147, 148].

Model-based approaches

As an alternative to 4D flow MRI, CFD has been widely applied to study cardiovascular
flows [100, 115, 149, 150]. In contrast to 4D flow, CFD simulations can provide noise-
free blood flow velocity fields at arbitrarily high spatio-temporal resolutions. By solv-
ing the Navier-Stokes (N-S) equations, numerical hemodynamic solutions inherently
satisfy mass and linear momentum conservation laws. Nevertheless, when modeling
subject specific cardiovascular flows, the accuracy of CFD simulations heavily relies on
the choice of boundary conditions [107, 117] and blood constitutive model [151, 152].
When comparing CFD solutions to 4D flow velocity measurements, these assumptions
inevitably lead to substantial discrepancies between hemodynamic markers computed
via the two approaches [153, 154, 155]. Model-based approaches typically formulate
their approach as an inverse N-S problem, in which one or more unknown parame-
ters in the governing partial differential equations (PDEs) are optimized to minimize
an objective functional representing the discrepancy between the N-S solution and the
measured data. Model-based methods effectively address the limitations of noise and
low spatio-temporal resolution of flow measurements, yielding velocity fields defined
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on fine computational grids and at arbitrarily small time steps (<10 ms).
In the seminal works of Funke et al. [142] and Koltukluoğlu et al. [143], this approach
came down to solving a N-S boundary value problem formulated in a variational data
assimilation framework, in which one or more boundary conditions are optimized in
either 3D [143] or 4D [142]. Recently, a more comprehensive approach was proposed by
Kontogiannis et al. [144] to jointly recover both boundary conditions, domain bound-
ary and kinematic viscosity by assimilating noisy flow image data into the N-S solution.
The same well-designed settings were later extended by the same authors to cope with
undersampled synthetic phase contrast data [145], resulting in the first N-S informed
compressed sensing reconstruction method. However, their method was only applied
to 2D cases with steady flow conditions. In fact, despite the considerable progress
made, all the mentioned techniques are computationally intensive, and their cost can
enormously increase in higher dimensions, undermining their feasibility for real medi-
cal case-scenarios. For this reason, there is still lack of model-based approaches that can
efficiently assimilate time-dependent 3D velocity fields from real medical flow images
for concrete human data applications.

Data-based approaches

In contrast to model-based approaches, data-based methods do not rely on solving the
governing PDEs. Instead, they employ interpolation techniques to approximate flow
data, incorporating some form of regularization to impart desirable characteristics to
the resulting velocity fields. Within this category, we discern between conventional
denoising approaches and recent neural network-based methods.

Conventional denoising approaches adopt signal processing tools to enhance the ac-
quired flow MRI data after reconstruction. To incorporate prior physical knowledge in
their processing stage, several works have exploited the assumption of blood incom-
pressibility. This physical condition is usually enforced through a divergence-free con-
straint on the reconstructed velocity field [146, 147]. Busch et al. [147], achieved effec-
tive denoising by projecting noisy flow measurements onto a 3D space of divergence-
free RBFs. Moreover, their approach allows for incorporation of boundary conditions
in the reconstructed flow field. Nonetheless, strict enforcement of the divergence-free
condition may result in over-regularized velocity fields, especially in flow regions near
edges of flow (boundaries). An approach to softly enforce the divergence-free condi-
tion was proposed by a Ong et al. [146]. By constructing divergence-free waveletss
(DFWs), the authors were able to decompose measured velocity fields into divergence-
free and non-divergence-free wavelet coefficients, promoting the former and penalizing
the latter according to suitably tuned thresholds. The described process is essentially
analogous to wavelet denoising, but the different choice of wavelets enables correction
of divergent flow components, providing flow fields with more coherent streamlines
when compared to unfiltered medical data. By directly processing images, data-based
methods are in general more computationally efficient than model-based techniques.
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However, none of the proposed approaches so far has taken into account the time-
dependent nature of 4D flow data. Additionally, working on structured grids (images)
prevents a precise quantification of near-wall blood flow markers that are often sought-
after in medical applications, such as WSS fields. In a recent study [156], 4D RBFs were
used to reconstruct velocity fields measured with MRI. To make their approach compu-
tationally light, the authors combined multi-quadric RBF interpolation with a partition
of unity scheme. Since it operates on scattered data, this approach results efficient in
high dimensions, and well-suited for enforcing Dirichlet boundary conditions on the
reconstructed velocity fields and improving quantification of near-wall features.

Neural network approaches are a relatively new class of data-based methods that can
be thought of as approximations of complex nonlinear functions. Within the scientific
computing community, a popular paradigm for exploiting the high expressive power
of NNs is represented by physics informed neural networks (PINNs). In the formula-
tion proposed in [157], PINNs are parametrized multi-layer perceptrons (MLPs) that
learn a function mapping coordinates to outputs. PINNs can be seen as continuous
functions fitting sparse observations and simultaneously minimizing the residual of a
PDE (in differential form) that is identified as the mathematical model that generated
the data. This is done by constructing the loss function as a weighted sum of two terms:
a data fidelity term and a PDE residual. By leveraging automatic differentiation, eval-
uation of the PDE residual does not introduce severe numerical errors, albeit entailing
considerable increase in computational cost. The relative ease of implementation of
PINNs and their potential to seamlessly combine measurements with PDEs has made
this approach appealing for incorporating the N-S equations in fluid flow reconstruc-
tion applications [158, 159, 160, 161]. Nonetheless, when training PINNs, choosing the
correct hyperparameters is often the result of a trial and error procedure. When deal-
ing with high dimensional problems, hyperparameter tuning can become unfeasible.
In particular: i) a sufficient number of collocation points (coordinates where the PDE
residual is evaluated) needs to be considered to achieve good accuracy [157], and ii) the
relative weights of the PDE residual in the loss function needs to be carefully calibrated
[162]. These issues make PINNs still difficult to apply to real-world fluid mechanics ap-
plications where data is often noisy and high dimensional. To date, the only application
of PINNs to 4D flow MRI data is the work of Fathi et al. [148]. The authors tested their
approach on synthetic 4D flow data from a reference CFD simulation for which ground
truth velocity and pressure fields were known, achieving SR and superior denoising
with respect to DFWs [146]. Successively, they evaluated their method on in vitro 4D
flow velocity measurements, but not on in vivo medical data.
PINNs can be thought of as a subset of coordinate-based MLPs [141, 163, 164]. These
networks can represent complex signals by taking low-dimensional coordinates as in-
put and returning the value of the signal at the input locations. Such signal representa-
tions are often referred to as INRs [141]. Signals represented by coordinate-based MLPs
can be orders of magnitude more compact than their grid-based counterparts [165].
Coordinate-based MLPs are known to suffer from severe spectral bias, namely they
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struggle to learn the high frequency signal components. To overcome this limitation,
recent studies have proposed the introduction of a sinusoidal mapping of input coordi-
nates [165, 166, 167]. In practice, this consists in a Fourier feature encoding [168] of input
coordinates x to γ(x) = [a1 cos(2πb⊺

1v), a1 sin(2πb⊺
1v), ..., am cos(2πb⊺

mv), am sin(2πb⊺
mv)],

where, in most cases, aj = 1 and bj is sampled from an isotropic distribution [165].
Successful biomedical applications of coordinate-based networks include 3D vascular
surface reconstruction [169] and non-rigid medical image registration [170]. A further
improvement of coordinate-based MLPs to capture high order derivatives in the out-
put signal was achieved by employing sinusoidal activation functions for every hidden
neural network layer, as introduced by Sitzmann et al. [141]. Sinusoidal representa-
tion networks (SIRENs) have been shown to be suited for representing complex natural
signals, including images, solutions to Poisson equations and 3D shapes [141].

In this work, we employ SIRENs for learning time-varying velocity fields measured
by 4D flow MRI. We leverage the MLP’s architecture to introduce an implicit prior to
constrain the space of solutions and investigate such implicit regularization bias to-
wards lower frequencies, which simultaneously prevents overfitting and reduces noise
in flow-encoded MR images.

6.2 Implicit neural representations of 4D flow MRI

6.2.1 Problem setting

Partially borrowing the notation from [145], from here on we will use the superscripts
(·)∗ to denote measured quantities and (·)• to denote ground truth quantities (when
they exist). Additionally, quantities defined on unstructured point sets (or meshes)
will be denoted with lowercase letters and parentheses, while quantities defined on
structured grids (images) will be denoted with uppercase letter and square brackets.
Let V∗ ∈ RNr×Nc×Ns×Nt×3 be a time-resolved flow image volume sequence obtained
from a reconstructed 4D flow acquisition, with Nr, Nc, Ns and Nt being the number of
rows, columns, slices and cardiac frames, respectively. Let ∆x ∈ R3 and ∆t ∈ R be the
physical spacings between adjacent voxels along the spatial and temporal dimensions.
At a voxel center with 4D coordinates [xi, tj], where xi ∈ R3, we denote the measured
velocity vector as: V∗[xi, tj] ∈ R3, with i ∈ [1, Nr × Nc× Ns], and j ∈ [1, Nt]. Herein, the
index i refers to the flattened spatial coordinates of the image.
We are interested in representing V∗ with a continuous function f : R4 → R3, where
f (xi, tj) = V∗[xi, tj]. To approximate f , we use an MLP fΘ with weights Θ and with
sinusoidal activation functions (SIREN). The l-th layer of a SIREN receiving a generic
input tensor xl ∈ RQl performs the following operation:

xl+1 = sin(Θlxl + bl), (6.4)

where Θl ∈ RPl×Ql and bl ∈ RPl are the weight matrix and biases of the l-th layer,
respectively. Following [141], each weight θ is initialized so that θ ∼ U (−

√
6/c,
√

6/c),
where c is the generic input feature size. Furthermore, as proposed by [141], the first
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layer of the SIREN is modified as: sin(ω0 ·Θx + b). Following [141], we set ω0 = 30.
For our purposes, a key advantage of this formulation lies in representing a high dimen-
sional image as a continuous function that can be queried at arbitrary spatio-temporal
resolutions.

6.2.2 Training a SIREN in 4D

In most practical cases dealing with blood vessels, one is only interested in reconstruct-
ing blood flow within a bounded region Ω ⊂ R3 with inflow boundary Γi, outflow
boundary Γo and wall boundary Γw, and within a time interval [ta, tb]. The inner fluid
region is denoted by Ωf = Ω \ {Γi ∪ Γo ∪ Γw}. In our approach, velocity field recon-
struction is achieved by sampling Nf spatial voxel coordinates x(f) from Ωf repeated
over the time interval [ta, tb], i.e., (x(f)i , tj), with i = 1, 2, ..., Nf; j = 1, 2, ..., Nt. Ad-
ditionally, we enforce the no-slip condition on the vessel wall by sampling Nw spa-
tial coordinates from Γw repeated over the time interval [ta, tb], i.e., (x(w)

p , tq), with
p = 1, 2, ..., Nw; q = 1, 2, ..., Nt. Of note, we oversample spatial coordinates from Γw
by setting Nf ≈ Nw. We denote the total number of spatial coordinates used for SIREN

training as N = Nf + Nw. Unlike the original SIREN formulation, this approach allows
us to only use a relatively small set of coordinates compared to the total number of
image points, greatly reducing training time and memory cost.

For each generic input coordinate pair (x, t), the following non-dimensionalization
is performed:

x̂ =
x− xmin

∆x
D, t̂ =

t− tmin

∆t
D, (6.5)

where xmin and tmin are the minimum spatial and temporal coordinates, and we set
D = 0.01.
Training fΘ implies solving the following minimization problem:

min
Θ
L(Θ), (6.6)

where the loss function L is given by the misfit between the MLP prediction and the
measured data plus a boundary condition term:

L(Θ) =
Nf,Nt

∑
i=1,j=1

∥ fΘ(x̂(f)i , t̂j)−V∗[x(f)i , tj]∥2
2 +

Nw,Nt

∑
p=1,q=1

∥ fΘ(x̂(w)
p , t̂q)∥2

2. (6.7)

Hence, the only supervision comes from the image values and fixed Dirichlet bound-
ary conditions, making the approach fully unsupervised. Training is carried out using
a limited memory limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-
rithm with learning rate of 1 until ∇ΘL = 0.

6.2.3 SIREN evaluation

Once trained, fΘ can be queried at arbitrary spatio-temporal collocation points denoted
as (x′, t′), sampled from the spatio-temporal domain Ω× [ta, tb]. To evaluate the gen-
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eralization capabilities of a trained SIREN, collocation points corresponding to N′ spa-
tial coordinates and N′t temporal coordinates, i.e., (x′n, t′n), with n = 1, 2, ..., N′; m =
1, 2, ..., M′, are defined at ≈ ×20 higher spatial resolution and ×10 higher temporal res-
olution than image coordinates. Non-dimensionalization of evaluation coordinates is
operated consistently with the one used for the training set:

x̂′ =
x′ − xmin

∆x
D, t̂′ =

t′ − tmin

∆t
D. (6.8)

Therefore, we evaluate fΘ on: (x̂′n, t̂′m), n = 1, ..., N′; m = 1, ..., M′.

6.2.4 Error quantification

To quantify errors obtained in experiments, three different metrics were used. Differ-
ences between a reference vector field ure f and another generic vector field u, were
evaluated by computing vNRMSE, mNRSME, and the DE as:

mNRMSE =
1

max |ure f |

√√√√ 1
K

K

∑
k=1

(|u| − |ure f |)2
k , (6.9)

vNRMSE =
1

max |ure f |

√√√√ 1
K

K

∑
k=1

(u− ure f )
2
k , (6.10)

DE =
1
K

K

∑
k=1

(
1−
|ure f ,k · uk|
|ure f ,k||uk|

)
, (6.11)

where K is the generic number of 4D points where the two velocity fields are evaluated.

6.2.5 Wall shear stress analysis

From a generic velocity field, the WSS field was calculated following the approach de-
scribed in [171]. From the definition of WSS for a Newtonian fluid:

WSS = µ

(
∂v
∂y

)
y=0

, (6.12)

where µ is the dynamic viscosity, v is the component of the velocity vector that is lo-
cally parallel to the wall, and y is the Euclidean distance from the wall, for each spatial
3D point on the vessel wall (Γw), the implemented WSS calculation method requires
interpolation of the velocity fields at 2 points evenly spaced by a distance δn along the
inward normal. The so obtained local velocity profile is interpolated with a quadratic
function, whose analytical derivative is used to approximate ∂v/∂y. In our experi-
ments, we set δn = 0.5mm
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6.2.6 Case 1: synthetic 4D flow MRI

CFD simulation. To have a benchmark for evaluating the proposed method, a syn-
thetic 4D flow MRI acquisition was created from a reference CFD simulation. First,
the ascending aorta of a subject with TAA was segmented from 3D MRA images using
open-source software [65]. The segmented domain Ω, was divided into 3 subdomains:
inlet Γi, outlet Γo and wall Γw (Figure 6.1a). A 3D tetrahedral mesh with a base size of
0.6 mm was generated using the VMTK library [38]. The final volumetric mesh con-
sisted of ≈ 800k nodes. Time-varying 3-directional velocity profiles (Figure 6.1b) were
prescribed as inlet boundary conditions, mapping a realistic TAA inlet velocity profile
to the Γi following the approach described in [172] and producing the flow waveform
represented in Figure 6.1c. A zero-pressure condition was enforced on Γo and a ho-
mogeneous Dirichlet boundary condition (no-slip) was assumed on Γw. Blood was
modeled as a Newtonian fluid with constant density ρ = 1060 kg/m3 and dynamic vis-
cosity µ = 0.004 Pa·s. A finite volume simulation was run at a fixed time step of 0.001 s.
An implicit scheme with splitting of operators (PISO) was used to solve the governing
equations of blood flow in Star-CCM+. Results were exported at every timestep within
the time interval [0.2 - 0.399] s (peak to late systole), yielding a sequence of M′ = 200
velocity fields u• defined on the computational nodes x′n, n = [1, ..., N′] over the simu-
lation time coordinates t′m, m = [1, ..., M′].

Ω

Γ𝑖

Γ𝑤

Γ𝑜

a) b) c)

Figure 6.1: a) Computational domain. b) Time-varying 3-directional velocity profiles
prescribed at as inlet boundary condition. c) Flow waveform imposed at Γi

Synthetic data creation. Noise-free, high resolution CFD velocity fields were pro-
cessed to obtain low resolution velocity fields corrupted with noise typical of 4D flow
MRI measurements. To achieve this, the following steps were implemented partially
following [173]:

1. the sequence of CFD solution snapshots denoted by u• was temporally down-
sampled to a sequence of M = M′

h velocity fields ū, using a moving average such
that: ū(x′n, t′j) =

1
h ∑m+h−1

k=1 u•(x′n, t′k);
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2. each time frame of ū was converted to a uniform Cartesian grid with voxel size
of 1 mm3 using a linear interpolation scheme to assign velocity vector values to
grid cells, yielding a sequence of Cartesian grids Ũ[x̃i, tj] ∈ RNr×Nc×Ns×Nt×3, with
Nr = 76, Nc = 112 and Ns = 292;

3. each velocity grid in Ũ was converted to a complex tensor containing magnitude
and phase images using suitable VENC values as formalized in equation 6.1;

4. the fast Fourier transform was applied to obtain the corresponding k-space data;

5. a truncation of the 3D k-space data (high frequencies) was performed, effectively
decreasing the spatial resolution by a factor of 2;

6. a zero-mean Gaussian noise with standard deviation σ corresponding to the de-
sired SNR (calculated according to [173]) was added to the k-space data;

7. a randomized sampling mask drawn from a normal distribution and covering S%
percent of the k-space was applied to further undersample the frequency content,
keeping a fully sampled calibration region of 5 × 5 × 5 in the center of k-space;

8. the inverse Fourier transform was applied to the undersampled, noise-corrupted
k-space, yielding a complex tensor of magnitude and phase images;

9. complex images were converted back to real images of velocity fields using VENC
values consisted with step 3, obtaining a sequence of noisy synthetic velocity mea-
surements U∗ defined at voxel coordinates xi, i = 1, ..., N with isotropic voxel size
of 2×2×2 mm3 and at times tj, j = 1, ..., M.

For each velocity direction, the VENC value was chosen 10% larger than the maxi-
mum velocity, so that the phase wrapping/unwrapping would not introduce aliasing
artifacts. Figure 6.2 shows the effect of the different implemented steps to create our
synthetic 4D flow data.

The level of degradation of our synthetic measurements is regulated by three pa-
rameters: h, SNR and S. We chose h = 40 to obtain ∆t = 0.04s, which is compatible
with real medical measurements. We tested our approach on three different levels of
degradation, mild, medium or extreme reported in Table 6.1 and shown in Figure 6.6.

Noise level SNR S
mild 20 99
medium 5 95
extreme 2 68

Table 6.1: Degradation parameters for generating synthetic measurements from the ref-
erence velocity field.
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time

Figure 6.2: Visualization of velocity magnitude colormaps on a sagittally oriented 2D
slice (bottom left) corresponding to the different steps to create synthetic 4D flow data
from CFD results. CFD results (top row) are temporally averaged (second row). Tempo-
rally average velocity fields defined on unstructured meshes are resampled to a fine 3D
Cartesian grid (third row). Fine cartesian grids are downsampled in k-space and com-
plex Gaussian noise is added to produce synthetic flow measurments (bottom row).
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Comparison with existing methods

The denoising and SR performances of our approach were compared against existing
methods. Among them, only 4D RBFs lend themselves to the joint task of denoising
and SR. Hence, pure denoising approaches were combined with simple interpolation
schemes to achieve SR. The following methods were tested:

1. linear interpolation (LITP) as a baseline for SR;

2. DFW with automatic threshold selection based on SureShrink [146] for denoising
and LITP for SR. Velocity fields generated by this approach will be denoted as
DFW;

3. 3D divergence-free radial basis functions (DF-RBFs) as described in [147] for de-
noising and LITP for SR. Velocity fields generated by this approach will be de-
noted as DF-RBF;

4. an approach based on 4D RBFs [156], but for which no official implementation
was available. Hence, we implemented our version of 4D RBFs with multi-quadric
kernel and local support for denoising and SR. We set 10 as the number of near-
est neighboring points for local kernel support. A soft enforcement of the no-slip
condition on the vessel wall was applied by setting null velocity values at point
belonging to the wall region. Velocity fields generated by this approach will be
denoted as 4D-RBF.

6.2.7 Case 2: in vivo 4D flow MRI

A thoracic 4D flow MRI scan of a subject with ascending thoracic aortic aneurysm was
retrospectively retrieved. Images were fully deintentified and provided by Weill Cor-
nell Medicine, (NY, USA). A respiratory compensated technique was adopted with the
following settings: spatial resolution (voxel size) 1.14 mm× 1.14 mm× 0.9 mm, field of
view = 360 mm, flip angle = 15°, VENC = 200 cm/s in all 3 directions, time between con-
secutive frames = 30 ms, for a total of 20 frames per cardiac cycle. DICOM images were
processed using open-source code [172] to compute the PC-MRA image and extract the
segmentation of the enlarged ascending aortic tract (Figure 6.3).

The velocity components measured through flow MRI can be visualized in Figures
6.4 and 6.5 for a sagittally and an axially oriented 2D slice, respectively.
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Figure 6.3: Left: segmented 3D geometry (red) superimposed on a slice representation
of PC-MRA images. Right: fine 3D mesh for spatial super-resolution
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Figure 6.4: Sagittally oriented 2D slice within the aortic aneurysm (bottom left), to-
gether with colormaps of left-to-right (first and fourth rows), posterior-to-anterior (sec-
ond and fifth rows) and foot-to-head (third and sixth rows) velocity components. Rows
4 to 6 show velocities sampled on a 3D mesh by linear interpolation. Columns from left
to right correspond to increasing time points.
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Figure 6.5: Axially oriented 2D slice within the aortic aneurysm (bottom left), together
with colormaps of left-to-right (first and fourth rows), posterior-to-anterior (second and
fifth rows) and foot-to-head (third and sixth rows) velocity components. Rows 4 to 6
show velocities sampled on a 3D mesh by linear interpolation. Columns from left to
right correspond to increasing time points.
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6.3 Experiment results

6.3.1 Case 1: quantification of image degradation

The implemented degradation process to transform CFD velocity fields into synthetic
flow MR measurements consisted of a sequence of steps that gradually worsened the
quality of the data. The contribution of each step described in Section 6.2.6 is reported in
Table 6.2. To make these comparisons, the CFD velocity fields were evaluated at coarse
spatio-temporal discretizations as denoted in Section 6.2.6. Qualitatively, the addition
of mild complex noise produced velocity fields that well kept the low frequency features
present in the original fields (Figures 6.6 and 6.7, rows 1 and 2). Synthetic images with
medium noise level produced more degraded images, with clearly visible artifacts and
loss of high frequency details (Figures 6.6 and 6.7, rows 1 and 3). The extreme noise level
yielded severely worsened velocity field with respect to ground truth, with a visible
complete loss of fine flow details and generally higher velocities (Figures 6.6 and 6.7,
rows 1 and 4).

ure f = u•(x′, t) ure f = u•(x̃, t) ure f = u•(x, t)
u = ū(x′, t) u = Ũ[x̃, t] u = U∗[x, t]

mNRMSE [%] 1.79 1.75
3.63
5.24
8.23

vNMRSE[%] 2.06 2.01
3.22
5.60
9.64

DE [%] 4.95 0.59
1.41
7.96
15.9

Table 6.2: Errors introduced by the implemented degradation steps.
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Figure 6.6: Velocity magnitude colormaps on a sagittal slice (bottom left corner) cor-
responding to: CFD solution (top row), images with mild added noise (second row),
images with medium added noise (third row), images with extreme added noise (bottom
row). Columns from left to right correspond to increasing time points.
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Figure 6.7: Detailed view of velocity magnitude colormaps on a sagittal slice (magenta
rectangle in bottom left corner) corresponding to: CFD solution (top row), images with
mild added noise (second row), images with medium added noise (third row), images
with extreme added noise (bottom row).
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6.3.2 Case 1: hyperparameter tuning

The effects of SIREN’s depth (number of layers) and width (number of neurons per
layer) on the denoising and SR performances were assessed by training different con-
figurations of fΘ on synthetic images with mild, medium and extreme noise level. Trained
models were evaluated on CFD nodal mesh coordinates x′ and at time points t′ evenly
spaced by 0.004 s, effectively oversampling Ω by ≈ ×20 and the time interval [0.2 -
0.399] by ×10. Results are reported in Tables 6.3, 6.4 and 6.5, for mild, medium and
extreme noise levels, respectively. For mild noise levels, all the tested SIREN configu-
rations gave low errors with respect to ground truth velocity fields. Networks with
greater width and depth resulted in only slightly lower mNRMSE, vNRMSE and DE.
For medium noise levels, better results were obtained by wider models, but not neces-
sarily by deeper ones. For this noise settings, the best performing SIREN consisted of
12 layers, each with 500 neurons. In the case of extreme noise, wider networks gave
worse results than narrower ones, while deeper architectures generally produced more
accurate velocity fields compared to ground truth. Wider models showed a tendency
to overfit high frequency noise, as shown in Figures 6.8 and 6.9.
We chose the single best configuration as the one that minimized the sum of vNRMSE,
mNRMSE and DE for all three noise levels, hence a SIREN 20 layer deep and with 300
neurons per layer was selected for all downstream comparisons against other methods
and on the medical dataset.
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Depth

W
id

th

4 8 12 16 20
3.52 3.56 3.53 3.42 3.46

100 3.43 3.36 3.32 3.22 3.27
6.8 6.4 6.3 6.22 6.31

3.48 3.46 3.52 3.52 3.41
200 3.36 3.27 3.27 3.27 3.21

6.43 6.23 6.16 6.16 6.14

3.51 3.53 3.62 3.50 3.43
300 3.40 3.30 3.33 3.24 3.21

6.47 6.24 6.19 6.14 6.13

3.49 3.47 3.60 3.49 3.53
400 3.34 3.25 3.31 3.25 3.29

6.37 6.16 6.17 6.12 6.15

3.59 3.47 3.55 3.54 3.45
500 3.45 3.26 3.30 3.29 3.23

6.42 6.19 6.17 6.19 6.14

Table 6.3: Effect of SIREN number of layers (depth) and number of neurons per layer
(width) on denoising and super-resolution using data with mild noise level. In each cell
values of mNRMSE (top), vNRMSE (middle) and DE (bottom) are reported.

103



Depth

W
id

th

4 8 12 16 20
4.48 4.63 4.65 5.86 5.29

100 4.73 4.92 4.94 6.13 5.61
10.5 10.8 10.9 13.6 12.3

3.98 3.98 4.42 4.49 4.85
200 4.24 4.24 4.72 4.81 5.15

9.66 9.61 10.5 10.7 11.5

3.94 3.94 3.97 4.02 4.20
300 4.20 4.20 4.21 4.30 4.51

9.59 9.56 9.5 9.67 10.21

4.03 3.81 3.89 3.87 4.03
400 4.35 4.09 4.16 4.12 4.28

9.87 9.39 9.48 9.44 9.69

3.95 3.82 3.83 3.85 3.84
500 4.24 4.11 4.08 4.10 4.10

9.62 9.41 9.38 9.33 9.36

Table 6.4: Effect of SIREN number of layers (depth) and number of neurons per layer
(width) on denoising and super-resolution using data with medium noise level. In each
cell values of mNRMSE (top), vNRMSE (middle) and DE (bottom) are reported.
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Depth

W
id

th

4 8 12 16 20
5.31 5.37 5.26 5.30 5.87

100 5.73 5.80 5.73 5.75 6.29
13.01 13.33 12.93 13.02 14.17

5.84 5.99 5.16 5.15 5.21
200 6.62 6.91 5.68 5.67 5.64

14.83 15.11 12.87 12.78 12.84

7.30 7.74 5.40 5.21 5.16
300 8.50 9.05 6.09 5.77 5.63

18.86 19.91 13.41 12.95 12.7

8.86 8.14 7.61 5.56 5.44
400 10.3 9.52 8.89 6.33 6.10

22.34 21.02 19.68 13.98 13.51

9.41 8.07 7.95 7.46 6.50
500 10.9 9.45 9.28 8.65 7.56

23.52 20.88 20.5 19.16 16.66

Table 6.5: Effect of SIREN number of layers (depth) and number of neurons per layer
(width) on denoising and super-resolution using data with extreme noise level. In each
cell values of mNRMSE (top), vNRMSE (middle) and DE (bottom) are reported.
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Figure 6.8: Sagittal view of the effect of different SIREN architectures on synthetic im-
ages with extreme noise level. Rows 1 and 5: images with extreme noise added; rows 2
and 6: CFD solution; rows 3 and 7: results of a SIREN with 20 layers and 500 neurons
per layer; rows 4 and 8: results of a SIREN with 20 layers and 300 neurons per layer.

106



0.6

0.0

Figure 6.9: Axial view of the effect of different SIREN architectures on synthetic images
with extreme noise level. Rows 1 and 5: images with extreme noise added; rows 2 and
6: CFD solution; rows 3 and 7: results of a SIREN with 20 layers and 500 neurons per
layer; rows 4 and 8: results of a SIREN with 20 layers and 300 neurons per layer.
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6.3.3 Case 1: comparison with existing methods

Velocity fields

The SIREN configuration that showed the best results was evaluated on the synthetic
images with three different levels of noise. Velocity fields obtained with our approach
were compared against the existing methods listed in Section 6.2.6. The proposed SIREN

gave lower mNRMSE, vNRMSE and DE for all noise levels (Table 6.6). Among the
LITP-based methods, DF-RBF [147] performed better than LITP alone, while DFW pro-
vided the worst performance. Qualitatively, all existing methods produced very sim-
ilar velocity fields for the mild noise level case, showing suboptimal capabilites of re-
constructing finer flow details (Figure 6.10). For the same level of noise, our method
was able to fit flow details more accurately. Similar results were observed for the
medium and extreme noise levels. As shown in Figures 6.11 and 6.12, all baseline ap-
proaches tended to perform denosing by oversmoothing the data. On the other hand,
our method was able to filter out noise but better preserving finer flow structures.

LITP
DFW

+
LITP

DF-RBF
+

LITP
4DRBF SIREN

5.88 6.47 5.90 6.91 3.50
mild 4.96 5.40 4.99 5.68 3.24

7.13 7.96 7.2 8.15 6.14

6.11 7.26 6.05 6.79 4.02
medium 5.50 6.18 5.42 6.01 4.30

10.1 10.16 9.78 10.53 9.67

7.06 8.53 6.85 7.57 5.21
extreme 6.96 7.43 6.62 7.04 5.77

14.16 13.01 13.26 13.9 12.95

Table 6.6: Velocity field comparison with existing methods. In each cell values of mN-
RMSE (top), vNRMSE (middle) and DE (bottom) are reported.

Wall shear stress fields

The same methodology described in Section 6.2.5 was applied to the velocity fields
obtained by CFD (ground truth), DFW, DF-RBF, 4D-RBF and our best SIREN (20 lay-
ers, 300 neurons per layer). Results obtained by the different approach are reported in
Table 6.7. Our method gave the lowest mNRMSE, vNRMSE and DE, outperforming
the others for all the tested noise levels. WSS fields computed from the denoised and
super-resolved velocity field obtained by the different approaches can be visualized as
3D colormaps in Figures 6.13, 6.15 and 6.17 for mild, medium and extreme noise levels,
respectively, and as unwrapped 2D surfaces in figures 6.14, 6.16 and 6.18. More visible
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Figure 6.10: Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic
measurements with mild noise level at time points evenly spaced by ∆t = 40ms. Second
row: ground truth velocity fields from CFD at time points evenly spaced by ∆t = 20ms.
Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF results. Sixth
row: 4D-RBF results. Seventh row: our method.
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Figure 6.11: Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic
measurements with medium noise level at time points evenly spaced by ∆t = 40ms.
Second row: ground truth velocity fields from CFD at time points evenly spaced by
∆t = 20ms. Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF
results. Sixth row: 4D-RBF results. Seventh row: our method.
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Figure 6.12: Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic
measurements with extreme noise level at time points evenly spaced by ∆t = 40ms.
Second row: ground truth velocity fields from CFD at time points evenly spaced by
∆t = 20ms. Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF
results. Sixth row: 4D-RBF results. Seventh row: our method.
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differences produced by the different methods can be appreciated for the extreme noise
level (Figures 6.17 and 6.18). In this case, all methods, including ours, underestimated
WSS magnitudes. Our SIREN showed superior performance, giving WSS fields in good
agreement with CFD-derived results, with high WSS magnitudes on the outer curve of
the vessel wall, as expected.

LITP
DFW

+
LITP

DF-RBF
+

LITP
4DRBF SIREN

8.76 8.65 8.68 18.6 5.62
mild 6.03 6.10 6.00 12.31 4.02

3.43 4.64 3.52 3.84 2.1

8.43 7.93 8.29 18.6 6.53
medium 6.05 5.99 5.96 12.6 4.76

4.94 5.83 4.86 6.85 3.98

10.32 9.06 10.1 19.5 7.82
extreme 7.59 7.01 7.41 13.4 6.04

7.74 8.41 7.5 10.34 7.0

Table 6.7: WSS field comparison with existing methods. In each cell values of mNRMSE
(top), vNRMSE (middle) and DE (bottom) are reported.
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Figure 6.13: Results corresponding to mild noise levels. WSS colormaps on the aortic
wall at time points evenly spaced by ∆t = 20ms. Top row: WSS computed on ground
truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth
row), 4D-RBF (fifth row), our method (sixth row).
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Figure 6.14: Results corresponding to mild noise levels. WSS colormaps on the aortic
wall represented as a 2D surface at time points evenly spaced by ∆t = 20ms. Top row:
WSS computed on ground truth velocity fields from CFD. LITP (second row), DFW
(third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
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Figure 6.15: Results corresponding to medium noise levels. WSS colormaps on the aortic
wall at time points evenly spaced by ∆t = 20ms. Top row: WSS computed on ground
truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth
row), 4D-RBF (fifth row), our method (sixth row).
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Figure 6.16: Results corresponding to medium noise levels. WSS colormaps on the aortic
wall represented as a 2D surface at time points evenly spaced by ∆t = 20ms. Top row:
WSS computed on ground truth velocity fields from CFD. LITP (second row), DFW
(third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
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Figure 6.17: Results corresponding to extreme noise levels. WSS colormaps on the aortic
wall at time points evenly spaced by ∆t = 20ms. Top row: WSS computed on ground
truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth
row), 4D-RBF (fifth row), our method (sixth row).
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Figure 6.18: Results corresponding to extreme noise levels. WSS colormaps on the aortic
wall represented as a 2D surface at time points evenly spaced by ∆t = 20ms. Top row:
WSS computed on ground truth velocity fields from CFD. LITP (second row), DFW
(third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
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6.3.4 Case 2: velocity field assessment

Table 6.8 shows quantitative measurements from raw MRI data and reconstructed ve-
locity fields with the proposed SIREN. Overall, our method gave high resolution veloc-
ity fields that maintained low discrepancies in macroscopic quantitative measurements
that are considered to be reasonably accurate when assessed from unprocessed MRI
measurements [174], giving differences in mean and maximum flow rate of <5% and
underestimating reverse flow index (RFI) by 9.4%, as computed in [119]. Qualitatively,
our approach produced cleaner velocity fields, but maintaining the high velocity re-
gions observed at the extrados of the ascending aorta as in the measured data (Figures
6.19 and 6.20). From the 3D vector visualization (third and fourth rows in Figures 6.19
and 6.20), it can be appreciated how the reconstructed velocity vector field kept the
swirling patterns formed in the middle ascending aorta, but filtered out the spurious
vector components in the near-wall regions.

Measured data SIREN ∆%
Mean flow rate [L/min] 4.66 4.88 4.9%
Max flow rate [L/min] 27.7 27.2 1.8%
RFI [%] 21 19 9.4%

Table 6.8: Quantitative measurements for Case 2 on raw flow MR measurements and
on velocity fields reconstructed with our method.
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Figure 6.19: Velocity magnitude colormaps (rows 1 and 2) and velocity vectors (rows 3
and 4) for Case 2 on a sagittally oriented 2D slice (bottom left). Rows 1 and 3: 4D flow
measurements, rows 2 and 4: SIREN results.

1.0

0.0

Figure 6.20: Velocity magnitude colormaps (rows 1 and 2) and velocity vectors (rows 3
and 4) for Case 2 on an axially oriented 2D slice (bottom left). Rows 1 and 3: 4D flow
measurements, rows 2 and 4: SIREN results.
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6.3.5 Case 2: wall shear stress field assessment

As observed for the synthetic case, the high velocity region near the wall of the outer
curve of the aneurysm caused higher WSS in this region (Figure 6.21), with a maximum
WSS value of 20 Pa and mean time-averaged WSS (TAWSS) of 7.5 mPa.

8

0

Figure 6.21: WSS magnitude colormaps (row 1) and WSS vectors (rows 2) computed
from SIREN results.

6.4 Discussion of SIRENs for 4D flow MRI

The use of 4D flow MRI in analyzing blood flow in major vessels has been widely
studied, but the limitations of this imaging technique, such as noise and low spatio-
temporal resolution have hindered its use in more advance velocity-based hemody-
namic analysis. For instance, some studies have attempted to quantify WSS directly
from flow-encoded MR images [175, 176], evaluating their accuracy at different levels
of image noise or spatial resolution. Although these approaches enable fast assessment
of near-wall quantities, they often tend to underestimate the true WSS values with re-
spect to numerical simulation. In pursuit of more accurate quantification of WSS fields,
researchers have turned to increasingly complex numerical simulations of blood flow
[142, 177]. Although CFD studies are a powerful tool for estimating WSS, they require
significant computational resources and can take several hours, or even days, to run
due to their computational cost.
In this study, we proposed an unsupervised learning method based on INRs for denois-
ing and SR of velocity fields measured by 4D flow MRI. We evaluated our approach on
realistic synthetic data with various levels of noise and showed the superior perfor-
mance of our method with respect to state-of-the-art methods in terms of both denois-
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ing and spatio-temporal SR. The proposed approach was able to denoise and super-
resolve 4D velocity data while maintaining the integrity of the dominant flow features.

Among neural network approaches, it is worth mentioning the studies of Ferdian
et al. [173], Rutkowski et al. [178] and [179]. In these works, CFD simulations are
used to create synthetic 4D flow MRI datasets, so to have measurements - ground truth
pairs to train convolutional neural networks for denoising and SR. Hypothetically, if
large realistic training data is generated, these approached would be able to learn the
denoising and SR tasks, and could generalize to new domains without the need of re-
training. Nonetheless, by operating convolutions in the image domain, these models
are usually engineered to super-resolve ×2 or ×4 in space alone, and they do not allow
for precise evaluation of near-wall quantities. Additionally, these methods require full
ground truth supervision. For these reason, we did not include them in our comparison
against existing methods.

The success of our method relies on two main properties of MLPs. First, we lever-
age SIREN’s spectral bias [180, 181] to achieve velocity field denoising. This property of
dense fully-connected networks prevents them from learning high frequency functions.
Assuming noise in MR to be Gaussian in k-space results in high frequency artifacts in
image space that are effectively removed by an INR. Our experiments on simulated 4D
flow data (Case 1) allowed us to gain insights into the capabilities of SIRENs to denoise
velocity data. When exploiting the spectral bias for signal denoising, one should care-
fully choose model’s width and depth such that high frequency noise is filtered out,
while desirable fine signal details are maintained. Overall, with mild and medium noise
levels, all the tested combinations of depths and widths were able to fit the data, with
a tendency of larger models to give slightly lower errors (Tables 6.3, 6.4). For extreme
noise levels, SIRENs with more than 300 neurons per layer overcame the spectral bias
and overfitted high frequency noise. Once the best architecture was identified, our ap-
proach outperformed all other tested denoising methods. The second key strength of
the proposed approach relies on the fact that the trained MLP fits the velocity vector
field as a continuous function of space-time coordinates. In practice, this was achieved
by building upon the work of Sitzmann et al. [141], who showed how SIRENs are bet-
ter suited to fit complicated, feature-rich signals, such as natural images and solutions
to simple PDEs. The present work is the first to adopt SIRENs for fitting 4D velocity
measurements. By acting pointwise on 4D coordinates, a trained SIREN can be queried
at continuous spatio-temporal locations, theoretically providing SR at arbitrarily fine
spatial and temporal scales. Additionally, by incorporating time as an input feature,
SIREN’s pointwise outputs are implicitly affected by temporal neighboring point fea-
tures.

In principle, our approach is closely related to the formulation introduced by PINNs
[157], with the main difference lying in the definition of the loss function. We train our
models only using a data fidelity term, neglecting physical priors. The introduction of
N-S residuals in differential form in the loss function could potentially lead to more
physically consistent velocity fields, but would significantly slow down the training
process. In the present study, we were interested in demonstrating the feasibility of
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a method that could potentially be applied to real medical scenarios where speed of
execution is required. For the TAA patient (Case 2), using an NVIDIA A100 graphics
card, our method took approximately 4 minutes to train and less than 2 seconds to
evaluate at a fine spatio-temporal resolution.

In contrast to most data-based approaches, the devised method requires the defi-
nition of a bounded domain Ω × [ta, tb] (Section 6.2.2). On one hand, this choice rep-
resents a limitation of our workflow, entailing longer processing times. On the other
hand, precise definition of a smooth vessel wall surface enables robust computation
of WSS, a clinically important hemodynamic biomarker. Results on synthetic data
showed good quantitative and qualitative agreement between predicted and reference
CFD data (Table 6.7 and Figures 6.13, 6.15, 6.17). Results on real medical data revealed a
high WSS region on the outer curvature of the ascending aorta (Figure 6.21), with most
values ranging from 0 to 15 Pa. These results are in good agreement with a recent study
on TAA biomechanics [116], who reported maximum WSS values of 10.18 ± 4.14 Pa
for a cohort of 10 patients. Even though more detailed analyses are needed on the use
of neural networks for in vivo WSS estimation, our results indicate that velocity fields
produced by our method are suitable for extraction of derived biomarkers, otherwise
difficult to assess.

6.5 Final considerations

In this work we showed the feasibility of SIRENs to represent complex, high dimen-
sional blood flow velocity fields measured by 4D flow MRI. By training on low reso-
lution coordinates, our method is quick to execute for new cases and easy to imple-
ment. By carefully tuning our SIREN architecture, we exploit the spectral bias to obtain
a functional representation of our data with reduced noise, outperforming state-of-the
art solutions. Our method provides continuous velocity fields that can be queried at
arbitrary spatio-temporal locations, effectively achieving 4D super-resolution.
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CHAPTER 7

Final remarks
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This chapter offers an overview and analysis of the research presented throughout
this thesis.

The work presented in Chapter 2, involved developing a tool that can automatically
compute geometric parameters relevant to TEVAR planning using CNNs and compu-
tational geometry. The tool successfully segmented the thoracic aorta and pulmonary
vasculature of 70 CT scans, including 9 pathological cases of TAA. The study found
significant differences in geometric aortic features that may explain the less satisfactory
clinical results obtained by TEVAR in CILCA arches compared to standard ones. The
tool is automated, quick, reliable, and considered an innovative solution to improve the
decision-making process before TEVAR.

In Chapter 3, we built a pipeline that automates the quantification of complex mor-
phological biomarkers for preprocedural planning of TAVI using CT images. To vali-
date our approach, we tested it on the largest patient dataset to date, comprising 178
patients. Our proposed method delivers quick, accurate, and consistent assessment of
aortic root anatomy, yielding 3D segmentations of the aortic root with a mean Dice score
of 0.96. By incorporating this deep learning-based tool into the preoperative planning
routine in TAVI environments, we anticipate potential time and cost savings, as well as
improved accuracy.

Chapter 4 proposed a system that supports neurosurgeons during EVD procedures.
It utilizes a CNN for automatic segmentation of the brain ventricles, detection of the
procedural target and a markerless registration method based on a depth sensor to
align internal brain structures with the physical position of the patient. The system
was tested and proven to improve the accuracy of neurosurgeons targeting by 42% on
average, with little to no manual intervention and computations required in less than 3
minutes.

Chapter 5 presented a system that generates time-dependent 3D aortic velocity pro-
files using a data-driven statistical shape model. The generated velocity profiles can be
used in numerical simulations of blood flow, and can be mapped to the inlet plane of
any virtual subject. The proposed software system replaces the common practice of pre-
scribing idealized inflow boundary conditions with more realistic conditions, setting a
new standard for the computational bioengineering community.

Chapter 6 demonstrated the use of multilayer perceptrons with sinusoidal activa-
tion functions (SIRENs) to represent high-dimensional blood flow velocity fields mea-
sured by 4D flow MRI. By training the network on low-resolution coordinates, the
method is computationally efficient and easy to implement for new cases. We showed
how choosing the proper SIREN architecture is crucial to effectively take advantage of its
spectral bias, resulting in a functional representation of the data with reduced noise and
superior performance compared to existing methods. The continuous velocity fields
generated by this approach can be queried at any spatio-temporal location, achieving
4D super-resolution.
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Future directions and perspectives

This thesis presents various applications of machine learning in biomedical sciences,
highlighting its significant impact in this field.

From a methodological standpoint, one common limitation of the approaches pre-
sented in Part I is the separation between semantic segmentation and geometric feature
extraction. On one hand, this choice enabled a step-by-step control over both the seg-
mentation phase and the advanced post-processing phase. On the other hand, it did not
involve end-to-end training of machine learning models that, in principle, could per-
form both segmentation and feature extraction steps in a single operation. For instance,
in Chapter 2, the computed morphological biomarkers are based on the vessel center-
lines. One could train a model to extract centerlines directly from 3D image data; such
a model could make use of a convolutional encoder followed by an MLP, to predict the
set of point coordinates belonging to the vessel’s skeleton. In a supervised setting, this
kind of task could be achieved by, e.g., minimizing the Chamfer distance of the predic-
tion with respect to the ground truth centerlines. Similarly, in Chapter 3, the anatomical
measurements of the aortic root are automatically extracted through a disjoint segmen-
tation – post-processing approach. In this case, morphological measurement of inter-
est for pre-procedural planning rely on specific landmarks that could be detected by
a neural network in an end-to-end fashion. A successful example of how this could
be achieved is presented by [45], who adopt a global-to-local supervised landmark de-
tection approach that can be applied to multiple imaging modalities. Within our work,
instead of focusing on methodological improvements, current efforts are being devoted
to train a classifier that analyzes pre-operative CT scans of subjects before they under-
went TAVI and predict the risk of post-operative complications. Early attempts have
shown a tendency of common classifier architectures (e.g. 3D ResNet and DenseNet)
to overfit the training distribution. In the future, multiple regularization strategies will
be investigated, including the adoption of an image reconstruction convolutional block
that will encourage the encoder to extract features that are also representative of the
true image content.

In general, the post-processing approaches described in Chapters 2, 3 and 4 dealt
with analyzing unstructured data that can be represented as a mesh, or graph. In the
future, the use of graph neural networks (GNNs) should be investigated. GNNs consti-
tute a relatively new class of machine learning methods suitable for working with high-
dimensional, unstructured data. By performing aggregations and pooling operations
directly on graphs, GNNs can learn functions and representations on non-Cartesian
data structures. A generic landmark detection on a graph could be formulated as
a node classification problem; hence, GNNs could represent a unifying solution for
many different anatomical feature quantification problems. In the future, besides well-
established paradigms based on graph convolutions, it will be interesting to leverage
unsupervised approaches such as Deep Graph Infomax [182], since a meticulous anno-
tation of key anatomical landmarks on complex medical data can often be daunting.

A possible future extension of the work proposed in Chapter 5 could consist of
replacing the SSM with a deep autoencoder. Compared to PCA, which is a linear trans-
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formation, a deeper non-linear model could, in principle, learn a more representative
latent space of the complex blood flow velocity data. Following this approach, one
could reduce the number of components that are combined to reconstruct the training
data and generate new velocity profiles.

Finally, current efforts are being focused on improving the formulation presented
in Chapter 6. In particular, adding a physically meaningful constrain to enhance blood
flow fields measured by 4D flow MRI would be of great impact for many applications.
Besides adding a PDE residual term in the loss function (PINN approach), novel and
more efficient ways of enforcing a soft physics constraint will be investigated. For in-
stance, one could achieve super-resolution with increased temporal coherency by ex-
ploiting either advection-based reconstruction techniques [183] or a Lagrangian ap-
proach to incorporate the fluid dynamics equations [184]. These methodologies have
been successfully employed in different fluid dynamics scenarios, including 3D parti-
cle image velocimetry and smoke simulation. Nonetheless, their applicability to blood
flow velocity data remains unexplored.

Each chapter of this thesis focused on a specific imaging modality; however, fu-
ture research efforts should prioritize the integration of multi-modality data to improve
our understanding of physiology and pathophysiology. Building models capable of
handling high-dimensional data from various imaging modalities to capture comple-
mentary information is essential. However, constructing datasets that include multi-
modality imaging for a large number of subjects is a significant challenge. Despite the
increase in medical data digitization, there is relatively less data available for analy-
sis and modeling, particularly for rare and specific pathologies. Thus, promoting data
sharing among clinical institutions to build more extensive and better medical datasets
that researchers worldwide can access is crucial.
As machine learning becomes increasingly integrated into medical applications, model
explainability and interpretability are critical challenges that need to be addressed.
Lack of transparency in these models can make it difficult to understand their decision-
making process, hindering their adoption in clinical practice. Deep learning mod-
els, in particular, can be highly complex and challenging to interpret. To overcome
these challenges, future research in machine learning for medical applications must de-
velop models that are both highly accurate and interpretable. This could involve new
paradigms that share a common ground with more mathematically consolidated ap-
proaches. For example, Bayesian networks offer a flexible and powerful framework for
uncertainty quantification that can be used in a broad range of applications, including
decision-making under uncertainty.
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