
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering
Dipartimento di Elettronica, Informazione e Bioingegneria

A quantum approach to a Learning-based
Collaborative Filtering method in

Recommender Systems

Supervisor: Prof. Paolo Cremonesi
Co-Supervisor: Dott. Maurizio Ferrari Dacrema

Thesis by:
Tang-Tang Zhou, 913087

Academic Year 2019-2020

Abstract

Recommender systems are information filtering systems used to recommends
movies, books, or many other products and services to users. Nowadays, due
to information overload, the daily usage of recommender systems is growing.
For instance, when users visit Amazon, they are provided with a list of
recommended items based on their preferences. Moreover, recommender
systems can be, generally, based on all kinds of technologies: information
retrieval algorithms, statistics, machine learning algorithms, etc.

With the new era, new promising technologies are available. One of them
is the quantum computing; especially quantum annealing computers. They
are machines that follow natural physics processes where the system evolves
towards the lowest energy. This allows them to solve specific combinatorial
optimization problems.

In general, many optimization problems can be already solved with ex-
act or heuristic algorithms executed on classical computers. But nobody
tried to use quantum annealing computers to solve them in recommender
systems. Therefore, the objective of this research is to exploit the new
quantum technology to develop a new model. Specifically, to be solved by
quantum computers, the core algorithm of the model should be composed
of specific optimization problems.

In the end, the results of the experiments show that the new quantum
technology has performance nowhere near state-of-the-art models. However,
the new technology might have a promising future because the new model
solved with a heuristic algorithm achieved performance similar to state-of-
the-art models. Therefore, with improved quantum computers, it might be
possible to obtain better performance.

1

Sommario

I sistemi di raccomandazione sono sistemi di filtraggio delle informazioni
usato per raccomandare film, libri, o molti altri prodotti e servizi a utenti.
Al giorno d’oggi, a causa del sovraccarico delle informazioni, l’utilizzo gior-
naliero dei sistemi di raccomandazioni sta aumentando. Per esempio, quando
utenti visitano Amazon, vengono forniti con una lista di prodotti raccoman-
dati basato sulle loro preferenze. Inoltre, i sistemi di raccomandazione pos-
sono essere, generalmente, basati su tutti i tipi di tecnologie: algoritmi di
recupero delle informazioni, statistica, algoritmi di machine learning, etc.

Con la nuova era, nuove promettenti tecnologie sono disponibili. Una di
queste è la computazione quantistica; particolarmente i computer di ricot-
tura quantistica. Sono macchine che seguono processi naturali fisici dove il
sistema evolve verso l’energia più bassa. Questo permette a loro di risolvere
specifici problemi di ottimizzazione combinatoria.

In generale, molti problemi di ottimizzazione possono essere già risolti
con algoritmi esatti o euristici eseguiti su computer classici. Ma nessuno ha
provato ad usare i computer di ricottura quantistica per risolverli nei sistemi
di raccomandazione. Quindi, l’obiettivo di questa ricerca è di sfruttare la
nuova tecnologia quantistica per sviluppare un nuovo modello. Nello speci-
fico, per essere risolto da un computer quantistico, il cuore dell’algoritmo del
modello dovrebbe essere composto da specifici problemi di ottimizzazione.

Alla fine, i risultati degli esperimenti mostrano che la nuova tecnologia
ha prestazioni ben lontani da modelli state-of-the-art. Tuttavia, la nuova
tecnologia potrebbe avere un futuro promettente poiché il nuovo modello
risolto con un algoritmo euristico ha raggiunto prestazioni simili ai mod-
elli state-of-the-art. Dunque, con computer quantistici migliorati, potrebbe
essere possibile ottenere prestazioni migliori.

3

Contents

Abstract 1

Sommario 3

1 Introduction 13

2 State of the art 15
2.1 Basics of Recommender Systems 15

2.1.1 Data of a Recommender System 16
2.1.2 Recommendation problem 17

2.2 Basics of Collaborative Filtering 18
2.2.1 Neighborhood item-based CF methods 19

2.3 Advanced CF methods . 20
2.3.1 Graph-based methods 21
2.3.2 Matrix Factorization 22
2.3.3 SLIM . 23

2.4 Evaluation of Recommender Systems 24
2.4.1 Offline experiments . 25
2.4.2 Accuracy metrics of offline experiments 27
2.4.3 Beyond-accuracy metrics of offline experiments 29

2.5 Quantum computing . 31
2.5.1 Quantum annealing 32
2.5.2 Applications of quantum annealing 36

2.6 D-Wave . 36
2.6.1 Architecture . 37
2.6.2 Minor embedding . 39
2.6.3 Challenges . 41

2.7 Our Work . 43

5

3 Model 45
3.1 Quantum SLIM model . 45

3.1.1 QUBO formulation . 46
3.1.2 Sparsity regulators . 49
3.1.3 Post-processing . 51

3.2 Item selection method . 52
3.3 Implementation details . 53

4 Results 55
4.1 Datasets . 55

4.1.1 Jester Jokes . 56
4.1.2 MovieLens100k . 57
4.1.3 Dataset splitting . 59

4.2 Model analysis . 59
4.2.1 Chain constraint multiplier 60
4.2.2 Selection constraint multiplier 65

4.3 Scalability analysis . 68
4.3.1 Variation in the number of items 70
4.3.2 Variation in the number of users 73
4.3.3 Variation in the density 75
4.3.4 Variation in the number of samples 76

4.4 Quality evaluations . 78
4.4.1 Baseline models . 79
4.4.2 Jester Jokes . 79
4.4.3 MovieLens100k . 82

5 Conclusion 87

Bibliography 89

6

List of Figures

2.1 Chimera graph architecture C3. One bipartite graph of 4
node per side is a unit cell. The connection inside the unit
cell are “internal” couplers, while the others are “external”
couplers (Source: D-Wave Systems Inc.) 38

2.2 Pegasus graph architecture P3. Blue lines are “internal” cou-
plers, long red lines are “external” couplers, and short red
lines are “odd” couplers (Source: D-Wave Systems Inc.) . . . 39

2.3 Example of the embedding of a triangular graph into a section
of a Chimera unit cell by using a chain. (Source: D-Wave
Systems Inc.) . 39

2.4 Breakdown of QPU access time (Source: D-Wave Systems Inc.) 42

4.1 Histogram of Jester Jokes original ratings with 20 bins 56

4.2 Item popularity and user activity of the Jester Jokes dataset
after the transformation from discrete explicit feedback to
implicit feedback . 57

4.3 Bar plot of MovieLens100k original ratings 58

4.4 Item popularity and user activity of the MovieLens100k dataset 58

4.5 20-bin histograms of chain break fraction values with different
values of chain constraint multiplier regarding all samples of
all independent QUBO problems. 61

4.6 Density distribution plot of chain break fraction values with
different values of chain constraint multiplier regarding all
samples of all independent QUBO problems. 62

4.7 Density distribution plot of normalized energy values of all
samples of all independent QUBO problems with values of
chain constraint multiplier between 1 and 2. 63

7

4.8 (Left): Density distribution plot of chain break fraction values
with different values of chain constraint multiplier. The y-
axis max value is cropped at 20 for a clearer image. (Right):
Density distribution plot of normalized energy values of all
samples from all independent QUBO problems with different
values of chain constraint multiplier. 64

4.9 Comparison of density distributions plot of normalized en-
ergy values of all samples between SA and QPU solver. For
the QPU solver, there are different distributions, each with a
different value of chain constraint multiplier. The y-axis max
value is cropped at 10 for a clearer image. 65

4.10 (Left): Density distributions plot of number of selected vari-
ables of all samples about all independent QUBO problems
using SA solver while changing the selection constraint mul-
tiplier. When the selection constraint multiplier is set to 0,
the objective function is composed by only the normalized
MSE which has a trivial solution composed of all zeros. The
y-axis maximum limit value is cropped at 6 for a clearer im-
age. (Right): Density distributions plot of number of selected
variables of all samples about all independent QUBO prob-
lem using QPU solver, while changing the selection constraint
multiplier. 66

4.11 (Left): Density distributions plot of number of selected vari-
ables of the minimum energy sample of all independent QUBO
problems using SA solver, while changing the selection con-
straint multiplier. When the selection constraint multiplier
is set to 0, the objective function is composed by only the
normalized MSE which has a trivial solution composed of all
zeros. The y-axis maximum limit value is cropped at 6 for a
clearer image. (Right): Density distributions plot of number
of selected variables of the minimum energy sample of all in-
dependent QUBO problems using QPU solver, while changing
the selection constraint multiplier. 67

4.12 Comparison of real fit time about SA and QPU solvers while
changing the number of items. The two above are plots with-
out showing the waiting time for clarity, while the two below
are plots with waiting time. Note that the error label in the
graph indicates the standard deviation of the fit time. 71

8

4.13 Bar plot of fit time about SA solver while changing the num-
ber of items from 100 to 500. The error label in the graph
indicates the standard deviation of the fit time. 72

4.14 Bar plot comparison of fit time between SA solver with item
selection and QPU solver with item selection, while changing
the number of items from 100 to 500. The error label in the
graph indicates the standard deviation of the fit time. 73

4.15 Bar plot comparison of fit time between SA solver, SA solver
with item selection (QSLIM SA w/IS), QPU solver with item
selection (QSLIM QPU w/IS), and SLIM Elastic Net, while
changing the number of items. The error fill lines in the graph
indicates the standard deviation of the fit time. 74

4.16 Bar plot comparison of fit time between SA solver and QPU
solver while changing the number of users. The error label in
the graph indicates the standard deviation of the fit time. . . 74

4.17 Bar plot comparison of fit time between SA solver and QPU
solver while changing the density of the rating matrix. The
error label in the graph indicates the standard deviation of
the fit time. 75

4.18 Pre-processing time of the QSLIM model while changing the
density of the rating matrix. The error fill bars in the graph
indicates the standard deviation of the pre-processing time. . 76

4.19 Bar plot comparison of fit time between SA solver and QPU
solver while changing the number of samples. The error label
in the graph indicates the standard deviation of the fit time. . 77

4.20 Post-processing time of SA solver experiments. The error
fill bars in the graph indicates the standard deviation of the
post-processing time. 77

9

10

List of Tables

4.1 Jester jokes’ performance@5 of different tuned models (except
QSLIM QPU due to limited computational resource) on the
validation set (all accuracy metrics are better if the value is
higher and the range of all metrics goes from 0 to 1). 80

4.2 Best hyper-parameters of QSLIM SA model found 80
4.3 Best hyper-parameters of QSLIM QPU model found 80
4.4 Jester Jokes’ performance@5 of different tuned models (ex-

cept QSLIM QPU due to limited computational resource)
on the test set using both training and validation set dur-
ing the fit process (all accuracy metrics are better if the value
is higher and the range of all metrics goes from 0 to 1). . . . 81

4.5 MovieLens100k’s performance@10 of different tuned models
on the validation set (all accuracy metrics are better if the
value is higher and the range of all metrics goes from 0 to 1). 83

4.6 Best hyper-parameters of QSLIM SA AIS model found 83
4.7 Best hyper-parameters of QSLIM SA RIS model found 83
4.8 MovieLens100k’s performance@10 of different tuned models

on the test set using both training and validation set during
the fit process (all accuracy metrics are better if the value is
higher and the range of all metrics goes from 0 to 1). 84

11

12

Chapter 1

Introduction

Recommender systems are information filtering systems used in Web ap-
plication systems to help users by recommending products or services (e.g.
books, movies, videos, etc.). With the explosive growth of information on
the Web, recommender systems are developed to cope with the information
overload problem on users. For instance, Amazon suggests a list of items
to users based on their history. Among all types of recommender systems,
in this research, the focus is on the most used category, called Collabora-
tive Filtering. Specifically, this type of technique exploits only the users’
past interactions on items to provide recommendations. For instance, a spe-
cific type of collaborative filtering technique uses the concept of similarity.
In other words, it uses the collaborative information of these interactions
to recommend either similar items based on the users’ past interactions or
items liked by similar users.

Furthermore, this research tackles, also, the new topic of quantum com-
puters. Different from classical computers, these new machines represent
information with a new unit, called quantum bit or “qubit”. Thanks to a
few special properties of the qubit, quantum computers can be in multiple
states simultaneously and act on all qubit at the same time in constant
time. Nowadays, a specific quantum computing technique, called quan-
tum annealing, is the leading quantum technology. It is a natural quantum
physics phenomenon where a system evolves from a general problem to a
target problem while keeping the lowest energy. More specifically, quantum
annealing computers are designed to solve combinatorial optimization prob-
lems. Obviously, in the literature, there exist already heuristic algorithms
run on classical computers that can solve these problems.

In brief, the overall focus of this research is to merge the two fields of
recommender systems and quantum computers. In particular, the objective

13

is to exploit quantum annealing computers in a learning-based collaborative
filtering model, called Sparse Linear Model (SLIM), proposed by Ning et
al.[41] in 2011. More specifically, the goal is to design a new algorithm simi-
lar to SLIM, but it requires solving specific optimization problems compati-
ble with the quantum annealing computers. Thanks to a quantum annealing
company offering remote quantum computing, called D-Wave, we were able
to implement the new model. However, the actual quantum annealing tech-
nology has many issues. First, the resource in quantum computation time
is limited at a point where only a few experiments can be done monthly.
Second, the optimization problem that can be embedded in the quantum
computer is limited in variable size; thus, the conducted experiments on the
new model are focused on small datasets. Finally, the technology is affected
by non-negligible noise that causes to have very sub-optimal solutions to
the optimization problems. To sum it up, nowadays, the quantum anneal-
ing technology is still quite limited in its availability, scalability, and perfor-
mance. However, its future is still promising since the same new model with
classical heuristic solvers has promising performance w.r.t. state-of-the-art
models.

Regarding the structure of the thesis, we, first, explain the current state-
of-the-art and the necessary information to understand fully this research
in Chapter 2. In particular, we outline the basics of recommender systems,
their models and the functioning of quantum annealing computers. Then, we
present the new model in Chapter 3. Specifically, we focus on its objective
function, a variation of the model that helps in the size scalability issue, and
various implementation details. Additionally, in Chapter 4, we fully describe
all the conducted experiments executed on the new model. In particular,
the experiments’ goals are to check the new model’s behavior, scalability
in time, and performance w.r.t. other state-of-the-art models. Finally, we
discuss the conclusive findings on our model, experiments and possible future
works in Chapter 5.

14

Chapter 2

State of the art

In this chapter, the state of the art about Recommender Systems and Quan-
tum Computing are briefly described.

First of all, in Section 2.1, we describe a few basic things about Rec-
ommender Systems. In particular, goals, the type of data, and the problem
are outlined with more emphasis on a specific problem, called the top-k rec-
ommendation problem. Then, Section 2.2 describes briefly a specific type
of methodology, called Collaborative Filtering focusing on a basic method
based on similarity. Additionally, in Section 2.3, we expand the topic of Col-
laborative Filtering with the few modern advanced techniques; e.g., graph-
based methods, factorization methods, and adaptive neighborhood learning
methods. Finally, regarding Recommender Systems, we outline the common
quality evaluation techniques and metrics in Section 2.4.

Concerning Quantum Computing, in Section 2.5, we briefly describe
what quantum computing is and the type of quantum techniques with a
focus on quantum annealing. Afterward, in Section 2.6, we describe one of
the leading companies of quantum annealing, called D-Wave. In particular,
we shortly outline its functioning and architecture. Moreover, we briefly de-
scribe D-Wave’s actual challenges in its technology which are, also, general
quantum annealing issues.

In the end, we briefly describe our work in Section 2.7. Specifically, we
exploited D-Wave quantum annealing computers to solve specific Recom-
mender Systems problems.

2.1 Basics of Recommender Systems

Recommender systems (RS) are information filtering technologies used to
make suggestions about products or services to users [22]. They are, gen-

15

erally, used in Web application systems such as e-commerce, e-tourism, e-
business, and e-social to help users in handling the information. For exam-
ple, a popular one is the Amazon recommender system that proposes a list
of products to buy for users based on their history [37].

With the explosive growth of information on the Web in recent years,
RS grew out of information retrieval and filtering research as an individual
research field to cope with the information overload problem on users [45,
37]. Of course, since it is a field highly correlated to business, the primary
objective is to increase the profit of the company (i.e. owner of the Web
service). Meanwhile, other common technical goals [3] are:

• Relevance: its goal is to recommend relevant items to the user (i.e.
those that are likely to be consumed);

• Novelty: it refers to the aim of recommending new items that users
have not seen in the past;

• Serendipity: this goal is to recommend items that surprise the user
which might lead to a discovery of a latent interest. The benefit is
that it increases sales diversity, but there is also a tradeoff with the
goal of Relevance.

2.1.1 Data of a Recommender System

The recommendation problem depends on different variables. One of them
is the type of data that is available [9]. In general, collected data refers to
three concepts: users, items, and transactions [45].

In the first place, users are individuals the RS provides recommendation
to. Every user has a different goal and characteristics; thus, the RS needs
to suggest to users in a personalized way based on their tastes. Regarding
recommendation techniques, there are some, called Demographic, that ex-
ploit user attributes to recommend users in a different way. For instance,
there is a distinction of items recommended to young users w.r.t. old users
[45].

About items, it is the general term used to denote what the system rec-
ommends to users [45]. They can be products or services with different value
and complexity. For example, on Netflix, the movies are the objects that
are recommended. Also, in this case, they are characterized by attributes
that are used in some techniques, called Content-based methods.

Finally, the interactions are recorded transactions between user and
system [45]. They are divided into explicit and implicit feedback. The
former includes explicit inputs by users regarding their interest in the items.

16

The most popular form of explicit feedback is the rating, i.e. feedback that
indicates somehow the value of an item for a user. In general, ratings are
collected with a discrete categorization such as 1 to 5 stars rating. The
latter are inputs gathered transparently based, for example, on user click
behaviour or navigation pattern [30]. For instance, on Amazon, when a user
buys an item the system records this action as a sort of preference towards
that item.

Generally, explicit feedback or implicit feedback between users and items
are collected into a rating matrix R of size |U | × |I| where U and I are
respectively the set of users and the set of items. For these interactions,
a family of methods, called Collaborative filtering, uses them as its unique
information to find good items to recommend.

Additionally, there are also context information about the interactions
such as weather of the day, time of the day, and etc. These information are
exploited by other techniques [3]. Overall, based on the type of data that
is available, some recommendation techniques are more appropriate than
others. Regarding the interactions, almost every technique uses them.

2.1.2 Recommendation problem

An important variable to the recommendation generation process is the
type of problem that has to be solved. Overall, there are two versions of the
recommendation problem [3]:

• prediction version: the goal is to predict the rating value for all user-
item combination missing in the rating matrix. In fact, this problem
is also referred to as the matrix completion problem.

• ranking version: in many applications, it is not necessary to predict
ratings in order to recommend items to users. Sometimes, it is enough
to recommend a list of good items. In fact, the goal in this ranking
recommendation problem is just to recommend the top-k items to
each user. This problem is also called the top-k recommendation
problem.

Based on the type of problem, the evaluation methods are different. These
are discussed in more detail in Section 2.4.

Basic models

A classical taxonomy of recommendation approaches presented in [11] di-
vides RS models into six different classes. However, in this section, the focus

17

is on the two most popular models: the collaborative filtering method
and the content-based method.

Collaborative Filtering methods are the earliest developed and most used
techniques among all personalized recommendation methods. They only
require users’ past ratings to recommend new items that are similar to that
of another user, if both users have rated other items in a similar way [45].
In Section 2.2, more details about these methods are described.

Regarding content-based approaches, they are methods focusing primar-
ily on items. They make use of item attributes, also called features, and
ratings to recommend similar items w.r.t. users’ past liked items [45]. For
example, consider a movie recommender system; a user that liked a horror
movie with a specific producer might like another movie with the same genre
and producer.

Moreover, there are also other models which are more complex. For
instance, in most real applications, hybrid methods are the most used. They
are, simply, a combination of all the other recommendation techniques that
exploit all kinds of data [45].

2.2 Basics of Collaborative Filtering

As discussed before, Collaborative Filtering (CF) algorithms use the col-
laborative information to provide recommendations [3]. Most of the CF
algorithms are based on a heuristic similarity measure that indicates either
item similarity or user similarity. In the former case, the similarity is used
to recommend similar items to those liked in the past. Meanwhile, in the
latter case, the similarity is used to recommend items liked by similar users.
For the input, they only require collaborative feedback that is the ratings of
the user-item interactions. These ratings are often highly correlated across
various users and items; therefore, they can be used to impute the missing
ratings since the past ratings provide a way to find similar tastes in users.

Among CF models, most of them focus on leveraging either item or
user inter-correlations for the prediction process. Meanwhile, others use
optimization techniques to train models similarly w.r.t. how a classifier or
regressor is trained. In general, CF models can be divided into two main
categories:

• Neighborhood methods: these methods predict ratings based on
neighborhoods of users or items [3]. Moreover, the recommendations
methods are either user-based or item-based. The former recommends
items to a target user that are rated by similar users called neighbors.

18

While, the latter suggest, for a specific user, items that are similar to
those that are rated in the past.

• Machine Learning methods: these techniques use mainly machine
learning and data mining parameterized models in the context of pre-
dictive models [3]. They, generally, require a learning phase to find op-
timal parameters, and then, they can predict ratings of users quickly
[14]. However, there are cases where the prediction takes much more
times due to the high complexity of the model. Some examples are
decision trees, rule-based models, Bayesian methods, and latent factor
models [45].

2.2.1 Neighborhood item-based CF methods

The most common approach to CF is based on neighborhood models [30].
As stated before, they are divided into user-based and item-based meth-
ods. Originally, most of the systems were user-oriented where ratings are
estimated using known ratings provided by the same user on similar items.
Afterward, item-oriented methods prevailed because they were more inter-
pretable. This is also due to the fact that users are familiar with items liked
in the past, but do not know about those preferred by other users [30].

Both methods greatly depend on a reference algorithm, called k Nearest
Neighbors (KNN), used to find neighborhoods for either users or items.
Focusing on item-based approaches, this algorithm finds the set of k nearest
items w.r.t. a target item that will contribute to the prediction of the rating
of a user and the target item [45]. The contribution of each item in the set
depends on a weight that is, generally, calculated with heuristic methods
such as similarity measure. This measure determines the similarity between
each pair of items which, overall, defines a matrix of weights, generally
denoted as S [9]. Moreover, these measures require only the ratings to be
computed; some examples are the cosine similarity, the Jaccard similarity,
and the Pearson correlation coefficient.

Overall, the prediction function in an item-based CF with implicit feed-
back for each user u ∈ U and for each target item i ∈ I is defined as [3, 30]:

r̂ui =
∑
j∈KNN(i) sji · ruj∑
j∈KNN(i) |sji|

, ∀u ∈ U, i ∈ I (2.1)

The set KNN(i) represents the set of k closest items, computed by KNN
algorithm, to target item i. While, ruj represents the value of the rating
matrix R in row u and column j and sji is the similarity weight measure
between item j and target item i. In particular, sji is the value of the

19

similarity matrix S. These similarity measures are, in general, calculated
by a function that returns the similarity between two items i and j. For
instance, in cosine similarity, the similarity measures are calculated with:

sji =
∑
k∈I rjk · rik√∑

k∈I r
2
jk ·

√∑
k∈I r

2
jk

(2.2)

Overall, the prediction function in Equation 2.1 is a linear combination
of the user’s own ratings on similar items w.r.t. the target item. From a
matrix perspective, the similarity measures used represent a column of S;
more specifically, it is the column of the target item.

To summarize, these methods are executed in 3 core steps [14]:

1. Compute the weights of similarity matrix between items according to
the rating matrix

2. Select top-k similar neighbor items for each column of the weight sim-
ilarity by using the KNN algorithm

3. Predict missing ratings of the rating matrix using the formula in Equa-
tion 2.1 and generate a recommendation list for every user

For instance, a general heuristic model that uses these 3 steps is the Item-
based KNN CF model. In particular, in the first step of this model, the
weights of the similarity matrix are computed with a similarity measure, like
the cosine similarity.

2.3 Advanced CF methods

Among the CF methods, there are also more advanced techniques that do
not follows the general neighborhood method.

First of all, in general, CF methods present two main drawbacks: pop-
ularity bias and sensitivity to sparse data [45]. The former means that
these methods tends to highly suggest items that are popular; this means
that unpopular items are almost never recommended. This issue is more
prominent towards items that have no interaction or a few of them. The
latter is about the fact that the accuracy of neighborhood-based methods
suffers from the lack of available ratings, i.e. sparsity, which is a common
problem to most applications of RS.

These advanced CF methods try to overcome in some way these dis-
advantages by having robustness to outliers, ability to capture high-level
patterns in the data, better generalization and so on [45]. However, some of

20

these methods still have the previous explained drawbacks. In the following
section, three categories of advanced CF methods are presented: graph-
based methods, factorization methods and adaptive neighborhood learning
methods.

• graph-based methods: these techniques determine the items to be
recommended by traversing a graph in a specific way. In general, it
is a bipartite graph where the two sets of nodes represent respectively
the users and the items.

• factorization methods: they projects users and items into a reduced
latent space that tries to capture high level attributes of users and
items. There are two ways in which the factorization is applied: fac-
torization of a sparse similarity matrix or factorization of a user-item
rating matrix.

• adaptive neighborhood learning methods: they determine the
neighborhood directly from data using predefined similarity measures.
For instance, SLIM, described in Section 2.3.3, uses techniques related
to linear regression where the similarity weights are learned automat-
ically from the data with a learning process.

2.3.1 Graph-based methods

As stated before, in common graph-based methods, data are represented in
the form of a bipartite graph where the two sets of nodes are the users and
the items [45]. The rating of a user u over an item i is represented with
an edge connecting the user u and item i. Moreover, an edge can also have
other properties such as the weight that, generally, represents the rating
value assigned by the user to the item.

The fundamental process, in graph-based methods, is how the rating
prediction is computed. A common method, called P3

α uses the concept of
random walk where an hypothetical walker traverses the graph starting
from a node and jumps randomly to other neighbor nodes and so on [42].
Formally, the random walk can also be described with a Markov process
defined by a set of n states and a n×n transition probability matrix P [45].

In P3
α[42], the rating prediction of an item i of a specific user u is seen

as the probability of reaching that item i through 3 jumps starting from the
user u. Therefore, the predicted rating matrix is computed as follows:

R̂ = P · P T · P (2.3)

21

where P is the transition probability matrix of the bipartite graph (V, E)
where the users and items represent the nodes, and the user-item interactions
represent the edges. In particular, each probability of P from node i to j

is defined as the α-exponential of the normalized weight of the edge of the
two nodes:

Pij =
(

eij∑
k∈V eik

)α
(2.4)

where the notation eij represents the weight of the edge that goes from i to j
and α is a hyper-parameter that might increase or decrease the probability.

RP3
β

RP3
β[42] is graph-based method based on P3

α. Specifically, due to the strong
influence of item popularity on the transition probability matrix P, RP3

β

tries to make recommendations less popularity-driven. This is done by in-
troducing a re-ranking procedure based on item popularity.

From the predicted rating matrix of P3
α, a further step is applied as

follows:
r̂∗ui = r̂ui

Dβ
i

(2.5)

where Di is the in-degree, i.e. the number of incoming edges of the node
related to item i, and β is a strictly positive hyper-parameter value that
controls the effect of the re-ranking process (e.g., β = 0 indicates that there
is no re-ranking; thus equivalent to P3

α). In case two items i and j with the
same transition probabilities from a user u and Di < Dj (i.e. item j more
popular than item i), then this model re-rank item i higher than j.

2.3.2 Matrix Factorization

As explained before, among the advanced CF methods there are factoriza-
tion methods. One of these methods is called Matrix Factorization (MF)
that focus on factorizing the rating matrix into the products of two smaller
matrices. In particular, in CF, the two matrices represent latent factors (i.e.
features of the reduced latent space) of the users and the items; in this way,
the model tries to explain the rating matrix with synthetic features of users
and items [35].

Let k be the number of latent factor, then the matrix factorization model
tries to create two matrices, user-factor matrix X of size |U |×k and item-
factor matrix Y of size |I| × k, in a way such that R ≈ XY T [3]. Every
rows of U and V represents respectively a user and item in the latent factors.
While every column of U and V represents a latent vector.

22

Given these two matrices, U and V, the rating prediction problem is
trivial as follows:

r̂ui = Xu · Y T
i =

∑
j∈I

Xuj · Yij (2.6)

where Xu and Yi represent respectively the u-th row vector of matrix X and
i-th row vector of matrix Y; while Xuj and Yij is respectively the value at
row u and column j of matrix X and the value at row i and column j of
matrix Y. However, the major challenge of matrix factorization models is
the computation of the mapping of each user and item to the latent vector
Xu and Yi [35].

Matrix Factorization with BPR

Many ways to compute the mapping has been proposed in RS; a popular
computation method is to learn the latent vectors of X and Y through a
gradient-descent algorithm. In implicit feedback and top-k recommenda-
tion task problem, a general way to solve this problem is to use Matrix
Factorization with Bayesian Personalized Ranking (MF BPR) [44].

This model uses the BPR learning algorithm, a stochastic gradient-
descent algorithm based on bootstrapping samples from training triples. In
particular, a triple is composed by a user, a “positive” item for that user, and
a “negative” item for that user. More specifically, in implicit feedback, the
“positivity” of an item is when the item is liked by the specific user, while the
“negativity” is when it is disliked. Thus, based on these samples, the model
learns the weights of the matrices X and Y by following the inverse direction
of the gradient of the BPR loss, i.e. the general optimization criterion for
personalized ranking.

2.3.3 SLIM

Sparse LInear Models (SLIM[41]) is a family of models belonging to the
adaptive neighborhood learning-based category of item CF approaches. It
is a model that encourages sparsity in the similarity weights with the use of
regularization methods [3]. This approach is, especially, designed to work
with non-negative ratings where users have no mechanism to specify dislikes.
Hence, it is most appropriate for implicit feedback matrices. Unlike the
method of regression stated previously, SLIM does not restrict the regression
coefficients to only the neighborhood. Therefore, the prediction function is
defined as follows [3, 45]:

r̂ui =
∑
j∈I

wji · ruj , ∀i ∈ I (2.7)

23

It is important to exclude the target item from the summation. Otherwise,
the problem becomes trivial since it becomes possible to predict the rating
using the original rating itself. This can be excluded by setting either sii = 0
or rui = 0. Meanwhile, In the matrix notation, the prediction problem is
defined as:

R̂ = R ·W with Diagonal(W) = 0 (2.8)

Finally, the main goal of SLIM is to minimize the Frobenius norm ||R −
RW ||2 along with regularization terms. Moreover, this entire problem can
be resolved by minimizing small independent optimization problems for each
target item i. Each of them is defined as: [3, 45]:

min
∑
u∈U

rui −∑
j∈I

sji · ruj

2

+ α ·
∑
j∈I

s2
ji + β ·

∑
j∈I
|sji|

subject to :
sji ≥ 0 ∀j ∈ I
sii = 0

(2.9)

This is possible because the similarity weights to be learned are not over-
lapping between different item formulations. In addition, to create a more
interpretable solution, the weights are constrained to be non-negative. Over-
all, this final formula is called, in general, SLIM Elastic Net because the
regularization used are L1 and L2 norm (i.e. Lasso and Ridge). These spar-
sity regulators ensure that each predicted rating can be expressed as a linear
combination of ratings of a small number of related items. For practicality,
sometimes, SLIM is implemented with the restriction of a neighborhood in
the prediction function to add another layer of sparsity regularization.

2.4 Evaluation of Recommender Systems

Recommender systems, similarly to other research fields such as machine
learning, require the evaluation of the quality of the system at different
stages of its life cycle [45]. For CF, especially, the evaluation shares many
similarities with the one of classification since CF can be seen as a general-
ization of the classification and regression modeling problem [3]. However,
there are still many differences. One of the main differences is the exper-
imental setting, i.e. how the evaluation experiments are executed. In RS,
there are 3 types of experimental settings: offline experiments, online exper-
iments, and user studies.

24

Offline experiments are the easiest to conduct because they do not
require interaction with real users. They are, generally, evaluation of the
system using metrics on public datasets [45].

Instead, user studies and online experiments require interactions
with real users. The main difference between them is the fact that user
studies ask a small group of users to perform tasks on the RS in a controlled
environment, while online experiments are, generally, executed on a bigger
pool of real users, unaware of the experiment [45]. In general, these two
experiments are more trustworthy and closer to reality than offline experi-
ments, but during the design phase of an algorithm, it is not always possible
to apply them. For instance, A/B testing is an online experiment where
users are divided into two groups, A and B, and for each group, a different
RS is used [3]; at the end of the test, the quality of the two groups are
compared.

Overall, in this section, the focus is on the partitioning of the data and
the metrics of offline experiments. In particular, regarding the metrics, the
accuracy metrics, which are those related to how good a recommendation
is, are described in this section. Then, the focus is on the beyond-accuracy
metrics. These metrics measure the quality of the recommendations on
secondary goals such as coverage, diversity and item popularity.

2.4.1 Offline experiments

Offline experiments are performed by using pre-collected datasets of user-
item ratings [45]. In CF, the only required data to run this experiment is the
rating matrix. Assuming that the user behavior of pre-collected data will be
similar enough to the user behavior when RS is deployed, the procedure of
this experiment is to try to simulate the behavior of users that interact with
the RS in an offline situation without the interaction with real users. This
is why offline experiments are attractive. Moreover, it allows comparing a
wide number of candidate algorithms at a low cost. But, the downside is
that it can answer only a very narrow set of questions (e.g. accuracy of the
predictions).

However, there are some design issues to consider. In offline experiments,
it is crucial to avoid overestimating or underestimating the quality of RS [3].
A common approach, applied even in ML, is to split the data into two parts:
training set, and test set. The training set is the only part that is visible by
the RS, while the test set is hidden and is used for evaluating the system
with metrics. This is what happens when the goal is to evaluate a single set
of hyper-parameters of an algorithm, but when the objective is to optimize

25

the hyper-parameters of an algorithm, it is necessary to divide the data into
three parts [3]:

• training set: this portion of data, which is generally bigger than the
other two, is exclusively used for the training of the model;

• validation set: this set is used for parameter tuning, i.e. to optimize
the hyper-parameters of a model. After this evaluation, the “best”
model with tuned parameters is selected;

• test set: after the optimization of the hyper-parameters, the test set
is used to evaluate the final model. This set must not be leaked to the
other previous sets; otherwise, there will be an overestimation of the
true accuracy metric. This step is necessary because the tuned model
might be overfitting the validation set.

The difference w.r.t ML is in how the data is sampled. Rating matrices
are, typically sampled in an entry-wise fashion, i.e. a subset of entries are
used for training and the remaining for evaluation. For segmenting rating
matrices, there are two common division methods [3]:

• hold-out: it divides the rating matrix in multiple parts by random
sampling in an entry-wise fashion. In case the final goal is to obtain
three parts, then this method hides two fractions of entries of the
rating matrix as test set and validation set, and uses the remaining
part as the training set. The evaluation of metrics, such as accuracy,
is done as explained previously.

• cross-validation: it divides the rating matrix into k sets of equal size
by random sampling in an entry-wise fashion. For each single k-set,
the system is trained on the k − 1 remaining sets and tested on the
single k-set. This yields to k metrics results that are reported with
their average value. Moreover, this method estimates more accurate
evaluation metrics when k is large. However, in case the problem
requires three parts of data, a hold-out division method is applied to
divide the dataset into two parts in which one of them is the test set,
while the other one is divided with cross-validation. An extreme case is
when k is chosen as equal to the size of the number of observed entries
in the rating matrix, which is called leave-one-out cross-validation.

Notice that these two are not the only methods, but there are others that
try to imitate better the user behavior in a real online RS.

26

2.4.2 Accuracy metrics of offline experiments

Similar to any ML algorithm, RS is evaluated with metrics on a set of data
that are hidden from the training process, e.g. validation set and test set
[3].

The choice of accuracy metrics depends on the type of recommendation
problem. In general, in the case of the prediction problem, the metrics used
measure how well the predicted ratings compare with the hidden ratings
in the test set; these are, generally, prediction metrics. While in the top-k
recommendation problem, the most popular metrics measure how relevant
the list of items is for the user by comparing it with the hidden rated items
in the test set [3]. Overall, accuracy metrics can be broadly classified into
three categories: prediction accuracy metrics, precision metrics, and ranking
accuracy matrics [28].

Prediction accuracy metrics

Prediction accuracy metrics measure the accuracy of the rating prediction
through error metrics [3]. For instance, the most popular error metrics,
even in the ML field, is the mean squared error (MSE). However, in the
top-k recommendation problem where the focus is on the top-k items, these
metrics provide a less realistic perspective of the true usefulness of the RS
because, in general, users only view few items from a list of k items. For this
reason, the focus in this section is more on the classification and ranking
accuracy.

Precision metrics

Precision metrics measure the frequency with which a RS suggests rele-
vant items [28]. For instance, the two most popular metrics for information
retrieval systems are precision and recall. In a top-k recommendation
problem, the precision and recall metrics depend on the length of the list of
items; thus they are referred to as precision@k and recall@k. For each user
u, by considering the suggested list of k items as Tu@k and the true set of
relevant items as Gu, the precision and recall are defined as [3]:

• precision@k: it is defined as the percentage of recommended items
that are truly relevant over all the recommended items

Precision@k = |Tu@k ∩Gu|
|Tu@k| (2.10)

27

• recall@k: it is defined as the percentage of ground-truth positives that
have been recommended as positive for a list of size k

Recall@k = |Tu@k ∩Gu|
|Gu|

(2.11)

In the end, the precision and recall are reported as the arithmetic mean
over all test users. When using classification accuracy metrics, one cannot
simply focus on either precision or recall because there is a trade-off between
them. For instance, a longer recommendation list typically improves recall
but reduces precision. Therefore, both need to be considered at the same
time, e.g. by computing precision-recall curves. Moreover, there are also
metrics that summarize these curves, such as F1-score and Area Under the
Curve (AUC) [45].

Ranking accuracy metrics

Regarding ranking accuracy metrics, these focus on the accuracy of only the
ranks of the top-k items rather than all the items [3]. It is clearly meant for
the top-k recommendation problem. In general, ranking accuracy metrics
can be divided into two approaches:

• reference ranking: the goal is to try to find the correct order of a
set of items for each user and measure how close it is to the correct
one (i.e. reference) [45]. Obviously, a reference ranking for each user
is needed. In general, the items can be ranked in decreasing order of
ratings. The most used reference ranking accuracy metric is the Mean
Average Precision (MAP[6]), which comes from information retrieval.
It computes the overall precision of the system at different lengths of
the recommendation list [40]. Moreover, it is defined as the mean of
the Average Precision (AP[15]) values over all the users in the test set.

MAP@k = 1
|U |

∑
u∈U

APu@k (2.12)

AP@k =
∑k
i=1 Precision@i ·Rel@i

Number of relevant items
(2.13)

where k is the length of the recommended list of items, U is the set of
all users in the test set and Rel@i is a binary number that indicates
if the item in position i is relevant.

• utility-based ranking: this approach uses the ground truth rating
in combination with the RS ranking [3]. The goal is to try to quan-
tify how useful the user might find its recommended ranking based on

28

the order of the recommended items. A popular utility-based rank-
ing accuracy metric is the Normalized Discounted Cumulative Gain
(NDCG), which is a measure from information retrieval where posi-
tions are discounted logarithmically [45]. Assuming each user u ∈ U
has a “gain” gu,i from being recommended item i, then, the average
DCG for a top-k recommendation task is defined as:

DCG@k = 1
|U |

∑
u∈U

k∑
j=1

gu,ij
logb(j + 1) (2.14)

where ij is the item in position j of the list of recommendations and b
is a parameter for the base of the logarithm (typically, b ∈ [2, 10]). In
general, with implicit feedback, the gain gu,i is a binary value which
indicates if the item i is relevant for the user u. Finally, NDCG is
defined as the normalized version of DCG:

NDCG@k = DCG@k
IDCG@k (2.15)

IDCG@k = 1
|U |

∑
u∈U

k∑
j=1

1
logb(j + 1) (2.16)

where IDCG is the ideal DCG.

2.4.3 Beyond-accuracy metrics of offline experiments

As stated in Section 2.1, accuracy is not the only goal in building a RS. For
example, recent research works suggests that having more diverse recom-
mendations in the list of recommended items at the cost of accuracy can be
beneficial [43].

The following section describes some of the beyond-accuracy metrics
such as item coverage, diversity and average item popularity.

Item coverage

The item coverage of a RS measures, in general, how many items are cov-
ered in the recommendations [28]. In many systems, especially those that
use a CF approach, they may provide good recommendations but their item
coverage measures are very small [45]. More specifically, most recommended
items are popular items, i.e. those selected by most of the users. A common
concept of item coverage is defined as the fraction of items that are recom-
mended to at least one user; this is referred to as the catalog coverage

29

[26, 3]. This coverage notion is specifically suited to recommendation lists
and is formulated as follows:

CC@k = | ∪u∈U Tu@k|
n

(2.17)

Notice that n is the number of items and Tu@k is the list of top-k items
recommended to user u. The catalog coverage is somehow a trade-off; Most
of the times, the higher is the coverage, the lower is the accuracy metric.
This happens because, in the definition, each item is counted even if the
recommendation of the item is irrelevant. As a solution, it is possible to
apply a correction which counts only relevant items:

CCcorrect@k = | ∪u∈U TCu@k|
n

(2.18)

where TCu@k is the list of relevant recommended items to user u.

Diversity

Diversity is seen as the opposite of similarity. As stated in the goals of RS,
increasing diversity might increase the chance to find an item relevant to a
user. The definition of diversity is not standard; there are a lot of different
definitions and evaluations of diversity [36]. Among them, an easily inter-
pretable definition is the Mean Inter-List Diversity [48]. This diversity
measures the uniqueness of different user recommendation lists [21]. Specif-
ically, it measures how “diversified” the recommendations of different users
are in a top-k recommendation problem:

MIL@k = 1
|U |2 − |U |

∑
u∈U,v∈U,u6=v

1− q(u, v)@k
k

(2.19)

where q(u, v)@k is the number of common items between the recommenda-
tion list of u and v. Notice that the length of the recommendation lists of
the two users has to be k. This is an equivalent formulation proved in [23].

Average item popularity

Average item popularity measures how “popular” the list of item recommen-
dations to all users is. It is quite correlated with the item coverage since, in
general, low item coverage and high accuracy indicates a system that rec-
ommends most of the time popular items. Hence, the item popularity may
be high in this situation. The Average Item Popularity is defined as:

AIP@k = 1
|U |

∑
u∈U

∑k
j=1 p(iu,j)

k
(2.20)

30

where p(iu,j) is the [0, 1]-normalized popularity value of the item in position
j of the recommendation list Tu@k. Notice that the popularity value of an
item is the number of times an item has been rated or selected by a user up
to now [2].

2.5 Quantum computing

Quantum computers, originally proposed by Paul Benioff[7] and Richard
Feynman[25] in the early 1980s, are special computing machines that exploit
quantum physics phenomenal to perform quantum computations. [38, 4].
Unlike a classical computer that operates with electric signals to represent
information as bits, quantum computers operate with a quantum bit called
“qubit” [32] represented by quantum elements. For instance, trapped ions,
atoms or electrons are examples of quantum elements that are exploited to
represent a qubit. Besides, there are other fundamental differences between
them.

A different property of qubit w.r.t. bit is the superposition, which
means that it can be in both states (i.e. 0 and 1) simultaneously with a
certain probability [38]. A key fact is that superposition states cannot be
directly observed, but when a qubit is measured, it “collapses” to a classical
state (i.e. 0 or 1) with a certain probability. Another fundamental property
is the fact that qubits can interact between them in a way that they are no
more considered independent [38]. This property is called entanglement.
In other words, if two qubits are entangled together, no matter how far they
are put apart, they are still coupled together in a dependent relationship.
Therefore, by measuring one of the entangled qubits it is possible to de-
duce the other one. This is because a variation on the state of one of the
entangled qubits also influence the other one. In addition, qubits are very
fragile. In fact, they present a high error in the reading operation of a qubit
caused, generally, by electromagnetic interference. Meanwhile, in classical
computers, bits of electric signals are much more robust against noise.

Moreover, quantum computers provide an advantage in terms of time,
called quantum speedup. This is because they are able to act on all qubits in
constant time thanks to the special characteristics of the qubit [38]. Indeed,
one of the most famous applications/examples is the Shor’s algorithm [46]
which demonstrates the power of quantum computers by factorizing an n-
bit in polynomial time on a specific quantum computer, called gate model
[1]. Meanwhile, on classical computers, there is no actual algorithm that
can factor numbers in polynomial time.

31

Nowadays, regarding the different types of quantum computers, there
are mainly two leading quantum computing technologies [17]:

• Gate-model: this type of quantum computing is universal. In the
sense that it is able to solve any kind of problem. In particular, it is
developed around the concept of a register of n qubits that is controlled
by in-parallel or in-series quantum circuits. Each circuit is composed
of different quantum gates which are similar to the logic gates of a
classical computer [38]. Specifically, similarly to electronic circuits, an
algorithm on gate-model is modeled by building a sort of circuit that
works on the register of qubits. For example, in a parallel level, qubits
can be entangled, while in series level, qubits are altered by quantum
gates or read by a reading component.

• Quantum annealing: it is a natural quantum-mechanical evolution
where quantum systems evolves naturally from a general problem to a
target problem. Unlike the gate-model, this method works specifically
for combinatorial optimization problems. In addition, it is commonly
confused by the metaheuristic algorithm implemented by Apolloni et
al. in 1988[5], also called quantum annealing. Specifically, the al-
gorithm models particle fluctuations in quantum dynamics, while the
quantum annealing, executed on quantum computers, is a natural phe-
nomenon.

The following sections focus primarily on quantum annealing and its
implementation and formulation.

2.5.1 Quantum annealing

Quantum Annealing (QA) is a natural quantum physics process where a
system evolves naturally from a general problem to a target problem. In
particular, the system evolves naturally while keeping the ground state, i.e.
lowest energy. As stated previously, quantum annealing is commonly con-
fused with a metaheuristic algorithm for combinatorial optimization prob-
lems that mimics the the natural quantum process in quantum physics [38].
For clarity, in the following sections, the metaheuristic algorithm is referred
as classical QA (CQA) while the natural phenomenon as QA.

Additionally, QA can be also seen as a variation of another classical
metaheuristic algorithm, called Simulated Annealing (SA [34]). Differently
from the CQA, SA mimics the thermal annealing process used in metallurgy.
Overall, both CQA and SA mimics natural physical processes to solve combi-
natorial optimization problems. Moreover, both are optimization methods

32

that are based on heuristic local search that continuously iterates from a
solution to another in order to head towards lower-cost solutions[38, 4].

Annealing problem formulation

The physical system used in QA can be described by a Hamiltonian H(t),
a mathematical description of a system in terms of energies [17]. A generic
Hamiltonian of QA is a function that maps certain states to energies defined
as follows:

H(t) = s(t)HI + (1− s(t))HF (2.21)

where HI is the initial Hamiltonian from which the system starts its anneal-
ing process, HF is the final Hamiltonian, also called problem Hamiltonian,
which is the goal of the problem to be solved, and s(t) is an adiabatic evo-
lution path function that decreases from 1 to 0 as t : 0 → tf , for some
elapsed time tf [38]. In theory, the system starts from the ground state
of the initial Hamiltonian that is easy to reach, then the annealing process
starts by introducing little by little the problem Hamiltonian depending on
the evolution path s(t). In the end, when the process is finished, the system
reaches the ground state of the problem Hamiltonian if the process was slow
enough. Otherwise, it might end up in an excited state which does not have
minimum energy. The speed of the process highly depends on the problem,
more particularly, in its energy spectrum. For example, problems with a
small energy gap between the ground state and the first excited state are
more difficult to cope with.

In QA, assuming to have n qubits connected by a graph G = (V,E),
then a classical way to define the problem Hamiltonian is

HF =
∑
i∈V

hiσ
z
i +

∑
(i,j)∈E

Jijσ
z
i σ

z
j (2.22)

where the notation σzi is the Pauli-z operator applied on the qubit i, while
hi and Jij are qubit biases and couplers to apply respectively biases on
the superposition “collapse” probabilities and entanglement between qubits
[38]. More specifically, qubit biases modify the probabilities of a qubit to
“collapse” at a certain classical state and qubit couplers entangle a qubit to
another which removes the independency property [17].

The problem Hamiltonian is very similar to the Ising model, a mathe-
matical model used for studying phase transitions of physical systems [38].
Given n particles arranged on connected graph G = (V,E) where each par-
ticle can have either positive or negative spin s, then the energy H(s) of the

33

Ising model is defined as:

H(s) =
∑
i∈V

hisi +
∑

i,j∈E,i<j
Jijsisj (2.23)

where si is a spin variable of particle i that can assume as values either +1
or −1. Meanwhile, in Ising formulation, hi is the strength of the applied
field at particle i and Jij acts as interaction field between neighboring spins
i and j [8]. These parameters hi and Jij are equivalent to those in the
problem Hamiltonian. Overall, this is why the previously defined problem
Hamiltonian is a classical implementation in QA.

QUBO

A more popular and equivalent formulation to the Ising model is the Quadratic
Unconstrained Binary Optimization (QUBO). Given an n × n matrix of
weights Q, the QUBO problem is to minimize the following quadratic func-
tion based on n binary variables:

min
x
xTQx (2.24)

where x = [x1, x2, ..., xn]T is a column vector containing binary variables
[38]. In index notation, it is clear that the QUBO problem is equivalent to
the Ising fomulation:

min
∑
i,j

Qijxixj = min
∑
i

Qiix
2
i +

∑
i 6=j

Qijxixj (2.25)

where the diagonal of the matrix Q reflects the parameters hi of the Ising
model and the other values are related to the parameters Jij . In particu-
lar, Ising problems can be transformed into QUBO with a simple substi-
tution s = 2x − 1. Due to these characteristics, there are two “standard”
forms: symmetric matrix and upper triangular matrix [27]. Both cases are
equivalent w.r.t. the problem to be optimized. In the field of combinato-
rial optimization, QUBO problems describe many important problems. For
instance, SAT, Knapsack, and Map Coloring are problems that can be re-
formulated into a QUBO. These problems are NP-hard problems, which
means that QUBO belongs to this category [27].

QUBO is the ground foundation of quantum annealing because it can
describe NP-hard problems and it is equivalent to an Ising problem [27].
For this reason, in the quantum annealing field, it is very common to formu-
late problems in QUBO and then, embed them in the specific architecture
structure of the quantum computer.

34

In case problems are constrained, there is a general approach that uses
penalty models to handle these problems [27]. For equality constraints Ax =
b, they can be introduced into the QUBO models by adding a penalty to
the objective function:

P · (Ax− b)T · (Ax− b) (2.26)

where P is a penalty constant value that depends on the original optimiza-
tion problem. In general, the penalty value should be large enough such
that low energy solutions do not violate this constraint [16]. In the case of
inequalities, it is possible to transform it first into an equality constraint
by introducing slack variables, but it is a little different w.r.t. traditional
transformation of the optimization research field.

In addition to the penalty model, there are many other ways to obtain
a QUBO formulation. For instance, problems can be described with Con-
straint Satisfaction Problem (CSP) and then, transformed into QUBO with
a specific procedure. Another equivalent formulation is graph formula-
tion where weights on edges are considered as qubit couplers and weights
on vertices are considered as qubit biases.

Simulated Annealing (SA)

As explained previously, SA is a metaheuristic algorithm that mimics the
thermal annealing process to solve combinatorial optimization problems.
This algorithm, proposed by Kirkpatrick et al. [34], is based on applying a
heuristic search to find the minimum of an objective function.

More specifically, it uses an iterative strategy from an initial state x

having cost c [38]. At each iteration, it selects a random neighbor of the
current state x; thus, if the neighbor state has lower cost, then it becomes
the next state. Otherwise, in case of higher cost, it can become the next
state based on a probability defined as: that depends on a value, called
temperature T , and on the difference between the new cost cnew and the
old cost c:

P = min
(
1, e−

cnew−c
T

)
(2.27)

where e is the base of the natural logarithm and cnew is the cost of the
neighbor. Meanwhile, the temperature T follows a cooling schedule, similar
to the cooling of metals in metallurgy. In particular, it starts from a specific
high temperature and decreases by following its schedule.

Regarding the problems that SA can solve, the QUBO problem is also
one of them. As stated before, SA is not an exact algorithm, which means
that it is not guaranteed to find the optimal solution.

35

2.5.2 Applications of quantum annealing

Universal quantum computing can solve every Turing-machine problem, but
in QA, the focus is on optimization problems [38]. Nowadays, quantum ML
is one of the most promising areas from the aspect of quantum computing
[29]. Most algorithms of ML are optimization problems that are ideal for QA.
Overall, there are 2 general categories of applications in QA: optimization
problems and sampling problems. In the former case, they can be solved
by converting them into energy minimization problems, e.g. QUBO and,
then solved them with the annealing process of the Hamiltonian. For the
latter problem, they are useful for ML problems where the goal is to build
a probabilistic model of reality [17]. This works well with QA because the
sampling from qubits in superposition is a natural way to obtain values in
a probabilistic way.

Concerning optimization problems, there are many which are not about
ML. For example, some classical optimization problems are Minimum Vertex
cover, Set Partitioning, Graph Coloring, SAT, etc. These are all problems
that can be solved with QA. In the business field, QA is already helpful. In
fact, there are already researches done by big companies. For example, Toy-
ota developed a method for controlling traffic signals [31]. Obviously, also in
quantum ML, there are researches on generated datasets. For instance, in
[20], there is a study on quantum linear regression by changing the number
of data point or the number of parameters of the model.

2.6 D-Wave

Nowadays, one of the leading quantum annealing companies is D-Wave
which, in 2011, started the first quantum computer with 128 qubits. Then,
almost every two years, D-Wave doubled its qubits until reaching more than
five thousand qubits in 2020. Unlike gate-model quantum computers that
still have few qubits, D-wave machines’ qubits can reach such a high num-
ber of qubits because there is a specific architecture in which qubits are
connected.

From the user’s point of view, D-Wave machines are composed of two
components: the quantum processing unit (QPU) and the front-end server.
The quantum processor chip inside the QPU works in an environment with
a temperature below 20mK and it is shielded from electromagnetic inter-
ferences to keep the system as closed as possible [38]. Moreover, since it
is a quantum annealing computer, the phenomenon can be described by a

36

Hamiltonian. In D-Wave, it is defined as:

H(t) = −A(s)
2

(∑
i

σxi

)
+ B(s)

2

∑
i

hiσ
z
i +

∑
i,j

Jijσ
z
i σ

z
j

 (2.28)

where σxi is the Pauli-x operator and, A(s) and B(s) are a pair of envelope
functions that define the annealing path [17, 38]. Moreover, the annealing
path of A(s) and B(s) depends on s(t) : 0→ 1 as t : 0→ tf for some elapsed
time tf . The D-Wave problem Hamiltonian is the same as the classical
implementation of QA defined before. Therefore, it is possible to use the
formulation of Ising model or QUBO as objective functions.

The second component of D-Wave computers is the front-end server with
which users can interact to send problems to be solved remotely by quantum
computers [38]. Once the problems are sent, they need to wait in a queue un-
til a quantum computer becomes available. Nowadays, the front-end server
offers two types of computation:

• Quantum computing: it is a type of computation that only consists
of using the QPU. D-Wave offers two machines: D-Wave2000Q[17]
and Advantage system[39]. The former is the older one with 2048
qubits allocated on an architecture, called Chimera. Meanwhile, the
latter one is the most recent, introduced publicly in 2020, with more
than five thousand qubits on a different architecture, named Pegasus.
Moreover, when using these quantum computers, there is flexibility
in the evolution path s(t). In particular, it let users change how the
annealing process evolves. For instance, the standard evolution process
is a linear evolution that goes from 0 to 1 as tf : 0→ tf .

• Hybrid computing: it consists of a merge of classical computation
and quantum computation. The most recent one, described in [13],
can handle up to one million variables with some restrictions on the
connectivity of the variables between each other. The algorithm used
by the hybrid system is not disclosed, but only an abstract structure
and process is described in [13]. In particular, the hybrid system is
composed by a portfolio server used as interface with the user. Then,
when a problem is received, it combines classical solvers and quantum
solvers to solve it.

2.6.1 Architecture

As stated before, D-Wave allocates its qubits on a specific architecture.
Nowadays, there are two available architectures: Chimera and Pegasus.

37

Figure 2.1: Chimera graph architecture C3. One bipartite graph of 4 node per side is
a unit cell. The connection inside the unit cell are “internal” couplers, while the others
are “external” couplers (Source: D-Wave Systems Inc.)

The most recent one is Pegasus used by Advantage system with much more
connectivity and qubits. These two architectures differentiate between each
other by their qubits structure.

The Chimera architecture, denoted by CN , consists of a graph formatted
with a grid of N ×N unit cells [17]. Each unit cell is a connected bipartite
graph of 8 nodes, 4 on the left side and 4 on the right side as shown in Figure
2.1. Moreover, each node of the unit cell is connected with another node of
an adjacent unit cell. In particular, the right side nodes of a unit cell are
connected to the right side nodes of the right adjacent unit cell, while the
left-side nodes are connected to the lower adjacent unit cell. Overall, each
node of the Chimera graph has a degree of 6 [33]. Regarding D-Wave2000Q,
it uses a C16 Chimera architecture which has 16×16 unit cells totaling 2048
qubits.

With the recent Pegasus architecture, the degree of each node in the
graph becomes 15 [33]. Similar to Chimera, Pegasus architecture notation
is denoted by PN . In Chimera, qubits are connected with 2 types of couplers:
internal and external. The internal couplers are the connection inside the
unit cell, while the external ones are the connection between different unit
cells. Unlike Chimera, Pegasus has a third type of coupler, called odd cou-
plers. These connect parallel qubit pairs in adjacent rows or columns. The

38

Figure 2.2: Pegasus graph architecture P3. Blue lines are “internal” couplers, long red
lines are “external” couplers, and short red lines are “odd” couplers (Source: D-Wave
Systems Inc.)

Figure 2.3: Example of the embedding of a triangular graph into a section of a Chimera
unit cell by using a chain. (Source: D-Wave Systems Inc.)

structure of Pegasus is quite complex, similar to a 3D extension of blocks of
qubits as shown in Figure 2.2. Specifically, a PN graph contains 24N(N−1)
qubits. For instance, Advantage system’s architecture is P16 which contains
5760 qubits [33].

In the end, Pegasus has been introduced because it offers benefits against
Chimera. One of them is the higher degree of graph connectivity which
allows bigger problems to be solved. Another benefit is the fact that the
new type of coupler helps in error correction schemes [33].

2.6.2 Minor embedding

Since D-Wave machines’ architectures utilize a graph architecture, QUBO
problems have to be embedded on the graph in order to be solved. Moreover,

39

due to the limitation in degrees of connectivity of D-Wave’s architectures,
logical qubits of QUBO problems, i.e. the variables, cannot be mapped in
a one-to-one correspondence way with the physical qubits. For these rea-
sons, each logical qubit of the objective function is mapped to one or more
physical qubits [17]. Overall, this mapping process is called Minor Em-
bedding. In particular, the process creates groups of chains, i.e. physical
qubits representing the same logical qubit. The qubits in the same chain
are entangled together in a way that forces the qubits to assume the same
classical state at the end of the annealing. Then, to preserve the same graph
of the objective function, every chain, considered as a single logical qubit,
is connected to other chains as defined in the objective function [47]. It is
necessary that qubits of different chains are not in both chains. For example,
as shown in Figure 2.3, a triangular graph is embedded into a section of a
Chimera unit cell by using a chain; in particular, the node 0 and 5 are in
a chain which represents the single logical qubit b. Additionally, the entan-
glement of qubits of a chain is exactly a equality constraint in the QUBO
[16]. Therefore, it is important to choose a “good” penalty value to avoid
breaking the entanglement.

The process of minor embedding presents an issue, which is the fact that
finding a single minor embedding is an NP-complete problem except for
some fixed pattern graphs [47]. For this reason, D-Wave offers a heuristic
embedding algorithm, called MinorMiner algorithm [12], that tries to find
quickly a good sub-optimal embedding within a certain number of steps.
Specifically, it is composed of two phases. Firstly, it starts from an initial
chain mapping (usually empty), then it loops over the vertices of QUBO
graph to obtain a semi-valid embedding, i.e. embedding in which chains
might still share qubits. Secondly, the algorithm continuously loops over
the vertices to fix this semi-valid embedding. In case no progression has
been found in the second phase, the algorithm is restarted.

Besides, D-Wave offers specific functions to find embedding in special
graphs [47]. For instance, for clique graphs, i.e. graphs where every two
distinct vertices is adjacent (fully connected graph), there is a specific func-
tion that returns an embedding with balanced chain length [10]. Due to the
special structure, the problem is no more NP-complete. Therefore, it does
only require a short time to find the embedding.

In general, the entanglement between qubits of the same chain does
not work perfectly. In other words, after the annealing, chains can break,
i.e. at least one physical qubit of the chain assume a different final state
between the others. This problem is resolved during the inverse operation
of embedding, named unembedding [17]. In this operation, the goal is to

40

bring back the problem into the original QUBO problem. Therefore, each
chain has to be resolved regardless of its state. If the chain is not broken, i.e.
all physical qubits assume the same value, then the original logical qubit of
the problem is set to the unique value. Otherwise, there are some strategies
used to handle the broken chain. The most popular method is to apply a
majority voting, i.e. the logical qubit is assigned with the value that has
the highest frequency in its corresponding chain. Moreover, discarding the
solution with broken chains is another way to solve this issue.

2.6.3 Challenges

Nowadays, quantum computing still has a long way to go, the same for QA
computers. A lot of challenges and issues are present in QA computers.
Some of them are briefly described in the following paragraphs.

One of the biggest challenges for D-Wave’s QA is the Integrated Control
Errors (ICE) that refers to sources of infidelity in problem representation.
[18]. Firstly, although qubit biases and couplers are specified as double-
precision floats, some loss of fidelity occurs due to some sources connected to
qubits [38, 18]. For example, DACs (digital-to-analog converters), utilized to
apply quantization on biases and couplers, are one of the sources of infidelity.
Therefore, ICE introduces noises in the problem formulation as follows:

Hδ
ising(s) =

∑
i∈V

(hi + δhi)si +
∑

i,j∈E,i<j
(Jij + δJij)sisj (2.29)

where δhi and δJij represent the errors in the parameters. These errors
depend on biases and couplers of a certain qubit neighborhood [18]. Overall,
this problem affects many more problems with parameters whose range of
values is scattered on multiple high-density regions. For instance, a problem
with a big positive density region and a big negative density region requires
a lot of precision to distinguish intra-region values. Therefore, the problem
solved is different from the submitted problem.

Another issue affecting the performance of the QPU is the temperature
[18]. As stated before, the QPU, to works, needs to operate at a near
0K temperature. To ensure this, it requires to minimize the amount of
energy deposited on the QPU, but during normal operations, some heat is
dissipated. This can increase the temperature of qubits and thus affecting
the solution quality [18].

In quantum computing, it is generally known that decoherence, i.e. the
tendency of qubits to lose their fragile entangled states, is a common issue
[38]. This happens especially at read-time since it is the instant when qubits

41

Figure 2.4: Breakdown of QPU access time (Source: D-Wave Systems Inc.)

are more affected by the outside environment. However, in QA, there is no
such problem because, at the end of annealing, qubits end up in a classical
state [38]. Still, there is readout infidelity of the QPU smaller than 1%
[18]. This issue is not a problem because D-Wave offers the possibility to
request multiple reads. In other words, the annealing process, also called
sampling, is repeated multiple times. For instance, one out of 100 samples
of a problem may be a solution that is completely wrong.

Just like every quantum computing, QA computers provide, as a benefit,
the quantum speedup. However, there are still challenges ahead before it is
well exploitable. First of all, a quantum annealing process considering only
the anneal time is in the order of µs. However, due to noises and read errors,
doing a single annealing is not enough. More specifically, by excluding the
waiting time due to network and queue of other requests, the required time
to solve a problem, called QPU access time, can be simplified into two
parts: programming time and sampling time [19]. The former is the
elapsed time to load the embedding problem into the quantum machine.
The latter is the elapsed time to samples as many solutions as required.
Moreover, the sampling time is further divided into anneal time, readout
time and delay time for each sample. They are respectively the time to
anneal from the initial Hamiltonian to the final Hamiltonian, the time to
read the solution of the final Hamiltonian, and the time required to bring
back the temperature to its initial value for the next annealing process. In
Figure 2.4, it is shown how the QPU access time is broken down. Overall,
since the programming time is still in the order of ms, the speedup is still
present, but, nowadays, problems with more than hundreds of variables still
cannot be embedded. Therefore, big data still cannot be handled by these
quantum computers.

42

2.7 Our Work

Our work tries to merge RS with quantum computing. Nowadays, quantum
computing technology has became more and more available for the public
usage. Therefore, the goal of this work is to try to exploit this new technol-
ogy. Moreover, noises due to the challenges of D-Wave are less problematic
in RS; mainly because, in top-k recommendation task, a recommendation
system is “good” even if the learning problem is not solved perfectly; espe-
cially because only the order counts in the evaluation of the system. For
these reasons, we decided to opt for this research.

More in specific, the algorithm that we decided to implement with quan-
tum computing is SLIM. The idea is to transform the item independent ob-
jective functions of Equation 2.9 in a QUBO formulation with only binary
variables. The domain space of the variables becomes smaller and discrete,
but post-processing operations can bring back the continuous values of the
variables. Also, sparse regulators terms such as Lasso and Ridge are intro-
duced in the new QUBO formulation in similar ways. Therefore, the new
quantum SLIM problem is solved by optimizing as many objective functions
as the number of items in the dataset on a quantum annealing computer.

Our focus is to analyze how the new technology behaves and compares
with state-of-the-art techniques run on classical computers. Moreover, we
want to analyze the actual time scalability of the quantum SLIM model on
different size of synthetic datasets.

Since quantum computing is still in its infant phase, many datasets are
still too huge for the most recent D-Wave machine. However, the goal of this
work is to show the potential of quantum annealing computing combined
with RS.

43

44

Chapter 3

Model

In this chapter, we focus on explaining all the details regarding our model
starting from the initial SLIM model.

At first, in Section 3.1, we describe the QUBO formulation obtained
from SLIM, the possible sparsity regulators and post-processing operations.
More particularly, we start by describing the first formulation derived from
SLIM (i.e. MSE loss function). Then, due to intrinsic issues, we changed the
formulation by adding a normalization on the loss function. Additionally,
we also described the new sparsity regulators that substitute the Lasso and
Ridge terms of SLIM. Finally, due to binary variables in the formulation,
we also introduced possible post-processing operations able to transform the
results into floating values.

Then, in Section 3.2, we present a new variant of our model that is able
to handle datasets with higher number of items by reducing the size of the
QUBO. More specifically, for each independent optimization problem, we
select a smaller set of items to be used in the QUBO.

Finally, in Section 3.3, we describe more in details the implementation of
our model. In particular, we focus on the library used, the minor-embedding
technique, and other small details.

3.1 Quantum SLIM model

Starting from the theoretical model of SLIM, the goal is to write a formu-
lation of SLIM that is suitable for a QA computer. As described in Section
2.3.3, SLIM is a CF model that works well in implicit feedback ratings. Its
optimization problem, defined in Equation 2.9, is an independent regression
problem that has to be solved for each item in the rating matrix. Afterward,
the similarity matrix is filled with each solution of the regression problems

45

in a column-wise fashion. In the end, using the prediction function defined
in Equation 2.1, we obtain the predicted ratings of each combination of user
and item.

In the following sections, we describe the new model that we designed,
denominated as Quantum SLIM (QSLIM).

3.1.1 QUBO formulation

As explained in Section 2.5.1, a QA computer solve optimization problems,
but they require a specific formulation of the problem. The most common
formulation is the minimization of the QUBO problem. For the MSE loss
function, which is already a minimization problem, it can be easily trans-
formed in QUBO notation if the variables are considered binary. Let us first
recall the SLIM optimization problem to be solved for each item i indepen-
dently:

min
∑
u∈U

rui −∑
j∈I

sji · ruj

2

+ α ·
∑
j∈I

s2
ji + β ·

∑
j∈I
|sji| ∀i ∈ I

subject to :
sji ≥ 0 ∀j ∈ I
sii = 0

(3.1)

Then, by excluding the sparsity regularization terms, we obtain only the
MSE portion of the objective function:

∑
u∈U

rui −∑
j∈I

sji · ruj

2

∀i ∈ I (3.2)

By expanding the quadratic term inside the summation, we obtain:

∑
u∈U

r2
ui +

∑
j∈I

sji · ruj

2

− 2
∑
j∈I

ruiruj · sji

 ∀i ∈ I (3.3)

Consequently, the first term of the internal summation (i.e
∑
u∈U r

2
ui) is a

constant term which can be removed from the optimization problem since
it is not affected by any variables. Moreover, on the second term inside the
parenthesis, i.e. the square of a summation, its expansion turns out into
two terms composed by the square of each term and the double products as
follows: ∑

j∈I
sji · ruj

2

=
∑
j∈I

r2
uj · s2

ji +
∑
j,k∈I
j 6=k

rujruk · sjiski (3.4)

46

Notice that there is not a 2 in front of the double products because j and
k can also exchange their values; thus, this already takes into consideration
the double products. By considering all this, the independent optimization
problem can be finally formulated in the QUBO notation defined in Equation
2.25 by moving the summations:

∑
j∈I

(∑
u∈U

r2
uj − 2 · rujrui

)
· sji +

∑
j,k∈I
j 6=k

(∑
u∈U

rujruk

)
· sjiski ∀i ∈ I (3.5)

Notice that, since in QUBO the variables are binary, we substituted s2
ji

with sji because they are equivalent for every value in 0, 1. Additionally, for
each item i, let x = [s1i, ..., s|I|i]T be the variables; then, in matrix notation
xTQx, the square matrix Q of the previous QUBO problem is:

Q = R∗Ti ·R∗i − 2 · diag(R∗Ti ·Ri) ∀i ∈ I (3.6)

where Ri is the i-th column of the rating matrix R and R∗i is a variant
version of R where the i-th column is set to zero. Notice that the notation
diag(v) of vector v denotes a diagonal matrix of size |v| × |v| where the
diagonal is composed by v. Additionally, the matrix notation is related to
the Equation 3.5 in the following way:

• The first term R∗Ti ·R∗i covers the first term r2
uj of the first summation

and the entire second summation;

• The second term −2 ·diag(R∗Ti ·Ri) covers the second term of the first
summation.

Notice that this QUBO problem takes into consideration the constraint of
sii = 0 of the SLIM Equation 3.1 by using the rating matrix with a column
of zeros, i.e. R∗i .

Unfortunately, the MSE QUBO formulation contains in itself the rating
prediction function in its not normalized form. In particular, due to having
binary variables, this formulation, w.r.t. the original SLIM, has lost its
expressiveness in the rating prediction function. In fact, this produces awful
results in accuracy metrics. Therefore, to solve this issue, a common solution
we found is to apply a normalization. In general, normalization is added to
the predicted rating formula; however, this introduces non-linearity to the
loss function. Hence, the solution is to add the normalization over the
original rating to the Equation 3.2:

∑
u∈U

∑
j∈I

sji · rui −
∑
j∈I

sji · ruj

2

∀i ∈ I (3.7)

47

Similar to what has been done with the previous formulation, if the quadratic
term is expanded, then we obtain:

∑
u∈U


∑
j∈I

sji · rui

2

+

∑
j∈I

sji · ruj

2


− 2
∑
u∈U

∑
j∈I

sji · rui

∑
j∈I

sji · ruj

 ∀i ∈ I

(3.8)

Given these three terms, we expand each of them in a similar way to what
we did in the MSE formulation:

(1)

∑
j∈I

sji · rui

2

=
∑
j∈I

r2
ui · s2

ji +
∑
j,k∈I
j 6=k

r2
ui · sjiski

(2)

∑
j∈I

sji · ruj

2

=
∑
j∈I

r2
uj · s2

ji +
∑
j,k∈I
j 6=k

rujruk · sjiski

(3)

∑
j∈I

sji · rui

∑
j∈I

sji · ruj

 =
∑
j∈I

ruiruj · s2
ji +

∑
j,k∈I
j 6=k

ruiruj · sjiski

(3.9)
Thus, if we substitute these three expansions in the Equation 3.8, then, by
moving some of the summations, we obtain the following equation in QUBO
notation: ∑

j∈I

(∑
u∈U

r2
ui + r2

uj − 2ruiruj

)
· s2
ji +

∑
j,k∈I
j 6=k

(∑
u∈U

r2
ui − 2ruiruj + rujruk

)
· sjiski

(3.10)

Consequently, this equation, in matrix notation, represents a matrix Q de-
fined as:

Q = R∗Ti ·R∗i + 1N×N · (RTi ·Ri)− 2 · (R∗Ti ·Ri) · 11×N (3.11)

where the notation 1N×M refers to a matrix of size N ×M containing all
ones. Moreover, each term refers to different terms of the Equation 3.10:

• The first term R∗Ti · R∗i , just like in MSE formulation, refers to the
term r2

uj of the first summation and the term rujruk of the second
summation

48

• The second term 1N×N ·(RTi ·Ri) refers to the term r2
ui in both summa-

tions. In particular, the scalar value
∑
u∈U r

2
ui is computed by RTi ·Ri.

Then, by multiplying it with a matrix N ×N with all ones, we obtain
a matrix filled completely by that scalar value.

• The third term −2·(R∗Ti ·Ri)·11×N refers to the double negative terms
−2ruiruj in both summations. Specifically, R∗Ti ·Ri results in a matrix
N ×1 containing all the values of

∑
u∈U ruiruj . Then, by doing a right

matrix multiplication with 11×N , we obtain a final matrix N ×N with
the values of R∗Ti ·Ri repeated along the columns.

In the end, by normalizing the predicted ratings, the issue related to
the MSE formulation is fixed. This new formulation, denoted as Normal-
ized MSE, presents a trivial minimum solution, which is x = 0. However,
this can be resolved by some constraints or small changes in the objective
function.

3.1.2 Sparsity regulators

As always just like in ML, an objective function requires sparsity regu-
lators to avoid overfitting the problem. Another way to regulate sparsity,
used more in the optimization research field, is to add constraint over the
objective function.

Constraints

Fortunately, the QUBO model, even if unconstrained, can handle constraints
by adding a specific penalty to the objective function that functions as a
constraint. The constraint of our choice is one that fixes the number of
selected variables in the solution:∑

j∈I
sji = k (3.12)

By using the transformation formula defined in Equation 2.26, the new term
to be added to the QUBO model is:

P ·

∑
j∈I

sji − k

2

(3.13)

where P is a coefficient that specifies the strength of the constraint. Since
QUBO model has additive property, i.e. the result of the addition of two

49

QUBO is still a QUBO, then the constraint term can be added to the prob-
lem QUBO formulation by addition. Basically, in matrix notation, the Q
matrix of the constraint is:

Qconstr = P · (1N×N − 2k · IN×N) (3.14)

where IN×N is the identity matrix of size N × N . With this constraint,
denoted as selection constraint, solutions found from this objective func-
tion are limited in the number of selected variables. Moreover, this solves
the trivial solution of the normalized MSE formulation. Notice that this
formulation seen as a graph of N nodes is fully connected due to the fact
that Qconstr has all non-zero values. Thus, if we add this constraint to the
objective function, the graph representation is surely a clique.

Sparsity regularization terms

From ML point of view, common sparsity regularization terms are Lasso
and Ridge. However, in binary variables, these two terms are equivalent:

α
∑
j∈I

s2
ji = α

∑
j∈I
|sji| (3.15)

The penalty introduced by this sparsity term increases linearly as the num-
ber of selected variables increases. For this reason, it is denoted as a linear
sparsity regularization term. In QUBO notation, this sparsity term affects
only the diagonal of matrix Q:

Qlin sparsity = α · IN×N (3.16)

Due to the linearity of the previous sparsity regularization term, we also
proposed a quadratic one:

β

∑
j∈I

sji

2

(3.17)

which affects the entire matrix Q in the following way:

Qquad sparsity = β · 1N×N (3.18)

Differently from the linear sparsity term, this one increases in a quadratic
way as more variables are selected.

50

Comparison between the constraint and the sparsity terms

Even if the constraint and the sparsity terms discussed previously comes
from two different research fields, they have a clear tight relationship. Ob-
viously, both of their goals are to increase the sparsity in the solution, but
the addition they provide to the Q matrix is highly coupled. Basically, the
constraint is equivalent to the linear combination of the two sparsity terms:

Qconstraint = −2Pk ·Qlin sparsity + P ·Qquad sparsity (3.19)

with α = β = 1. Obviously, a constraint with k = 0 removes the linear
sparsity term from the relationship. Overall, the selection constraint can be
seen as a specific regularization term that increases sparsity, but it limits
the solution to have a certain k number of variables. Moreover, the penalty
value P has to be high enough to penalize the low-energy solutions with low
sparsity.

3.1.3 Post-processing

In QA, a critical limitation in solutions found from these optimization prob-
lems is the fact that results are all in binary space. Moreover, the solutions
are also sub-optimal. Fortunately, as stated previously, solutions obtained
from D-Wave are affected by some randomness which causes to have different
solutions at each annealing. In addition, as discussed in Section 2.6.3, it is
natural in sub-optimal solvers to require hundreds of samples for a problem.
Therefore, our idea is to exploit all these different samples with a heuristic
method to increase the expressiveness of the solutions which are the weights
of the similarity matrix. Obviously, it is also possible to just choose the best
sample, i.e. the one with minimum energy, and keep the binary values.

A common heuristic method that we decided to opt for is a simple ag-
gregation of samples. Basically, this approach can be divided into 3 steps.
Firstly, for each variable, it counts the number of times a variable is selected
among all samples. Secondly, an operation is applied to each count value.
Finally, each count value is normalized by the number of samples. Regard-
ing the operation to be applied, it can be also a non-operation; in this case,
the heuristic method is equivalent to a mean applied over all samples. Some
other operations can be logarithm or exponential to respectively decrease
or increase the importance of high frequent variables. Afterward, we also
added another optional post-processing on top of the mean, logarithm or ex-
ponential operation . This keeps only the non-zero values about the original
minimum energy sample. In this way, the solution uses the same selected
variables of the minimum energy sample, but with floating values.

51

Obviously, there are many other possible heuristic approaches, but there
is no utility in trying too many techniques. Because our purpose is to see if
quantum can be applied to RS in a useful way.

3.2 Item selection method

In this section, we present a variant of the model that is able to deal with
dataset whose number of items are more than the maximum number of
variables embeddable in a clique graph of the D-Wave Advantage system.
The idea for this variant revolves in the application of feature selection
method on the items. In particular, the goal is to choose m most useful
items in the rating matrix for a particular item optimization problem. In
this way, the QUBO problem that has to be solved for each item is composed
by only m variables instead of the total number of items in the dataset.
Therefore, by selecting a number m that is less than the maximum number
of variables, it is possible to embed the reduced QUBO problem into the
quantum machine. However, there is still the need to solve as many QUBO
problem as the total number of items in the dataset.

Regarding the feature selection method, we divided them into two cat-
egories: absolute methods and relative methods. This distinction comes
from how the most useful items are chosen. The former one selects the m
items to be kept in an absolute way for all the items; it means that, for all
item optimization problems, these m items are the only ones used. Mean-
while, the latter methods select the m items based on the relation with the
actual item optimization problem; thus, for each optimization problem, the
items used in the reduced QUBO problem can be different.

For the absolute methods, we mostly considered methods from informa-
tion retrieval field. In particular, we chose to select the items based on three
possible measures: absolute entropy, variance, and item popularity.

• Absolute entropy: a common feature selection method is to look for
the entropy, i.e. a measure of disorder. In this case, the entropy of a
single item is computed by:

Ei = entropy(Ri) = −
∑
u∈U

pui · log pui ∀i ∈ I

pui = rui∑
u∈U rui

(3.20)

where Ri is the i-th column of the rating matrix R and rui is the rating
value in row u and column i of rating matrix R.

52

• Variance: this is another feature selection method from information
retrieval field, commonly known as Variance Thresholding. However,
in this case, it is a selection of k features by variance:

σ̂2
i = variance(Ri) =

∑
u∈U r

2
ui

|U |
−
(∑

u∈U rui
|U |

)2
∀i ∈ I (3.21)

• Item popularity: this is a common measure in RS that indicates
how popular an item is; and, generally, a popular item is also highly
recommended by RSs since they are mostly popular-oriented. In this
case, the item popularity of a single item is computed by:

pi =
∑
u∈U
rui 6=0

1 ∀i ∈ I (3.22)

which is the count of the number of ratings for a specific item i.

Meanwhile, for the relative methods, we considered an hybrid method
that uses the similarity of items to select the most useful items for a specific
item. For example, first, we calculate the cosine similarity matrix of each
items w.r.t. other items; then, for each item, we select a different set of m
items with the highest value of similarity w.r.t. specific item. In this way,
we reduced the size of the items and, possibly, chosen the best set of items.

3.3 Implementation details

Since D-Wave offers API libraries in Python, we implemented the model in
the same programming language. In particular, the normalized MSE QUBO
formulation and selection constraint has been implemented with some post-
processing methods. Moreover, in regards to mathematical operations to
prepare the QUBO formulation, we used two Python libraries, Numpy and
Scipy, which provide data structures for efficient mathematical operations
respectively on arrays/matrices and large sparse matrices. At last, we used
also Pandas library to handle the postprocessing computation.

A critical implementation of the model is how minor-embedding is ap-
plied. As explained in Section 2.6.2, the QUBO problem has to be minor-
embedded into the D-Wave quantum machine. Since the problem of minor-
embedding is a NP-complete problem, we decided to use the standard heuris-
tic function offered by D-Wave. However, there are still some details in the
implementation due to two reasons. Firstly, the number of times that the
QUBO problem has to be solved is as much as the number of items in

53

the dataset catalog. Lastly, the time complexity required to find a minor-
embedding is very high. Fortunately, since all problems are fully-connected
in its graph, the embedding can be shared among all problems. Therefore,
we implemented an approach that fixes the embedding for all the problems.
Moreover, we used the specific minor-embedding function for clique graphs.

Regarding the strength of constraints added to the QUBO model, we
used a heuristic formula inspired by an initial common guess defined as:

Strength = C · (maxQ−minQ) (3.23)

where C is a hyper-parameter and maxQ−minQ is the initial guess based
on the matrix Q. This formula is used for the penalty value of both selection
constraint and embedding chain constraint. Notice that the final strength
value is different between the selection constraint and the chain constraint
because the chain constraint is applied on top of the selection constraint. In
other words, the Q matrix in the strength formula is different for the two
constraints; therefore, the final strength value is different.

In addition, we implemented the possibility to choose the type of solvers
to resolve the QUBO model. Obviously, quantum solvers such as D-Wave2000Q
and Advantage system have been selected, but there are also two different
types of solver: hybrid solver and classical solver. Firstly, as stated in Sec-
tion 2.6, D-Wave offers also hybrid computation that solves QUBO problems
with the use of both classical and quantum techniques. Lastly, for a compar-
ison point of view, we used also a classical solver, i.e. simulated annealing,
offered by D-Wave 1.

Regarding the variant of the model that reduced the number of items
in the optimization problem, we implemented the three absolute methods
described previously and the cosine similarity method.

1https://github.com/dwavesystems/dwave-neal/

54

Chapter 4

Results

In this chapter, we describe, firstly, the dataset we chose for our experiments
and, then the results from the experiments that we conducted. In particular,
we divided the chapter into 4 sections. First, the Section 4.1 explains the
reason behind the choice of the datasets and some detail information about
them. Second, in Section 4.2, we analyzed the behavior of our model when
some hyper-parameters change to see if its behavior is as we expected. Then,
in Section 4.3, we analyzed the scalability in time of the model related to the
fit training process in order to see how well it fares in terms of computation
speed. Finally, in the last Section 4.4, we compared the performance of the
model and its variant with state-of-the-art models. In particular, we choose
one non-personalized model and four other personalized models.

4.1 Datasets

In RS, as explained in Section 2.4, one of the simplest methodology to test
the quality of a model is to carry out offline experiments. Therefore, we
need to select public datasets to test our model. More specifically, since the
model is a CF type, we require only datasets containing ratings. Moreover,
since our model is a variant of SLIM, it is optimal to have implicit feedback
ratings. However, it is also possible to transform explicit feedback into an
implicit one by some heuristics method that transforms the ratings into
binary values.

Another parameter of the dataset to consider is the number of items
in the catalog. This consideration has to be taken into account because
D-Wave quantum machines are limited in the number of variables that can
be embedded into the machine. For instance, considering the most recent
D-Wave machine, Advantage system solver (Pegasus architecture PN with

55

−10 −5 0 5 10
Rating

0

50000

100000

150000

200000

250000

300000

C
ou

nt

Figure 4.1: Histogram of Jester Jokes original ratings with 20 bins

N = 16), the highest number of variables that can be embedded theoret-
ically is 12(N − 1) = 180, when the graph of the QUBO is a clique, i.e.
fully-connected [33]. In our case, the normalized MSE formulation with the
selection constraint is already a clique graph. However, the actual clique
embedding function is only able to obtain an embedding of a clique of 120
variables at maximum.

For these reasons, we selected Jester Jokes and MovieLens100k. The first
one is selected because it is the only one with the number of items lower than
the highest number of variables that can be embedded in Advantage system
solver. However, due to having only one dataset, we decided to consider
also MovieLens100k even if its number of items is much larger than the
maximum value for Advantage system. In particular, this second dataset is
used for the variant of QSLIM that reduces the number of items in QUBO
problems. Moreover, the decision came from the fact that MovieLens100k
has much less items w.r.t. other datasets. In this way, the variant of QSLIM
keeps about 10% of the items on this dataset.

4.1.1 Jester Jokes

The Jester Jokes1 dataset contains rating information about jokes rated
by users who visited a website created by a university in California, UC
Berkeley. Actually, we decided to use a portion of the dataset that contains
only 100 jokes rated by about 73 thousand users totaling 4.1 million ratings.
These ratings were collected between April 1999 and May 2003. Moreover,
the ratings are discrete values ranging from -10.0 to +10.0 with step of 0.1,

1http://eigentaste.berkeley.edu/dataset/

56

0 25 50 75 100
Item index

10000

20000

30000

40000

50000

N
um

be
r

of
in

te
ra

ct
io

ns
Item popularity

0 25000 50000 75000
User index

0

20

40

60

80

100
User activity

Figure 4.2: Item popularity and user activity of the Jester Jokes dataset after the
transformation from discrete explicit feedback to implicit feedback

as shown in Figure 4.1.
For our model, we transformed the discrete ratings into implicit feedback

based on a threshold. In particular, everything that was rated above 0
has been transformed into a positive rating with the same value. From a
different point of view, we considered every joke non-rated as a “bad” joke
for a certain user, while everything that was rated positively is considered
as a “good” joke. This transformation also decreases the noise in the various
ratings due to the high range and flexibility in the ratings.

After this transformation, the rating matrix contains about 2.4 million
non-zero interactions with a sparsity level of 33%. Looking at the item
popularity of the rating matrix, shown in Figure 4.2, every item is rated
a huge amount of times, but some items are more popular than others.
Another observation is in the user activity, shown in Figure 4.2, where few
users rated all items. In other words, some users voted positively to all jokes.

4.1.2 MovieLens100k

The MovieLens2 dataset is one of the most used benchmark dataset in RS.
It is related to the MovieLens web recommender system which recommends
movies to users. Moreover, it was created in 1997 by GroupLens, a research
lab at the University of Minnesota. Regarding our experiments, we decided
to use the MovieLens100k dataset version, containing 100k ratings from
1000 users on 1700 movies. In particular, the ratings were collected with a
discrete categorization of {1, 2, 3, 4, 5} before 1998. In Figure 4.3, it shows

2https://grouplens.org/datasets/movielens/

57

1 2 3 4 5
Rating

0

10000

20000

30000

C
ou

nt

Figure 4.3: Bar plot of MovieLens100k original ratings

0 500 1000 1500
Item index

0

200

400

600

N
um

be
r

of
in

te
ra

ct
io

ns

Item popularity

0 250 500 750
User index

0

200

400

600

User activity

Figure 4.4: Item popularity and user activity of the MovieLens100k dataset

the original ratings of the MovieLens100k dataset, where most of them are
ratings greater or equal than 3.

Since our model is, specifically, designed for implicit dataset, we trans-
formed the explicit feedback into implicit feedback. In particular, we con-
sider every ratings as a positive feedback of value 1. While everything that
is not in the dataset is considered as negative feedback of value 0. Therefore,
the final rating matrix contains ratings that are either 0 or 1. Moreover, in
Figure 4.4, it shows the item popularity and the user activity of the rating
matrix. These plots are quite different from the Jester Jokes one. In par-
ticular, for the user activity, MovieLens’ users has no one that has rated all
items. While, for the item popularity, there are items that has not been
rated at all.

58

4.1.3 Dataset splitting

As described in Section 2.4.1, in order to evaluate correctly a RS model, we
need to test it on a set of data unseen in the training procedure. Therefore,
we have to split the dataset into multiple parts. For all the datasets that
we used, a hold-out division method is applied because of two problems.
Firstly, D-Wave offers limited computation time resources. Specifically, as
a free computation time resource, it offers monthly one minute of quantum
solvers computation or 20 minutes of hybrid solvers computation. Secondly,
an experiment of QSLIM requires a lot of computation since it needs to solve
as many QUBO problem as the number of items. Therefore, we decided to
discard the cross-validation method which is, generally, less noisy.

In more detail, our division method splits the rating matrix into k-folds
of rating matrices by random sampling. More specifically, for each user, it
splits their ratings into the different folds by ensuring to have at least one
rating for each fold. In case a user has fewer ratings than the number of folds,
the user is discarded from the final k-folds. Among these k-folds, we merge
some of them to obtain 3 total sets: training set, validation set, and test set.
In general, the biggest set is the training set; then followed by the validation
and the test set. As explained in Section 2.4.1, the training set is used in
the training procedure of the model. In our case, it is the optimization of
the QUBO model with one of the solver. Then, the validation set is used for
comparing all the models with different parameters. Finally, the test set is
used to evaluate the quality of the best model among all the ones compared
in the validation set. More particularly, for our datasets, the number of
folds in which they are divided is 5: 3 folds used by the training set, 1 fold
for the validation set, and 1 fold for the test set.

4.2 Model analysis

In this section, we present an analysis on our model, more specifically, when
it uses a quantum solver. Basically, since the model is new and uses a new
technology, the goal is to see how the model behaves w.r.t. classical solvers
while there are changes of some important hyper-parameters. Due to the
size limitation of the quantum solver, the model is analyzed only over the
Jester Jokes dataset.

To study the model behavior we applied some changes to important
hyper-parameters, and then, we analyzed what happens on the samples
obtained from the solvers. In particular, we focused on the chain constraint
multiplier and the selection constraint multiplier explained in Section 3.3.

59

4.2.1 Chain constraint multiplier

As explained in Section 2.6.2, the minor embedding process introduces an
equality constraint related to the chains. This means that in order to be
added in the objective function, it has to add a penalty value regulated by
a strength value. In our implementation, the strength value is regulated by
the Equation 3.23, reported here for clarity:

Strength = C · (maxQ−minQ) (4.1)

Basically, C is the chain constraint multiplier which is also a hyper-
parameter of the model, only for quantum solvers.

In this analysis, we did a grid search on different values of the chain
constraint multiplier. More specifically, the values ranges from 1.0 to 2.0
with a step of 0.2. Regarding the other model parameters, we used:

• the normalized MSE as the objective function with a selection con-
straint of k = 5 and selection constraint multiplier of 1.

• the Advantage system as the solver of QUBOs. Since this is the only
QPU solver we used in all experiments, in the following sections, it
will be referred as QPU solver;

• the number of samples acquired, for each QUBO problem, is 100.

• the post-processing aggregation of samples, simply, chooses the sample
with the minimum energy. However, since the following analysis is
related to samples, this parameter is irrelevant to our analysis.

From this experiment, our goal is to analyze what happens to the sam-
ples. In particular, there are two characteristic we want to analyze: the
energy and the chain break fraction. The former one, as stated in Sec-
tion 2.5.1, is the measure of the quality of a sample. In particular, it is the
the value of the objective function, that has been minimized, related to the
specific sample. Meanwhile, the latter one is the fraction of broken chains
w.r.t. the total number of chains in the minor-embedding for a specific sam-
ple. Therefore, its range varies from 0 to 1, where 0 refers to the extreme
case when there are no broken chains and 1 refers to the case when all chains
are broken.

Chain break fraction analysis

First of all, we show the histogram plots related to different chain break
fraction values. As shown in Figure 4.5, the chain break fraction values of

60

0

1000

2000

3000

C
ou

nt

Chain multiplier of 1.0 Chain multiplier of 1.2

0

1000

2000

3000

C
ou

nt

Chain multiplier of 1.4 Chain multiplier of 1.6

0.0 0.2 0.4 0.6 0.8
Chain break fraction

0

1000

2000

3000

C
ou

nt

Chain multiplier of 1.8

0.0 0.2 0.4 0.6 0.8
Chain break fraction

Chain multiplier of 2.0

Figure 4.5: 20-bin histograms of chain break fraction values with different values of
chain constraint multiplier regarding all samples of all independent QUBO problems.

61

0.00 0.25 0.50 0.75 1.00
Chain break fraction

0

2

4

6

8

10

12

D
en

si
ty

chain mlt=1.0
chain mlt=1.2
chain mlt=1.4
chain mlt=1.6
chain mlt=1.8
chain mlt=2.0

Figure 4.6: Density distribution plot of chain break fraction values with different values
of chain constraint multiplier regarding all samples of all independent QUBO problems.

the samples ranges from 0.3 to 0.6 in the first plot where the chain constraint
multiplier is set to 1.0. This means that, in the average, half of the chains
in the minor-embedding is broken. However, as we increase the multiplier,
there is a shift in the mean of the chain break fraction values, as shown
in Figure 4.6 which represents six density distributions of the chain break
fraction for each chain constraint multiplier. In fact, in the last plot of
Figure 4.5, where the multiplier is set to 2.0, it has chain break fraction
values that ranges from 0 to 0.2.

Overall, this is what we expected from the experiment: increasing the
strength of the constraint decreases the probability that chains, inside the
minor-embedding, breaks. However, this does not directly imply that the
samples obtained from the model with the multiplier of 2.0 are better than
the models with lower multiplier.

Energy analysis

Hence, we show the energies of all samples related to all QUBO problems.
In order to compare the energies of samples related to different QUBO
problems, we chose to use a normalized energy value. In particular, the
normalization is a min-max normalization applied to each QUBO problems
independently; i.e. each QUBO problem uses a different minimum and max-
imum energy value. Moreover, to compare it with different chain constraint
multiplier models, the minimum and the maximum are calculated consider-
ing all the QUBO from all models.

The Figure 4.7 shows six density distributions of the normalized energies
of all samples; each distribution is related to a different chain constraint

62

0.00 0.25 0.50 0.75 1.00
Normalized energy

0

2

4

6

8

10

D
en

si
ty

chain mlt=1.0
chain mlt=1.2
chain mlt=1.4
chain mlt=1.6
chain mlt=1.8
chain mlt=2.0

Figure 4.7: Density distribution plot of normalized energy values of all samples of all
independent QUBO problems with values of chain constraint multiplier between 1 and
2.

multiplier. Similar to what we saw in the chain break fraction, there is a
shift in the mean of the distribution while the multiplier decreases. This
is clearly better because the energy is better when it is lower. However,
we cannot exclude the possibility that continuously increasing the chain
constraint strength always improves the energy. Therefore, we did further
experiments with chain multiplier of 3, 4, and 5.

As shown in Figure 4.8 on the left plot, the chain break fraction values
continuously decrease as the multiplier increases. However, the normalized
energy on the right plot, reaches the smallest energy value when the multi-
plier is set to 3. But with higher multiplier, we can see that the distribution
of normalized energy tends to move on the right which means that the en-
ergy values are increasing instead of decreasing. As stated in Section 2.6.3,
this behavior might be related to the ICE issues of the quantum annealing
technique. In particular, when the QUBO values has to be embedded on
the QPU, there is a quantization that approximates the QUBO values which
leads to embedding a different QUBO problem w.r.t. the one we requested.

Energy comparison with the classical solver SA

Up until now, we compared energy values only with the QPU solver; thus, we
do not know how optimal the samples are. Therefore, we did another exper-
iment using the SA classical solver for a comparison. The new experiment
fits the QSLIM model by using the same parameters of the previous experi-
ment with the exception of the solver and the chain constraint multiplier. In
particular, in case the solver is not a QPU, then the minor-embedding is not

63

0.00 0.25 0.50 0.75 1.00
Chain break fraction

0

5

10

15

20
D

en
si

ty
chain mlt=1.0
chain mlt=2.0
chain mlt=3.0
chain mlt=4.0
chain mlt=5.0

0.00 0.25 0.50 0.75 1.00
Normalized energy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
en

si
ty

chain mlt=1.0
chain mlt=2.0
chain mlt=3.0
chain mlt=4.0
chain mlt=5.0

Figure 4.8: (Left): Density distribution plot of chain break fraction values with different
values of chain constraint multiplier. The y-axis max value is cropped at 20 for a clearer
image. (Right): Density distribution plot of normalized energy values of all samples from
all independent QUBO problems with different values of chain constraint multiplier.

necessary; consequently, the chain constraint multiplier is also not needed.
Similar to what we did before to compare the energy, here, we apply the
same min-max normalization on all QUBO problems using minimum and
maximum computed from both SA and QPU solvers.

As shown in Figure 4.9, differently from Figure 4.7, there is only the
addition of the SA density distribution whose samples are all in the minimum
energy value. Moreover, as we can see, the SA samples are lower in energy
w.r.t. the QPU samples. From the plot, it seems that the energy values
are very similar between SA and QPU. However, the values are normalized
which means that there is no way to tell the real difference from the two
cases. Unfortunately, looking at the real values, the ones related to SA have
all negative energies in the −106 scale value, while the ones related to QPU
are all positive values.

In conclusion, as we expected, changing the strength of the chain con-
straint reinforce the constraint; in fact, it decreases the chain break fraction
of the samples. Furthermore, also, the energy of the samples improved.
However, continuously increasing the strength of the constraint is not al-
ways better for the samples. Probably, due to the ICE issues of the QPU,
e.g. quantization issue, the embedded problem in the quantum machine was
completely different from the requested QUBO problem. Therefore, even
if the chains are broken-free, the samples obtained are still bad w.r.t. re-
quested QUBO problem. Moreover, we saw that the samples of the QPU
solver are much worse than the ones of the SA solver.

64

0.00 0.25 0.50 0.75 1.00
Normalized energy

0

2

4

6

8

10

D
en

si
ty

QPU(chain mlt=1.0)
QPU(chain mlt=1.2)
QPU(chain mlt=1.4)
QPU(chain mlt=1.6)
QPU(chain mlt=1.8)
QPU(chain mlt=2.0)
SA

Figure 4.9: Comparison of density distributions plot of normalized energy values of
all samples between SA and QPU solver. For the QPU solver, there are different
distributions, each with a different value of chain constraint multiplier. The y-axis max
value is cropped at 10 for a clearer image.

4.2.2 Selection constraint multiplier

The selection constraint multiplier, as explained in Section 3.1.2, is another
important hyper-parameter that defines the strength of the selection con-
straint, which is the constraint that pushes the solution of the QUBO prob-
lem to keep a fixed number of variables selected. In particular, it acts as a
sparsity term regulator. As stated in Section 3.1.2, the selection constraint
can be seen as a linear combination of linear sparsity term and quadratic
sparsity term. However, introducing more hyper-parameters in an environ-
ment with limited resources was too difficult to analyze and explore.

In this analysis, our goal is to see if the constraint is actually affecting
the samples of the solvers and how well it is doing so. Therefore, we did
some experiments by fitting many models with different selection constraint
multipliers. The first experiment is characterized by:

• a normalized MSE objective function with the selection constraint of
k = 5;

• the QPU solver, i.e. D-Wave Advantage system solver;

• a chain constraint multiplier of 2;

• a post-processing operation that selects the samples with the minimum
energy for each QUBO problem;

• acquiring 100 number of samples for each QUBO problem;

65

0 2 4 6
Number of selected variables

0

1

2

3

4

5

6
D

en
si

ty
SA solver

0 10 20 30 40
Number of selected variables

0.00

0.05

0.10

0.15

QPU solver

selection mlt=0
selection mlt=0.5
selection mlt=1.0

selection mlt=1.5
selection mlt=2.0

Figure 4.10: (Left): Density distributions plot of number of selected variables of all
samples about all independent QUBO problems using SA solver while changing the
selection constraint multiplier. When the selection constraint multiplier is set to 0, the
objective function is composed by only the normalized MSE which has a trivial solution
composed of all zeros. The y-axis maximum limit value is cropped at 6 for a clearer
image. (Right): Density distributions plot of number of selected variables of all samples
about all independent QUBO problem using QPU solver, while changing the selection
constraint multiplier.

• a selection constraint multiplier that varies from 0 to 2 with a step of
0.5.

Then, for the second experiment, we did the same thing but with the SA
solver. For analyzing the quality of the constraint, we focused on the number
of selected variables of each sample for all QUBO problems.

In Figure 4.10, on the right-side, we can see the density distribution of
the number of selected variables of the QPU solver regarding all the samples
collected from each QUBO problem. In particular, the distribution evolves
by shifting to the left towards the selected number of variables which is
5. However, it never reaches the selected number of variables, but it stops
at about 15 as mean when the selection constraint multiplier is set to 2.0.
Instead, on the left-side, there is the density distribution plot regarding the
SA solver. In this case, the selection constraint works perfectly. In fact,
as the selection constraint multiplier increases, the density distribution of
the number of selected variables moves closer towards the selected number
of variables in the constraint. Interestingly, we can notice that, for the SA

66

0 2 4 6
Number of selected variables

0.0

0.5

1.0

1.5

2.0
D

en
si

ty
SA solver

0 10 20 30 40
Number of selected variables

0.0

0.2

0.4

QPU solver

selection mlt=0
selection mlt=0.5
selection mlt=1.0

selection mlt=1.5
selection mlt=2.0

Figure 4.11: (Left): Density distributions plot of number of selected variables of the
minimum energy sample of all independent QUBO problems using SA solver, while
changing the selection constraint multiplier. When the selection constraint multiplier is
set to 0, the objective function is composed by only the normalized MSE which has a
trivial solution composed of all zeros. The y-axis maximum limit value is cropped at 6
for a clearer image. (Right): Density distributions plot of number of selected variables
of the minimum energy sample of all independent QUBO problems using QPU solver,
while changing the selection constraint multiplier.

solver, when the selection constraint multiplier is equal to 0, the number of
selected variables is all zeros because of the trivial solution in the normalized
MSE formulation explained in Section 3.1.1.

For completeness, we also report the density distribution of the minimum
energy sample of each QUBO problem using both QPU and SA solver.
In Figure 4.11, we can see that for the SA solver, the different density
distributions did not change much. However, for the QPU solver, the density
distribution of high selection constraint multiplier are less noisy in the values.
In fact, for the case of selection constraint multiplier equal to 2.0, the density
distribution mean is about at 11-12 with a smaller variance than before.

In conclusion, we saw that the selection constraint works as intended.
In particular, for SA solver, its effect performs perfectly: by increasing the
constraint multiplier, the number of selected variables in the samples is
closer and closer to the selected value in the constraint. However, for QPU
solver, this does not happen; at maximum, with higher strength value, the
number of selected variables does not reach the selected one. Maybe, it is
due to incorrect values of chain constraint multiplier or ICE issues.

67

4.3 Scalability analysis

In this section, we present an analysis on the scalability of the QSLIM model.
In particular, the focus is on the time complexity and its scalability w.r.t.
the size of the dataset. For a better analysis, we compared the QPU version
with the SA version of the model and, also, with SLIM Elastic Net. First of
all, the experiments are all characterized by the following features:

• Machine: every SA and SLIM Elastic Net experiment is executed
on a 2.9 GHz dual-core computer. However, both algorithms are not
implemented to exploit multi-cores. While, every QPU experiment is
executed on the Advantage system solver.

• Dataset: since the scope of these experiments is to analyze the scal-
ability in time w.r.t. dataset, all the datasets used are synthetic. In
particular, they are randomly distributed rating matrices with a cer-
tain number of items, number of users and density of the matrix. More
specifically, the standard parameters used are 50 number of items, 1000
number of users and 0.05 density (i.e. 5%). If the parameters are not
specified in the following experiment description, then the values are
the standard ones.

• Model: every experiment is executed with the following standard
parameters with the exception of some of them because the experiment
focus on the variation of them. First, the loss function of the QUBO
is the Normalized MSE with a selection constraint of 5 variables.
Then, the number of samples obtained from the solver for each QUBO
problem is 50. Lastly, the post-processing, simply, choose the sample
with the minimum energy.

• Experiment: for each experiment, we decided to run 5 times the fit
algorithm with certain parameters. Then, we computed the mean and
standard deviation of the time measured.

Moreover, the time measured in all the following experiments is the elapsed
time required to solve all the QUBO optimization problems of the model,
also called fit time. In particular, we distinguished the overall fit time into
four categories:

• Pre-processing time: it covers all the operations related to every
QUBO conversion from rating matrix to the optimization problem. In
this phase, there are two fundamental operations: the computation
of the Q matrix and the transformation from the Q matrix to a data

68

structure interpretable by the solvers. The former operation consists
of a matrix multiplication of sparse matrices and other matrix oper-
ations such as summation. Meanwhile, the latter one transform the
Q matrix, obtained by the previous operation, into a data structure,
called Binary Quadratic Model (BQM), necessary for the solvers.

• Waiting time: this phase is present only on the QPU experiments
where the QPU solver is used. It consists of two components: the
network time and the queue waiting time. The former is about the
network time required to send the problem to the QPU and to receive
the sample solutions from the QPU, while the latter is the waiting
elapsed time on the queue of the QPU since it is shared among all
users.

• Sampling time: in both SA and QPU experiments, this is the time
required to obtain all the solution samples requested. However, the
elapsed time for these two cases scales very differently. In SA, the
bigger is the QUBO, the higher is the time required to obtain a sample
solution. Meanwhile, in QPU, the time required to obtain a sample is
always the same, regardless of the size of the QUBO. More specifically,
for QPU, the sampling time is actually the access time explained in
Section 2.6.3. Therefore, for whatever QUBO problem embeddable
in the QPU, the access time is constant. However, in general, with
newer quantum machines, the programming time also increases. In
fact, the QPU solver has at least 2× higher programming time w.r.t.
D-Wave2000Q solver.

• Post-processing time: as stated previously in Section 3.1.3, the
model requires a post-processing phase where samples obtained by
the solver are aggregated or selected to obtain a unique solution for
the optimization problem. This is the elapsed time required to find
all unique solution of all the optimization problems, which are the
columns of the similarity matrix.

In the end, the goal of these experiments consists of analyzing how the model
fit time scales as some size features of the rating matrix changes. In fact,
the experiments in the following section are based on the variation in the
number of items, number of users, density, and number of samples.

69

4.3.1 Variation in the number of items

One of the most important feature of a RS is the number of items in its
catalog. This is the same as the number of columns in a rating matrix.
As explained in Section 2.2.1, in item neighborhood methods, the technique
is based on building the similarity matrix, which is a matrix |I| × |I|. In
QSLIM the similarity matrix is built by solving |I| optimization problems.
Therefore, the number of items |I| affects both the size of the optimization
problem and the number of optimization problems to be solved, since the
number of variables in the QUBO problem is the number of items. Without
considering the size of the optimization problems, the time complexity is
already O(|I|). But, by considering the type of solver we are using, the time
complexity might increase even more. In theory, with the QPU solver, the
size of the optimization problems does not change the time required to solve
it, but there is a limit in the size. Meanwhile, with SA, it depends greatly
on the number of variables when the algorithm tries to find the neighbor.

First of all, we focused on rating matrices embeddable in the QPU solver.
Since the largest clique size graph, that can be fitted in the Pegasus P16
architecture, is one with 120 variables due to the actual embedding function;
thus, we opted to choose a set of number of items between 25 and 100. The
first experiment, shown in Figure 4.12, compares the two solvers SA and
QPU. In the first two plots, we suppose that the QPU machine is local
which means that there is no waiting time. In this case, we can clearly see
that SA takes much more time w.r.t. the QPU. Moreover, as stated before,
SA time complexity w.r.t. number of items is much more than linear. In
fact, doubling the number of items, e.g. from 50 to 100, has an increase
in the sampling time of about 600%. However, if we consider the waiting
time, the QPU solver requires much more time to solve an optimization
problem. Indeed, we can see in the second two plots that the waiting time
increases as the number of items increases since the number of optimization
problems, that needs to be solved, also increases. Meanwhile, focusing on
pre-processing and post-processing time, they do not have any substantial
increment.

Then, for dataset with a bigger number of items, we did another experi-
ment by using the SA solver and the variant of the QSLIM model that uses
item selection method. More specifically, we used the absolute entropy as
the item selection method and we reduced the size of items to 100 for each
QUBO problem. In this way, the problem can be embedded into the QPU
solver. However, due to limited resources, we did not really execute the
experiment on QPU solver, but we used the same elapsed time computed in

70

25 50 75 100
Number of items

0

10

20

30

E
la

ps
ed

ti
m

e
(s

)

SA Solver

25 50 75 100
Number of items

QPU Solver

25 50 75 100
Number of items

0

100

200

300

E
la

ps
ed

ti
m

e
(s

)

SA Solver

25 50 75 100
Number of items

QPU Solver

Waiting time
Preprocessing time

Sampling time
Postprocessing time

Figure 4.12: Comparison of real fit time about SA and QPU solvers while changing the
number of items. The two above are plots without showing the waiting time for clarity,
while the two below are plots with waiting time. Note that the error label in the graph
indicates the standard deviation of the fit time.

71

100 200 300 400 500
Number of items

0

500

1000

1500

2000

2500

3000

E
la

ps
ed

ti
m

e
(s

)

Preprocessing time
Sampling time
Postprocessing time

Figure 4.13: Bar plot of fit time about SA solver while changing the number of items
from 100 to 500. The error label in the graph indicates the standard deviation of the
fit time.

the previous experiment because it is known to be constant for each QUBO
problem. Moreover, this reuse of data for QPU solver is done also in the
following scalability experiments.

In Figure 4.13, it shows the elapsed fit time for the SA solver when
the number of items is between 100 and 500. As we can see, the time
required for the sampling time seems to increase exponentially just as we
expected. Meanwhile, in Figure 4.14, there is a comparison on the variant
of the model. As stated previously, each QUBO problem is reduced to 100
number of variables, but the number of QUBO problem to be solved is
still the original number of items in the dataset. Thus, the SA solver with
item selection takes much less time than SA solver without item selection.
Instead, if we compare SA solver with item selection and QPU solver with
item selection, then the QPU solver uses much less time because of the
constant low sampling time. In addition, in this case, we can see that the
pre-processing times increases as the number of items increases; because
with bigger rating matrices, the matrix multiplication and conversion to the
specific data structure requires much more time.

Additionally, as a further comparison, we also did a timing experiment
on SLIM Elastic Net implemented using the Elastic Model of scikit-learn
library. In particular, with all the experiment previously explained, we
compared the fit time of all the variations of the QSLIM model with SLIM
Elastic Net. As shown in Figure 4.15, the QSLIM model with item selection
(QSLIM QPU w/IS) is slower than SLIM Elastic Net in the case where the
quantum machine is local, i.e. no waiting time; this is expected since the

72

100 200 300 400 500
Number of items

0

50

100

150

200
E

la
ps

ed
ti

m
e

(s
)

SA Solver w/ IS

100 200 300 400 500
Number of items

QPU Solver w/ IS

Preprocessing time
Sampling time

Postprocessing time

Figure 4.14: Bar plot comparison of fit time between SA solver with item selection and
QPU solver with item selection, while changing the number of items from 100 to 500.
The error label in the graph indicates the standard deviation of the fit time.

QUBO problem is still small. Moreover, here, we can see that SA solver
without item selection has clearly an exponential behavior w.r.t. others.

In conclusion, regarding the variation in the number of items, the re-
sults are inline with what we expected. As the number of items increases,
the number of optimization problems to be solved also increases; thus, the
sampling time increases at least linearly. In particular, only for SA, the
increment is even higher due to the increase in size of the QUBO problem.
Meanwhile, for the pre-processing time, since the rating matrix is bigger, the
matrix multiplication and the conversion to the data structure require more
time. Instead, for the post-processing phase, there is not much variation in
the time, but there is still some increment.

4.3.2 Variation in the number of users

Similarly to what we did with the number of items, we analyzed what hap-
pens when the size of the other dimension of the rating matrix, i.e. the
number of users, changes. Differently from the number of items, the algo-
rithm does not depend highly on this dimension. In theory, the number
of users should affect the algorithm only in the pre-processing phase; more
particularly, it only affects the matrix multiplication. Therefore, we do not
expect much variation in the fit time while varying the number of users.

For this case, we did only SA experiments with the following discrete
values of number of items: 1000, 5000, 10000 and 50000. As shown in

73

100 200 300 400 500
Number of items in rating matrix

0

500

1000

1500

2000

2500

3000

E
la

ps
ed

ti
m

e
(s

)
QSLIM SA
QSLIM SA w/IS
QSLIM QPU w/IS
SLIM Elastic Net

Figure 4.15: Bar plot comparison of fit time between SA solver, SA solver with item
selection (QSLIM SA w/IS), QPU solver with item selection (QSLIM QPU w/IS), and
SLIM Elastic Net, while changing the number of items. The error fill lines in the graph
indicates the standard deviation of the fit time.

1000 5000 10000 50000
Number of users

0

2

4

6

8

E
la

ps
ed

ti
m

e
(s

)

SA Solver

1000 5000 10000 50000
Number of users

QPU Solver

Preprocessing time
Sampling time

Postprocessing time

Figure 4.16: Bar plot comparison of fit time between SA solver and QPU solver while
changing the number of users. The error label in the graph indicates the standard
deviation of the fit time.

74

0.1 0.2 0.3 0.4 0.5
Rating matrix density

0

25

50

75

100

E
la

ps
ed

ti
m

e
(s

)
SA Solver

0.1 0.2 0.3 0.4 0.5
Rating matrix density

QPU Solver

Preprocessing time
Sampling time

Postprocessing time

Figure 4.17: Bar plot comparison of fit time between SA solver and QPU solver while
changing the density of the rating matrix. The error label in the graph indicates the
standard deviation of the fit time.

Figure 4.16, changing the number of users do not affect much the fit time.
However, in the case of 50000 number of items, we can see a small increase
in the pre-processing time.

In conclusion, the number of users, as theorized, affects the fit time only
in the pre-processing phase. However, the variation in the pre-processing
time is very small in this case. Probably, with higher number of items, the
increase in the pre-processing time might be more relevant.

4.3.3 Variation in the density

Another rating matrix’s parameter is the density of the matrix. In general,
common RS datasets have very sparse matrices, e.g. 0-5% density. In fact,
the sparsity is a common problem of the RS research field. However, in this
scalability analysis, what we want to see is the behavior of the time function
w.r.t. the dataset. For the density, in theory, it should only change the
complexity time of the matrix multiplication.

In this experiment, differently from the previous ones, we also changed
the number of items to obtain longer and more accurate elapsed times. In
particular, we changed it to 150 number of items, while the density changes
linearly from 10% to 50% with a step of 10%. As shown in Figure 4.17, the
pre-processing time increases as the density increases, just as we expected.
In Figure 4.18, we can see more clearly that, by doubling the density from
0.2 to 0.4, the pre-processing time increases by almost 100%.

75

0.1 0.2 0.3 0.4 0.5
Rating matrix density

10

15

20

25

30

E
la

ps
ed

ti
m

e
(s

)

Figure 4.18: Pre-processing time of the QSLIM model while changing the density of
the rating matrix. The error fill bars in the graph indicates the standard deviation of
the pre-processing time.

In the end, just like we expected, the density affects only the pre-
processing phase.

4.3.4 Variation in the number of samples

Finally, the last parameter, we analyzed, is the number of samples requested
to the solver for each QUBO problem. Differently from the other analysis,
this one focus on a parameter independent from the dataset. However, it is
still a parameter that should affects the time complexity. In particular, its
variation surely affects the sampling time. Moreover, it should also affect the
post-processing phase due to the increase in the dimension of the number of
samples.

Similarly from the previous variations, in this case, we run experiments
using only SA solver with an exponential variation in the number of samples,
from 102 to 106. However, we also changed some standard parameter due
to timing problems. First, the number of items in these experiments is 5;
otherwise the time required to compute all those samples was too much.
Second, the aggregation strategy used in post-processing is changed to the
mean of the samples but the only non-zero values are the one related to
the minimum energy sample. The comparison results between SA and QPU
solver from these experiments, as shown in Figure 4.19, are inline with what
we expected. To summarize, in the figure, we can see that the sampling
time increases as the number of samples increases. Notice that in this case,
the QPU solver takes much more time than SA solver because the number
of items is so small. Regarding the post-processing, in Figure 4.20, we can

76

102 103 104 105 106

Number of reads

200

400

600

E
la

ps
ed

ti
m

e
(s

)

SA Solver

102 103 104 105 106

Number of reads

QPU Solver

Preprocessing time
Sampling time

Postprocessing time

Figure 4.19: Bar plot comparison of fit time between SA solver and QPU solver while
changing the number of samples. The error label in the graph indicates the standard
deviation of the fit time.

102 103 104 105 106

Number of reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
la

ps
ed

ti
m

e
(s

)

Figure 4.20: Post-processing time of SA solver experiments. The error fill bars in the
graph indicates the standard deviation of the post-processing time.

77

clearly see that the post-processing time increases as the number of samples
increases. Notice that the scale of the x-axis is logarithm; therefore, the
time does not have an exponential behavior, but it is more inline with a
linear behavior.

In conclusion, as we expected, the sampling time and the post-processing
time depends on the number of samples. In particular, both of them seems
to have a linear dependency with it.

4.4 Quality evaluations

In this section, our goal is to find the best set of hyper-parameters of our
model in both SA and QPU solver that maximize a specific metric. As ex-
plained in Section 2.4, there are many metrics that measures the quality of
a RS. Since our task problem is the top-k recommendation problem, a nat-
ural choice is a ranking accuracy metric; and, generally, a common choice is
the Mean Average Precision (MAP). To sum it up, the goal is to maximize
the MAP by finding the best set of hyper-parameters of the QSLIM model.
However, other metrics are, also, shown in the following results. More par-
ticularly, among the accuracy metrics, there is the precision, recall, MAP
and NDCG; all of these are better if the value is higher. Meanwhile, for
the beyond-accuracy metrics, we reported the catalog coverage correct (CC
correct), the mean-inter list diversity (MIL), and the average item popular-
ity (AIP). In general, since they are not accuracy metrics, there is no best
value; however, the goal in a RS is, generally, to have a higher diversity in
the items recommendation, a higher coverage in the items recommended,
and to be less popular-driven. But, this is not always true.

As explained in Section 4.1, we chose two datasets for our experiments.
The first one is the Jester Jokes dataset which is easily embeddable into
the QPU solver. While, the second one is the MovieLens100k dataset which
is not embeddable directly into the QPU solver. Therefore, for the second
dataset, we used a variant of the QSLIM model, explained in Section 3.2,
that uses item selection technique to reduce the number of items to be used
in the QUBO problem. Moreover, both the datasets are divided in 3 parts
(training, validation, and test set) using the hold-out method as explained
in Section 4.1.3. Notice that the validation set is the one used to validate
the models during the hyper-parameter tuning process to find the best set
of hyper-parameters.

Regarding the hyper-parameter tuning method, we used a state-of-the-
art optimization search method, called Bayesian Optimization [24], for
the global optimization of blackbox functions.

78

4.4.1 Baseline models

To have a better comprehension on the quality of the QSLIM models, we
selected a few state-of-the-art baseline models for comparison:

• Top Popularity: for a minimal baseline, we chose this non-personalized
model, that simply recommends unseen top popular items to the each
user.

• Item KNN CF: an item-based KNN CF model that computes the
similarity matrix with a heuristic similar measure. Since, in the variant
of QSLIM, we used the cosine similarity, then we also decided to use
it in this model for better comparison (see Section 2.2.1 for details)

• RP3
β: a graph-based method that follows the random walk idea used

in P3
α (see Section 2.3.1 for details)

• MF BPR: a matrix factorization method that learns through stochas-
tic gradient-descent with the BPR loss (see Section 2.3.2 for details)

• SLIM Elastic Net: since SLIM Elastic Net, abbreviated in the fol-
lowing results with SLIM EN, is the model from which QSLIM is
inspired upon, then we decided to use it as comparison (see Section
2.3.3 for details)

4.4.2 Jester Jokes

In this section, we present the quality evaluations of the QSLIM model
compared with other previously developed models, as stated before. Since
our problem is a top-k recommendation problem, we need to choose k, i.e.
the number of items in the list of recommendations. Due to the small number
of items in the Jester Jokes dataset, we decided to keep only 5 items in the
list. Therefore, the accuracy and beyond-accuracy metrics are listed by
considering a list of 5 items.

As stated previously, here, we consider only the original QSLIM model
without any item selection method. Moreover, both validation and test set
results are shown.

Validation set performance

First, we report the performance@5 of different best models that we found
on the validation set. As shown in Table 4.1, the SLIM EN has the highest
values among all the models reported in all accuracy metrics.

79

Model
Accuracy metrics ↑ Beyond-accuracy metrics

Preci-
sion Recall MAP NDCG CC

correct MIL AIP

Top Popularity 0.2833 0.2447 0.2166 0.2594 0.2600 0.5514 0.8730
Item KNN CF 0.2884 0.2503 0.2206 0.2640 0.6100 0.6035 0.8599
RP3

β 0.2914 0.2574 0.2231 0.2681 0.5200 0.6807 0.8366
MF BPR 0.2777 0.2499 0.2100 0.2572 1.0000 0.8106 0.7393
SLIM EN 0.3027 0.2707 0.2345 0.2810 0.9700 0.7678 0.7751
QSLIM SA 0.2950 0.2630 0.2261 0.2725 1.0000 0.7540 0.7672
QSLIM QPU 0.2698 0.2224 0.1957 0.2357 0.5400 0.6704 0.8199

Table 4.1: Jester jokes’ performance@5 of different tuned models (except QSLIM QPU
due to limited computational resource) on the validation set (all accuracy metrics are
better if the value is higher and the range of all metrics goes from 0 to 1).

Best hyper-parameters Value
Selection constraint - k variables selected 22
Selection constraint - multiplier 4.4655
Number of samples (fixed during tuning) 100
Post-processing Average of samples

Table 4.2: Best hyper-parameters of QSLIM SA model found

Best hyper-parameters Value
Selection constraint - k variables selected 5
Selection constraint - multiplier 0.5
Chain constraint - multiplier 2
Number of samples 100
Post-processing Average of samples

Table 4.3: Best hyper-parameters of QSLIM QPU model found

80

Model
Accuracy metrics ↑ Beyond-accuracy metrics

Preci-
sion Recall MAP NDCG CC

correct MIL AIP

Top Popularity 0.3709 0.3161 0.3345 0.3460 0.4500 0.6929 0.8300
Item KNN CF 0.3886 0.3299 0.3528 0.3587 0.6600 0.7138 0.8211
RP3

β 0.3938 0.3438 0.3591 0.3681 0.6100 0.7456 0.8075
MF BPR 0.3842 0.3394 0.3468 0.3591 1.000 0.8283 0.7302
SLIM EN 0.4234 0.3727 0.3934 0.3975 0.9800 0.8321 0.7323
QSLIM SA 0.4134 0.3627 0.3820 0.3874 1.0000 0.8112 0.7487
QSLIM QPU 0.2939 0.2359 0.2141 0.2398 0.6800 0.6936 0.7267

Table 4.4: Jester Jokes’ performance@5 of different tuned models (except QSLIM QPU
due to limited computational resource) on the test set using both training and validation
set during the fit process (all accuracy metrics are better if the value is higher and the
range of all metrics goes from 0 to 1).

Regarding QSLIM SA, the tuning procedure found a set of hyper-
parameter as shown in Table 4.2. Interestingly, the post-processing opera-
tion applied is just the average of all the samples obtained from the solver.
Meanwhile, the accuracy metrics of QSLIM SA is the second-best among
all models. Instead, for the beyond-accuracy metrics, the values are quite
comparable to SLIM EN and MF BPR. In particular, we can see that its
correct recommendations covers all items at least once, just like MF BPR.
However, this item coverage is expected since the number of items in Jester
Jokes is just 100. Furthermore, the diversity and average item popularity
has good value w.r.t. others since, in general, the goal of a RS is to have
more diversity in its recommendations and to be less driven by popularity.

About QSLIM QPU model, we did not do any tuning procedure due
to limited resource. In the end, we selected the model with the hyper-
parameters as shown in Table 4.3. About the results, the accuracy metrics
are the lowest w.r.t. all models, even lower than Top Popularity model.
Additionally, in CC correct, the coverage of the items is not so great; it is
quite similar to RP3

β. Moreover, also, the other two beyond-accuracy metrics
are similar to RP3

β.

Test set performance

Furthermore, we also reported the metrics@5 regarding the test set while
fitting both training and validation set. In general, the test set is evaluated
only once by a model; however, since we want to validate the quality of all
models obtained in the tuning process, we also tested them with the test set
for another comparison.

81

In Table 4.4, we reported the metrics values of all the models. As we can
see, since, in the fit phase, there is much more data (i.e. 33% more), then
the values are much higher w.r.t. the one about validation set. However,
the relationship between the models remains the same: SLIM EN is still the
best in terms of all accuracy metrics. Then, followed by QSLIM SA that
still has a quite comparable MAP w.r.t. SLIM EN. In particular, the values
are below just by about 0.01 in all accuracy metrics. As the validation set,
the beyond-accuracy metrics of QSLIM SA remains similar to SLIM EN.

Regarding QSLIM QPU, the boost it received from the data is insignif-
icant w.r.t. others. The MAP just increased from 0.19 to 0.21: while the
others had a higher jump of at least 0.12 points. Instead, if we look at the
beyond-accuracy metrics, the values are still very similar to RP3

β. Overall,
this low performance might be due to inefficient hyper-parameters or to the
issues shown in the model analysis done in Section 4.2. In particular, the
ICE issue might have caused to obtain very sub-optimal solutions to the
QUBO problems. Therefore, the final similarity matrix obtained was much
worse w.r.t. QSLIM SA.

4.4.3 MovieLens100k

For MovieLens100k, since the total number of items in the dataset is more
than a thousand, we decided to report performance metrics with a 10 size
recommendation list. Moreover, as stated before, due to the high number of
items, we used the variant of the QSLIM model that uses the item selection
method to reduce the number of items in the QUBO problems. Specifically,
we chose to reduce the number of items to 100 since it is embeddable in the
QPU solver. However, we did not use QPU solvers in this experiment due to
the limited resource in computation time. Meanwhile, for SA solver, In the
following results, we distinguish two version of the variants called: QSLIM
SA AIS and QSLIM SA RIS.

• QSLIM SA AIS: it is the model with SA solver that uses an Absolute
Item Selection (AIS) method to choose the items to keep. As explained
in Section 3.2, the absolute methods implemented are based on either
variance, absolute entropy, and item popularity.

• QSLIM SA RIS: differently from AIS version, it uses a Relative Item
Selection (RIS) method. The one that we implemented is based on
the cosine similarity.

Also, in this case, there are two evaluation results that are reported: one
on validation set and another on test set.

82

Model
Accuracy metrics ↑ Beyond-accuracy metrics

Preci-
sion Recall MAP NDCG CC

correct MIL AIP

Top Popularity 0.1552 0.1067 0.0837 0.1200 0.0178 0.3899 0.8125
Item KNN CF 0.2476 0.1802 0.1625 0.2065 0.1361 0.8966 0.5414
RP3

β 0.2509 0.1826 0.1609 0.2065 0.1432 0.8903 0.5547
MF BPR 0.2344 0.1705 0.1474 0.1925 0.1682 0.9057 0.5400
SLIM EN 0.2563 0.1852 0.1652 0.2095 0.1165 0.8648 0.6074
QSLIM SA AIS 0.2040 0.1464 0.1268 0.1667 0.0713 0.7931 0.6498
QSLIM SA RIS 0.2442 0.1749 0.1501 0.1948 0.1920 0.9290 0.5013

Table 4.5: MovieLens100k’s performance@10 of different tuned models on the validation
set (all accuracy metrics are better if the value is higher and the range of all metrics
goes from 0 to 1).

Best hyper-parameters Value
Selection constraint - k variables selected 17
Selection constraint - multiplier 5
Number of samples (fixed) 100
Item selection method Absolute entropy
Post-processing Logarithm of samples

Table 4.6: Best hyper-parameters of QSLIM SA AIS model found

Validation set performance

Just like what we did with Jester Jokes dataset, first, we report the eval-
uation metrics related to the validation set. As shown in Table 4.5, we
can see that SLIM EN is still the most accurate model. However, in terms
of beyond-accuracy metrics, SLIM EN, just like the other baseline models,
has lower coverage, lower diversity and more popularity-driven w.r.t. QS-
LIM SA RIS. This does not mean that QSLIM SA RIS is better in terms
of beyond-accuracy metrics, but if we need a RS that has better coverage,
higher diversity in the list, and less popularity-driven; then the QSLIM SA

Best hyper-parameters Value
Selection constraint - k variables selected 10
Selection constraint - multiplier 3.5051
Number of samples (fixed) 100
Item selection method Cosine similarity
Post-processing Weighted average of samples

Table 4.7: Best hyper-parameters of QSLIM SA RIS model found

83

Model
Accuracy metrics ↑ Beyond-accuracy metrics

Preci-
sion Recall MAP NDCG CC

correct MIL AIP

Top Popularity 0.1876 0.1146 0.1102 0.1328 0.0279 0.5044 0.7498
Item KNN CF 0.3291 0.2192 0.2603 0.2593 0.1658 0.9151 0.4910
RP3

β 0.3495 0.2312 0.2843 0.2774 0.1747 0.9011 0.5101
MF BPR 0.3146 0.2064 0.2379 0.2425 0.1837 0.9129 0.5000
SLIM EN 0.3663 0.2435 0.3042 0.2924 0.1533 0.8961 0.5410
QSLIM SA AIS 0.2932 0.1961 0.2205 0.2319 0.0939 0.8767 0.5568
QSLIM SA RIS 0.3478 0.2278 0.2753 0.2721 0.2366 0.9399 0.4537

Table 4.8: MovieLens100k’s performance@10 of different tuned models on the test set
using both training and validation set during the fit process (all accuracy metrics are
better if the value is higher and the range of all metrics goes from 0 to 1).

RIS has these characteristics.
Interestingly, as shown in Table 4.7, the post-processing of QSLIM SA

RIS is a weighted average of samples. In particular, this heuristic method
weights the samples based on their min-max normalized energy, i.e. the
samples with the minimum energy has a weight of 0, while the samples with
the maximum energy has a weight of 1. Moreover, as stated before, QSLIM
SA RIS uses cosine similarity for the item selection process. Compared with
the Item KNN CF with cosine similarity, QSLIM SA RIS can be seen as a
hybrid method with Item KNN CF where the KNN algorithm is substituted
by the QUBO problem. However, in Table 4.5, we can see that the advantage
of this substitution is not good in terms of accuracy metrics.

Meanwhile, in Table 4.6, we reported the best hyper-parameters of QS-
LIM SA AIS that we found. Unfortunately, with absolute entropy, its per-
formance is not very good. At least, it has higher accuracy metrics w.r.t.
Top Popularity.

Test set performance

In the test set performance, as shown in Table 4.8, the results confirm what
we found in the validation set performance. Just like in Jester Jokes, the
metrics values have a substantial increase in the values due to the addition
to the validation set during the fit process. Moreover, as in the validation
set performance, SLIM EN remains the best in accuracy metrics.

Interestingly, QSLIM SA RIS model overcome the Item KNN CF model
in accuracy metrics. Regarding the beyond-accuracy metrics, we can still see
quite a difference in QSLIM SA RIS with its high coverage, high diversity
and low average item popularity.

84

Overall, QSLIM SA RIS show very promising results. Its accuracy met-
rics compares well w.r.t. state-of-the-art models; moreover, it has interesting
results in the beyond-accuracy metrics. This means that QSLIM QPU with
item selection method with less noise might obtain similar results.

85

86

Chapter 5

Conclusion

In this thesis, we proposed a new learning-based collaborative filtering model
based upon SLIM in Recommender System. Specifically, the main novelty
of this approach is the exploitation of quantum annealing computers to solve
the core problem of the algorithm, i.e. QUBO problems. Of course, these
optimization problems can also be solved with classical heuristic algorithms,
such as Simulated Annealing. However, due to various limitations, the new
model is only capable of handling datasets of smaller item sizes. Therefore,
we also proposed a variant of the model that can handle more datasets by
reducing the QUBO problems to a specific size. In this way, it allows the
QUBO problem to be embeddable in quantum computers.

Furthermore, we analyzed the model behavior by visualizing some fea-
tures of the samples obtained from different QUBO solvers. As we expected,
there are no issues in the model behavior. Especially in case, the solver is
the classical heuristic algorithm. However, the quantum annealing solver
presents two problems in the solution found. First, chains produced in
the minor-embedding phase can break. Even if it is possible to manage
the chains’ strength, some broken chains remain when the strength is high
enough. Second, the quality of the solutions is not as good as compared with
the classical solver. These issues might originate from the noise introduced
by the Integrated Control Errors (ICE) and the temperature stability of the
quantum computers.

Additionally, we also analyzed the scalability in time of our model to
evaluate how good is the quantum speedup. Overall, we have seen that,
with various synthetic datasets of different dimensions, there is the quan-
tum speedup w.r.t. the classical solver only if the quantum computer is
executed locally. However, we need to consider that the classical solver was
implemented to run on a single-core.

87

In the end, we compared our model with other state-of-the-art collab-
orative filtering approaches. Unfortunately, due to computational resource
limitation, we could not find a good set of hyper-parameters of our model
solved with quantum computers. Hence, its performance is nowhere near
w.r.t. other models. Anyway, we expect our model to have a promising
future since the performance of our model solved with the classical solver is
quite good. Moreover, the beyond-accuracy performance shows intriguing
results.

Regarding possible future works, when newer quantum computers will
become available, it will be possible to carry out further experiments on
larger datasets. Moreover, if the computation resource increases, then it
might also be possible to use the hybrid solver that we could not use. Addi-
tionally, another future work might be to improve the model. For instance,
in the sparsity regularization terms, we could represent them in a more gen-
eral way. Due to limitations, we added a constraint to the objective function;
however, it is possible to use the two sparsity terms.

88

Bibliography

[1] A survey on quantum computing technology. Computer Science Review,
31:51 – 71, 2019.

[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Man-
aging popularity bias in recommender systems with personalized re-
ranking, 2019.

[3] Charu C. Aggarwal. Recommender Systems: The Textbook. Springer
Publishing Company, Incorporated, 1st edition, 2016.

[4] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation.
Reviews of Modern Physics, 90(1), Jan 2018.

[5] B. Apolloni, C. Carvalho, and D. de Falco. Quantum stochastic opti-
mization. Stochastic Processes and their Applications, 33(2):233–244,
1989.

[6] Steven M. Beitzel, Eric C. Jensen, and Ophir Frieder. MAP, pages
1691–1692. Springer US, Boston, MA, 2009.

[7] Paul Benioff. The computer as a physical system: A microscopic quan-
tum mechanical hamiltonian model of computers as represented by tur-
ing machines. Journal of Statistical Physics, 22(5):563–591, 1980.

[8] Zhengbing Bian, Fabian Chudak, William G Macready, and Geordie
Rose. The ising model: teaching an old problem new tricks. D-wave
systems, 2, 2010.

[9] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender
systems survey. Knowledge-Based Systems, 46:109 – 132, 2013.

[10] Tomas Boothby, Andrew D. King, and Aidan Roy. Fast clique minor
generation in chimera qubit connectivity graphs. Quantum Information
Processing, 15(1):495–508, 2016.

89

[11] Robin Burke. Hybrid Web Recommender Systems, pages 377–408.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[12] Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic
for finding graph minors, 2014.

[13] Pau Farré Catherine McGeoch and William Bernoudy. D-wave hybrid
solver service + advantage: Technology update. Technical report, D-
Wave Systems Inc., September 2020.

[14] R. Chen, Q. Hua, Y. Chang, B. Wang, L. Zhang, and X. Kong. A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks. IEEE Access,
6:64301–64320, 2018.

[15] Nick Craswell and Stephen Robertson. Average Precision at n, pages
193–194. Springer US, Boston, MA, 2009.

[16] D-Wave Systems Inc. DWave Problem-Solving Handbook, September
2020.

[17] D-Wave Systems Inc. Getting Started with the D-Wave System, Septem-
ber 2020.

[18] D-Wave Systems Inc. Technical Description of the D-Wave Quantum
Processing Unit, March 2020.

[19] D-Wave Systems Inc. Solver Computation Time, January 2021.

[20] Prasanna Date and Thomas Potok. Adiabatic quantum linear regres-
sion, 2020.

[21] Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel Constantin,
Hamid Eghbal-zadeh, Stefano Cereda, Markus Schedl, Bogdan Ionescu,
and Paolo Cremonesi. Movie genome: alleviating new item cold start in
movie recommendation. User Modeling and User-Adapted Interaction,
29(2):291–343, 2019.

[22] Mukund Deshpande and George Karypis. Item-based top-n recom-
mendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, January
2004.

[23] Maurizio Ferrari Dacrema. Demonstrating the equivalence of list based
and aggregate metrics to measure the diversity of recommendations
(student abstract). In The Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, 2021.

90

[24] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In
Automated Machine Learning, pages 9–13. Springer, Cham, 2019.

[25] Richard P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6):467–488, 1982.

[26] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond
accuracy: Evaluating recommender systems by coverage and serendip-
ity. Recsys 2010, pages 257–260, New York, NY, USA, 2010. Association
for Computing Machinery.

[27] Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating
and using qubo models, 2018.

[28] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl. Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst., 22(1):5–53, January 2004.

[29] Feng Hu, Ban-Nan Wang, Ning Wang, and Chao Wang. Quantum ma-
chine learning with d-wave quantum computer. Quantum Engineering,
1(2):e12, 2019.

[30] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on
Data Mining, pages 263–272, 2008.

[31] Daisuke Inoue, Akihisa Okada, Tadayoshi Matsumori, Kazuyuki Ai-
hara, and Hiroaki Yoshida. Traffic signal optimization on a square
lattice using the d-wave quantum annealer, 2020.

[32] Y. Kanamori, S.-M. Yoo, W.D. Pan, and F.T. Sheldon. A short sur-
vey on quantum computers. International Journal of Computers and
Applications, 28(3):227–233, 2006.

[33] Jack Raymond Kelly Boothby, Paul Bunyk and Aidan Roy. Next-
generation topology of d-wave quantum processors. Technical report,
D-Wave Systems Inc., February 2019.

[34] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

[35] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37, 2009.

91

[36] Matevž Kunaver and Tomaž Požrl. Diversity in recommender systems
–a survey. Knowledge-Based Systems, 123:154–162, 2017.

[37] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan
Zhang. Recommender system application developments: A survey. De-
cision Support Systems, 74:12 – 32, 2015.

[38] C. C. McGeoch. Adiabatic Quantum Computation and Quantum An-
nealing: Theory and Practice. Morgan & Claypool, 2014.

[39] Catherine McGeoch and Pau Farré. Solver computation time. Technical
report, D-Wave Systems Inc., September 2020.

[40] I. C. Mogotsi. Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze: Introduction to information retrieval. 2010.

[41] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n
recommender systems. pages 497–506, 12 2011.

[42] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bern-
stein. Updatable, accurate, diverse, and scalable recommendations for
interactive applications. ACM Transactions on Interactive Intelligent
Systems (TiiS), 7(1):1–34, 2016.

[43] Pearl Pu, Li Chen, and Rong Hu. Evaluating recommender systems
from the user’s perspective: survey of the state of the art. User Modeling
and User-Adapted Interaction, 22(4):317–355, 2012.

[44] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit
feedback. arXiv preprint arXiv:1205.2618, 2012.

[45] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor.
Recommender Systems Handbook. Springer-Verlag, Berlin, Heidelberg,
2nd edition, 2015.

[46] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, Nov 1994.

[47] Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Ei-
denbenz. Embedding algorithms for quantum annealers with chimera
and pegasus connection topologies. In Ponnuswamy Sadayappan, Brad-
ford L. Chamberlain, Guido Juckeland, and Hatem Ltaief, editors, High

92

93

Performance Computing, pages 187–206, Cham, 2020. Springer Inter-
national Publishing.

[48] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rush-
ton Wakeling, and Yi-Cheng Zhang. Solving the apparent diversity-
accuracy dilemma of recommender systems. Proceedings of the National
Academy of Sciences, 107(10):4511–4515, 2010.

