
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Planning in Stochastic Environments

through Policy Optimization with

Mediator Feedback

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Relatore: Prof. Marcello Restelli

Correlatori: Dott. Amarildo Likmeta

Dott. Alberto Maria Metelli

Tesi di Laurea di:

Jacopo Germano, matricola 946847

Anno Accademico 2020-2021

Acknowledgements

I would like to thank my supervisor, Prof. M. Restelli, for his support,

encouragement and patience, as well as the assistant supervisors Dott. A.

Likmeta and Dott. A.M. Metelli for their precious help in suggesting im-

provements to this work, for their availability to clarify my doubts and to

review my work. Without their precious experience and help, I would not

have been able to complete such a challenging thesis.

I would also like to thank my parents who allowed me to study what I like

and who have been constantly supporting me during my years of study. I

would like to thank my sister Martina for being close to me in the toughest

moments.

Last but not least, I would like to thank all my friends who made my uni-

versity years unforgettable, and all the people who have been close to me:

Andrea, Aurora, Carlo, Chiara, Davide, Enrico, Francesca, Gabriele, Gio-

vanni, Leonardo, Lorenzo, Luca, Marco, Martina, Matteo, Nicola, Nicole,

Riccardo, Stefano.

I

Contents

Acknowledgements I

Contents III

List of Figures VII

List of Algorithms IX

Abstract XI

Estratto in Italiano XIII

1 Introduction 1

1.1 Motivations . 2

1.2 Contributions . 3

1.3 Structure of the Thesis . 3

2 Preliminaries 5

2.1 Summary . 5

2.2 Markov Decision Processes . 5

2.2.1 The Formal Model . 5

2.2.2 Policies . 6

2.2.3 Solution Concepts . 6

The Expected Total Discounted Reward 7

State Value Function 7

State-Action Value Function 8

Optimal Policies . 9

2.3 Reinforcement Learning . 9

2.3.1 Planning . 9

2.3.2 Online planning . 10

Monte Carlo Planning 10

2.4 Stochastic Multi-armed Bandits 11

III

2.4.1 The Cumulative Regret 11

Exploration versus Exploitation trade-off 11

2.4.2 The Upper Confidence Bound algorithm 12

Schedules for the error probability δ 12

2.4.3 Best Arm Identification 13

The Simple Regret . 13

2.4.4 Infinitely-Armed Bandits 13

Reservoir distribution for µpxq 14

Regularity of µpxq . 14

2.5 Importance Sampling Techniques 15

2.5.1 Importance Sampling 15

2.5.2 Multiple Importance Sampling 15

2.5.3 The Balance Heuristic estimator 16

The Rényi divergence 16

Bounding the variance of pµBH 16

Weights truncation . 17

Bounding the bias and variance of qµBH 17

3 State of the Art 19

3.1 Summary . 19

3.2 Sparse-lookahead-tree Planning Algorithms 19

3.2.1 Monte Carlo Planning 19

3.2.2 Upper Confidence Trees 20

The Monte Carlo Tree Search loop 21

UCT pseudo-code . 21

UCT performance . 23

3.2.3 MCTS with Double Progressive Widening 23

The choice of the action 24

The stochastic transition 25

3.3 Policy Search Algorithms . 26

3.3.1 OPTIMIST . 26

Action-based versus Parameter-based Policy Optimiza-

tion . 26

Performance measures 26

Multiple Importance Sampling Estimation 27

3.3.2 The Regret . 28

3.4 Finite Bandit Algorithms . 28

3.4.1 UGapE . 28

A Unified Approach 28

The Task of m ϵ-best-arms identification 29

The Arm Selection . 29

Performance . 31

3.5 Continuouos bandit Algorithms 31

3.5.1 HOO . 31

4 A Randomized Approach to Best Arm Identification in Con-

tinuous Bandits 35

4.1 Summary . 35

4.2 The Framework . 35

4.3 The Meta-arms . 36

4.3.1 The Mediator Feedback 36

4.3.2 The Probability Density Function ppx 36

4.4 The Algorithm . 37

4.4.1 The Construction of the Meta-arms 37

4.4.2 The Choice of the First Meta-arm 38

4.4.3 The Pull of a Meta-arm 38

4.4.4 The Selection of the Next Meta-arm 38

4.4.5 The Final Recommendation 38

4.4.6 The Confidence Bounds 38

4.4.7 The Pseudo-Code . 39

The Selection of the Next Meta-arm 40

Optimistic Meta-arm Selection 40

Full-exploration Meta-arm Selection 41

The Choice of the Recommendation 41

4.5 Theoretical Analysis . 42

4.5.1 Setting . 42

4.5.2 Assumptions . 43

4.5.3 Theoretical Results . 44

Regularity of µ . 44

Upper Bound to f� � µ� 44

Upper Bound to rµpnq in Expectation 45

4.5.4 The Variance and the Lipschitz Constant 46

5 Application to Online Planning 49

5.1 Summary . 49

5.2 The Online Planning Loop . 49

5.3 Policy Search as Continuous Bandit 50

5.4 The Mini-golf Environment 50

5.4.1 Environment Definition 50

5.4.2 The Policies . 51

The Value Function V πθ
n ps0q in Policy Space 52

5.4.3 Building the Meta-arms 53

Selection of the Variance 53

Selection of s . 53

Example of Meta-arms for the Mini-golf Environment 54

5.4.4 Tuning of α . 54

5.4.5 Experimental Results 55

The budget . 55

Performance of Our Algorithm 55

MCTS-DPW . 55

Tuning the parameter α 56

MCTS-DPW Performance 56

UGapEb . 56

Tuning the parameter a 56

UGapEb Performance 57

Comparative Performance 57

5.5 The Stochastic, Continuous MountainCar Environment . . . 62

5.5.1 Environment Definition 62

5.5.2 The Policies . 63

The Persistence . 63

The Value Function in Policy Space 64

5.5.3 Building the Meta-arms 65

Selection of the Variance 65

Selection of s . 65

5.5.4 Tuning of α . 66

5.5.5 Experimental results 66

Performance of Our Algorithm 66

MCTS-DPW . 67

Tuning the parameter α 67

MCTS-DPW Performance 67

UGapEb . 69

Tuning the parameter a 69

UGapEb Performance 69

Comparative Performance 70

6 Conclusions 73

Bibliography 77

List of Figures

3.1 The phases of Monte Carlo Tree Search algorithms 21

3.2 Tree descent of HOO selection 32

3.3 Example HOO binary trees 33

5.1 Schematics of the online planning loop of our algorithm. . . . 50

5.2 Representation of the Mini-golf environment. 51

5.3 The Mini-golf state-value function in policy space 52

5.4 Tuning of σ for the Mini-golf environment 54

5.5 Tuning s for the Mini-golf environment 55

5.6 Examples of covering by the meta-arms in the Mini-golf en-

vironment . 56

5.7 Tuning α for the Mini-golf environment 57

5.8 Performance of our algorithm on Mini-golf (Optimistic mode) 58

5.9 Performance of our algorithm on Mini-golf (UGapE mode) . . 58

5.10 Tuning MCTS-DPW α for Mini-golf 59

5.11 Performance of MCTS-DPW on Mini-golf 59

5.12 Tuning of UGapEb a on Mini-golf 60

5.13 Performance of UGapEb on Mini-golf 60

5.14 Comparative performance on the Mini-golf environment . . . 61

5.15 Representation of the Continuous MountainCar environment 62

5.16 The value function of MountainCar in policy space 64

5.17 Performance decay due to σ for different meta-arms on the

MountainCar environment . 65

5.18 Tuning s for the MountainCar environment 66

5.19 Tuning α for the Continuous MountainCar environment . . . 67

5.20 Performance of our algorithm on MountainCar (Optimistic

mode) . 68

5.21 Performance of our algorithm on MountainCar (UGapE mode) 69

5.22 Tuning MCTS-DPW α for Continuous MountainCar 70

5.23 Performance of MCTS-DPW on MountainCar 71

5.24 Tuning UGapEb a on MountainCar 71

VII

5.25 Performance of UGapEb on MountainCar 72

5.26 Comparative performance on the MountainCar environment . 72

List of Algorithms

3.1 Algorithm A . 20

3.2 UCT . 22

3.3 UGapEb . 29

3.4 UGapEc . 30

3.5 UGapE, arm selection . 30

3.6 HOO . 33

4.1 The main loop of our algorithm 40

4.2 Optimistic mode selection . 40

4.3 UGapE mode selection . 41

IX

Abstract

Within the domain of Reinforcement Learning, the task of online planning

in continuous stochastic environments has proven to be challenging. Over

the years, many sparse-lookahead-tree-based methods have been designed

to solve this problem, followed by the more optimization-oriented policy-

search-based planners. The goal of this thesis is to develop a policy-search-

based online planning algorithm which employs a randomized exploration

strategy combined with multiple importance sampling estimation. We de-

velop a continuous bandit algorithm (a sample-based optimizer of stochastic

functions defined over compact sets), providing a theoretical analysis of its

properties. We employ our algorithm as the core policy optimizer in a

policy-search-based planner, testing its performance on two benchmark en-

vironments taken from the literature. We compare the performance of our

algorithm with that of two the state-of-the-art solutions, showing that it

can achieve good, yet not optimal, results for large budget values and show-

ing that it can outperform a deterministic approach when limited budget is

available.

XI

Estratto in Italiano

Questa tesi si sviluppa nell’ambito del Reinforcement Learning, nel quale

si ha un agente che ha come obiettivo massimizzare il suo guadagno du-

rante l’interazione con un determinato ambiente. L’ambiente, inteso come

un’entità esterna che può trovarsi in diversi possibili stati, evolve secondo

leggi in generale non deterministiche e influenzate in parte dalle azioni ef-

fettuate dall’agente stesso. Sta all’agente quindi scegliere accuratamente le

azioni da effettuare in modo da guidare l’evoluzione dell’ambiente seguendo

il proprio interesse. Il framework utilizzato per rappresentare questo sce-

nario è il Markov Decision Process e l’agente deve ripetutatamente scegliere

un’azione fino a quando il processo non termina o un determinato orizzonte

temporale non viene raggiunto. Da questi presupposti nasce la branca di

ricerca che si occupa di “online planning”. Con il termine “planning” si

intende la ricerca delle azioni ottime da scegliere in tutti i possibili stati

dell’ambiente. Con il termine “online” si intende che invece che pianifi-

care l’interazione tutta in un una volta (che sarebbe come dire risolvere il

MDP), l’agente deve pianificare solo la prossima azione da scegliere, per

poi applicarla, osservare l’evoluzione dell’ambiente e ottenere di nuovo il

tempo necessario a pianificare la prossima azione. Ovviamente si tratta di

un compito più semplice rispetto alla soluzione dell’intero MDP e questa

semplificazione non viene effettuata senza una buona ragione: si applicano

le tecniche di online planning ad ambienti troppo estesi e/o complessi per

essere risolti completamente. In questo scenario, l’agente che pianifica ha

tipicamente a disposizione un simulatore dell’ambiente con cui sta intera-

gendo. L’agente non può osservare il funzionamento interno del simulatore

ma è libero di utilizzarlo per effettuare esperimenti su come l’ambiente si

potrebbe evolvere in seguito alla scelta di determinate azioni. In particolare,

può simulare possibili sequenze di azioni che conducono alla terminazione

del processo o al raggiungimento dell’orizzonte temporale prefissato. Queste

simulazioni “complete” sono chiamate rollout e tipicamente le risorse a dis-

posizione dell’agente per scegliere la prossima azione sono espresse in termini

XIII

del numero di rollout che gli è consentito generare tramite il simulatore prima

di dover scegliere la prossima azione.

In questo scenario, un approccio è quello basato sulla creazione di un “looka-

head tree”, un albero che rappresenta le informazioni raccolte sull’evoluzione

dell’environment in seguito alla scelta di diverse azioni, che viene costru-

ito tramite i rollout ottenuti con il simulatore e che viene infine usato per

scegliere l’azione più promettente. Un secondo e differente approccio è rapp-

resentato dalla “policy search”, che parte dalla definizione dello spazio delle

policy. Una policy rappresenta una funzione o un insieme di regole che

definiscono l’azione che l’agente deve scegliere come una funzione dello stato

dell’ambiente. Definito quindi lo spazio delle policy come un insieme di pol-

icy, l’approccio policy search si occupa di trovare la policy migliore in questo

spazio utilizzando il simulatore per guidare la ricerca.

In questa tesi, sviluppiamo un algoritmo di online planning che si basa

sull’approccio policy-search. Dapprima proponiamo un algoritmo per af-

frontare problemi bandit continui, vale a dire per ottimizzare una funzione

stocastica raccogliendone un numero finito di campioni. Per lo sviluppo

di questo algoritmo bandit, assumiamo che la funzione da ottimizzare sia

definita su un insieme compatto multidimensionale, ogni elemento del quale

rappresenta un vettore di parametri. Dopo aver derivato una discretiz-

zazione di questo spazio continuo, fondamentalmente basata sulla costruzione

di una griglia multi-dimensionale, il nostro algoritmo effettua un’esplorazione

casuale guidata dalla griglia stessa. Le regioni vicine a punti che hanno dato

risultati promettenti sono oggetto di un’esplorazione più intensa caratteriz-

zata dalla raccolta di più campioni. Per sfruttare il carattere probabilistico

della nostra esplorazione utilizziamo degli stimatori statistici basati su tec-

niche chiamate tecniche di “importance sampling”. Concludiamo la presen-

tazione del nostro algoritmo bandit con un’analisi teorica di alcune proprietà

riguardanti la qualità della soluzione che restituisce.

Successivamente, utilizziamo questo algoritmo bandit per ottenere un algo-

ritmo di online planning basato su policy-search utilizzandolo proprio per

effettuare il passo di ottimizzazione della policy, che è definita su uno spazio

compatto di parametri. Testiamo questo algoritmo su due ambienti noti

nella letteratura, specificamente “Mini-golf” e “MountainCar”. Arricchi-

amo questi test con la rappresentazione grafica e il commento di fenomeni

inerenti l’approccio policy-search in sé, come l’esistenza di una “value func-

tion” definita sullo spazio delle policy che ivi definice una superficie, e il

decadimento di performance che accompagna il nostro approccio di esplo-

razione casuale se la randomicità non è adeguatamente limitata.

Alla misura di performance del nostro algorimo affianchiamo quella di due al-

goritmi rappresentanti lo stato dell’arte: MCTS-DPW (Couetoux and Dogh-

men, 2011) per avere un confronto con un algorimo basato sull’approccio

“lookahead tree” e UGapEb (Gabillon et al., 2012) per confrontare la nos-

tra esplorazione causale con un approccio deterministico basato sulla stessa

grigliatura.

Chapter 1

Introduction

The task of planning is one of the most fascinating challenges in the con-

text of Reinforcement Learning (Sutton and Barto, 2018). The framework

is quite simple: an agent must interact with an environment by choosing

actions. The actions will generate a change in the environment, that will

give the agent a reward and notify it of the change so that the agent can

choose again, and so on. Despite the simplicity and intuitiveness of the

framework, to develop algorithms that can interact well with new environ-

ments, obtaining as high cumulative rewards as possible, is a challenging

task.

After the exact methods have been developed to find the optimal behaviour

of the agent in simple environments, the attention of the researchers has

moved to the setting in which computing an exact solution is impossible

due to the computational requirements. For this scenario, different frame-

works and algorithms have been proposed to formalize which information is

available to the agent and to compute an approximate solution. The main

instance of this planning setting is that of Monte Carlo Planning, initiated

by Kearns et al. (2001), in which the evolution dynamics of the environment

are assumed to be so complex, meaning that the environment can be in so

many different states and can evolve to so many different states depending

on the agent’s choice, that a complete description of such dynamics is not

available: the agent will never have the possibility to “look at the full pic-

ture”. In this setting, the only source of information that the agent can

use is a black-box simulator of the environment, which can be used to ob-

tain samples of how the environment could evolve and what reward it could

yield if a certain action is chosen in a certain state. Within this framework,

two research directions have been mainly explored in the subsequent works,

namely the lookahead-tree-based approaches and the policy-search-based ap-

proaches.

The former use the simulator to build what is called a lookahead tree, which

is a tree whose leaves represent the future states of the environment after

different sequences of actions have been chosen from the current state, and

uses this tree to choose the next action. The main contributions to this

approach are brought by the popular UCT algorithm (Kocsis and Szepesvári,

2006), which brilliantly employs techniques from the bandit literature to

build the lookahead tree in a sample-efficient way, and by the subsequent

improvements to UCT to adapt it to the most difficult environments. For

example, the algorithm developed by Couetoux and Doghmen (2011) which

introduced techniques to artificially control the width of this tree, resulting

in great performance improvements.

The online policy-search-based approaches, like that of Papini et al. (2019)

with the OPTIMIST algorithm, typically search for an optimal policy de-

scribing how to choose the actions in each state rather than simply looking

for the next action to choose in the current state. In such setting, the search

space is usually a compact set of parameter vectors and each vector repre-

sents a policy (for example, if the action is a real number and the state of the

environment is described by two real numbers, the space of linear policies is

completely described by the real vectors of dimension three: one parameter

for each state variable plus one for the constant term). In order to search

this parameter space, the black-box simulator can be used to sample the

rewards that a specific parameter vector (therefore, a specific policy) would

collect if adopted to choose the actions from the current state onwards. Af-

ter the optimal policy has been found, it is used to select the next action to

choose in the current state in the interaction with the environment.

As the title suggests, the contributions of this thesis belong to the category

of policy-search-based planning techniques.

1.1 Motivations

Among the many possible environments, the most challenging seem to be the

ones whose state is represented by real numbers (therefore called continuous

environments) and whose transitions are stochastic, meaning that the next

state is selected according to a probability distribution over the continuous

set of states.

When dealing with continuous stochastic environments, the basic mechanism

behind the sparse lookahead-tree approaches, which rely on repeated explo-

ration of the promising future paths, fails due to the uncountable number of

paths. While this limit has in principle been overcome by pairing UCT with

2

progressive widening techniques (Couetoux and Doghmen, 2011), the perfor-

mance of the resulting planning algorithm heavily depends of the tuning of

some parameters. The optimal values of such parameters are environment-

dependent and, if they are not tuned properly, the resulting algorithm may

perform terribly.

From the perspective of policy-search-based approaches, the difference be-

tween environments with deterministic transitions and those with stochastic

transitions is more evident in the degree of stochasticity in the performance

of the policies themselves. For instance, in the deterministic case, assuming

that the rewards are deterministic too, it is sufficient to try each policy once.

Conversely, if either the rewards or the transitions or both are stochastic,

more trials will be needed to have an accurate estimate of the performance

of one policy. To design effective ways of exploring the policy space, enjoy-

ing strong theoretical guarantees on the quality of the solution, is currently

the main goal in this line of research.

1.2 Contributions

In line with the recent works proposing randomized approaches to policy-

search-based online planning, like that of Metelli et al. (2020), we try to

give an algorithmic contribution to this field: we propose a randomized

continuous bandit algorithm to perform optimization of stochastic functions

employing the multiple importance sampling technique. For our algorithm,

we provide an analysis from the theoretical point of view characterizing the

quality of the results that it can achieve. We then show how the problem

of online planning, when approached from the policy search perspective,

under specific assumptions can be seen as a sequence of continuous bandit

instances, justifying the development of our algorithm. Lastly, we apply

our algorithm to planning as stated above in two popular environments,

namely Mini-golf and MountainCar, comparing its performance with that

of the current state-of-the-art algorithms and providing interpretations to

the results.

1.3 Structure of the Thesis

The thesis is structured in six Chapters:

1. Introduction: in this Chapter, we present the scope of the thesis,

briefly summarizing what the original contributions are and how they

link to previous works.

3

2. Preliminaries: in this Chapter, we report all the notions that the reader

will need in order to better understand the contents of the remaining

Chapters. In this Chapter, the reader will find all the relevant back-

ground from the formal definition of a Markov Decision Process to the

notions of Reinforcement Learning, online planning, bandit algorithms

and multiple importance sampling.

3. State of the Art: in this Chapter, we report the current state-of-the-

art algorithms in the planning area with a detailed explanation of how

they work and of what are the innovative ideas that support their

performance.

4. A Randomized Approach to Best Arm Identification in Continuous

Bandits: in this Chapter, we present our randomized continuous ban-

dit algorithm with detailed descriptions of every step and with all the

relevant pseudo-code. At the end of the Chapter, we provide theoret-

ical results involving our algorithm and its performance.

5. Application to Online Planning: in this Chapter, we describe all the

experiments that we have performed. Detailed descriptions are given

for both the environments and for all the parameter-tuning steps, and

lastly a comparative view of the performance of our algorithm and

that of the state-of-the-art competitors is given.

6. Conclusions: in this Chapter, we give a summary of the pros and

cons of the application of our algorithm to online planning. We give

interpretations of what could be the source of better or worse perfor-

mances when compared to other algorithms, lastly indicating possible

directions of future research.

4

Chapter 2

Preliminaries

2.1 Summary

In this Chapter the fundamental definitions and theoretical background nec-

essary to understand the rest of our work are given. We start with the

framework ofMarkov Decision Processes, then we give an introduction about

Reinforcement Learning and planning, explaining the particular setting of

online planning. We report the stochastic bandit frameworks for both the

cases of finite and infinite number of arms. Finally, we describe the multiple

importance sampling technique along with the balance heuristic and weight

truncation, which will be used in the following Chapters.

2.2 Markov Decision Processes

A Markov Decision Process (MDP) (Puterman, 2005) is a framework which

models the following scenario: an agent is interacting with a probabilistic

system, influencing its behaviour by making a sequence of choices. Based on

the resulting behaviour of the system, the agent can be more or less satisfied.

2.2.1 The Formal Model

Formally, a Markov Decision Process is a 5-uple xT ,S,A,R,Py where:

� T is the set of decision epochs, the set of instants in time in which the

agent is requested to make a choice. It can be discrete, so that the

instants could be enumerated T � tt1, t2, t3, ...u, or continuous. In the

following, we will focus on MDPs with discrete sets of decision epochs,

with a finite number of decision epochs T � tt1, ..., tNu where N is

referred to as the horizon.

� S is the set of possible states in which the system can be. The states

can be discrete or continuous. In the former case, we speak of finite

MDP, in the latter we speak of continuous MDP.

� A is the set of possible actions that the agent can choose from: more

specifically, A � �
sPS As with As being the set of actions available to

the agent when the system is in state s. Like the states, the actions

can be discrete or continuous.

� R is the reward function which, for each state s P S and action a P As,

provides the reward Rps, aq that the agent will receive choosing such

action in that state. It is required that the reward is always finite.

The reward could be stochastic, such that when the action is chosen

the reward is sampled from a distribution. In this case, the reward

function indicates the expected value of the distribution.

� P is the transition probability function which, for each state s P S and

action a P As, provides the probability distribution Pps1|s, aq over the
next state s1.

2.2.2 Policies

Given an MDP xT ,S,A,R,Py, a policy πpsq is a function prescribing the

action to choose in each state s P S. The policies can be stochastic, thus

describing a probability distribution over the actions As rather then one

specific action. In this case, the policy πps, aq indicates the probability of

playing action a in state s.

2.2.3 Solution Concepts

Given a policy, the rewards that the agent will collect until the end of the

interaction entirely depend on how the stochastic quantities of the process

realize: the sequence of rewards pr1, ..., rN q is indeed the result of a random

experiment. Therefore, in order to assess how well a policy performs on a

given MDP, optimality criteria are defined as a function of such sequence

of rewards. The two most common optimality criteria are the expected total

reward, which is the expected value of the summation
°N

i�1 ri, and the ex-

pected total discounted reward, which is similar to the former but introduces

a discount factor as we wil see in the next paragraph. The reason to intro-

duce a discount factor is that one might prefer, among a set of policies that

have the same (or very similar) expected total reward, the one that collects

6

the reward sooner. Different discount factors will thus result in different

attitudes of the agent towards risk.

The Expected Total Discounted Reward

The Expected total discounted reward is the most common optimality cri-

terion, and is the criterion that we adopt. Calling ri the reward obtained

after choosing the action at epoch i and assuming that policy π is used for

the whole process and that the system is initially in state s, it is defined as:

V π
N psq � E

�
Ņ

t�1

γt�1rt

���� Initial state � s, Policy � π

�
,

where γ, the discount factor, is a real number 0 ¤ γ 1. In particular, γ

can be seen as the value at time n of a reward of 1 received at time n � 1,

and is used so that rewards collected far in the future are less appealing. In

the limit case of γ � 1 the rewards are not discounted.

State Value Function

Given an MDP xT ,S,A,R,Py, a policy πpsq and an optimality criterion

such as the expected total discounted reward one can compute the value,

induced by the policy, of such criterion. This is a function of the state and

of the number of remaining decision epochs and goes under the name of

state value function, indicated as V π
N psq.

If the expected total discounted reward criterion is used, its definition allows

to derive constraints that are always satisfied by the value functions.

In the case of a finite number of remaining decision epochs, the state value

functions at each epoch n are subject to the following dynamic constraint,

known as the Bellman Expectation Equation (Bellman, 1957):

V π
n psq �

¸
aPAs

πps, aq
�
Rps, aq � γ

¸
s1PS

Pps1|s, aqV π
n�1ps1q

.

In matrix notation, we can write it as follows:

V π
n � Rπ � γP πV π

n�1,

where

� V π
n P R|S|�1 is the column vector of the state values with horizon n,

� Rπ P R|S|�1 is the column vector such that

Rπ
s �

¸
aPAs

πps, aqRps, aq,

7

� P π P R|S|�|S| is the matrix of the transition probabilities induced by

the policy, such that

P π
s,s1 �

¸
aPAs

πps, aqPps1|a, sq.

In the infinite horizon case, the dependence on the number of remaining

decision epochs is removed and the relation becomes:

V π
8psq �

¸
aPAs

πps, aq
�
Rps, aq � γ

¸
s1PS

Pps1|s, aqV π
8ps1q

.

In matrix form, removing the ”8” subscript, it becomes

V π � Rπ � γP πV π,

which admits the closed form solution

V π � pI � γP πq�1Rπ.

If the initial state is also stochastic, given the probability µpsq of system

starting in state s, one can compute the expected total discounted reward

of policy π as: ¸
sPS

µpsqV πpsq.

State-Action Value Function

Similarly to the state value function, it is possible to define the state-action

value function, indicated as Qπ
N ps, aq, which represents the expected total

discounted reward for the agent of choosing action a in state s when there

are N remaining decision epochs.

In the case of finite horizon, the state-action value functions are subject to

the following dynamic constraints:

Qπ
nps, aq � Rps, aq � γ

¸
s1PS

Pps1|s, aqV π
n�1ps1q

� Rps, aq � γ
¸
s1PS

Pps1|s, aq
¸
a1PA

πps1, a1qQπ
n�1ps1, a1q.

In the case of infinite horizon, the dependence on the number of remaining

decision epochs disappears and the relation becomes:

Qπps, aq � Rps, aq � γ
¸
s1PS

Pps1|s, aqV πps1q

� Rps, aq � γ
¸
s1PS

Pps1|s, aq
¸
a1PA

πps1, a1qQπps1, a1q.

8

Optimal Policies

An optimal policy is a policy π� such that:

V π�

n psq ¥ V π
n psq @s P S,@n P T , @π.

When the dynamics of the MDP (R, P) are known and the cardinalities of

(S, A) are small enough, the expected total discounted reward of a given

policy can be computed exactly in closed form and the search for the optimal

policy can be carried on by dynamic programming approaches.

When the optimal policy π� and/or the corresponding value function V π�psq
are known, the MDP is considered solved.

The state-action value function Qπ�

N ps, aq of a finite time horizon induced by

an optimal policy π� satisfies the following equation, known as the Bellman

Optimality Equation (Bellman, 1957)

Qπ�

n ps, aq � Rps, aq � γ
¸
s1PS

Pps1|s, aq max
a1PA1

s

Qπ�

n�1ps1, a1q

While the state value function satisfies

V π�

n ps1q � max
a1PAs1

Qπ�

n ps1, a1q.

Due to the presence of the non-linear operator max, the Bellman Optimality

Equation does not admit a closed-form solution.

2.3 Reinforcement Learning

If finding an optimal policy in an MDPs with known dynamics and reward

function and small state and action spaces can be considered a “solved prob-

lem” from the research perspective, it is not the case for MDPs with huge

state/action spaces (that is, spaces that cannot be enumerated in a practical

time on a computer) or for the setting in which the dynamics R, P are not

known. In these cases one has to search for the best policy with Reinforce-

ment Learning techniques, as computing the exact solution with traditional

methods is impossible.

2.3.1 Planning

The task of planning is that of finding an optimal policy for an MDP. The

agent may have different levels of access to the transition/reward model of

the MDP:

9

� The definition of R,P is known, meaning that the agent knows the

probability of each reward and transition.

� The definition of R,P is unknown but there is a simulator which can

be used by the agent to sample transitions and rewards according to

R,P.

� The definition of R,P is unknown and the agent does not have a sim-

ulator: in this case the agent will either learn the policy by interacting

directly with the environment or learn an approximation of the tran-

sition/reward model that will be used to find the policy.

In our work, we consider the second case in which the environment dynamics

are unknown but a simulator is available. Given a policy π, we can use

the simulator of the environment to run episodes, i.e. full sequences of

interactions choosing the actions as prescribed by π at each decision epoch

until a terminal state is reached. In this setting, it is common to set a fixed

maximum amount of episodes, the budget, that the agent can collect before

yielding the result.

2.3.2 Online planning

In standard planning the agent is looking for the optimal policy for the whole

model. In online planning, the agent is interacting with an environment and

at each decision epoch is required to find, using a given budget, the best next

action to choose, rather than a policy. The action is used in the environment,

the next state is reached and the agent receives a new observation and more

budget to find the next action, and so on.

The budget is a measure of the maximum amount of experience the agent

can collect before performing a choice.

Monte Carlo Planning

The phrase Monte Carlo Planning is used to indicate the online planning

setting in which the dynamics of the environment are unknown but a sim-

ulator (in the literature also called generative copy, generative model, sim-

ulation environment) of the environment is available. At each step of the

interaction with the environment (which will be referred to in the following

as the real environment), the agent can collect a certain number of episodes

with the simulator.

In this setting, the budget can either be the total number of episodes run or

the total number of steps taken in the generative model.

10

2.4 Stochastic Multi-armed Bandits

In the context of reinforcement learning, a bandit problem (Lattimore and

Szepesvári, 2020) is a special case of MDP with unknown stochastic rewards.

In this MDP there is only one state in which K actions (in the following

called arms) are available, all leading back to the same state: the goal of the

agent is to collect the highest total reward in a limited number of interactions

N . Intuitively, the agent must find the best arms and keep pulling (choosing)

them, taking into account the stochasticity of the rewards: if a low reward

was received by one arm it does not necessarily mean that the expected

reward of that arm is low. The name comes from the traditional example of

a row of K lever-operated slot machines (which were also called “One-armed

bandits” because they steal your money, with the lever being the one arm).

2.4.1 The Cumulative Regret

A n-rounds interaction can be represented as a sequence pA1, X1, ..., An, Xnq
of the arm chosen and the reward that was received. Let µ1, ..., µk be the

expected rewards of the arms, ordered such that µk ¥ µk�1 (this can be

assumed without loss of generality). In order to measure how well the agent

has performed, the expected reward of the pulled arms is compared with that

of a ”clairvoyant” agent which knows the arm with highest expected reward

since the beginning and pulls it at each round.

The cumulative regret is therefore defined as:

Rn � nµ1 � E

�
ņ

t�1

Xt

�
,

where the expectation is taken with respect to the stochasticity of the re-

wards and of the choices of the learner (which, even if deterministic, depend

on the stochastic observed rewards).

Exploration versus Exploitation trade-off

In order to achieve a small regret, the agent must pull the best arms. In

order to find the best arms, a certain amount of exploration is needed,

that is pulling arms in order to gain more information on their expected

reward even if at the moment of the choice there is another arm with higher

empirical mean. In other words, exploring means ignoring the current best

in order to search for a better alternative without the guarantee of finding it.

Obviously, exploring comes with the risk of collecting low rewards without

11

finding any good arm. Rather then exploring, the agent could be exploiting,

that is choosing the current best arm even though it could be sub-optimal.

Whenever the agent is required to minimize the cumulative regret, optimal

exploration versus exploitation trade-off must be carefully accomplished: if

too much exploration is performed the agent will incur in large regret due to

too many pulls of sub-optimal arms, if too much exploitation is performed

the agent will incur in large regret due to never finding the optimal arm.

2.4.2 The Upper Confidence Bound algorithm

The Upper Confidence Bound algorithm (UCB) (Auer et al., 2002) applies

the “optimism in face of uncertainty” principle, stating that one should

behave as if the environment is as nice as reasonably possible, to tune the

exploration-exploitation trade-off. In order to do so, it computes for each

arm a an upper confidence bound Ua, that is a value that is greater or equal

to the true mean µa with probability at least 1� δ, and then pulls the arm

with the highest upper bound.

Let pXtqnt�1 be a sequence of independent 1-subgaussian random variables

with mean µ and let µ̂ � 1
n

°n
t�1Xt. It holds

P

�
µ ¥ µ̂�

c
2 logp1{δq

n

�
¤ δ.

For each arm a, for which the reward sequence pXa,1, ..., Xa,Taq was observed,
the upper bound is computed as

Ua � 1

Ta

Ta̧

i�1

Xa,i �
d

2 logp1{δq
Ta

and the next arm x to be pulled is

x � argmax
a

Ua.

UCB was proven to suffer a regret that grows logarithmically with the num-

ber of rounds.

Schedules for the error probability δ

In order to require that the confidence intervals hold at every round and

for every arm, a time-dependent error probability is commonly used so that

the bounds computed at round t hold with probability at least 1 � δt. If

we define the event Et,i as “The bound of arm i at round t does not hold”,

12

we can bound the probability of the event E �“At least one bound at one

round does not hold” as

P pEq ¤
ņ

t�1

Ķ

i�1

P pEt,iq � K
ņ

t�1

δt � δ.

By make the last equation hold, it is possible to obtain a schedule δt which

ensures an overall error probability less than or equal to δ. A common choice

is to set δt as a function of 1
t2
.

2.4.3 Best Arm Identification

In the stochastic multi-armed bandit framework, optimizing the cumulative

regret is not the only interesting task from the research perspective. As

pointed out by Bubeck et al. (2010), some real life occurrences of a Multi

Armed Bandit problem do not require to minimize the cumulative regret,

but rather require to find the best arm. To show this fact, the simple

yet effective example proposed by the authors is that of trials for cosmetic

products, in which a testing phase is used to find the best among different

product. Only after the testing phase is completed will the best product be

commercialized, and the only interest of the company in this scenario is to

pick the best product, disregarding the cumulative rewards collected during

the testing phase.

The best arm identification setting is also called the full exploration setting,

since the learner is not interested in exploiting.

The Simple Regret

In order to evaluate a learner in the full exploration setting, assuming that

after n rounds the learner has recommended the arm In, the simple regret

rn is defined as:

rn � µ1 � µIn .

Similarly to the cumulative regret, it is a measure of how wrong the learner’s

recommendation was.

2.4.4 Infinitely-Armed Bandits

It may happen in realistic scenarios to be required to find the best among

a set of candidates, which is the main applicative scenario of multi-armed

bandits, without having the possibility to try them all. This is the constraint

13

that the arms are effectively infinite, and is often present due to scarcity of

time or computational resources combined with a high number of arms. This

constraint introduces another problem which is not addressed by the finite

bandit literature: whether it is better to try a new, unseen candidate or to

exploit the already seen ones.

To formalize this scenario, mainly two frameworks have been used in the

literature, requiring different properties of the function µ : x Ñ R,which
represents the mean reward of each arm x.

Reservoir distribution for µpxq

In this setting, started by Berry et al. (1997), the average reward of each arm

is sampled from a distribution called “reservoir distribution”: µpxq � P. As

there is no correlation among average rewards of different arms, the learner

is mainly concerned with trying a sufficiently high number of arms so that

at least one of them will have an ϵ-optimal reward with a certain probability.

In order to provide theoretical guarantees in this framework, assumptions

are made on P and in particular on its upper-tail behaviour: one example

of such assumption is that done by Carpentier and Valko (2015), requiring

that there exist β ¡ 0 and two constants E,E1 such that

@ϵ ¡ 0 Eϵβ ¤ P pµpxq ¥ µ� � ϵq ¤ E1ϵβ,

where µ� is the best value of the average reward that can be sampled.

Regularity of µpxq

Kleinberg et al. (2008), Bubeck et al. (2011), Grill et al. (2015) assume that

the function µ has some regularity property, for example that µ is locally

Lipschitz. Such regularity assumptions allow, for instance, to deduce that

the neighbours of a bad arm are bad, with a confidence that varies with the

regularity measure that is considered. In this setting the arms are typically

the points of a convex set X � Rd, over which the function µ : X Ñ R is

defined.

In particular, in this setting, the task of best-arm identification coincides

with that of black-box optimization of a stochastic function: both require

finding the optimum point x� with the smallest number of samples from the

environment / function.

This framework is also referred to as the continuous bandit framework.

14

2.5 Importance Sampling Techniques

2.5.1 Importance Sampling

Importance sampling (Cochran, 2007) allows to estimate the expected value

of a function under a target distribution (P) using samples drawn from a

different distribution (Q), which is called behavioural.

Given a measurable space pZ,Fq and two probability measures defined on

such space P,Q such that P ! Q (P is absolutely continuous w.r.t Q, that is

QpAq � 0 ùñ P pAq � 0 @A P F , events that are almost impossible under Q

are almost impossible under P as well), there exists a F-measurable function

w : Z Ñ r0,8q such that for any measurable set A P F it holds

P pAq �
»
A
wdQ.

The function w is called the Radon-Nikodym derivative (Nikodym, 1930) of

P with respect to Q, denoted as wP {Q, and represents the ratio between the

density of P and that of Q, if they exist. If p and q are the density functions

of P and Q respectively, it holds

wP {Q � p

q
.

Given the sequence of i.i.d. (independent, identically distributed) outcomes

pz1, ..., zN q sampled from Q, the goal is to estimate µ � Ez�P rfpzqs.
The importance sampling estimator of µ is

pµIS � 1

N

Ņ

i�1

wP {Qpziqfpziq.

pµIS is unbiased (Owen, 2013), that is Ezi�Q rpµISs � µ.

2.5.2 Multiple Importance Sampling

Multiple importance sampling is a generalization of importance sampling

which allows to take samples from different behavioural distributionsQ1, ..., QK ,

under the hypothesis that P ! Qk for k � 1, ...,K.

Let β1pzq, ..., βKpzq be mixture weights, i.e. @z P Z

Ķ

i�1

βipzq � 1,

βkpzq ¥ 0 for k � 1, ...,K.

15

Assume that from each behavioural distribution Qk the sequence of Nk sam-

ples pz1,k, ..., zNk,kq was drawn. The multiple importance sampling estimator

for µ is:

pµMIS �
Ķ

k�1

1

Nk

Nķ

i�1

βkpzi,kqwP {Qk
pzi,kqfpzi,kq,

and is unbiased for any valid choice of the mixture weights.

2.5.3 The Balance Heuristic estimator

A valid choice of the importance weights which has desirable variance prop-

erties is the balance heuristic (Veach and Guibas, 1995), where each weight

is defined as:

βkpzq � Nk°K
j�1Njqjpzq

qkpzq.

The balance heuristic estimator is then:

pµBH �
Ķ

k�1

Nķ

i�1

ppzi,kq°K
j�1Njqjpzi,kq

fpzi,kq.

The Rényi divergence

To quantify the variance of pµBH the Rényi divergence (Rényi, 1961) is used.

Given two probability measures P,Q on the same measurable space pZ,Fq
such that P ! Q, the α-Rényi divergence DαpP }Qq is defined as:

DαpP }Qq � 1

α� 1
log

»
Z
pwP {QqαdQ.

and the exponentiated α-Rényi divergence dαpP }Qq is defined as

dαpP }Qq � eDαpP }Qq.

Bounding the variance of pµBH

Papini et al. (2019) showed that the variance of pµBH is bounded by a function

of d2pP }Φq, where N � °K
k�1Nk, Φ � 1

N

°K
k�1NkQk is a finite mixture and

}f}8 is the max-norm of f (i.e. the maximum value assumed by |f |):

Var rpµBHs ¤ }f}28
d2pP }Φq

N
.

16

Weights truncation

Metelli et al. (2018) have shown that the importance sampling estimatorpµIS presents problematic tail behaviours due to huge values occasionally

assumed by some weights, preventing the use of exponential concentration

inequalities. Ionides (2008), in his work, proposed the truncation heuristic

to mitigate this problem, that is to fix a threshold M and to clip to the

threshold the weights that exceed its value.

The resulting estimators are the truncated importance sampling estimator

qµIS � 1

N

Ņ

i�1

min

M,wP {Qpziq

(
fpziq

and the truncated balance heuristic estimator

qµBH � 1

N

Ķ

k�1

Nķ

i�1

min

#
M,

ppzi,kq°K
j�1

Nj

N qjpzi,kq

+
fpzi,kq

Bounding the bias and variance of qµBH

Truncating the weights introduces a bias in the estimators. Papini et al.

(2019) in their work showed that, assuming that there exists ϵ P p0, 1s such
that d1�ϵpP }Qkq 8 for k � 1, ...,K, the bias and the variance of qµBH are

bounded by a function of M , d1�ϵpP }Φq and }f}8.
In our work, we will assume d2pP }Qkq 8 for k � 1, ...,K, therefore ϵ � 1.

The bound on the bias is then:

0 ¤ µ� Ezi,k�Qk
rqµBHs ¤ }f}8d2pP }Φq

M

and the bound on the variance is:

Var rqµBHs ¤ }f}28
d2pP }Φq

N
.

17

18

Chapter 3

State of the Art

3.1 Summary

In this Chapter we report some of the state-of-the-art algorithms for both

the planning and the continuous bandit scenarios. We start with the anony-

mous algorithm developed by Kearns et al., generically referred to by the

authors as “A sparse sampling algorithm”, later referred to as “Monte Carlo

planning” by Kocsis and Szepesvári and more generally by the literature as

“SparseSampling”. Then we report UCT, the most successful instance of a

Monte Carlo Tree Search algorithm, which is still a state-of-the-art planning

algorithm for deterministic MDPs. We show the limitations of UCT and the

proposed solution, and we report MCTS-DPW which is the current state-

of-the-art in the case of continuous MDPs with stochastic transitions. We

report the OPTIMIST algorithm as a policy-search-based planner. Lastly,

we report two bandit algorithms: UGapE for the finite bandit best-arm-

identification framework and HOO for the framework of continuous bandits.

3.2 Sparse-lookahead-tree Planning Algorithms

3.2.1 Monte Carlo Planning

The first Monte Carlo planning algorithm to be supported by a theoretical

analysis is that of Kearns et al. (2001). The authors propose a planning

algorithm targeting MDPs with discrete action and state spaces and deter-

ministic rewards whose complexity does not depend on the number of states

|S|.
Their algorithm basically performs a depth-first search on the fixed-height

tree of the next states which can be reached from the root in h steps. Their

algorithm can be expressed in pseudo-code (with simplifications with respect

to the original) with the recursive procedure of algorithm 3.1.

Algorithm 3.1 Algorithm A
procedure Estimate-Q(s, γ, h, C)

if h=0 then

return 0, ..., 0

end if

for a P As do

Sa Ð tC states sampled from Pp�|s, aqupQs,a Ð Rps, aq � γ 1
C

°
s1PSa

max tEstimate-Qps1, γ, h� 1, Cqu
end for

return pQs,a1 , ...,
pQs,ak

end procedure

The constant C is computed as a first step as a function of the maximum

error allowed ϵ, of the discount factor γ and of the maximum reward that

can be obtained in the MDP.

The running time of their algorithm A is

TA P O

���
k

ϵp1� γq

 1

1�γ
log

�
1

ϵp1�γq

	�
while the error is guaranteed to be smaller than ϵ:

|V Apsq � V �psq| ¤ ϵ.

Despite not depending on the number of states, this algorithm is still expo-

nentially slow. We chose to report it here as it is the precursor of current

state-of-the-art sparse-lookahead-tree algorithms as MCTS, MCTS-DPW.

3.2.2 Upper Confidence Trees

Kocsis and Szepesvári (2006) developed UCT (Upper Confidence Trees),

a sparse-lookahead-tree based algorithm which, rather than exploring uni-

formly all the actions available at each state, employs a UCB-like technique

to choose the most promising actions to explore.

The lookahead tree is composed of nodes which represent states. At the

beginning of the search, the only node in the tree is the root, which represents

the current environment state.

20

The Monte Carlo Tree Search loop

In any MCTS algorithm, the tree is built and explored at the same time

according to the 4-phases loop depicted in Figure 3.1.

We give a brief explanation of each phase:

1. Selection: Select a node in the tree from which not all the actions have

been tried according to a tree policy.

2. Expansion: Expand the tree by simulating one of the untried actions

and adding the next state as a child node.

3. Evaluation: Evaluate the new node by running a roll-out according to

a default policy.

4. Backpropagation: propagate the result of the roll-out along the chosen

path.

The selection phase is usually performed by recursively descending the looka-

head tree, using the tree policy to select the actions. If the transitions are

stochastic, it is possible that the selected action leads to a different state

than the one stored in the tree: in this case, the expansion phase is per-

formed by adding this new state to the tree.

Figure 3.1: The phases of Monte Carlo Tree Search algorithms. Source: Browne et al.

(2012)

UCT pseudo-code

The main contribution of UCT is the tree policy that the authors use in the

selection phase of the MCTS loop: each step in the descent of the tree is

21

treated as a multi-armed bandit instance, therefore choosing at each state

the action with the highest upper confidence bound to the cumulative re-

ward. Despite being just one of the possible implementations of a Monte

Carlo Tree Search algorithm, in the following we will refer to UCT as MCTS

as many authors have done in the subsequent literature.

The pseudo-code of UCT is reported in algorithm 3.2.

Algorithm 3.2 UCT

procedure UCT(s)

repeat

search(s, 0)

until Timeout

return best-action(s, 0)

end procedure

procedure search(state, depth)

if state is terminal then

return 0

end if

if state is a leaf of the lookahead tree then

return evaluate(state)

end if

actionÐ argmaxa upper-boundpstate, aq
nextState, rewardÐ simulate-actionpstate, actionq
q Ð reward� γsearchpnextState, depth� 1q
update-valuepstate, action, q, depthq
return q

end procedure

It can be noticed that the lookahead tree is recursively descended by the

search procedure and that at each state the action a with the highest

value of upper-boundps, aq is selected.

The evaluate(state) function usually runs a simulation from the given state

using the default policy to select the actions until either the time horizon a

or terminal state is reached, and returns the discounted cumulative reward

that was collected. An example of default policy is to choose the next action

randomly.

22

The upper-bound function is defined as follows:

upper-boundps, aq � pQps, aq � 2Cp

d
lnNs,d

Ns,a,d

Where Cp is an appropriate constant, Ns,d is the number of times state s

was visited at depth d and Ns,a,d the number of times action a was selected

from state s at depth d.

UCT performance

As the available budget increases, the action proposed by UCT after the

search is theoretically guaranteed to converge to the optimal one.

UCT shows great performance improvements against its competitors in the

domain of discrete stochastic MDPs, while it still fails to achieve good per-

formance in the case of continuous MDPs.

3.2.3 MCTS with Double Progressive Widening

Due to the bandit approach at each decision epoch, traditional MCTS fails

to perform well when the state and/or action spaces are continuous and

the transitions are stochastic: the main reason for this failure is that the

stochastic transitions over a continuous state space will never reach the same

state twice, making an upper confindence bound approach impossible.

Couetoux and Doghmen (2011) tackle the problem by adding two progressive

widening layers to plain MCTS: basically, the number of children of each

node of the tree is artificially limited by a sub-linear function of its number

of visits. This artificial limit is of course not fixed: as a node is visited more

times the limit will become higher and the tree will progressively widen.

In order to apply these progressive widening layers, the lookahead tree is

composed by two kinds of nodes: the decision nodes, which represent states

in which the agent is required to select an action, and the chance nodes,

which represent the stochastic transition to a next state after choosing an

action. The children of a decision node DNs representing state s are the

actions a1, ..., aks available in state s. Once one action a has been selected,

a chance node CNs,a representing the pair ps, aq is created, if not already

present, and added to the children of DNs. The children of the chance node

CNs,a are the decision nodes representing the next states sampled from the

generative model according to Pp�|s, aq. A chance node could in principle

have an infinite number of children if the transition is to a continuous state:

for this reason, the second progressive widening layer is introduced to not

allow it to grow more than the agent can reasonably explore.

23

The choice of the action

The first progressive widening layer is needed to deal with the infinite num-

ber of actions available at each state, as it would be impossible to try them

all. Progressive widening for action selection had already been proposed by

Coulom (2006) and had been implemented by Rolet et al. (2009) in their

BAAL algorithm.

In order to restrict the exploration only to some of the actions, an initial

exploration order among the actions is fixed: pa1, a2, ...q. Computationally,

it is not necessary to store the order into a data structure, but rather it is

sufficient be able to generate the sequence of actions one by one so that the

next action in the sequence can be obtained if required.

The action selection works as follows: each state s can try at most ks actions

and, every time an action needs to be chosen, only the first ks ones will be

considered. Therefore the algorithm will pick the most promising action

among pa1, ..., aksq.
At each node s, the number ks of possible actions that the algorithm must

consider is computed as

ks � rCNα
s s ,

where the constants C ¡ 0 and α P p0, 1q can be used to tune the exploration

and Ns is the number of visits to node s.

When this technique is combined with the selection strategy of UCT, when-

ever an action must be selected in a node s the following steps happen:

1. ks is computed

2. the number of different actions which have been previously tried from

s is compared with ks

If the already-tried actions are less than ks, a new action is added to the

tree and selected. Conversely, if ks different actions have already been tried

from s, a standard multi-armed bandit technique is employed to select the

action among the already-present ones.

The expression “Progressive Widening” thus refers to the widening of the set

of actions that the algorithm will consider as decision nodes are visited more

and more. This uses the intuition that nodes that are visited more often are

deemed more promising by the UCT selection, and as a consequence a more

thorough exploration of the action space is needed.

24

The stochastic transition

The second layer of progressive widening is needed to deal with the stochastic

transitions: while Monte Carlo Tree Search needs to visit the most promis-

ing nodes many times, if the transitions are stochastic the probability of

ending in the same state twice could be null (this is exactly the case if the

state space is continuous), needing a (potentially) infinite number of rounds

to converge.

The restriction of the stochastic transitions works as follows: the number of

next states that can be reached after choosing action a at node s is limited by

the number k1s,a. This number will increase as the action a is selected more

times at node s, to ensure that the transitions of seemingly good actions

are sufficiently explored. The algorithm will enforce this limit by keeping

a list ls,a of the states that have been reached after playing action a in node s.

Whenever action a is selected from state s, the following steps happen:

1. k1s,a is computed

2. the number of states in ls,a is compared with k1s,a.

If less than k1s,a states are present in ls,a, a transition is sampled according

to Pp�|s, aq and the resulting state is added to the list if not already present.

Conversely, if ls,a already contains k1s,a states, one of them is chosen with

probability pps1q � Ns,a,s1

Ns,a
, where Ns,a is the number of times action a was

selected at node s and Ns,a,s1 is the number of times the node s1 was sampled

from Pp�|s, aq as the next state after choosing action a at node s.

The number k1 is computed as

k1s,a �
Q
CNβ

s,a

U
,

where the constant C is the same of the action selection and β P p0, 1q can
be used to control the widening speed.

The introduction of the second progressive widening layer leads to great

performance improvements with respect to single progressive widening on

MDPs with stochastic transitions to many possible next states.

25

3.3 Policy Search Algorithms

3.3.1 OPTIMIST

Another approach to online planning in continuous state/action MDPs is

that of Policy Search, where the agent looks for an optimal policy πθ� to play

on the real environment among a family of policies, usually parametrized by

a vector θ P Θ � Rm. Papini et al. (2019) propose OPTIMIST (Optimistic

Policy opTImization via Multiple Importance Sampling with Truncation),

an algorithm that performs the policy search with an optimistic exploration

approach, exploiting the inherent structure of the problem which, in this

case, can be intuitively expressed as “Similar policies will have similar re-

turns”.

Action-based versus Parameter-based Policy Optimization

Their algorithm is designed to be adapted both to action-based policy op-

timization, where the goal is to maximize the cumulative expected reward

of the chosen policies, and parameter-based policy optimization, where the

agent is working on hyperpolicies (policies defined over the policies) and the

goal is to maximize the cumulative expected reward of the chosen hyper-

policies.

Performance measures

Given a policy πθ, one can run an episode choosing actions according to

such policy. A trajectory τ is the sequence ps0, a0, s1, a1, ..., sH�1, aH�1q of
states encountered and actions chosen (the authors consider only the finite

trajectories of length H). Since the environment (and, potentially, also the

policy) is stochastic, each policy induces a distribution over the trajectories,

whose density is denoted as pθ.

The discounted reward over the trajectory τ is defined as:

Rpτq �
H�1̧

h�0

γhrh�1.

From the reward they define the expected performance Jθ under the policy

πθ as:

Jpθq � Eτ�pθ rRpτqs .

This is the performance measure employed in the action-based policy opti-

mization paradigm, where the goal of the learner is to maximize the cumu-

26

lative expected reward of the chosen policies:

max
θ0,..,θT

Ţ

t�0

Eτt�pθt
rRpτtqs � max

θ0,..,θT

Ţ

t�0

Jpθtq.

When working with the parameter-based policy optimization paradigm, they

define probability distributions over policy parameters νξ called hyperpoli-

cies, where each hyperpolicy is parametrized by the vector ξ P Ξ � Rd. ξ

are the hyperpolicy parameters, or hyperparameters.

For each episode t, a vector of hyperparameters ξt is selected. The policy

parameters θt are then drawn from νξt : θt � νξt and a new trajectory is

obtained using πθt .

The objective in this case is to maximize the sum over the rounds of the

expected rewards of the hyperpolicies chosen by the agent:

max
ξ0,..,ξT

Ţ

t�0

Eθt�νξt
rJpθtqs � max

ξ0,..,ξT

Ţ

t�0

Jpξtq.

Multiple Importance Sampling Estimation

To estimate Jpξq (or Jpθq in the action-based paradigm), OPTIMIST em-

ploys the Balance Heuristic estimator, with a truncation schedule Mt rather

than a fixed threshold. Let us focus on the parameter-based scenario and

let Φt be the mixture of the hyperpolicies chosen up until round t. The

mixture Φt is itself a distribution over the policy parameters, defined as

Φtpθq � 1
t

°t
i�0 νξipθq. Intuitively, it represents the average hyperpolicy

employed by the algorithm up to round t.

The authors also show that, when performing truncated multiple importance

sampling estimation, under the assumptions of 2.5.3, if an adaptive trunca-

tion is used, a confidence interval for qµBH (or equivalently, for µ) can be

computed as a function of M , d1�ϵpP }Φq and }f}8.

In the case with ϵ � 1, if MN �
c

Nd2pP }Φq

log 1
δ

is used, then with probability

at least 1� δ it holds

µ ¤ qµBH � }f}8
�?

2� 4

3

d
d2pP }Φq log 1

δ

N

Applying this result to the estimation of Jpξq, denoting with qJBH,tpξq the
corresponding truncated multiple importance sampling with balance heuris-

27

tic estimator, the upper confidence bound

Btpξ, δtq � qJBH,tpξq � }f}8
�?

2� 4

3

d
d2pνξ}Φtq log 1

δt

N

is computed and, according to the OFU principle, the hyperpolicy with the

highest upper bound is selected.

3.3.2 The Regret

Let us focus on the case ϵ � 1, in the action-based paradigm. Let the regret

after T rounds be defined as

RpT q � TJpθ�q �
Ţ

t�0

Jpθtq

Assuming that the policies have finite d2ppθ1}pθ2q ¤ v �8, in the case of

discrete Θ, OPTIMIST suffers a regret

RpT q P Op
?
T q.

In the case Θ � r�D,Dsd, under the assumption that Jp�q is Lipschitz,

OPTIMIST suffers a regret

RpT q P Op
?
dT q.

In the case in which Θ � r�D,Dsd is continuous, the authors propose a

version of OPTIMIST which implements, at each round, an adaptive dis-

cretization of Θ to derive a finite set of policies. In this final case, under the

assumption that Jp�q is Lipschitz, the regret is

RpT q P Opd
?
T q.

3.4 Finite Bandit Algorithms

3.4.1 UGapE

A Unified Approach

In the context of best-arm identification in finite bandits, one of the main

state-of-the-art algorithms is UGapE (Unified Gap-based Exploration) (Gabil-

lon et al., 2012). In the literature, the problem has been formulated both

in terms of fixed budget, where the learner must yield the recommendation

after a fixed number n of rounds, and fixed confidence, where the learner

28

must yield a the recommendation, with at least a fixed statistical confidence

1 � δ of having found the best arm, within the smallest number of rounds.

The authors developed a meta-algorithm, UGapE, to solve the best-arm-

identification problem for both these frameworks with minimal changes to

the implementation, as can be seen from the simplified pseudo-code reported

in algorithms 3.3 and 3.4.

The Task of m ϵ-best-arms identification

UGapE solves the more difficultm ϵ-best-arms-identification problem, where

the learner must find a set of m arms such that the simple regret of the worst

of the arms is at most ϵ. In this case, the simple regret rk of arm k is defined

as µpmq � µk, where the notation µpmq indicates the mean reward of the m-

th-best arm. Of course, the traditional problem of best-arm-identification is

a particular instance of this problem where m � 1 and ϵ � 0.

Algorithm 3.3 UGapEb

procedure UGapEb(ϵ,m, n, a)

Pull each arm once � Initial Round-Robin

tÐ number of arms

while t n do

select-armptq
tÐ t� 1

end while

return Ωpnq � argminJptqRJptqptq
end procedure

The Arm Selection

The procedure select-armptq, which constitutes the core of the algorithm,

is implemented in the same way for both the settings. First, the quantities

Ukptq, Lkptq are computed for each arm k as Ukptq � pµkptq � βkptq, Lkptq �pµkptq � βkptq. Quite intuitively they represent, respectively, an upper and a

lower bound to the mean µk of arm k. Then, the index Rkptq is computed

as the difference between the m-th highest upper bound among the other

arms and Lkptq. In formulas, Rkptq � max
pmq
i�k Uiptq�Lkptq. This index is an

upper bound to the simple regret of arm k. Then, the set Jptq is computed

as the set of the m arms with the smallest values of Rkptq. The arms ut, lt
are then computed as ut � argmaxjRJptq Ujptq and lt � argminiPJptq Liptq.

29

Algorithm 3.4 UGapEc

procedure UGapEc(ϵ,m, δ, c)

Pull each arm once � Initial Round-Robin

tÐ number of arms

while RJptqptq ¥ ϵ do

select-armptq
tÐ t� 1

end while

return Jptq
end procedure

They represent the best possible arm that was left out of Jptq and the worst

possible arm that was included.

Once ut, lt have been computed, the most uncertain arm among the two

(the one with the largest βptq) is pulled. The pseudo-code for the procedure
select-arm(t) is reported in algorithm 3.5.

The bound radius βkptq is defined differently for the two settings. In the

fixed-budget setting we have

βkptq � b

c
a

Tkptq ,

where the rewards of the arms are assumed to be in r0, bs, Tkptq is the num-

ber of times arm k was pulled and a is a tunable parameter.

In the fixed-confidence setting we have

βkptq � b

gffec log
�
4Kt3

δ

	
Tkptq ,

Algorithm 3.5 UGapE, arm selection

procedure select-arm(t)

Compute Rkptq for each arm

Identify the set Jptq of m arms with smallest Rptq
Identify the arms ut and lt
Pull the arm Iptq � argmaxiPtut,ltu βiptq
Observe the reward, update the history of pulls and rewards

end procedure

30

where c is a tunable parameter which can also be set to the default, theo-

retically recommended value of 0.5.

Performance

The performance of UGapE is backed up by strong theoretical guarantees in

both the fixed budget and fixed confidence settings: in the fixed budget set-

ting, the probability of returning the wrong set of arms decays exponentially

in the budget n according to the relation

rδ � P prΩpnq ¥ ϵq ¤ 2Kne�2a.

In the fixed confidence setting, the number of ruonds rn necessary to yield

the solution is upper bounded according to the relation

P

�
rΩprnq ¤ ϵ^ rn ¤ K �O

�
Hϵ log

Hϵ

δ

¥ 1� δ,

where Hϵ is the complexity measure of the m ϵ-best arms identification

problem, defined by the authors as

Hϵ �
Ķ

i�1

b2

max
!
∆i�ϵ

2 , ϵ
)2 ,

∆k �
#
µk � µpm�1q If k is in the top m arms

µpmq � µk If k is in not in the top m arms
.

3.5 Continuouos bandit Algorithms

3.5.1 HOO

The Hierarchical Optimistic Optimization strategy, developed by Bubeck

et al. (2011), tackles continuous bandits by incrementally building an esti-

mate of the mean reward function f over X . The estimate will be more

precise around the maxima while it will be less precise where the observed

reward was low, as it can be observed in Figure 3.3.

To achieve this incremental accuracy, HOO maintains a binary tree whose

nodes represent regions of X , such that the union of all the nodes covers

all X and that deeper nodes in the tree are associated with smaller regions.

To each node is associated an index B representing an optimistic estimate

to the maximum mean reward that can be obtained in that region. The B

index is used to select the leaf from which a point x P X (an arm) will be

31

chosen and pulled.

Figure 3.2: The covering of X and the selection of the node to expand performed by

HOO. Source: Bubeck et al. (2011).

The pseudo-code of HOO is reported in algorithm 3.6.

The B values are propagated from the leaves at each round. When a node

is a leaf, the B values of the children are assumed to have the default value

�8. The backpropagation rule is as follows:

a.B � min ta.U,max ta.leftchild.B, a.rightchild.Buu

The intuition is that if the B values of the children of node a are valid upper

bounds to the mean reward in the regions that they cover, since the region

covered by a is the union of those regions then max ta.leftchild.B, a.rightchild.Bu
is a valid upper bound to the mean reward of the region covered by a. Fur-

thermore, since also a.U is a valid upper bound in the region covered by a,

the tightest bound is given by the minimum of the two quantities.

32

Algorithm 3.6 HOO

procedure HOO

for t � 1, ..., n do

nodeÐ root

while node is not a leaf do � tree descent loop

if node.leftchild.B ¡ node.rightchild.B then

nodeÐ node.leftchild

else if node.leftchild.B node.rightchild.B then

nodeÐ node.rightchild

else

nodeÐ randompnode.leftchild, node.rightchildq
end if

end while

nodeÐ randompnode.leftchild, node.rightchildq
T Ð T Y tnodeu � add the new node

choose x P node.region � the selection is arbitrary

obtain reward y from the environment

for a in ancestorspnodeq Y tnodeu do
a.T Ð a.T � 1

a.pµÐ p1� 1
a.T qa.pµ� y

a.T � update the mean

end for

for a in T do

a.U Ð a.pµ�b
2 ln t
a.T � ν1ρ

h � Update the U values

end for

backpropagate the B values from the leaves to the root

end for

end procedure

Figure 3.3: The HOO binary tree after 1,000 (left) and 10,000 (right) rounds. In the

top part, the mean reward function is shown. Source: Bubeck et al. (2011).

33

34

Chapter 4

A Randomized Approach to

Best Arm Identification in

Continuous Bandits

4.1 Summary

We propose a randomized algorithm for the continuous bandit framework.

Our algorithm derives a discrete set of meta-arms (probability distributions

over the continuous arms), which share an artificially-induced form of medi-

ator feedback (Metelli et al., 2020), entirely by construction. Then, we tackle

the problem of finding the best meta-arm as a multi-armed bandit problem.

We use the Truncated Balance Heuristic Estimator to extract information

from the mediator feedback, in order to effectively use the samples from

all the meta-arms. In the last Section, we provide some theoretical results

concerning our algorithm and its performance.

4.2 The Framework

A continuous bandit problem is a pair xX ,My (Bubeck et al., 2011) where

X is a measurable space (in our case, X � ra1, b1s � ...� rad, bds � Rd) and

M is a mapping assigning to every point x P X a probability distribution

over the reals, with mean fpxq. At every decision epoch t, the learner will

choose an arm Xt and will receive a reward Yt sampled from MpXtq. We

assume without loss of generality that Yt P r0, 1s.
Let:

f� � sup
xPX

fpxq,

be the expected reward of the best arm. At round n, the cumulative pseudo-

regret of the learner who selected the sequence of arms pX1, ..., Xnq is defined
as:

Rpnq � nf� �
ņ

t�1

fpXtq.

For the best-arm-identification task, assuming that Zn is the recommenda-

tion of the learner after n rounds, the simple regret is defined as:

rpnq � f� � fpZnq.

4.3 The Meta-arms

Our algorithm first computes a special form of discretization of the set of

arms X : we call this finite set pX , the set of the meta-arms. To each meta-

arm px P pX is associated a probability distribution ppx on the original set of

arms X . Intuitively, in order to pull the meta-arm px, an arm x is sampled

from ppx and is subsequently pulled from the environment. The reward ob-

tained is used to estimate the expected reward of the meta-arm px and of all

the meta-arms that are similar to it thanks to the mediator feedback.

4.3.1 The Mediator Feedback

Whenever a meta-arm px is pulled, an arm x is sampled according to its

probability density function ppx and pulled, obtaining the reward y. The

reward y can be used to estimate the expected reward not only of px, but
also of every other meta-arm that puts positive probability mass on the arm

x. This allows to use the collected samples to estimate the expected reward

of an arbitrary large set of meta-arms, by keeping track both of the return

y and of the arm x that was sampled each time a meta-arm px is pulled.

Metelli et al. (2020) define the return pair px, ypxqq as “Mediator feedback”,

the rationale being that the arm x mediates between the pulled meta-armpx and the obtained reward y. In the following, let us denote the expected

reward of meta-arm px with µppxq.
Our algorithm, therefore, performs best-arm identification on the set of

meta-arms pX, exploiting the information that can be obtained with the

mediator feedback.

4.3.2 The Probability Density Function ppx
We employ multi-dimensional Gaussian meta-arms, located so that the space

X is covered in a grid fashion and each meta-arm has its mean on a different

36

point of the grid. The reader may find it clarifying to check Figure 5.6

in Chapter 5 for a graphical example of such covering. The probability

density functions tppxu associated to our meta-arms are multivariate normal

distributions over X . First, we choose the standard deviation σl for each

dimension l � 1, ..., d of the arms domain, then we set the number of meta-

arms to place along each dimension. This is set indirectly through the

parameter sl, called “standard deviations to neighbour”: the meta-arms are

placed at the extreme points of X and evenly distributed inside so that the

means of two neighbour meta-arms along dimension l differ at most 2slσl.

The result is a multi-dimensional grid covering X so that to each point of

the grid x � px1, ..., xdq is associated a multivariate normal distribution with

mean px1, ..., xdq and covariance matrix

���σ
2
1 0

. . .

0 σ2
d

���.

4.4 The Algorithm

Our algorithm is similar the majority of finite bandit algorithms that can

be found in the literature: until there is available budget some indices are

computed and used to select the next arm to pull and the corresponding

reward is collected. At the end, the algorithm outputs a recommendation

of what the best arm is. The main difference is that our algorithm does

not work with the arms, which in this case are infinite, but rather works

on the meta-arms. It would be correct to say that our algorithm performs

best-meta-arm identification.

4.4.1 The Construction of the Meta-arms

The very first step performed by our algorithm is building the set of meta-

arms according to the given ranges ra1, b1s, ..., rad, bds of the arms set and

to the parameters pσ1, s1q, ..., pσd, sdq. In particular, for each dimension

l � 1, ..., d the number of grid points is computed as gl �
Q
bl�al
2σlsl

U
. Then, the

domain Dl is computed as the set of gl uniformly spread points in ral, bls
including the extremes. The set of the means of our meta-arms is therefore

M � D1� ...�Dd. Clearly, M � X . For each point m PM, one meta-arm

pxm is built such that ppxm
� N

���m,

���σ
2
1 0

. . .

0 σ2
d

���
��. Once the meta-arms

are built, the best-meta-arm identification process can begin.

37

4.4.2 The Choice of the First Meta-arm

The first meta-arm to be pulled is arbitrarily set to be the most central one:

it is the meta-arm such that along each dimension l � 1, ..., d the mean is

the median of Dl.

4.4.3 The Pull of a Meta-arm

Whenever our algorithm pulls a meta-arm px, the environment is eventually

sampled in a point which is likely to be around the mean of ppx. More

precisely, a point in the domain x P X is sampled according to ppx. Then,

the environment is queried in the point x, obtaining the reward y. The

pulled meta-arm px is added to the history of pulled meta-arms, as well as

the pair px, yq which constitutes the mediator feedback.

4.4.4 The Selection of the Next Meta-arm

After at least one meta-arm has been pulled, the algorithm must select after

each round which meta-arm to pull based on the available data. We do this

in two ways: our algorithm can in fact be set to work in two modes. The

first mode is the optimistic mode: at each round, the meta-arm with the

highest upper-bound is selected. The second mode is the UGapE mode,

which employs the selection logic of the UGapE algorithm (Gabillon et al.,

2012), pulling the meta-arm that will contribute most to the identification

of a best meta-arm among the empirically best. This second procedure is

more complex and is described in detail in Section 4.4.7.

4.4.5 The Final Recommendation

When all the budget has been consumed, our algorithm will search in the

continuous space of all the possible meta-arms, therefore also the meta-

arms corresponding to points which were not present in the grid, for a local

maximum.

4.4.6 The Confidence Bounds

Like in most bandit algorithms, the choices are driven by statistical confi-

dence bounds computed from the available data. Given the history Ht �
ppx1, x1, y1, ..., pxt, xt, ytq available before round t � 1, we compute the con-

fidence bounds for the mean reward µppxq of each meta-arm px. Let Φt be

the mixture of the probability density functions of the meta-arms pulled

up to round t. Φt is itself a probability density function and is defined

38

by Φtpxq � 1
t

°t
i�1 ppxt

pxq. Φt represents the probability density function

of the “average meta-arm” that was pulled up to round t. The statistical

properties of our estimators are expressed as a function of d2pppx}Φtq (see

section 2.5.3). However, computing such divergence is prohibitive in terms

of computational cost, as there is no known closed form and the only option

is to compute the integral numerically. To circumvent this issue, we use the

following harmonic mean upper-bound of d2pppx}Φtq (Papini et al., 2019):

d2pppx}Φtq ¤ t°t
i�1

1
d2pppx}ppxi q

� d2,hm,tppxq.
For each meta-arm px we compute the adaptive truncation threshold

Mtppxq �
d

td2,hm,tppxq
α logpt� 1q ,

the truncated importance weight of each sample i, for i � 1, ..., t

qwppxqi � min

"
Mtppxq, ppxpxiq

Φtpxiq
*
,

the truncated balance heuristic estimator

qµBH,tppxq � 1

t

ţ

i�1

qwppxqiyi,
the confidence bound radius

Btppxq � p1�
?
2q
c

α logpt� 1qd2,hm,tppxq
t

,

and finally the confidence interval

qµBH,tppxq �Btppxq ¤ µppxq ¤ qµBH,tppxq �Btppxq.
The expressions of the truncation threshold and of the confidence bound

radius are the ones employed by Metelli et al. (2020). The term α in the

radius expression is a tunable parameter such that α ¡ 1 which can be used

to control the amount of exploration: the greater α, the larger the bounds,

the more the algorithm will try potentially sub-optimal meta-arms.

4.4.7 The Pseudo-Code

In Algorithm 4.1 is reported the pseudo-code of our algorithm.

39

Algorithm 4.1 The main loop of our algorithm

procedure tmis-best-arm-identification(X , pσ1, ..., σdq, ps1, ..., sdq)pX Ð build-meta-armspX , pσ1, ..., σdq, ps1, ..., sdqqpx1 Ð select-first-meta-armp pX q
H1 Ð pull-meta-armppx1q
tÐ 2

while t ¤ n dopxt Ð select-next-meta-armp pX ,Ht�1q
Ht Ð concatenatepHt�1,pull-meta-armppxtqq

end while

return find-best-armpHnq
end procedure

procedure pull-meta-arm(px)
sample x � ppx
sample y from the bandit environment (y �Mpxq)
return ppx, x, yq

end procedure

The Selection of the Next Meta-arm

For the choice of the next meta-arm to pull we explored two possibilities,

both using the confidence bound for the truncated balance heuristic estima-

tor.

Optimistic Meta-arm Selection This selection technique is the UCB-

like optimistic strategy employed by Papini et al. (2019) in OPTIMIST: at

each round, the meta-arm with the highest upper bound is selected.

pxi � argmax
pxP pX

qµBH,tppxq �Btppxq
This procedure is reported in pseudo-code in algorithm 4.2.

Algorithm 4.2 Optimistic mode selection

procedure select-next-meta-arm-optimistic(pX ,Ht�1)

compute Utppxq � qµBH,tppxq �Btppxq for each px P pX
return argmaxpxP pX Utppxq

end procedure

40

Full-exploration Meta-arm Selection The second selection technique

is the one developed by Gabillon et al. (2012) for the UGapE algorithm. Dif-

ferently from the optimistic approach, the goal here is to have the confidence

bound of the best meta-arm disjoint from the confidence bounds of the other

meta-arms. This strategy therefore will sometimes pull the second-best arm.

First, the index Rtppxq is computed for each meta-arm. This index is an

upper bound on the simple regret of px. Then, identify the meta-arm with

smallest Rt. Let lt � argminpxP pX Rtppxq. Then, let ut be the best meta-arm

among the remaining: ut � argmaxpxP pX ,px�lt
Utppxq. Pull the most uncertain

meta-arm (that is, the one with larger Btppxq) between lt and ut.

pxt�1 � argmaxpxPtlt,utu
Btppxq

This procedure is reported in pseudo-code in algorithm 4.3.

Algorithm 4.3 UGapE mode selection

procedure select-next-meta-arm-ugape(pX ,Ht�1)

compute Utppxq � qµBH,tppxq �Btppxq for each px P pX
compute Ltppxq � qµBH,tppxq �Btppxq for each px P pX
compute Rtppxq � maxpx1P pX

px1�px

Utppx1q � Ltppxq
compute lt � argminpxP pX Rtppxq
compute ut � argmaxpxP pX

px�lt

Utppxq
return argmaxpxPtlt,utuBtppxq

end procedure

The Choice of the Recommendation

After the budget has been consumed, the algorithm must recommend an arm

based on the collected data. This is done in the procedure find-best-armpHnq.
In order to find the best point, our algorithm:

1. Sorts the meta-arms in decreasing order by the estimator µBH,tppxq.
2. Computes the set pX � of the k best meta-arms by taking the first k.

In our experiments, we employed k � 5.

3. Numerically performs gradient ascent using each px P pX � as a different

starting point, thus considering a continuous of meta-arms including

points that were not in the grid.

41

4. Returns the point x P X such that the meta-arm centered on x was

returned by the gradient ascent as local optimum and its estimator is

the highest among the other local optima.

4.5 Theoretical Analysis

We provide a few theoretical results to characterize our algorithm. We

consider the more general case of optimization of a stochastic function ρpxq
defined over a set X , with mean reward fpxq. The optimization is carried

on by Policy Search, where the policies pθ are parametrized by a compact

set Θ. The policies are used to decide which is the next point to sample,

so that first a point x P X is sampled according to the policy and then

the stochastic function ρpxq is sampled in that point. The results of this

analysis can be restricted to the case of our algorithm keeping in mind that

the set of parameter vectors Θ coincides with the set of arms X , the policies

pθ coincide with the probability distributions of the meta-arms ppx and the

mean reward function is fpxq in both settings.

4.5.1 Setting

Let Θ � Rm be a compact set, X be a set. For every parameter θ P Θ, a

policy pθp�q is a probability distribution over X . For every decision x P X ,

the reward distribution is ρp�|xq, whose decision expected reward is:

fpxq �
»
R
yρpdy|xq.

The policy expected reward is:

µpθq �
»
X
fpxqpθpdxq. (4.1)

The goal of the decision maker is to find the optimal parameter vector θ (or

equivalently, the optimal policy):

µ� � sup
θPΘ

µpθq ðñ θ� P argmax
θPΘ

µpθq. (4.2)

Let us denote with θn the parameter vector recommended at round n. Our

performance index is the policy simple regret:

rµpnq � µ� � µpθnq. (4.3)

We could also consider the decision simple regret:

rf pnq � f� � µpθnq. (4.4)

42

4.5.2 Assumptions

We list all the assumptions that we will use in the following. Not all will be

employed together.

The following assumption requires that, for each pair of policies defined by

the vectors θ,θ1 the 1-norm (the sum of the absolute values of the elements)

of the vector containing the difference of the probability density functions

pθ1pxq � pθpxq evaluated in each point x P X is upper bounded by a semi-

metric (a non-negative, symmetric function ℓ such that ℓpθ,θ1q � 0 ðñ
θ � θ1) over θ,θ1. This assumption is not constraining when one is free

to design the policy space. It is satisfied in the case of multivariate normal

policies, as in our case.

Assumption 1 (Regularity of pθp�q) There exists a semimetric ℓp : Θ
2 Ñ

R¥0 such that:

}pθ1p�q � pθp�q}1 ¤ ℓppθ,θ1q. (4.5)

The following assumption requires that no point x P X has infinite reward.

Assumption 2 (Boundedness of fpxq) There exists constant F P R¥0

such that

sup
xPX

|fpxq| ¤ F. (4.6)

The following assumption requires that the mean reward function f has

some smoothness property. While in principle one could design a continuous

bandit problem with non-smooth mean reward functions (for example by

taking a smooth one and then setting the mean reward of a specific point to

a very high value without changing that of the near points), this regularity

assumption is always done when analysing a problem of online optimization

of continuous functions, as bounding the simple regret without it would be

impossible.

Assumption 3 (Regularity of fpxq) There exists a semimetric ℓf : Θ2 Ñ
R¥0 such that: ��fpxq � fpx1q�� ¤ ℓf px, x1q. (4.7)

The following assumption is done to lighten the notation and to re-use the

upper bounds existing in the literature without loss of generality. In our

case, it holds by definition.

43

Assumption 4 The reward r � ρpxq is bounded in r0, 1s.

The following assumption requires that absolute continuity holds for each

pair of policies. It is equivalent to requiring that all the policies assign

zero probability to the same set of points, and positive probability to the

others. In our case, since all the multivariate normal policies assign positive

probability to each point, it is satisfied.

Assumption 5 All the policies are absolutely continuous:

pθp�q ! pθ1p�q @θ,θ1 P Θ.

4.5.3 Theoretical Results

Regularity of µ

We show that moving to the expected value in policy space the reward

function µ is regular even if f is not.

Lemma 1 Under Assumptions 1 and 2, it holds that:

|µpθq � µpθ1q| ¤ Fℓppθ,θ1q; (4.8)

sup
θPΘ

|µpθq| ¤ F. (4.9)

Proof 1 For the first inequality:

|µpθq � µpθ1q| �
����»

X
ppθpdxq � pθ1pdxqq fpxq

���� ¤ F }pθp�q � pθ1p�q}1 .

The second inequality is trivial.

Upper Bound to f� � µ�

Under the regularity of f , the “loss” of moving to a randomized policy space

is bounded:

Lemma 2 Under Assumptions 3, it holds that:

f� � µ� ¤ inf
x�PX :f��fpx�q

inf
θPΘ

»
X
pθpdxqℓf px�, xq.

Proof 2 Let

f� � sup
xPX

fpxq

µ� � sup
θPΘ

»
X
pθpdxqfpxq

X � � tx P X : fpxq � f�u ,

44

Then

f� � µ� � inf
θPΘ

»
X
pθpdxqpf� � fpxqq,

and in particular @x� P X � it holds:

f� � µ� � inf
θPΘ

»
X
pθpdxq pfpx�q � fpxqq

¤ inf
θPΘ

»
X
pθpdxqℓf px�, xq. (By Assumption 3)

It is therefore possible to select x� so that upper bound is minimized, obtain-

ing the statement of the Lemma

Upper Bound to rµpnq in Expectation

Since the truncated importance sampling estimator with the balance heuris-

tic is used, when the optimistic selection strategy is used our algorithm is

similar to an instance of OPTIMIST (Papini et al., 2019). We can use the

proof of the regret bound in case X is a compact space X � r�D,Dsd
(Theorem 3), instantiated with ϵ � 1, which states that if the confidence

schedule δt � 6δ
π2t2p1�ddt2dq

is used with the adaptive truncation threshold

Mt �
c

td2ppθ}Φtq

logp 1
δt
q

, the Cumulative Regret Rµpnq is with probability at least

1� δ:

Rµpnq ¤ ∆0 � π2LD

6
� C

d
nv

�
2pd� 1q log n� d log d� log

π2

3δ

,

where C is defined as

C � 2

�?
2� 5

3

}f}8,

∆0 is the simple regret of the initial arm p0 and v is the maximum divergence

between any policy and the mixture:

v � sup
θPΘ

d2ppθ}Φtq.

We can select a time-independent value for α which ensures that the upper

bounds employed by our algorithm are larger or equal to those of OPTIMIST

by ensuring

α logpt� 1q ¥ log
1

δt
,

45

which is satisfied by any α ¥ log π2dd

3δ
log 2 � 2d� 2.

Since the upper bounds still hold, all the high-probability properties of the

bounds must hold too. Adapting the proof of Theorem 3, specifically by

inserting α logpt � 1q instead of log 1
δt

in Eq. (67) of the supplementary

paper, and to all the subsequent steps, we obtain that with probability at

least 1� δ it holds:

Rµpnq P Op
a
αvn log nq.

We now employ the fact that Errµpnqs ¤ ErRµpnqs
n . Supposing that after

having pulled n meta-arms the algorithm’s recommendation is drawn with

uniform probability from the sequence of pulled meta-arms, therefore giving

higher probability of being recommended to the most pulled ones, it holds

that:

EUniformrErrµpnqss � 1

n

ņ

t�1

Er∆ts � 1

n
E

�
ņ

t�1

∆t

�
� ErRµpnqs

n

where ∆t is the simple regret of the meta-arm pulled at round t.

Since our algorithm recommends the meta-arm with the highest estimator

given the observed samples, without assigning any probability of being re-

comended to the empirically sub-optimal ones, it cannot do worse that the

above case. Thus, we obtain the final upper bound:

Errµpnqs P Op
a
αv log nq

4.5.4 The Variance and the Lipschitz Constant

Assume that the function f is Lipschitz, that is there exists a constant L

such that:

}fpx1q � fpx2q} ¤ L}x1 � x2} @x1, x2 P X .

The intuition suggests that the optimal value of σ should be related to that

of L: indeed, the function g (the mean reward in the meta-arm space) is

a regularized version of f . This regularization could be better understood

by thinking of how g is built: in each point x, gpxq is equal to a mixture

of the values of f . Considering a point x1 infinitely close to x, the value of

gpx1q is obtained as the mixture of the same points (all the domain X) but

with all the weights changed by an infinitely small amount, thus resulting

46

in an infinitely small variation. In our algorithm, higher values of σ give

higher importance to the samples from one meta-arm in the estimates of the

reward of its neighbours: this means that with higher σ the expected reward

of the meta-arms is more similar to that of their neighbours. The intuition

suggests that introducing such artificial regularity could be beneficial if some

regularity is already present in the original function f , in a way that the

more f is regular, the more this artificial regularity can be exploited.

47

48

Chapter 5

Application to Online

Planning

5.1 Summary

In this Chapter, we test the performance of our bandit algorithm when em-

ployed as the policy optimizer in a policy-search online planning framework.

We present the Mini-golf environment as the first benchmark and the con-

tinuous, stochastic version of OpenAI Gym’s MountainCar environment as

second one. On both environments we test the performance of our algo-

rithm, of our implementation of MCTS-DPW and that of a planner which

employs UGapE to perform best-arm-identification on the discretized policy

space corresponding to the meta-arms grid employed by our algorithm. For

each environment we show the value function represented as a surface on

the policy space, the parameter tuning steps and the performance with the

selected parameters, providing explanations to the observed results.

5.2 The Online Planning Loop

We employ our bandit algorithm to perform online Monte Carlo planning.

Our planner will therefore be sequentially interacting with the environment,

each time being required to find the next action using a limited budget.

Rather than looking directly for the best action, our planner will search

for the best policy among a set of policies parametrized by a compact set

Θ � Rd, which in the experimental evaluation we defined to be the family

of linear policies. At each interaction, this policy search is approached as

a continuous bandit problem, employing our randomized continuous best-

arm-identification algorithm. Once a policy is found, it is used to select

the next action to choose in the environment. Our online planning loop is

graphically represented in Figure 5.1.

Action Best policy
from the observed

state

Continuous Bandit
in Policy Space

from the observed
state

Planner
Observation

Reward
Environment

Figure 5.1: Schematics of the online planning loop of our algorithm.

5.3 Policy Search as Continuous Bandit

Thanks to the generative model and to the fact that the current state is

known, the MDP becomes a equivalent to a stochastic function defined over

the set of the possible policies, effectively becoming an instance of a contin-

uous bandit problem. To make this consideration more clear, we will now

introduce the “Mini-golf” environment, an MDP with continuous states and

actions and with stochastic transitions which we used as an initial bench-

mark for our algorithm.

5.4 The Mini-golf Environment

5.4.1 Environment Definition

As the name suggests, this environment mimics the game of Mini-golf, where

the player’s goal is to put the ball into the hole with the minimum number

of shots. The implementation of the transition function is inspired to the

paper of Penner (2002), where the author studies the physics involved in

the act of putting a ball. The state of this simple environment, represented

in Figure 5.2, is the distance separating the ball from the hole. Therefore,

S � R� and the action space is As � R� @s P S, that is in each state the

agent can choose a non-negative real number. At each state, the value of

the chosen action represents the strength with which the ball is hit, which

will make the ball progress towards the hole in a straight line. Whenever

the player performs an action without putting the ball in the hole, they get

a negative reward of �1. If the ball ends inside the hole, they get a reward

50

of 0 and the process stops. If the ball ends past the hole, they get a reward

of �100 and the process stops. If the time horizon expires before the ball

has reached the hole, the process stops. Since we have set a horizon of 20,

the maximum reward achievable is Rmax � 0 if the ball is put at the first

shot and Rmin � �119 if 19 shots do not reach the hole and the final shot

throws the ball past it.

s

Mini-golf environment

ball hole

Figure 5.2: Representation of the Mini-golf environment.

Solving this environment could seem easy at a first glance, but indeed it

is not straightforward. What makes it difficult is the heavy stochasticity

introduced in the transition function. First, the action a chosen by the

learner is clipped to the interval r0.00001, 5s. Then, a random noise ξ P
p�1, 1q is sampled. The initial velocity of the ball is computed as v0 �
l � a � p1� ξq, where l is the putter length, an environment parameter which

defaults to 1. This means that the action could potentially be multiplied

by a factor of 2 or 0, leading to very different results. The deceleration α

of the ball is also computed with the friction environment parameter, so

that, if the ball is not put, the time τ before the ball stops is computed as

τ � v0
|α| and the next state is st�1 � st�v0τ� 1

2 |α|τ2. The formulas reported

by Penner are used to determine the minimum initial speed vmin and the

maximum initial speed vmax of the ball that will make it fall into the hole.

If v0 ¡ vmax, intuitively, the ball will go past the hole.

5.4.2 The Policies

We consider the family of linear policies: since the state is 1-dimensional,

we have a 2-dimensional parameter space Θ � R2. We chose to restrict the

domain of both parameteres to r0, 2s so that Θ � r0, 2s2. To each parameter

vector θ � pθ1 θ2q P Θ is associated the deterministic policy πθpsq � θ1�θ2s.

51

The Value Function V πθ
n ps0q in Policy Space

Given the initial state s0 and the remaining horizon n, to each point θ P Θ

corresponds a different policy πθ and therefore a different value of V πθ
n ps0q.

Let us remind that the value V πθ
n ps0q is the expected cumulative reward if

policy πθ is used from the state s0 until the end of the process (or until the

horizon n is reached). When we are searching the policy space, therefore,

we are looking for maxima on the surface defined over Θ by ϕpθq � V πθ
n ps0q.

In Figure 5.3 we show this surface for a specific initial state.

1

0.0
0.5

1.0
1.5

2.02

0.0
0.5

1.0
1.5

2.0

70
60
50
40
30
20
10

E[policy (1, 2)] - state=16.59, horizon=20

Figure 5.3: The surface ϕpθq. The approximation was obtained by covering Θ with a

25�25 grid and averaging the cumulative reward collected by each point over 400 runs

It can be noticed in Figure 5.3 that an optimal linear policy from the ini-

tial state s0 � 16.59 with a remaining horizon n � 20 has an expected

cumulative reward of about �3, indicating that no good linear policy can

conveniently put the ball in less than 3 rounds (on average). This is due to

the high imbalance between the negative reward of using one more round,

which is �1, and that of sending the ball beyond the hole, which is �100.
This disproportion, together with the high impact of the stochastic noise

in the transition function, will make any learner adopt a very conservative

policy.

At this point, the careful reader will have noticed the equivalence between

this policy optimization and an instance of a continuous bandit problem:

indeed, to turn the former into the latter it is enough to set X � Θ, define

52

the pull of one arm (or one policy) as the run of an episode using such policy

and to rescale the reward of the bandit environment. Since the reward of the

bandit environment is the cumulative reward of the Mini-golf environment,

given the cumulative reward Y obtained from the MDP the bandit will

return y � Y�Rmin
Rmax�Rmin

: this ensures y P r0, 1s.
Once we have cast the problem as a continuous bandit instance, we can run

our algorithm to find the best parameters (and, therefore, the best policy).

5.4.3 Building the Meta-arms

Selection of the Variance

In order to build the meta-arms of our algorithm we must choose appropriate

values for pσ1, σ2q and ps1, s2q. Let us remind that in the context of our

algorithm applied to continuous bandits the quantity sl is half the number

of σl that divide the mean of two neighbour meta-arms along dimension l,

and is not to be confused with the state of a MDP.

To find an appropriate value for the variance we first set σ1 � σ2 � σ. Then,

given the optimal linear policy θ� � p1.47 0.14q, we evaluate the degradation
of the performance of px�, the meta-arm such that ppx� � N

�
θ�,

�
σ2 0

0 σ2

��
,

for different values of σ.

Figure 5.4 shows the degradation of the expected reward of px� as σ grows.

Based on such empirical observation, we chose to employ σ � 0.1. The idea

behind such choice is that when the meta-arms will be built using such value

of σ we can expect to have some meta-arms with an expected reward that is

similar to that of px�, even if the meta-arm grid built by our algorithm will

not contain exactly px�.
Selection of s

The tuning of the parameter s seems not to be as intuitive as that of σ:

different values of s will lead to a different number of meta-arms as well as

to different values of the divergence d2p�}�q between the meta-arms. When

constrained by a limited budget, whether it is convenient or not to increase

the density of the grid is itself a difficult question: while a denser grid will

lead to a finer search of the space, if the rewards are stochastic the accuracy

of the estimate for each point will be generally lower. To this consideration it

must be added that a denser grid will lead to smaller values of the divergence

d2pppx1
}ppx2

q between two neighbour meta-arms px1, px2, which will reduce the

53

0.0 0.5 1.0 1.5 2.0 2.5 3.0

50

40

30

20

10

0

av
er

ag
e

re
wa

rd

Tuning of

Figure 5.4: The decay of the performance due to the randomization. The 2-std (�

95%) confidence intervals for the expected value are shown. The plot was obtained by

covering the domain r0, 3s of σ with a 100 points one-dimensional grid and averaging

the cumulative reward for each value of σ over 400 runs.

confidence bound radius more and lead to a stronger re-usage of the samples

and faster convergence of the algorithm.

Accounting for all of this complexity, we resorted to trying many values for

the parameter s and taking the best one. The results are reported in Figure

5.5.

Based on such experimental evidence, we chose to set s � 1.54. This value

will result in a smaller number of meta-arms while still maintaining roughly

the same performance of 0.8, which is the point of the domain with the

highest performance (by a very small amount).

Example of Meta-arms for the Mini-golf Environment

In Figure 5.6 we can see how the probability density functions associated to

the meta-arms cover the parameter space Θ for different values of s.

5.4.4 Tuning of α

As last tuning step, we focused on the parameter α in the expression of the

confidence radius. We tested the performance of our algorithm for different

values of α. The results are shown in Figure 5.7.

The empirical results of this last tuning step suggest to use α � 2.5.

54

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
s

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

re
wa

rd

Tuning of s

Figure 5.5: The average performance of our algorithm on the Mini-golf environment

with σ � 0.1 in 500 rounds for different values of s. The plot was obtained covering

the domain r0.8, 2.6s of s with a 11-points one-dimensional grid, taking 400 samples

for each value of s. The 2-std confidence intervals for the expected value are shown.

5.4.5 Experimental Results

The budget

Our algorithm needs to compute the probability density function of the cur-

rent mixture Φt of pulled meta-arms at every sampled point at every round.

Thus, a quadratic dependence on the number of rounds is unavoidable, mak-

ing our algorithm unsuitable for scenarios where a large budget is available.

In our tests, we have set the maximum budget to be 500 rounds, as we

have experimentally seen that the larger budget values take a long compu-

tational time. In order to compare our algorithm with other state-of-the-art

solutions, we tune them for the best performance with the same budget.

Performance of Our Algorithm

With the selected parameters σ � 0.1, s � 1.54, α � 2.5 we tested the

average performance of our algorithm in the online planning scenario for

different values of the budget for both the optimistic and UGapE-like meta-

arm selection policies. The results are reported in Figures 5.8 and 5.9.

MCTS-DPW

We tested our implementation of MCTS-DPW on the Mini-golf environment.

We implemented the first version of the algorithm, as described by Couëtoux

55

Figure 5.6: Covering of Θ for σ � 0.1, s � 1.54 (left), σ � 0.1, s � 0.8 (right).

et al. (2011), where the same parameter α is used for both the progressive

widening layers.

Tuning the parameter α We have run tests on the Mini-golf environ-

ment for different values of α with the fixed budget of 500. The results that

we achieved with our implementation of MCTS-DPW are shown in Figure

5.10.

MCTS-DPW Performance With the empirically optimal value of α �
0.725, we have measured the average performance of MCTS-DPW for dif-

ferent values of the budget. The results are shown in Figure 5.11.

UGapEb

In order to assess if our randomized exploration strategy brings an advan-

tage over the standard grid search, we test the performance of the UGapEb

algorithm, the fixed-budget version of the best-arm-identification algorithm

UGapE. We make it perform best-arm identification on the subset of arms

M � Θ containing only the points which correspond to the means of the

meta-arms used by our algorithm.

Tuning the parameter a We have run tests on the Mini-golf environment

for different values of the parameter a with the fixed budget of 500. The

results that we achieved with our implementation of UGapEb are shown in

Figure 5.12.

56

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
90

80

70

60

50

40

30

20

10

0

av
er

ag
e

re
wa

rd

Tuning of

Figure 5.7: The average performance of our algorithm on the Mini-golf environment

with σ � 0.1, s � 1.54 in 500 rounds for different values of α. The plot was obtained

covering the domain r1, 5s of α with a 20-points one-dimensional grid, taking 400

samples for each value of α. The 2-std confidence intervals for the expected value are

shown.

UGapEb Performance With the empirically optimal value of a � 1, we

tested the performace of UGapEb for different values of the budget. The

results are shown in Figure 5.13.

Comparative Performance

In Figure 5.14 we report the results in the same plot for an easier com-

parison. The empiric results show that on the Mini-golf environment both

UGapE and our algorithm were able to outperform MCTS-DPW. This could

probably be explained by the different search spaces, since MCTS is build-

ing a lookahead tree while we are optimizing the expected reward over a

2-dimensional policy space. Also, according to the results on this envi-

ronment, there is no statistical evidence to indicate that either of the two

selection modes of our algorithm is better. Lastly, it can be seen that on the

Mini-golf environment UGapE is performing better than our algorithm while

employing the same grid. This might be due to very near-optimal parame-

ters already being present in the grid, making the randomized exploration

superfluous: if this is the case, the randomized exploration combined with

multiple importance sampling will require more samples than the UGapE

one because, in a non-trivial problem, moving to the meta-arms space the

sub-optimality gaps between the meta-arms corresponding to the grid points

become smaller, making the best-meta-arm-identification task harder.

57

100 200 300 400 500
budget

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

Ours, =0.1, s=1.54, =2.5 Optimistic selection

Figure 5.8: Average performance of our algorithm on Mini-golf if the optimistic meta-

arm selection is used. The 2-std confidence interval for the expected value are shown.

The data were collected by running 400 simulations for each of the considered budget

values.

100 200 300 400 500
budget

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

Ours, =0.1, s=1.54, =2.5 UGapE selection

Figure 5.9: Average performance of our algorithm on Mini-golf if the UGapE meta-arm

selection is used. The 2-std confidence interval for the expected value are shown. The

data were collected by running 400 simulations for each of the considered budget values.

58

0.2 0.3 0.4 0.5 0.6 0.7 0.8
90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

MCTS-DPW tuning of

Figure 5.10: Average performance of MCTS-DPW on the Mini-golf environment for

different values of α with budget 500. The plot was obtained covering the domain

r0.2, 0.8s of α with a 9-points one-dimensional grid, taking 400 samples for each value

of α. The 2-std confidence intervals for the expected value are shown.

100 200 300 400 500
budget

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

MCTS-DPW, =0.725

Figure 5.11: Average performance of MCTS-DPW on Mini-golf with α � 0.725. The

plot was obtained by running 400 simulations for each value of the budget. The 2-std

confidence intervals for the expected value are shown.

59

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
a

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

UGapEb tuning of a

Figure 5.12: Average performance of UGapEb on Mini-golf for different values of a.

The plot was obtained by covering the domain r1, 20s of a with a 1-dimensional grid

with 20 points and running 400 simulations for each value of the a with budget 500.

The 2-std confidence intervals for the expected value are shown.

100 200 300 400 500
budget

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

UGapEb, a=1

Figure 5.13: Average performance of UGapEb on Mini-golf, obtained by running 400

simulations for each value of the budget with a � 1. The 2-std confidence intervals for

the expected value are shown.

60

100 200 300 400 500
budget

90

80

70

60

50

40

30

20

10

0

av
er

ag
e

pe
rfo

rm
an

ce

Comparative performance on the Mini-golf environment

Ours =0.1, s=1.54, =2.5 UGapE
Ours =0.1, s=1.54, =2.5 Optimistic
UGapEb a=1
MCTS-DPW, =0.725

Figure 5.14: Comparative performance on the Mini-golf environment

61

5.5 The Stochastic, Continuous MountainCar En-

vironment

As second benchmark environment, we employ the stochastic, continuous-

actions version of the popular MountainCar environment available on the

OpenAI Gym website. To perform our experiments, we used the python

implementation by O. Sigaud, which is freely available online, introducing

a stochastic noise to achieve the non-deterministic transitions.

5.5.1 Environment Definition

In this environment, the agent is controlling a car which starts in a valley

between two hills, as can be seen in Figure 5.15. The goal of the agent is to

reach the top of the right hill. The difficulty in this environment lies in the

fact that the car is not powerful enough to directly climb the right hill: in

order to reach the goal, it has to swing up and down the hills to increase its

momentum and eventually be able to reach the flag, requiring a non-trivial

planning ability.

Figure 5.15: Graphic representation of the Continuous MountainCar environment as

generated by the script

The continuous state of this environment is 2-dimensional and is represented

by the horizontal distance of the car from the center of the valley and by

its horizontal velocity, s � px, vq. The action a of the agent is always a real

number in the interval r�1, 1s. A random noise is sampled as ξt � Up0, 2q
and the transition is as follows: vt�1 � vt � apξt � 0.0025 cosp3xtq and

xt�1 � xt � vt�1, where the parameter p, the “power” of the car’s engine,

can be modified to make the environment easier or more difficult. The

62

rewards are defined as rps, aq � rpaq � �0.1a2, that is the car must reach

the goal spending as little energy as possible. If the car reaches the top of

the right hill, the agent receives a positive reward of 100. Calling H the

horizon, we set the minimum possible reward as rmin � �0.1H, and the

maximum as rmax � 100. Of course the car is not powerful enough to reach

the top in one step: rmax is just an upper bound to the best possible reward.

5.5.2 The Policies

We employ linear policies without the constant term, in order to keep the

dimensionality small. Therefore, πθpsq � πθpx, vq � θ1x�θ2v. As parameter

space, we employ Θ � r�4, 4s � r�4, 4s.

The Persistence

In order to reach the goal, the car needs to swing up and down the hills to

increase its velocity and finally climb the right hill.

When tested with horizon H � 600, the number of rounds needed to reach

the goal with the optimal linear policy without constant term is approxi-

mately 540, swinging from one hill to the other about 8 times. This means

that, in order to have a meaningful policy space to search, the minimum

horizon to employ is 540 plus some margin. In the context of online plan-

ning, testing the performance of an algorithm scales with H2: indeed, one

must perform one planning step (which has a complexity of at least bH, b

being the budget, since each budget unit corresponds to one rollout until

the end of the process) for each step in the episode, which again depends

on H, up until the desired number of samples is collected (one sample is

the reward obtained during one full episode). For this reason, a horizon

of 540 is prohibitively large for our computational resources. To overcome

this issue, we employed the persistence technique. The persistence is the

number of environment steps that each choice of an action will last: with

persistence 4, for example, the action resulting from the search step will be

used for 4 steps in the environment. This means that, to the learner, the

horizon appears to be reduced by a factor of 4. Of course the number of

transitions performed in the environment remains the same: what changes

is the number of search steps required to the planner, which is the slowest

procedure in the algorithm. It must be noticed that introducing the persis-

tence changes the granularity of the control that the agent can exert on the

environment, potentially leading to different optimal policies and outcomes.

Therefore, one should not expect our results to be valid also in the case of

63

different horizon / persistence combinations.

For the MountainCar environment we set a horizon of 150 and a persistence

of 4. With this configuration, the optimal policy in our parameter space

reaches the hill in about 115 steps (which correspond to 460 transitions in

the environment), obtaining a reward of roughly 92.

The Value Function in Policy Space

In Figure 5.16 is shown the value surface in our policy space for the initial

state p�0.6, 0q. Looking at the surface, one can notice a region of the policy

parameters which allows the agent to reach the goal (specifically, the region

with θ1 ¤ 0 and θ2 ¥ 0). One may also notice that in the region which

does not reach the goal, the value function is seemingly independent from

θ2 and is shaped like a negative parabolic function of θ1. This is due to

the fact that the velocity is initially very small (¤ 0.005 due to the initial

slope), cancelling the effect of θ2, and if θ1 ¥ 0 the car is indeed “braking”

when descending from the hills, preventing the velocity from increasing. The

parabolic shape is due to the reward function, which is a negative quadratic

function of the action and therefore of the predominant parameter θ1.

1

4
2

0
2

4

2

4
2

0
2

4

60
40
20
0
20
40
60
80

E[policy (1, 2)] - state=(-0.6, 0.0), horizon=150

Figure 5.16: The surface defined by the expected total reward of the policies on the

MountainCar environment. The approximation was obtained by covering Θ with a

25� 25 grid and by sampling the model 400 times in each point of the grid.

64

5.5.3 Building the Meta-arms

Selection of the Variance

Also for this environment, we tuned the variance starting from the perfor-

mance decay that different values of σ would cause when starting from the

initial state p�0.6, 0q. As one can notice from Figure 5.16, the maximum

located at θ� � p�0.667, 4q is near a precipitous fall to the value of �5.
This suggests intuitively that a meta-arm with center on θ� will suffer a

high decay in performance due to the randomization. In Figure 5.17 we

show how different values of the standard deviation impact the performance

of the meta-arms θ� and θ1 � p�2.33, 4q, which is located in a more regu-

lar region. From this experimental data we selected the value σ � 0.2, the

rationale being that we must not set σ to be too large in order not to suffer

from the aforementioned pitfall and we must not set σ to be too small in

order to not have either too many meta-arms (for small values of s) or few

meta-arms too far from each other (for s ¡ 3).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10

20

30

40

50

60

70

80

90

av
er

ag
e

re
wa

rd

Tuning of
Mean parameters (-2.333, 4.0)
Mean parameters (-0.667, 4.0)

Figure 5.17: Performance decay due to the randomization for the meta-arm with mean

p�2.33, 4q (blue) and p�0.667, 4q (orange). The plots were obtained by covering the

domain r0, 3s of σ with a 1-dimensional grid with 100 points and taking 400 samples

for each point. The 2-std confidence intervals for the expected value are reported.

Selection of s

After setting σ � 0.2, we ran tests to select an appropriate value for s.

We tried the candidate values 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.65 which led

65

respectively to a total of 361, 324, 324, 256, 225, 196, 169, 144 meta-arms. The

results are reported in Figure 5.18. From the experiments it turned out that

many of the candidates led to very similar performance. We chose to employ

s � 1.65 in order to have a smaller number of meta-arms.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
s

0

10

20

30

40

50

60

70

80

90

av
er

ag
e

re
wa

rd

Tuning of s

Figure 5.18: The performance of our algorithm with σ � 0.2 for different values

of s. The plot was obtained by taking 64 samples for each point in the domain

t1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.65u of s. The 2-std confidence intervals for the ex-

pected value are reported.

5.5.4 Tuning of α

With the values σ � 0.2, s � 1.65 we tuned the parameter α. The results

of this tuning step, reported in Figure 5.19, suggest to employ α � 3, as

its performance confidence bounds suggest that it can hardly be worse than

the other values.

5.5.5 Experimental results

Performance of Our Algorithm

With the selected values σ � 0.2, s � 1.65, α � 3 we tested our algorithm

in both selection modes. The results are shown in Figures 5.20 (Optimistic

mode) and 5.21 (UGapE mode). It can be noticed in the plots that even with

a budget of 50 our algorithm is able to reach the goal (due to the positive

average reward), and with a budget of 150 or greater, corresponding roughly

to one pull for each meta-arm, it is able to reach the goal consistently enough

to have its average performance greater or equal to 60.

66

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
20

30

40

50

60

70

80

90

av
er

ag
e

re
wa

rd

Tuning of

Figure 5.19: The performance of our algorithm with σ � 0.2 and s � 1.65 for dif-

ferent values of α. The plot was obtained by covering the domain r1, 4.5s of α with

a 1-dimensional grid with 8 points and taking 32 samples for each point. The 2-std

confidence intervals for the expected value are reported.

MCTS-DPW

Tuning the parameter α We tuned α with the fixed budget of 500. The

results are shown in Figure 5.22. Given the high increase in performance

associated to the value α � 0.5, we set this as the value to employ in the

tests.

MCTS-DPW Performance After setting α � 0.5, we measured the

average performance of MCTS-DPW for different values of the budget. The

results are shown in Figure 5.23. As it can be seen, MCTS-DPW with a

budget of at least 150 will consistently achieve a good performance on this

environment, while being able to reach the goal even with the very limited

budget of 50. The performance of MCTS-DPW is astonishingly good, as the

expectation was that with a horizon of 150, with the stochastic transitions

and with the continuous states it would take much more than 50 rollouts to

identify the best action for any lookahead-tree-based approach. The reason

behind this expectation was that, since during the rollouts the actions are

sampled uniformly in r�1, 1s, each rollout would contain enough “wrong”

actions that the car would accelerate in the wrong direction too much and

never be able accumulate enough velocity to reach the goal. This intuition

turned out to be wrong. We observed two interesting behaviours in the

simulations:

67

100 200 300 400 500
budget

0

20

40

60

80

av
er

ag
e

pe
rfo

rm
an

ce

Ours, =0.2, s=1.65, =3 Optimistic selection

Figure 5.20: Average performance of our algorithm if optimistic meta-arm selection is

used. The 2-std confidence interval for the expected value are shown. The data were

collected by running 32 simulations for each of the considered budget values.

1. The uniform policy leads to the goal in the long term. We started from

this observation: if at some point the action a � 0 was fixed an chosen

at all the subsequent interactions, the car would oscillate without ever

decreasing its maximum velocity. This is easily understandable by

looking at the dynamics of the environment in which the horizontal

position x becomes a sinusoidal function. From this, it would seem

intuitive to think that selecting actions uniformly with mean 0 should

not lead, in the long run, to a reduction of the car’s velocity. We

tested this specific situation without the stochastic noise, obtaining

the surprising result that the car is indeed gaining velocity even if

the actions are sampled uniformly, meaning that the uniform policy is

indeed able to make the car oscillate higher and higher.

2. The noise is helping the uniform policy. We tested the uniform policy

with the stochastic noise, to discover that the presence of the noise will

increase the speed of the oscillation, making it reach higher altitudes

in a smaller number of rounds.

From this observation, it seems that in our environment the uniform pol-

icy, which is the default policy employed by MCTS-DPW in the rollouts, is

already a good policy. Therefore, when at the root the planner is trying a

good action there are good chances that the rollout reaches the goal, if the

action was near-optimal. This drives MCTS-DPW’s search in such an accu-

rate way that even with ridiculously small budgets it is able to consistently

68

100 200 300 400 500
budget

0

20

40

60

80

av
er

ag
e

pe
rfo

rm
an

ce

Ours, =0.2, s=1.65, =3 UGapE selection

Figure 5.21: Average performance of our algorithm if UGapE meta-arm selection is

used. The 2-std confidence interval for the expected value are shown. The data were

collected by running 32 simulations for each of the considered budget values.

solve this environment. In order to prevent this behaviour, the stochastic

noise should be reduced to a much smaller range (for example, r0.95, 1.05s)
and a friction term should be added in the transition function, so that if

the action 0 is repeatedly selected the car will eventually stop.

UGapEb

Tuning the parameter a We have run tests on the MountainCar envi-

ronment for different values of the parameter a with the fixed budget of 500.

The results are shown in Figure 5.24. The experiments suggest to employ

the value a � 1.

UGapEb Performance With the empirically optimal value of a � 1, we

ran tests for different budget values. The result is shown in Figure 5.25. It

is evident from the plot that the performance of the deterministic approach

heavily depends on the budget. In particular, for budget values smaller than

200 the UGapE planner consistently fails to reach the goal: this is probably

due to the fact that in order to try each grid point once the planner needs

144 rounds and the remaining budget is not enough to discriminate between

the seemingly good arms.

69

0.2 0.3 0.4 0.5 0.6 0.7 0.8

88

89

90

91

92

93

94

av
er

ag
e

pe
rfo

rm
an

ce

MCTS-DPW tuning of

Figure 5.22: Average performance of MCTS-DPW on the MountainCar environment

for different values of α with budget 500. The plot was obtained covering the domain

r0.2, 0.8s of α with a 5-points one-dimensional grid, taking 32 samples for each value

of α. The 2-std confidence intervals for the expected value are shown.

Comparative Performance

The performances of the different algorithms are reported in figure 5.26.

From the data one can notice that while MCTS-DPW and UGapE are

achieving a better result for budgets greater or equal to 200, our algorithm

is indeed outperforming the UGapE-based deterministic planner by a fair

amount for the smaller budget values, when working in either of the selection

modes.

70

100 200 300 400 500
budget

70

75

80

85

90

95

av
er

ag
e

pe
rfo

rm
an

ce

MCTS-DPW, =0.5

Figure 5.23: Average performance of MCTS-DPW on MountainCar with α � 0.5. The

plot was obtained by running 32 simulations for each value of the budget. The 2-std

confidence intervals for the expected value are shown.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
a

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

av
er

ag
e

pe
rfo

rm
an

ce

UGapEb tuning of a

Figure 5.24: Average performance of UGapEb on MountainCar for different values of

a. The plot was obtained by covering the domain r1, 19s of a with a 1-dimensional grid

with 10 points and running 64 simulations for each value of a with budget 500. The

2-std confidence intervals for the expected value are shown.

71

100 200 300 400 500
budget

40

20

0

20

40

60

80

100

av
er

ag
e

pe
rfo

rm
an

ce

UGapEb, a=1

Figure 5.25: Average performance of UGapEb on MountainCar with a � 1 for different

values of the budget. The plot was obtained by running 32 simulations for each value

of the budget. The 2-std confidence intervals for the expected value are shown.

100 200 300 400 500
budget

40

20

0

20

40

60

80

100

av
er

ag
e

pe
rfo

rm
an

ce

Comparative performance on the MountainCar environment

Ours =0.2, s=1.65, =3 UGapE
Ours =0.2, s=1.65, =3 Optimistic
MCTS-DPW, =0.5
UGapEb a=1

Figure 5.26: Comparative performance on the MountainCar environment

72

Chapter 6

Conclusions

In order to perform online planning, we developed a randomized continu-

ous bandit algorithm which relies on multiple importance sampling estima-

tion and we employed it as the core policy optimizer in the policy-search

online planning loop. We tested the resulting planner on two benchmark

environments: Mini-golf and MountainCar. On the same environments,

we tested also two state-of-the-art solutions: the MCTS-DPW planner and

a policy-search-based planner which starts from the same grid of points

covering the policy space as our algorithm and then employs the UGapEb

best-arm-identification algorithm to find the best policy in the grid. The

choice of the two algorithms was not coincidental: the comparison with

MCTS-DPW is done in order to assess the performance of the most general-

purpose, lookahead-tree based planner for continuous, stochastic MDPs on

the specific environments that we chose. The comparison with the UGapEb

planner is done to assess whether the randomized exploration, and the sub-

sequent importance estimation, could bring an advantage over a standard

grid search.

The first conclusion that we draw, both from the theoretical standpoint (in

Section 5.4.5) and from the empirical observation during our tests, is that

employing the multiple importance sampling estimators with the balance

heuristic requires a rather long computational time, which is due to the

computation of the value of the current mixture in the past points: at

each round, the newly pulled meta-arm must be added to the value of the

mixture for all the points sampled in the previous rounds. In practice, our

implementation would take a relatively long time for budgets greater or

equal to 600 even on environments with a short horizon such as Mini-golf.

This indicates that an algorithm like ours could be more suitable for settings

where little budget is available.

The second conclusion that we draw is that the methods based on lookahead

trees are not easily comparable with those based on policy-search: this is

suggested by the difference in the performance of MCTS and our algorithm

in the two environments. In the Mini-golf environment, the policy-search-

based approaches have achieved a better performance than that of MCTS-

DPW, while in the MountainCar environment the performance is similar.

Despite both approaches were tested with the same budget per planning

step (in terms of rollouts on the simulation environment), it is far from

trivial to tell whether the difference in performance is due to a better usage

of the samples or rather to a lucky choice of the parameter space. To this

considerations one must add that different degrees of stochasticity in the

environment have in general a different impact on the difficulty of the task

in the two approaches, making it even harder to address what could be the

source of better performance on one particular instance of environment.

The third conclusion is that, on the two environments that we tested, the

randomized exploration did not lead to a better performance for sufficiently

large budget values, as it can be seen by the higher rewards obtained by the

UGapEb planner. There were two reasons to expect that our randomized

exploration could obtain an overall better performance on a continuous en-

vironment: the first reason is that our algorithm can sample in any point

of the parameter space, using the grid only as an indicator of the regions to

explore more thoroughly, potentially finding maxima which are not present

on the grid itself; the second reason is that the mediator feedback, which

allows to use all the samples to estimate the performance of all the policies,

implicitly assumes some regularity on the reward function in the parameter

space, and in the continuous environments that we used this regularity is

indeed present, as it can be seen by the plots, meaning that we are exploiting

one additional hypothesis. A reason for the observed performance decrease

with respect to UGapEb could be that the increase in difficulty of finding

the best meta-arm due to the randomization was not properly compensated

by the extra information yielded by the mediator feedback.

A notable result achieved by our algorithm is outperforming the determin-

istic UGapE-based approach when constrained by a very limited budget, as

can be seen from the tests on the MountainCar environment, showing that

the randomized exploration combined with mediator feedback, if properly

tuned, could give an advantage in optimizing continuous, regular, stochastic

functions in such scenario.

A direction of future research could be to investigate what are the conditions,

in terms of regularity and stochasticity of the rewards in the parameter

space, that enable an effective usage of a randomized approach like ours and

74

what are the optimal values of the algorithm parameters.

75

76

Bibliography

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analy-

sis of the multiarmed bandit problem. Mach. Learn., 47(2–3):235–256,

May 2002. ISSN 0885-6125. doi: 10.1023/A:1013689704352. URL

https://doi.org/10.1023/A:1013689704352.

Richard Bellman. A markovian decision process. Journal of Mathematics

and Mechanics, 6(5):679–684, 1957. ISSN 00959057, 19435274. URL

http://www.jstor.org/stable/24900506.

Donald A. Berry, Robert W. Chen, Alan Zame, David C. Heath, and

Larry A. Shepp. Bandit problems with infinitely many arms. The Annals

of Statistics, 25(5):2103 – 2116, 1997. doi: 10.1214/aos/1069362389. URL

https://doi.org/10.1214/aos/1069362389.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,

Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree

search methods. IEEE Transactions on Computational Intelligence and

AI in Games, 4(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration for

multi-armed bandit problems, 2010.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-

armed bandits, 2011.

Alexandra Carpentier and Michal Valko. Simple regret for infinitely many

armed bandits, 2015.

W.G. Cochran. Sampling Techniques, 3Rd Edition. A Wiley publication in

applied statistics. Wiley India Pvt. Limited, 2007. ISBN 9788126515240.

URL https://books.google.it/books?id=xbNn41DUrNwC.

77

Adrien Couetoux and Hassen Doghmen. Adding Double Progressive

Widening to Upper Confidence Trees to Cope with Uncertainty in

Planning Problems. In The 9th European Workshop on Reinforce-

ment Learning (EWRL-9), Athens, Greece, September 2011. URL

https://hal.inria.fr/hal-00745207.

Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Tey-

taud, and Nicolas Bonnard. Continuous upper confidence trees. In Carlos

A. Coello Coello, editor, Learning and Intelligent Optimization, pages

433–445, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-

3-642-25566-3.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search. In Paolo Ciancarini and H. Jaap van den Herik, editors,

5th International Conference on Computer and Games, Turin, Italy, May

2006. URL https://hal.inria.fr/inria-00116992.

Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best

arm identification: A unified approach to fixed budget and fixed confi-

dence. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems, volume 25.

Curran Associates, Inc., 2012.

Jean-Bastien Grill, Michal Valko, and Remi Munos. Black-box optimization

of noisy functions with unknown smoothness. In C. Cortes, N. Lawrence,

D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems, volume 28. Curran Associates, Inc., 2015.

Edward L Ionides. Truncated importance sampling. Journal of Computa-

tional and Graphical Statistics, 17(2):295–311, 2008.

Michael Kearns, Yishay Mansour, and Andrew Ng. A sparse sampling algo-

rithm for near-optimal planning in large markov decision processes. Ma-

chine Learning, 49, 06 2001. doi: 10.1023/A:1017932429737.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits

in metric spaces, 2008.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.

In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,

Machine Learning: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006.

Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

78

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge Uni-

versity Press, 2020. doi: 10.1017/9781108571401.

Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello

Restelli. Policy optimization via importance sampling. arXiv preprint

arXiv:1809.06098, 2018.

Alberto Maria Metelli, Matteo Papini, Pierluca D’Oro, and Marcello

Restelli. Policy optimization as online learning with mediator feedback,

2020.

O. Nikodym. Sur une généralisation des intégrales de M. J. Radon. Fundam.

Math., 15:131–179, 1930. ISSN 0016-2736. doi: 10.4064/fm-15-1-131-179.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Matteo Papini, Alberto Maria Metelli, Lorenzo Lupo, and Marcello Restelli.

Optimistic policy optimization via multiple importance sampling. In Ka-

malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Pro-

ceedings of Machine Learning Research, pages 4989–4999. PMLR, 09–15

Jun 2019. URL http://proceedings.mlr.press/v97/papini19a.html.

Albert Penner. The physics of putting. Canadian Journal of Physics, 80:

83–96, 02 2002. doi: 10.1139/p01-137.

M.L. Puterman. Markov Decision Processes: Discrete Stochas-

tic Dynamic Programming. Wiley Series in Probability

and Statistics. Wiley, 2005. ISBN 9780471727828. URL

https://books.google.it/books?id=Y-gmAQAAIAAJ.

Alfréd Rényi. On measures of entropy and information. In Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Probabil-

ity, Volume 1: Contributions to the Theory of Statistics, pages 547–561.

University of California Press, 1961.

Philippe Rolet, Michèle Sebag, and Olivier Teytaud. Upper Confidence

Trees and Billiards for Optimal Active Learning. In CAP09, Hammamet,

Tunisie, Tunisia, 2009. URL https://hal.inria.fr/inria-00369787.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:

An Introduction. The MIT Press, second edition, 2018. URL

http://incompleteideas.net/book/the-book-2nd.html.

79

Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-

niques for monte carlo rendering. In Proceedings of the 22nd Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH

’95, page 419–428, New York, NY, USA, 1995. Association for Comput-

ing Machinery. ISBN 0897917014. doi: 10.1145/218380.218498. URL

https://doi.org/10.1145/218380.218498.

80

