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Sommario

Al giorno d’oggi, l’uso di strumenti di machine learning e deep learning è
stato esteso a innumerevoli applicazioni, grazie anche al progresso tecno-
logico e al conseguente aumento della potenza di calcolo disponibile, che
rende possibile elaborare grandi quantità di dati in un tempo notevolmente
ridotto.

La new wave del machine learning ha investito anche il mondo dell’i-
maging medico, dimostrando di rappresentare un potente strumento per
diverse applicazioni; in particolare, nel caso delle tecniche di gamma ima-
ging come PET e SPECT, i principali campi di applicazione sono stati
la Computer-aided Detection (CAD), dove il machine learning è coinvolto
come strumento di supporto decisionale per i medici al fine di eseguire dia-
gnosi precoci e più accurate a partire da immagini mediche, l’elaborazione
di immagini, principalmente come strumento per la riduzione del rumore,
e, infine, la localizzazione della posizione di scintillazione di fotoni γ per
rivelatori monolitici e pixelati.

Questo progetto di tesi può essere collocato esattamente nell’ultimo
contesto; il lavoro è consistito nell’implementazione e nella valutazione
di due diversi approcci basati sul machine learning per la stima delle
coordinate di interazione dei fotoni γ in una gamma camera per SPECT
imaging.

Il primo approccio è consistito in una tecnica di unsupervised lear-
ning, denominata Principal Component Analysis (PCA). La PCA è una
tecnica di riduzione della dimensionalità, che consiste nell’eseguire una
trasformazione lineare dello spazio originale dei dati in un nuovo spazio
con dimensionalità ridotta. Questa trasformazione è eseguita in modo
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tale che l’informazione contenuta nei dati originali venga mantenuta pres-
soché invariata. La riduzione con PCA è stata integrata all’interno di due
metodi di ricostruzione statistica già in uso per la ricostruzione di even-
ti gamma, il metodo della Maximum Likelihood (ML) e il metodo Least
Squares (LS); tuttavia, a differenza di questi ultimi, i metodi proposti,
ML-PCA e LS-PCA, non operano nello spazio originario dei dati, ovvero
quello costituito dai segnali dei fotorivelatori, ma in uno spazio a bassa
dimensionalità ottenuto dopo la riduzione con PCA.

Il secondo metodo ha utilizzato un’altra tecnica di machine learning,
costituita dai Decision Trees. I Decision Trees sono una tecnica di super-
vised learning utilizzata per risolvere problemi di classificazione e regres-
sione. In particolare, nell’ambito del progetto di tesi, il problema della
localizzazione delle coordinate di scintillazione (x,y) del fotone gamma
all’interno dello scintillatore è stato risolto dopo un’opportuna conversio-
ne in un problema di classificazione discreto, che è stato poi affrontato
implementando una cascata di Decision Trees.

Le misure di validazione simulate e sperimentali per le due tecniche
sono state eseguite su una gamma camera continua, disponibile presso il
Politecnico di Milano e sviluppata nell’ambito di un precedente progetto
di ricerca, denominato INSERT.

INSERT è un progetto di ricerca finanziato dal "Seventh Framework
Program " della Commissione Europea e avviato l’1 Marzo del 2013; l’o-
biettivo era lo sviluppo di un compatto inserto SPECT da integrare al-
l’interno di scanner commerciali per la risonanza magnetica, al fine di una
migliore stratificazione del tumore al cervello e una precoce valutazione
dell’efficacia del trattamento. Nel contesto del progetto INSERT, il grup-
po del Politecnico di Milano è stato incaricato dello sviluppo dei moduli
di rilevamento gamma dello scanner SPECT e della relativa elettronica
di lettura. Sono stati sviluppati due tipi di sistemi di rilevamento per di-
verse applicazioni: un sistema preclinico, destinato all’imaging di piccoli
animali, e uno clinico, con dimensioni superiori al preclinico e utilizzato
per l’imaging della testa e del collo nell’uomo.

In questo lavoro di tesi, è stato utilizzato il modulo clinico di INSERT,
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sia per le misure simulate che per quelle sperimentali.
La discussione è organizzata in sei capitoli.
Il primo capitolo fornirà una panoramica sulle radiazioni gamma, le

loro caratteristiche e le loro applicazioni nell’imaging medico. Inoltre,
verranno descritte le caratteristiche e i componenti di una gamma camera,
con un focus particolare sullo scanner INSERT SPECT.

Il secondo capitolo sarà incentrato sui SiPMs, i fotorilevatori imple-
mentati nel modulo INSERT, i loro principi di funzionamento e le loro
principali cifre di merito. Nell’ultima parte del capitolo, verrà fornita una
breve descrizione delle modalità di lettura dei SiPMs e, in particolare,
della strategia utilizzata in INSERT.

Il terzo capitolo descriverà i principali metodi di ricostruzione che
sono comunemente utilizzati per la ricostruzione planare dell’immagine
SPECT, sottolineando i corrispondenti vantaggi e limiti. Inoltre, verranno
descritti i metodi di ricostruzione implementati nel sistema INSERT.

Il quarto e il quinto capitolo, invece, introdurranno rispettivamente
il metodo di ricostruzione basato sulla PCA e quello basato sui DT; in
entrambi i capitoli, inizialmente, verranno introdotti i principi teorici e le
applicazioni di questi due metodi nel campo dell’imaging medico. Succes-
sivamente, verrà descritto il processo utilizzato per implementare i due me-
todi di ricostruzione e, infine, verranno mostrati i corrispondenti risultati
ottenuti sulle simulazioni e sulle misure sperimentali.

L’ultimo capitolo, invece, trarrà alcune conclusioni finali sul lavoro e
possibili sviluppi futuri.





Abstract

Nowadays, the use of machine learning and deep learning tools has been
extended to innumerable applications, accomplished by the advancement
in technologies and the consequent increase in the available computational
power, which makes possible to process big amount of data in a reduced
time.

The wave of machine learning invested medical imaging world too,
proving to represent a powerful instrument for different applications; in
particular, in the case of γ-ray imaging techniques like PET and SPECT,
the main fields of application have been Computer-aided Detection (CAD),
where machine learning is involved as a decisional support for physicians
in order to perform early or more accurate diagnosis from medical images,
image processing, mostly as tool for the reduction of noise in the image,
and, finally, the localization of the scintillation position of γ photons for
both monolithic and pixelated detectors.

This thesis project can be placed exactly in the last framework; the
work consisted in the implementation and evaluation of two different ma-
chine learning-based approaches for the estimation of the interaction co-
ordinates of γ photons in a gamma camera for SPECT imaging.

The first approach consisted in a unsupervised learning technique,
called Principal Component Analysis (PCA). PCA is a dimensionality
reduction technique, which consists in performing a linear transformation
of the original data space into a new space with lower dimensionality.
This transformation is implemented in a way that the information con-
tained in the original data is mostly preserved. PCA reduction has been
integrated within two statistical reconstruction methods already in use
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for event reconstruction, Maximum Likelihood (ML) and Least Square
(LS); however, differently from these latter, the proposed methods, ML-
PCA and LS-PCA, do not operate in the original space, that is the one
constituted by the photodetectors signals, but in a low-dimensional space
obtained after the PCA reduction.

The second method made use of another machine learning technique,
which is represented by Decision Trees. Decision Trees are a supervised
learning method, which is used in order to solve classification and re-
gression problems. In particular, in the framework of the current thesis
project, the problem of localization of the (x,y) scintillation coordinates
of the gamma photon inside the scintillator has been solved by converting
it into a discrete classification problem, which has been then addressed by
implementing a cascade of decision trees.

The simulated and experimental validation measurements for the two
techniques have been carried out on a continuous gamma camera available
at Politecnico di Milano and developed in the framework of a previous
research project, called INSERT.

INSERT is a research project funded by the Seventh Framework Pro-
gram of the European Commission and started on March 1st, 2013; the
goal was the development of a compact SPECT insert to be integrated
inside commercial MR scanners for enhanced stratification of brain tumor
and early assessment of treatment efficacy. In the context of INSERT
project, Politecnico di Milano group was responsible for the development
of the gamma ray detection modules of the SPECT scanner and the related
readout electronics. Two types of detection systems have been developed
for different applications: a preclinical system, aimed at small animals
imaging, and a clinical one, with higher dimensions than the preclinical
and used for human head/neck imaging. In this work, the clinical IN-
SERT detection module has been used for running both simulated and
experimental measurements.

The discussion is organized into six chapters.
The first one will provide an overview on gamma radiations, their

characteristics and their applications in medical imaging. Furthermore,
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the characteristics and components of a gamma camera will be described,
with a particular focus on INSERT SPECT scanner.

The second chapter will focus on SiPMs, the photodetectors imple-
mented in INSERT module, their working principles and figures of merit.
In the last part of the chapter, a brief description of the SiPMs readout
strategy implemented in INSERT will be also provided.

The third chapter will describe the main reconstruction methods that
are commonly used for the planar reconstruction of the image in SPECT,
showing their strengths and limitations. Furthermore, the reconstruction
methods implemented in INSERT system will be highlighted.

The fourth and fifth chapters, instead, will introduce respectively the
PCA-based reconstruction and the DT-based reconstruction; in both chap-
ters, in the first place, the theoretical principles and the applications of
these two methods in medical imaging will be introduced. Successively,
the process followed in order to implement the two reconstruction meth-
ods will be described and, finally, the corresponding results on simulations
and experimental measurements will be shown.

The last chapter, instead, will draw some final conclusions about the
work and possible future developments.





Chapter 1

Gamma imaging and INSERT

Functional imaging techniques, like PET and SPECT, constitute nowa-
days a major instrument in the field of nuclear medicine and diagnostics.
Both of them are based on the detection of gamma radiations, in order to
image body tissues. This introductory chapter will provide an overview of
gamma radiation characteristics, their detection modalities and their main
applications in the imaging field. Moreover, the concept of multimodality
will be addressed, with a particular attention on INSERT project, the mul-
timodal imaging system on which the proposed reconstruction methods have
been validated.

1.1 Gamma rays

Gamma (or γ) radiations are a type of electromagnetic radiation, whose
energy range is tipically higher than tens of keV. Looking at the elec-
tromagnetic spectrum (figure 1.1), it is possible to observe that there is
a region where γ-rays and x-rays, the other type of radiation commonly
used in medical imaging, coexist: indeed, γ-radiations which are emitted
by radioactive decay usually possess energies between some keV to tens of
MeV. However, both the mechanisms of generation and interaction with
the matter of these two radiations are substantially different.

γ-rays can originate by two phenomenons: the first one is the decay

1



2 CHAPTER 1. GAMMA IMAGING AND INSERT

of the nucleus of a radionuclide, while the other one is represented by
positron annihilation.

x-rays, instead, are emitted by electrons outside the nucleus via fluo-
rescence, Bremsstrahlung phenomenon and synchrotron light.

Figure 1.1: Electromagnetic spectrum

1.1.1 Mechanisms of generation

γ-radiations can be generated by different phenomena:

• emission from the nucleus of a radionuclide after radioactive decay

• generation of two γ-rays, travelling in opposite directions, caused by
positron annihilation

The first phenomenon consists in the emission of γ radiations from
radioactive isotopes, which are atoms whose inner core, their nucleus, is
unstable. By decaying, the nuclei of these atoms change their composi-
tion and properties to reach a less energetic and more stable state, and
simultaneously they emit radiations (not only γ, but also α and β).

The positron annihilation, instead, consists in the emission of two op-
posite γ-radiations, following the interaction between an electron and a
positron. In β+ (positron) decay, a nuclide transforms one of its core pro-
tons (p) into a neutron (n) and emits a positron (β+ ), which is a particle
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with the same identical mass of an electron but positively charged [1], and
a neutrino (ν):

p −→ n+ β+ + ν (1.1)

The average positron range in matter depends on the positron’s energy
and material characteristics, such as the density and the atomic number.
At the end of its path, the positron, being anti-matter to electrons, will
recombine with an atomic electron, giving rise to the annihilation phe-
nomenon. By annihilating, the electron and the positron convert their
mass into energy and produce a pair of 511 keV annihilation photons
traveling in (almost) opposite directions. The 511 keV photon energy (E)
comes from Einstein’s famous equation:

E = mc2 (1.2)

where m is the mass of the electron or positron and c is the speed of light.

Figure 1.2: Annihilation mechanism

1.1.2 Interactions of gamma-rays with matter

In general, there are three main phenomena in nature which allow the
absorption of a radiation by a material [2]:

a) Photoelectric absorption consists in the interaction between an
incident photon and an inner shell electron in the atom. The electron
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acquires energy from the photon, and so it reaches an energetic level
which allows it to be removed from its shell.

Figure 1.3: Photoelectric absorption

It is important to underline that the incident photon is completely
absorbed in the process; this explains how the photoelectric effect
contributes to the attenuation of the radiations beam as it passes
through matter.

The kinetic energy possessed by the photoelectron, which is equal
to the amount of energy lost by the beam, is given by the following
equation:

Eloss = Ek = Eph − Ebind (1.3)

where Eph is the energy of the incident photon, while Ebind is the
binding energy of the shell. Indeed, when the electron is kicked
out from its shell, it leaves a vacancy (a positive charge), which is
quickly occupied by an electron from a close more energetic shell;
this phenomenon can be accompanied by the emission of a radiation
(fluorescence) or not. The x-rays emitted by fluorescence are usually
reabsorbed by photoelectric interactions, but, if their energy is too
high, they can escape the material, thus appearing subsequently in
the reconstructed emission spectrum.
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b) Compton scattering is an interaction process characterized by the
fact that not all the energy of the incoming photon is released during
the interaction. Indeed, in this case, the photon does not kick out
an internal electron; it just interacts with a weakly bound electron,
loosing part of its energy and deviating from its original trajectory
(scattering).

Figure 1.4: Compton scattering

More precisely, the residual energy after the scattering is given by
the difference between the energy of the impinging photon and the
energy of the emitted electron. Since not only energy but also mo-
mentum has to be conserved, the amount of energy loss during the
interaction and the interaction probability itself, depend on the an-
gle of collision, according to the Klein-Nishina formula [3]:

Eloss = Eph ·
(

1− 1
1 + Eph

m0c2 · (1− cos θ)

)
(1.4)

Note that a particular case of Compton interaction is Rayleigh scat-
tering or elastic scattering , which is characterized by a deflection of
the original photon with no loss of energy; this happens because the
energy possessed by the photon is not sufficiently high to kick-out
an electron.

This phenomenon is particularly "dangerous" in medical imaging
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techniques like PET and SPECT. Indeed, elastic scattering can also
happen inside the body of the patient; when the elastically scat-
tered photons leave the body of the patient, they are detected by
the camera, which is not able to discriminate an unscattered pho-
ton from a photon which has been elastically scattered, being their
corresponding energies equal.

Thus, elastically scattered γ photons are associated to a wrong scin-
tillation position, and this phenomenon usually worsens the quality
of the image.

c) Pair production is an interaction process which happens generally
at higher energy than the other two: indeed, in pair production,
the impinging radiation is absorbed through the generation of an
electron-positron pair. In other words, if the gamma photon has a
energy at least equal to 1,022 MeV (twice the energy of an electron,
which is given by 2m0c

2) and if it’s located in the coulomb field
of a nucleus, it loses the previously mentioned amount of energy,
generating a electron-positron pair. Of course this phenomenon can
happen also at energy higher than 1,022 MeV.

Figure 1.5: Pair production

Each of the three mechanisms described above gives its contribution
to the overall attenuation coefficient, which is obtained by the following
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Figure 1.6: Attenuation coefficient of iron

relationship:
µ = µphotoelectric + µcompton + µpairs (1.5)

Photon attenuation coefficient has a crucial importance in the absorp-
tion process, because it defines the rate of the exponential decay of elec-
tromagnetic radiation intensity as a function of the depth of penetration,
according to the Beer-Lambert equation:

I(x) = I0 · e−µ·x (1.6)

where x is the depth of penetration and I0 is the intensity of the incident
beam.

In figure 1.6, by way of an example, the attenuation coefficient of iron
is plotted in a log-log scale, in function of the energy of the radiation.
It can be noticed how, at lower energies, the predominant contribution
to the total attenuation coefficient comes from photoelectric interactions,
while at higher energy values Compton and pair productions become more
significant. Since the attenuation coefficient depends also on the atomic
number of the absorbing material, this plot is characteristic of each ma-
terial.
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1.2 Gamma imaging

Throughout the years, the interest of the scientific community in γ radia-
tion detectors has grown more and more, since they have proved to have
applications in different fields, from nuclear physics to medical imaging.
In the field of nuclear physics, the main application is spectroscopy, which
consists in measuring the emission spectrum of a sample, in order to char-
acterize it by individuating, for example, the type of present γ-emitter, or
estimating its concentration.

Another major application of γ-rays is medical diagnostic. Indeed,
x-rays imaging techniques like CT or radiography provide informations
about the morphology and anatomy of a tissue, which, often, are not
sufficient in order to obtain a complete clinical framework required for
diagnosing and staging a disease. Many times, functional or metabolic
changes can happen independently from anatomical ones.

The introduction of γ-rays in medical imaging made possible to individ-
uate and monitor functional and metabolic changes of a tissue, with high
resolution [4]. The principle exploited by both PET and SPECT, which
are the two main medical imaging techniques employing γ-radiations, is
to obtain images representing the distribution of γ-rays emitters inside
the body of the patient: a substance containing specific receptors, tagged
with a radionuclide is injected in the patient’s body and then the tracer
spreads and accumulates in different regions proportionally to the rate of
delivery of nutrients to tissues.

1.2.1 PET/SPECT

Nowadays, SPECT (Single-Photon Emission Computed Tomography) and
PET (Positron Emission Tomography ) represent the most used functional
imaging techniques. Even if they are both based on the detection of γ
radiations and, consequently, they both exploit a gamma camera, their
working principle is quite different.

In SPECT, spatial resolution is introduced in the system by the use
of collimators, that absorb γ-photons not coming from a specific direction
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Figure 1.7: Different types of collimators that accept photons incoming from
different directions

[5]. As a result, only photons emitted from a specific direction are detected
by the system and the emission position can be ascertained. The main
drawback of using a collimator is the reduced efficiency of the detector,
since many emitted photons are absorbed by the collimator itself and not
detected. The consequence of the efficiency reduction is that, in order to
collect a significant amount of signal, the dose injected into the patient
has to be be increased, thus limiting SPECT application to children or
at-risk subjects.

Furthermore, when using a collimator, a trade-off between the geo-
metrical efficiency of the collimator and the achievable spatial resolution
is introduced; in order to improve the spatial resolution, geometrical effi-
ciency unavoidably has to be decreased.

Differently from SPECT, PET detects the interaction position of the
two annihilation photons that are produced back-to-back after positron
emission from a radionuclide tagged tracer molecule, which is chosen to
mark a specific function in the body on a biochemistry level. Due to the
positron annihilation, we expect to observe two photons at roughly the
same time (in coincidence) in the detector ring; the annihilation event,



10 CHAPTER 1. GAMMA IMAGING AND INSERT

i.e. the radioactive tracer, will be then located somewhere on the line
connecting the two photon-detection points.

This "electronic collimation" represents an advantage respect to SPECT,
since the knowledge of the photon direction prevents from the use of colli-
mators in order to restrict all the possible directions of the photons reach-
ing the detectors; this leads to an improvement of the detection efficiency,
reducing also the dose to be injected.

The reasons why photons detections do not happen at the exact same
time are different. The first is that the annihilation event may occur closer
to one detector surface than the other, leading to a slight but measurable
delay of one photon respect to the other. Another crucial factor which
causes the temporal delay between the two detections is the finite timing
resolution of the detector, i.e. its timing uncertainty, which arises from
the decay time of the scintillation in the crystal and the processing time
of the photodetectors signals.

These effects lead to the use of a coincidence time window on the order
of 6-10 ns [5]. If the two detections of the photons happen within each
other’s coincidence window, they are assumed to be originating from the
same annihilation event, which is attributed to the line-of-response (LOR)
that connects the two detection points.

The problem of measuring the temporal delay between the two detec-
tions with a high accuracy becomes central in the Time-of-flight (TOF)
PET: with TOF-PET imaging the relative time difference between the
detection of the two annihilation photons is used to determine the most
likely location of the annihilation event along the LOR [6].

A second important difference between SPECT and PET is the type
of radioactive tracers used for the two techniques. Tracers consist in ra-
diolabelled biomarkers that are introduced into the patient’s organism,
mainly to examine his organ or tissues functions. The labelling procedure
consists in chemical linking of a radionuclide to the specific structure of a
biomarker [7].

The main figures of merit to consider when dealing with radioactive
sources are:
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• Activity: is defined as the number of decaying atoms per unit time
in a radioactive sample and measured in Becquerel [s−1], equivalent
to one disintegration per second.

The activity of a radioactive source decreases exponentially, in ac-
cordance to the exponential-decay law:

A(t) = A0e
−λ(t−t0) (1.7)

where A0 is the number of decaying atoms per unit time at the
starting time t0, A(t) is the decays rate at time t and λ [s−1] is the
decay constant of the radioactive source.

Therefore, the initial population of atoms decays exponentially at
a rate that depends on the decay constant. A low activity leads to
measurements that last for a long time, but it is less stressful for the
acquisition system.

• Half life: is the time required by half of the original population
of radioactive nuclides to decay or, referring to activity, the time
required by the starting activity A0 to decrease by half. The rela-
tionship between the half-life and the decay constant of a radioactive
source can be described by the equation:

λ = ln 2
τ1/2

(1.8)

where τ1/2 [s] is the half-life.

• Energy: is characteristic of each radioactive source. The emitted
γ-rays interact with the patient’s tissues before leaving the body;
the type of interaction is mainly Compton scattering. This results
in a broadening of the energy spectrum before they reach the de-
tector. The energy spectrum constitutes a unique signature of the
radioactive element: there is a one-to-one correlation between them.

For what regards SPECT applications, lots of radiopharmaceuticals
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SPECT Radionuclide Half-life Principal γ emission [keV]
99mTc 6.01 h 140

123I 13.27 h 159
67Ga 3.26 d 93.3 - 184.6
111In 2.80 d 171.3 - 245.4
201Tl 3.04 d 167.4
155Tb 5.32 d 86.5 - 105.3

Table 1.1: Main SPECT radioisotopes: half-life and energy of emitted gam-
mas [8].

are available: indeed, radioactive isotopes emitting single photons can
be bound to a high number of biomarkers. A list of the more common
radioactive sources employed for SPECT is showed in table 1.1. Radio-
tracers commonly used in SPECT are characterized by a good trade-off
between half-life and energy of the emitted photons. For Technetium,
which is the most widely used radio-tracer for SPECT, half life is equal
to about 6 hours, thus providing enough time to be able to transport the
source and perform examinations but also keeping the patient exposure
limited. The decay curve for Technetium is depicted in figure 1.8.

Figure 1.8: Radioactive decay law for Technetium-99m. At the beginning the
activity is equal to 1 MBq; after 6 hours (half-life) it decreases to 0.5 MBq.
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Radioisotopes for SPECT, however, may modify the biological proper-
ties of biomarkers they are bounded to, since they are atoms not naturally
present in biological compounds. If radioisotopes for SPECT are charac-
terized by a relatively long half-time and a low inertia towards biomarkers,
the ones employed in PET show opposite characteristics. The main ra-
diotracers for PET are derived by carbon (11C ), nitrogen (13N) , and
oxygen (15O), and so, being elements commonly present in biological sys-
tems, they can be bound to specific molecules without altering them. On
the other side, they are characterized by very short half-lives and, thus,
require cyclotrons on site to be produced.

Finally, one of SPECT useful properties is the possibility of imaging
more than one radionuclide simultaneously [9]. In order to be performed,
this so-called dual-isotope imaging requires sufficient energy resolution of
the scanner to separately identify the energies of each employed radionu-
clide. In this way, events produced by different sources can be employed
to create separate images. The clinical relevance of this imaging modality
consists in the possibility to simultaneously assess more than one func-
tional biological property.

Dual-isotope imaging is not possible in PET, since all positrons emitted
by radionuclides produce a couple of 511 keV during annihilation with
electrons.

1.2.2 Gamma camera

The key component of a system for gamma imaging is the gamma camera,
that is the module aimed to detect single γ-rays and then convert them
into electronic signals to be processed, in order to finally estimate the
position and the energy of the interaction between each γ photon and the
module itself.

The conversion from radiation to electronic signals can be executed
following two main strategies:

• direct conversion: in a direct conversion device, the γ radiations
are absorbed and directly converted into a number of electrons pro-
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portional to the energy of the incident beam.

• indirect conversion: the problem of the conversion from γ-photons
to electric signals is decoupled. The first step, which consists in ab-
sorbing the radiation, is performed by inorganic scintillators, dense
crystals made by elements at high atomic number, which, for this
reason, have a high capability to absorb the radiation. When excited
by γ-rays, they undergo a "scintillation", namely they emit optical
photons, which isotropically spread inside the crystal. The following
step consists, instead, in converting the released optical photons in
charge carriers, which can be subsequently processed by a read-out
circuitry.

The indirect conversion is characterized by a greater detection effi-
ciency, thanks to the use of scintillation crystals, but the decoupling of
the detection process amplifies the error on output signals. The indirect-
type conversion is usually preferred over the direct one, because of its
flexibility and the possibility to optimize the absorption efficiency using
materials at high atomic number.

In general, depending on how the scintillator crystals and the photode-
tectors are coupled, two different families of gamma-cameras, illustrated
in figure 1.9, can be distinguished:

• pixelated camera: a pixelated camera is constituted by an array
of photodetectors, each one individually coupled with its own scin-
tillation crystal, forming an independent detection unit, which is
defined as pixel, and whose dimension defines the spatial resolution
of the camera.

• Anger camera: this type of configuration is based on a single,
continuous, monolithic scintillator crystal, which is coupled to an
array of photodetectors, which provide an output current propor-
tional to the number of incident photons [10]. In this case, the
spatial resolution is no longer limited to the dimension of the pixel;
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indeed, considering the same detection surface, it is possible to ob-
tain the same spatial resolution using a lower number of photodetec-
tors. Furthermore, using less photodetectors implies of course less
readout electronics channels to be implemented, and consequently,
less costs.

Figure 1.9: Pixelated and Anger cameras

While for pixelated detectors each pixel works as an independent detection
module and is coupled with its proper scintillation crystal, in the case
of Anger cameras, a photon interacting inside the continuous scintillator
activates simultaneously different photodetectors; for this reason, Anger
cameras require dedicated reconstruction algorithms in order to estimate
the exact position of interaction with the crystal, on the basis of the signal
detected by each photodetector.

Hereby, the following discussion will focus on continous detection mod-
ules rather than pixelated detectors.

The key elements composing a continuous gamma camera are:

• Scintillation crystal

• Reflective coverings

• Optical coupling

• Photodetectors
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Scintillation crystal

The scintillator is the component designated to the absorption and con-
version of the γ-radiations into a bundle of lower energy photons (typically
in the UV or visible range).

Scintillators can be divided in two main categories: inorganic scintil-
lators, that have a high conversion efficiency but are generally slow, and
organic ones, that have opposite characteristics. Inorganic scintillators
are the most widely used in nuclear medicine; they are solid crystals com-
posed of two or more atoms with high atomic number, thus providing
dense material, with a high absorption probability. Lambert-Beer law,
already defined in equation 1.6 describes the probability for a certain ma-
terial to absorb radiations at a fixed energy, with dependence to the depth
of penetration.

The main physical parameters to account for, when dealing with scin-
tillation crystals, are:

• Density: it gives an indication of the gamma radiation absorption
capability of the scintillator. Since γ-rays interact primarily with
atomic electrons, the attenuation coefficient is proportional to the
electron density, which, in turn, is proportional to the bulk density of
the absorbing material. As a consequence, the higher the density of
the material, the higher will be its capability to absorb the radiation.

• Photon Yield: it defines the average number of photons generated
in a scintillation process as function of the impinging gamma ray en-
ergy. Therefore, it represents the conversion efficiency of the crystal
and its unit of measure is number of photons over keV ( ph

keV). Since
scintillation photons represent the useful signal to be read, higher
values for this parameter allow better sensitivity and SNR (Signal
to Noise Ratio).

• Refractive index: it is an optical characteristic of the medium,
expressed as a dimensionless number, describing light propagation
in a medium. Considering the interface of two objects with different
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refractive indexes, it is possible to calculate the reflection probability
of an impinging photon knowing its energy and the incidence angle
with respect to the interface plane. For what concern scintillators,
ideally, one would like the refractive index to be as close as possi-
ble to the value of the materials which are optically coupled to the
scintillator itself. In such a way, collection of light from the crystal
to the photodetector array is not affected by reflection phenomena.

• Scintillation decay time: generation of photons in the crystal
exhibits an exponential time distribution, which is related to the
cascade of processes involved in scintillation.

Therefore, this characteristic is described by a decay time constant,
which ranges from few tens of nanoseconds to tens of microseconds.
In some cases, the time distribution is better described by a com-
bination of two or more exponentials, with an equivalent number of
time decay constants.

Decay time affects signal collection by the readout electronics; in-
deed, in order to correctly acquire all the charge generated by a
certain event, an integration of the photodetectors signal is needed.

• Maximum wavelength: this parameter resumes a more complex
characteristic of scintillators, that is the light emission spectrum.
Visible photons generated during the scintillation show wavelengths
continuously distributed around a value corresponding to the maxi-
mum probability of emission. This value is considered as maximum
wavelength or peak wavelength. When developing a gamma-camera,
the emission spectrum of the scintillator must be matched with the
absorption spectrum of the employed photodetectors, in order to
optimize the detection efficiency.

• Intrinsic Energy Resolution: it is expressed in terms of percent-
age and represents the intrinsic scintillator crystal contribution to
the energy resolution capability of a radiation detector. Indeed, lo-
cal variations in the provided scintillation light output can be caused
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by material inhomogeneities, non-proportional response to energy or
non-uniform reflectivity of the reflecting covering.

Reflective coverings

The amount of scintillation light collected on photodetectors is a crucial
parameter for both imaging and energy resolution performances, since it
represents the signal of interest. Light produced in a scintillation event
spreads in all directions inside the crystal from the gamma interaction site:
the dispersion of these photons bundle is isotropic and only a percentage
of them, roughly estimated by a solid angle calculation, directly hits the
photodetection array. The optimization of the gamma detector requires to
enhance the light collection also for those photons whose initial trajectory
is not directed to the photodetection plane. For this reason, reflective
materials are employed, with the objective to redirect photons towards the
sensitive array. However, it has to be noticed that, although the presence
of reflective coverings on the lateral walls is important for improving the
energy resolution of the detector, it introduces some distorsions in the
reconstruction of events interacting along the borders of the scintillator.

The most important parameters for reflectors are:

• Refractive index: it is fundamental to calculate the amount of
reflected light at an interface between two media as function of the
incident angle.

• Reflectivity: it is the average percentage of light reflected by a ma-
terial given a light bundle with uniform angular impact direction.
For light collection applications in scintillators, a high value of reflec-
tivity is required from the covering materials to increase collection
efficiency of photons.

Optical coupling

Differently from the lateral sides, where reflection is enhanced to improve
energy resolution, reflection phenomenon must be minimized at the sur-
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face from which the scintillator is coupled to photodetectors to prevent
internal trapping of the light. For this reason, the crystal is coupled to
the photodetectors array by means of materials with particular optical
properties, generally a transparent grease or glue (resin).

Photodetectors

An indirect conversion detector has to convert optical photons into elec-
tric signals. The principles which can allow this conversion are different,
depending on the type of detector, but, in general, each photodetector can
be evaluated by some key parameters:

• Photodetection efficiency: represents the conversion efficiency,
namely the percentage of incident photons which are actually con-
verted into charge carriers.

This characteristic depends on several factors:

– the physical conversion process laying for the specific photode-
tector

– geometrical features of the photodetector, such as the Fill Fac-
tor (FF), namely the ratio between the active sensitive area of
a photodetector and its total area

– the wavelength of the impinging photon

– the Quantum Efficiency (QE) of the composing material, de-
fined as the ratio between the number of photoelectrons gener-
ated and the number of incident photons (which ideally should
be 100 % )

• DCR (Dark Count Rate): it expresses, in Hz/mm2, the number
of electron-hole pairs spontaneously generated in photodetectors be-
cause of temperature.

This phenomenon introduces a random noise contribution that adds
to useful output signals.
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• Gain: a photodetector has to possess a certain internal gain, in
order to create appreciable output electrical signals even in presence
of few incoming optical photons.

• Response time: the conversion of photons into carriers and the
following collection of charges at the electrodes present a time de-
velopment that depends on the physics and on the geometry of the
detector. The ideal detector would have a short pulse duration, close
to a Dirac’s delta impulse response.

• Temperature stability: it is necessary to ensure a proper func-
tioning of the detector in different environmental conditions.

• Bias voltages: lower values of biasing volage are desirable, meaning
less power dissipation and heat.

1.2.3 Figures of merit

In order to quantify the detection and imaging performances of the global
system, several meaningful parameters are usually employed:

• Spatial resolution: it is defined as the minimum distance required
between two distinct sources of gamma radiation to visualize them
as distinct objects on the output image.

Spatial resolution is associated to the concept of Point Spread Func-
tion (PSF), representing the spatial response of the gamma imaging
system to a point source. PSF is usually described in the image
plane with a Gaussian distribution; hence, spatial resolution is fre-
quently measured as the full width at half maximum (FWHM) of
the PSF characterizing an imaging device.

• Sensitivity: it is defined as the ratio between the number of events
acquired by the instrument in the unit of time and the activity of
the source (expressed in Bq). The sensitivity is closely related to
the Count Rate (CR) , which is the maximum temporal frequency



1.3 MULTIMODAL IMAGING AND INSERT 21

of radioactive decays that the instrument is able to acquire. Pulses
pileup, namely the superposition of light flashes produced by distin-
guished events, represents the main bottleneck for the count rate,
preventing the gamma camera to have satisfactory performances
when the activity of the radioactive source is increased.

• Energy resolution: it is defined as the minimum energy gap exist-
ing between two gamma-sources which can be distinguished by the
detection system. Even if a population of detected monoenergetic
γ photons is considered, the resulting energy distribution measured
by a gamma camera is well represented by a Gaussian fuction. The
reason for this is attributable to the intrinsic stochastic processes
regarding scintillation and electric signal production.

• Fields of view (FOV): it is defined as the extent of the active
detection surface of the system able to detect gamma events.

Usually, two sub-sections of this area are defined:

– Useful FOV (UFOV), which is the portion where events are
reconstructed without showing particular non-linear effects.

– Central FOV (CFOV), which corresponds to the more central
area of the detector usually providing better spatial resolution.

1.3 Multimodal imaging and INSERT

1.3.1 Multimodality

Today, medical imaging technologies are expected to provide an adequate
grade of correlated information between anatomical structure and func-
tional processes. Indeed, anatomical imaging does not always provide the
complete clinical framework required for diagnosing and staging diseases
or monitoring response to therapies, since functional or metabolic changes
can occur independently of anatomical ones. This new paradigm regarding
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combination of functional and anatomical information in medical images
found its actualization in multimodal techniques.

This expression is employed referring to the development of technolog-
ical systems or computational approaches allowing to merge images from
different medical modalities by performing their co-registration in space
and time.

Many attempts of developing multimodal imaging systems have taken
place during the years.

Initially, multimodality was intended just like retrospective software
registration of volumetric datasets of patient’s body districts [11]. Of
course, this approach presents many unconvenients to face; changes in pa-
tients positioning passing from an imaging devices to the other, or simply
organ motions during the acquisitions make the precise overlapping of the
two recordings particularly challenging.

In order to cope with these problems, the attention of the research
moved to the development of systems, which integrate on a hardware
basis the two types of imaging modalities.

In the early 2000s, the first commercial implementations of devices
allowing multimodality on a hardware basis were introduced. These were
SPECT/CT and PET/CT scanners, in which nuclear medicine provided
functional information by using radioactive tracers and gamma-photon
detectors whereas CT was employed to image anatomical structures.

The introduction of combination of modalities through dedicated hard-
ware instruments proved to possess the ability to address scientific or clin-
ical questions that would be impossible on separate systems.

Different approaches can be used in order to design the architecture of
a multimodal scanner [12]:

• separate system approach: the two imaging scanners are placed
in two separate adjacent rooms, the patient is positioned on a imag-
ing table which move from one scanner to the other, through two
separate gantries. In this way, the time interval between the two
acquisitions is reduced, and, being the two imaging systems inde-
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(a) Sequential approach (b) Integrated approach

Figure 1.10: Scanner architectures of two types of multimodal systems.

pendent, their imaging performances are preserved and no redesign
of the system is needed.

• sequential approach: differently from separate-systems approach,
the two imaging systems are placed one next to the other, further
minimizing the possibility of patient movements from one recording
to the other. In these type of systems, a fixed coordinate transfor-
mation between the two imaging devices is applied, in order to allow
the spatial-overlapping of the two images.

• integrated approach: even if it is undoubtedly the more chal-
lenging, integrated approach is also the more promising and precise
multimodal technique, since it allows a direct co-registration, thus
preventing errors due to the non simultaneous recording of the im-
ages. The main problem is the need to re-adapt the design of the
two imaging systems, in order to prevent mutual interferences and
to cope with geometrical and encumbrance constraints.

1.3.2 INSERT project

The present thesis project has been aimed at the exploration of new ma-
chine learning-based image reconstruction methods, whose validity may
be extended, in principle, to any type of gamma camera.

The simulated and experimental validation of these techniques has
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been performed on a multimodal imaging system, which has been devel-
oped by a previous research project, called INSERT [13].

INSERT project has been funded by the Seventh Framework Program
of the European Commission and started on March 1st, 2013 (INSERT -
development of an integrated SPECT/MRI system, s.d.). The acronym
refers to the project aim of developing compact SPECT insert to be fit
inside commercial MR scanners for enhanced stratification of brain tumor
and early assessment of treatment efficacy.

In particular, the project wanted to address the need of a more power-
ful tool for the diagnosis and therapy of gliomas, a common type of brain
and spine tumor, occurring in the 33 % of the overall central nervous
system tumors and representing the 80 % of all malignant brain tumors.
Indeed, one of the techniques producing outstanding results in terms of
brain cancer treatment is radiotherapy, which requires a precise identifi-
cation and localization of the tumor and its environment. Therefore, the
integration of a new SPECT system in an existent MRI scanner, allow-
ing the two imaging modalities to operate simultaneous acquisitions, gives
the possibility to obtain multiple parameters to better define not only the
tumor position inside the patient-specific anatomy, but also its biological
characteristics.

1.3.3 INSERT clinical scanner architecture

In the framework of INSERT project, two different imaging system have
been designed and implemented: a clinical scanner, for human neck imag-
ing, and a pre-clinical, which has smaller dimension and it is finalized to
small animals imaging.

The experimental measurements which will be introduced in the fol-
lowing chapters have been collected by using one of the detection modules
of the Clinical system, which will be now briefly described in order to
provide a better understanding of the functioning of the whole detection
system.

Clinical INSERT SPECT/MRI system, depicted in figure 1.11, has
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Figure 1.11: Clinical INSERT SPECT Scanner

been designed to obtain 3D images of the distribution of radiotracers in
the whole human brain.

The system consists in three main components:

• SPECT scanner: composed by 20 detection modules (namely 20
Anger cameras each one featuring 72 channels), the collimator and
ancillary systems (laptop, cooling unit, electronic boards for com-
munication and power supply).

• RF coil: a RF coil designed in order to be inserted in the rear part
of the SPECT ring. The transmitter coil generates the oscillating
magnetic field necessary to bring the nuclear spins to the excited
state. The receiver coil measures the radiofrequency (RF) electro-
magnetic radiation produced by the spontaneous relaxation of the
nuclear spins orientation inside the subject.

• Commercial MRI: a standard magnetic resonance scanner.
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Figure 1.12: INSERT system

The three components are illustrated in figure 1.12

1.3.4 SPECT scanner

In order to form a 3D tomographic volume, providing functional informa-
tion about the patient, it is necessary to build 2D projections and then to
combine them together by dedicated algorithms.

In general, there are the main possible approaches to obtain multiple
planes acquisitions:

• Rotational approach: a set of gamma cameras (typically 4) are
located around the region to be imaged and mechanically connected
to a rotational engine that changes their angular position in order
to acquire subsequent projection planes along a circular trajectory.

• Stationary approach: several gamma cameras are orientated around
the longitudinal axis of the scanner in a ring configuration. The
number of projection planes covered corresponds to the number of
gamma cameras employed. The final geometry of the system can
be a closed or open ring. The planar images are recorded within
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the same time interval, opening the possibility for dynamic track-
ing of radionuclides and reducing the total examination time at the
expense of a higher cost.

In order to be MR-compatible, INSERT clinical system adopts a sta-
tionary approach with an open ring geometry, as depicted in figure
1.13.

(a) Clinical INSERT geometric
schematic

(b) Clinical INSERT ring, real pic-
ture

Figure 1.13: INSERT SPECT scanner adopts a partial (or open) ring ge-
ometry: the bottom part of the ring is not covered by sensitive elements. (a)
Conceptual draw showing the 20 detector modules disposition inside the instru-
ment. (b) Real picture of the scanner, only the collimator is visible from the
outside, while the 20 gamma cameras are hidden behind it.

Collimator

Collimators are made of materials with high density and high attenuation
coefficients; INSERT clinical scanner uses a Multi-mini Slit-Slat collima-
tor (MSS) made of Tungsten. This type of collimator, illustrated in figure
1.14, is made of slits orientated along the axial direction and thus influ-
encing the transaxial resolution of the detector, and slats, orientated in
the opposite direction in a way to influence the axial resolution [14].

Scintillation crystal

Clinical INSERT single module has a CsI(Tl) (Thallium-doped Ce-
sium Iodide) scintillation crystal. The crystal, depicted in figure 1.15
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Figure 1.14: MSS collimator

has base dimensions approximately equal to 100 mm x 50 mm, while its
thickness is 8 mm. Thickness choice derives from a compromise between
absorption efficiency, directly proportional to thickness, and intrinsic spa-
tial resolution, which instead improves for thinner scintillators. The reason
for that is related to the distribution of scintillation light on the photode-
tection plane. As described by Lambert-Beer law (eq. 1.7), scintillation
light is likely generated in the first millimeters of the material, then it is
seen by the photodetectors through a solid angle.

(a) Clinical crystal, geometry (b) Clinical CsI crystal, photo

Figure 1.15: Clinical INSERT crystal. Two edges of the scintillator are
slanted in order to fix the detector modules in the final SPECT architecture in
a ring shape.

How it is possible to observe from figure 1.16, the distribution of light
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on the detection plane is sharper when the crystal is thin, while the spread
increases for thick scintillators.

CsI(Tl) has high conversion efficiency (yield), which is important for
low gamma energy detection (from 100 keV to 200 keV), but the time dis-
tribution of the emitted light photons is described by a slow bi-exponential
function. The crystal is slightly hygroscopic, therefore it has to work in
a dry environment but it does not require encapsulation (unlike NaI),
making it easier to obtain a compact SPECT scanner.

Figure 1.16: Light distribution for a generic gamma event in a thin crystal
(left) and in a thicker one (right).

Parameter Value for CsI

Density [g/cm3] 4.52
Light Yield [photons/keV] 65

Refractive Index 1.79
Decay Time [µs] (room temperature) 0.68 (64 %) 3.34 (36 %)

λ of max. emission [nm] 540
Table 1.2: CsI parameters regarding interaction with gamma rays and optical
behaviour [3].

The described properties of the scintillation crystal are listed in table
1.2.

Reflective Covering

In order to preserve as much as possible the amount of scintillation light
reaching the photodetectors, INSERT CsI(Tl) crystal is covered with a
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4-layers Teflon reflective covering, with the exception of the lower photo-
sensitive plane. The choice of Teflon as reflective covering material derived
from its high reflectivity (94 %) and its diffusive reflection properties.

Optical Coupling

In INSERT detection module the coupling between the scintillator and the
array of photodetectors is provided by Meltmount, a transparent mount-
ing media similar to a resin. When heated up, the viscosity of the mate-
rial decreases and the photodetectors can be glued to the crystal surface.
The target refractive index for the coupling material was chosen as an
intermediate value between the refractive index of the scintillator crys-
tal (ncrystal = 1.79) and the one of the optical protection resin covering
the photodetectors (nresin = 1.51). However, Meltmount can have dif-
ferent refractive indexes corresponding to different mechanical properties;
it was choosen nMeltmount = 1.539 because of the appropriateness of the
corresponding mechanical properties [15].

Photodetectors

Photodetectors used in INSERT scanner are Silicon photomultipliers (SiPMs),
which, how it will be described in the next chapter, present some impor-
tant advantages in terms of low-voltage operation (with respect to PMTs),
insensitivity to magnetic fields, mechanical robustness and compactness.
A further description of the characteristics of SiPMs detector used in IN-
SERT will be provided in the following chapter.



Chapter 2

INSERT photodetectors and
signals readout

Within this chapter, the photodetector used in INSERT detection mod-
ule, the Silicon Photomultiplier or SiPM, will be described in terms of
structure, working principle and figures of merit. In the second part of
the chapter, the SiPMs signals readout strategy implemented in INSERT
clinical module will be addressed.

2.1 Photodetectors for gamma detection

Recent research and technological advancement has allowed to offer a wide
variety of photodetectors for gamma radiations, each characterized by a
different structure and working principle.

One of the most common is the PIN photodiode; it consists of a
reverse p-n junction, where the p+ and n+ doped regions are separated
by an intrinsic region, as shown in figure 2.1. This type of p-n junction is
reversely biased with a biasing voltage in the order of 70 V.

The principle exploited by a PIN photodiode is the following: given
the wide gap between the p+ and n+ regions, the optical photons are sup-
posed to be absorbed mostly into the intrinsic depleted region, which is
subjected to a strong electrical field. Consequently, photoelectrons gen-

31
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Figure 2.1: PIN photodiode

erated by absorption will migrate towards the n-region (the holes will do
the opposite).

PIN photodiodes allow to obtain high resolution images, being possi-
ble to implement highly dense detector pixellation. On the other hand,
substancial limits of the PIN photodiode are the absence of a multipli-
cation stage, which introduces the need of designing a proper electronic
amplifying stage, and the high dark current, due to thermal generation of
carriers in the depletion layer.

Another family of detectors commonly employed is the one of Silicon
Drift Detectors (SDDs). In SDDs, the depletion of the silicon bulk
is achieved exploiting the sideward depletion principle; in addition, an
electric field parallel to the surface of the wafer is superimposed in order
to let the electrons to drift towards a small collecting anode (figure 2.2).

This additional electric field is obtained by means of segmentation of
one or both of the p+ electrodes at the wafer’s surface and by suitably
biasing these electrodes with a voltage gradient[16]. Like a PIN diode,
an SDD does not provide internal multiplication, but it is charachterized
by a very low anode capacitance, which is independent on the active area
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Figure 2.2: SDD configuration

size; thus, dark current is reduced respect to PIN [17].
Avalanche Photodiodes (APDs) are, instead, a particular type of

photodiodes, where an high intensity electric field region (in the range
of 5 · 105 V

cm is added between the p and n regions (figure 2.3). This
region is obtained reverse-biasing the junction at a voltage slightly below
the breakdown voltage, that is the value beyond which the current in the
diode increases exponentially.

This strong electrical field represents an internal gain for the signal.
Indeed, when a photon is absorbed inside the depletion region, an electron-
hole pair is created; the hole is collected at the anode, while the electron
is accelerated by the electric field acquiring enough energy to create an-
other electron-hole pair by ionization. Then, the primary and secondary
electrons are accelerated again and generate other e-h pairs. Also holes
can produce pairs by impact, generating a positive feedback effect.

Thanks to the fact that the device is biased just below breakdown
voltage, the output current signal is proportional to the number of incident
photons through a multiplication factor, which is function of the applied
voltage, that ranges from 50 to 300 V. Quantum Efficiency of APDs is
generally higher than 80% in the visible region. The main drawbacks
are the high ENF (Excess Noise Factor), due to the cascade of ionizing
collisions, their low stability to temperature, and their low gain, which
make them unusable for single photons detection applications. For this
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Figure 2.3: APDs configuration

last reason, they are chosen much more in spectroscopy than imaging.

Another type of detector commonly used for gamma imaging is the
Photomultiplier Tube (PMT). PMTs are typically made of an evacu-
ated glass housing which contains a photocathode, several electrodes and
an anode as depicted in fig 2.4. The incoming optical photons are ab-
sorbed by the photocatode, which is covered with a thin photosensitive
layer, and converted in low energy electrons by photoelectric effect. These
so called photoelectrons are directed by the focusing electrode toward the
multiplying stage which consists of a number of electrodes, called dynodes,
each one held at more positive potential than the preceding one.

Each of the dynodes exploits the energy of the incoming electron (pri-
mary electron) to generate several secondary electrons. The gain M (typ-
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Figure 2.4: PMT configuration

ically in the order of 105 ÷ 108 ) of a PMT with N dynodes is the total
number of electrons produced by a single incident photon which can be
expressed as:

M = δN (2.1)

where δ is the multiplication factor of each dynode.
The main strength of PMTs is the presence of a significative mul-

tiplication factor, which relaxes the constraints on the electronic noise.
Furthermore, the time response of SDDs is very fast (shorther than 1ns).
On the other hand, PMTs are very bulky, they require high biasing volt-
age (generally between 300 V and 2000V, depending on the number of
dynodes), they usually have a low quantum efficiency (< 30%) and they
are sensitive to the presence of magnetic fields.

2.2 Silicon Photo-multiplier

The Silicon Photomultipliers (SiPMs), firstly developed in 1997 [18], at-
tracted more and more the attention of researchers, in particular for nu-
clear and medical applications, because of their benefits compared to
PMTs, mainly in terms of magnetic compatibility and reduced biasing
voltages.

2.2.1 SiPM structure

A SiPM is constituted by a parallel array of photon counting micro-
cells. Each microcell consists of a Geiger-Mode Avalanche Photodiode
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(GMAPD) (also called Single Photon Avalanche Photodiode (SPAD)),
with an integrated quenching element, as represented in figure 2.5.

Figure 2.5: SiPM configuration

As already explained previously, APDs are biased below the break-
down voltage and thus they feature a much smaller gain than SPADs or
PMTs, since the devices are operated to have a linear amplification gen-
erated by the multiplication of free carriers. The multiplication process
is related to subsequent ionizing collisions, originated by both electrons
and holes. This cause a high Excess Noise Factor (ENF) and, together
with the small amplification provided, prevents the device from being able
to detect single photons. However, the current signal provided from an
APD is proportional to the number of triggered avalanches, therefore the
output current is proportional to the number of absorbed photons.
On the contrary, SPADs are devices which operate above the breakdown
voltage: an electron-hole pair can be generated in the depleted region
through the absorption of a photon, and these free carriers, accelerated
by a strong electric field, originate a self-sustaining current by means of
impact ionization. In order to stop the avalanche, the approach used in
a SiPM consists in implementing, in series to the avalanche diode, a pas-
sive quenching resistor, that produces a voltage drop proportional to the
avalanche current and thus reduces the voltage across the junction be-
low the breakdown voltage, quenching the avalanche. As no more current
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flows, the diode depletion capacitance is recharged to the bias voltage,
and a new avalanche can be triggered.

This behaviour can be modeled at first order with a simple equivalent
circuit, depicted in figure 2.6, along with its operation cycle; the main
parameters are the voltage across the junction VD, the photodetector series
resistance RS, the photodetector depletion capacitance CDEP , in the order
of tens of fF, the breakdown voltage VBD, the quenching resistance RQ,
typically in the order of hundreds of kW to some MW [19][20], and the bias
voltage VBIAS, higher than VBD, that generates the high electric field that
sustains the avalanche.

(a) SiPM microcell equivalent model

(b) SiPM microcell operating cycle view

Figure 2.6: Equivalent model of SiPM single cell (top) and operating cycle
(bottom).

With no incoming photons, the switch is open, the voltage across the
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depletion capacitance CDEP is equal to VBIAS and no current flows.
When the microcell absorbs a photon, an electron-hole pair forms; one

of the charge carriers drifts to the avalanche region, where it can initiate
an avalanche. As soon as the avalanche is triggered, the switch closes
causing CDEP to be discharging through RS (being RQ � RS), sustained
by a current IDET .

In particular, from the moment of triggering of the avalanche, the
current IDET rises exponentially with a time constant τrise given by:

τrise = CDEP · (RS‖RQ) ≈ CDEP ·RS (2.2)

The peak value of the current IDET is given by:

IDET,peak ≈
VBIAS − VBD
RS +RQ

(2.3)

The quantity VBIAS − VBD is commonly referred to as excess voltage
VEX , or overvoltage.

The junction voltage VD, which before the avalanche was almost equal
to VBD (being RQ � RS), after the avalanche drops, following the same
time constant τrise defined in equation 2.2. As the electric field across
the junction decreases, due to the voltage drop on RQ that reduces VD,
the avalanche extinguishes and no more current flows. This behaviour is
modelled by opening the switch, and the voltage VD is reset to VBIAS with
the slower time constant:

τreset = CDEP ·RQ (2.4)

Only when VD reaches VBIAS the microcell is ready to trigger another
avalanche. The current pulse supplied by the photodetector, according to
the model, is represented in figure 2.7.

Each microcell features a bi-stable behaviour, as the avalanche itself is
not proportional to the number of absorbed photons, since the cell is no
more sensitive till the bias voltage has been restored on the photodetector
depletion capacitance, and no further events will generate signals. The
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Figure 2.7: Graph of the current flowing through the terminals of the SiPM
from the start of the triggering to the recovery of the bias voltage. CD in the
figure is equal to CDEP .

principle exploited by SiPMs is triggering an avalanche breakdown when
an incident photon generates an Electron-Hole Pair (EHP) inside the de-
pleted region; pulses which are triggered by non-photo-generated carriers
constitute noise sources.

Common noise sources are thermal generation of EHPs or generation
of electrons by tunnelling effect; these effects are undesired and referred
to as dark counts.

The typical response of a silicon photomultiplier is shown in figure
2.8, together with the distribution of the acquired signal amplitudes. The
signal is quantized, and the contributions of single photons are clearly
visible.

Figure 2.8: Typical SiPM response (on the left) and spectrum (on the right)



40
CHAPTER 2. INSERT PHOTODETECTORS AND SIGNALS

READOUT

2.2.2 Figures of merit of a SiPM

Photodetection efficiency

The Photon Detection Efficiency (PDE) is defined as the probability for
an impinging photon to develop an electrical signal. It is intuitive to
express this quantity as the joint probability for a photon to be impinging
on the active area of the photodetector, to be absorbed in silicon, and to
effectively trigger the avalanche, leading to the following expression:

PDE = QE · FF · Ptrigger(V ) (2.5)

where QE(λ) represents the Quantum Efficiency, FF the Fill Factor
and Ptrigger(V ) the avalanche triggering probability.

The Fill Factor is a geometrical parameter, which depends on the
layout of the microcell, defined as the ratio between the active area and
the overall area of a microcell. Indeed, not the entire area of the detector is
able to be activated: the dead area is mainly attributable to the quenching
resistor and guard rings. However, increasing the size of the cell, for the
same quenching resistor the fill factor improves, as the relative weight of
the dead area reduces, but a larger active area lead to a larger depletion
capacitance, thus to a slower response of the device.

Moreover, for SiPMs of the same overall size, larger cells lead to a
lower total number of cells, thus decreasing the dynamic range of the
photodetector.

The Quantum Efficiency is the probability for a photon impinging on
the active area to be absorbed generating an electron-hole pair in the
medium. This quantity is related to the promotion of valence electrons
in conduction band and therefore is a function of the wavelength of the
impinging photon and the absorption material (Silicon in this case).

In order to absorb the incident light, the absorbing material has to
be sufficiently thick, according to the Beer-Lambert equation. Quantum
efficiency in SiPMs can be maximized, until reaching values as high as
98%, by depositing proper anti-reflecting coating layers over the SiPM
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active area.
The Triggering probability depends on how likely is for a carrier to

trigger an avalanche and it can be expressed as [21] :

Ptrigger = Pe + Ph − Pe · Ph (2.6)

where Pe and Ph are the probability to trigger an avalanche for an
electron and a hole respectively.

Figure 2.9: Avalanche triggering probability as a function of the position of the
free carrier generation: if the generation of e-h pairs occurs deeply in the high
field region, only electrons can generate an avalanche, if instead the generation
occurs near the n + region, the avalanche is triggered only by holes.

Being related to the electric field in the depletion region, this quantity
is a function of the SiPM biasing voltage. In silicon Pe > Ph, but the
respective probabilities also depend on the position of generation of the
electron-hole pair, as represented in figure 2.9.

For instance, if an electron-hole pair is generated close to the n+ region,
the electron will be accelerated for a very small time, and reaching a rela-
tively small speed, it will have a small probability to trigger an avalanche,
while the opposite holds for an hole. The electron avalanche triggering
probability is maximized if the electron is generated at the limit of the
depletion region, so that the electric field will accelerate the electron for
the longest possible time.
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Dynamic Range and Linearity

As previously explained, SiPMs are constituted by an array of elementary
microcells.

The maximum signal that can be provided by a SiPM photodetector
corresponds to the case in which every cell has been triggered, while the
minimum signal consists in the output signal of a single cell. However the
detection of photons is a statistical process, based on the probability of
detecting a certain number of photons by a limited number of sensitive
microcells. For this reason, the output signal of a SiPM is influenced by
the statistical fluctuations that two or more photons hit the same cell.

The average number of firing microcells Nfired, as a function of the
number of impinging photons Nph, given a certain number of cells Ncell

and PDE, can be computed as [22] :

Nfired = Ncell ·
(

1− e−
P DE·Nph

Ncell

)
(2.7)

According to this formula, it is evident that the output signal of a
photodetector is proportional to the number of impinging photons only as
far as Nph << Ncell .

Saturation effects are explained from the fact that for a large number
of photons, comparable to the number of the microcells, the probability
of multiple photons hitting the same cell becomes significant.

In figure 2.10 are shown experimental results obtained with three dif-
ferent SiPMs with 576, 1024 and 4096 cells respectively, that shows the
number of fired microcells as a function of the generated photo-electrons
(obtained by knowing the emitted optical power, thus the average number
of impinging photons and the PDE of the SiPMs) [22].

Gain

The gain of a SiPM sensor is defined as the number of carriers involved
in the avalanche current for a single microcell. SiPMs generate a highly
uniform number of carriers each time an avalanche event happens.



2.2 SILICON PHOTO-MULTIPLIER 43

Figure 2.10: The SiPM output signal saturation for three different numbers
of microcells (576, 1024, 4096): the number of fired microcells is proportional
to the number of incident photons if this is well below the number of cells,
otherwise the output signal shows saturation. Figure taken from [22].

The average gain can be computed as the charge delivered from the
photodetector with respect to the elementary electron charge, according
to [23]:

G = CDEP · (VBIAS − VBD)
q

= CDEP · VEX
q

(2.8)

where CDEP ·VEX represents the amount of charge needed to discharge
the single cell to the voltage VBIAS, namely the voltage corresponding to
absence of triggering.

The gain of a SiPM can be enhanced by increasing the overvoltage
or using large microcell photodetectors, which feature larger depletion
capacitance. Typical available gain values for commercial SiPMs are larger
than 1 · 106 [23][24], even larger than that of some high quality PMT.

Usually gain is in trade-off with response speed and noise performances,
as increasing the photodetector depletion capacitance will cause a slower
response, and increasing the overvoltage leads to a higher Dark Count
Rate, as will be discussed in 2.2.2. The dependence of the gain on cell size
(capacitance) at different overvoltages is shown in figure 2.11 [25].
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Figure 2.11: Dependence of NUV-HD SiPM gain on cell size at different
overvoltages

SiPM gain strongly depends on temperature through the Breakdown
Voltage (VBD) [26]: if temperature increases, also VBD increases, leading
to a reduction of SiPM gain if VBIAS is kept constant. It is therefore of
utmost importance to operate SiPM at stable temperature or compensate
for temperature variations by changing the biasing voltage.

Typical values of temperature coefficient (∂V/∂T ) of commercially
available SiPMs are in the order of 20 mV/°C to 30 mV/°C [23][24]. In
figure 2.12 are reported experimental data from FBK NUV SiPMs [27]
and for Hamamatsu S13360-3050CS SiPMs [19].

Dark Count

In parallel with photon absorption, also thermal agitation and tunnelling
effect can generate free carriers by promoting them from valence to con-
duction band, which, accelerated by the electric field, can eventually trig-
ger the avalanche [28]. All the processes cause the same output signals
and hence they are not distinguishable. Thermal promotion and field-
assisted charge generation by tunneling are distributed in time following
the Poisson statistic, and are independent on the irradiation condition of
the photodetector.
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Figure 2.12: Dependence of gain on temperature and overvoltage in FBK 50
µm×50 µm NUV SiPMs (on the left) and Hamamatsu S13360-3050CS SiPMs
(on the right)

Usually, datasheets refer to these effects as Dark Count Rate (DCR),
which is the mean frequency at which avalanches are randomly triggered
without light sources, and it is quoted in kHz/mm2. The two effects
depend respectively on temperature and on the overvoltage applied to the
photodetector, as it can be seen from figure 2.13.

Correlated Noise

Along with dark count, optical crosstalk and afterpulses are phenomena
contributing to the overall noise of SiPMs. They are referred to as corre-
lated noise, since they happen with a certain probability when a photon is
absorbed in silicon, and so they are correlated with the signal. In particu-
lar, optical crosstalk is caused by the finite probability of photon emission
during the avalanche breakdown, and can take place through two different
mechanisms: Direct Crosstalk (DiCT) and Delayed Crosstalk (DeCT).

The former happens when the generated photon moves directly towards
the depletion region of an adjacent microcell and triggers new avalanches,
almost simultaneously to the signal generated one, thus a single photon
can lead to an erroneous output signal, equivalent to a number of photons
greater than one.

Delayed crosstalk happens, instead, when the generated photon cre-
ates an electron-hole pair outside the depletion region (the substrate for
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Figure 2.13: Dark Count Rate as function of the overvoltage at different
temperatures in a FBK SiPM.

example) of an adjacent microcell. This electron-hole pair can trigger an
avalanche only if it reaches the active region of the cell by diffusion; there-
fore, delayed crosstalk leads to the appearance of a succession delayed
pulses, randomly distributed in time.

Optical crosstalk can be reduced increasing the distance between mi-
crocells (but at the cost of reducing the Fill Factor) or inserting optical
insulators between them (trenches) [29].

A third source of correlated noise are afterpulses. Afterpulses are
caused by impurities in the lattice that introduce trapping states cor-
responding to energy level close to the valence and conduction band, so
that free carrier can be trapped in these states and released after a cer-
tain time proportional to the state energy. These carriers can then trigger
other avalanches and thus, afterpulses (figure 2.14).

They can also occur as a consequence of the generation of an electron-
hole pair in the substrate by a photon emitted during the avalanche that
diffuses toward the substrate: if the generated carrier reaches the same
microcell active region by diffusion, a new avalanche is triggered and an
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Figure 2.14: Afterpulse waveform amplitude depend on the delay between the
afterpulse and the original avalanche: if the cell is not completely restored, the
second avalanche is characterized by a lower amplitude

afterpulse is produced (in DeCT, instead, the avalanche is produced in a
different cell). This phenomenon is referred to as Diffusive Afterpulsing.
The delay of afterpulse generation is usually less than 100 ns and the
amplitude is always lower than the one of the primary pulse, due to the
fact that cell has not yet fully recharged.

All these effects are clearly visible through an oscilloscope, as reported
in figure 2.15.

Excess Noise Factor

In photodetectors with internal multiplication, like APDs and PMTs, the
internal gain is obtained by a multiplication mechanism, which is a sta-
tistical process: it is characterized by a mean value, i.e. the nominal
gain, and a variance. Gain fluctuations enhances the noise on the overall
measurement as they add uncertainty in the measure.

The ENF parameter is used to account for a fluctuation in the charge
of the output signal. Despite having an internal multiplication process,
SiPMs provide a highly uniform and quantized amount of charge in re-
sponse to the absorption of a photon, leading to ENF very close to unity
and mainly limited by optical crosstalk and afterpulses [30].
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Figure 2.15: Correlated noise waveforms acquired with an oscilloscope.

ENF = 1 + σ2
cell

S2
cell

(2.9)

where σ2
cell is the variance in gain between different cells (pixels) and

S2
cell is the average output signal from a single cell, and their ratio is

smaller than 0.1 [31].

2.3 SiPMs readout

In literature, three are the most common approaches for SiPMs read-out
[32]:

• voltage mode: the current signal coming from the SiPMs is con-
verted into a voltage signal, by means of a small resistance, typi-
cally 50Ω. The voltage signal is then amplified and filtered through
a shaper to optimize the signal to noise ratio and to perform the
charge measurement.

• charge mode: this approach consists in connecting one of the de-
tector terminals directly on the virtual ground of an operational
amplifier; the charge is obtained by direct integration of the current
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signal coming from the detectors.

• current mode: it can be considered a development of the charge
mode input stage, that adds a current scaling circuit in order to re-
duce the capacitance required to integrate the whole charge delivered
from the detector.

The last method offers some important advantages respect to the
charge mode. First of all, the use of a current feedback allows to provide
a small input impedance and, consequently, a large bandwidth. Further-
more, the current mode approach does not suffer from possible voltage
limitations due to deep submicron implementations; this enhances the
dynamic range, allowing to exploit the whole SiPM signal [33].

2.3.1 SiPMs readout in INSERT

Clinical INSERT gamma module implements 8 tiles of SiPMs mounted
on supporting PCBs (fig. 2.16). Each tile is constituted by 6x6 RGB-
HD SiPMs (FBK, Trento). The bias is directly carried to all the SiPMs
cathodes through bridge bondings between neighbouring photodetectors.
The output anodes of four neighbouring SiPMs are connected together
to form a merged channel, therefore, each acquisition channel reads the
current signal provided by the sum of four SiPMs. The active area of
the virtual SiPM (obtained by the merging) is 8 mm x 8 mm. Technical
characteristics are reported in table 2.1.

Figure 2.16: Single SiPM tile. 6x6 SiPMs, each one with an active area of 4
mm2.
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RGB-HD characteristics

microcell size 25 µm
SiPM active area 4 mm2

effective PDE 35%
DCR (0 °C) <50 kHz

mm2

breakdown voltage (0°C) 29 V
Table 2.1: Technical parameters of RGB-HD SiPMs.

The high number of output channels, 72, requires a multi-channel read-
out ASIC and, furthermore, each channel should be able to manage a high
input capacitance (CDEP > 10nF ) by keeping low the power dissipation.
For this purpose, two ANGUS 36-channel readout ASICs are used to read
and process the SiPMs output currents [34].

ANGUS implements a current mode approach at the input stage. As
it possible to observe from the schematic structure of the ANGUS single-
channel, depicted in figure 2.17, the first stage is constituted by a current
conveyor. The low-impedance current input buffer takes the SiPM current
and mirrors it to the filtering section. Switches B0,..,B3 can be set in order
to regulate the gain of the input stage, in order to suit the dynamic range
of the RC filter.

Figure 2.17: Schematic structure of the channel of ANGUS. The first dashed
box represents the current conveyor stage, made of a low-impedance buffer which
mirrors the SiPM current to the filtering stage. This latter, contained into the
second dashed box, is constituted by an RC filter, which converts the current
pulse into a voltage pulse. Finally, the peak is detected by a peak detection
stage and the triggering is provided. Image taken from [34]
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The DAC, instead, allows to tune the input voltage of the channel
permitting to regulate the overvoltage of the connected SiPM. The shaping
amplifier shapes the current pulse into a voltage signal. The amplifier has
the function of filtering the signal and optimizing the SNR.

According to the optimal filter theory, in absence of a prior knowledge
of the temporal distribution of the signal, the highest SNR is obtained by
using as a shaper an infinite cusp [3]. However, the practical implementa-
tion of this shaping filter is not possible; a simple RC filter (with the RC
network in the feedback loop) is used instead. The feedback resistance
can be programmed to set different shaping times (from 200 ns to 10 µs,
in order to match to the temporal shape of the input signal. The latter
is mainly affected by the scintillation decay time of the crystal (under the
assumptions that the SiPM contribution to the time distribution is negli-
gible). CsI(Tl) is a slow scintillator, thus only shaping times greater than
1 µs are selected.

Fluctuations of SiPM dark current, bias current and input count-rate
could lead to fluctuations of the DC current; in order to cope with this
effect, a baseline holder circuit, in parallel to the RC filter, is used to
stabilize the baseline at the input of the shaping filter to a fixed value.

Finally, the shaped pulse, which now consists of a voltage pulse, enters
into the block indicated as peak detection and triggering. This block is
constituted by a peak stretcher circuit and a triggering circuit: when the
pulse overcomes a programmable threshold, the triggering circuit, which
consists of a simple discriminator, enables the peak stretcher which tracks
the peak of the pulse until an external ADC digitizes the voltage value.

Multi-channel acquisition and A/D conversion

The eletronics chain just described is identical for all the 72 SiPMs signals
of a clinical INSERT module.

Given the high number of signals which have to be simultaneously
acquired, processed and digitized, it is necessary to adopt an adequate
multi-channel approach.
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Figure 2.18: Schematic of the single detection module. The output of each
SiPM (actually four merged) is read by the single acquisition channel (36 acqui-
sition channels for each ASIC). The parallel to serial conversion is performed
by the MUX. The DAQ board on the right digitizes the analog values.

The channel which detects the highest signal is the first to overcome
the comparator threshold and, thus, the one which fires the output trigger.
The generated trigger acts as a global trigger for all the other channels; in
fact, it is sent to a global OR block, physically implemented outside the
ASIC chip in order to act as a global trigger for both the ASICs.

In this way, a single trigger (the one coming from the highest channel)
enables the peak stretcher blocks of all the 72 channels; then, each peak
stretcher tracks its corresponding voltage signal up to the maximum value,
holds it and provide it as output to the respective MUX for parallel-to-
serial sequencing of the channels analog values.

After the acquisition of all the signals by the MUX, it sends a reset
signal to all the peak stretchers. Two 18-channels MUX are used for each
of the two ASICs.

The final block of the acquisition chain consists in the conversion from
analog voltage signal to digital value; this step is performed on a separate
board (DAQ board) by a 12 bit ADC, part of a complete FPGA-based
data acquisition (DAQ) system (developed by Mediso Medical Imaging
Systems, Hungary) [15]. This board provides the power supply for the
ASIC board and for the SiPMs, manages the communication between the
two ASICs (e.g. provides the global trigger to sample the 72 channels at
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the same time) and programs the ASICs internal registers. Each signal
between ASIC and DAQ is differential, to reduce the reciprocal interfer-
ence between MRI and the SPECT module electronics. In particular, for
digital signals between ASIC and DAQ, the LVDS standard is adopted.

ASIC and DAQ boards, with the attached scintillator crystal and
SiPMs array, are shown in figure 2.19.

Figure 2.19: (top) CsI(Tl) crystal wrapped in Teflon (white). The SiPMs
coupled to the crystal are hidden below. The ASIC board under the heat sink is
connected to the DAQ board on the right. (bottom) Top view of the ASIC board
(left) and DAQ board (right).

From figure 2.19, it is possible to observe also a heat sink, which is
located between the photodetection array and the ASIC board, composing
a compact "sandwich" geometry.

The purpose of this MR compatible heat sink is to provide a stable
and moderate cooling for the reduction of the thermal noise, and thus the
DCR, on the SiPMs.

Inside the heat sink, there is a serpentine in which flows a water-glycol
mixture (respectively 40 % - 60 %); the cooling strategy is based on the
heat extraction from the SiPMs thermal pads (placed on the bottom part
of the tiles) by means of the heat sink directly in contact with them.

The refrigerant, cooled to -10 °C with a commercial chiller, flows inside
the cooling block and then comes back to the chiller.
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Furthermore, a small flux of nitrogen is pumped inside the module
to prevent water droplets generated by condensation from falling on the
electronic boards and cause short-circuits. Nitrogen is used because of its
low dewpoint, compatible with the negative working temperature of the
system.



Chapter 3

Planar reconstruction

A SPECT imaging system is based on detection modules able to detect
γ-rays, which are emitted by pharmaceuticals containing radio-tracers and
injected into the patient’s body. The following step after the detection of
the γ radiations consists in estimating the energy and the interaction coor-
dinates of each event, in order to build 2D projections, which will be finally
combined together in order to form a 3D tomographic volume, providing
functional information about the patient. Different planar reconstruction
methods for estimating interaction position and energy of gamma events
have been proposed throughout the years. This chapter will describe the
state-of-the-art methods of reconstruction and, in particular, the methods
implemented in INSERT system.

3.1 Introduction to reconstruction methods

Any SPECT imaging system requires the acquisition of multiple projec-
tions, each one from a different angle; these planar acquisitions are then
combined and processed by dedicated algorithms, such as Filtered Back-
Projection (FBP), in order to reconstruct the 3D image of the scanned
volume.

The present work, however, will be focused on the reconstruction of
the planar acquisition rather than the 3D elaboration.

55
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For each planar acquisition, the following informations need to be
achieved:

• (X,Y) coordinates of interaction: the planar localization of the
γ event is essential in order to obtain the final 3D image.

• Energy of the gamma event: the knowledge of the energy carried
by each detected gamma photon is necessary, especially in the case
of a multi-tracer examination, where different radioactive sources
(each with its characteristic energy) are used simultaneously to study
different biological processes. A common way to estimate the energy
of a gamma event is to consider the sum of all the channels values
for that event.

• Z coordinate or DOI (Depth of Interaction): the fact that
the Z coordinate may be useful for a planar reconstruction seems
counterintuitive. In reality, even if it is not strictly necessary for
the planar image reconstruction, the DOI information can be cru-
cial in order to improve spatial resolution. Indeed, a SPECT camera
does not absorb only perpendicularly incident radiations, but also
tilted ones, especially when collimators different from the standard
parallel-hole are used. In the case of a tilted ray, since events can
be absorbed at different DOI according to Lambert-Beer law, un-
certainty about their depth of interaction results in an uncertainty
about its (X,Y) scintillation coordinates. This effect, knowns as
parallax error, causes a worsening of the spatial resolution. The
possibility to distinguish the DOI of an event can significantly re-
duce the uncertainty in the determination of the scintillation point
(figure 3.1).

3.2 Centroid-based methods

Centroid or Center-of-Gravity (CoG) algorithm is a linear reconstruction
method, where the scintillation coordinates are calculated as the centroid
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Figure 3.1: Parallax error: on the left, the grey region represents the uncer-
tainty region in absence of DOI information, while on the right, just knowing
in which half (top or bottom) the photon is absorbed, the uncertainty region is
halved

of the light distribution over the photodetection matrix. In other words,
the Xi and Yi coordinates of the i-th gamma event are obtained by com-
puting a weighted average of the positions of the D photodetectors, where
each weight is represented by the corresponding signal measured by that
photodetector:

Xi =

D∑
j=1

xj · sij

D∑
j=1

sij

;Yi =

D∑
j=1

yj · sij

D∑
j=1

sij

(3.1)

where sij is the signal acquired by the j-th photodetector in correspon-
dence to the i-th event and D is the total number of photodetectors.

In other words each photodetector "attracts" the reconstructed point
towards its center, with a weight dependent on the acquired signal.

The centroid method is the traditional reconstruction strategy; Anger
logic, which was the very first implemented method for position and en-
ergy estimation in continuous scintillator-based gamma cameras is nothing
but an hardware implementation of the centroid approach, where analog
output signals, proportional to collected scintillation photons, are summed
by a resistive network with proper weights. These weights are obtained
by a resistor divider, which encodes photodetector positions, expressed as
distances from the centre of the scintillator crystal [35] [36] .

Even if centroid method is still widely implemented in commercial
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gamma cameras, thanks to its simplicity, it presents different limitations:

• Compression of the image to the centre: while gamma events
absorbed near the center of the crystal are correctly reconstructed,
centroid method is not able to reconstruct properly events interact-
ing along the borders. This phenomenon, showed in figure 3.2, is
due to the fact that light diffusion in the crystal and the electronic
offsets of the acquisition channels add an almost constant baseline
to the signals of all the channels, while useful signals are character-
ized by a bell-shaped spatial distribution. This leads to a shift in
the reconstruction of lateral events towards the center of the image.
This type of error is (partially) solved by the implementation of a
"modified centroid" method, which will be discussed later.

Figure 3.2: Uncollimated irradiation (flood) reconstructed by Centroid method.
In a flood irradiation, events should be reconstructed all over the detector surface
(100mm × 50mm); instead, it is clearly visible the compression of the image
towards the centre of the detector surface.

• Sensitivity non-uniformities: another issue of centroid method
is constituted by the introduction of fake density distribution of re-
constructed events over the detector surface. These can be caused by
the unavoidable slight differences between the photodetectors gain



3.2 CENTROID-BASED METHODS 59

or also by a narrow energy filtering around the photopeak; indeed,
sensitivity non-uniformities produce estimated energy values, which
present a spatial dependence and, therefore, the filter application
may remove different amounts of events depending on the position
[37]. There are different ways to cope with this type of distorsions.
Some of them consist of hardware solutions, for example setting dif-
ferent voltage supplies to the photodetectors in order to compensate
the gain differences, while others act at a software level and consist
in using a weighted form of the centroid method, which weights each
detector with a proper value, or in building correction maps of the
detector which are estimated after a non-collimated irradiation of
the detector surface.

• Faulty channels: this issue can be considered as an extreme case
of sensitivity non-uniformities, where the gain of a detector is zero,
because it is not working properly or it is broken. Centroid method
is very sensitive to broken detectors, and this phenomenon generally
creates huge distorsion of the image.

• Nonlinearities-related distorsions: Centroid method is based on
a linearity assumption concerning the response of the camera. Even
if this hypothesis stands at the centre of the detector, it is much
less realistic along the borders, where a discontinuity is necessarily
present due to the finite dimensions of the camera [38]. Furthermore,
the reflection of photons by the lateral walls, enhanced by the use
of reflective coverings, accentuates the non linearity of the camera
response. Linearity corrections are usually executed by means of
correction maps, which are obtained after grid irradiations covering
the detector surface.

• DOI-dependent artefacts: These artefacts are related to the
depth of interaction (DOI) of a γ photon. Indeed, when a γ photon
is absorbed very close to the photodetector matrix, the generated
optical photons are mainly collected by a single or few photodetec-



60 CHAPTER 3. PLANAR RECONSTRUCTION

tors, which will consequently "attract" the reconstructed position
towards its centre coordinates. An example of DOI-dependent arte-
facts is shown in figure 3.3.

Figure 3.3: Uncollimated irradiation of the crystal reconstructed by modified
Centroid method, where DOI-dependent artefacts are clearly visible; the regions
with higher density of events correspond to the SiPMs centers.

3.2.1 Modified-Centroid methods

The compression effect typical of the Centroid reconstruction can be par-
tially overcome by implementing Modified Centroid methods. One of
them consists in subtracting a common baseline from the signal of each
channel before reconstructing Xi and Yi coordinates of the i-th event [39]:

Xi =

D∑
j=1

xj · (sij −B)

D∑
j=1

(sij −B)
;Yi =

D∑
j=1

yj · (sij −B)

D∑
j=1

(sij −B)
(3.2)

Since calculating the baseline B, which is mainly related to light diffu-
sion, can be a complex task, it is more common to carry out an empirical
research of a proper baseline value, based on the amount of FOV recov-
ered, or just setting B equal to the mean signal calculated considering
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all the events and all the channels. In figure 3.4, it is clearly visible the
improvement apported by Modified Centroid method for what concerns
the compression effect.

Figure 3.4: Modified-centroid image: UFOV has been recovered almost totally
from the compression

Other approaches to obtain a linear “expansion” of the image consist
in the application of a stretch to centroid reconstructed-coordinates, by
multiplying each of them for a proper factor, or employing only photode-
tectors showing signals greater than a given threshold for a single event
position computation (that means descarding low signals, usually not pro-
viding useful information as dominated by noise) [40].

3.3 Statistical methods

Differently from Centroid method or Anger Logic, statistical methods are
based on a prior formulation of a probability model, which is estimated by
measuring properties and response of the camera. For this reason, they
provide better imaging reconstruction than Centroid-based methods, since
they are able to take into account the random nature of gamma detection
processes.
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3.3.1 Maximum Likelihood reconstruction

Maximum Likelihood Estimation, MLE or simply ML, consists of a sta-
tistical estimation method that uses observed data to provide the values
of some unknown parameters characterizing a given process described by
a known statistical model. This method was first introduced in the field
of position and energy reconstruction in gamma cameras by Gray and
Macovski [41].

ML theory

Let X1, X2, .., XD , with Xj ∼ M(θ) be a set of D independent iden-
tically distributed discrete random variables. The probability model M
describing them is known apart from the parameter θ to be estimated.
The probability to observe a specific sample {x1, x2, .., xD} assuming that
it was generated by a distribution M(θ) with θ unknown, is given by:

Pr(x1, x2, .., xD|θ) = Pr((X1 = x1) ∩ (X2 = x2) ∩ ... ∩ (XD = xD)) (3.3)

The variables Xi are independent between each other, thus the joint
probability in eq.3.3 can be expressed as the product of marginal proba-
bilities:

Pr(x1, x2, .., xD|θ) =
D∏
j=1

Pr(Xj = xj) (3.4)

The joint probability is a function of θ, the unknown parameter to be
estimated; in particular, this function of θ represents the likelihood of the
sample {x1, x2, .., xD} :

L(θ|x1, x2, .., xD) = Pr(x1, x2, .., xD|θ) (3.5)

where L indicates the likelihood.
The unknown parameter θ does not have to be necessarily a scalar;

it can be a vector, composed by a series of parameters to be estimated,
which univocally defines the probability model. So, generalizing to the
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case of a vector θ and an observation vector x, we obtain:

L(θ|x) = Pr(x|θ) (3.6)

An estimator is, in other words, a function that maps a data vector x
to an estimate of the unknown parameter, θ̂ML .

In MLE, the estimation rule consists in maximizing the likelihood func-
tion:

θ̂ML = argmax
θ

{
L(θ|x)

}
(3.7)

Thus, the ML estimate is the value of the unknown parameter for which
the observation is the most likely result to have occurred. Note that an
equivalent frequently applied rule consists in maximizing the logarithm of
the likelihood:

θ̂ML = argmax
θ

{
ln[L(θ|x])

}
(3.8)

ML reconstruction of gamma energy and interaction position

In the specific case of gamma event reconstruction, the θ unknown pa-
rameter to be estimated consists in two main elements:

• coordinates of the gamma event absorption in the scintillation crys-
tal : (X, Y ) in the case of planar reconstruction, or (X, Y, Z) in the
case of DOI-reconstruction.

• event energy εi (proportional to the total number of light photons
Nphi ).

Consequently, the unknown parameter vector results:

θ = (X, Y, Z,Nph)T (3.9)

while the observed data for the i-th event can be represented either by
the number of detected photoelectrons for each of the D detectors:



64 CHAPTER 3. PLANAR RECONSTRUCTION

x = (ni1, ni2, ..., niD) (3.10)

or by the D electrical signals produced by each channel:

x = (si1, si2, ..., siD) (3.11)

The parameters estimation needs an a-priori definition of a statistical
model. A good model should be able to include all the possible random
effects that can influence the data, once fixed the θ parameter.

In a gamma camera, these random factors are constituted by:

• the random number of optical photons produced in each event

• random propagation of light to photodetectors

• the random number of photoelectrons produced

• random gain applied by photodetectors

• electronic noise

Given an incident photon with energy ε, a common assumption for
linear scintillator-based detectors is that the number Nph of optical pho-
tons produced by local energy deposition processes is a Poisson random
variable. Nph is usually considered as an estimate of ε since the number
of produced optical photons is proportional to the energy according to
the scintillation efficiency (or photon yield) of the crystal. If Nph is a
Poisson random variable, the number of photoelectrons produced in each
photodetector is also a Poisson random variable because it results from a
binomial selection applied to the starting Nph photons [42]. Indeed, each
of these ones can either hit a photodetector or not and, after that, produce
a photoelectron or not.

Therefore, given a certain energy ε (represented by Nph) and a certain
scintillation position r = [X, Y, Z]T of the gamma photon, the probability
of the j-th photodetector to detect nj photons is given by [43]:
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Prj(nj|r, Nph) = µj(r, Nph)nj · e−µj(r,Nph)

nj!
(3.12)

where µj(r, Nph) represents the expected number of optical photons
which result in photoelectrons in the j-th photodetector, out of the Nph

initial ones.
As suggested by the notation, µ is function of both r and Nph:

µj(r, Nph) = Nph · ηj(r) (3.13)

with:
ηj(r) = fj(r) · ξj (3.14)

where fj(r) represents the fraction of optical photons which, in av-
erage, are able to reach the j-th photodetector because of geometrical
reason, while ξj represents the Quantum Efficiency of j-th photodetector.

So, if photoelectrons are considered as the observed data for position
and energy estimation, the Poisson’s model (eq. 3.12) applies. Through
equation 3.4 the likelihood function (eq. 3.5) for the observation vector
x = [n1, n2, ..., nD] becomes:

L(r, Nph|n1, n2, ...nD) =
D∏
j=1

µj(r, Nph)nj · e−µj(r,Nph)

nj!
(3.15)

while the log-likelihood, that represents the actual function to be maxi-
mized (see equation 3.8), reduces to:

ln(L(r, Nph|n1, n2, ...nD)) =
D∑
j=1

(nj·ln(µj(r, Nph))−µj(r, Nph))−
D∑
j=1

ln(nj)!

(3.16)
taking into account that the the last term of equation 3.16 is a constant and
can be neglect in the optimization phase, the estimation of θ = [r, Nph]T

is given by:

θ̂ = argmax
θ

{ D∑
j=1

(nj · ln(µj(r, Nph))− µj(r, Nph))
}

(3.17)
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After the detection of a gamma photon, the electronic read-out chain
provides as output the corresponding vector of signals s1, s2, ..., sD .

In real systems, the detected signals are affected by electronic noise.
The signal sj measured by the j-th channel is thus a random variable,
whose expected value is proportional to nj by means of qj, the average
single photoelectron response of the j-th photodetector. If nj is large (> 25
or more) and the single photoelectron distribution of the photodetector
is reasonably symmetric, then, according to the central limit theorem,
sj is distributed following a Normal probability distribution with mean
λj(r, Nph) and standard deviation σj(r, Nph), rather than a Poissonian
one [44].

Even if in the case of x = (si1, si2, ..., siD) the Gaussian approximation
would be more correct from a statistical point of view, the Poisson’s model
still applies and it is often used to describe also the signals output from
the acquisition chain.

For this reason, the ML reconstruction algorithm implemented in IN-
SERT applies the Poisson’s model to both simulated data, measured in
photoelectrons ni, and INSERT measured data, measured in ADC bins si
[15].

3.3.2 Least Squares reconstruction

Least Squares (LS) estimation is another member of the family of statisti-
cal methods which represents an alternative to ML and constitutes a more
flexible solution when the photodetector signals sj are considered. Differ-
ently from ML, where the estimated θ̂ parameter is obtained by solving
a maximization problem, in LS θ̂ is found by minimizing χ2, which is
defined as the sum squared difference between the considered model and
observed data.

LS theory

Given a set of D data points (x1, y1), (x2, y2), ..., (xD, yD) and a known
model function y = f(x,θ) where θ̂LS represents the vector of parameters
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to be estimated (with D >= dimension of θ), it is possible to define, for
the i-th observation, its residual as:

resi = f(xi,θ)− yi (3.18)

The optimal vector of parameters is the one for which the difference
between the curve y = f(x,θ) and the observed data is minimum.

In LS, the quantity to be minimized is so represented by:

χ2(θ) =
M∑
i=1

res2
i (3.19)

The estimated vector of parameters will be:

θ̂LS = argmin
θ

[χ2(θ)] (3.20)

LS reconstruction of gamma energy and interaction position

Let s1, s2, ..., sD be the photodetector signals produced after a gamma
interaction with the detector, LS estimation of event position and energy
is obtained by minimizing the following quantity:

χ2 =
D∑
j=1

(λj − sj)2 (3.21)

where λj represents the expected value for the signal detected by the
j-th channel , which corresponds to the curve model function to which the
real measured j-th signal sj is compared.

Under the hypothesis that photodetector signals are normally dis-
tributed, it is possible to state that:

λj(r, Nph) = µj(r, Nph) · qj (3.22)

where qj indicates the average single photoelectron response of the j-th
photodetector while µj equals to the average number of generated photo-
electrons which depends on both Nph and r according to equation (3.13).
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Consequently, 3.21 can be rewritten as:

χ2(r, Nph) =
D∑
j=1

(Nph · ηj(r) · qj − sj)2 (3.23)

Thus, the LS estimate of θ is obtained by solving the following mini-
mization problem:

θ̂LS = argmin
θ

[
D∑
j=1

(Nph · ηj(r) · qj − sj)2
]

(3.24)

3.3.3 Light Response Functions (LRFs)

Statistical methods are based on the prior definition of a mathematical
model of the detector. After the model definition, the estimated position
and energy of a new event is the one which provides the best match be-
tween the measured photodetector signals and the expected response of
the camera provided by the mathematical model. As described previously,
the best match can be obtained by maximizing (for MLE) or minimizing
(for LS) a particular cost-function.

Therefore, these methods require the knowledge of the average re-
sponse of each individual photodetector as a function of the event position,
the so-called Light Response Function (LRF) .

The LRFj(r) is a function which represents the signal recorded by
the j-th detector, normalized by the energy of the event, as a function
of the (x,y) coordinates of the scintillation event (in principle, the LRFs
can be defined as a function of z-coordinate too, but in this thesis work
the reconstruction of the z-coordinate has been neglected). By way of an
example, it is quite intuitive that a detector located in the up-left corner
of the crystal will be characterized by a higher response when activated
by a gamma photon interacting in the up-left corner and so forth.

LRFj(r) is nothing but ηj(r), already defined in 3.14 as the average
fraction of photons, emitted by a scintillation event with energy ε at po-
sition r, that produces a signal in the j-th photodetector:
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LRFj(r) = ηj(r) (3.25)

As a consequence, knowing the LRFs of the D photodetectors allows
to characterize the average response of the whole detector to an event with
a given energy, as a function of its interaction coordinates.

LRFs estimation

Light Response Functions can be estimated by different methods. The
most direct approach consists in a experimental characterization of the
crystal, by means of a highly collimated radiation beam, which is used
to scan the entire scintillator surface; the movement of the beam is usu-
ally generated by a robotic mechanism [42][45]. After the scanning phase,
the LRFs can be computed for the beam coordinates and, then, miss-
ing positions can be obtained through data interpolation. Even if this
technique is the one characterized by the higher reliability of the com-
puted response, being estimated by experimental data and at controlled
known spatial positions, the accuracy of the procedure is determined by
the spatial sampling frequency of the scanning beam; this unavoidably
introduces a trade-off between the number of positions to be covered and
the acquisition time and complexity of the procedure. Furthermore, this
approach becomes particularly challenging when detectors are mounted
on the SPECT scanner.

An alternative to the previous method is the estimation of LRFs from
simulated datasets obtained after a proper definition of a model of the
camera [46]. In this case, the accuracy strongly depends on the exactness
of the defined simulated model; furthermore, this strategy is not able to
implicitly incorporate non-idealities of real detectors, differently from the
previous method.

The last strategy, which is the one used in INSERT, is based on a
iterative procedure, which exploits measured scintillation events produced
by an uncollimated gamma source that uniformly irradiates the camera
[44],[47],[48]. Even if this last approach takes advantage of experimental
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measurements, it does not need long acquisitions and complex mechanical
set-ups.

LRFs computation in INSERT

LRFs computation in INSERT, implemented by a MATLAB code called
PERA [49], implements the last strategy described in the previous para-
graph. In particular, the LRFs are estimated by means of an iterative
procedure which consists in alternating multiple times two steps: recon-
structing the interaction coordinates of the calibration events and using
those coordinates to refine (through a proper curve fitting) the LRFs es-
timated at the previous iteration.

In order to apply the iterative process implemented in PERA, two
main assumptions are required:

• the LRFs depend smoothly on r

• all the events produce the same amount of light

The calibration measurement needed for the LRFs estimation is a flood
field irradation, which corresponds to an uncollimated gamma source that
uniformly irradiates the camera; in order to obtain an accurate character-
ization of the detector, a large population of calibration events should be
acquired (70.000÷100.000 events).

The iterative process, illustrated in figure 3.5 , can be summarized into
the following steps:

• 1st - Filtering : the first step consists in removing events whose
estimated energy fall outside the chosen energy window around the
photopeak (usually set at ±5% or ±10% around the photopeak),
and, in addition, the remotion of events for which the number of
activated SiPMs is under a given threshold. This second operation
is done in order to filter out events interacting at high depth, which
give rise to DOI artefacts.
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Figure 3.5: Flow chart of the LRFs estimation process implemented by PERA

• 2nd - Modified Centroid reconstruction : the (X, Y ) interaction
coordinates of each calibration event are computed by using the
modified centroid method.

• 3rd - Scatterplot fitting : for each j-th SiPM, a 3D scatter-
plot, representing the acquired signal by that SiPM in function of
the (X,Y) reconstructed coordinates, is computed. Then, each of
the D scatterplots is fitted by using a parametric smooth function
( f(X, Y )). The results of these fittings represent the first approx-
imation of the LRFs (LRFs(0)). It is important to underline that
before computing the 3D scatterplot, each of the event is normal-
ized by its energy, in a way that the LRFs obtained at the end of
the process do not depend on energy.

• 4th - LRFs update : This step constitutes the iterative part of
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the process: events coordinates are reconstructed through a statisti-
cal method (both ML and LS reconstructions can be used), by using
the LRFs estimated in the previous iteration. After the reconstruc-
tion, again the reconstructed coordinates are used to fit a new set
of LRFs (LRFs(iter)). These two operations are repeated till the
stop condition (which can be maximum number of iterations, den-
sity threshold on the spatial distribution of reconstructed events or
minimum change between the LRFs of two consequent iterations) is
reached.

Iterating the LRFs estimation by means of statistical reconstruction
methods allows to overcome the typical limitations of the centroid meth-
ods: the UFOV, originally compressed because of centroid reconstruction,
enlarges and the reconstructed positions converge to a good approximation
of the real ones, as it is possible to observe in figure 3.6.

Figure 3.6: The same flood irradiation shown in 3.2 and 3.4 reconstructed by
using the ML method.

Some technical "tricks" are useful in order to help the convergence of
the algorithm, such as constraining the shape of the function used to fit
the LRFs or adding a random shift (sampled from a Gaussian distribution
with zero mean and a small standard deviation) to the reconstructed (X,Y)
positions in order to avoid to be trapped in local minima.

A 2D Gaussian function [49] has been defined as fitting curve, as shown
in figure 3.7.
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Figure 3.7: 2D Gaussian fitting of the calibration dataset after CoG recon-
struction, for one detection channel positioned at the centre of the detection
matrix. The bidimensional analytical interpolation result represents the Light
Response Function (LRF) for the j-th detection channel. Figure taken from [49]

The parametric equation describing this family of functions is the fol-
lowing:

LRF (x, y) = Ae−b(x−x0)2+c(y−y0)2 + φ (3.26)

where A represents the amplitude of the Gaussian height, b and c are
parameters inversely proportional to the Gaussian variance (respectively
for the x and y directions), x0 and y0 are the coordinates of the centre of the
Gaussian bell and φ is an offset proportional to the baseline threshold in
the modified centroid method. The final LRFs obtained after the iterative
estimation process are shown in figure 3.8

In conclusion, in order to estimate the planar interaction coordinates
of an event with Maximum Likelihood, the following equation is applied:

(X̂, Ŷ ) = argmax
(X,Y )

{ D∑
j=1

[Sj ln (LRFj(X, Y ) · N̂ph)− LRFj(X, Y ) · N̂ph]
}

(3.27)
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(a) LRF - Top view

(b) LRF - 3D view

Figure 3.8: Light Response Function of a single channel at the last iteration
of PERA estimation algorithm, seen from a top view(a) and a 3D view(b).

where N̂ph is estimated from:

N̂ph(X, Y ) =

D∑
j=1

Sj

D∑
j=1

LRFj(X, Y )
(3.28)

With Least Square reconstruction, instead:

(X̂, Ŷ ) = argmin
(X,Y )

{ D∑
j=1

(N̂ph · LRFj(X, Y )− Sj)2
}

(3.29)

where N̂ph is estimated from the 3.28.



Chapter 4

PCA-based event
reconstruction

Among the different tools usually employed in machine learning and, more
in general, in data analysis, one important framework is constituted by di-
mensionality reduction techniques, of which probably the most common is
Principal Component Analysis (PCA). The present thesis work has inves-
tigated and evaluated the possibility of integrating the PCA technique as a
tool in order to accomplish the event reconstruction in a gamma camera.
The two statistical methods defined in the previous chapter, ML and LS,
have been modified so that they could operate in a new features space with
lower dimensionality rather than the original one, where instead each fea-
ture corresponds to a given detection channel. This chapter will provide,
at first, an overview of the dimensionality reduction techniques, their theo-
retical principles and their past applications in gamma imaging. Then, the
whole process followed in order to integrate the PCA transformation in ML
and LS statistical methods will be introduced. In the final part of the chap-
ter, the obtained results on simulations and experimental measurements,
conducted on INSERT clinical module, will be provided.

75
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4.1 Introduction to dimensionality reduc-
tion techniques

Dimensionality reduction techniques are the set of methods allowing the
transformation of high-dimensional data into a meaningful representation
of reduced dimensionality. Ideally, the reduced representation should have
a dimensionality that corresponds to the intrinsic dimensionality of the
data; the data are said to possess intrinsic dimensionality q if they are
lying on or near a manifold with dimensionality q that is embedded inside
the original space [50].

Given a n×D dataset X, made of n observations xi (i ∈ {1, 2, ..., n})
each defined in a D-dimensional space, reducing the dimensionality means
transforming the dataset X into a new dataset Y with dimensionality d
(with d < D), by preserving as much as possible the geometry of the data.
In other words, each original observation xi is replaced by yi, which is its
corresponding in the d-dimensional space.

It is important to underline that, being the intrinsic dimensionality of
the dataset unknown, the value of d, namely the dimension of the new
space, is totally arbitrary (as long it is lower than D). This means that
the truthfulness of the assumptions made about the intrinsic dimension-
ality and, in general, about the geometry of the data, will determine the
goodness of the obtained transformation [50].

4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) constitutes the most known dimen-
sionality reduction method; it is a member of the family of linear tech-
niques, since it performs reduction by embedding the data into a linear
subspace of lower dimensionality.

Theory

The strategy adopted by PCA is to build up a low-dimensional representa-
tion of the data, by keeping as much as possible unchanged the informative
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content, represented by the variance in the data. Concretely, PCA finds a
new set of axes, named principal components (PCs), for which the variance
contained in the data is maximum; in other words, applying this trans-
formation consists in observing the data from a new reference system,
obtained by rotating the original one, for which the distance between the
observations (i.e. the variance) is higher. Figure 4.1 illustrates, by way
of an example, the principal components of a dataset which is originally
defined in a 2-dimensional space.

Figure 4.1: Illustration representing the principal components of a dataset
defined in a 2-dimensional space. Figure reproduced from [51].

Each principal component, which in the rest of the discussion will be
indicated as mj (with j = 1, ..., D), is constituted by a linear combination
of the original variables, by means of a specific set of weights, also known
as loadings:

mj = lj,1X1 + lj,2X2 + ...lj,DXD (4.1)

where X1, X2, ..., XD are the original features, D is the dimension of
the original space and lj,k represents the loading of the k−th feature on
the j-th principal component.
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Loadings describe how much each variable contributes to a particular
principal component; large loadings (positive or negative) indicate a strong
correlation to a particular principal component, while the sign of a loading
indicates whether a variable and a principal component are positively or
negatively correlated.

In mathematical terms, the optimization problem solved by PCA con-
sists in finding the mapping M which leads to the maximum variance
inside the data; M is a D×D matrix whose columns represent the prin-
cipal components. Finding the mapping which solves this optimization
problem is equivalent to solve the following maximization problem:

M = argmax
M

[MT cov(X)M ] (4.2)

s.t. ‖mj‖2 = 1

where ‖mj‖2 represents the L2-norm of the j-th column of M .
Notice that cov(X) represents the sample covariance matrix of the

"zero-mean" X matrix (the mean values of each feature are subtracted to
the X original matrix before computing the covariance matrix).

Solving the constrained problem in 4.2 is equivalent to solve an uncon-
strained problem, if a Lagrange multiplier λ is defined. The generic j-th
column of M can be found as:

mj = argmax
mj

[mT
j cov(X)mj + λ(1−mT

jmj)] (4.3)

The stationary points are found when cov(X)mj = λmj .
Hence, PCA basically solves the following eigenproblem:

cov(X)M = λM (4.4)

In other words, the linear mapping M is constituted by the set of
eigenvectors of the covariance matrix of X; the first principal component
m1 will be the eigenvector associated to the greatest eigenvalue λ1, and
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the last onemD will be the eigenvector associated to the lowest eigenvalue
λD.

The positions of each observation in the new coordinate system of
principal components, which are also called scores, can be calculated as the
linear combination of the values of the original variables and the loadings
lij.

For example, yi,1, namely the score for the i-th observation on the first
principal component can be computed as:

yi,1 = l1,1xi,1 + l2,1xi,2 + ...+ l1,Dxi,D (4.5)

Passing in a matricial form, we obtain:

Y = XM (4.6)

where X is the original dataset and Y the dataset projected in the
new space.

Number of principal components

The computation of the principal components is based on an iterative algo-
rithm, which starts finding the first component as the one which maximizes
the variance contained in the data. At each iteration, the next principal
component is computed as the one which maximizes the residual variance
(namely the variance not yet explained by the principal components pre-
viously found) but adding the constraint of orthogonality with respect to
all the principal components previously found (the principal components
have to constitute a basis in RD).

Proceeding in this way iteratively, it is possible to find all the D prin-
cipal components; in that case, the sum of the D eigenvalues would be
equal to the overall variance contained in the original dataset, because:

V ar(mj) = λj (4.7)

i.e. the j-th eigenvalue is equal to the variance explained by its corre-
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sponding eigenvector.
However, being the principal components more suitable to describe the

data variability respect to the original features, a number d (with d << D)
of principal components brings an informative content (almost) equivalent
to the one of the originary features.

In particular, it is possible to calculate the percentage of the total
variance which is explained by the first d principal components, as follows
[52]:

Percentaged = λ1 + λ2 + ..+ λd
λ1 + λ2 + ..+ λD

(4.8)

The estimation of the optimal number of principal components is usu-
ally performed by looking at a scree plot, which plots the percentage of
explained variance as a function of the number of principal components;
the number of components corresponding to the "elbow" of the scree plot
is usually choosen as dimension of the new space. An example of scree
plot is shown in figure 4.2

Figure 4.2: Example of a scree plot.
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Advantages and limitations

PCA, and more in general dimensionality reduction techniques, are usually
referred to as unsupervised learning techniques, meaning that, differently
from problems like classification and regression, they are not characterized
by a target variable. They are used mainly in a pre-processing stage, before
applying supervised learning tasks; in this sense, their main application is
feature reduction.

Feature reduction is a very common operation in machine learning,
which consists in eliminating irrelevant features, by simply selecting a
subset of them or creating a new set of features different from the original
ones [52] (that is the strategy implemented by PCA). This practice is
very common because, besides making possible to operate with smaller
size problems, it has proved to improve, in some cases, the accuracy of the
consequent prediction model [53] [54].

PCA also improves the interpretability and visualizability of the prob-
lem, which is a crucial factor, especially when dealing with high-dimensional
datasets.

However, being a linear reduction technique, PCA cannot adequately
handle data which lie on a non linear manifold; for this kind of data, non
linear methods like LLE (Locally Linear Embedding) are more suitable.

4.1.2 Locally Linear Embedding:

There are some cases in which the data lie on highly non-linear manifolds,
like the one illustrated in figure 4.3.

In these cases, one efficient method to map the data into a lower di-
mension is Locally Linear Embedding (LLE), which consists in writing
the high-dimensional datapoints as a linear combination of their nearest
neighbors [55].

Let X be a set of n data points xi (i ∈ {1, 2, ..., n}), each with dimen-
sionality D, sampled from some smooth underlying manifold. Provided
the number of data points is sufficiently high (such that the manifold is
well-sampled), we expect each data point and its neighbors to lie on or
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Figure 4.3: Example of non linear 3-dimensional manifold. Even though
the manifold is intrinsically non-linear, each point can be rewritten as linear
combination of its k neighbors. Reproduced from [56].

close to a locally linear patch of the manifold.
In LLE algorithm, the k nearest neighbors of each data point are iden-

tified, by using an Euclidean metric or, alternatively, by selecting all the
points within a sphere of a given radius.

The total reconstruction error is computed as the sum of the squared
distances between all the data points and their reconstructions:

E(W ) =
∑
i

‖xi −
∑
j

wijxj‖2 (4.9)

where wij represents the contribution of the j-th data point to the i-th
reconstruction.

The optimal weight matrix Ŵ can be computed as the one which
minimizes the reconstruction error:

Ŵ = argmin
W

E(W ) (4.10)

s.t. wij = 0 if xjis not a neighbor of xi∑
j wij = 1

It is important to observe that, for any data point, the optimal weights
which reconstruct it are invariant to rotations, rescalings, and translations
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of that data point and its neighbor.
Assuming that the dataset has intrinsic dimensionality q << D, there

exists a linear mapping (which consists of a translation, rotation, and
rescaling) that maps the high dimensional coordinates of each neighbor-
hood to global internal coordinates on the manifold; by design, the op-
timal reconstruction weights reflect intrinsic geometric properties of the
data that are invariant to exactly such transformations.

Thus it is expected that their local geometry in the original data space
is equally valid for local regions of the manifold; in other words, the same
weights wij that reconstruct the i-th data point in D dimensions should
also reconstruct its embedded manifold coordinates in q dimensions.

After the computation of the matrix of optimal weights Ŵ , the map-
ping of each high dimensional observation xi into the corresponding low
dimensional vector yi is computed by solving the following minimization
problem:

Ŷ = argmin
Y

∑
i

‖yi −
∑
j

ŵijyj‖2 (4.11)

where Ŷ represents the n× d matrix of the mapped dataset .

4.1.3 Applications to medical imaging

Spatial resolution constitutes a major requirement for a gamma camera
both for PET and SPECT applications.

While in a pixellated camera, the resolution depends on the dimension
of the pixel, in a continuous detector the achievable resolution is due to the
specific algorithm used and it is not lower bounded by the photodetector
dimension.

For both pixelated and continuous detectors, a common strategy to im-
prove the achievable spatial resolution is using a larger number of smaller
photodetectors coupled to the scintillator (or to the matrix of scintillators
in the case of a pixellated camera). Increasing the number of detectors,
however, can drammatically increase the complexity of the processing of
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the output signals and the related electronics.
Furthermore, there are some applications where the high number of

photodetectors is related to the size of the field-of-view which has to be
covered; during the years, the interest of the research has moved more
and more toward the development of high-FoV PET scanner, eventually
leading to whole-body systems [57].

In this context, throughout the years different multiplexing techniques
have been proposed, in order to reduce the number of output channels to
process [58][59][60][61] [62]. However, it has been observed that reducing
the number of output signals from the photodetectors can reduce the
amount of available information to the positioning algorithm and could
have a negative impact on the spatial resolution of the detector module
[61].

It is precisely in this framework that dimensionality reduction tech-
niques can constitute a powerful and useful instrument, since they offer the
possibility to reduce the number of output channels in a "smart" manner,
which allows to keep the original informative content almost unchanged.

In a work conducted by Pierce et al. in 2014 [62], PCA transfor-
mation of the original channels proved to guarantee the best positioning
performances among different proposed multiplexing strategies, which are
illustrated in fig 4.4.

LLE, instead, has been proposed as part of a new procedure to char-
acterize the response of a DOI-sensitive detector from experimental pen-
cilbeam measurements by means of an hybrid technique, which combined
the Locally Linear Embedding with a finite mixture model [63]; in that
case, LLE was applied individually to each spot-dataset (a laser beam
was scanned in a grid-like pattern along the scintillator surface in or-
der to obtain different spot-datasets) and, the spot-datasets have been
projected, one by one, into a 1-dimensional embedding space, where, how-
ever, the depth information of each event was preserved, suggesting that
the data were lying "intrinsically" on a 1-dimensional manifold inside the
D-dimensional original space (figure 4.5).

In a following work [64], PCA and LLE techniques were combined to-
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(a)

(b)

Figure 4.4: Illustration of the tested multiplexing strategies. Each element of
the 8*8 matrix represents a PMT output channel; its number, instead, indicates
the corresponding multiplexing channel (PMT channels with the same label are
summed together to achieve a single output channel). Reproduced from [62].

gether. After the estimation of the principal components from a calibra-
tion simulated dataset, the corresponding PCA-multiplexing scheme was
encoded in hardware in a resistive circuit and attached to the continuous
detector module; in addition, a LLE-based calibration procedure able to
operate directly on the multiplexed signals has been proposed, preventing
from the need of performing scatter rejection and depth estimation before
the attachment of the hardware multiplexing scheme.
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Figure 4.5: Scatter-plot of the events projected onto a manifold of dimension
d=3 (d=3 has been chosen just for visualization) for a given spot position. It is
possible to observe that the data points are lying on a 1-dimensional manifold.
Reproduced from [63]

4.2 PCA-based reconstruction

The first part of the present thesis project was aimed at evaluating the
possibility of integrating the PCA reduction inside the event reconstruc-
tion process for monolithic detectors.

The two statistical methods introduced in chapter 3, ML and LS esti-
mation, require as input the D-dimensional vector of signals from all the
photodetectors.

However, it is possible to abstract these algorithms to a more general
formulation, which is able to operate in a d-dimensional space (with d <
D) obtained by a PCA reduction; in the following discussion, the two
proposed PCA-based algorithms will be referred to respectively as ML-
PCA and LS-PCA.

Let xi be the event whose (X, Y ) planar interaction coordinates and
energy have to be reconstructed:

xi = [s1, s2, ..., sD] (4.12)

Let’s suppose for the moment that the linear mapping M , which de-
fines the transformation from the original features space from which xi

has been drawn, to the new d-dimensional space, is known.
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The knowledge of the linear mapping M allows to transform both
the observation xi and the LRFs into the new space. In particular, yi
represents the d-dimensional representation of xi :

yi = [sPCA,1, sPCA,2, ..., sPCA,d] (4.13)

Instead, LRFsPCA represent the equivalent of the original LRFs into
the new space .

At this point, it is possible to proceed in a very similar way to the
classical ML and LS estimation to reconstruct the scintillation coordinates
and energy of the yi event.

Energy reconstruction

Differently from the original features space, in the principal components
space the term∑d

j=1 sPCA,j, namely the sum of the features values observed
for a given event, is not proportional anymore to the energy of the event.

This is the reason why the estimation of the energy of each event is still
implemented according to equation 3.28 and, thus, requires all the signals
by the photodetectors. This aspect is in accordance to a similar work
by Pierce [62], where the energy estimation and the subsequent scatter
rejection are applied by using all the original signals measured by the
photodetectors.

(X,Y) scintillation coordinates reconstruction

The formulation of the optimization problem which leads to the estimation
of the interaction (X, Y ) coordinates is very similar to the one described
for traditional statistical methods (subsection 3.3.3).

In particular, the LS-PCA estimation solves the following minimization
problem:

(X̂, Ŷ ) = argmin
(X,Y )

{ d∑
j=1

(LRFs,PCA(X, Y )− sPCA,j)2
}

(4.14)
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Instead, the ML-PCA algorithm implements the following maximiza-
tion problem:

(X̂, Ŷ ) = argmax
(X,Y )

{ d∑
j=1

[sPCA,j lnLRFs,PCA(X, Y )− LRFs,PCA(X, Y )]
}

(4.15)
Both the expressions above, differently from equations 3.27 and 3.29,

do not include the energetic term Nph . This is due to the fact that each
event is normalized respect to its own energy before undergoing PCA
transformation.

4.3 Computation of the mapping and LRF
estimation

In the previous paragraph, the whole formulation of the event reconstruc-
tion problem was based on the assumption that the linear mapping M ,
namely the set of d principal components, was known.

However, in a real scenario, the computation of principal components
has to be performed on a proper calibration dataset. The calibration
dataset needs to contain events interacting all over the detector surface in
order to guarantee that its principal components are able to represent as
faithfully as possible the original features. This is the reason why a flood
irradiation is used as calibration dataset.

In the present work, the same flood calibration dataset has been used
both for the LRFs estimation (by following the exact same procedure
reported in 3.3.3) and for the computation of the principal components.
Before performing these two operations, the calibration dataset has un-
dergone an energy filtering; a window of ±5% around the photopeak, cor-
responding to the 122 keV of the Co-57, has been defined; all the events
outside this window have been filtered out from the dataset. The adopted
energy window is reported in figure 4.6.
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Figure 4.6: Energy spectrum of the experimental calibration dataset; dark
blue plot represents the rough computed spectrum, dashed black plot constitutes
a gaussian fitting of the spectrum and the dashed red vertical lines represent the
boundaries of the defined energy window.

Computation of the principal components

The energy-filtered calibration dataset has been then used in order to
compute the mapping M , namely the set of d principal components.

Principal components computation consisted in the following opera-
tions:

• Normalization of all the calibration events with respect to their en-
ergy, computed as sum of all the detected signals for that event

• Subtraction of the mean of each channel

• Extraction of the d principal components, as the eigenvectors of the
covariance matrix of the dataset, corresponding to the d greatest
eigenvalues

It is important to underline that the value of d, namely the dimension
of the new space, is totally arbitrary, and it is a tunable parameter. For
this reason, as it will be described later, different values of d have been
tested in order to evaluate how the positioning performances could change
by changing the number of principal components used.
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Projection of LRFs in the principal components space

In order to be able to apply the LS-PCA and ML-PCA estimations in-
troduced respectively in equations 4.14 and 4.15, both the LRFs and the
event to reconstruct have to be projected into the new space.

While the projection of an event in the principal components space
is obtained by a simple scalar product between the observation and the
mapping M , in order to obtain LRFsPCA, which represent the equivalent
of the LRFs in the transformed space, a different approach has been
required.

As introduced in chapter 3, the j-th LRF represents the expected
signal measured by the j-th photodetector as a function of the (X,Y)
interaction coordinates of the photon on the scintillator surface. In order
to make feasible the computation and the allocation of these 3D continuous
curves, a proper binning of the (X,Y) coordinates is performed; the length
of the crystal along the X and Y direction is divided respectively into 506
and 258 discrete bins, with a pixel dimension of 0.2 mm. Consequently, the
LRFs estimation process implemented in PERA leads to the definition of
D different matrices with dimension 258× 506, where D is the number of
channels of the module.

In order to obtain the LRFsPCA, a new dataset has been created,
where each row represented one of the (258× 506) bins while the column
represented the value assumed by each LRF for that specific bin; this
operation allowed to build-up a D-dimensional dataset which could be
then projected into the new principal components space.

After the projection in the principal components space, the LRFs have
been composed again into a d-dimensional object defined inside the same
258× 506 bins matrix, which finally constitutes the LRFsPCA.

It is important to observe that the ML-PCA optimization problem
in equation 4.15 requires to compute the logarithm of LRFsPCA(X, Y );
however, after the projection of the LRFs in the new space, they contain
both positive and negative values. For this reason, in order to be able
to use the logarithmic formula, an offset value is summed to both the
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LRFsPCA(X, Y ) and the event to reconstruct, in order to obtain only
non negative values.

This step, on the contrary, is not required for the LS implementation.

4.4 Validation on simulations

In a first phase of the work, the reconstruction performances of the two
PCA-based methods have been validated on simulations, which have been
obtained by means of a specific simulation package, called ANTS2.

4.4.1 ANTS2

ANTS2 is a simulation and experimental data processing package for
Anger camera-type detectors. It is an open source and multiplatform
package, developed using CERN ROOT and Qt framework (C++). It rep-
resents the second release of the software package ANTS (Anger camera
type Neutron detector: Toolkit for Simulations) [65], originally developed
by Coimbra LIP for simulation and event reconstruction of Anger-type
gaseous detectors for thermal neutron imaging.

Besides providing tools for statistical reconstruction and for LRF es-
timation by iterative procedure, ANTS2 gives the possibility to model
scintillator-based detectors and to simulate the processes of particle inter-
action, production and propagation of the scintillation light and genera-
tion of the detector output.

In order to generate a dataset on ANTS2, two steps are required:

• Generation of the model of the camera: a model of the Anger
camera has to be defined, with its geometrical parameters and opti-
cal properties.

• Definitions of the simulation parameters: ANTS2 package al-
lows to operate following two different modalities:
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– Photon source modality consists in skipping the process of gamma-
ray interaction with the materials; just emissions of optical pho-
tons at user-defined positions in the scintillator are simulated.

– Particle source modality, instead, allows the simulation of gamma
photons from a radioactive source and their interaction with the
detection medium, followed by emission of scintillation pho-
tons. Energy, shape (point-like, circular or rectangular), size
and position of the source can be set. For this modality the
distribution of events is in accordance with the real physics of
gamma interaction: Lambert-Beer law is respected and the real
Poisson’s photon statistics stands.

For both the modalities, the simulation output consists of a table where
each rows represent the simulated event and the column values represent
the set of photodetector signals; furthermore, the true (x,y,z) scintillation
coordinates and energy of each event are provided. Simulated datasets
can be exported in the form of text files to be processed by means of other
software (i.e. MATLAB). Differently from the real system, where the
output of each channel is expressed in ADC bins, the simulator provides
as signal output the number of detected photoelectrons.

Generation of the model of the Anger camera

Generating the model of a Anger camera means defining the geometrical
and optical parameters of the camera itself.

The ANTS2 model of the clinical INSERT detection module, devel-
oped in a previous thesis work [66], requires the definition of the following
components:

• Scintillator crystal

• SiPM detection matrix

• Crystal-SiPMs optical interface (Meltmount)

• Reflective wrapping of the crystal (Teflon)
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• Scintillator-Teflon interface

An illustration of the defined structure is shown in figure 4.7.

Figure 4.7: Illustrative scheme representing the different components defined
to model INSERT clinical module.

It is important to clarify that the component indicated as Scintillator-
Teflon interface does not correspond to a real physical component but it
was defined to take into account the optical effects of the non-attachment
of the Teflon layer to the crystal surface in the real module (instead of
being glued to the crystal, it was just tightly wrapped around it and fixed
by a black tape).

Dimensions of the components have been set in order to reproduce
INSERT clinical module as faithfully as possible, and thus:

• Scintillator has been defined as a trapezoid with squared base faces
(101.2 × 51.6 mm for the lower face, 101.2 × 48.9 mm for the upper
face and 8 mm of thickness)

• Interfaces between different materials have been defined with rea-
sonably realistic values, being impossible to directly measure them
(0.1 mm thickness for both the interfaces)

• Teflon layer has been set to 0.2 mm thickness

• Photodetector matrix has been defined as a 12×6 matrix of square-
shaped SiPMs with size 8.2 × 8.2 mm
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Figure 4.8: Model of clinical INSERT single detection module, developed
through ANTS2 toolkit. The SiPM 2D array (green) lies at the bottom, the
Meltmount (red) is used to couple the SiPMs to the CsI(Tl) crystal (light blue).
Teflon-wrapping (blue) is the most external layer.

Besides defining the geometrical parameters of each component, it is
necessary to characterize each component in terms of optical properties,
in particular regarding their interaction with gamma particles:

• SiPMs: effective photon detection efficiency (PDE) was set to 0.35
(resulting from the coupling between the scintillator emission spec-
trum and the PDE-vs-wavelength response of the photodetectors)
and dark count rate (DCR) was set to 25 kHz

mm2 (DCR at T=-10 °C) .

• SiPMs optical coupling : Refractive index was set to 1.515.

• Meltmount: Meltmount, refractive index was set equal to 1.539
and the bulk absorption to 0.08 mm−1

• CsI scintillator: The crystal has a density of 4.52 g
cm3 , a photon

yield of 65 ph
keV and an intrinsic energy resolution of 6 %. The re-

fractive index is equal to 1.79. The scintillator was set as the only
material able to interact with gamma rays (mass attenuation coef-
ficient 1.425 cm2

g at 122 keV, mean free path 1.556 mm). The inter-
action properties of photoelectric and Compton effects for CsI were
directly loaded in ANTS2 from NIST XCOM web database [67].

• Teflon wrapping: the optical properties at the interface with Teflon
were characterized by 6 % of photons absorption and 94 % of Lam-
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bertian scattering (diffusive reflection). For Teflon, the refractive
index is set to 1.35 and the density to 2.2 g

cm3 .

Definitions of the simulation parameters

All the simulations have been run by using the particle source modality.
This means that all the parameters regarding the gamma ray source had
to be set: type of gamma ray source (a Co-57 source has been used, in
accordance with the experimental measurements), distance from the de-
tector, shape of the source, orientation and collimation. Details about the
specific simulation parameters will be provided into the following sections.

4.4.2 Impact of the value of d on the reconstruction
performances

The first step performed in the process of evaluation of the PCA-based sta-
tistical methods was the investigation of the reconstruction performances
of the algorithms by varying the number of principal components and,
thus, the dimension d of the new features space.

The knowledge of the real (X, Y ) interaction coordinates of each de-
tected gamma event allowed the definition of an absolute error. In partic-
ular, the reconstruction error for the i-th event is given by the Euclidean
distance between the real interaction position of the event and the recon-
structed one:

εi =
√

(xtrue − xreconstructed)2 + (ytrue − yreconstructed)2 (4.16)

The evaluation of the error required the generation of two different
simulated datasets, a calibration dataset and a validation dataset, in order
to be able to test the reconstruction performances on "fresh" data.

A flood irradiation was simulated in order to generate each of the two
datasets; an uncollimated point-like Co-57 source has been defined at a
distance of 30 cm from the crystal surface.
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After undergoing the energetic filtering stage and the LRFs estima-
tion, already described in section 4.3, the calibration dataset was used for
the principal components extraction by varying the value of d.

A value of d from 2 to 50 has been tested and the corresponding Root
Mean Square Error (RMSE) has been computed on the validation dataset
and plotted against the RMSE of the traditional statistical methods.

The Root Mean Square Error is commonly employed as index of the
spatial resolution of a camera, and it is defined as:

RMSE =

√√√√ N∑
i=1

ε2
i

N
(4.17)

where εi is defined in equation 4.16 and N is the number of events.
Notice that, before reconstructing the validation events, they have un-

dergone the same energetic filtering stage adopted for the calibration
dataset (±5% around the photopeak) in order to filter out scattering
events.

The spatial resolution generally worsens along the borders of the de-
tector respect to the centre; for this reason, the computation of the RMSE
has been carried out separately for the events whose real interaction coor-
dinates laid inside the CFOV and the ones outside the CFOV. The CFOV
practically excludes the first 10 mm from the borders of crystal surface.

Figure 4.9 shows the RMSE inside the CFOV as a function of the value
of d, both for ML-PCA and LS-PCA algorithms.

It is evident from figure 4.9 that, independently from the specific sta-
tistical algorithm used (ML or LS), increasing the number of principal
components brings to a decrease of the RMSE, as a consequence of the
higher informative content available. Both the curves show an elbow-like
trend, which reflects the shape of the scree plot of figure 4.2.

With a value of d = 10, the error starts to be comparable to the one
of ML and LS algorithms, respectively equal to 0.84 and 0.90 mm; by
the way, increasing even more the value of d does not lead to a further
improvement of the spatial resolution, meaning that the next components
do not bring useful informations.
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(a) ML-PCA Root Mean Square Error (CFOV)

(b) LS-PCA Root Mean Square Error (CFOV)

Figure 4.9: RMSE of ML-PCA (a) and LS-PCA (b) methods as a function
of the number of principal components on a semi-log scale (continuous line),
plotted against the RMSE of the traditional statistical method (dotted line).
The error is calculated only for events interacting inside the CFOV

The same plots are reported in figure 4.10 for events outside the CFOV;
it can be observed that, even though the RMSE settles to a higher value
than the one inside the CFOV (∼ 2.5 mm), also in this case 10 princi-
pal components seem to contain enough information to ensure a spatial
resolution practically equal to the one of standard ML and LS methods.
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(a) ML-PCA Root Mean Square Error (borders)

(b) LS-PCA Root Mean Square Error (borders)

Figure 4.10: RMSE of ML-PCA (a) and LS-PCA (b) methods as a function
of the number of principal components on a semi-log scale (continuous line),
plotted against the RMSE of the traditional statistical method (dotted line).
The error is calculated only for events interacting outside the CFOV.

4.4.3 Quantization of the principal components load-
ings

Each of the principal components is constituted by a set of D weights
(or loadings), each one expressing the weight of a given channel for that
specific principal component.

In the perspective of a hardware implementation of the PCA-based
multiplexing of the original channels through resistive (or capacitive) com-
ponents, like the one implemented in Pierce work [64], the values of the
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weights associated to each channel have to be quantized with a finite num-
ber of bits Nbits (and thus limited to a finite set of possible 2Nbits values).

For this reason, one concern of the evaluation on simulated data has
been to estimate the impact of the loadings quantization on the accuracy in
the reconstruction. For this purpose, once fixed a value for the number of
quantization bitsNbits, each eigenvector j ( j = 1, ..., d) has been quantized
by admitting only equally spaced values in the interval [αj, βj], where
αj and βj represent respectively the minimum and the maximum value
assumed by the weights of the j-th eigenvector.

This quantization has been repeated with different values of Nbits (a
value of bits equal to 2,4,6,8,10 have been set).

For this evaluation, the number of principal components d has been
fixed to 10.

The smoothed histograms of the reconstruction error inside the CFOV,
by varying the number of quantization bits, are shown in figure 4.11,
respectively for ML-PCA and LS-PCA. It is important to notice that,
independently on the number of bits used for the quantization of the
loadings of the principal components, the histogram of the reconstruction
error are Gaussian-shaped with a mean around 0.9 mm and a standard
deviation of 0.4 mm.

The fact that the encoding of the computed weights into a set of dis-
crete values does not require an high degree of precision (2 bits seem to
provide a spatial resolution practically equal to the case of 10 bits) seems to
be very promising for an hardware implementation of the weights through
resistive networks or other components.

Figure 4.12 depicts the 3D barplots of the loadings of the first 10
principal components extracted from the calibration dataset (d = 10). In
particular, on the top, it is shown the case where the weights have not
undergone a quantization, while, on the bottom, they have been quantized
on 22 intervals (Nbits = 2). It is possible to observe how the effect of the
quantization on the values of the weights seems minimal.
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(a) ML-PCA

(b) LS-PCA

Figure 4.11: Normalized histograms of the reconstruction error inside the
CFOV with varying the number of quantization bits, for ML-PCA (a) and LS-
PCA (b).

4.4.4 Validation on different SiPMs geometries

In both monolithic and pixellated detectors, the dimension of the SiPM
is a crucial factor affecting the minimum achievable spatial resolution. A
good strategy to improve the spatial resolution is the use of smaller pho-
todetectors, but at the cost of increasing the complexity of the read-out
electronics; however, the capability of PCA of scaling down the dimension-
ality of the data may be exploited to overcome this drawback, by keeping
low the number of signals required in input to the positioning algorithm.

This is the reason why, besides the real INSERT clinical module, other
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(a) No quantization

(b) Quantization on 2 bits

Figure 4.12: Barplots representing the value of the weights of each channel
for the first 10 principal components of the calibration dataset, respectively with
no quantization (top) and 2 bits quantization (bottom).

3 models of the camera have been defined in ANTS2 and, consequently,
evaluated in terms of the corresponding spatial resolution.

The geometrical and optical parameters previously described in 4.4.1
have been kept almost unchanged, with the only exception of the SiPMs
array. The 3 proposed and evaluated geometries have been:

• 24× 12 matrix of square-shaped SiPMs with size 4× 4 mm

• 46× 22 matrix of square-shaped SiPMs with size 2× 2 mm

• 84× 42 matrix of square-shaped SiPMs with size 1× 1 mm
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The defined geometries are showed in figure 4.13.

(a) Model with 4mm× 4mm SiPMs (b) Model with 2mm× 2mm SiPMs

(c) Model with 1mm× 1mm SiPMs

Figure 4.13: The 3 different evaluated geometries for INSERT clinical module.

Similarly to what has been done for INSERT clinical module simula-
tions, for each defined geometry, the RMSE made by ML-PCA and LS-
PCA algorithms have been computed by varying the number of principal
components.

In relation to the results of these simulations, shown in figure 4.14 and
4.15 respectively for the CFOV and the border regions, two considerations
can be made:

• the RMSE seems to decrease when decreasing the SiPMs dimension,
especially when using SiPMs with 1 mm size.

• the number of principal components to extract in order to achieve
a spatial resolution comparable to the one of the corresponding sta-
tistical method does not depend on the total number of SiPMs.

Table 4.1 and table 4.2 show the RMSE computed for each of the
simulated geometries, in the case of ML and LS reconstructions.
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(a) ML-PCA

(b) LS-PCA

Figure 4.14: RMSE of ML-PCA (a) and LS-PCA (b) methods as a function of
the number of principal components and for different SiPMs sizes. The RMSE
is calculated only for events interacting inside the CFOV.

In the perspective of implementing a higher number of smaller SiPMs
to improve spatial resolution, especially outside the CFOV, PCA may
allow to damp the unavoidable increase in the computational effort made
by the reconstruction algorithm, since it would allow to use a much smaller
number of features instead of the original ones.

However, this advantage would not be achieved for free, because it
would mean also increasing the number of physical channels to acquire
and to weight for the principal components hardware implementation.
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(a) ML-PCA

(b) LS-PCA

Figure 4.15: RMSE of ML-PCA (a) and LS-PCA (b) methods as a function of
the number of principal components and for different SiPMs sizes. The RMSE
is calculated only for events interacting outside the CFOV.

4.5 Validation on experimental measurements

The experimental measurements have been carried out directly on the
clinical INSERT single detection module, avalaible in Politecnico di Mi-
lano.

The same workflow described for simulated datasets has been followed,
by acquiring a calibration dataset, used for LRFs estimation and extrac-
tion of the principal components, and then validating the ML-PCA and
LS-PCA algorithms on a different validation dataset.
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SiPMs size ML LS

8 mm 0.84 mm 0.90 mm
4 mm 0.77 mm 0.78 mm
2 mm 0.92 mm 0.98 mm
1 mm 0.58 mm 0.60 mm

Table 4.1: RMSE inside the CFOV varying the size of SiPMs

SiPMs size ML LS

8 mm 2.53 mm 2.74 mm
4 mm 2.45 mm 2.60 mm
2 mm 2.59 mm 2.82 mm
1 mm 1.65 mm 1.94 mm

Table 4.2: Values of RMSE outside the CFOV varying the size of SiPMs

4.5.1 Calibration phase

The Co-57 source was positioned at a distance of 30 cm from the box
containing INSERT module, in a way to obtain a flood field irradiation.
After the energy filtering stage, the same procedure descibed in 3.3.3 has
been then followed in order to generate the LRF of every SiPM.

The same calibration dataset has been then used for the principal
components estimation.

4.5.2 Validation phase

Being the real interaction coordinates of each detected event unknown,
differently for simulations, the reconstruction performances of the ML-
PCA and LS-PCA methods have been evaluated in terms of FWHM and
image quality, by comparison to the ML and LS methods.

With regard to the number of extracted principal components, simula-
tions results had suggested that a value of d greater than 10 could provide
a spatial resolution comparable to the one of classical statistical methods.
In order to assess if these results may be consistent or not with the real
case scenario, different values of d have been tested, starting from d = 10
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(d = 10, 20, 30). In this case, the number of quantization bits Nbits has
been initially fixed to 10.

The validation dataset consisted of a grid irradiation, obtained by using
a Lead collimator, which is showed in figure 4.16.

Figure 4.16: Photo of the Lead collimator used for the experimental validation.
The holes of the collimator had 1 mm diameter and the distance between the
holes was 3 mm along the two directions x and y.

In the first three rows of figure 4.17, it is possible to observe the vali-
dation grid reconstructed by ML-PCA and LS-PCA algorithms, selecting
respectively 10, 20 and 30 principal components, while the row at the
bottom shows the same image reconstructed by classical ML and LS al-
gorithms, thus exploiting all the 72 original channels of INSERT clinical
module.

It is possible to observe that the first 10 principal components ade-
quately describe only the CFOV of the detector; indeed, the image un-
dergoes a compression and events interacting along the borders are not
correctly reconstructed.

Increasing the number of components up to 20 allows to overcome this
distorsion and to obtain a grid image practically comparable to the one
reconstructed by ML with 72 channels.

It can also be observed that passing from d = 20 to d = 30 does not
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provide significative improvements on the quality of the image in the more
central region of the detector, but has the effect of increasing the density
of events for the spots placed immediately near the borders.

A more quantitative assessment of the spatial resolution provided by
the two PCA-based algorithms is shown in figure 4.18. The figure repre-
sents the histograms of the reconstructed x and y coordinates for a subset
of spots from the validation grid, taken inside the CFOV. Here, the ML-
PCA and LS-PCA reconstructions have been run by extracting the first
30 principal components and quantizing them with 10 quantization bits.
It is evident how the FWHMx and FWHMy are practically equal to the
ones of ML statistical reconstruction which employees all the 72 original
channels.

Finally, in order to assess if the reconstruction performances in the case
of experimental data was robust to a coarser quantization of the loadings
of the principal components, the same reconstruction has been run by
quantizing the estimated principal components on just 2 bits, thus allow-
ing for each principal components only 4 possible values for its weights.

Like for simulations, the spatial resolution seems to be totally unaf-
fected, as it is possible to observe from the histograms depicted in figure
4.19.
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(a) ML-PCA reconstruction, 10 compo-
nents

(b) LS-PCA reconstruction, 10 compo-
nents

(c) ML-PCA reconstruction, 20 compo-
nents

(d) LS-PCA reconstruction, 20 compo-
nents

(e) ML-PCA reconstruction, 30 compo-
nents

(f) LS-PCA reconstruction, 30 compo-
nents

(g) ML reconstruction, 72 components (h) LS reconstruction, 72 components

Figure 4.17: Grid irradiation reconstructed by ML-PCA (left column) and
LS-PCA (right column) with varying the number of principal components d
used to run the reconstruction. The last row represents, instead, the same grid
irradiation reconstructed by ML and LS without applying the PCA reduction.
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(a) Histograms along x-direction

(b) Histograms along y-direction

Figure 4.18: Smoothed histograms of the reconstructed coordinates respectively
along the x and y direction. 30 principal components have been used to run
the reconstruction, and the weights of those principal components have been
quantized using 10 bits.
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(a) Histograms along x-direction

(b) Histograms along y-direction

Figure 4.19: Smoothed histograms of the reconstructed coordinates respectively
along the x and y direction. 30 principal components have been used to run
the reconstruction, and the weights of those principal components have been
quantized using 2 bits.



Chapter 5

Decision trees

One of the most common methods for solving supervised learning prob-
lems is constituted by decision trees. In general, decision trees are used for
both classification and regression problems; they owe their success to their
high flexibility and, above all, their interpretability. In the second part of
the present thesis work, a Decision Trees-based reconstruction method has
been proposed, by converting the problem of localizing the (x,y) scintilla-
tion coordinates of a γ photon into a discrete classification problem, which
is then addressed by implementing a cascade of decision trees. The method
has been evaluated on both simulations and experimental data. Into this
chapter, after an introduction on the theory on which decision trees are
based and their applications in medical imaging, the whole process followed
in order to create the classification model will be described, from the train-
ing process to the hyperparameters optimization and the final results on
some validation datasets.

5.1 Introduction to Decision Trees

Decision Trees (DT) constitute a wide family of machine-learning meth-
ods, which are used in order to generate predictive models from data, in
supervised learning problems. Typical supervised learning problems are
classification and regression, where the input dataset includes a certain

111
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number of observations, each consisting in a set of attributes, or features,
plus a target variable. The target variable can assume a set of discrete val-
ues, in a classification problem, or it can be a continuous variable defined
in a certain domain, in a regression problem.

In the following, the discussion will focus on classification trees; indeed,
the problem of reconstructing the position of interaction in a gamma-
camera can be seen as a classification problem, if the (x,y) position are
discretized in a finite set of possible positions.

5.1.1 Theory

In a typical classification problem, the training dataset, that is the set
of observations needed to make the model "learn" from the past events,
consists in N observations.

Each of this observations is made byD predictor variables (or features),
X1,X2,...,XD, which can be categorical or numerical, plus a categorical
target variable Y , namely a variable which can assume k different values,
called classes.

Looking at the problem from a more intuitive point of view, each of
the N observations is represented by a point, defined in a D- dimensional
space, and characterized by a possible label value from 1 to k.

Figure 5.1: Typical classification problem; each point represents an observa-
tion , while its color represents a given class.
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In figure 5.1, it is shown, just as an example, a typical classification
problem; each observation is characterized by 3 features values (D = 3)
and a given class, which is represented by the color of the point.

Each classification method aims to separate as accurately as possible
points having different label values. After the generation of the classifica-
tion model, it is possible to predict the label value of a new observation,
just knowing the values of its features.

The simple idea on which a decision tree is based is to apply a recur-
sive partition of the features space into a set of disjoint regions, simply
generating some splits, which represent tests based on the values of one
or more attributes.

A decision tree, whose general structure is depicted in fig.5.2, is made
by one node called root, with no incoming edges, some internal nodes,
which are reached by one incoming edge and spread two (or more) out-
coming edges, and some leaf nodes, which have one incoming edge but no
outcoming edges.

Figure 5.2: Decision Tree structure

Each of the nodes of the tree represents a partition of the instances
space into two (or more) non overlapping regions of the original space,
according to a certain function of the input features, called splitting rule.
DTs owe their success to the fact that, being characterized by a set of
rules structured as a tree, they are easily interpretable and close to the
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human reasoning approach [68].
In its simplest form, called univariate tree, each split considers a single

feature at time, thus the boundary of the obtained sub-regions are rect-
angular; in univariate trees, the conditions tested by the nodes are also
more intuitive and clear to understand.

In the particular case of a dataset with just numerical attributes, the
geometrical interpretation of a decision tree becomes a set of hyperplanes,
each orthogonal to one of the axes.

When a certain stop condition is reached, the generation of the tree
interrupts; all the current branches become leaf nodes and each leaf is
assigned to one of the k classes, generally according to a majority crite-
rion (the k-th leaf is assigned to class i if the majority class between the
instances which have fallen in leaf k is class i).

After the generation of the tree, the classification of a new unseen
observation is straightforward: the tree is navigated from its root node
downward, according to the outcome of each tested condition along the
path, till a leaf node is reached, and thus the corresponding label will be
assigned to the observation. [69]

5.1.2 Training of a decision tree

Training, or induction, of a decision tree is the process which consists
in growing the tree, given as input a training dataset, namely a dataset
containing observations whose target value is known. Starting from a
given training set, there is not only a possible decision tree which can be
constructed and it has been shown that finding the optimal one, namely
the minimum tree consistent with the training set, is a NP-hard problem
[70].

This is the reason why the existing training algorithms limit themselves
to find a reasonably accurate, despite sub-optimal, decision tree.

In order to train this sub-optimal classifier, empirical methods are
used; in particular, these can be distinguished in top-down and bottom-
up induction methods.
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ID3 [71] , C4.5 [72] and CART [73] are some of the most known top-
down induction algorithms, and they are all characterized by a greedy,
"divide and conquer" strategy, where at each iteration the most appropri-
ate partition function is choosen according to some splitting rules and the
procedure stops when a certain stopping rule is satisfied.

Splitting rules

Many different criterions have been employed in literature in order to
determine the goodness of an attribute test condition, but almost all of
them have in common the concept of minimization of the impurity of the
generated partitions, and so they are called impurity-based methods. A
perfectly pure node is a node whose observations are all characterized by
the same label value; intuitively, a good classifier will be the one which is
able to generate,with its splitting rules, purer and purer child nodes.

Given a random variable x, which can assume k discrete values ac-
cording to the discrete probability function P = (p1, p2, .., pk), an impurity
measure is a function Λ : [0, 1]k → R , which satisfies these conditions:

• Λ(P ) ≥ 0

• Λ(P ) is minimum if ∃ i such that pi = 1

• Λ(P ) is maximum if ∀ i , 1 ≤ i ≤ k, pi = 1/k

• Λ(P ) is symmetric with respect to components of P

• Λ(P ) is differentiable everywhere in its range

The most used impurity measures are listed here in the following [52]:

Entropy = −
k∑
i=1

pi(t) log2 pi(t) (5.1)

Gini index = 1−
k∑
i=1

pi(t)2 (5.2)

Misclassification error = 1−max
i

[pi(t)] (5.3)
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where pi(t) represents the relative frequency of instances of node t
belonging to class i and k is the number of total classes.

Figure 5.3: Entropy, Gini and misclassification error for a binary classifi-
cation problem: it is straightforward to verify that each of the three measures
assumes a zero value if the node contains instances from a single class and
maximum impurity if the node has equal proportion of instances from the two
classes

In order to evaluate which is the best split to perform for a given
node t, the approach is to choose the split condition which leads to the
greatest reduction of one of the three impurity indexes. This reduction,
also termed gain being reflective of the gain in purity achieved after the
split, is defined in terms of the difference between the impurity of the
parent node t, and the impurity of the child nodes, which are the nodes
generated by the partition :

∆ = I(parent)− I(children) (5.4)

where I(children) is given by:

I(children) =
c∑
j=1

N(vj)
N

I(vj) (5.5)
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where N is the total number of instances contained in the parent node,
c is the number of children, v1, v2, .., vc, generated by the split, N(vj) is
the number of instances fallen into the child node vj , and I(vj) is the
impurity related to children node vj . In other words, the total impurity
of the children nodes is given by a weighted sum of the impurities of child
nodes. The gain, in the case when entropy is used as impurity measure,
is also termed information gain.

Another common splitting criterion which is also based on impurity
measures is twoing rule. Unlike Gini rule which searches in training sample
for the largest class and isolate it from the rest of the data, twoing basically
looks for two classes that make up together more then 50 % of the data.
Twoing splitting rule maximizes the following change of impurity measure
[74] :

∆i(t) = PLPR
4

[
k∑
i=1

∣∣∣pi(tL)− pi(tR)
∣∣∣]2

(5.6)

where PL and PR are the probabilities of the left and right nodes.
Impurity measures suffer of one important limitation: they are biased

towards features which can assume a large number of distinct values; in
other words, they generally tend to choose as splitting features the ones
which can assume more possible values, since they bring to a higher in-
formation gain, although they result in a low generalized accuracy [71].

For this reason, some ways to "normalize" the impurity-based measures
have been proposed, like the gain ratio [72].

Gain ratio for the attribute i is defined as:

Gain Ratioi = Information Gain,i
Entropy,i

(5.7)

Stopping rules

Stopping rules constitute a set of rules used to determine if it is advisable
to stop the grow of a certain branch of the tree or not. Of course, build-
ing a too branched tree is counterproductive for mainly two reasons: it
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causes overfitting, meaning that it generates a model with a poor gener-
alization capability because too much reflective of training observations,
and, secondly, it makes the model difficult to interpret.

Generally, an internal node becomes a leaf node if one of the following
conditions is verified:

• the node contains a number of instances lower than a certain fixed
treshold

• the percentage of node observations pertaining to the same class is
higher to a certain fixed treshold

• the information gain which may derive by an eventual further par-
tition is lower than a certain fixed treshold

Pruning

Finding the ideal stopping rules parameters in order to obtain a balanced
tree, neither under- or over-fitted, is not always an easy task.

For this reason, another technique is often used after the generation of
the tree, the pruning. The tree is initially let grown, even overfitted, but,
in a next phase, the tree is cut back into a smaller tree by removing those
branches which do not contribute to the generalization accuracy; many
different pruning criterions have been proposed throughout the years, like
cost-complexity pruning [72], reduced error pruning [75][76] and all these
attempts have proved to be useful to reduce the complexity model without
loosing in accuracy.

Techniques for increasing the predictive accuracy

Even if properly optimized by tuning the values of some hyperparameters
like maximum number of allowed splits or minimum size of the leafs, a
single tree may tend to overfit the training data, especially when they are
characterized by a limited size.

In order to compensate overfitting and increase the predictive accuracy,
different techniques have been investigated throughout the years.
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One of them is Bootstrap aggregating: Bootstrap aggregating, also
known as Bagging, is a machine learning ensemble technique conceived for
improving the stability and accuracy of machine learning algorithms used
in both classification and regression problems [77][78].

The idea on which bagging is based is quite simple: given a training
set X of size N , bagging generates p new training sets X i (with i =
1, ..., p), each having a size Ni (which does not have to be necessarily
equal to N). Each of these new training datasets is obtained by sampling
Ni observations from X uniformly and with replacement. The strategy
implemented in order to generate the p new datasets, also called bootstrap
samples, is shown in figure 5.4.

Figure 5.4: Generation of bootstrap samples. The initial dataset, placed in
the top is composed by 20 observations; each bootstrap dataset is obtained by
sampling, uniformly and with replacement, 10 observations. The procedure is
repeated p times in order to generate p new training datasets.

By sampling with replacement, some observations will be repeated in
each X i (it can be demonstrated that, with Ni = N , almost the 60 % of
the observations of a bootstrap sample X i are unique, while the rest is
duplicated [79]).

Besides reducing the variance, sampling with replacement ensures that
every bootstrap sample is independent from the others.

After the generation of the p bootstrap samples, p different trees are
grown, instead of 1. Finally, in order to classify a new observation, each of
the p classification trees will predict its expected class and the final class
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to which the observation will be assigned will be chosen according to a
majority voting among the p fitted trees.

Another crucial factor influencing the predictive performances of a
classification model is the dimension of the training set; it is intuitive that
disposing of a small number of training events usually leads to overfit the
training data, lacking of generalization capability. An even worse situation
is when the number of training observations available for each class is not
balanced.

It is also true that not always it is possible to collect a sufficiently
high number of training events, especially for applications like nuclear
imaging systems, where the generation of training events requires proper
calibration procedures on the detector and, thus, increasing the number
of training data would require longer calibrations.

One common technique adopted in order to compensate the unbalance-
ment of the size of training events for different classes is data augmenta-
tion. Data augmentation includes a wide family of techniques, which are
aimed at simulating new training data from the available ones, without
altering the informations contained in the original data.

Even if the main application of data augmentation is related to images
[80], in the sense that some operations like flipping, crossing and rotations
are applied on the pixels of the image), in some cases it has been suc-
cesfully applied to numerical datasets too [81] [82]. In this context, data
augmentation refers to the possibility of generating new training observa-
tions coherently to the sample already available, in order to not modify
the information contained in the original data.

How it will be further described later, bagging and data augmentation
techniques have been applied during the training of the DTs for the exper-
imental measurements, with the purpose of increasing the generalization
capability of the classification model.
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5.1.3 Applications to medical imaging

Machine learning techniques have found unique applications in nuclear
medicine field. Their use in medical imaging can be grouped along three
main frameworks:

• Computer-aided Detection (CAD): classification models can
be used as a decisional support for physicians in order to perform
early-stage diagnosis of pathologies. Indeed, the use of classification
and pattern recognition algorithms has proved to be a very efficient
way to identify suspicious features of a medical image and bring
them to the attention of the physician, leading to a decrease in the
false negative rate, speeding-up the diagnosis process and, most of
all, allowing an early diagnosis of a pathology, which may not be
easily detectable by the human eye [83][84] .

• Image enhancement: another possible application involves the
improvement of the "quality" of medical images, for example the
correction for the object attenuation of annihilation photons, scatter
correction and noise reduction in PET imaging [85][86]

• Localization of the (x,y,z) scintillation coordinates: ML-
based classification models can be employed in order to estimate
position and energy of the interaction of a γ photon inside monolithic
PET/SPECT detectors (in case of PET detector, also the time of
arrival of the photon can be estimated) [85].

The reason why ML algorithms have aroused such interest for the esti-
mation of the scintillation coordinates of γ-photons in monolithic detectors
is quite simple; solving the inverse problem that maps the light distribu-
tion to the position-of-interaction is often quite challenging in the presence
of limited-statistics noise and the highly nonlinear behavior near the edges
of the crystal. Compared to other estimators such as center-of-gravity or
fitting methods, machine learning-based approaches, in general, resulted
in superior detector spatial resolution, mainly due to reduced positioning
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bias at the edges of the detector, where linear estimation methods such as
Anger logic fail to accurately decode the nonlinear light distribution [85].

On the contrary, ML-based methods are based on a "blind" logic, which
does not require the definition of particularly rigid statistical models and
prescinds from the hypothesis of a linear distribution of the light over the
detector.

In particular, considering Decision Trees, DT-based reconstruction
techniques have been proposed for the estimation of the scintillation po-
sition in PET monolithic detectors [87], even introducing the DOI infor-
mation [88]. Among the numerous types of classifiers which have been
proposed for the estimation of scintillation position in continuous detec-
tors, DTs proved to be an optimal candidate in the perspective of im-
plementing the positioning algorithm into the system electronics, such as
FPGA implementations. This is due to the fact that decision trees algo-
rithms rely only on binary decision operations, making them a relatively
straightforward and a computationally relaxed algorithm for fast event
processing. However, the main limitation to the FPGA implementation
of these algorithms proved to be the memory allocation required [87].

5.2 DT-based planar reconstruction

The present thesis work aimed at implementing a DT-based classifier able
to reconstruct the (X,Y) scintillation coordinates of a γ photon in a mono-
lithic detector; however, this approach may be equally applied to pixelated
detectors too.

5.2.1 Basic principle

The basic idea consists in converting the problem of the reconstruction
of the (x, y) interaction coordinates into a discrete classification problem,
where each class corresponds to a specific (x, y) position on the crystal,
as illustrated in figure 5.5.

The scintillator surface is virtually divided into a number C of classes.
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Figure 5.5: Illustration representing the subdivision of the crystal surface (in
blue) into a grid of C discrete (x, y) positions (white dots).

In order to train the model, for each class, a set of events interacting
in the corresponding position needs to be obtained, so that the classi-
fier can "learn" from those data which are the most recurrent patterns
of signals values for that specific (x, y) position. The generation of the
datasets corresponding to each of the C classes (the white dots in fig-
ure 5.5) required different approaches for simulations and experimental
measurements, which will be described later.

5.2.2 Cascade of Decision Trees

Differently from statistical methods, which handle the problem of estimat-
ing the interaction coordinates in a continuous way, being the LRFs the
result of a fitting in the (X, Y ) domain, in the case of the DT reconstruc-
tion, the possible interaction coordinates are limited to just C possible
positions.

As a consequence, the spatial resolution theoretically achievable by the
method strictly depends on the inter-classes distance and, therefore, on
the number C of classes defined.

Thus, one important point to deal with is the choice of a reasonable
number of classes. Indeed, if from one side the minimum spatial resolu-
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tion achievable by the algorithm decreases when decreasing the distance
between two adjacent classes, from the other side, choosing a too dense
pixellation unavoidably leads to an increase of the computational effort
and time required for the training of the model and to a worsening in
the accuracy of the classifier, which is not able anymore to discriminate
correctly events corresponding to two adjacent classes.

Furthermore, implementing a classifier with too many classes proved to
be a sub-optimal solution because of the high memory resources required
to store a too complex classification tree.

A possible approach to overcome this issue may be, instead, splitting
the problem of localizing the (X,Y) scintillation coordinates into two dif-
ferent classification steps:

1. the event is assigned by a first decision tree, which we will refer to
as Global Decision Tree, to a specific macro-region of the crystal

2. the same event enters into a second decision tree, called Local De-
cision Tree, which is defined inside the macroregion to which the
event has been assigned, and this second tree finally assigns the
event to a more specific (x, y) position on the crystal among the
ones defined inside that region

This strategy is illustrated in figure 5.6.
Thus, according to this strategy, instead of assigning a certain event

directly to one of the C classes by means of a huge single tree, the Global
Decision Tree (GDT) assigns the event to one of theM macro-regions, pro-
viding a first "coarse" classification, while the Local Decision Tree (LDT)
of that specific macroregion operates a more fine classification assigning
the event to one of the local classes defined within that area.

However, even this second approach presents some limitations. Mak-
ing the classification a two-steps process may result in a worsening of the
classification accuracy: an event which is assigned to a "wrong" macrore-
gion will be unavoidably misclassified at the end of the process, even if
the LDT made the most accurate possible classification.



5.3 DT RECONSTRUCTION ON SIMULATIONS 125

Figure 5.6: Illustration representing the subdivision of the crystal surface in
two different layers: the macroregions, defined by the colored boxes , and the
local classes,represented by the white dots, which correspond to the final (x, y)
allowed positions.

In order to compensate for this issue, the solution adopted has been
to admit overlaps between the macroregions; this practically means that
some (x, y) coordinates which are located between two adjacent regions A
and B are defined as local classes inside the Local Decision Tree of both
A and B regions.

The final architecture of the model is shown in figure 5.7

5.3 DT reconstruction on simulations

The process required in order to generate the training datasets and build
the classification model are different for simulations and experimental
measurements.

ANTS2 simulation package allows to set all the parameters regarding
the radioactive source: shape (point-like, linear or surface) dimension (i.e.
the diameter of a round surface), position, orientation and collimation.

This made possible to generate with high flexibility and precision the
datasets required to train both the GDT and the LDTs.
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Figure 5.7: Illustration representing the final architecture used for the classi-
fication model. The macroregions, defined by the colored boxes, are overlapped
between each other in the vicinity of their respective boundaries, along both x
and y directions.

5.3.1 Generation of the training datasets

The architecture choosen in the case of simulations consisted in 105 square-
shaped macroregions, with size 12.6 mm and with a reciprocal overlapping
equal to half the size of each macroregion. The number of classes inside
each macroregion has been set to 42 along the x direction and 42 along
the y. The distance between the local classes has been set to 0.3 mm.

In order to train the whole classification model, two different types of
training datasets need to be obtained:

• training dataset of the Global Decision Tree

• training datasets of the Local Decision Trees

In order to train the GDT, for each of the 105 macroregions (colored
boxes in figure 5.7), a set of events interacting inside that specific region
needed to be simulated.

At this purpose, a square-shaped γ source with size 12.6 mm, shown
in figure 5.8, has been defined on ANTS2 and 105 simulations have been
run, in order to obtain the training events for each region.
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(a) Positions of the source
for simulating events of
macroregion 1

(b) Positions of the source
for simulating events of
macroregion 2

Figure 5.8: Events simulated for the macroregions 1 and 2. The square-
shaped source is shifted every time of steps equal to 6.3 mm, namely half the
size of each region, in a way that all the 105 final macroregions are overlapped
between each other for half their size.

The training process for the 105 Local Decision Trees is, instead, quite
different.

Each class defined inside a local tree represents a given (x, y) position
(white dots in figure 5.7); in order to simulate the events corresponding
to each class, a circular γ source with 0.3 mm diameter has been defined
on ANTS2 and shifted along the x and y directions with a 0.3 mm step
size. For each position of the beam, 500 events have been simulated.

In all the simulations run on ANTS2, dark count rate (DCR) was set
to 25 kHz

mm2 ( DCR at T=-10°C).

5.3.2 Feature reduction and PCA

As already described in chapter 4, Principal Component Analysis repre-
sents an eligible tool for performing feature reduction.

In order to slim the training process, a PCA feature reduction has been
performed on the training datasets of the GDT and the 105 LDTs.

In other words, before growing each tree, the corresponding input
training dataset has undergone feature reduction, by obtaining a new
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(a) Scree plot for the GDT

(b) Scree plot for the LDT

Figure 5.9: Scree plots for the training dataset of the Global Decision Tree
(a) and one of the Local Decision Trees. It is possible to observe that, in the
case of the Local Tree, much less principal components are needed in order to
describe the same amount of variance.

set of features. The number of principal components has been choosen
according to the elbow method, that consists in looking for an "elbow",
namely an inflexion point, in the scree-plot [89].

In figure 5.9 are shown the scree plots respectively for the training
sets of the GDT and one of the LDTs (the plot in figure 5.9(b) refers to
macroregion 5, but the same curve has been plotted for each of the 105
macroregions, leading to equal results). It is interesting to observe how
the number of principal components corresponding to the elbow of the
curve is significantly different; in the case of LDTs, the highest percentage
of the total variance contained in the training set is concentrated in the
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very first principal components (up to 10), while for the training set of
the global tree, the elbow corresponds to a higher number of components.

This is reasonable if we think that the training events of a Local Tree
are events interacting in a very limited portion of the crystal surface (12×
12 mm); this means that, among the original 72 detection channels, only
few of them are carrying a really useful information about the data.

After the evaluation of the two scree plots, the number of principal
components employed in order to train the trees has been set to 35 and
10, respectively for the GDT and the LDTs.

5.3.3 Training of the DTs

Once simulated the training datasets and performed the feature reduction,
the process of generation of the GDT and the LDTs has been carried out.

DTs have been trained by using MATLAB "Statistics and Machine
Learning Toolbox".

When training a DT, the critical parameters to tune in order to max-
imize the accuracy, also called hyperparameters are:

• maximum number of splits allowed during the growth of the tree;
this parameter must be limited in order to prevent overfitting.

• splitting criterion, which can be choosen between Gini index, maxi-
mum deviance and twoing rule.

• minimum leaf size, which represents the minimum number of obser-
vations for a leaf node. Also this parameter needs to be tuned in
order to prevent overfitting.

For both the GDT and the 105 LDTs, the type of splitting criterion
proved not to be influential in terms of accuracy; twoing rule has been
choosen as splitting rule.

Instead, the choice of the other two optimal hyperparameters, maxi-
mum number of splits and minimum leaf size, has been determined
by a Bayesian optimization process, aimed at minimizing a 10-fold cross-
validation loss function.
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Figure 5.10: 10-fold cross validation loss function evaluated as function of
the maximum number of splits and the minimum leaf size, in the case of the
Global Decision Tree. The estimated optimal hyperparameters are MaxNum-
Splits=10206 and MinLeafSize=121

When setting up a cross validation, the training observations are split
into K partitions, the model is trained on K − 1 partitions, and the test
error is predicted on the left out partition k. The process is repeated for
k = 1, 2. . .K and the result is then averaged.

This average classification error takes the name of cross-validation loss.
In figure 5.10 is depicted the 10-fold cross validation loss function com-

puted during the hyperparameters optimization process for the Global
Decision Tree.

The hyperparameters optimization process is performed in the same
manner for each of the 105 Local Decision Trees, by obtaining analogue
curves.

5.3.4 Validation

In order to evaluate the spatial resolution achieved by the algorithm on a
new validation dataset, a flood irradiation has been simulated on ANTS2
and each event has been reconstructed with the cascade of decision trees.
Being the real interaction coordinates of each validation event known, the
absolute error, namely the Euclidean distance between the real coordinates
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of each event and the reconstructed ones, have been defined and plotted
in a histogram.

This has been done separately for the CFOV region and the one outside
the CFOV.

The two histograms are depicted in figure 5.11

(a) Error inside the CFOV

(b) Error outside the CFOV

Figure 5.11: Histograms of the DT reconstruction error inside (a) and outside
the CFOV (b)

It is possible to observe from 5.11(a) that the distribution of the ab-
solute error inside the CFOV has a mean value equal to 0.6 mm (against
the 0.8 mm provided by the ML reconstruction).

Instead, the distribution of the absolute error outside the CFOV has a
mean value equal to 1.1 mm (while ML provided a mean error of 2 mm).
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5.4 DT reconstruction on experimental mea-
surements

In the final part of the work, DT reconstruction method has been imple-
mented for the reconstruction of experimental measurements performed
on INSERT clinical module. Even if the principle on which the method
is based is exactly the same of simulations (section 5.2), the procedure
required in order to generate the training datasets from the experimental
measurements on INSERT module required a proper calibration procedure
which will be introduced in the following subsection.

5.4.1 Generation of the training datasets

The generation of the training events for each of the C defined (x, y) coor-
dinates may be, in principle, executed by scanning a collimated thin beam
across the scintillator surface, which, by the way, is a common calibration
procedure for the characterization of gamma detectors response [63].

However, scanning the beam to cover all the C positions defined in the
classification model would be expensive in terms of required calibration
time and, thus, hardly doable when prospecting a clinical application.

A possible alternative to this type of calibration is using, instead, a grid
collimator; this solution would allow to obtain with a single irradiation the
training events of multiple classes.

However, the use of a grid collimator instead of a single spot-beam,
introduces two important drawbacks:

• the spatial resolution ideally achievable depends on the pitch of the
collimator; if a collimator with step k is used, even with an accu-
racy of 100% , the classifier would not be able to achieve a spatial
resolution lower than k mm.

In order to achieve a spatial resolution feasible with medical diagnos-
tic applications ( < 1 mm), collimators with very low pitch should
be used.
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• in the second place, when performing a grid irradiation, the matrix
of detected events does not contain any information about the cor-
respondence between each event and the hole of the collimator from
which it has hit the crystal surface.

This information is crucial in order to assign that event to the train-
ing set for a specific (x, y) position on the detector surface.

In the present work, the two issues have been addressed with the fol-
lowing approaches:

• instead of using an extremely low-pitch collimator, a collimator with
pitch 2 mm has been used and the classes sampling has been thicken
up by performing, instead of a single grid irradiation, multiple irra-
diations. For each of the irradiations, the collimator has been shifted
with step 0.5 mm in order to cover the intermediate positions be-
tween two adjacent holes of the collimator, as depicted in figure 5.12.
A total of 16 ( 4 steps along x and 4 along y) different acquisitions
have been collected.

Figure 5.12: Scheme representing the relative positions of the classes which
have been obtained shifting the collimator along the (x, y) plane.

• for each of the 16 grid datasets collected, each detected event has
been assigned to a given hole of the collimator with a hybrid tech-
nique, combining a statistical reconstruction and a k-means cluster-
ing.
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The Lead collimator used for the measurements had a size of 60× 60
mm, with thickness 0.5mm; its holes had 0.5 mm diameter and a pitch of 2
mm along the x and y directions. It has to be specified that the collimator
was able to cover above half of INSERT clinical module. Consequently,
it has not been possible to define the classification model on the whole
surface of the crystal, but just on one half; in every case, the results
obtained on the validated area would be easily repeatable on the whole
surface.

Moving the collimator with a high accuracy is crucial in order to ensure
a 0.5 mm inter-classes distance. For this reason, the collimator has been
shifted along the (x, y) plane by using a linear translator with micrometric
resolution [90].

An illustration of the whole setup used for the calibration process is
shown in figure 5.13.

Figure 5.13: Illustrations representing the experimental setup used for the
calibration, with the x− y linear translator and the collimator, which is placed
between the Co57 point source and INSERT clinical module.

Assignment of each calibration event to a (x, y) position

After the collection of the 16 grid-collimated irradiations, the following
step has consisted in assigning each calibration event to the training set
of a specific (x, y) position on the crystal surface.

In a first step, each acquisition has been energy-filtered, in order to dis-
card Compton interactions due to the presence of the Lead collimator, by
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selecting an energy window centered around the Co57 122 keV photopeak.
Then, each calibration dataset has been reconstructed by means of

Maximum Likelihood statistical reconstruction (after having estimated
the LRFs according to the traditional process already described in 3.3.3).
Events interacting at high DOI have been identified, by defining a thresh-
old on the number of activated SiPMs, and filtered out. This last operation
was aimed at removing from the grid image the DOI-dependent artefacts.

Figure 5.14: Grid irradiation reconstructed by ML

Figure 5.14 shows the ML-reconstructed image of one of the 16 calibra-
tion datasets. In order to separate calibration events interacting through
different holes of the collimator, the (x, y) coordinates corresponding to
the peaks of the 2D histogram have been identified. It has to be underlined
that the holes coordinates identified from the ML reconstructed image do
not reflect exactly the same 2mm inter-holes distance of the physical col-
limator, especially when moving outside the more central region of the
detector. This is due to an intrinsic characteristic of ML reconstruction,
which provokes a slight but noticeable stretching of the image towards
the borders, as a consequence of the attempt to recover the FOV lost by
centroid method reconstruction.

After the identification of the position of each hole from the ML image,
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each calibration event has been assigned to one of the holes, and conse-
quently one of the (x, y) coordinates defined in the classification model,
by using a k-means clustering method (where k has been set equal to the
number of holes).

Figure 5.15 shows the result of the clustering operation, which finally
lead to the assignment of each grid event to a specific local class.

Figure 5.15: Assignment of each calibration event to a specific hole of the
collimator, according to a k-means clustering method. Each color represents a
different cluster (colors are repeated only for visualization issues).

Data augmentation

After the generation of the spot-datasets, one concern has been compen-
sating for the unbalancements in the number of training events for each
class. Indeed, how it is possible to observe from figure 5.14, the density
of events for different spot positions is not equal; this is due to the differ-
ent source collimation angle for a hole in the center of the detector and
one along the border, or simply to partial occlusions of some holes of the
collimator.

However, having the same number of training observations for each
class proved to be crucial to avoid overfitting in classification problems.

For this reason, in order to dispose of the same number of training
events for each class (1000 events for class) data augmentation has
been exploited.
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For each class, additional training events have been generated accord-
ing to the following steps:

• computation of the means µj and standard deviations σj of each
channel (j = 1, ..., 72) among all the events contained in that specific
class

• generation of a new training event xnew, where the value of the signal
detected by the j-th channel is randomly sampled from a Gaussian
distribution with mean µj and standard deviation σj

Generation of the training set for the GDT

The organization of the two layers of trees in the case of experimental
measurements was different from the one adopted for simulations.

Figure 5.16: Organization of the two layers of trees. The GDT’s classes
are represented by the 221 macroregions (colored boxes in the figure). Inside
each macroregion, 100 local classes are defined. Adjacent macroregions are
overlapped between each other, having in common 5 rows of local classes. Notice
that the classification model is defined only on half of the crystal surface.

In this case, 221 macroregions (13 along the y direction and 17 along
the x direction) have been defined; each macroregion included 100 local
classes (10 along the y direction and 10 along the x direction). Being the
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distance between two local classes 0.5 mm, the dimension of each macrore-
gion was 5mm × 5mm. Furthermore, each macroregion was overlapped
with the adjacent one for half of its local classes, corresponding to 2.5 mm.

The architecture of the trees in the case of experimental measurements
is represented in figure 5.16.

The procedure followed in order to obtain the training set for the
Global Decision Tree consisted, instead, simply in summing up all the
spot-datasets defined inside the 221 macroregions and assigning them the
same label.

5.4.2 Feature reduction and PCA

Analogously to the case of simulations, after the collection of the training
datasets, a PCA feature reduction has been implemented.

The evaluation of the scree plots, depicted in figure 5.17 suggested the
adoption of the first 20 and 7 principal components, respectively for the
GDT and the LDTs.

5.4.3 Training of the DTs

Like in the case of simulations, once fixed the number of principal com-
ponents to use in input to the GDT and the LDTs, the phase of training
and hyper-parameters optimization has been carried out.

The choice of the two main hyperparameters, maximum number
of splits and minimum leaf size, has been determined by a Bayesian
optimization process, aimed at minimizing a 10-fold cross-validation loss
function.

In order to improve the predictive accuracy of the model, the bagging
technique has been implemented for growing the LDTs.

In particular, once found the set of optimal hyperparameters with the
optimization process described above, instead of growing one single LDT
for each macroregion, 20 bootstrapped samples have been obtained sam-
pling with replacement from the original training set, and each of them
has been used to grow a distinct LDT for that specific macroregion.
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(a) Scree plot for the GDT

(b) Scree plot for the LDT

Figure 5.17: Scree plots for the training dataset of the Global Decision Tree (a)
and one of the Local Decision Trees, in the case of experimental data. Similarly
to simulations, in the case of the Local Tree, much less principal components
are needed in order to describe the same amount of variance.

Consequently, in phase of prediction, the event i is classified separately
by each of the 20 bagged trees and finally it is assigned to a given class,
according to a majority voting among the 20 bagged trees. This technique
proved to improve the generalization capability and, thus, the accuracy of
the classification.

5.4.4 Validation

In order to validate the spatial resolution of the technique, the DT-reconstruction
has been run on different validation datasets. The reconstructed image
has been compared with the one reconstructed by ML statistical method.

The first validation dataset consisted in a grid irradiation performed
by using a Lead collimator with pitch 3 mm along the x and y directions,
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with hole diameter 1mm (illustrated in figure 4.16). Figure 5.18 shows the
image reconstructed by ML and DT reconstruction.

(a) ML reconstruction

(b) DT reconstruction

Figure 5.18: Grid irradiation reconstructed with ML and DT.

The pixel dimension in each of the images is set to 0.5 mm, which
corresponds to the distance between the classes defined in the classification
model.

It is possible to observe that the DT-reconstructed image is able to
identify correctly the pattern of the grid; furthermore, differently fromML,
it does not stretch the image toward the borders. The physical distance of
3 mm between the holes of the collimator is preserved. From a qualitative
assessment of the image, it is possible to observe that the width of the
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(a) Partial histogram along x with ML (b) Partial histogram along y with ML

(c) Partial histogram along x with DT (d) Partial histogram along y with DT
components

Figure 5.19: Normalized partial histograms of the reconstructed x (left column)
and y (right column) coordinates for a subset of spots of the grid. ML histograms
are depicted in orange and the DT histograms in blue.

reconstructed spot is practically equal in the two reconstructions.
This can be assessed also from figure 5.19, which shows the partial

histograms of the reconstructed x and y coordinates for a subset of spots
taken inside the CFOV.

In order to be able to properly compare the FWHMx and FWHMy of
the two techniques, the displacement between the spot positions detected
by ML and DT, due to the stretching effect of ML, has been corrected.
The FWHM along the x and y directions proved to be practically equal
in the two types of reconstruction and, respectively, equal to 1.4 mm and
1.3 mm.

Finally, a second validation dataset has been collected, by placing the
same collimator employed for the calibration (2mm pitch) with a tilted
orientation respect to the x and y direction.

The reconstructed image is depicted in figure 5.20.
It is possible to observe that DT-reconstruction is able to reconstruct
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correctly the grid pattern, even though the (x, y) positions defined in the
classification model lay on axes parallel to the x and y directions.

(a) ML reconstruction

(b) DT reconstruction

Figure 5.20: Grid irradiation reconstructed with ML and DT.



Chapter 6

Conclusions

This thesis project places itself in a framework consisting in the explo-
ration of two strategies for the event reconstruction of γ photons in Anger
cameras:

• the former consisted in the integration of Principal Component Anal-
ysis, a well-known dimensionality reduction technique, with two sta-
tistical reconstruction methods already in use for event reconstruc-
tion in Anger cameras, the Maximum Likelihood (ML) and the Least
Square estimation (LS) estimation.

• the latter, instead, solves the problem of estimating the planar in-
teraction coordinates of the γ photon inside the scintillation crystal
by defining a classification problem, where each class corresponds to
a specific (x, y) coordinate.

As to the first framework, the obtained results suggest that PCA con-
stitutes a valid and efficient strategy to reduce the number of features
to process by the reconstruction algorithm, without affecting the spatial
resolution performances. Indeed, the spatial resolution of ML and LS
statistical methods operating in the space of the principal components is
practically the same of the classical ML and LS estimation, if a number
of principal components sufficiently high is extracted; this stands not only
in the case of simulated data, but also for experimental measurements.
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In particular, in the specific case of INSERT clinical detection module,
already 20 principal components proved to contain enough information to
equalize the performances corresponding to the 72 original channels.

This represents a promising result in the perspective of a hardware
implementation of a PCA-based multiplexing scheme of the photodetec-
tors signals; furthermore, the PCA-reconstruction proved to be robust to
a coarser quantization of the weights of the principal components.

In addition, simulations suggested that the spatial resolution theoret-
ically achievable could be improved by using smaller SiPMs, especially
along the borders; in that case, the advantage of scaling down the number
of channels in input to the DAQs could be even more evident.

Equally encouraging results came from the event reconstruction imple-
mented with Decision Trees. DTs classifiers provided a spatial resolution
comparable to the one obtained by statistical methods. Moreover, us-
ing a decision tree for the event reconstruction may significantly reduce
the computational time needed to reconstruct the position of an event,
eventually making possible even a real-time implementation.

Even though the DTs training procedure involves a first step which
employes the reconstruction of the calibration datasets by means of a sta-
tistical reconstruction, the latter is used only in order to assign a label
to each training event. After the generation of the training dataset for
each class, the DT classifier operates autonomously according to a to-
tally different logic in order to reconstruct the position of an event and,
consequently, it is able to overcome the intrinsic limitations of statistical
methods, such as the phenomenon of stretching of the image toward the
borders, which instead is an intrinsic limit of ML reconstruction.

However, the dependance of the training procedure on the statistical
reconstruction stage presents some limitations, for example the classifica-
tion of events along the borders. Indeed, the DT classification model has
not been defined in the region immediately close to the borders of the de-
tector, since it is impossible to discriminate events interacting in different
holes of the collimator, by using the ML reconstruction.

Thus, a possible goal for the near future may be to investigate possible
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solutions for carrying out the training of the trees along the borders.
In conclusion, data augmentation proved to be an efficient strategy

in order to obtain new training data on the basis of the data effectively
measured, allowing to improve the generalization capability of the model.
This technique deserves further investigations, because it may allow to
decrease the duration of the calibration procedure, which currently consti-
tutes maybe the main limitation of the reconstruction method for clinical
applications.
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