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1. Introduction

Since the beginning of the space era Earth orbit
is exponentially getting cluttered with human-
made objects also known as Resident Space Ob-
jects (RSOs). According to the ESA’s Space En-
vironment Report the number of objects in or-
bit exceeds 32000 and the majority of these are
placed in LEO and GEO orbits. The increasing
number of launches and in-orbit permanence of
space debris leads to a significant conjunction
risk. If no arrangements are made for the dis-
posal of the RSOs, the number of collision will
rise. Long term, this could lead to "Kessler Syn-
dorme" [2|. To forestall such an accumulation
buildup, space agencies have begun to develop
all kinds of solutions mitigate the problem. All
the techniques developed to remove debris or
mitigate their generation required the knowledge
of the attitude of the target. An inspection mis-
sion of the target is performed in order to have
information on the attitude of the RSOs. The
selection of the inspection orbit is not a trivial
task, and, due to the non-cooperative and un-
controlled nature of the RSOs, continuous cor-
rection of the trajectory are required to have a
detailed description of the scene. Common tech-
niques based on ground communication can not

grant real-time decision making which is a fun-
damental aspect for the inspection. Thus, per-
forming on-board decision could lead to an opti-
mal solution to improve the perfromance of this
kind of mission. In this work, the images taken
from the cameras equipped by the chaser space-
craft are fed inside an on-board computer that
uses machine learning models (ML) to perform
features recognition of the RSOs. The genera-
tion of the images for the training is entrusted
to an improved version of the software JINS
[4]. The new version of the software allows to
have the possibility to implement the attitude
of the target and the chaser, and to reproduce
the scenes more faithfully. The machine learning
model analyzed in the work is called PointRend.
Several scenario have been analyzed to assess
the performance of the model and the results
are compared to the one obtained using Mask
R-CNN, the state-of-the-art model.

2. PointRend

Convolutional Neural Network (CNN) are the
main techniques used for image segmentation.
The output resolution of a CNN is a trade-
off between computational cost and the amount
of detail captured. The state-of-the-art model



Mask R-CNN has a resolution of 28 x 28. With
this level of resolution, a regular grid will over-
sample smooth area while undersampling object
boundaries. PointRend [3] overcomes this prob-
lem by adopting a different working principle
with respect the standard head of Mask R-CNN.
The main idea of the method is to view im-
age segmentation as a rendering problem. The
approach starts with a coarse prediction, then
it is gradually upsampled by means of bilinear
interpolation, thus refining the prediction only
for a subset of points. The core of the model
is the selection of points in the image: these
points should be denser near high-frequency re-
gion, such as object boundaries. The way points
are selected differs depending on whether one is
in the inference or training phase.

During the inference the selection is inspired by
the adaptive subdivision, a technique used in
computer graphics. The points are located in re-
gions where there is a high chance that the value
is significantly different from its neighbors, lead-
ing to a good detection of the edges. For each
region of interest, the output mask is iteratively
generated in a coarse-to-fine fashion. In each it-
eration, PointRend performs an upsample of its
previously predicted segmentation using bilinear
interpolation. Then the first N points, between
the most uncertain ones, are selected on the low
resolution grid. The point-wise feature represen-
tation, constructed combining the fine-grained
and coarse prediction features, is computed for
each point. Once the feature representations are
obtained a Multilayer Perceptron is applied to
perform point-wise segmentation predictions.
For the training phase a non-iterative approach
based on random sampling is used. N points
are selected on region with high uncertainty but
preserving a uniform coverage. The selection of
the points is based on three principles: Over-
generation, Importance sampling and Coverage.
While Mask R-CNN produces mask with reso-
lution 28 x 28, PointRend predicts mask of res-
olution 224 x 224 with the same computational
cost.

3. JINSv2 : a synthetic images
generator

Machine Learning models need lots of data,or
images as in this case, to be trained. Unfortu-
nately, the number of satellite images is very lim-

ited, so generating a dataset for training is diffi-
cult, if not almost impossible. To overcome this
type of problems, Jins Is Not a Simulator (JINS)
software was developed by Faraco et al.[4]. The
software allows to automatically generate anno-
tated images by using a computer graphics soft-
ware, called Blender. The software requires 3D
models of satellites and the Earth to accurately
reconstruct an inspection scenario. Fundamen-
tal advantage in using Blender is to be able to
automate the scene generation process through
Python scripts. JINS produces not only the
scene but also binary masks of each component
of the model, know as ground truth. These are
needed for the generation of the annotations.
The most obvious changes in JINSv2 from its
previous version is scene generation. In JINS
there was no real scene construction: the satel-
lite model was placed in the center of the Blender
scene, the cameras were randomly generated,
and the Earth in the background was generated
by overlaying the satellite scene with one con-
taining only the Earth. In the new version of
JINS, to be as faithful as possible to an inspec-
tion mission, a single Blender scene containing
the target, the chaser and the Earth has been
used. The most difficult aspects of generating a
scene containing these objects is the difference
in order of magnitude between their dimension.
This can be easily overcome thanks to Blender
properties that allow to set the scale for the ob-
jects.

The initial configuration adopted for scene gen-
eration used the Earth Centered Inertial refer-
ence system, placing the Earth at the center and
the satellites on user-selected orbits. This con-
figuration causes problems with the mesh of the
small objects placed far from the origin. The
problem is solved by constructing the scene in
the Local Vertical Local Horizontal frame with
the target centered in the origin. This reference
frame matches the one of the Clohessy-Wiltshire
equations [1] that has been used by JINS to
propagate the orbit of the chaser around the tar-
get. In the new version of JINS it is also possible
to implement the attitude of the chaser and tar-
get to achieve a result even closer to reality. As
a last update on the new version, a user interface
with selection menu was implemented to make
it easier for the user to generate the dataset.
Once the images and ground truths have been



rendered, it is necessary to generate the anno-
tations in order for the images to be used by
PointRend for training. There are several ways
to annotate a dataset, the one adopted in this
work is the COCO format, which stands for
Common Object in Context. The annotation are
generated by a dedicated function called satel-
litetoCOCO.py and saved inside a .json format.
The file contains all the information related to
the images and the parts. The most important
information are the coordinates of the bound-
ing box and the list of points that describes the
perimeter of the component.

4. Results

Unlike other machine learning models for which
many online variants are available, only the orig-
inal version developed by the Facebook AI Re-
search is available for PointRend. The model
has been trained on Google Colab with a GPU
TESLA T4 16 GB and using as backbone the
R50-FPN-3x. Hyperparameters like the learn-
ing rate or the batch size have been selected and
kept fixed for all the work in order to have com-
parable results. Mask R-CNN was trained in
parallel to PointRend in order to compare their
accuracy. The metrics used to assess the per-

formance of the models is the Average Precision
(AP).

4.1. Training and testing on a single
model

The first test performed on PointRend was to
train and validate it only on one satellite model.
The training dataset contains 360 images and
the component considered are antenna, body and
solarPanel. The time required for the training
is about 40 minutes, the results are illustrated
in Table 1.

AP values detection

AP antenna body solarPanel

86.21 81.48 89.134 88.02

AP values segmentation

AP antenna body solarPanel

76.50 72.21 78.85 78.42
Table 1: AP values PointRend.

The tables illustrates the overall AP and the
APs for each class. An additional test was per-
formed on this dataset. It was intended to check
if the segmentation of the components may in-
crease in the case where the Earth in the back-
ground was also segmented. The results of the
test are shown in Table 2.

AP values detection

AP antenna body solarPanel

86.580 78.63 83.10 84.95

AP values segmentation

AP antenna body solarPanel

80.26 69.60 75.86 75.747
Table 2: AP values PointRend with Farth class.

The same test, with also the Earth segmented,
has been performed using Mask R-CNN and the
results are reported in Table 3.

AP values detection

AP antenna body solarPanel

78.31 62.18 72.64 78.79

AP values segmentation

AP antenna body solarPanel

72.00 59.04 62.96 68.407

Table 3: AP wvalues Mask R-CNN with Farth
class.

As confirmed by the theory the PointRend
achieves an higher accuracy with respect to
Mask R-CNN, not only in the segmentation but
also in the detection of the components. This
type of test is not only used to assess the perfor-
mance of the model but could be useful in the
case where during an inspection mission the ge-
ometry of the RSO is known and its model can
be used for the generation of the scenes used in
the training phase. Furthermore, the improve-
ment in using PointRend over Mask R-CNN is
significant.

In reality the geometry of the RSO to be ob-
served is not always available. To verify the per-
formance of PointRend in this condition, it has
been trained on a dataset containing scenes of 5
satellite’s models and tested on a sixth model



that the algorithm has never seen. Different
testing dataset are used in order to cover as
many scenarios as possible and to test the ro-
bustness of the selected model.

4.2. Training with no Earth in back-
ground

The model was trained on images containing no
Earth in the background. This was done to ver-
ify the performance of the model in the case
where no disturbance element is present in the
scene. Both PointRend and Mask R-CNN are
trained on a dataset containing 750 images. The
models have been tested not only on scene with-
out the Earth in background but also on scene
with the presence of the Earth since during a
real mission the chaser will have periods when
the Earth is visible. The results when models
are tested with the Earth in the background are
shown in Table 4.

PointRend AP segmentation

AP antenna body solarPanel

23.23 20.10 23.52 49.30

Mask R-CNN AP segmentation

AP antenna body solarPanel

24.19 16.02 29.57 51.19

Table 4: AP values of models trained without
Earth in the background.

The higher AP values have been obtained with
the Mask R-CNN model. This result may be
caused by the intrinsic nature of PointRend,
where more attention is paid to the edges of the
object. The significant increase of details in the
scene with respect to the ones used in the train-
ing phase leads the models to show uncertainties
along the edges of the objects, and thus to per-
form incorrect predictions.

4.3. Training with Earth in back-
ground

When the Earth is not considered in the back-
ground PointRend becomes sensitive to the de-
tails in the scene causing a decrease in its per-
formance. A new dataset of 750 scenes with the
Earth in background has been generated. The
training took about 53 minutes in contrast to the
40 minutes required for the previous test. The

models have been tested on scene with the Earth
in the background, the results are reported in
Table 5.

PointRend AP segmentation

AP antenna body solarPanel

63.23 37.81 50.32 66.91
Mask R-CNN AP segmentation

AP antenna body solarPanel

60.20 37.04 47.87 67.07

Table 5: AP values of models trained with Earth
in background.

The AP values have significantly increased with
respect to the previous training. Now the mod-
els are trained on images full of details. Thus,
there are no more accuracy problems as in the
previous case.

Machine learning models need a large number
of images for training to achieve optimal results.
To further increase the number of images in
the dataset without resorting to generating ad-
ditional images, data augmentation techniques
were implemented. There are different ways to
artificially increase the number of images. The
one implemented in the work are rotation and
flip. This is done by a dedicated function called
Rotation.py which takes images as input and
perform three operations: flip and rotation of
+90°.

The new dataset contains 9000 images result-
ing in a significant increase in training time : 1h
43min for PointRend and 1h 30min for Mask R-
CNN. The new trained models have been tested
always on scene with the Earth in the back-
ground. The results are illustrated in Table 6.

PointRend AP segmentation

AP antenna body solarPanel

71.28 56.53 67.20 71.11
Mask R-CNN AP segmentation

AP antenna body solarPanel

64.28 40.51 53.90 69.72

Table 6: AP values of models trained with data
augmentation.




Due to data augmentation the AP values for
both PointRend and Mask R-CNN have in-
creased. The improvement is most obvious for
PointRend, which has gained 8 AP points. To
show the difference in accuracy between the
two methods, the inference was performed on
a particular configuration of the testing satel-
lite where both solar panels are placed in profile.
The inferences are shown in Fig. 1.

Figure 1: PointRend inference (top) and Mask
R-CNN inference (bottom).

As confirmed by theory PointRend outputs
masks with higher resolution than those pro-
vided by Mask R-CNN;, increasing the accuracy
especially along object’s edges.

4.4. Training with noisy images

During a real mission, the images are affected by
disturbances such as electrical noise and optical
aberrations. A copy of the augmented dataset
has been created and noise has been considered,
in particular Poisson noise.

The models trained without noise have been
tested on the noisy images to asses their per-
formance. The results are shown in Table 7.

PointRend AP segmentation

AP antenna body solarPanel

99.28 24.516  35.907 56.72

Mask R-CNN AP segmentation

AP antenna body solarPanel

50.30 22.67 33.06 47.55
Table 7: AP values of models tested on noisy
images.

The accuracy of both models has decreased but
PointRend remains the most accurate one. An-
other training has been performed on the aug-
mented noisy dataset. The models trained on
noisy images present AP values 10 points higher
with respect to the previous models when tested
on scene with noise. The presence of noisy im-
ages inside the training dataset is necessary to
make the model robust against camera noise.

4.5. Training with grayscale images
) t=) o S

Many of the camera-equipped satellites acquire
grayscale images. Omne of the main reasons
is because they require little memory to save
and therefore are easier to process or send to a
ground station. The models have been tested on
the augmented dataset converted into grayscale.
The results are shown in Table 8.

PointRend AP segmentation

AP antenna body solarPanel

50.15 19.621 36.38 62.66

Mask R-CNN AP segmentation

AP antenna body solarPanel
56.07 24.20 37.50 65.13
Table 8: AP values of models tested on noisy
images.

In the case of noisy images Mask R-CNN is more
accurate than PointRend. Since both models are
designed to take RGB or RGBA images as in-
put, the lack of colors in the training dataset
leads to reduced performance when tested on
colored images. The use of grayscale images can
be adopted as a form of data augmentation to



train the model that will be used in the real in-
spection mission, or to generate a dataset if it is
certain that the chaser only acquires images in
grayscale.

4.6. Training with different learning
rates

A different type of training for PointRend,
has been performed. The variable changed is
no more the training dataset but one of the
most important hyperparameters: the learning
rate. It is intended to see how the accuracy of
PointRend changes as the value of the learning
rate varies. Three out of the five learning rates
selected are close to one used previously, while
the other two are selected one order of magni-
tude higher or smaller. Using different values
of learning rate also the training times change.
The higher learning rates require shorter train-
ing times while for the low values of learning
rate the training times increase. The different
learning rate produces different result based on
the scene used for the inference. When tested
on images without noise in the background the
learning rates with higher values achieve better
accuracy than the ones with lower values. The
higher learning rates succeed in apprehending
the general features of the scene faster than a
lower learning rate which learns slower by focus-
ing more on details. This is confirmed by the
fact that when the models are tested on noisy
images the highest accuracy is achieved by the
lowest learning rate. The value of the learning
rate should be taken into account for training
the model in the case of a real mission. A more
widely used approach used by the latest devel-
oped machine learning models during training is
to adopt a variable learning rate. Initially the
value used is higher so that the model can bet-
ter detect generic features, while toward the last
iterations the value of the learning rate is de-
creased so that details are better recognized.

5. Conclusions

The PointRend model grants higher accuracy
than the state-of-the-art model Mask R-CNN,
with the same inference speed and required com-
putational power. The fundamental part for ob-
taining good results is the choice of the training
dataset and the setting of the hyperparameters.
One of the major contribution for the increase

in accuracy is given by the data augmentation
techniques. The ease with which it was possi-
ble to generate so many datasets for training is
thanks to the new version of the JINS software.
The software now has several functionality such
as propagating the relative orbit that one desire
to represent, the satellite model can be directly
chosen by the user via a menu and no longer by
running several scripts, and most importantly it
is possible to implement both chaser and target
attitude.

The use of machine learning in orbit is receiving
more and more attention. In order for the topic
covered in this work to keep up with the con-
tinuing evolution of the computer vision world,
several ideas for future development have been
proposed. To achieve the same accuracy level
of the last developed model, the backbone of
the model could be changed with a vision trans-
former such as the SWIN transformer. Adopt
a model that works with a lower inference time
in order to achieve greater temporal consistency.
Another idea consist in implementing the model
on a Raspberry Pi board to asses its performance
on real images.
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