
 

POLITECNICO DI MILANO 

Master of Science Degree in Automation and Control 

Engineering 

SCHOOL OF INDUSTRIAL AND INFORMATION 

ENGINEERING 

 

 

 

Online Localization  

Using UWB Devices 

 

 

 

 

 

 

 

 

Supervisor: Prof. Marcello Farina 

Co-supervisor: Prof. Luca Bascetta 

 

Candidate: 

Dong Liang 

Matricola: 898356 

 

Academic Year 2019-2020 



I 

 

Abstract 

 

In this thesis, we propose an optimized trilateration positioning approach 

based on Kalman Filter and on data measured using Decawave DWM1001 

UWB modules. First of all, we develop a custom function interface to 

obtain the data from DWM1001 in real-time. The interface is divided into 

an on-board C program to send original data to the host computer via serial 

port and a MATLAB script to collect original data and store them 

synchronously in the form of an array. Secondly, the UWB sensor and the 

accelerometer of the DWM1001 module are analyzed and evaluated in 

detail. We show that the measurement noises of both the UWB ranging 

sensor and the accelerometer are Gaussian white noises. The third part of 

the work consists of the design and implementation of a Kalman Filter. 

With the original UWB data and acceleration data, we performed Kalman 

Filtering in MATLAB. With the Kalman Filter, measurement noise effect 

is significantly reduced, and the optimized distance estimate can be 

obtained. After that, two trilateral positioning methods are proposed to 

calculate the coordinates of the UWB module in 3D space. The first 

method uses the idea of least squares to find the coordinates by minimizing 

a suitable cost function. The second method calculates the space 

coordinates by a numerical analysis approach. Finally, experiments in a 

real environment are carried out with all methods mentioned above. The 

experimental results prove that the methods proposed in this work can 

achieve centimeter-level positioning. 

 

 

 

 



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

Sommario 

 

In questa tesi viene proposto un algoritmo di localizzazione basato su un 

filtro di Kalman, per applicabile a dati ottenuti tramite moduli Decawave 

DWM1001 UWB.  

Prima di tutto è stata sviluppata un’interfaccia per ottenere i dati da 

DWM1001 in tempo reale. L'interfaccia è stata divisa in due parti: una 

parte è caratterizzata da un programma C integrato sul dispositivo per 

inviare i dati originali al computer attraverso una porta seriale; la seconda 

parte è caratterizzata da uno script di MATLAB che raccoglie i dati in 

modo sincrono memorizzandoli sotto forma di array. In secondo luogo, è 

stato analizzato e valutato in dettaglio il sensore di UWB e l’accelerometro 

del modulo DWM1001, e si è rilevato che i rumori di misura, sia del 

sensore UWB che dell’accelerometro, sono rumori bianchi Gaussiani. Il 

passo successivo è stato la progettazione e l’implementazione di un filtro 

di Kalman, i cui parametri del filtro e sono calcolati in base alle analisi 

condotte nella parte precedente. Applicando il filtro di Kalman ai dati 

originali di UWB e dell’accelerometro si è verificata una riduzione 

significativa del rumore di misura ed sono stata ottenute stime di distanza 

ottimali.  

Successivamente, sono stati anche proposti due metodi di posizionamento 

trilaterale per il calcolo delle coordinate del modulo UWB nello spazio 

tridimensionale. Il primo metodo utilizza l’idea dei minimi quadrati per 

trovare le coordinate riducendo al minimo la funzione obbiettivo. Il 

secondo metodo consiste nel calcolare le coordinate spaziali mediante un 

approccio di analisi numerica.  

Infine, tutti i metodi sopra menzionati sono stati messi alle prove in un 

ambiente reale. Dai risultati ottenuti dagli esperimenti compiuti si 

dimostra che tali metodi forniscono buoni dati di posizionamento con un 

range di errore entro i 10 cm. 



IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

Contents 

 

Abstract 

Sommario 

1 Introduction…….……...………………………………………..1 

1.1 Background…...…………………………………………………1 

1.2 Brief description of the work……………...….……………….…4 

1.3 Structure of the thesis……………………...…………………….4 

2 Hardware Introduction……………………...………………….5 

2.1 DWM1001 Development Board introduction…...……………...5 

3 Analysis and Verification of DWM1001 Sensors...……..……...9 

3.1 Original measurement data analysis…………….....……………9 

3.2 Anderson’s Whiteness Test………………….…...…………….15 

3.2.1 Principle of Anderson’s Whiteness Test…...………….15 

3.2.2 Implementation of Anderson’s Whiteness Test...……...16 

3.3 Analysis of Empirical Distribution Function…………...……...18 

     3.3.1 Empirical Distribution Function………….…...………18 

     3.3.2 EDF plots of the noises………………………...……...19 

4 Data Communication Interface………………………..……..23 

4.1 Introduction of DWM1001 firmware…………………..……..23 

     4.1.1 UART API introduction………………….……..…….24 

     4.1.2 C API introduction……………………………..…….26 

4.2 Function definition for the interface……………………..……28 

4.3 On-board C program……………………………………..…...38 

4.4 MATLAB script…………………………………………..…..30 

5 Implementation of a Kalman Filter………………………..…33 

5.1 Preliminary data analysis…………………..………………….33 

5.2 Principle of the Kalman Filter…………...…………………….34 



VI 

 

     5.2.1 State-space representation……..……………………...34 

     5.2.2 Discrete Kalman Filter equations………...…………...35 

5.3 Application of the Kalman Filter……...……………………….36 

     5.3.1 Test setup and Kalman Filter parameter setting……….37 

     5.3.2 Kalman Filtering results………...…………………….39 

6  Principle and Application of the Trilateration Algorithm…43 

6.1 Principle of the Trilateration Algorithm…………...…………..43 

6.2 Cost Function Minimization Method………...………………..45 

     6.2.1 Principle of the Cost Function minimizing Method...…45 

     6.2.2 Simulation of the Cost Function Minimizing Method...46 

6.3 Matrix Solution Method……...………………………………..49 

     6.3.1 Principle of the Matrix Solution Method…………...…49 

     6.3.2 Simulation of the Matrix Solution Method……………49 

6.4 Performance evaluation………………………………………..52 

7 Experiment and Result……………………...…………………55 

    7.1 Experiment setup………………………………………………55 

7.2 Experiment Result...…………………………………………...56 

     7.2.1 Trilateral positioning solutions without the Kalman 

Filter…………………………………………………………………….56 

     7.2.2 Trilateral positioning solutions with the Kalman 

Filter…………………………………………………………………….58 

8 Conclusion and Future Work……………...…………………..61 

Appendix…………………………………………………………63 

Bibliography……………………………………………………..73 

Acknowledgment………………………………………………...75 

 

 

 

 

 



VII 

 

List of Figures 

 

1.1: Common indoor positioning technology accuracy………...……...…2 

1.2: Allowed UWB frequency bands in various regions…………...……..3 

2.1: DWM1001 and MDEK1001 case…………………………………...5 

2.2: Accelerometer LIS2DH12…………………………………………..6 

3.1: Original measurement, mean value and true value of the distance 

measurements…………………………………………………….……..11 

3.2: Original measurement and mean value of the 3-axis acceleration….12 

3.3: Calibrated measurement and mean value of 3-axis acceleration……13 

3.4: Normalized distance measurement signal………………………….14 

3.5: Probability Density Function………………………………………16 

3.6: Anderson’s Whiteness Test result…………………………………..18 

3.7: Distance measurement EDF………………………………………..20 

3.8: X-axis acceleration measurement EDF…………………………….20 

3.9: Y-axis acceleration measurement EDF……………………………..21 

3.10: Z-axis acceleration measurement EDF……………………………22 

4.1: Architecture of DWM1001 factory firmware………………………24 

4.2: Shell mode user interface of DWM1001 on terminal………………25 

4.3: Segger Embedded Studio IDE……………………………………...27 

4.4: Segger J-Flash Lite…………………………………………………27 

5.1: Tag linear movement test…………………………………………...37 

5.2: Stationary test Kalman Filtering result……………………………..40 

5.3: EDF before/after filtering…………………………………………..41 

5.4: Tag straight movement test Kalman Filtering result………………..42 

6.1: Tag unit and anchor units in three dimensions space………………..43 

6.2: Trilateral Positioning……………………………………………….44 

6.3: Three views and 3D perspective diagram of CMM method result….48 

6.4: Three views and 3D perspective diagram of MS method result…….52 

7.1: Experiment filed layout…………………………………………….56 

 

 

 

 



VIII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 

 

List of Tables 

 

2.1: Main parameters of DWM1001……………………………………...6 

3.1: An example of original dataset……………………………………..10 

3.2: Distance measurement statistical results…………………………...12 

3.3: Original mean 3-axis acceleration………………………………….13 

3.4: Variance of 3-axis acceleration measurement………………………14 

3.5: Results of Anderson’s Whiteness Test……………………………...17 

4.1: List of shell command used………………………………………...26 

4.2: List of C API used…………………………………………………..27 

6.1: Performance evaluation for two methods…………………………..53 

7.1: Coordinates of the anchor units and the distance to the tag unit…….56 

7.2: Original distance measurement on 15/25/35/45 second……………57 

7.3: Trilateral positioning results without the Kalman Filter……………57 

7.4: Filtered distance measurement on 15/25/35/45 second…………….58 

7.5: Trilateral positioning results with the Kalman Filter……………….59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 

 

List of abbreviations 

 

Abbreviation Corresponding Word/Phrase 

GPS Global Positioning System 

IPS Indoor Positioning System 

A-GPS Assisted GPS 

WPS Wi-Fi Positioning System 

RSSI Received Signal Strength Indication 

UWB Ultra-wideband 

MEMS Microelectromechanical Systems 

I2C Inter-Integrated Circuit 

SPI Serial Peripheral Interface Bus 

API Application Programming Interface 

RTLS Real-Time Location System 

TWR Two-Way Ranging 

PCB Printed Circuit Board 

EDF Empirical Distribution Function 

PANS Positioning and Networking Stack 

UART Universal Asynchronous Receiver/Transmitter 

BLE Bluetooth Low Energy 

CSV Comma-Separated Values 

IDE Integrated Development Environment 

CFM Cost Function Minimizing Method 

MS Matrix Solution Method 

RSS Root Sum Square 

 

 

 

 

 

 

 

 

 



XII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 

 

Introduction 

 

1.1 Background 

In the field of positioning, the Global Positioning System (GPS) is 

nowadays a mature technology after decades of development and 

application. By communicating with satellites, GPS can quickly determine 

the location and altitude of the user terminal on the earth surface. With just 

a smart-phone, ordinary people can obtain positioning information with an 

accuracy up to 3 meters. High-precision positioning information is used in 

many applications, such as navigation. This greatly facilitates the lives of 

ordinary people. In the business field, positioning information has the 

potential to leverage commercial applications such as customized 

advertising and social networks. A wide range of applications have made 

positioning technology attract more attention. However, satellite 

positioning can only be used in an outdoor environment. Once indoor, 

satellite positioning cannot be used because the navigation signal decays 

fast. To solve the problem of how to locate objects and people in the 

buildings, Indoor Positioning Systems (IPS) are proposed. 

Indoor positioning is a field that has continued to flourish in the past 

decade. Accurate indoor localization is becoming more and more 

important due to the increased use of augmented reality, health care 

monitoring, personal tracking, inventory control and other indoor 

location-aware applications. For more than a decade, in order to solve the 

"last mile" problem of positioning and navigation, technology giants and 

research institutions have carried out a lot of research on indoor 

positioning technology. A variety of indoor positioning technologies have 

been developed. For example, Assisted GPS (A-GPS) technology that 

combines a GPS signal and mobile phone base station signals for indoor 



2 

 

positioning. Another example is Wi-Fi positioning system (WPS). WPS 

uses the characteristics of nearby Wi-Fi hotspots and other wireless access 

points to locate a device. Based on measuring the intensity of the received 

signal (received signal strength indication or RSSI) and the method of 

"fingerprinting", the accuracy of WPS reaches the meter level. The 

equipment used in this thesis applies an alternative indoor positioning 

technology, i.e., Ultra-wideband (also known as UWB). UWB is a 

positioning technology with high transmission rate, low transmit power 

and strong penetrating ability. Under ideal circumstances, the positioning 

accuracy of UWB is generally up to ten centimeters. There are also many 

other indoor positioning techniques such as ZigBee positioning, Bluetooth 

positioning, RFID positioning, acoustic positioning, geomagnetic 

positioning, etc. The accuracy of these positioning technologies ranges 

from centimeters level to meters level. Figure 1.1 shows the accuracy of 

these technologies. 

Figure 1.1: Common indoor positioning technology accuracy 

The development of indoor positioning technology has two directions: 

wide-area indoor positioning technology and local indoor positioning 

technology. Wide-area indoor positioning technology, for example A-GPS 

and geomagnetic positioning, usually requires the transformation of 

equipment modules such as base stations and mobile phone chips, which 

is costly and has a long time period. Local indoor positioning technology 

has low cost, short cycle as well as higher positioning accuracy, which is 

a better option for commercial promotion and operation. In the current 

research progress, the positioning accuracy of the wide-area indoor 



3 

 

positioning technology is far worse than the local indoor positioning 

technology. Among the available options, UWB positioning is a highly 

accurate indoor positioning method. The UWB positioning delay time is 

much shorter than other indoor positioning technologies such as Bluetooth 

positioning or WPS. With the reduction of UWB chip cost in recent years, 

UWB has become the first choice for indoor high-precision positioning. 

Apple iPhone 11 series products launched in 2019 have built-in UWB 

chips.  

Although UWB technology has great advantages in accuracy, compared 

to other indoor positioning technologies, complicated indoor positioning 

environment will have a serious impact on positioning accuracy. For 

example, as it is can be seen in Figure 1.2, the UWB frequency bands 

allowed in EU region is 6000MHz to 9000MHz. At such a high frequency, 

the pulse has poor penetration to walls and floors. When the UWB device 

is facing away from the base station, or obstacles exist between the UWB 

device and the base station, the positioning results may display errors.  

Figure 1.2: Allowed UWB frequency bands in various regions 

In order to optimize the positioning result, this thesis propose an algorithm 

based on Kalman filter to process historical data, combining UWB 

measurement results and accelerometer data.  



4 

 

1.2 Brief description of the work 

In this thesis we used Decawave UWB devices. First of all, in order to 

obtain the original ranging and acceleration data of the UWB device, we 

developed a custom interface for the device. This interface is divided into 

two parts. The first part is an on-board user application in C language. 

With the embedded on-board user application, the original ranging and 

acceleration data can be sent to the host computer via USB serial 

communication. The other part of the interface is a MATLAB script. With 

the MATLAB script, the original data on the serial port can be collected 

and stored synchronously in the form of an array. In Chapter 3, the UWB 

sensor and the accelerometer of the DWM1001 module are analyzed and 

evaluated. The original UWB and acceleration data are processed by an 

ad-hoc Kalman predictor to obtain an optimal estimate of the distance. 

Then, two trilateral positioning methods are used to obtain the coordinates 

of the UWB device in the three-dimensional space. The first method uses 

the idea of least squares to find the coordinates of the UWB device by 

minimizing a cost function. The second method calculates the space 

coordinates of UWB devices by suitable numerical analysis approach. 

Finally, an experiment in real environment has been carried out to test the 

techniques mentioned above. 

 

1.3 Structure of the thesis 

The thesis is organized in the following way: in this chapter, a brief 

introduction to the topic is given, along with an introduction to the work-

flow of this thesis; in Chapter 2, the Decawave UWB device is described 

in detail; in Chapter 3, original data obtained from DWM1001 module is 

analyzed; in Chapter 4, the data communication interface is illustrated; in 

Chapter 5, the principles of the Kalman filter is described; in Chapter 6, 

two trilateral positioning algorithms are discussed; in Chapter 7, the 

experiment setups and results are presented; finally, Chapter 8 concludes 

this thesis work, where also the possible future developments are clarified.  



5 

 

Chapter 2 

 

Hardware Introduction 

 

In this chapter, the UWB device DWM1001 development board is 

introduced. The introduction discusses performance and parameters of the 

UWB chip and embedded accelerometer. A simple test is also performed 

to show DWM1001 actual performance and to motivate the necessity of 

data optimization, subject of the following chapters. 

2.1 DWM1001 Development Board 

The UWB positioning device used in this thesis is Decawave MDEK1001 

Development Kit (MDEK1001). This development kit includes 12 

DWM1001 Development Boards (DWM1001). Figure 2.1 shows the 

DWM1001 module and its case. 

Figure 2.1: DWM1001 and MDEK1001 case 

Decawave DWM1001 is an Ultra-Wide-bandwidth (UWB) module based 

on Decawave DW1000 IC. DWM1001 module integrates antennas and an 

on-board Microelectromechanical Systems (MEMS) digital output motion 

sensor (accelerometer) LIS2DH12. 



6 

 

In the table 2.1, main parameters of DWM1001 are listed. 

Table 2.1: Main parameters of DWM1001 

Voltage Supply 3.6-5.5V 

Current Level 500mA 

Channel 5-6.8MHz 

Tag Update Rate Up to 10Hz 

Cluster Update Rate Up to 150Hz 

Anchors Number in a Cluster Up to 30 anchors 

Distance Measurement Range Up to 30 meters 

Location Accuracy typical <10 cm 

The LIS2DH12 is an ultra-low-power high performance three-axis linear 

accelerometer with digital I2C/SPI serial interface standard output. In 

normal mode, its accuracy reaches 4mg (approximately equal to 

0.039𝑚/𝑠2 ). Figure 2.2(a) shows the default three-axis pointing of the 

accelerometer. Figure 2.2(b) shows the welding position and direction of 

accelerometer of the DWM1001 module. 

Figure 2.2: Accelerometer LIS2DH12 (a) default three-axis pointing of the 

accelerometer LIS2DH12; (b) the welding position (U4) and direction (dot on the 

bottom right) of accelerometer LIS2DH12 of the DWM1001 module 



7 

 

Accompanying the UWB positioning hardware device DWM1001, 

Decawave also provides software and development environment such as 

embedded firmware binary location stack and gateway firmware to 

quickly evaluate its features and performance. With the Decawave 

Android app, users can view the location and configure the system on an 

Android device. Users can also customize their own functions via APIs 

and re-flash custom firmware onto boards over USB. 

By configuring DWM1001 units in a different way, such as anchor mode 

and tag mode, a wireless Real-Time Location System (RTLS) can be 

established. The tag units can transmit signals to nearby anchor units and 

use the UWB ranging algorithm in the original firmware to calculate the 

distance with nearby anchor units.  

According to the unit type definition of Decawave, a unit can be defined 

as a tag, an anchor, or an initiator anchor. A tag unit is an object whose 

coordinates are unknown. The main task in this thesis is to locate the 

position of the tag. An anchor unit is a fixed base station, whose position 

is artificially set. A tag unit can communicate and execute range 

measurements with surrounding anchors with UWB signals. An anchor 

unit can also do it vice versa. This two-way signal communication called 

Two-Way Ranging (TWR), would effectively improve ranging accuracy. 

An initiator anchor is a necessary main anchor of a positioning network. 

If there is no existing network, the initiator anchor will start a new one. 

Then one by one the other anchors will join. 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

Chapter 3 

 

Analysis and Verification of DWM1001 
Sensors 

 

In this chapter, the original data of DWM1001 module are analyzed. 

Section 3.1 shows a set of original data including UWB distance 

measurement and acceleration data. Calibration and Mean Normalization 

are executed for distance measurement and acceleration measurement. In 

Section 3.2, the Anderson’s Whiteness Test is briefly introduced and 

implemented on the normalized datasets. In Section 3.3, the distribution 

of the measurement noise is analyzed. We also compute the empirical 

distribution function and its variance. 

 

3.1 Original measurement data analysis 

In this section, we perform a static test for DWM1001 module. We analyze 

the obtained data. We use two DWM1001 modules, one as a tag unit, the 

other as an anchor unit.  

Two units stay on the same plane, facing each other. Both units keep still. 

The true distance between two units is 2.54m. The test duration is about 

45s, update rate is 10Hz. A total of 451 sets of original data are obtained. 

Table 3.1 lists, as an example, 10 sets of original data.  

 

 

 



10 

 

Table 3.1: An example of original dataset 

Number Time (𝒔) Distance (𝒎) 𝑨𝒙(𝒎

/𝒔𝟐) 

𝑨𝒚(𝒎

/𝒔𝟐) 

𝑨𝒛(𝒎

/𝒔𝟐) 

1 15.2776 2.5060 9.9568 -0.2058 0.1862 

2 16.2776 2.5620 9.9568 -0.2352 0.1960 

3 17.2776 2.4820 10.0940 -0.2352 0.2156 

4 18.2776 2.5380 10.0940 -0.2352 0.1862 

5 19.2776 2.5060 10.0940 -0.1274 0.0784 

6 20.2776 2.5100 10.0646 -0.2254 0.1666 

7 21.2776 2.5670 10.0940 -0.0882 0.1862 

8 22.2776 2.5010 10.0744 -0.1078 0.1960 

9 23.2776 2.4960 10.0744 -0.2254 0.1568 

10 24.2776 2.5200 10.0940 -0.1960 0.1960 

For simplicity of display, all data keep four decimal places. 

In Table 3.1 Time represents the timestamps when the data are generated. 

The timestamps depend on the module system start-up time. The time 

interval between two datasets is exactly 0.1s. The Distance is the UWB 

measurement result. In the complete dataset, the maximum distance data 

is 2.6230m and the minimum distance data is 2.4350m. The peak-peak 

value therefore is 0.1880m. 𝑨𝒙 , 𝑨𝒚 , 𝑨𝒛  represent the accelerations in 

three directions. As described in Section 2.1, 𝑨𝒙 points to the earth center. 

𝑨𝒚 points straight ahead. In this test, 𝑨𝒚 of the tag unit pointed to the 

anchor unit. 𝑨𝒛 points to the side of a module, perpendicular to 𝑨𝒙 and 

𝑨𝒚.  



11 

 

In Figure 3.1 and 3.2, plots of the time varying data of both distance 

measurements and 3-axis acceleration measurements are depicted. 

Figure 3.1: Original measurement, mean value and true value of the distance 

measurements 

In Figure 3.1, the mean value of distance measurement is represented by 

the red straight line. The true value is represented by the black straight line. 

This error may be caused by the thickness of the DWM1001 case. And 

because the measurement noise affect, the distance measurement 

fluctuates. 

In order to quantify the degree of dispersion of the data, we need to 

calculate the variance of the data set. Considering the UWB ranging data 

as an example, the variance is calculated as: 

𝑉𝑎𝑟(𝐷𝑖𝑠𝑡) = 𝐸[(𝐷𝑖𝑠𝑡 − 𝑚𝑒𝑎𝑛(𝐷𝑖𝑠𝑡))2]   (3.1) 

The following Table 3.2 shows the statistical results of the distance 

measurement. 



12 

 

Table 3.2: Distance measurement statistical results 

Term Value 

Mean 2.5271m 

Variance 0.0010m2 (or 1033.5mm2) 

True Value 2.54m 

In the following Sections 3.2 and 3.3, the measurement noise will be 

analyzed in detail.  

Figure 3.2: Original measurement and mean value of the 3-axis acceleration 

In Figure 3.2, we can see that the mean values of 𝑨𝒚 and 𝑨𝒛 are biased. 

This may be due to the angle deviation when soldering the accelerometer 

to the PCB plus the experimental plane was slightly tilted. To calibrate the 

accelerometer, the module needs to be kept still in different postures, 

upright, flat or side i.e., so that acceleration data can be obtained for each 

axis, without gravitational acceleration effect. The expression of the 

calibration is: 



13 

 

𝐴𝑜𝑛𝑒 𝑎𝑥𝑖𝑠
𝐶 = 𝐴𝑜𝑛𝑒 𝑎𝑥𝑖𝑠 − 𝑚𝑒𝑎𝑛(𝐴𝑜𝑛𝑒 𝑎𝑥𝑖𝑠)   (3.2) 

Laying the module flat, face up, we can obtain measurement for x axis. 

The original mean acceleration of three axis listed in Table 3.3.  

Table 3.3: Original mean 3-axis acceleration 

Axis Original Mean Acceleration (𝒎/𝒔𝟐) 

X 0.3332 

Y -0.1678 

Z 0.1853 

Following Figure 3.3 shows the calibrated 3-axis acceleration data. 

Figure 3.3: Calibrated measurement and mean value of 3-axis acceleration 

After calibration, the mean value of the accelerations in the Y and Z 

reduced to 0. Also, the mean value of the acceleration in the X axis is 

9.7279. The calibration process will not change the variance of the 

acceleration dataset. The variance for 3-axis are listed in Table 3.4. 



14 

 

Table 3.4: Variance of 3-axis acceleration measurement 

Axis Measurement Variance 

X 0.0017 

Y 0.0039 

Z 7.2548e-04 

We can see that noises exist in both measurements. To identify the type of 

the noises, the normalization can be done to signal series. Here we use 

distance measurement data as an example. The expression of Mean 

Normalization of the distance measurement is: 

𝐷𝑖𝑠𝑡𝑁 =
𝐷𝑖𝑠𝑡−𝑚𝑒𝑎𝑛(𝐷𝑖𝑠𝑡)

max(𝐷𝑖𝑠𝑡)−min (𝐷𝑖𝑠𝑡)
      (3.3) 

The distance measurement signal after mean normalization can be plotted 

as Figure 3.4. 

Figure 3.4: Normalized distance measurement signal 

With the normalized signals, we can identify the type of the noises which 



15 

 

affect the distance measurement and acceleration measurement. To 

determine the whiteness of the noise, in next section, an Anderson’s 

Whiteness Test is carried out. 

 

3.2 Anderson’s Whiteness Test 

To apply the Kalman Filter and optimize the positioning accuracy, the type 

of noises must be identified. If and only if the noises are Gaussian White 

Noise, the Kalman Filter can be applied to reduce the effect of the noises. 

In this section, the Anderson’s Whiteness Test is introduced and performed 

to identify the noises of distance measurement signal and acceleration 

signal. 

 

3.2.1 Principle of Anderson’s Whiteness Test 

Assume there is a signal ℰ(∙) under test with N samplings, the correlation 

function of the signal can be computed as: 

�̂�ℰ(𝜏) =
1

𝑁
∑ ℰ(𝑡)ℰ(𝑡 − 𝜏)𝑁

𝑡=𝜏+1 , 0 ≤ 𝜏 ≤ 𝑀, 𝑀 ≪ 𝑁 − 1 (3.4) 

The normalized sample correlation function can be computed as: 

�̂�ℰ(𝜏) =
�̂�ℰ(𝜏)

�̂�ℰ(0)
, 𝜏 > 0      (3.5) 

If the signal ℰ(∙) is a zero-mean white noise, the normalized correlation 

function �̂�ℰ(𝜏) is asymptotically normally distributed: 

√𝑁�̂�ℰ(𝜏)~𝐴𝑠𝒩(0,1), ∀𝜏 > 0      (3.6) 

and �̂�ℰ(𝜏), 𝜏 = 1, 2, …  can be considered as independent values of a 



16 

 

Gaussian variable: 

�̂�ℰ(𝑖) ⊥ �̂�ℰ(𝑗), ∀𝑖 ≠ 𝑗      (3.7) 

The probability that −𝛽 ≤ √𝑁�̂�ℰ(𝜏) ≤ 𝛽  is given by the solution of 

integer of the grey area in the Figure 3.5.  

Figure 3.5: Probability Density Function 

Set a possible small confidence interval 𝛼 ∈ (0,1), i.e. the probability 𝛼 

that �̂�ℰ(𝜏) < −𝛽 or �̂�ℰ(𝜏) > 𝛽, and compute the 𝛽. Count the number 

of samples which √𝑁�̂�ℰ(𝜏) ∉ [−𝛽, 𝛽] and denote as 𝑁𝛼. If 𝑁𝛼/𝑁 < 𝛼, 

the signal ℰ(∙) is assumed as white noise, other it is not. 

 

3.2.2 Implementation of Anderson’s Whiteness Test 

We perform an Anderson’s Whiteness Test for the normalized distance 

measurement data we obtained in Section 3.1. [15] 

The MATLAB function script fragment is as follows: 

alpha=0.1; %confidence level 

gamma=covf(x,floor(N/10)); 

%covariance calculation with System Identification Toolbox 

rho=gamma(2:end)/gamma(1); 

%normalized correlation function 

beta=norminv(1-alpha/2); 



17 

 

nalpha=length(find(sqrt(N)*rho>beta))+length(find(sqrt(N)

*rho<-beta)); 

f=nalpha/length(rho); 

%f=Nalpha/N 

For complete MATLAB script, please refer to Appendix A. 

After importing the normalized distance measurement data and 

acceleration data into Anderson’s Whiteness Test script, we have 

following results in Table 3.5: 

Table 3.5: Results of Anderson’s Whiteness Test 

Terms 𝜶 Frequency of 

violation 

Result 

Distance 0.10 0.051282 Pass 

𝑨𝒙 0.10 0.051282 Pass 

𝑨𝒚 0.10 0.076923 Pass 

𝑨𝒛 0.10 0.076923 Pass 

The following Figure 3.6 shows the noise points distribution of √𝑁�̂�ℰ(𝜏). 

The upper and lower red dotted lines indicate 𝛽 and −𝛽 respectively. 

Subplots (a), (b), (c), (d) are respectively drawn from dataset distance,𝑨𝒙, 

𝑨𝑦 and 𝑨𝑧. 

(a): Distance                        (b): x-axis 



18 

 

(c):y-axis                           (d): z-axis 

Figure 3.6: Anderson’s Whiteness Test result 

These results prove that the measurement noises of the UWB ranging 

measurement and the accelerometer measurement are both White Noises. 

The results ensure the feasibility of implementation the Kalman filter in 

the subsequent chapter. 

 

3.3 Analysis of Empirical Distribution Function 

In Section 3.2, we used the Anderson’s Whiteness Test to confirm the 

whiteness of both the measurement noises of UWB ranging sensors and 

accelerometer. In this section, the empirical distribution functions of both 

measurements are plotted and analyzed. 

3.3.1 Empirical Distribution Function 

In statistics, an Empirical Distribution Function (EDF) is the distribution 

function associated with the empirical measure of a sample. Its value at 

any specified value of the measured variable is the fraction of observations 

of the measured variable that are less than or equal to the specified value. 

In our cases, the plots of EDF visually show the distribution of noises. 

 



19 

 

3.3.2 EDF plots of the noises 

In MATLAB, command “ecdf” draws a stairstep graph of the evaluated 

function by using the stairs function. Specify “'Bounds','on'” to 

draw the confidence bounds in the graph. Take the UWB ranging data as 

an example, the MATLAB function script fragment is: 

ecdf(dist-mean(dist)); hold on 

%plot the noise of original distance measurement 

ecdf(noise,'Alpha',0.1,'Bounds','on'); grid on 

%plot ecdf of the theoretical white noise 

%set confidence interval 10% 

Besides the original data, a theoretical white noise signal is necessary to 

do the comparison between the actual experiment signal and ideal 

simulated signal. Generate a white noise with the same mean value and 

same variance of distance measurement, we use command “randn” as 

follow: 

noisex=0.04123105626*randn(451,1); 

%0.04123…is the standard deviation of the dist signal, equals to sqrt(var) 

From this, we get the following four EDF figures. 

Figure 3.7 is the EDF plots of the UWB distance measurement. In which 

the blue line is the empirical data and the red line is a theoretical Gaussian 

white noise with mean value 0 and variance 0.001. The red dotted line is 

the bounds of 10% confidence interval of the theoretical white noise. 

Comparing with the theoretical white noise, the noise affecting the UWB 

ranging has very similar shape. The distance measurement noise can be 

therefore considered to be asymptotically normally distributed. 



20 

 

Figure 3.7: Distance measurement EDF 

Figure 3.8: X-axis acceleration measurement EDF 



21 

 

Figure 3.8 is the EDF plot of the X axis (up and down) acceleration. More 

than 90% noise distribute within the interval of −0.04𝑚/𝑠2  to 

0.05𝑚/𝑠2. The right side of the data converges quickly, but the left side is 

significantly slower than the simulated theoretical value. 

Figure 3.9: Y-axis acceleration measurement EDF 

Figure 3.9 is the EDF plot of the Y axis (front and back) acceleration. 

Comparing with the X axis, we can see that the noise on Y axis is more 

symmetrical distributed. The parts greater than zero and less than zero are 

close to 50%. The noise data converges quickly on both sides. 

Figure 3.10 is the EDF plot of the Z axis (sides) acceleration. Comparing 

to the simulated theoretical white noise, it fits well in the central area with 

a normal distribution. The noise is distributed within or very close to the 

confidence interval. The convergence rate on the right is also faster than 

theory.  

 



22 

 

 Figure 3.10: Z-axis acceleration measurement EDF 

From Figure 3.8, 3.9 and 3.10, we can see that the noise distribution of the 

accelerometer basically fits the theoretical curve. Among the three axes, 

the noises on the Y and Z axis are more normally distributed than the X 

axis. The X axis points to the center of the earth when the DWM1001 

module is upright. In this thesis, the horizontal movement of objects is 

studied. Therefore, we can obtain the accelerations in the horizontal 

directions from the Y and the Z axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Chapter 4 

 

Data Communication Interface 

 

To communicate with DWM1001 unit, a data communication interface is 

mandatory. In this chapter, we use C language and MATLAB to write a 

custom data communication interface. This interface divides into two parts. 

The first part is an embedded on-board program. The second part is a 

MATLAB script. 

In Section 4.1, the factory firmware of DWM1001 unit is introduced. It 

also contains some application programming interfaces (API) introduction. 

In Section 4.2, we decide what kind of data we need, and we determine 

the function to be realized by the interface. In Section 4.3, the function and 

the development process of the on-board C program is described. In 

Section 4.4, the MATLAB script is presented. 

 

4.1 Introduction of DWM1001 firmware 

The DWM1001 module comes pre-loaded with embedded firmware, 

including the firmware Positioning and Networking stack (PANS) library 

for on-board development. The firmware embedded in the DWM1001 

module basically provides two types of functions: the PANS API, and the 

PANS library which provides lower level functions. With the factory 

firmware, DWM1001 can be configured and controlled via its APIs. Two 

types of communication methods are provided to calling APIs. They are 

integrated access, such as C API, and external access, including Universal 

Asynchronous Receiver/Transmitter (UART) (or Serial Peripheral 

Interface, (SPI)) API and Bluetooth Low Energy (BLE) API. Figure 4.1 

shows the architecture of DWM1001 factory firmware. 



24 

 

In this thesis, C API and UART API are used by two parts of the 

customized interface separately. 

Figure 4.1: Architecture of DWM1001 factory firmware 

 

4.1.1 UART API introduction 

To call UART API, DWM1001 unit must communicate with a host device, 

such as a PC or a Raspberry Pi, via serial port. In this section, PC is the 

host device. To communicate with DWM1001 on a PC with Windows 

operating system, a terminal program is mandatory. In this work, Tera 

Terminal is recommended. Main parameters of serial communication are: 

- Baud rate: 115200 bps 

- Data bits: 8 

- Stop bits: 1 

- Check bits: none 



25 

 

After establishing connection with DWM1001 module, DWM1001 

module would be in generic mode. The host device is acting as the initiator, 

while the DWM1001 module is the responder. A wakeup procedure, 

double clicking “Enter” key within one second, has to be executed before 

SPI/UART starts accepting commands: the module will switch into shell 

mode. In shell mode, UART APIs (SPI APIs) can be called in shell 

command form. Figure 4.2 shows the shell mode user interface of 

DWM1001 module. 

Figure 4.2: Shell mode user interface of DWM1001 on terminal 

To retrieve real-time data from DWM1001 module, Table 4.1 lists several 

shell commands (UART/SPI APIs) which may be used in configuration 

step or data transmitting step.  

 

 

 

 



26 

 

Table 4.1: List of shell command used 

Shell 

command 

Description 

les Show distances to ranging anchors. Sending this 

command multiple times will turn on/off this functionality. 

lec Show distances to ranging anchors in CSV format. 

Sending this command multiple times will turn on/off this 

functionality. 

av Read ACC values. 

nmi Configures node to as anchor - initiator, active and reset 

the node. 

nmt Configures node to as tag, active and reset the node. 

aurs Set position update rate. 

aps Set position of the node. 

aid Read ACC device ID. 

 

4.1.2 C API introduction 

Besides UART API, we can code and make use of the C API functions in 

our own C files. The Decawave factory firmware reserves memory space 

for user software and provide source code for creating and starting threads. 

In this way, users are able to add custom functions inside the module 

firmware. To code and compile user programs, Segger Embedded Studio 

is used as an integrated development environment (IDE). To flash user C 

program to DWM1001 module, Segger J-Flash is used. Figure 4.3 and 

Figure 4.4 shows the interface of Segger Embedded Studio and the Segger 

J-Flash Lite. 

 

 

 



27 

 

Figure 4.3: Segger Embedded Studio IDE 

Figure 4.4: Segger J-Flash Lite 

Table 4.2 lists several C APIs which may be used in data transmission step. 

Table 4.2: List of C API used 

C API Description 

dwm_loc_get Get last distances to the anchors (tag is currently 

ranging to) and the associated position. 

dwm_i2c_read This API function read data from I2C slave, such as 

accelerometer. 

dwm_i2c_write This API function writes data to I2C slave. 



28 

 

4.2 Function definition for the interface 

To locate the coordinates of a tag unit in three-dimensional space, the 

necessary data are distance measurements from tag units to at least three 

nearby anchor units, and corresponding anchor coordinates. 

In Chapter 3, we show that the original UWB ranging data of DWM1001 

module is affected by measurement noise. To optimize the ranging data, a 

filtering algorithm such as Kalman Filter or Particle Filter can be 

implemented with a sensor fusion method. The sensor fusion method 

requires two kinds of measurement data, from two independent sensors. 

In this thesis, the two considered sensors are the UWB chip DW1000 and 

the I2C accelerometer LIS2DH12, and the corresponding measurements 

are distance and acceleration, respectively. 

Due to the above two reasons, our function is defined as follows 

- Host device can read UWB measurement and corresponding 

anchor coordinates in real-time; 

- Host device can read acceleration value in real-time; 

- Two data above should be obtained synchronously. 

 

4.3 On-board C program 

As we know, MATLAB can communicate directly with the serial port. 

Therefore, it seems to be possible to use shell command “les” and “av” to 

obtain the two measurements. However, the shell commands “les” and “av” 

act in different ways. Shell command “les” sends the ranging results via 

serial port synchronously. The host device can receive the latest ranging 

data in real time. The shell command “av” acts asynchronously. Two data 

at a certain moment cannot be sent to the host computer synchronously. To 

avoid the problem of data out of sync, a custom on-board C program has 



29 

 

been proposed. 

The code snippet to retrieve UWB measurements is: 

case DWM_EVT_LOC_READY: 

// predefined case in header file dwm.h line 969 

for (i = 0; i < p_evt->loc.anchors.dist.cnt; ++i) { 

// loop for i times, i=number of anchors 

printf("DIST%d:", i); 

if (i < p_evt->loc.anchors.an_pos.cnt) { 

printf("[%ld,%ld,%ld]", 

p_evt->loc.anchors.an_pos.pos[i].x, 

p_evt->loc.anchors.an_pos.pos[i].y, 

p_evt->loc.anchors.an_pos.pos[i].z); 

// print anchor coordinates, in which loc is a bool value predefined in header file dwm.h 

line 989 

} 

printf("=[%lu] ", p_evt->loc.anchors.dist.dist[i]); 

// print distance between the tag and the anchor 

} 

With the code above, UWB measurements and corresponding anchor 

coordinates can be sent via serial port in real-time. 

The code snippet to retrieve acceleration values is: 

int8_t data[6]; 

// declare an array (pointers) as buffer zones for data storage 

const uint8_t addr = 0x19; 

// 7-bit address of the I2C accelerometer 

data[0] = 0xAA; data[1] = 0xBB; data[2] = 0xCC; data[3] = 

0xDD; data[4] = 0xEE; data[5] = 0xFF; 

// preset buffer zone addresses for the pointers 

dwm_i2c_write(addr ,data, 6, true); 

// this API allocate the presetting address for the buffer zone in DWM1001 register 

dwm_i2c_read(addr, data, 6); 



30 

 

// this API read values from the address preset before 

printf("A:%d,%d,%d", 

(data[0]<<8)+data[1],(data[2]<<8)+data[3],(data[4]<<8)+da

ta[5]); 

//original acceleration value is 16-bit, connect two bytes to obtain value for one axis 

With the code above, acceleration data can be sent in real-time. 

In addition, to evaluate the sampling frequency, we also added timestamps 

to each row of data with the following code: 

printf("\nT:%lu ", dwm_systime_us_get()); 

For the complete on-board C program code please refer to Appendix A. 

 

4.4 MATLAB script 

With the on-board C program, our DWM1001 module can send data 

including timestamp, UWB measurements, anchor coordinates and tag 

acceleration to an host device via serial port.  

To communicate with serial port in MATLAB, command “serial” can be 

used in order to create a serial communication object. It is worth 

mentioning that with serial setting “s.ReadAsyncMode = 'continuous’” , it 

is possible to let MATLAB continue to receive data. However, the program 

will remain in “busy” mode until the data receiving step ends. During the 

“busy”, it is impossible to process data. Therefore, a callback function 

must be proposed.  

With a callback function, data collection and storage will loop as an 

independent thread. Every time the callback triggers, data received and 

stored in buffer zone would be moved to a global variable. The global 

variable should be pre-allocated a large space to avoid performance drop 

due to multiple reallocations of space. The callback thread would remain 



31 

 

in “busy” mode, so that “inputting” data from serial port and “outputting” 

data to the global variable are in real-time, and we can read the real-time 

data from the global variable and execute data processing steps like 

position calculation or plotting a figure. These later steps should be written 

in another script as a new thread. The code snippet of callback function is: 

s = serial('COM3'); 

set(s,'BytesAvailableFcnMode','byte'); 

set(s,'BytesAvailableFcnCount',27); 

% set the interrupt trigger: when receives 27 bytes of data, interrupt occurs. 

s.BytesAvailableFcn =@ReceiveCallback;  

 

function ReceiveCallback( ~,~) 

% customize a callback function 

str = fscanf(s); 

% read data from buffer 

pattern = '(-)?\d{1,10}'; 

temp = regexp(str, pattern, 'match'); 

% use regular expression to extract time/distance/acc data 

data_tag = [data_tag; temp]; 

% save historical data in a matrix for later data processing 

end 

For the complete MATLAB code please refer to Appendix B. 

With the custom interface described in this chapter, data can be transmitted 

and saved on a PC at 10Hz, which is the maximum update frequency of 

DWM1001 module. This ensures the feasibility of subsequent 

synchronous/asynchronous data processing. 

 

 

 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

Chapter 5 

 

Implementation of a Kalman Filter 

 

5.1 Introduction 

In Chapter 3, we use the On-board C User Program and the MATLAB 

serial communication script to obtain distance measurement between a tag 

and surrounding anchors. As shown in the Figure 3.1, the ranging data 

fluctuates in a range of amplitude 180 𝑚𝑚  while the tag remains 

stationary. The variance of the distance measurement is equal to 

0.01 𝑚2(or 1033.5 in unit 𝑚𝑚2). As described in Chapter 2, the distance 

measurement results of Decawave DWM1001 unit entirely depend on 

UWB ranging algorithm. The official encapsulation of the positioning 

algorithm in the firmware cannot be modified nor optimized. So that we 

can only use additional filtering algorithms to optimize the original data. 

In addition to the original UWB ranging information, we also used 

acceleration data obtained from the I2C accelerometer. 

In order to improve ranging and positioning accuracy, we choose Kalman 

filter to optimize the ranging results. Kalman filter is an optimal 

autoregressive filter. Due to the non-mutable nature of physical quantities, 

we can use the measurement data and the acceleration measurements in 

Kalman filter to improve the positioning data accuracy. 

In Section 5.1, a brief introduction to the principle and workflow of 

Kalman filter is given. In Section 5.2, a Kalman filter model in a simple 

scenario is created and simulated. 

 

 



34 

 

5.2 Principle of the Kalman Filter 

Kalman filter estimates the state of a process by two steps. The first step 

is the prediction step. The new state of the process can be estimated in the 

prediction step using the system model. No new measurement is involved 

in this step. The second step is the correction step. In the correction step, 

new measurement information is used as a feedback to reduce the random 

interference.  

 

5.2.1 State-space representation 

The goal of Kalman filter is to reconstruct the state vector of the system 

from the measured value. For describing a system or a process, Kalman 

filter uses a linear model composed of a state and an output equation. 

The state equation represents the relationship between the current state and 

the previous state, the control input variable and some (Gaussian) process 

disturbance. The model has the following form: 

𝐱𝐤+𝟏 = 𝐀𝐱𝐤 + 𝐁𝐮𝐤 + 𝐰𝐤     (5.1) 

In (5.1), 𝐱𝐤 is the state vector at time instant 𝑘. As explained later in this 

chapter, the state vector, in our application, includes the distance and the 

velocity of the tag with respect to each anchor. Matrix 𝐀  is state-

transition matrix, and 𝐮𝐤 is the input control vector at time instant 𝑘. In 

our scenario, 𝐮𝐤 is the measured acceleration of the tag with respect to 

the anchor. Matrix 𝐁 is the input metrix and indicates the effect of the 

input control vector 𝐮𝐤 on the system state. 𝐰𝐤 is a zero-mean gaussian 

process noise, whose covariance is denoted with 𝑄 , i.e., the process 

covariance matrix 

The output equation represents the relationship between the state vector 

and the measured output. The model has the following form: 



35 

 

𝐳𝐤 = 𝐇𝐱𝐤 + 𝐯𝐤       (5.2) 

𝐳𝐤  is the observation vector at time instant 𝑘 . 𝐇  is the observation 

matrix. 𝐯𝐤  is a zero-mean gaussian measurement noise, whose 

covariance is denoted with 𝑅. 

Two prerequisites must be met to use the Kalman filter. The first is the 

linearity of both the state and the output equations. The second is the 

assumption that both 𝐰𝐤 and 𝐯𝐤 are white Gaussian noises. 

 

5.2.2 Discrete Kalman Filter equations 

A Kalman filter is composed by a prediction step and a correction step.  

In the prediction step, the priori estimate �̂�𝐤
−  is obtained by the 

information available up to time instant 𝑘 − 1.  

The prediction step has the following form: 

�̂�𝐤
− = 𝐀�̂�𝒌−𝟏 + 𝐁𝐮𝐤       (5.3) 

in which �̂�𝒌−𝟏 is the posterior estimate of the state vector obtained at time 

instant 𝑘 − 1. 

The covariance of the prediction error 𝐱𝐤 − �̂�𝐤
− is denoted with 𝐏𝐤

− and 

is computed as: 

𝐏𝐤
− = 𝐀𝐏𝐤−𝟏𝐀𝐓 + 𝐐      (5.4) 

Where 𝐏𝐤  is the covariance of the posterior estimate error 𝐱𝐤 − �̂�𝐤 

obtained as: 

𝐏𝐤 = (𝐈 − 𝐌𝐤𝐇)𝐏𝐊
−       (5.5) 

𝐏𝐤
−  represents the degree of uncertainty of the system. This degree of 



36 

 

uncertainty will be large when the Kalman filter is initialized. As more and 

more data being injected into the filter, the degree of uncertainty will 

become smaller. 

In the correction step, the posterior estimate is computed as: 

�̂�𝐤 = �̂�𝐤
− + 𝐌𝐤(𝐳𝐤 − 𝐇�̂�𝐤

−)      (5.6) 

where the Kalman Gain can be computed as: 

𝐌𝐤 = 𝐏𝐤−𝟏𝐇𝐓(𝐇𝐏𝐤−𝟏𝐇𝐓 + 𝐑)−𝟏     (5.7) 

From equation (5.6) we can see that a posteriori estimation is a sum of a 

priori estimate �̂�𝐤
− and a term which is proportional to the residual 𝐳𝐤 −

𝐇�̂�𝐤
−, i.e. the priori estimation error. [2, 6, 7]  

 

5.3 Application of the Kalman Filter 

In this section, we apply the Kalman filter to the case study considered in 

this thesis. By filtering distance measurement data and acceleration data 

obtained by two independent sensors, we aim to obtain accurate ranging 

results. 

 

 

 

 

 

 



37 

 

5.3.1 Test setup and Kalman Filter parameter setting 

We now consider, for simplicity, the case where there is one tag unit and 

one anchor unit. [12] The tag unit moves linearly on the connection 

between the two units. Figure 5.1 shows the setup of the test. Via serial 

communication, we obtain a set of data including distance measurements 

between the tag and the anchor, and acceleration of the tag unit with a 

sampling interval of ∆𝑡 = 0.1𝑠. As calculated in Chapter 3, the variance 

of the distance measurement noise is 0.001  𝑚2 (more accurate 

1033.5  𝑚𝑚2 ), while the variance of the acceleration measurement is 

0.0021 (𝑚/𝑠2)2. 

Figure 5.1: Tag linear movement test 

When the tag unit moves in a straight line with acceleration 𝑎𝑡 , the 

following discrete-time equations of motion can be written by 

discretization of the double-integrator equation �̈�(𝑡) = 𝑎(𝑡), i.e. 

{
𝑠𝑘+1 = 𝑠𝑘 + ∆𝑡𝑣𝑘 +

∆𝑡2

2
𝑎𝑘

𝑣𝑘+1 = 𝑣𝑘 + ∆𝑡𝑎𝑘

      (5.8) 

where 𝑠𝑘 is the distance between the tag and the anchor and 𝑣𝑘 is the 

tag velocity at time instant 𝑘. 



38 

 

We reorganize equations (5.8) into matrix form and we have: 

[
𝑠𝑘+1

𝑣𝑘+1
] = [

1 ∆𝑡
0 1

] [
𝑠𝑘

𝑣𝑘
] + [

∆𝑡2

2

∆𝑡
] 𝑎𝑘    (5.9) 

The state vector of this model is therefore: 

𝐱𝐤 = [
𝑠𝑘

𝑣𝑘
]        (5.10) 

The matrix 𝐀 in equation (1.1) is: 

𝐀 = (
1 ∆𝑡
0 1

)       (5.11) 

on which ∆𝑡  is the time interval between two measurements. In this 

experiment it is equal to 0.1s. 

In this section, the acceleration is regarded as an input of the dynamic 

model (5.9). However, 𝑎𝑘  is affected by measurement noise, and 

therefore we write: 

𝑎𝑘 = 𝑢𝑘 + 𝑤𝑘
𝑄

 

Where 𝑢𝑘 is the acceleration measurement obtained at instant 𝑘, while 

𝑤𝑘
𝑄

 is the corresponding noise, assumed gaussian, with zero mean, and 

variance equal to 0.0021 (𝑚/𝑠2)2. 

This allows to rewrite equation (5.9) as: 

𝐱𝐤+𝟏 = 𝐀𝐱𝐤 + 𝐁𝑢k + 𝑤k    (5.12) 

The matrix 𝐁 in equation (5.12) is: 

𝐁 = (
1

2
∆𝑡2

∆𝑡
)       (5.13) 

While the noise 𝑤k is: 

𝑤𝑘 = 𝐵𝑤𝑘
𝑄

        (5.14) 



39 

 

In view of this, we obtain that: 

𝑄 = 𝑤𝑘𝑤𝑘
𝑇 = 𝜎𝑤

2 𝐵𝐵𝑇     (5.15) 

The measurement is the output of the UWB ranging sensor and therefore 

the observation matrix in equation (5.5) is: 

𝐇 = (1 0)       (5.16) 

while the Gaussian measurement noise is: 

𝐯𝐤~𝑊𝐺𝑁(0, 𝑅)      (5.17) 

where 𝑅 = 1033.5 𝑚𝑚2.  

 

5.3.2 Kalman Filtering results 

In this section we implement the Kalman Filter with the parameters 

obtained in Section 5.3.1 on the original UWB distance measurement data.  

The first case is both the anchor unit and the tag unit remaining stationary. 

As we proved in Chapter 3, when both modules remain stationary, the 

measurement noise of the UWB distance measurement is a Gaussian white 

noise. This result ensures the feasibility of the use of Kalman Filter. The 

original distance measurement data and the filtered data is shown in Figure 

5.2.  



40 

 

(a): global view 

(b): the first 10 seconds zoom           (c): the last 10 seconds zoom 

Figure 5.2: Stationary test Kalman Filtering result 

As we can see in Figure 5.2, the iteration starts from the second time 

instant, 0.2s. The posteriori estimate reaches peak value at the twenty 

second iteration and start convergence immediately. Since the 8 second, 

the distance posteriori is equal to 2.5m. We can see that the filtered curve 

is smooth, and the fluctuation range is small. For analysis purpose, we 

select the data of the last ten seconds and calculate their variance. The 



41 

 

variance of the original distance measurement data is 0.00047521 𝑚2, or 

475.21 𝑚𝑚2, and the variance of the filtered data is 0.00017022 𝑚2. 

Figure 5.3: EDF before/after filtering 

In Figure 5.3, we can see that the data distribution is more concentrated to 

2.5m. 

The second test consists of moving the tag unit forward, leaving the anchor 

unit . The experimental data comes from the real environment, so that we 

do not know the exact value of the distance or the acceleration during the 

movement. However, we can still observe the original measurement data 

and the filtered data to judge the effect of Kalman filter. The distance data 

can be plotted as the following Figure 5.4: 



42 

 

(a): global view 

(b): the first 10 seconds zoom           (c): the last 10 seconds zoom 

Figure 5.4: Tag straight movement test Kalman Filtering result 

We can see that the Kalman filter has similar performance as in the 

previous experiment. The filtered data start to converge at the 3rd second. 

Within the last ten seconds, the original UWB distance measurement data 

fluctuates repeatedly. The Kalman filter reduces these fluctuations and 

maintains a smooth rise trend. [1] 



43 

 

Chapter 6 

 

Principle and Application of the Trilateration 

Algorithm 

 

In this chapter, we discuss how to locate an object in the three-dimensional 

space. In Section 6.1, the principle of trilateration algorithm is introduced. 

In Section 6.2 and Section 6.3, two methods to solve the trilateral 

positioning problem are proposed. The first method is denoted as Cost 

Function Minimizing Method. The second method is denoted as Matrix 

Solution Method. Two methods have been simulated separately. And the 

performance of the two methods have been evaluated in Section 6.4. 

 

6.1 Principle of the Trilateration Algorithm 

In this section we discuss about how to calculate the coordinates of the tag 

unit in the three-dimensional space.  

As show in Figure 6.1, we assume that the following data are available: at 

least three anchor points coordinates 𝑃1(𝑥1, 𝑦1, 𝑧1) , 𝑃2(𝑥2, 𝑦2, 𝑧2) , 

𝑃3(𝑥3, 𝑦3, 𝑧3), and the corresponding distance measurements 𝑠1, 𝑠2, 𝑠3 

between tag and anchors.  

Figure 6.1: Tag unit and anchor units in three dimensions space 



44 

 

In Chapter 5, the Kalman filter is implemented to smooth raw range 

measurement data, i.e. to obtain a new dataset of range measurements with 

minimal variance. In this chapter, these estimates are used in the trilateral 

positioning method. 

Determining the coordinates (𝑥, 𝑦, 𝑧)of a tag is equivalent to finding the 

solutions to the following system of quadratic equations.  

{

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑠1
2

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝑠2
2

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝑠3
2

    (6.1) 

As shown in Figure 6.2, the three spheres, respectively determined by 

three anchor points coordinates and corresponding distance measurements, 

intersect at one point. By solving the system of equations (6.1), we can get 

an accurate estimate of the coordinates of the tag location. 

Figure 6.2: Trilateral Positioning 

Due to the presence of noise and errors in the distance measurement 

process, and to account for the probability of considering more than three 

anchor points, in the following we consider two alternative approaches, 

i.e., the Cost Function Minimization Method and the Matrix Solution 

Method. 



45 

 

6.2 Cost Function Minimization Method 

6.2.1 Principle of the Cost Function minimizing Method 

We assume that the tag is located at 𝑃𝑡(𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡). The distances between 

tag and anchors are computed according to: 

{

𝑠𝑡1 = √(𝑥1 − 𝑥𝑡)2 + (𝑦1 − 𝑦𝑡)2 + (𝑧1 − 𝑧𝑡)2

𝑠𝑡2 = √(𝑥2 − 𝑥𝑡)2 + (𝑦2 − 𝑦𝑡)2 + (𝑧2 − 𝑧𝑡)2

𝑠𝑡3 = √(𝑥3 − 𝑥𝑡)2 + (𝑦3 − 𝑦𝑡)2 + (𝑧3 − 𝑧𝑡)2

   (6.2) 

In the functions above, 𝑠𝑡𝑖 indicates the distance between the estimated 

tag position 𝑃𝑡 and the 𝑖-𝑡ℎ anchor real position 𝑃𝑖.  

To find the optimal solution, we define a cost function expressed as 

follows: 

𝐶 = ∑ (𝑠𝑡𝑖 − 𝑠𝑖)23
𝑖=1       (6.3) 

The cost function shown in (6.3) is the Residual Sum of Squares (RSS or 

Sum Squared Error(SSE)). RSS is the sum of the squared differences 

between predicted distances 𝑠𝑡𝑖 and measured distances 𝑠𝑖. [4] 

The MATLAB command fminsearch can be used to find a local 

minimum of the cost function. Command fminsearch uses a 

derivative-free method to find minimum of unconstrained multivariable 

function using derivative-free method. To improve the performance of 

fminsearch, a starting point is set to an anchor point whose measuring 

distance from this anchor point to the tag is the shortest.  

 

 

 

 



46 

 

6.2.2 Simulation of the Cost Function Minimizing 

Method 

In order to verify the feasibility of the cost function minimizing method, 

several simulations are carried out in this section.  

Assume that the coordinates of three base stations are 

𝑃1(27.297, −4.953,1.470) , 𝑃2(25.475, −6.124,2.360) , 

𝑃3(22.590,0.524,1.200). Three distance measurements between tag and 

anchors are 𝑠1 = 3.851, 𝑠2 = 3.875, 𝑠3 = 3.514. Import the above data 

into the following MATLAB program: 

dist_fun = @(pos) 

sqrt(sum((bsxfun(@minus,P,pos(:)')).^2,2)); 

cost_function = @(pos) sum((dist_fun(pos)-

S(:)).^2); 

initial_guess = [22.59 0.524 1.2]; 

position=fminsearch(cost_function,initial_guess); 

we can obtain the coordinate of the tag unit which is 

𝑇𝑎𝑔(24.3123, −2.5204,1.5365).  

Calculate the distances between anchor points and the estimated tag point, 

we obtain �̂�1 = 3.851 , �̂�2 = 3.875 , �̂�3 = 3.514 . The posteriori 

measurement is exactly equal to input distance ranging data when it keeps 

three decimal places. When we keep five or more than five decimal places, 

we can discover very subtle differences. This can be regarded as a 

calculation error.  



47 

 

The following three views and the three-dimensional perspective diagram 

of Figure 6.3 show the sphere composed of anchors coordinates plus 

distance measurements, as well as the calculated position of the tag unit 

which is represented by a red asterisk. 

Figure 6.3(a): Front view 

Figure 6.3(b): Left view 



48 

 

Figure 6.3(c): Top view 

Figure 6.3(d): 3D view 

Using the method and commands described in this section, code has low 

space complexity.  

 



49 

 

6.3 Matrix Solution Method 

6.3.1 Principle of the Matrix Solution Method 

The equations of system (6.1) can be expanded and reformed as: 

{

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥1𝑥 − 2𝑦1𝑦 − 2𝑧1𝑧 = 𝑠1
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥2𝑥 − 2𝑦2𝑦 − 2𝑧2𝑧 = 𝑠2
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥3𝑥 − 2𝑦3𝑦 − 2𝑧3𝑧 = 𝑠3
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2

 (6.4) 

The equation system above can be rewritten in matrix form as: 

[
1 −2𝑥1

1 −2𝑥2

1 −2𝑥3

     

−2𝑦1 −2𝑧1

−2𝑦2 −2𝑧2

−2𝑦3 −2𝑧3

] [

𝑥2 + 𝑦2 + 𝑧2

𝑥
𝑦
𝑧

] = [

𝑠1
2 − 𝑥1

2 − 𝑦1
2 − 𝑧1

2

𝑠2
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2

𝑠3
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2

]  

(6.5) 

If we define 𝒙 = [𝑥2 + 𝑦2 + 𝑧2, 𝑥, 𝑦, 𝑧]𝑇, system (6.5) is a linear system 

having a familiar form 𝐴 ⋅ 𝒙 = 𝒃 under the constraint that 𝒙 ∈ 𝐸, being 

𝐸 = {(𝑥0, 𝑥1, 𝑥2, 𝑥3)𝑇 ∈ ℝ4|𝑥0
2 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2}. 

We can see that matrices 𝐴  and 𝒃  consist of only known elements. 

Unknown tag’s coordinates are all moved to the matrix 𝒙.  

The solution to the constrained problem can be found in a numerically 

efficiency way, see [5, 14]. 

 

6.3.2 Simulation of the Matrix Solution Method 

Same as in Section 6.2.2, we assume that 𝑃1(27.297, −4.953,1.470) , 

𝑃2(25.475, −6.124,2.360) , 𝑃3(22.590,0.524,1.200) , 𝑠1 = 3.851 , 

𝑠2 = 3.875 , 𝑠3 = 3.514 . Import these data to MATLAB and we can 

obtain two solutions after calculation. 𝑇𝑎𝑔1(24.3506, −2.4811,1.6667) 

and 𝑇𝑎𝑔2(24.3123, −2.5205,1.5365). Calculate theirs residual sum of 



50 

 

squares, 𝑅𝑆𝑆𝑇𝑎𝑔1
= 1.1566 × 10−10 , and 𝑅𝑆𝑆𝑇𝑎𝑔2

= 6.1801 × 10−9 . 

We can find that the solution given by the Minimizing Cost Function 

Method is one of the solutions of matrix calculation. Although its RSS is 

significantly small, another better solution may exist. In this case, the 

coordinates of solution 𝑇𝑎𝑔1 would be more accurate. 

The following three views and the three-dimensional perspective diagram 

of Figure 6.4 show the spheres and the calculated positions. The 𝑇𝑎𝑔2, 

same solution of the minimizing cost function, is represented by a red 

asterisk. And the more accurate point 𝑇𝑎𝑔1  is represented by a black 

asterisk. 

Figure 6.4(a): Front view 

 



51 

 

Figure 6.4 (b): Left view  

 

Figure 6.4(c): Top view 

 



52 

 

Figure 6.4(d): 3D view 

 

6.4 Performance evaluation 

In this section, the performance of the Cost Function Minimizing Method 

and the Matrix Calculation Method are evaluated. Both methods have been 

applied to a test dataset with white noise ranging data whose variance 

being 0.03 for trilateral positioning. In the Table 6.1, some original data 

and the positioning results of both methods are displayed.  

As shown in the Table 6.1, comparing to the Cost Function Minimizing 

Method, the Matrix Solution Method can obtain estimated positions with 

similar or smaller root-mean-square deviation in most conditions. And the 

program execution time reduces by 63%. On the other hand, the Cost 

Function Minimizing Method behaves stable with all data. For correctness 

consideration, the Cost Function Minimizing Method would be a better 

trade-off. 



53 

 

 

T
a

b
le

 6
.1

: P
erfo

rm
a
n

ce ev
a
lu

a
tio

n
 fo

r tw
o
 m

eth
o

d
s 

A
n

c
h

o
r C

o
o

r
d

in
a

tes 
T

a
g

 C
o

o
r
d

in
a

te
s 

D
ista

n
ce

 

M
e
a

su
rem

e
n

t 

E
stim

a
te

d
 P

o
sitio

n
 b

y
 

C
F

M
 M

eth
o

d
 
 

P
ro

g
r
a
m

 

E
x
e
c
u

tio
n

 

T
im

e o
f C

F
M

 

M
e
th

o
d

 (s) 

R
M

S
D

 

o
f C

F
M

 

M
e
th

o
d

 
 

E
stim

a
te

d
 P

o
sitio

n
 b

y
 

M
S

 M
e
th

o
d

 

P
ro

g
r
a
m

 

E
x
e
c
u

tio
n

 

T
im

e
 
o

f 
M

S
 

M
e
th

o
d

 (s) 

R
M

S
D

 
o

f 

M
S

 

M
e
th

o
d

 

P
1

(0
.4

1
3
0

,0
.7

6
3
5

,0
.2

3
3
5

) 

P
2

(9
.8

9
5
1

,1
0

.3
1
2
6

,1
0
.0

9
1

6
) 

P
3

(4
.4

8
5
1

,5
.4

7
4
6

,0
.1

5
3
5

) 

T
(3

.0
6
7
6

,3
.2

5
7
6

,3
.1

3
0
7

) 
S

1
=

4
.6

2
5
9
 

S
2

=
1

2
.0

3
0

2
 

S
3

=
3

.9
6
9
3
 

(2
.9

8
4

4
,3

.3
2
1

5
,3

.1
2
9

7
) 

0
.0

4
2
 

0
.0

6
0
6
 

(2
.9

7
8

6
,3

.3
1
0

9
,3

.1
5
7

4
) 

0
.0

1
6
 

0
.0

6
0
2
 

P
1

(-0
.2

5
2
3

-0
.6

3
5

3
,-0

.1
9

1
2
9

) 

P
2

(1
0

.3
2
4
3

,1
0
.4

1
2

9
,9

.4
9
2

5
) 

P
3

(4
.7

6
4
5
5

.0
6
8
5

,-0
.1

4
5

9
) 

T
(3

.1
5
0
9

,3
.2

0
0
0

,2
.5

3
5
0

) 
S

1
=

5
.8

0
1
9
 

S
2

=
1

2
.2

6
0

4
 

S
3

=
3

.6
7
8
9
 

(3
.2

7
3

3
,3

.0
9
3

8
,2

.5
8
0

7
) 

0
.0

5
8
 

0
.0

9
7
2
 

(3
.2

6
1

3
,3

.0
7
4

7
,2

.6
3
5

5
) 

0
.0

2
2
 

0
.0

9
2
8
 

P
1

(-0
.2

2
2
3

,-0
.0

7
8
0

,0
.1

3
8
0

) 

P
2

(9
.8

6
9
4

,1
0

.2
2
1
7

,1
0
.1

9
5

9
) 

P
3

(4
.3

7
4
7

,4
.5

2
6
0

,-0
.3

7
0
6

) 

T
(2

.7
4
6
1

,2
.8

3
9
7

,3
.0

0
6
2

) 
S

1
=

4
.9

6
3
9
 

S
2

=
1

2
.5

1
3

4
 

S
3

=
4

.1
4
8
1
 

(2
.6

5
3

4
,2

.8
5
7

1
,3

.0
1
4

3
) 

0
.0

4
8
 

0
.0

5
4
7
 

(2
.6

2
9

3
,2

.8
3
4

5
,3

.1
0
0

6
) 

0
.0

2
2
 

0
.0

4
5
5
 

P
1

(-0
.5

3
3
4

,0
.4

6
6
9

,0
.1

7
5
2

) 

P
2

(9
.9

8
5
5

,1
0

.0
9
1
2

,9
.2

1
7
5

) 

P
3

(4
.9

5
7
7

,5
.8

0
2
0

,0
.0

4
9
2

) 

T
(3

.0
2
0
7

,2
.6

3
2
9

,2
.9

8
4
6

) 
S

1
=

5
.0

2
8
5
 

S
2

=
11

.9
7
0
4
 

S
3

=
4

.7
2
2
9
 

(3
.0

9
11

,2
.5

7
6
1

,2
.9

5
0
1

) 
0

.0
5
0
0
 

0
.0

5
5
9
 

(1
.8

6
5

4
,3

.8
3
9

6
,3

.0
3
1

2
) 

0
.0

2
1
 

0
.9

6
4
9
 

P
1

(0
.1

1
9
9

,-0
.3

4
5

2
,-0

.3
2

5
8

) 

P
2

(1
0

.5
9
6
1

,9
.1

9
4
1

,9
.9

8
7
8

) 

P
3

(1
.0

2
5
6

,5
.5

1
0
2

,0
.4

3
0
9

) 

T
(3

.0
0
0
6

,2
.9

6
4
6

,1
.7

5
6
9

) 
S

1
=

4
.8

7
4
4
 

S
2

=
1

2
.7

5
0

1
 

S
3

=
2

.9
7
8
3
 

(3
.0

7
8

1
,2

.9
8
9

2
,1

.7
2
6

0
) 

0
.0

4
6
 

0
.0

5
0
2
 

(3
.0

8
0

3
,2

.9
6
0

0
,1

.7
6
9

8
) 

0
.0

2
4
 

0
.0

3
5
4
 

M
E

A
N

 V
A

L
U

E
 

0
.0

0
5
8
 

0
.0

6
3
7
 

 
0

.0
2
1
 

0
.2

3
9
8
 

 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

Chapter 7 

 

Experiment and Result 

In this chapter, the experiment within real scenario is carried out. The 

Kalman Filter and two trilateral positioning methods are implemented on 

the experimental data. In Section 7.1, the experiment setup is introduced. 

In Section 7.2, the results of the positioning are analyzed. 

 

7.1 Experiment setup 

To evaluate the Kalman Filter and the trilateral positioning methods 

proposed is Chapter 5 and 6, distance measurement in a closed field were 

performed with the DWM1001 modules. There is no obstacle in the 

experiment field. The sight line between the tag unit and the anchor unit is 

not blocked. The communication and control between the tag unit and the 

host device is via USB serial port and the custom interface developed in 

Chapter 4. 

Figure 7.1 demonstrates the location if the anchor units as well as the tag 

unit on T, where the y-axis points to west direction, z-axis points to south 

direction and the x-axis points to the center of the earth.  



56 

 

Figure 7.1: Experiment filed layout 

 

7.2 Experiment Result 

The true coordinate of the unknown tag point is (0.0470,3.0000,1.0000). The 

coordinates of three anchor units and the true distances between the tag unit and the 

anchor units are listed in Table 7.1. 

Table 7.1: Coordinates of the anchor units and the distance to the tag unit 

Anchor X[m] Y[m] Z[m] 𝐃𝐢𝐬𝐭𝐭𝐫𝐮𝐞[m] 

A1 0.0470 0.4510 1.0000 2.5490 

A2 0.0470 3.0000 2.5220 1.5220 

A3 0.0470 6.0490 1.0000 3.0490 

 

7.2.1 Trilateral positioning solutions without the Kalman 

Filter 

Due to the measurement white noises existence of both the UWB ranging 

chip and the accelerometer, the high frequency original distance 



57 

 

measurement data fluctuate within a certain range. As shown in Chapter 3, 

the distance measurement variance reaches 1033.5𝑚𝑚2. In this section, 

we use original distance measurement data to calculate the tag position 

with both the Cost Function Minimizing method and the Matrix Solution 

method. We pick the original data on the 15th second, 25th second, 35th 

second and 45th second as input. The distance measurements at these time 

instants shows in Table 7.2. 

Table 7.2: Original distance measurement on 15/25/35/45 second 

To anchor 𝐃𝒎 15s[m] 𝐃𝒎 25s[m] 𝐃𝒎 35s[m] 𝐃𝒎 45s[m] 

A1 2.4310 2.4210 2.4260 2.4070 

A2 1.4470 1.4230 1.4470 1.4330 

A3 3.0870 3.0820 3.0770 3.0580 

With both trilateral methods proposed in previous chapter, we obtain 

following coordinates in Table 7.3： 

Table 7.3: Trilateral positioning results without the Kalman Filter 

Method Results 15s 25s 35s 45s 

CFM 

method 

X[m] 0.0471 0.0470 0.0470 0.0470 

Y[m] 2.9219 2.9194 2.9245 2.9245 

Z[m] 1.0749 1.0978 1.0744 1.0867 

Dist𝑒𝑟𝑟𝑜𝑟[m] 0.1082 0.1267 0.1060 0.1150 

Mean𝐷𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟
[m] 0.1140 

RSS 0.0522 

MS 

method 

X[m] 0.0470 0.0470 0.0470 0.0470 

Y[m] 2.9267 2.9251 2.9300 2.9322 

Z[m] 1.0029 1.0122 0.9893 0.9687 

Dist𝑒𝑟𝑟𝑜𝑟[m] 0.0734 0.0759 0.0708 0.0747 

Mean𝐷𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟
[m] 0.0737 

RSS 0.0217 

Comparing to the cost function minimizing method, the matrix solution 

method obtains more accurate tag position coordinates. We can see that 



58 

 

the coordinate mean estimate error of the MS method is 0.0737m, or 

7.37cm. The mean error of the CFM method is not that good, does not 

reach the centimeter level.  

 

7.2.2 Trilateral positioning solutions with the Kalman 

Filter 

To improve the positioning accuracy, I implement the Kalman Filter on 

the distance measurement. Table 7.4 lists the filtered distance 

measurement data, that at the same time distance as Table 7.2. 

Table 7.4: Filtered distance measurement on 15/25/35/45 second 

To anchor 𝐃𝒎 15s[m] 𝐃𝒎 25s[m] 𝐃𝒎 35s[m] 𝐃𝒎 45s[m] 

A1 2.4303 2.4387 2.4470 2.4561 

A2 1.4430 1.4391 1.4458 1.4386 

A3 3.0530 3.0638 3.0656 3.0488 

Same step with the previous section, I use both the CFM method and the 

MS method to calculate the coordinates and obtain results as shown in 

Table 7.5. 

We can see that the sum of the squared residual error of both methods 

decreasing. The RSS of the CFM method reduced to 0.0377 from 0.0522. 

The RSS of the MS method reduced to 0.01334 from 0.0217. We can also 

observe that the accuracy of the CFM method reaches the centimeter level 

with the Kalman Filter. The accuracy of the MS method reaches 5.67cm. 

Moreover, with the increasing of the Kalman Filter’s iteration, we can see 

that the distance measurement error of the MS method keeps falling. It 

means that the Kalman Filter keeps reducing the effect of the measurement 

white noise, and trust more on its estimate posterior.  

 



59 

 

Table 7.5: Trilateral positioning results with the Kalman Filter 

Method Results 15s 25s 35s 45s 

CFM 

method 

X[m] 0.0470 0.0470 0.0470 0.0470 

Y[m] 2.9386 2.9374 2.9407 2.9536 

Z[m] 1.0741 1.0814 1.0750 1.0814 

Dist𝑒𝑟𝑟𝑜𝑟[m] 0.0962 0.1027 0.0956 0.0937 

Mean𝐷𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟
[m] 0. 091 

RSS 0.0377 

MS 

method 

X[m] 0.0470 0.0470 0.0470 0.0470 

Y[m] 2.9267 2.9428 2.9454 2.9586 

Z[m] 1.0029 0.9957 0.9983 0.9977 

Dist𝑒𝑟𝑟𝑜𝑟[m] 0.0734 0.0574 0.0546 0.0415 

Mean𝐷𝑖𝑠𝑡𝑒𝑟𝑟𝑜𝑟
[m] 0.0567 

RSS 0.01334 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

Chapter 8 

 

Conclusion and Future Work 

 

In this thesis, an optimized approach to locate objects in the three-

dimensional space is presented. This approach is based on a Kalman Filter 

and a suitable trilateration algorithm. The main contributions of this thesis 

work are: 

1) Pre-process and analyze the performance of Decawave DWM1001 

UWB module, including processing and analysis  the distance 

measurement data obtained by the UWB chip DWM1000 IC and 

acceleration data obtained by the embedded I2C accelerometer 

LIS2DH12, for further studies; 

2) Develop a function-customized serial port communication interface for 

DWM1001 module. The interface enables distance measurement data 

and acceleration data to be sent by the module and received by the host 

device in real time. With simple modifications, more kinds of data 

transmission function can be added in short time; 

3) Design a Kalman Filter able to improve UWB ranging accuracy, based 

on sensor fusion of the UWB position sensor and the accelerometer; 

4) Propose two approaches of trilateration positioning. 

Experimental results obtained from a location dataset in the real 

environment illustrate the validity and the performance of the proposed 

approaches, showing that the usage of the Kalman Filter improve the 

ranging accuracy of DWM1001 module. The presented Cost Function 

Minimization Method and Matrix Solution Method are able to achieve the 

higher positioning accuracy comparable to DWM1001 datasheet. 



62 

 

From the author’s point of view, the topic addressed by this thesis is worth 

future development and implementation on the following possible 

directions: 

- Enhancement of the positioning accuracy, by implementing 

Particle Filter to the continuous positioning results, so as to further 

smooth the data curve; [3] 

- Extend the diversity, by introducing the Extended Kalman Filter 

for non-linear movement model development; [13] 

- Extend the scenario applicability, by implementing the proposed 

model on datasets of multiple environments, open environment, 

environment with many obstacles or electromagnetic interference, 

base station with wall blocking, i.e. 

 

 

 

 

 

 

 

 

 

 

 



63 

 

Appendix A  

 

Anderson’s Whiteness Test 

 

alpha=0.1; 

gamma=covf(x,floor(N/10)); % compute the covariances 

rho=gamma(2:end)/gamma(1); % compute the normalized 

correlations (for tau>0) 

beta=norminv(1-alpha/2); 

 

nalpha=length(find(sqrt(N)*rho>beta))+length(find(sqrt(N)

*rho<-beta)); 

f=nalpha/length(rho); 

 

figure 

hold on 

plot(1:length(rho),beta*ones(length(rho),1),'r:','linewid

th',2) 

plot(1:length(rho),-

beta*ones(length(rho),1),'r:','linewidth',2) 

plot(1:length(rho),sqrt(N)*rho,'ko') 

ylabel('sqrt(\rho)') 

 

disp(['Frequency of violation: ',num2str(f),', 

alpha=',num2str(alpha)]) 

if f<=alpha 

    disp('Anderson test passed') 

else 

    disp('Anderson test failed') 

end 

 

 



64 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



65 

 

Appendix B 

 

On-board C Program 

 

/** 

* Distance and Acceleration user application. 

 * DONG LIANG 2020 */ 

 

#include "dwm.h" 

#include <stdio.h> 

/* Thread priority */ 

#ifndef THREAD_APP_PRIO 

#define THREAD_APP_PRIO 20 

#endif /* THREAD_APP_PRIO */ 

/* Thread stack size */ 

#ifndef THREAD_APP_STACK_SIZE 

#define THREAD_APP_STACK_SIZE (3 * 1024) 

#endif /* THREAD_APP_STACK_SIZE */ 

/* Corresponding error code, inquire API Guide section 

4.4.1 */ 

#define APP_ERR_CHECK(err_code) \ 

do {       \ 

 if ((err_code) != DWM_OK) \ 

  printf("err: line(%u) code(%u)", __LINE__, 

(err_code));\ 

} while (0)      \ 

#define MSG_INIT \ 

 "\n\n" \ 

 "App   :  dist-acc-userapp\n" \ 

 "Built :  " __DATE__ " " __TIME__ "\n" \ 

 "\n" 

/** 



66 

 

 * Event callback 

 * @param[in] p_evt  Pointer to event structure */ 

void on_dwm_evt(dwm_evt_t *p_evt) 

{ 

 int len; 

 int i; 

 switch (p_evt->header.id) { 

 /* New location data */ 

 case DWM_EVT_LOC_READY: /* check API Guide section 

4.4.11 evt_id_map for more detail */ 

                printf("\nT:%lu ", dwm_systime_us_get()); 

  for (i = 0; i < p_evt->loc.anchors.dist.cnt; ++i) { 

                        printf("D:"); 

                        printf("%lu ", 

p_evt->loc.anchors.dist.dist[i]);  /* Distance to the 

anchor. There is only 1 anchor in the network now*/ 

  } 

                /* Acc Value Obtain */ 

                int8_t data[6]; 

                const uint8_t addr = 0x19; // some address of 

the slave device 

                data[0] = 0xAA;   // Pre-allocated pointer 

address by dwm_i2c_write API 

                data[1] = 0xBB; data[2] = 0xCC; data[3] = 0xDD; 

data[4] = 0xEE; data[5] = 0xFF; 

                dwm_i2c_write(addr ,data, 6, true); 

                dwm_i2c_read(addr, data, 6); 

                printf("A:%d,%d,%d", 

(data[0]<<8)+data[1],(data[2]<<8)+data[3],(data[4]<<8)+da

ta[5]); 

  break; 

 default: 

  break; 

 } 

} 



67 

 

/** 

 * Application thread 

* @param[in] data  Pointer to user data 

 */ 

void app_thread_entry(uint32_t data) 

{ 

 dwm_cfg_t cfg; 

 uint8_t i2cbyte; 

 dwm_evt_t evt; 

 int rv; 

 uint8_t label[DWM_LABEL_LEN_MAX]; 

 uint8_t label_len = DWM_LABEL_LEN_MAX; 

        dwm_pos_t pos; 

 /* Initial message */ 

 printf(MSG_INIT); 

 /* Get node configuration */ 

 APP_ERR_CHECK(dwm_cfg_get(&cfg)); 

 /* Update rate set to 0.1 second, stationary update rate 

set to 0.1 seconds */ 

 APP_ERR_CHECK(dwm_upd_rate_set(1, 1)); 

 /* Sensitivity for switching between stationary and 

normal update rate */ 

 APP_ERR_CHECK(dwm_stnry_cfg_set(DWM_STNRY_SENSITIVITY_

NORMAL)); 

 /* Register event callback */ 

 dwm_evt_listener_register( 

   DWM_EVT_LOC_READY | DWM_EVT_USR_DATA_READY | 

   DWM_EVT_BH_INITIALIZED_CHANGED | 

   DWM_EVT_UWBMAC_JOINED_CHANGED, NULL); 

 /* Test the accelerometer */ 

 i2cbyte = 0x0f; 

 rv = dwm_i2c_write(0x33 >> 1, &i2cbyte, 1, true); 

 if (rv == DWM_OK) { 

  rv = dwm_i2c_read(0x33 >> 1, &i2cbyte, 1); 

  if (rv == DWM_OK) { 



68 

 

   printf("Accelerometer chip ID: %u\n", i2cbyte); 

  } else { 

   printf("i2c: read failed (%d)\n", rv); 

  } 

 } else { 

  printf("i2c: write failed (%d)\n", rv); 

 } 

 rv = dwm_label_read(label, &label_len); 

 if (rv == DWM_OK) { 

  printf("LABEL(len=%d):", label_len); 

  for (rv = 0; rv < label_len; ++rv) { 

   printf(" %02x", label[rv]); 

  } 

  printf("\n"); 

 } else { 

  printf("can't read label len=%d, error %d\n", 

label_len, rv); 

 } 

 while (1) { 

  /* Thread loop */ 

  rv = dwm_evt_wait(&evt); 

  if (rv != DWM_OK) { 

   printf("dwm_evt_wait, error %d\n", rv); 

  } else { 

   on_dwm_evt(&evt); 

  } 

 } 

} 

/** 

 * Application entry point. Initialize application thread. 

* @warning ONLY ENABLING OF LOCATION ENGINE OR BLE AND 

CREATION AND STARTING OF 

 * USER THREADS CAN BE DONE IN THIS FUNCTION 

 */ 

void dwm_user_start(void) 



69 

 

{ 

 uint8_t hndl; 

 int rv; 

 dwm_shell_compile(); 

 //Disabling ble by default as softdevice prevents 

debugging with breakpoints (due to priority) 

 //dwm_ble_compile(); 

 dwm_le_compile(); 

 dwm_serial_spi_compile(); 

 /* Create thread */ 

 rv = dwm_thread_create(THREAD_APP_PRIO, 

app_thread_entry, (void*)NULL, 

   "app", THREAD_APP_STACK_SIZE, &hndl); 

 APP_ERR_CHECK(rv); 

 /* Start the thread */ 

 dwm_thread_resume(hndl); 

} 

 

 

 

 

 

 

 

 

 

 



70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

Appendix C 

 

MATLAB script of the interface 

 

%% S1.define globally variable 

global s str temp data_tag; 

%% S2.Serial settings 

s = serial('COM3'); 

set(s,'Databits',8); 

set(s,'Stopbits',1); 

set(s,'Baudrate',115200); 

set(s,'Parity','none'); 

%% S7.Serial event callback settings (1st method (bytes) 

Event-driven method interrupt) 

set(s,'BytesAvailableFcnMode','byte');  

set(s,'BytesAvailableFcnCount',27);     %set the interrupt 

trigger: when receives 27 bytes of data, interrupt occurs. 

s.BytesAvailableFcn =@ReceiveCallback; %customize a 

callback function 

 

%% Callback function 

function ReceiveCallback( ~,~)  

global s str temp data_tag; 

global str; 

global temp; 

global data_tag; 

str = fscanf(s);  %read data from buffer 

pattern = '(-)?\d{1,10}'; 

temp = regexp(str, pattern, 'match');  %use regular 

expression to extract time/dist/acc data 

data_tag = [data_tag; temp]; 

end 



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

Bibliography 

 

[1] Jwo D J, Cho T S. A practical note on evaluating Kalman filter 

performance optimality and degradation[J]. Applied Mathematics and 

Computation, 2007, 193(2): 482-505. 

[2] Welch G, Bishop G. An introduction to the Kalman filter[J]. 1995. 

[3] Gustafsson F. Particle filter theory and practice with positioning 

applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 

25(7): 53-82. 

[4] McDonald C. Machine learning fundamentals (I): Cost functions and 

gradient descent[J]. Towards Data Science, 2017, 27. 

[5] Norrdine A. An algebraic solution to the multilateration 

problem[C]//Proceedings of the 15th international conference on indoor 

positioning and indoor navigation, Sydney, Australia. 2012, 1315. 

[6] Li X, Wang Y, Khoshelham K. A robust and adaptive complementary 

kalman filter based on Mahalanobis distance for Ultra Wideband/Inertial 

Measurement Unit fusion positioning[J]. Sensors, 2018, 18(10): 3435. 

[7] Bishop G, Welch G. An introduction to the kalman filter[J]. Proc of 

SIGGRAPH, Course, 2001, 8(27599-23175): 41. 

[8] Capra M. UWB Tracking System for Patient Monitoring in Home 

Environment[D]. Politecnico di Torino, 2018. 

[9] Embedded F. ultra-low-power high-performance 3-axis" femto" 

accelerometer[J]. 

[10] IENI M. Realization and performance evaluation of a hybrid 

UWB/WiFi indoor localization system[J]. 2018. 



74 

 

[11] ZHANG K, YANG J, DU X. Design and Implementation of Serial 

Communication Based on DSP [J][J]. Microprocessors, 2010 (6): 9. 

[12] LIU C, DU D, PAN J. Predictive control for lane control systems 

using a small deviation model[J]. Journal of Tsinghua University (Science 

and Technology), 2015 (10): 8. 

[13] ZHAN H, YANG R, ZHOU X. Buoy Passive Tracking System 

Model[J]. Computer Engineering, 2009, 2009(20): 101. 

[14] Quarteroni A, Saleri F, Gervasio P. Scientific computing with 

MATLAB and Octave[M]. Berlin: Springer, 2006. 

[15] Sergio Bittanti. Model Identification and Data Analysis Slides. 

http://corsi.dei.polimi.it/IMAD/IMAD_MI_AUT/, 2017-2018 

 

 

 

 

 

 

 

 

 

 

 



75 

 

Acknowledgment 

 

I would like first to express my great gratitude to my supervisor Prof. 

Farina and the co-supervisor Prof. Bascetta, for their in-depth and very 

patient guidance throughout this work. Without their help, it is not possible 

for this thesis to be completed. In fact, their solid professional knowledge, 

accurate scientific intuition, and more importantly their selfless efforts all 

left great impression on me. The time spent with them on this thesis means 

a lot to me, and this experience is for sure lifetime benefiting. 

I would like to express my thanks to my family, my father Dong Jianqing, 

my mother Wang Hongyu and my grandparents Dong Xuetian and Jin Ping. 

I would like to thank them for their academic support to me. Their strong 

support allowed me to study in a foreign country when I was in my 

twenties.  

I also want to thank my classmates and friends who have accompanied me 

for many years. My roommates Long Yuxiang, Hu Liang, Tang Wenshuai 

helped me a lot during this thesis work. We encouraged each other, we 

cursed each other more often. We are friends, for always. Also, my ex-

roommate and good friends Zhou Jingyu, Li Mingju and Yang Zongshuai. 

Thanks everyone for being my friends for seven years. 

Thanks to all the professors, teachers, classmates, those who have ever 

helped me, and all the guys I know, or I do not, during my Master Degree 

years in Politecnico di Milano. 


