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1. Introduction

In recent years, the value of information, and
consequently of data, has grown exponentially.
Owned data can be utilized in numerous ways to
enhance wealth. For instance, in a business con-
text, data are crucial for evaluating performance
and understanding what strategies are effective.
In other context having an informational advan-
tage, namely having access to information that
others lack, can be a significant asset, which can
be used to persuade the other. Persuasion is
the ability of inducing another player to per-
form an action that is the better for the one
who is persuading. This specific form of persua-
sion, which capitalizes on an informational ad-
vantage, is known as Bayesian persuasion, and
it is rising a lot in popularity. The Bayesian
Persuasion model is a game of two players, the
first is called Sender, who wishes to persuade the
other player called Receiver through a signaling
scheme. Dughmi and Xu [2] affirm that "since
the first model of Bayesian persusion was pub-
lished by Kamenica [4], persuasion as a share
of economic activity appears to be growing — a
more recent estimate places the figure at 30%".
In this thesis we study the Bayesian persuasion
problem in the context where the Sender does
not know the actual utilities of the Receiver but

has an uncertainty (0-knowledge) of them. In
other words we relax the constraint that the
Sender has to know exactly the Receiver’s pay-
offs. Such scenarios are extremely common and
can be caused by an incomplete knowledge of the
Sender or by a sub-optimal behaviour of the Re-
ceiver. This studied is link with various works
like the one done by Bernasconi et al. [1]. Fi-
nally, a similar setting in the Stackelberg Equi-
librium framework was studied by Gan et al. [3].

1.1. Thesis objective

The Sender’s uncertainty leads to the situation
where the Receiver plays in an unpredictable
manner from the Sender perspective. Conse-
quently, the main purpose of this thesis is to
find a robust solution that effectively withstands
scenarios where the Receiver engages in sub-
optimal decision-making to this newly defined
problem, in order to overcome at best the lack
of the Sender knowledge about the Receiver util-
ities. In this thesis, we deeply analyze the prob-
lem, and we show that the approach to find the
optimal solution significantly diverges from the
standard case. From this analysis we under-
stand how to find the solution and we design
an algorithm that effectively resolves the stud-
ied problem. We study the time complexity of



the algorithm, we implement it and we conduct
an experimental analysis in order to evaluate its
usability and its weak points in various contexts.

2. Bayesian persuasion under
uncertainty

In order to represent the concept of uncertainty
in the Bayesian persuasion framework, we intro-
duce a parameter > 0, which indicates the un-
certainty on the knowledge of the Sender. So,
the § value represents the quantity of uncer-
tainty in the Receiver’s payoffs. The Sender
uncertainty could be caused by many factors
like limited observations, which would lead the
Sender to have incorrect Receiver payoffs val-
ues, or a bounded Receiver rationality, which
would mean that, even though the Sender has
the correct Receiver’s payoffs, the Receiver plays
sub-optimally. Consequently the Receiver could
play committing a small error ¢ from the Sender
perspective. In this problem setting the Sender
objective is to find a signaling scheme ¢ € ®™,
which is robust to the uncertainty. @™ is the
space of all the signaling schemes. For this rea-
son we have to define a new best response set
of the Receiver called Best Response delta set
(BRs set).

2.1. The BR; set

The new Best Response set that we define
the Best Response delta set (BRjy), is an ex-
tension of the concept of Best Response set.
Namely given a § value and a posterior prob-
ability £, we obtain a subset of the action set
[n], called BRs(§), where © is the set of all
the states of nature, u, and us; are the Re-
ceiver and Sender payoff matrices. Then it is de-
fined as BRs (&§)={a’ € [n]/Y yce Cour (0,a’) >
maX,efn) Y geo SoUr (0,a) —6}. This new set in-
cludes not only the action that we perceive as
the one with maximum utility for the Receiver,
but also the other actions, which have for the
Sender, a similar Receiver utility to her maxi-
mum. Our analysis aims at minimizing the Re-
ceiver sub-optimality by finding a robust solu-
tion. To this aim we define a new set that,
starting from the BRs(§) set, finds the action
that is worst for the Sender. Then given the
BRs (&) set, we define the function Bj (), that
given as input the posterior probability returns
the action a, that corresponds to the action from

the BR;s(&) set with the minimum utility for the
Sender: Bs (§) = mingepr; Y gee & (0) us (a,0).
Then the optimal signaling scheme ¢%, robust
to the uncertainty, needs to induce the BRj set,
which maximizes the minimum Sender utility.
Indeed this solution guarantees to the Sender the
maximum expected utility when the Receiver
plays in the worst possible manner for him.

2.2. Non convexity of the BR;s set

We show that the newly defined set is not
convex. Namely, we show that V¢, & where
BRs(¢)) = BRs(¢"), ¥ with € = af +
(1 — a)¢”, where a@ € (0,1), then BR;(§) #
BRs(¢') = BRs(&"). This can be proven by
the following example. We consider the case
in which we have: 0=1; Three states of na-
ture 01, 05 and 63; Three actions a;, as and
as; Two posteriors ¢ and £”. ¢ is (0.4,0.3,0.3)
and &’ is (0.3,0.4,0.3). The utilities for the
Sender and the Receiver are written in the Ta-
ble(1). In this case we have BRs(¢')=(aq,a2)

0p | 02 | O3

a1 |53 5301
as | 32| 5304
az | 0,0 10,050

Table 1:
BRs(&) set

Example of non convexity of the

and BRs(¢")=(a1,a2). By picking o = 0.5 we
have that £ = a&’ + (1 — «)¢” = (0.35,0.35,0.3)
and so the BRs(§) set would be (ai,a2,as),
which causes the non convexity.

This negative result, however, lead the prob-
lem to not being solvable in polynomial time,
which means that the problem is NP-Hard un-
less P#NP. Then in order to find a solution we
have to create a new convex set, starting from
the BR;s set, composed by convex sub-regions.

2.3. Finding an optimal signaling
scheme

To find the optimal signaling scheme ¢*, we
firstly redefine the BRs set, depending on
the signaling scheme ¢, where [n] is the set
of actions, © is the set of states of na-
ture and p is the prior distribution. Then:
BR; () = {d € [nl/Syee Hodour (0,a) >
MaX,efn] Y geo HoPour (0,a) — 6} Therefore,
From this set we create a new convex set,



composed by convex sub-regions. Each sub-
region is characterized by a set of actions A,
which is a subset of [n] and the action with
the maximum Receiver utility called a*€A.
Then for any possible set of action Ae 2"
and any a*€A: x(a,00)={¢ € ®"| BRs(¢) =
A, up(¢,ax) > up(¢,a) Va € A}. We have that
Ussed AczX(aa) = ™. Indeed any ¢ € ™
must induce some Receiver d-optimal response
set A and an optimal Receiver response a*.
Then we can affirm that x (4,44 is a convex set,
because it is a polytope. Indeed it is described
by linear constraints, which are linear in the
variable ¢, where ¢ = (¢1,...., o). The con-
straints describing the polytope are the follow-
ing:
(C1) >2p nodous (ax) > >4 popoug (a') + 9,
a*e A, Vd' ¢ A
(C2) > g nrepeus (ax) > > g pgdgug (a), Ya €
A a*e A
(C3) >ogregeue (ax) < >, pedeus (a) — 0,
Ya e A
The constraints C1 and C2 derive directly from
the definition of BRs(¢) = A, while constraint
C3 is derived by the other part of the definition
of X(4,ax)- The same convex polytope can be
defined in the posterior space. The linear con-
straints C1-C3 become:
(P1) > p&oug (ax) = >y &ug (a') + 6, a*€ A,
Va' ¢ A
(P2) > g&ouo (ax) = 3 g &oug (a), Va € A, a*e
A

(P3) ZG Eoug (a*) < ZG Eoug (a) +4, Vae A
To find the optimal Sender signaling scheme ¢,
we have designed an algorithm that solves mul-
tiple linear programs. In figure (1) we report
a short version of the pseudo-code of the algo-
rithm, which can be viewed in its complete form
in the thesis work. The algorithm correctness
relies on the fact that it always exists, starting
from any signaling scheme ¢ € ®™, a set A and
an action a* The algorithm for any possible
sub-region identified by the tuple (A, ax) enu-
merates all possible vertices of the polytope in
the posterior space, breaking ties in favour of
the Sender. Then it finds the optimal signal-
ing scheme for the subset of actions A called
¢a. This is done by using a Linear Program,
which finds a feasible probability distribution,
that represents the probability of the signaling
scheme to induce the posteriors, that maximizes

the Sender utility in the vertices of the polytope.
Finally picks the optimal signaling scheme ¢* as
the one that brings the maximum Sender utility
among all the signaling schemes found. Algo-
rithm(1) always returns a valid signaling scheme

Px.

Algorithm 1 Compute the optimal signaling
scheme for the Sender

Input: Receiver utilities u,, Sender utilities
ug, parameter 6 > 0 and the prior distribu-
tion w.
Output: optimal signaling scheme ¢* for
the Sender.
phi=]
for any non-empty A C [n] do
v=]
for a € A do
a*=a
Append £ and ug of all the vertices of
the polytope derived by the following con-
straints to the set of vertices v:
2969 ‘59“7",9 (a*) >
Y oco Sourg (@) +0,a ¢ A
>oeo Soure (ax) < 3 peq Sourg (a) —
d,a€ A
> oco Sotirg (ax) > D4 aurg (a),
aeA
e A™
end for
If the same posteriors are present in the
set, then leave in the set
only the one with maximum utility for
the Sender.
Solve the following LP, to obtain the sig-
naling scheme of A.
maximize: utot =) ;. ovices ThVE(Us)
subject to:

Zkevertices lEA(k‘)Uk(fg) = lg, fecO
T >0

Zkfvertices Tk = 1

if a feasible distribution is found then
64(0,5) = 220 for all ¢ in ©
phi.append(¢ 4, utot)

end if

end for

O* = Maxyor(phi)
return(¢x)




2.4. Algorithm complexity

To find the optimal solution ¢*, Algorithm(1)
has to find all the possible robust signaling
scheme and then has to pick the optimal one. In
order to find a feasible robust signaling scheme,
given a possible BRg(&) set called A in the proof,
the algorithm has to iterate for every action
a € A. The algorithm computes all the ver-
tices with a time complexity of O(n3). After
the algorithm finds all the possible vertices, it
solves an LP in order to find a feasible proba-
bility distribution, which maximizes the Sender
utility. The LP is solved in O(mn). If a feasi-
ble distribution is found the algorithm computes
the signaling scheme ¢4, where A indicates the
signaling scheme of the partition A. Then given
a partition A, the computation of the signaling
scheme ¢4 has a time complexity of O(mn?*),
which is polynomial. However, the algorithm
has to iterate this process for every possible par-
tition derived by the set of actions [n|. Conse-
quently the algorithm iterates for every possible
subset of A. This process implies a complexity
of O(2™), which is exponential. Finally the time
complexity of the algorithm is O(2"poly(m,n)).

3. Experimental results

We implemented our algorithm in Python and
we tested it by conducting two types of experi-
ments. The first focused on identifying and an-
alyzing disparities in the CPU time and assess-
ing the feasibility across various settings. The
second experiment concentrated specifically on
the 0 parameter, aiming to illustrate how this
parameter impacts the expected utility for the
Sender. We used CPLEX as a solver for the LP.

3.1. Execution time

We computed the execution time of our algo-
rithm across multiple settings. From now on we
name the execution time as CPU time.

Test suite and parameters. The settings
were based on two parameters: the number of
state of natures m and the number of actions
n, with both parameters limited to a maximum
value of 7. We then generated a range of prob-
lem settings, encompassing every possible com-
bination of actions and states of nature, vary-
ing from 2 to 7. This resulted in the analysis
of 36 distinct problem settings. For each set-
ting, in order to find a good approximation of

average CPU time per sample
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Figure 1: CPU time of each phase

the CPU time, we created 20 different samples.
Each sample contained all necessary inputs for
the algorithm’s operation. Specifically we set
the 0 value at 0.1 and randomly generated the
prior and utility matrices for both the Sender
and the Receiver. The utility value for a specific
state of nature and a specific action was fixed in
a range from 0 to 1. All the time measures were
done using the python library t¢me and the code
was executed using the Google colab CPU.
Results. The chart in Figure 1 describes the
relationship between the CPU time and the di-
mension of the problem. As we can see the time
needed grows in an exponential manner, aligning
with our theoretical expectations. However, our
data stated that solving a problem with seven
states of nature and seven actions takes, on av-
erage, only 14 seconds. This means that even
though the problem is NP-hard, it can still be
used to solve problems with a relatively large
setting.

We further analyzed the CPU time of individ-
ual phases of the algorithm to understand the
source of the exponential increase in the CPU
time, highlighted by the Figure 2.

CPU time of each phase

—e— Average_vertices_CPU_time
—e— Average_LP_CPU_time
0.10 Average_partition_CPU_time

0.00 v

22 62 26 53 46 73 66 71
Num_theta_Num_actions.

Figure 2: CPU time of each phase

The red line represents the average time for ver-



tices calculation, the green for the linear pro-
gramming (LP) calculation, and the orange for
As the prob-
lem’s complexity increases, all three metrics
rise. However, the first two exhibit polynomial
growth, while the exponential increase is primar-
ily due to the partition execution, represented by
the orange line. This empirical finding corrobo-
rates the theoretical discussion about the algo-
rithm’s complexity, pinpointing the analysis of
all possible partitions as the main cause of its
exponential nature.

the execution of a partition.

Finally we uncovered which of the two parame-
ters impacted more in the CPU time. From the

Average CPU time per sample (n)

W Average_CPU_time_by_actions

Average CPU time per sample

Number of actions (n)

Average CPU time per sample (m)

W Average_CPU_time_by_theta

w

Average CPU time per sample

2 3 4 5 6 7
Number of states of nature (m)

Figure 3: UP: Relationship between the average
execution time and n. BOTTOM: Relationship
between the average execution time and n

charts of Figure (3) it can be observed that the
chart related to the actions has a trend, which is
dominated by the chart related to the states of
nature. Indeed we have that from point to point
the increase in values is bigger for the parame-
ter m rather than for the parameter n and so
the number of states of nature have a bigger im-
pact on the CPU time rather than the number
of actions.

3.2. Uncertainty

The influence of the § parameter is strongly re-
lated to the problem setting. Indeed the u, pay-
off matrix plays a big role in this aspect. Indeed

when uncertainty is high relative to payoff val-
ues, the ¢ value has a more significant impact
on the Sender’s strategy than in scenarios with
a lower ¢ value. A key observation is that the
presence of uncertainty, rather than its magni-
tude, primarily affects the Sender’s utility. In-
deed if there is uncertainty the Sender has to find
a robust signaling scheme rather than a signal-
ing scheme that simply maximizes his expected
utility, which changes completely the approach
to the problem. Therefore, our analysis focuses
on cases where the utility values in the w, pay-
off matrix is such that the utility values are rel-
atively uniform, allowing the uncertainty factor
to introduce greater variability into the Sender’s
signaling scheme and, consequently, his expected
utility.

Test suite and parameters. Like the first ex-
periment, we set the the maximum values for
the number of states of nature m and actions
n to 7. Then we proceeded to create a setting
for all the possible combinations of states of na-
ture and actions, generating 17 samples for each
scenario. However, the creation of samples was
done differently. Unlike the first experiment, we
standardized the prior distribution and utility
matrices across all settings, with utility values
ranging from 0 (minimum) to 0.5 (maximum).
While, for the § value, we selected a different
value for every sample, ranging from 0.1 to 0.9.
Results. Throughout this experimentation we
noted that when the ¢ value is comparable with
the Receiver payoffs, then the difference in the
Sender expected utility between the setting with
0.1 0 and the one with 0.9 § is often present.
Moreover, as expected, a bigger uncertainty does
not bring a better utility value for the Sender,
but at most it results in an equal utility value.
We used the difference metric in order to evalu-
ate how the § value impacted in the result and
so to understand how much is the distance be-
tween the maximum possible utility value and
the minimum one in a robust context. Regard-
ing the relationship between the § and the num-
ber of actions and the relationship between the
¢ and the number of state of nature, as it can be
noted by the charts of Figures (4 and 5), there
is no direct correlation between changes in the
Sender’s expected utility and the two parameter
values.
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Figure 4: Difference in expected utility as the §
varies ordered by the number of actions
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Figure 5: Difference in expected utility as the §
varies ordered by the number of states of nature

4. Conclusions

In this thesis we studied the Bayesian persuasion
framework. We extended the existing knowledge
regarding this type of problem, by exploring sce-
narios where the Sender faces uncertainty about
the Receiver’s behavior. To address this unpre-
dictability we decided to face the problem in
a robust manner to safeguard the Sender’s ex-
pected utility. We modeled the problem with a
focus on the worst-case scenario, where the Re-
ceiver invariably opts for the action most detri-
mental to the Sender. This is despite the fact
that, from the Sender’s perspective, the Re-
ceiver’s choice is sub-optimal. This approach led
to a novel definition of the Best Response set,
and we demonstrated that this set is not con-
vex. This finding resulted in the problem not
being able to be solved in polynomial time. To
find the solution, it is mandatory to divide the
not convex set in all the possible convex parti-
tions, which lead to an exponential time solu-
tion, unless P = N P. We then proceeded to an-
alyze the usability of the algorithm through an
in depth experimentation. The time experimen-
tation lead to the conclusion that, even though
the problem is NP-Hard, it can be a useful re-

source, in vast majority of cases, where the num-
ber of states of nature and of actions are limited.
While the experimentation on the uncertainty
lead to the conclusion that the main discrimen
for the Sender expected utility is the presence or
absence of uncertainty, because it would lead to
a completely different approach to the problem.
However, when the uncertainty factor is present
and the Receiver payoffs esteems are close to the
6 value, then the Sender expected utility could
suffer from greater variability depending on the
6 value.
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