

State Estimation with Switching

Measurements: Sensor Scheduling

and Existence of Observable

Schedules

TESI DI LAUREA MAGISTRALE IN

AUTOMATION AND CONTROL ENGINEERING

INGEGNERIA DELL'AUTOMAZIONE

Author: Amin Biglary Makvand

Student ID: 10699953

Advisor: Prof. Alessandro Colombo

Co-advisor: Prof. Marcello Farina

Academic Year: 2021-22

 i

Abstract

With the emergence of large sensor networks, there is a growing need of algorithms

that can decide, for specific objectives, which sensors in a large network of sensors

should be used at each time step. Regarding linear time-invariant systems that are

under the measurement of large sensor networks, such sensors should grant

observability and, at the same time, should minimize the state estimation error

covariance. In the literature, most works are concerned with the minimization of the

error covariance. This work aims to establish the foundation necessary to

investigate the observability of such systems. When different sensors are selected at

different time steps, the system measurement vector is time-variant. Thus, we are

dealing with systems under time-variant measurement schemes. Therefore, we first

attempt to extend the concept of observability to the case of linear systems with

time-variant measurement. Then, we investigate conditions that allow the existence

of observable sensor schedules first presented in [11]. We mainly focus on a theorem

on the existence of observable schedules, and we try to restructure and simplify it

by introducing new definitions and lemmas. As a result, an algorithm is introduced.

This algorithm can find a subset of sensors in a set of available sensors that can be

used to construct an observable sensor schedule. The algorithm is then numerically

implemented. The results of the numerical implementation of the algorithm support

the claim of the theorem and provide further insights on the structure of the

observable sensor schedule.

Key-words: Sensor Scheduling, Observability, Sensor Selection, Time-Variant

Measurement, Observable Schedule, 𝑁-horizon Observability, Sensor Networks.

 iii

Abstract in italiano

Con la diffusione di vaste reti di sensori, è nato un crescente bisogno di algoritmi

che possano decidere, per specifici obiettivi, quali sensori di una grande rete

debbano essere utilizzati ad ogni istante. Riguardo a sistemi lineari tempo-

invarianti, la letteratura esistente si è concentrata su due problemi fondamentali:

garantire l’osservabilità e minimizzare la variazione dell’errore di stima. Nella

letteratura, molte ricerche hanno portato a sviluppare algoritmi in grado di

minimizzare l’errore di stima. Questo studio punta a stabilire le basi necessarie per

investigare l’osservabilità di suddetti sistemi. Quando diversi sensori sono

selezionati in differenti istanti di tempo, il vettore di misura del sistema è tempo-

variante. Perciò il problema considera sistemi sottoposti a schemi di misura tempo-

varianti. Quindi prima di tutto si prova ad estendere il concetto di osservabilità al

caso di sistemi lineari con misure tempo-varianti. Dopo di che, si studiano le

condizioni che permettono l’esistenza di sequenze di sensori che garantiscano

l’osservabilità. Concentrandosi principalmente su un teorema riguardante

l’esistenza di sequenza osservabile, introdotto nel [11], si prova a ristrutturare il

teorema in questione introducendo nuove definizioni. Come risultato si ottiene un

algoritmo. Questo algoritmo può trovare un sottogruppo in un insieme di sensori

disponibili che possono essere usati per costruire una sequenza di sensori

osservabile. L’algoritmo è stato poi successivamente implementato. Il risultato

dell’implementazione numerica supporta la tesi del teorema e mostra ulteriori

approfondimenti riguardanti la struttura delle sequenze di sensori osservabili.

Parole chiave: Programmazione di sensori, osservabilità, selezione di sensori,

misura tempo variante, sequenza osservabile, osservabilità su orizzonti, rete di

sensori.

 v

Contents

Abstract ... i

Abstract in italiano .. iii

Contents ... v

1 Introduction ... 1

2 Observability for linear discrete-time systems .. 3

2.1. Linear time-invariant systems .. 3

2.2. Linear systems with time-variant measurements 9

3 Existence of an observable schedule .. 15

3.1. Problem formulation .. 15

3.2. Observable sensor schedule .. 16

3.3. Algorithm and theorem ... 16

3.4. Proofs and discussion .. 20

3.4.1. Statement and proof of Lemma 3.1 ... 21

3.4.2. Statement and proof of Lemma 3.2 ... 24

3.4.3. Proof of Theorem 3.1 ... 31

Remarks ... 33

4 Algorithm numerical implementation ... 35

4.1. Examples .. 35

4.2. Discussion and verification ... 38

5 Conclusion and future developments .. 41

Bibliography ... 43

List of Tables .. 45

List of symbols ... 47

Acknowledgments ... 49

 1

1 Introduction

In complex systems, the measurement scheme can involve a large network of

sensors measuring the state of the system at each time step. Different constraints

such as network bandwidth or power consumption create an incentive to use at

each time step only a subset of the sensors in the sensor network, scheduling specific

sensors to be used at specific time steps [1, 2, 3].

Sensor scheduling has applications in localization, energy management, wireless

sensor networks (WSN), robotics, networked control systems (NCS), etc. [1, 2, 3, 4,

5]. For example, an active robotic mapping problem can be reformulated into a

sensor scheduling problem and solved by the available algorithms in the literature

[4]. In case there are energy constraints on WSNs, sensor scheduling solutions can

be used to reduce the energy consumption of the sensor network with minimal

compromise on estimation accuracy [1, 3]. For remote state estimation in NCSs,

bandwidth limitations can be addressed using sensor scheduling-based approaches

[5].

Most works in the literature [2, 3, 4, 6, 7] address the search of a sensor’s scheduling

from an optimization-based perspective.

Usually, in sensor scheduling problems, there are two main constraints: the number

of sensors selected at each time step and the number of time steps or, in other words,

the time horizon of the sensor schedule. Concerning the objectives of the problem,

in literature, two main objectives can be found, minimization of the estimation error

and observability. The focus in the literature is mainly on the minimization of

estimation error under certain constraints using different methods and algorithms

[1, 4]. On the other hand, observability has not been a focal point of the literature,

and in many works, it is an assumption of the problem [2, 3, 6, 8, 9].

When we talk about the minimization of the estimation error, usually it concerns

the error covariance matrix of a Kalman filter [4]. Different algorithms are used to

find the schedule that provides the minimum estimation error. Tree search

algorithms are one of the methods for finding an optimal sensor schedule.

Theoretically, they can be used to find sensor schedules of any finite length with an

arbitrary number of sensors, but computational limitations do not allow this in

2 | Introduction

practice. Thus, certain pruning methods may be used to reduce the computational

cost of these algorithms [4].

Observability as an objective of the sensor scheduling problem is not a focus of the

literature and, as said before, in many works it is an assumption of the problem.

One reason for this can be the computational cost of algorithms that consider

observability as well. Overall, the sensor scheduling problem is computationally

expensive and can be shown to be generally an NP-hard problem [10]. As the length

of the schedule and the number of sensors grows, so does the computational cost.

Usually, observability is considered a binary condition that determines whether the

initial condition can be recovered using a finite number of measurements. However,

efforts have been made to expand this binary definition and employ a metric that

can determine how observable a system is under different measurement schemes

and what conditions determine whether an observable measurement scheme or, in

other words, an observable sensor schedule exits [11].

This thesis aims to provide an understanding and foundation to explore the

conditions that allow the existence of observable schedules in sensor scheduling

problems. To achieve this goal, we focus on the work presented in [11] and we

reformulate the algorithm and main results reported therein.

The original contributions of this thesis are the following:

• Formulating the observability problem for linear discrete-time systems

with time-variant measurements.

• Reformulating a theorem on the existence of observable sensor schedules

[11] by introducing new definitions, lemmas and proofs.

• Deriving an algorithm that can be used to construct observable sensor

schedules.

This document is organized as follows: Chapter 2 first discusses the classical

definition of observability, then extends this definition to the case of linear discrete-

time systems with time-variant measurement. In Chapter 3, we focus on

restructuring a theorem on the existence of observable schedules [11] by providing

new definitions and lemmas. The first part of the chapter is dedicated to the

formulation of the problem and providing important definitions. The second part

of the chapter presents a new algorithm and the theorem on the existence of an

observable schedule. The third part of the chapter deals with the proof. In Chapter

4, the results of the numerical implementation of the proposed algorithm are

presented and discussed. Finally, In Chapter 5, the concluding remarks of this work

are presented, where we attempt to highlight the most important results of the work

and present possible topics for its future development.

 3

2 Observability for linear discrete-time

systems

Observability is a condition that determines if it is possible to infer the state of a

system from the knowledge of system outputs over a finite period. This concept was

introduced by [12, 13]. In this chapter, we present the concept of observability for

linear time-invariant systems, which provides the necessary context to extend the

definition and the theorem to the case of systems with time-variant measurements.

2.1. Linear time-invariant systems

This section is partially based on what is provided regarding the topic of

observability in [14].

Consider the following state equation, where 𝐶 ∈ ℝ𝑛𝑐×𝑛,

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘), (2.1)

 𝑦(𝑘) = 𝐶𝑥(𝑘).

From now on, we denote by 𝑘0 the initial time instant.

Definition 2.1 (Observability). Given the state equation (2.1), a state 𝑥0 ∈ ℝ𝑛 is

unobservable if, setting 𝑥(𝑘0) = 𝑥0 as the initial state, 𝑦(𝑘) ≡ 0 for all 𝑘 ≥ 𝑘0. The

state equation is observable if the zero vector 0 ∈ ℝ𝑛 is the only unobservable

state. ∎

Before presenting Theorem 2.2, we need to introduce the following theorem:

Theorem 2.1 (Cayley-Hamilton). Let 𝐴 be an 𝑛 × 𝑛 matrix and let {𝜆0 …𝜆𝑛−1} be the

set of eigenvalues of 𝐴, then

(𝐴 − 𝜆0𝐼)(𝐴 − 𝜆1𝐼)… (𝐴 − 𝜆𝑛−1𝐼) = 0.

∎

4 2| Observability for linear discrete-time systems

One consequence of the Cayley-Hamilton theorem is that any matrix 𝐴�́�, �́� ≥ 𝑛 can

be expressed as the linear combination of 𝐼, 𝐴, …𝐴𝑛−1, i.e.,

 𝐴�́� = ∑ 𝑚𝑗 𝐴
𝑗 ,

𝑛−1

𝑗=0

where 𝑚𝑗 is a scalar coefficient.

Theorem 2.2. The proposed linear system (2.1) is observable if and only if rank(𝜙) =

𝑛, where

𝜙 = [

𝐶
𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑛−1

].

Proof of Theorem 2.2.

There are two implications involved in this theorem:

• If the state equation (2.1) is observable, then rank(𝜙) = 𝑛.

• If rank(𝜙) = 𝑛, then the state equation (2.1) is observable.

We first prove the contrapositive of the second implication.

• If rank(𝜙) ≠ 𝑛 then the state equation (2.1) is not observable.

If rank(𝜙) ≠ 𝑛 then rank(𝜙) < 𝑛 and the columns of 𝜙 are not linearly independent.

Thus,

𝜙𝑎0 = [

𝐶
𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑛−1

] 𝑎0 = 0, 𝑎0 ∈ ℝ𝑛.

Consequently

[

𝐶𝑎0

𝐶𝐴𝑎0

𝐶𝐴2𝑎0…
𝐶𝐴𝑛−1𝑎0]

= 0.

2| Observability for linear discrete-time systems 5

Therefore,

 𝐶𝑎0 = 0,

 𝐶𝐴𝑎0 = 0,

 𝐶𝐴2𝑎0 = 0,

 ⋮

 𝐶𝐴𝑛−1𝑎0 = 0.

Considering the time-domain solution of the state equation (2.1)

 𝑦(𝑘) = 𝐶𝐴𝑘−𝑘0𝑥(𝑘0), 𝑘 ≥ 𝑘0,

assuming 𝑥(𝑘0) = 𝑎0, for any 𝑘0 ≤ 𝑘 < 𝑘0 + 𝑛 we have 0 ≤ 𝑘 − 𝑘0 < 𝑛. Thus, 𝑦(𝑘) ≡

0 for every 𝑘0 ≤ 𝑘 < 𝑘0 + 𝑛. Any power of 𝐴 larger than 𝑛 can be written as a linear

combination of all 𝐴𝑖, 0 < 𝑖 < 𝑛 − 1 (see Theorem 2.1). Thus, for any 𝑘 ≥ 𝑘0 + 𝑛 we

have 𝑘 − 𝑘0 ≥ 𝑛, and

 𝑦(𝑘) = 𝐶𝐴𝑘−𝑘0𝑎0 = 𝐶 ∑ 𝑚𝑗,𝑘 𝐴
𝑗

𝑛−1

𝑗=0
 𝑎0,

which means

 𝑦(𝑘) = 𝑚1,𝑘 𝐶𝑎0 + ⋯+ 𝑚𝑛−1,𝑘 𝐶𝐴𝑛−1𝑎0,

where 𝐶𝐴𝑗𝑎0 = 0 for every 0 < 𝑗 < 𝑛 − 1. Thus, 𝑦(𝑘) ≡ 0 for every 𝑘 ≥ 𝑘0 + 𝑛.

Now we prove the contrapositive of the first implication.

• If the state equation (2.1) is not observable, then rank(𝜙) ≠ 𝑛.

Under the assumption that the state equation is unobservable, according to

Definition 2.1, there exists a non-zero 𝑥(𝑘0) such that 𝑦(𝑘) ≡ 0 for all 𝑘 ≥ 𝑘0.

Considering the time-domain solution of the state equation

 𝑦(𝑘) = 𝐶𝐴𝑘−𝑘0𝑥(𝑘0), 𝑘 ≥ 𝑘0,

for 𝑘0 ≤ 𝑘 < 𝑘0 + 𝑛,

6 2| Observability for linear discrete-time systems

 𝑦(𝑘0) = 𝐶𝑥(𝑘0) = 0,

 𝑦(𝑘0 + 1) = 𝐶𝐴𝑥(𝑘0) = 0,

 ⋮

 𝑦(𝑘0 + 𝑛 − 1) = 𝐶𝐴𝑛−1𝑥(𝑘0) = 0.

Therefore,

[

𝐶𝑥(𝑘0)

𝐶𝐴𝑥(𝑘0)

𝐶𝐴2𝑥(𝑘0)…
𝐶𝐴𝑛−1𝑥(𝑘0)]

= [

𝐶
𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑛−1

] 𝑥(𝑘0) = 𝜙𝑥(𝑘0) = 0.

This means that the columns of 𝜙 are linearly dependent. Thus, rank(𝜙) < 𝑛. ∎

Definition 2.2 (Observability Gramian). We denote

 𝑀(𝑘0, 𝑘) = ∑ 𝐴𝑇𝑘−𝑘0−𝑙
𝐶𝑇𝐶𝐴𝑘−𝑘0−𝑙

𝑘−𝑘0
𝑙=0 , 𝑘 ≥ 𝑘0,

as the observability Gramian. ∎

Corollary 2.1. rank(𝜙) = 𝑛 if and only if Observability Gramian 𝑀(𝑘0, 𝑘) is

nonsingular for any 𝑘 ≥ 𝑘0 + 𝑛 − 1.

Proof of Corollary 2.1.

The corollary involves two implications:

• If rank(𝜙) = 𝑛, then 𝑀(𝑘0, 𝑘) for any 𝑘 ≥ 𝑘0 + 𝑛 − 1 is nonsingular.

• If 𝑀(𝑘0, 𝑘) for any 𝑘 ≥ 𝑘0 + 𝑛 − 1 is nonsingular, then rank(𝜙) = 𝑛.

We proceed with proving the contrapositive of the second implication.

• If 𝑀(𝑘0, 𝑘) for some 𝑘 ≥ 𝑘0 + 𝑛 − 1 is not nonsingular then rank(𝜙) ≠ 𝑛.

A singular 𝑀(𝑘0, 𝑘) for some 𝑘 ≥ 𝑘0 + 𝑛 − 1 means that there exists a non-zero 𝑥0

such that

𝑀(𝑘0, 𝑘)𝑥0 = [∑ 𝐴𝑇𝑘−𝑘0−𝑙

𝐶𝑇𝐶𝐴𝑘−𝑘0−𝑙

𝑘−𝑘0

𝑙=0

] 𝑥0 = 0.

2| Observability for linear discrete-time systems 7

Therefore

𝑥0

𝑇 𝑀(𝑘0, 𝑘)𝑥0 = 𝑥0
𝑇 [∑ 𝐴𝑇𝑘−𝑘0−𝑙

𝐶𝑇𝐶𝐴𝑘−𝑘0−𝑙

𝑘−𝑘0

𝑙=0

] 𝑥0 =

 ∑ ‖𝐶𝐴𝑘−𝑘0−𝑙𝑥0‖
2 = 0

𝑘−𝑘0
𝑙=0 .

The sum of squared Euclidean norms is equal to zero; thus, each element of the

series must be zero, and we have

 𝐶𝑥0 = 0,

 𝐶𝐴𝑥0 = 0,

 ⋮

 𝐶𝐴𝑘−𝑘0𝑥0 = 0.

Because 𝑘 ≥ 𝑘0 + 𝑛 − 1 we have

[

𝐶𝑥0

𝐶𝐴𝑥0

𝐶𝐴2𝑥0…
𝐶𝐴𝑛−1𝑥0]

= [

𝐶
𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑛−1

] 𝑥0 = 𝜙𝑥0 = 0.

Thus, rank(𝜙) < 𝑛. Now we prove the contrapositive of the first implication.

• If rank(𝜙) ≠ 𝑛 then 𝑀(𝑘0, 𝑘) for some 𝑘 ≥ 𝑘0 + 𝑛 − 1 is not nonsingular.

A rank(𝜙) ≠ 𝑛 then rank(𝜙) < 𝑛. This means that there exists a non-zero 𝑥0 such

that

𝜙𝑥0 = [

𝐶
𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑛−1

] 𝑥0 = 0.

Therefore,

8 2| Observability for linear discrete-time systems

[

𝐶𝑥0

𝐶𝐴𝑥0

𝐶𝐴2𝑥0…
𝐶𝐴𝑛−1𝑥0]

= 0,

consequently

 𝐶𝑥0 = 0,

 𝐶𝐴𝑥0 = 0,

 ⋮

 𝐶𝐴𝑛−1𝑥0 = 0.

As a consequence of Theorem 2.1, 𝐶𝐴𝑖𝑥0 = 0 for any 𝑖 ≥ 𝑛. Thus, we have

𝑀(𝑘0, 𝑘)𝑥0 = [∑ 𝐴𝑇𝑘−𝑘0−𝑙

𝐶𝑇(𝐶𝐴𝑘−𝑘0−𝑙)

𝑘−𝑘0

𝑙=0

] 𝑥0 = 0.

𝐶𝐴𝑖𝑥0 appears in all elements of the 𝑀(𝑘0, 𝑘)𝑥0 series; thus, for any 𝑘 ≥ 𝑘0, and

consequently any 𝑘 ≥ 𝑘0 + 𝑛 − 1, 𝑀(𝑘0, 𝑘)𝑥0 = 0. This means that 𝑀(𝑘0, 𝑘) is

singular. ∎

The Gramian matrix 𝑀(𝑘0, 𝑘), 𝑘 ≥ 𝑘0 + 𝑛 − 1 can be used to determine 𝑥(𝑘0). Using

the measurements, we can see the relationship 𝑀(𝑘0, 𝑘) has with 𝑥(𝑘0) for any 𝑘 >

𝑘0 below.

𝑌𝑘,𝑘0 = ∑ 𝐴𝑇𝑘−𝑘0−𝑙

𝐶𝑇𝑦(𝑘 − 𝑙) =

𝑘−𝑘0

𝑙=0

∑ 𝐴𝑇𝑘−𝑘0−𝑙
𝐶𝑇𝐶𝐴𝑘−𝑘0−𝑙𝑥(𝑘0)

𝑘−𝑘0

𝑙=0

= 𝑀(𝑘0, 𝑘)𝑥(𝑘0).

Corollary 2.1 states that for an observable system, 𝑀(𝑘0, 𝑘) is nonsingular for any

𝑘 ≥ 𝑘0 + 𝑛 − 1; therefore, it is guaranteed that 𝑥(𝑘0) can be determined uniquely if

there is sufficient measurement data 𝑌𝑘,𝑘0 . Thus, for any 𝑘 ≥ 𝑘0 + 𝑛 − 1,

 𝑀(𝑘0, 𝑘)−1𝑌𝑘,𝑘0 = 𝑀(𝑘0, 𝑘)−1𝑀(𝑘0, 𝑘)𝑥(𝑘0) = 𝑥(𝑘0).

2| Observability for linear discrete-time systems 9

2.2. Linear systems with time-variant measurements

In this section, the definition of observability is extended to the case of a linear

discrete-time system with variant measurements.

Consider state equation (2.1) with time-variant measurements 𝐶𝑘 ∈ ℝ𝑛𝑐×𝑛. Thus, we

have,

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘), (2.2)

 𝑦(𝑘) = 𝐶𝑘𝑥(𝑘).

Definition 2.3. (Measurement Time Horizon). The Measurement time horizon 𝑇𝑁 is

defined as a sequence of time steps {𝑘0, 𝑘0 + 1, ..., 𝑘0 + 𝑁 − 1} in which the system

is under measurement. ∎

Definition 2.4. (𝑁-horizon Observability). Given the state equation (2.2), a state 𝑥0 ∈

ℝ𝑛 is unobservable over a measurement time horizon 𝑇𝑁 = {𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁 −

1} if setting 𝑥(𝑘0) = 𝑥0 as the initial state, 𝑦(𝑘) ≡ 0 for all 𝑘 ∈ 𝑇𝑁. The state equation

is 𝑁-horizon observable if the zero vector 0 ∈ ℝ𝑛 is the only unobservable state. ∎

Theorem 2.3. The proposed linear system (2.2) is 𝑁-horizon observable over the

measurement time horizon 𝑇𝑁 = {𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁 − 1} if and only if

rank(𝜙𝑁) = 𝑛, where

𝜙𝑁 =

[

𝐶𝑘0

𝐶𝑘0+1𝐴

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]

.

Proof of Theorem 2.3.

There are two implications involved in this theorem:

• If the state equation (2.2) is 𝑁-horizon observable over a measurement

time horizon 𝑇𝑁, then rank(𝜙𝑁) = 𝑛.

• If rank(𝜙𝑁) = 𝑛, then the state equation (2.2) is 𝑁-horizon observable

over a measurement time horizon 𝑇𝑁.

We first prove the contrapositive of the second implication.

• If rank(𝜙𝑁) ≠ 𝑛, then the state equation (2.2) is not observable.

10 2| Observability for linear discrete-time systems

If rank(𝜙𝑁) ≠ 𝑛 then rank(𝜙𝑁) < 𝑛. Thus, the columns of 𝜙𝑁 are linearly

dependent, and we have

𝜙𝑁𝑎0 =

[

𝐶𝑘0

𝐶𝑘0+1𝐴

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]

𝑎0 = 0, 𝑎0 ∈ ℝ𝑛.

Consequently

[

𝐶𝑘0
𝑎0

𝐶𝑘0+1𝐴𝑎0

𝐶𝑘0+2𝐴
2𝑎0

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1𝑎0]

= 0.

Therefore,

 𝐶𝑘0
𝑎0 = 0,

 𝐶𝑘0+1𝐴𝑎0 = 0,

 𝐶𝑘0+2𝐴
2𝑎0 = 0,

 ⋮

 𝐶𝑘0+𝑁−1𝐴
𝑁−1𝑎0 = 0.

Considering the time-domain solution of the state equation (2.2)

 𝑦(𝑘) = 𝐶𝑘𝐴
𝑘−𝑘0𝑥(𝑘0), 𝑘 ≥ 𝑘0,

assuming 𝑥(𝑘0) = 𝑎0, for any 𝑘0 ≤ 𝑘 ≤ 𝑘0 + 𝑁 − 1 we have 0 ≤ 𝑘 − 𝑘0 ≤ 𝑁 − 1;

thus, 𝑦(𝑘) ≡ 0 for every 𝑘0 ≤ 𝑘 ≤ 𝑘0 + 𝑁 − 1. Now we prove the contrapositive of

the first implication.

• If the state equation (2.2) is not observable over a measurement time

horizon 𝑇𝑁, then rank(𝜙𝑁) ≠ 𝑛.

Under the assumption that the state equation is not observable, according to

Definition 2.4, there exists a non-zero 𝑥(𝑘0) such that 𝑦(𝑘) ≡ 0 for all 𝑘0 ≤ 𝑘 ≤ 𝑘0 +

𝑁 − 1. Considering the time-domain solution of the state equation

2| Observability for linear discrete-time systems 11

 𝑦(𝑘) = 𝐶𝑘𝐴
𝑘−𝑘0𝑥(𝑘0), 𝑘 ≥ 𝑘0,

for 𝑘0 ≤ 𝑘 ≤ 𝑘0 + 𝑁 − 1, we have

 𝑦(𝑘0) = 𝐶𝑘0
𝑥(𝑘0) = 0,

 𝑦(𝑘0 + 1) = 𝐶𝑘0+1𝐴𝑥(𝑘0) = 0,

 ⋮

 𝑦(𝑘0 + 𝑁 − 1) = 𝐶𝑘0+𝑁−1𝐴
𝑁−1𝑥(𝑘0) = 0.

Therefore,

[

𝐶𝑘0
𝑥(𝑘0)

𝐶𝑘0+1𝐴𝑥(𝑘0)

𝐶𝑘0+2𝐴
2𝑥(𝑘0)

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1𝑥(𝑘0)]

=

[

𝐶𝑘0

𝐶𝑘0+1𝐴

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]

𝑥(𝑘0) = 𝜙𝑥(𝑘0) = 0.

This means column vectors of 𝜙 are not linearly independent. Thus, rank(𝜙) < 𝑛. ∎

Definition 2.5 (Time Variant Observability Gramian). Consider the matrix below and

call it the time-variant observability Gramian.

 𝑀𝑇(𝑘0, 𝑘) = ∑ 𝐴𝑇𝑘−𝑘0−𝑙
𝐶𝑘−𝑙

𝑇
𝐶𝑘−𝑙𝐴

𝑘−𝑘0−𝑙
𝑘−𝑘0
𝑙=0 , 𝑘 ≥ 𝑘0.

∎

Corollary 2.2. rank(𝜙𝑁) = 𝑛 if and only if Observability Gramian 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)

is nonsingular.

Proof of Corollary 2.2.

The corollary involves two implications:

• If rank(𝜙𝑁) = 𝑛, then 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) is nonsingular.

• If 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) is nonsingular, then rank(𝜙𝑁) = 𝑛.

We proceed with proving the contrapositive of the second implication.

• If 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) is not nonsingular, then rank(𝜙𝑁) ≠ 𝑛.

Given a singular 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1), there exists a non-zero 𝑥0 ∈ ℝ𝑛 such that

12 2| Observability for linear discrete-time systems

 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)𝑥0 =

[∑ 𝐴𝑇𝑁−𝑙−1
𝐶𝑘0+𝑁−𝑙−1

𝑇
𝐶𝑘0+𝑁−𝑙−1𝐴

𝑁−𝑙−1

𝑁−1

𝑙=0

] 𝑥0 = 0.

Therefore,

 𝑥0
𝑇 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)𝑥0 =

𝑥0
𝑇 [∑ 𝐴𝑇𝑁−𝑙−1

𝐶𝑘0+𝑁−𝑙−1

𝑇
𝐶𝑘0+𝑁−𝑙−1𝐴

𝑁−𝑙−1

𝑁−1

𝑙=0

] 𝑥0 =

∑ ‖𝐶𝑘0+𝑁−𝑙−1𝐴
𝑁−𝑙−1𝑥0‖

2
= 0𝑁

𝑙=0 .

The sum of squared Euclidean norms is equal to zero; thus, each element of the

series must be zero, and we have

 𝐶𝑘0
𝑥0 = 0,

 𝐶𝑘0+1𝐴𝑥0 = 0,

 ⋮

 𝐶𝑘0+𝑁−1𝐴
𝑁−1𝑥0 = 0.

Thus, we have

[

𝐶𝑘0
𝑥0

𝐶𝑘0+1𝐴𝑥0

𝐶𝑘0+2𝐴
2𝑥0

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1𝑥0]

=

[

𝐶𝑘0

𝐶𝑘0+1

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]

𝑥0 = 𝜙𝑁𝑥0 = 0.

Which means rank(𝜙𝑁) < 𝑛. Now we prove the contrapositive of the first

implication.

• If rank(𝜙𝑁) ≠ 𝑛, then 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) is not nonsingular.

If rank(𝜙𝑁) ≠ 𝑛, then rank(𝜙𝑁) < 𝑛. This means that there exists a non-zero 𝑥0 such

that

2| Observability for linear discrete-time systems 13

𝜙𝑁𝑥0 =

[

𝐶𝑘0

𝐶𝑘0+1

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]

𝑥0 = 0.

Therefore,

[

𝐶𝑘0
𝑥0

𝐶𝑘0+1𝐴𝑥0

𝐶𝑘0+2𝐴
2𝑥0

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1𝑥0]

= 0,

consequently

 𝐶𝑘0
𝑥0 = 0

 𝐶𝑘0+1𝐴𝑥0 = 0

 ⋮

 𝐶𝑘0+𝑁−1𝐴
𝑁−1𝑥0 = 0.

Thus, we have

 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)𝑥0 =

[∑ 𝐴𝑇𝑁−𝑙−1
𝐶𝑘0+𝑁−𝑙−1

𝑇
𝐶𝑘0+𝑁−𝑙−1𝐴

𝑁−𝑙−1 𝑁−1
𝑙=0] 𝑥0 =

∑ 𝐴𝑇𝑁−𝑙−1
𝐶𝑘0+𝑁−𝑙−1

𝑇
(𝐶𝑘0+𝑁−𝑙−1𝐴

𝑁−𝑙−1)𝑥0
𝑁−1
𝑙=0 = 0.

Therefore, 𝑀(𝑘0, 𝑘0 + 𝑁 − 1) is singular. ∎

The Gramian matrix 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) can be used to determine 𝑥(𝑘0). Using the

measurements, we can see the relationship 𝑀𝑇(𝑘0, 𝑘) has with 𝑥(𝑘0) for any 𝑘 > 𝑘0

below.

𝑌𝑘0+𝑁−1,𝑘0 = ∑ 𝐴𝑇𝑁−𝑙−1

𝐶𝑘0+𝑁−𝑙−1

𝑇
𝑦(𝑘0 + 𝑁 − 𝑙 − 1) =

𝑁−1

𝑙=0

14 2| Observability for linear discrete-time systems

∑ 𝐴𝑇𝑁−𝑙−1
𝐶𝑘0+𝑁−𝑙−1

𝑇
𝐶𝑘0+𝑁−𝑙−1𝐴

𝑁−𝑙−1𝑥(𝑘0)

𝑁−1

𝑙=0

=

𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) 𝑥(𝑘0).

Corollary 2.2 states that for an observable system, 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) is

nonsingular. Therefore, it is guaranteed that 𝑥(𝑘0) can be determined uniquely

using all measurement data of 𝑇𝑁. Thus, we have

𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)−1𝑌𝑘0+𝑁−1,𝑘0 =

 𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)−1𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1) 𝑥(𝑘0)

= 𝑥(𝑘0).

 15

3 Existence of an observable schedule

In this chapter, we first define the concept of sensor schedule and its observability

properties. Then we explore the conditions that allow for the existence of an

observable sensor schedule for a discrete-time linear system with time-variant

measurements. An algorithm drawn from [11] is proposed. If specific conditions

discussed below are met, this algorithm can be used to construct an observable

sensor schedule. A theorem introduced in [11] on the existence of observable

schedules is restructured here and used as the basis of the proposed algorithm.

The structure of this chapter is as follows. First, the problem is formulated

borrowing terms and notations from [4]. Then new definitions are introduced.

Following the definitions, an algorithm is proposed, and a theorem on the existence

of observable sensor schedules is presented. To prove the main theorem, two

lemmas are introduced, and proofs are provided. At the end of the chapter, the

results of the numerical implementation of the algorithm are presented and

discussed.

3.1. Problem formulation

Consider the following linear system:

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘), (3.1)

where 𝑥(𝑘) ∈ ℝ𝑛 is the state of the system. Consider the ordered set 𝑆 =

{𝑆[0], 𝑆[1], … , 𝑆[𝑝 − 1]}, where 𝑆[𝑖] ∈ ℝ𝑛 is a sensor vector that can be used to

measure the system state. Each element of the set 𝑆 represents one sensor.

Definition 3.1 (Sensor Schedule). A sensor schedule Σ over an ordered sensor set 𝑆 is

defined as a set of elements 𝜎𝑘 ∈ {0,… , 𝑝 − 1} where 𝜎𝑘 = 𝑖 denotes the usage of

sensor 𝑆[𝜎𝑘] ∈ 𝑆 at time 𝑘. ∎

Definition 3.2 (𝑁-horizon Sensor Schedule). Let 𝑇𝑁 be the measurement time horizon

(see Definition 2.3). Denote by Σ𝑁 = {𝜎𝑘0
, 𝜎𝑘0+1, … , 𝜎𝑘0+𝑁−1}, 𝜎𝑘 ∈ {0, … , 𝑝 − 1} a 𝑁-

horizon sensor schedule. ∎

16 3| Existence of an observable schedule

To measure the system state, only one sensor is allowed to operate at each time step.

Under a given schedule Σ𝑁, the scheduled measurement at each time step is

 𝑦(𝑘) = 𝑆[𝜎𝑘]𝑇𝑥(𝑘), ∀ 𝑘 ∈ {𝑘0, 𝑘0 + 1,… , 𝑘0 + 𝑁 − 1}.

3.2. Observable sensor schedule

Definition 3.3 (Observable 𝑁-horizon Sensor Schedule). A 𝑁-horizon sensor schedule

with an observability matrix 𝜙𝑁 of rank 𝑛 is called an observable 𝑁-horizon sensor

schedule (see Theorem 2.3). ∎

The following definitions are required to define conditions for 𝑁-horizon

observability and the definition of observable 𝑁-horizon sensor schedules.

Definition 3.4 (Cover Set). Let 𝛼 = [𝒸0 … 𝒸𝑛−1]
𝑇 , 𝒸𝑖 ∈ ℝ be the coordinate vector of

vector 𝑣 ∈ ℝ𝑛, with respect to a basis 𝐺 = {𝑔0, … , 𝑔𝑛−1} spanning vector space ℝ𝑛.

The cover set of vector 𝑣 with respect to the basis 𝐺, denoted by 𝛽, is the set of all

basis elements 𝑔𝑖 ∈ 𝐺 with an associated 𝒸𝑖 ≠ 0. ∎

Definition 3.5 (Basis Coverage). A vector set 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛𝑣−1}, 𝑣𝑖 ∈ ℝ𝑛𝑣 covers

the basis 𝐺 when

 𝑔𝑖 ∈ ⋃𝑙=0
𝑛𝑣−1

𝛽𝑙, ∀ 𝑔𝑖 ∈ 𝐺,

where each 𝛽𝑙 is the cover set of its corresponding vector 𝑣𝑙, with respect to the basis

𝐺. ∎

Definition 3.6 (Non-common Element). A set 𝛽𝑎 has a non-common element with

respect to a set 𝛽𝑏, if there exists a 𝑔𝑖 ∈ 𝐺 such that 𝑔𝑖 ∈ 𝛽𝑎 and 𝑔𝑖 ∉ 𝛽𝑏. 𝑔𝑖 is called a

non-common element of 𝛽𝑎 with respect to 𝛽𝑏. ∎

3.3. Algorithm and theorem

What follows next is an algorithm that can be used to find a specific subset of 𝑆,

denoted by 𝑆𝑜. Later in Theorem 3.1, it is indicated that elements of 𝑆𝑜 ,under certain

conditions, can be used to construct an observable sensor schedule. To proceed,

consider the following assumption.

Assumption 3.1. Matrix 𝐴 is nonsingular with distinct eigenvalues. ∎

3| Existence of an observable schedule 17

Consistently with Assumption 3.1, matrix A has 𝑛 linearly independent

eigenvectors. These eigenvectors are used as the elements of basis 𝐺 = {𝑔0, … , 𝑔𝑛−1}.

More specifically vectors 𝑔𝑖 ∈ ℝ𝑛 are the left eigenvectors of 𝐴.

As mentioned, the proposed algorithm accepts ordered set 𝑆 and returns the subset

𝑆𝑜. Here we repeat a short explanation of its main rational. The algorithm initializes

a set 𝑆𝑟 with 𝑆 (line 1), then at each iteration, it selects a sensor vector from the set

𝑆𝑟, removes it from 𝑆𝑟 (line 28) and adds it to 𝑆𝑜 (line 24). To do so, the algorithm

looks at the cover sets of every sensor vector that has in 𝑆𝑟 (15 to 22), and selects the

sensor vector (denoted 𝛣𝑜
1) with the largest set (denoted 𝛣𝑜

0) of non-common

elements (see Definition 3.6) with respect to the union of previously chosen sets of

non-common elements (lines 15 to 23). The algorithm then adds the largest set of

the non-common elements 𝛣𝑜
0 to the set 𝛣ℳ (line 26), removes it from 𝛾𝑟 (line 27)

and adds its corresponding sensor vector 𝛣𝑜
1 to 𝑆𝑜. The algorithm continues this

process until one of two conditions is met: either there are no sensors left to check,

corresponding to 𝑆𝑟 = ∅, or there are no non-common elements left, corresponding

to 𝛾𝑟 = ∅. Note that the elements in the cover sets are the vectors of basis 𝐺.

Before proceeding with the algorithm, consider Table 3.1, explaining the role of each

parameter and function in the algorithm.

Table 3.1:Algorithm parameters and functions description.

Element Role

Cover(∙,∙)

Function that accepts a vector and a basis and returns the

cover set of the input vector with respect to the input basis as

an ordered set.

n(∙)
Function that accepts an ordered set and returns the

cardinality of the set.

Max(∙)

Function that accepts an ordered set of pairs (𝐸0, 𝐸1), and

returns the pair with the largest 𝑛(𝐸0). If there are multiple

pairs with the largest 𝑛(𝐸0), it returns the first one it finds.

Append(∙,∙)

Function that accepts an ordered set with 𝑁 elements as the

first argument and a set element as the second and adds the

element to the set as the 𝑁 + 1-th element.

/ Operator that removes a subset from a set

𝑆𝑟

Ordered set initialized with all the sensor vectors of set 𝑆. At

each iteration, one element is removed from this set. If this set

is empty, the algorithm terminates.

18 3| Existence of an observable schedule

𝛾𝑟

Ordered set initialized with all the basis elements of 𝐺. At each

iteration, one element is removed from this set. If this set is

empty, the algorithm terminates.

𝑆𝑜

Ordered set initialized with ∅. At every iteration, a sensor

vector is added, chosen from 𝑆𝑟. This ordered set is an output

when the algorithm terminates.

𝛽𝑠𝑢𝑏

Ordered set with an initial value of ∅. At every iteration of the

second while loop (line 15), it is calculated for one of the

remaining elements of 𝑆𝑟 denoted by 𝑆𝑟[𝑙]. It contains the non-

common elements of Cover(𝑆𝑟[𝑙], 𝐺) with respect to sets of

non-common elements selected in previous iterations.

𝛣𝑝

Ordered set with an initial value of ∅. At every iteration of the

second while loop (line 15), a pair (𝛽𝑠𝑢𝑏 , 𝑆𝑟[𝑙]) is appended to

it. At end of the iteration of the first while loop (line 13), it is

reset to ∅. Thus, after the end of the second while loop,

𝛣𝑝 contains the set of non-common elements of every

remaining sensor vector in 𝑆𝑟 as well as the corresponding

sensor vectors. Later it is used in line 23 to find the largest set

of non-common elements.

𝛣𝑜
0

Ordered set. At each iteration contains the largest set of non-

common elements with respect to the previously selected

ones.

𝛣𝑜
1

Vector containing the corresponding sensor vector of the

largest set of non-common elements at each iteration.

𝛣ℳ

Ordered set with an initial value of ∅. At each iteration, the set

𝛣𝑜
0 is added to it. All elements of 𝛣ℳ are disjoint with each

other and with 𝛾𝑟 at each iteration.

𝑁𝑜
Ordered set with an initial value of ∅. At every iteration, the

cardinality of the largest set of non-common is added to it.

𝑧

Ordered set with integer elements where each element 𝑧[𝑚] =

 ∑ 𝑛(𝛣ℳ[𝑖]𝑚
𝑖=0). Later in Theorem 3.1, it is shown that a sensor

𝑆𝑜[𝑖] in the observable sensor schedule Σ𝑛 is used from time

step 𝑧[𝑖 − 1] to time step 𝑧[𝑖] − 1. Consider 𝑧[−1] = 0.

3| Existence of an observable schedule 19

Note that all indexes, subscripts, and superscripts start from zero in this work.

Algorithm 3.1 (Sensor Set Observability Filter).

1: ordered set 𝑆𝑟 ← 𝑆

2: ordered set 𝛾𝑟 ← 𝐺

3: ordered set 𝑆𝑜 ← ∅

4: ordered set 𝑁𝑜 ← ∅

5: ordered set 𝑧 ← ∅

6: ordered set 𝛣ℳ ← ∅

7: ordered set 𝛽𝑠𝑢𝑏 ← ∅

8: ordered set 𝛣𝑝 ← ∅

9: ordered set 𝛣𝑜
0 ← ∅

10: ordered set 𝛣𝑜
1 ← ∅

11: integer 𝑙 ← 0

12: integer 𝜁 ← 0

13: while 𝛾𝑟 ≠ ∅ or 𝑆𝑟 ≠ ∅

14: 𝑙 ← 0

15: while 𝑙 <n(𝑆𝑟)

16: if 𝛣ℳ = ∅

17: 𝛽𝑠𝑢𝑏 ← Cover(𝑆𝑟[𝑙], 𝐺)

18: 𝛣𝑝 ← Append(𝛣𝑝, (𝛽𝑠𝑢𝑏 , 𝑆𝑟[𝑙]))

19: else

20: 𝛽𝑠𝑢𝑏 ← Cover(𝑆𝑟[𝑙], 𝐺)/ ((∪𝑘=0
𝐧(𝛣ℳ)−1

𝛣ℳ[𝑘]) ∩ 𝐂𝐨𝐯𝐞𝐫(𝑆𝑟[𝑙], 𝐺))

21: 𝛣𝑝 ← Append(𝛣𝑝, (𝛽𝑠𝑢𝑏 , 𝑆𝑟[𝑙]))

22: 𝑙 ← 𝑙 + 1

23: (𝛣𝑜
0, 𝛣𝑜

1) ← Max(𝛣𝑝)

24: 𝑆𝑜 ← Append(𝑆𝑜, 𝛣𝑜
1)

25: 𝑁𝑜 ← Append(𝑁𝑜, n(𝛣𝑜
0))

26: 𝛣ℳ ← Append(𝛣ℳ , 𝛣𝑜
0)

27: 𝛾𝑟 ← 𝛾𝑟/𝛣𝑜
0

28: 𝑆𝑟 ← 𝑆𝑟/𝛣𝑜
1

29: 𝜁 ← 𝜁 + n(𝛣𝑜
0)

30: 𝑧 ← Append(𝑧, 𝜁)

31: 𝛣𝑝 ← ∅

32: return 𝑆𝑜, 𝑁𝑜 , 𝛣ℳ , 𝛾𝑟, 𝑧

20 3| Existence of an observable schedule

Assumption 3.2. Integer 𝜃 is equal to 1 + the number of elements in returned sets

𝑆𝑜, 𝑁𝑜 , 𝛣ℳ and 𝑧 when the algorithm terminates under the condition 𝛾𝑟 = ∅. ∎

The following theorem can be proved, providing a fundamental result for defining

observable sensor schedules.

Theorem 3.1. If 𝑆 covers basis 𝐺 (see Definition 3.5), then there exists an observable

𝑛-horizon sensor schedule Σ𝑛 = {𝜎𝑘0
, 𝜎𝑘0+1, … , 𝜎𝑘0+𝑛−1} over sensor set 𝑆𝑜 (see

Definition 3.2), with the following structure:

 𝜎𝑘0
= 0,

 ⋮

 𝜎𝑘0+𝑧[0]−1 = 0,

 𝜎𝑘0+𝑧[0] = 1,

 ⋮

 𝜎𝑘0+𝑧[1]−1 = 1,

 ⋮

 𝜎𝑘0+𝑧[𝜃−1] = 𝜃,

 ⋮

 𝜎𝑘0+𝑧[𝜃]−1 = 𝜃,

such that 𝑧[𝜃] = 𝑛. ∎

In this schedule, every sensor vector in the returned ordered set 𝑆𝑜 is used. Each

sensor is used 𝑧[𝑖] − 𝑧[𝑖 − 1] number of times.

3.4. Proofs and discussion

To approach the proof of Theorem 3.1, we should take specific steps, stated as

follows. First, we define and prove Lemma 3.1 stated below. Then, we construct the

so-called basis observability matrix. As the next step, we define and prove Lemma

3.2 and finally, we will use the result of Lemma 3.2 to prove Theorem 3.1

schematically:

3| Existence of an observable schedule 21

• Theorem 3.1: 𝐻1 → 𝐻4

• Lemma 3.1: 𝐻2 ↔ 𝐻1

• Lemma 3.2: 𝐻2 → 𝐻3

Following the rule of inference, to prove Theorem 3.1 we will have

Premise 1: 𝐻1

Premise 2: 𝐻1 → 𝐻2 (Lemma 3.1)

Premise 3: 𝐻2 → 𝐻3 (Lemma 3.2)

Premise 4: 𝐻3 → 𝐻4 (Theorem 3.1)

Conclusion: 𝐻4

We can now proceed with the step-by-step process of proving Theorem3.1.

3.4.1. Statement and proof of Lemma 3.1

Lemma 3.1. Algorithm 3.1 terminates under the condition 𝛾𝑟 = ∅ if and only if 𝑆

covers the basis 𝐺.

Proof of Lemma 3.1. There are two implications involved:

• If 𝑆 covers the basis 𝐺, Algorithm 3.1 terminates under the condition 𝛾𝑟 =

∅.

• If Algorithm 3.1 terminates under the condition 𝛾𝑟 = ∅, then 𝑆 cover the

basis 𝐺.

Now we begin with the proof of the contrapositive of the first implication.

• If 𝑆 does not cover the basis 𝐺 then Algorithm 3.1 does not terminate

under the condition 𝛾𝑟 = ∅.

Assume Algorithm 3.1 terminates after 𝜇 + 1 elements are added to 𝑆𝑜 and removed

from 𝑆𝑟 . It is not clear yet whether the algorithm has terminated under the

condition 𝛾𝑟 = ∅ or 𝑆𝑟 = ∅ or both, but we know that 𝑆𝑜 is a subset of 𝑆.

Considering that 𝑆 does not cover the basis 𝐺, we have the following:

 ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
𝜇

Cover(𝑆𝑜[𝑙], 𝐺)), (𝐼)

 ∀ 𝑙 (0 ≤ 𝑙 ≤ 𝜇 ⇒ 𝛣ℳ[𝑙] ⊆ Cover(𝑆𝑜[𝑙], 𝐺)), (𝐼𝐼)

 𝛾𝑟 ∪ (∪𝑙=0
𝜇

𝛣ℳ[𝑙]) = 𝐺, (𝐼𝐼𝐼)

22 3| Existence of an observable schedule

(𝐼𝐼) ⇒ ∪𝑙=0
 𝜇

𝛣ℳ[𝑙] ⊆ ∪𝑙=0
𝜇

Cover(𝑆𝑜[𝑙], 𝐺),

(𝐼) ∧ (∪𝑙=0
 𝜇

𝛣ℳ[𝑙] ⊆ ∪𝑙=0
𝜇

Cover(𝑆𝑜[𝑙], 𝐺)) ⇒ ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
𝜇

𝛣ℳ[𝑙]),

(𝐼𝐼𝐼) ∧ ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
 𝜇

𝛣ℳ[𝑙]) ⇒ 𝛾𝑟 ≠ ∅.

Now we prove the contrapositive of the second implication.

• If Algorithm 3.1 does not terminate under the condition 𝛾𝑟 = ∅, then 𝑆

does not cover the basis 𝐺.

If 𝛾𝑟 ≠ ∅ when the algorithm terminates, then 𝑆𝑟 = ∅. This means that 𝑆𝑜 now

contains all the elements of 𝑆. To prove this contrapositive, we need to show that

 ∪𝑙=0
 𝑝−1 𝛣ℳ[𝑙] =∪𝑙=0

 𝑝−1 Cover(𝑆𝑜[𝑙], 𝐺).

From Algorithm 3.1, for 𝑙 = 0 we have

 𝛣ℳ[0] = Cover(𝑆𝑜[0], 𝐺),

and using set algebra, for 1 ≤ 𝑙 ≤ 𝑝 − 1,

 𝛣ℳ[𝑙] = Cover(𝑆𝑜[𝑙], 𝐺)/ ((∪𝑘=0
𝑙−1 𝛣ℳ[𝑘]) ∩ Cover(𝑆𝑜[𝑙], 𝐺)) =

 Cover(𝑆𝑜[𝑙], 𝐺) ∩ ((∪𝑘=0
𝑙−1 𝛣ℳ[𝑘]) ∩ Cover(𝑆𝑜[𝑙], 𝐺))

′

=

 Cover(𝑆𝑜[𝑙], 𝐺) ∩ ((∪𝑘=0
𝑙−1 𝛣ℳ[𝑘])

′
∪ Cover(𝑆𝑜[𝑙], 𝐺)′) =

 Cover(𝑆𝑜[𝑙], 𝐺) ∩ (∪𝑘=0
𝑙−1 𝛣ℳ[𝑘])

′
=

 Cover(𝑆𝑜[𝑙], 𝐺) ∩ (∩𝑘=0
𝑙−1 𝛣ℳ[𝑘]′).

Therefore, for 1 ≤ 𝑙 ≤ 𝑝 − 1,

 𝛣ℳ[𝑙] = Cover(𝑆𝑜[𝑙], 𝐺) ∩ (∩𝑘=0
𝑙−1 𝛣ℳ[𝑘]′).

Expanding for every 0 ≤ 𝑙 ≤ 𝑝 − 1,

 𝛣ℳ[0] = Cover(𝑆𝑜[0], 𝐺)

3| Existence of an observable schedule 23

 𝛣ℳ[1] = Cover(𝑆𝑜[1], 𝐺) ∩ Cover(𝑆𝑜[0], 𝐺)′

 𝛣ℳ[2] = Cover(𝑆𝑜[2], 𝐺) ∩ Cover(𝑆𝑜[0], 𝐺)′ ∩ Cover(𝑆𝑜[1], 𝐺)′

 ⋮

 𝛣ℳ[𝑝 − 1] = Cover(𝑆𝑜[𝑝 − 1], 𝐺) ∩ Cover(𝑆𝑜[0], 𝐺)′ ∩ …

∩ Cover(𝑆𝑜[𝑝 − 2], 𝐺)′.

Taking the union

∪𝑙=0
 𝑝−1 𝛣ℳ[𝑙] = 𝛣ℳ[0] ∪ 𝛣ℳ[1] ∪ …∪ 𝛣ℳ[𝑝 − 1] =

Cover(𝑆𝑜[0], 𝐺) ∪ …

…∪ (Cover(𝑆𝑜[𝑝 − 1], 𝐺) ∩ Cover(𝑆𝑜[0], 𝐺)′ ∩ … ∩ Cover(𝑆𝑜[𝑝 − 2], 𝐺)′) =

((Cover(𝑆𝑜[0], 𝐺) ∪ Cover(𝑆𝑜[1], 𝐺)) ∩ 𝑈) ∪ …

…∪ (Cover(𝑆𝑜[𝑝 − 1], 𝐺) ∩ Cover(𝑆𝑜[0], 𝐺)′ ∩ … ∩ Cover(𝑆𝑜[𝑝 − 2], 𝐺)′) =

… = (Cover(𝑆𝑜[0], 𝐺) ∪ Cover(𝑆𝑜[1], 𝐺)…∪ Cover(𝑆𝑜[𝑝 − 1], 𝐺)) ∩ 𝑈 =

Cover(𝑆𝑜[0], 𝐺) ∪ Cover(𝑆𝑜[1], 𝐺)…∪ Cover(𝑆𝑜[𝑝 − 1], 𝐺) =∪𝑙=0
 𝑝−1 Cover(𝑆𝑜[𝑙], 𝐺),

where 𝑈 is the universal set. Thus,

 ∪𝑙=0
 𝑝−1 𝛣ℳ[𝑙] =∪𝑙=0

 𝑝−1 Cover(𝑆𝑜[𝑙], 𝐺). (𝐼𝑉)

From Algorithm 3.1 and the contrapositive of the second implication, we have

 𝛾𝑟 ∪ (∪𝑙=0
𝑝−1 𝛣ℳ[𝑙]) = 𝐺, (𝑉)

 𝛾𝑟 ≠ ∅. (𝑉𝐼)

Thus,

 (𝑉𝐼) ∧ (𝑉) ⇒ ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
 𝑝−1 𝛣ℳ[𝑙]),

24 3| Existence of an observable schedule

 (𝐼𝑉) ∧ ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
 𝑝−1 𝛣ℳ[𝑙]) ⇒

 ∃ 𝑔𝑖 (𝑔𝑖 ∈ 𝐺 ∧ 𝑔𝑖 ∉ ∪𝑙=0
 𝑝−1 Cover(𝑆𝑜[𝑙], 𝐺)).

Since 𝑆𝑜 contains all elements of 𝑆, the set 𝑆 does not cover the basis 𝐺 (see Definition

3.2). ∎

3.4.2. Statement and proof of Lemma 3.2

The next step requires to introduce the concept of basis observability matrix. This

matrix is denoted by 𝑉𝑜
(𝜇) where 𝜇 + 1 is the number of elements in 𝑆𝑜 and 𝛣ℳ after

the algorithm terminates under one of the conditions 𝛾𝑟 = ∅ or 𝑆𝑟 = ∅, or both. This

matrix is later used in the proof of Theorem 3.1, and it is constructed using the

returned ordered sets of Algorithm 3.1.

To build this matrix, we take the following steps:

Step 1: Construct matrix 𝛤 = [𝑔0 … 𝑔𝑛−1] from basis 𝐺.

Step 2: Permutate 𝛤 such that �̃�𝜇 = 𝛤𝑃𝑇 = [𝛣ℳ[0] 𝛣ℳ[1]…𝛣ℳ[𝜇] 𝛾𝑟].

Step 3: Define coordinate vectors �̃�𝑖 , 0 ≤ 𝑖 ≤ 𝜇 such that �̃�𝜇�̃�𝑖 = 𝛤𝑃𝑇𝑃𝛼𝑖 =

𝛤 𝛼𝑖 = 𝑆𝑜[𝑖].

Step 4: Construct matrices 𝛥𝑖 such that 𝛥𝑖 = 𝑑𝑖𝑎𝑔(�̃�𝑖), 0 ≤ 𝑖 ≤ 𝜇.

Step 5: Construct matrix 𝛬 using the corresponding eigenvalues of the

basis elements of 𝐺.

Step 6: Use matrices 𝛬 and 𝛥𝑖 to build 𝑉𝑜
(𝜇).

What follows describes each of the above steps in detail.

Step 1:

Under the assumptions that the algorithm has terminated and the output sets are

obtained, define as 𝛤 = [𝑔0 … 𝑔𝑛−1] the matrix with as columns, the elements of

basis 𝐺 = {𝑔0, … , 𝑔𝑛−1}, 𝑔𝑖 ∈ ℝ𝑛. Using this matrix, the coordinate vector 𝛼𝑖 of each

sensor vector 𝑆𝑜[𝑖] ∈ 𝑆𝑜 with respect to the basis 𝐺 can be obtained as follows:

 𝛼𝑖 = 𝛤−1𝑆𝑜[𝑖], 0 ≤ 𝑖 ≤ 𝜇 , 𝛼𝑖 ∈ ℝ𝑛.

3| Existence of an observable schedule 25

Step 2:

To construct the basis observability matrix, a reorganization of the columns of 𝛤 is

necessary. This is done consistently with sets 𝛾𝑟 and 𝛣ℳ.

As mentioned in Table 3.1, 𝛾𝑟 is the ordered set that initially contains all the elements

of basis 𝐺 and every 𝛣ℳ[𝑖], 0 ≤ 𝑖 ≤ 𝜇 , is a subset of the cover set of the sensor vector

𝑆𝑜[𝑖]. At any algorithm iteration, a subset 𝛣ℳ[𝑖] (for some 𝑖) is removed from 𝛾𝑟 and

appended to 𝛣ℳ , for this reason, the sets 𝛣ℳ[𝑖] are disjoint with 𝛾𝑟 and with each

other. Indeed, after the termination of the algorithm, the union of all obtained sets

𝛣ℳ[𝑖]s and what is left of 𝛾𝑟 is 𝐺.

Therefore, there exists a permutation matrix 𝑃 that allows to permute the columns

of 𝛤 such that they are grouped as follows:

 �̃�𝜇 = 𝛤𝑃𝑇 = [𝛣ℳ[0] 𝛣ℳ[1]…𝛣ℳ[𝜇] 𝛾𝑟].

Step 3:

Define vectors �̃�𝑖 such that

 �̃�𝑖 = 𝑃𝛼𝑖 , 0 ≤ 𝑖 ≤ 𝜇.

Note that

 �̃�𝜇�̃�𝑖 = 𝛤𝑃𝑇𝑃𝛼𝑖 = 𝛤 𝛼𝑖 = 𝑆𝑜[𝑖].

Given the structure of �̃�𝜇 and by construction of set 𝛣ℳ, each vector �̃�𝑖 takes the

following form:

�̃�𝑖 = [

𝛼𝑟
(𝑖)

𝛼𝛽
(𝑖)

𝛼𝑜
(𝑖)

],

where

 𝛼𝑟
(𝑖) ∈ ℝ𝑧[𝑖−1] , 𝛼𝛽

(𝑖) ∈ ℝ𝑁𝑜[𝑖] , 𝛼𝑜
(𝑖) = 0 ∈ ℝ𝑛−𝑧[𝑖] .

Note that, based on Algorithm 3.1, 𝑧[𝑙] = ∑ 𝑛(𝛣ℳ[𝑖]𝑙
𝑖=0) and 𝑁𝑜[𝑖] = 𝑛(𝛣ℳ[𝑖]) with

𝑧[−1] = 0.

26 3| Existence of an observable schedule

For each �̃�𝑖, 0 ≤ 𝑖 ≤ 𝜇, sub-vector 𝛼𝛽
(𝑖) corresponds to 𝛣ℳ[𝑖], 𝛼𝑟

(𝑖) corresponds to

all 𝛣ℳ[𝑙], 0 ≤ 𝑙 < 𝑖 and 𝛼𝑜
(𝑖) = 0. Thus,

𝑆𝑜[𝑖] = �̃�𝜇�̃�𝑖 = [𝛣ℳ[0] 𝛣ℳ[1]…𝛣ℳ[𝜇] 𝛾𝑟] [

𝛼𝑟
(𝑖)

𝛼𝛽
(𝑖)

𝛼𝑜
(𝑖)

] =

[𝛣ℳ[0] 𝛣ℳ[1]…𝛣ℳ[𝑖 − 1]][𝛼𝑟
(𝑖)] + [𝛣ℳ[𝑖]][𝛼𝛽

(𝑖)] +

[𝛣ℳ[𝑖 + 1]…𝛣ℳ[𝜇] 𝛾𝑟][𝛼𝑜
(𝑖)].

The structure of �̃�𝑖 is essential for understanding the exact structure of 𝑉𝑜
(𝜇) and it

is an integral part of later proofs.

Step 4:

Consider the following diagonal matrix with the coordinate vector �̃�𝑖 as the

diagonal.

 𝛥𝑖 = 𝑑𝑖𝑎𝑔(�̃�𝑖), 0 ≤ 𝑖 ≤ 𝜇.

Step 5:

Knowing that �̃�𝜇 is a column permutation of 𝛤, for each column in �̃�𝜇 there exists a

corresponding eigenvalue, denoted by �̃�𝑖, 0 ≤ 𝑖 < 𝑛. Construct matrix 𝛬 containing

the eigenvalues corresponding with the columns of �̃�𝜇 as follows:

 𝜂 = [�̃�0 … �̃�𝑛−1],

 𝛬 = [𝜂𝑇°0
 𝜂𝑇°1

… 𝜂𝑇°𝑛−1
],

where the operator “°” denotes elementwise or Hadamard power. 1

Step 6:

Now using both matrices 𝛬 and 𝛥𝑖 we construct the basis observability matrix 𝑉𝑜
(𝜇).

Denote by 𝛬(𝑖, 𝑗) the column submatrix of 𝛬 from column 𝑖 to column 𝑗. Construct

the basis observability matrix 𝑉𝑜
(𝜇) as follows:

 𝑉𝑜
(𝜇) = [𝛥0𝛬(0, 𝑧[0] − 1) 𝛥1𝛬(𝑧[0], 𝑧[1] − 1)… 𝛥𝜇𝛬(𝑧[𝜇 − 1] , 𝑧[𝜇] − 1)].

1 For example, [�̃�0 … �̃�𝑛−1]

𝑇°𝑖
= [�̃�0

𝑖
… �̃�𝑛−1

𝑖
]
𝑇

3| Existence of an observable schedule 27

𝑉𝑜
(𝜇) has 𝜇 + 1 submatrices.

Because each column submatrix 𝛥𝑖𝛬(𝑧[𝑖 − 1], 𝑧[𝑖] − 1) has 𝑧[𝑖] − 𝑧[𝑖 − 1] =

𝑛(𝛣ℳ[𝑖]) columns, the sum of the columns of all submatrices of 𝑉𝑜
(𝜇) is

𝑛(𝛣ℳ[0]) + ⋯+ 𝑛(𝛣ℳ[𝜇]) = ∑ 𝑛(𝛣ℳ[𝑖]
𝜇
𝑖=0).

Remember that

𝑧[𝑙] = ∑ 𝑛(𝛣ℳ[𝑖]𝑙
𝑖=0).

Thus,

𝑧[𝜇] = ∑ 𝑛(𝛣ℳ[𝑖]
𝜇
𝑖=0),

and consequently 𝑉𝑜
(𝜇) ∈ ℝ𝑛×𝑧[𝜇].

Now we are in the position to state and prove Lemma 3.2.

Lemma 3.2. If 𝛾𝑟 = ∅, then the basis observability matrix 𝑉𝑜
(𝜃) is nonsingular and

𝑉𝑜
(𝜃) ∈ ℝ𝑛×𝑛.

Proof of Lemma 3.2. Before proceeding with the proof, recall that 𝑧[𝑙] =

 ∑ 𝑛(𝛣ℳ[𝑖]𝑙
𝑖=0) and 𝑁𝑜[𝑖] = 𝑛(𝛣ℳ[𝑖]).

To prove Lemma 3.2, we take the following steps:

Step 1: Show that 𝑉𝑜
(𝜃) ∈ ℝ𝑛×𝑛.

Step 2: Show that 𝑉𝑜
(𝜃) has a specific block matrix structure corresponding

to the structure of coordinate vector �̃�𝑖.

Step 3: Show that 𝑉𝑜
(𝜃) is an upper triangular block matrix.

Step 4: Prove that the block diagonal elements of 𝑉𝑜
(𝜃) are nonsingular.

Step 5: Prove that 𝑉𝑜
(𝜃) is nonsingular due to its upper triangular block

matrix structure and the nonsingularity of its block diagonal

elements.

Step 1:

If 𝛾𝑟 = ∅ then every single element of 𝛾𝑟 is appended to 𝛣ℳ in the form of sets 𝛣ℳ[𝑖],

0 ≤ 𝑖 ≤ 𝜃. Thus, we have the following structures for �̃�𝜃 and the basis observability

matrix 𝑉𝑜
(𝜃):

�̃�𝜃 = [𝛣ℳ[0] 𝛣ℳ[1]…𝛣ℳ[𝜃]].

28 3| Existence of an observable schedule

𝑉𝑜
(𝜃) = [𝛥0𝛬(0, 𝑧[0] − 1) 𝛥1𝛬(𝑧[0], 𝑧[1] − 1)… 𝛥𝜃𝛬(𝑧[𝜃 − 1] , 𝑧[𝜃] − 1)].

Following the definition of basis observability matrix, we know that 𝑉𝑜
(𝜃) ∈ ℝ𝑛×𝑧[𝜃].

On the other hand, 𝑧[𝜃] = ∑ 𝑛(𝛣ℳ[𝑖]𝜃
𝑖=0) which together with 𝛾𝑟 = ∅ yields 𝑧[𝜃] =

𝑛; thus, 𝑉𝑜
(𝜃) ∈ ℝ𝑛×𝑛.

Step 2:

We know that

𝛥𝑖 = 𝑑𝑖𝑎𝑔(�̃�𝑖) = 𝑑𝑖𝑎𝑔 ([

𝛼𝑟
(𝑖)

𝛼𝛽
(𝑖)

𝛼𝑜
(𝑖)

]) , 0 ≤ 𝑖 ≤ 𝜃

 𝛼𝑟
(𝑖) ∈ ℝ𝑧[𝑖−1] , 𝛼𝛽

(𝑖) ∈ ℝ𝑁𝑜[𝑖], 𝛼𝑜
(𝑖) = 0 ∈ ℝ𝑛−𝑧[𝑖] .

This indicates that each submatrix 𝛥𝑖𝛬(𝑧[𝑖 − 1], 𝑧[𝑖] − 1) in 𝑉𝑜
(𝜃), has its

corresponding coordinate vector �̃�𝑖. Due to the structure of each �̃�𝑖 the sub matrices

themselves consist of three sub-matrices stacked on top of each other, each

corresponding to one of the sub-vectors of �̃�𝑖 meaning 𝛼𝑟
(𝑖), 𝛼𝛽

(𝑖), and 𝛼𝑜
(𝑖) .

Denote by 𝛥𝛼𝑟
(𝑖) ∈ ℝ𝑧[𝑖−1]×𝑁𝑜[𝑖] , 𝛥𝛼𝛽

(𝑖) ∈ ℝ𝑁𝑜[𝑖]×𝑁𝑜[𝑖] and 𝛥𝛼𝑜
(𝑖) = 0 ∈

 ℝ(𝑛−𝑧[𝑖])×𝑁𝑜[𝑖] the submatrices corresponding to 𝛼𝑟
(𝑖), 𝛼𝛽

(𝑖) and 𝛼𝑜
(𝑖) respectively.

We have

𝑉𝑜

(𝜃) = [

𝛥𝛼𝑟
(0) 𝛥𝛼𝑟

(1) …

𝛥𝛼𝛽
(0) 𝛥𝛼𝛽

(1) …

𝛥𝛼𝑜
(0) 𝛥𝛼𝑜

(1) …

𝛥𝛼𝑟
(𝜃)

𝛥𝛼𝛽
(𝜃)

𝛥𝛼𝑜
(𝜃)

].

Thus, 𝑉𝑜
(𝜃) has a block matrix structure.

Step 3:

The following matrix shows that each 𝛥𝛼𝛽
(𝑖) ∈ ℝ𝑁𝑜[𝑖]×𝑁𝑜[𝑖] is a diagonal element of

block matrix 𝑉𝑜
(𝜃). This means that the main diagonal of every 𝛥𝛼𝛽

(𝑖) is part of the

main diagonal of 𝑉𝑜
(𝜃).

3| Existence of an observable schedule 29

𝑉𝑜
(𝜃) =

[

 𝛥𝛼𝛽

(0) ∆𝛼𝑟
(0,1) ∆𝛼𝑟

(0,2) ∆𝛼𝑟
(0,3) … … ∆𝛼𝑟

(0,𝜃)

0 𝛥𝛼𝛽
(1) ∆𝛼𝑟

(1,3) ∆𝛼𝑟
(1,3)

0 𝛥𝛼𝛽
(2) ∆𝛼𝑟

(2,3)

0 𝛥𝛼𝛽
(3) ⋮

⋮ 0
⋮ ⋱

⋮ ∆𝛼𝑟
(𝜃−2,𝜃)

⋮ ∆𝛼𝑟
(𝜃−1,𝜃)

0 … … 0 𝛥𝛼𝛽
(𝜃)

]

Where each ∆𝛼𝑟
(𝑖,𝑗) ∈ 𝑁𝑜[𝑖] × 𝑁𝑜[𝑗] is a submatrix of 𝛥𝛼𝑟

(𝑗).

Under each block, diagonal element of 𝑉𝑜
(𝜃) , there is a zero block 𝛥𝑖(𝛼𝑜

(𝑖)) = 0 ∈

ℝ(𝑛−𝑧[𝑖])×𝑁𝑜[𝑖]. Thus, 𝑉𝑜
(𝜃) is an upper triangular block matrix.

Step 4:

Denoting 𝑘th element of sub-vector 𝛼𝛽
(𝑖) by 𝛼𝛽

(𝑖)(𝑘 − 1), in more details 𝑉𝑜
(𝜃) can

be presented as follows:

𝑉𝑜
(𝜃) =

[

 𝛼𝛽

(0)(0) … 𝛼𝛽
(0)(0)�̃�0

𝑧[0]−1
⋮ ⋮

⋮ ⋱ ⋮

𝛼𝛽
(0)(𝑁𝑜[0] − 1) … 𝛼𝛽

(0)(𝑁𝑜[0] − 1)�̃�𝑧[0]−1

𝑧[0]−1
⋮ ⋮

0 0 0 ⋱

⋮ ⋮ ⋮ 0 𝛼𝛽
(𝜃)(0)�̃�𝑧[𝜃−1]

𝑧[𝜃−1]
… 𝛼𝛽

(𝜃)(0)�̃�𝑧[𝜃−1]
𝑧[𝜃]−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 𝛼𝛽
(𝜃)(𝑁𝑜[𝜃] − 1)�̃�𝑧[𝜃]−1

𝑧[𝜃−1]
… 𝛼𝛽

(𝜃)(𝑁𝑜[𝜃] − 1)�̃�𝑧[𝜃]−1

𝑧[𝜃]−1
]

.

Given the structure of 𝑉𝑜
(𝜃) to prove its nonsingularity, first the nonsingularity of

the block diagonal elements of 𝑉𝑜
(𝜃) is proved, then the nonsingularity of 𝑉𝑜

(𝜃) is

concluded.

With regards to the nonsingularity of any 𝛥𝛼𝛽
(𝑖) , consider

𝛥𝛼𝛽
(𝑖) = [

𝛼𝛽
(𝑖)(0)�̃�𝑧[𝑖−1]

𝑧[𝑖−1]
… 𝛼𝛽

(𝑖)(0)�̃�𝑧[𝑖−1]
𝑧[𝑖]−1

⋮ ⋱ ⋮

𝛼𝛽
(𝑖)(𝑁𝑜[𝑖] − 1)�̃�𝑧[𝑖]−1

𝑧[𝑖−1]
… 𝛼𝛽

(𝑖)(𝑁𝑜[𝑖] − 1)�̃�𝑧[𝑖]−1
𝑧[𝑖]−1

] =

[

𝛼𝛽
(𝑖)(0) … 0

⋮ ⋱ ⋮
0 … 𝛼𝛽

(𝑖)(𝑁𝑜[𝑖] − 1)
] [

�̃�𝑧[𝑖−1]
𝑧[𝑖−1]

… �̃�𝑧[𝑖−1]
𝑧[𝑖]−1

⋮ ⋱ ⋮

�̃�𝑧[𝑖]−1
𝑧[𝑖−1]

… �̃�𝑧[𝑖]−1
𝑧[𝑖]−1

] =

[

𝛼𝛽
(𝑖)(1) … 0

⋮ ⋱ ⋮
0 … 𝛼𝛽

(𝑖)(𝑁𝑜[𝑖] − 1)
] [

�̃�𝑧[𝑖−1]
𝑧[𝑖−1]

… 0

⋮ ⋱ ⋮

0 … �̃�𝑧[𝑖]−1
𝑧[𝑖−1]

] [

1 �̃�𝑧[𝑖−1] …

⋮ ⋮ ⋱
1 �̃�𝑧[𝑖]−1 …

�̃�𝑧[𝑖−1]
𝑁𝑜[𝑖]−1

⋮

�̃�𝑧[𝑖]−1
𝑁𝑜[𝑖]−1

].

30 3| Existence of an observable schedule

Thus, 𝛥𝛼𝛽
(𝑖) results from multiplying three square matrices, two square diagonal

matrices, and one square Vandermonde matrix. Considering Definition 3.4 and

Assumption 3.1, the diagonal matrices have non-zero elements on their main

diagonal. Therefore, they have non-zero determinants and are nonsingular. The

third matrix is a square Vandermonde matrix. We know that 𝐴 is such that �̃�𝑖s are

distinct (see Assumption 3.1). Thus, the Vandermonde matrix is nonsingular [15].

The determinant of the product of square matrices is equal to the product of their

determinants. Thus, the determinant of any 𝛥𝛼𝛽
(𝑖) is non-zero, and all block

diagonal elements of 𝑉𝑜
(𝜃) are nonsingular.

Step 5:

Now that we know the block diagonal elements of 𝑉𝑜
(𝜃) are nonsingular, we proceed

with the proof of nonsingularity of 𝑉𝑜
(𝜃).

Given the upper triangular block structure of 𝑉𝑜
(𝜃), there exists a proper column

permutation 𝑃𝑜 that allows the decomposition of each diagonal element to a lower

and upper triangular matrix. Thus, we have

𝑉𝑜
(𝜃)𝑃𝑜 = [

𝛥𝛼𝛽
(0) …

⋱ ⋮
0 𝛥𝛼𝛽

(𝜃)

] 𝑃𝑜 = [

𝛥�́�𝛽
(0)

…

⋱ ⋮

0 𝛥�́�𝛽
(𝜃)

] =

[

 𝛥�́�𝛽

(0)
∆𝛼�́�

(0,1)
∆𝛼�́�

(0,2)
∆𝛼�́�

(0,3)
… … ∆𝛼�́�

(0,𝜃)

0 𝛥�́�𝛽
(1)

∆𝛼𝑟
́ (1,3)

∆𝛼�́�
(1,3)

0 𝛥�́�𝛽
(2)

∆𝛼�́�
(2,3)

0 𝛥�́�𝛽
(3)

⋮

⋮ 0 ⋱

⋱ ∆𝛼𝑟
́ (𝜃−2,𝜃)

∆𝛼�́�
(𝜃−1,𝜃)

0 … … 0 𝛥�́�𝛽
(𝜃)

]

=

[

 𝐿0𝑈0 ∆𝛼�́�

(0,1)
∆𝛼𝑟

́ (0,2)
∆𝛼𝑟

́ (0,3)
… … ∆𝛼𝑟

́ (0,𝜃)

0 𝐿1𝑈1 ∆𝛼𝑟
́ (1,3)

∆𝛼𝑟
́ (1,3)

0 𝐿2𝑈2 ∆𝛼𝑟
́ (2,3)

0 𝐿3𝑈3 ⋮

⋮ 0 ⋱

⋱ ∆𝛼�́�
(𝜃−2,𝜃)

∆𝛼𝑟
́ (𝜃−1,𝜃)

0 … … 0 𝐿𝜃𝑈𝜃]

=

3| Existence of an observable schedule 31

[

𝐿0 … 0

0 𝐿1

⋮ 0 ⋱
0 … 0 𝐿𝜃]

[

 𝑈0 𝐿0

−1∆𝛼�́�
(0,1)

𝐿0
−1∆𝛼𝑟

́ (0,2)
𝐿0

−1∆𝛼�́�
(0,3)

… … 𝐿0
−1∆𝛼𝑟

́ (0,𝜃)

0 𝑈1 𝐿1
−1∆𝛼�́�

(1,2)
𝐿1

−1∆𝛼𝑟
́

(1,3)

0 𝑈2 𝐿2
−1∆𝛼𝑟

́ (2,3)

0 𝑈3 ⋮

⋮ 0 ⋱

⋱ 𝐿𝜃−2
−1∆�́�𝑟

(𝜃−2,𝜃)

𝐿𝜃−1
−1∆𝛼𝑟

́
(𝜃−1,𝜃)

0 … … 0 𝑈𝜃]

= 𝐿𝑜𝑈𝑜.

We know that the main diagonal of every 𝛥�́�𝛽
(𝑖) is on the main diagonal of 𝑉𝑜

(𝜃)𝑃𝑜;

thus, matrix 𝑉𝑜
(𝜃)𝑃𝑜 is decomposed into a lower and upper triangular matrix. The

nonsingularity of every matrix 𝛥𝛼𝛽
(𝑖) and consequently, every matrix 𝛥�́�𝛽

(𝑖),

guarantees that all diagonal elements of 𝐿𝑜 and 𝑈𝑜 are non-zero. Thus,

𝑉𝑜
(𝜃)𝑃𝑜 and 𝑉𝑜

(𝜃) have non-zero determinants and are nonsingular. ∎

3.4.3. Proof of Theorem 3.1

The 𝑛-horizon observable schedule Σ𝑛 = {𝜎𝑘0
, 𝜎𝑘0+1, … , 𝜎𝑘0+𝑛−1} has the following

form

 𝜎𝑘0
= 0,

 ⋮

 𝜎𝑘0+𝑧[0]−1 = 0,

 𝜎𝑘0+𝑧[0] = 1,

 ⋮

 𝜎𝑘0+𝑧[1]−1 = 1,

 ⋮

 𝜎𝑘0+𝑧[𝜃−1] = 𝜃,

 ⋮

 𝜎𝑘0+𝑧[𝜃]−1 = 𝜃.

32 3| Existence of an observable schedule

Therefore,

𝑦(𝑘) = 𝑆𝑜[𝜎𝑘]
𝑇𝑥(𝑘) , 𝜎𝑘 ∈ Σ𝑛 , 𝑘0 ≤ 𝑘 < 𝑘0 + 𝑛.

We want to show that this schedule has an observability matrix 𝜙𝑛 of rank 𝑛. We

know that

 �̃�𝜃�̃�𝑖 = 𝛤𝑃𝑇𝑃𝛼𝑖 = 𝛤𝛼𝑖 = 𝑆𝑜[𝑖], ∀ 0 ≤ 𝑖 ≤ 𝜃,

where

 �̃�𝜃 = [�̃�0 … �̃�𝑛−1].

Because 𝑆 covers the basis 𝐺, Lemma 3.1 tells us that 𝛾𝑟 = ∅ when the algorithm

terminates. On the other hand, Lemma 3.2 indicates that if 𝛾𝑟 = ∅ then there exists

a basis observabillity matrix 𝑉𝑜
(𝜃) such that 𝑉𝑜

(𝜃) ∈ ℝ𝑛×𝑛 and 𝑉𝑜
(𝜃) is nonsingular.

Thus, we have

𝑉𝑜
(𝜃) =

[

 �̃�0(0) … �̃�1(0)�̃�0

𝑧[0]
… �̃�𝜃(0)�̃�0

𝑧[𝜃]−1

⋮ ⋮ ⋮
⋮ ⋮ ⋮

�̃�0(𝑛 − 1) … �̃�1(𝑛 − 1)�̃�𝑛−1
𝑧[0]

… �̃�𝜃(𝑛 − 1)�̃�𝑛−1
𝑧[𝜃]−1

]

,

where 𝑧[𝜃] = 𝑛 (see Proof 3.2) and �̃�𝑖(𝑘 − 1) denotes the 𝑘th element of the

coordinate vector �̃�𝑖. Now we show that �̃�𝜃𝑉𝑜
(𝜃) = 𝜙𝑛

𝑇, where 𝜙𝑛 is the observability

matrix of Σ𝑛.

For the first column of the first column submatrix of 𝑉𝑜
(𝜃) we have

[�̃�0 … �̃�𝑛−1] [
�̃�0(0)

⋮
�̃�0(𝑛 − 1)

] = �̃�0(0)�̃�0 + ⋯+ �̃�0(𝑛 − 1)�̃�𝑛−1 = �̃�𝜃�̃�0 = 𝑆𝑜[0];

The same goes for the rest of the columns of the submatrix, such that we have

𝐴𝑇𝑆𝑜[0], … , 𝐴𝑇𝑧[0]−1
𝑆𝑜[0].

 For the first column of the second column submatrix of 𝑉𝑜
(𝜃) we have

[�̃�0 … �̃�𝑛−1] [
�̃�1(0)�̃�0

𝑧[0]

⋮

�̃�1(𝑛 − 1)�̃�𝑛−1
𝑧[0]

] = �̃�1(0)�̃�0
𝑧[0]

�̃�0 + ⋯+ �̃�1(𝑛 − 1)�̃�𝑛−1
𝑧[0]

�̃�𝑛−1

= �̃�1(0)𝐴𝑇𝑧[0]
�̃�0 + ⋯+ �̃�1(𝑛 − 1)𝐴𝑇𝑧[0]

�̃�𝑛−1 =

3| Existence of an observable schedule 33

𝐴𝑇𝑧[0]
(�̃�1(0)�̃�0 + ⋯+ �̃�1(𝑛 − 1)�̃�𝑛−1) = 𝐴𝑇𝑧[0]

�̃�𝜃�̃�1 = 𝐴𝑇𝑧[0]
𝑆𝑜[1] ;

The same goes for the rest of the columns of the submatrix, such that we have

𝐴𝑇𝑧[0]+1
𝑆𝑜[1], … , 𝐴𝑇

𝑧[1]−1

𝑆𝑜[1].

We continue this for the rest of the submatrices and their columns until finally, for

the last column of the 𝜃 + 1-th column submatrix we have

[�̃�0 … �̃�𝑛−1] [
�̃�𝜃(0)�̃�0

𝑛−1

⋮

�̃�𝜃(𝑛 − 1)�̃�𝑛−1
𝑛−1

] = �̃�𝜃(0)�̃�0
𝑛−1

�̃�0 + ⋯+ �̃�𝜃(𝑛 − 1)�̃�𝑛−1
𝑛−1

 �̃�𝑛−1 =

�̃�𝜃(0)𝐴𝑇𝑛−1
�̃�0 + ⋯+ �̃�𝜃(𝑛 − 1)𝐴𝑇𝑛−1

�̃�𝑛−1 =

𝐴𝑇𝑛−1
(�̃�𝜃(0)�̃�0 + ⋯+ �̃�𝜃(𝑛 − 1)�̃�𝑛−1) = 𝐴𝑇𝑛−1

�̃�𝜃�̃�𝜃 = 𝐴𝑇𝑛−1
𝑆𝑜[𝜃];

therefore,

 �̃�𝜃𝑉𝑜
(𝜃) = [𝑆𝑜[0] … 𝐴𝑇𝑧[0]

𝑆𝑜[1] … 𝐴𝑇𝑛−1
𝑆𝑜[𝜃]] = 𝜙𝑛

𝑇 .

We know that �̃�𝜃 consists of linearly independent columns; thus, it is nonsingular.

Given that both matrices �̃�𝜃 and 𝑉𝑜
(𝜃) are square and nonsingular, 𝜙𝑛

𝑇 is nonsingular

as well. Thus, 𝜙𝑛 has rank 𝑛, and the system under the schedule Σ𝑛 is 𝑛-horizon

observable. ∎

Remarks

An important feature of the schedule Σ𝑛 is that every sensor vector 𝑆𝑜[𝑖] is repeated

exactly 𝑁𝑜[𝑖] times. It is of interest to investigate whether the rotation of schedule

elements of Σ𝑛 could change the observability results. The uniqueness of this

scheduling structure is another topic of interest that deserves further investigation.

Another question is whether the condition “𝑆 covers basis 𝐺” is a necessary and

sufficient condition. These cases are numerically examined in the next chapter,

where the results of the numerical implementation are provided and briefly

discussed.

 35

4 Algorithm numerical

implementation

In this chapter, the proposed algorithm is implemented, and numerical examples

are provided to verify the theoretical results of Chapter 3. The algorithm is

implemented in Python language2.

The code accepts the system matrix 𝐴, left eigenvectors of 𝐴, and the desired set of

sensor vectors and returns several values. A Boolean value indicating whether the

sensor set covers the basis; a list of sensor vectors corresponding to 𝑆𝑜; a list of

integers 𝑁𝑜 indicating the number of times the sensors of 𝑆𝑜 should be repeated in

the proposed schedule of Theorem 3.1 and, finally, the rank of the observability

matrix of the schedule of Theorem 3.1.

4.1. Examples

Let 𝐴 be an arbitrary matrix that follows Assumption 3.1. Thus, it has 𝑛 linearly

independent eigenvectors.

𝐴 =

[

1 0 0 0 0
2 11 0 0 0
4 4 −8 0 0
5 8 0 7 0
7 7 3 0 6

]

.

2 For the development of the code and its version control, a GitHub repository is used. The repository is public

and available to anyone interested in reviewing or testing the algorithm. Comments and explanations are

provided throughout the code. The link to the repository is:

https://github.com/abiglary1372/Sensor-Observability-Filter.

 36

Consider basis 𝐺 with left eigenvectors of 𝐴 as its elements.

 𝐺 = {[1 0 0 0 0]𝑇 , [
−68

171

−4

19
 1 0 0]𝑇 , [

33

35

−11

7

3

14
 0 1]𝑇 ,

[
1

6
 − 2 0 1 0]𝑇 , [

1

5
 1 0 0 6]𝑇}.

Now consider the following examples. In each example, sensor set 𝑆 is intentionally

designed to cover different scenarios.

Example 4.1. Consider the following sensor vector set 𝑆, where 𝑆 covers the basis 𝐺.

𝑆 = {𝑆[0] = [3.0332,−5.1353, 2.6428, 0, 3]𝑇 , 𝑆[1] = [5.1047,−22.2857, 0.8571, 8, 4]𝑇 ,

 𝑆[2] = [0.6, 3, 0, 0, 0]𝑇 , 𝑆[3] = [1.1666,−14, 0, 7, 0]𝑇 , 𝑆[4] = [1.2, 6, 0, 0, 0]𝑇

 𝑆[5] = [2.5784,−6.9172, 3.8571, 0, 4]}

In the sensor set 𝑆, no sensor alone covers the basis 𝐺. Table 4.1 shows that no 𝑛-

horizon observable sensor schedules can be constructed with only one sensor.

Table 4.1: 𝑛-horizon sensor schedules over the set 𝑆, involving only one sensor.

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧)

𝚺𝒏,𝟏 0 0 0 0 0 3

𝚺𝒏,𝟐 1 1 1 1 1 2

𝚺𝒏,𝟑 2 2 2 2 2 1

𝚺𝒏,𝟒 3 3 3 3 3 1

𝚺𝒏,𝟓 4 4 4 4 4 1

𝚺𝒏,𝟔 5 5 5 5 5 2

The schedule integer values in Table 4.1 refer to the indices of the ordered set 𝑆.

Tables 4.2 and 4.3 present the outputs of numerical implementation of the algorithm

where different combinations of sensors are used to construct sensor schedules.

Table 4.2: Sensor vectors of the set 𝑆𝑜 and their corresponding coordinate vector 𝛼𝑖.

𝑺𝒐 𝜶𝒊 𝑵𝒐

𝑺𝒐[𝟎] = [3.0332,−5.1353, 2.6428, 0, 3]𝑇 𝛼0 = [1,2,3,0,0]𝑇 3

𝑺𝒐[𝟏] = [5.1047,−22.2857, 0.8571, 8, 4]𝑇 𝛼1 = [0,0,4,8,0]𝑇 1

𝑺𝒐[𝟐] = [0.6, 3, 0, 0, 0]𝑇 𝛼2 = [0,0,0,0,3]𝑇 1

 37

Table 4.3: 𝑛-horizon sensor schedules over the set 𝑆𝑜 and their corresponding

observability matrix rank.

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧)

𝚺𝒏,𝟏 0 0 0 1 2 5

𝚺𝒏,𝟐 1 2 0 0 0 5

𝚺𝒏,𝟑 0 1 0 0 2 5

𝚺𝒏,𝟒 2 1 0 0 0 5

𝚺𝒏,𝟓 0 0 1 1 2 5

𝚺𝒏,𝟔 0 1 0 1 2 5

𝚺𝒏,𝟕 0 2 0 1 1 5

𝚺𝒏,𝟖 1 2 1 0 0 5

𝚺𝒏,𝟗 1 2 0 1 2 4

𝚺𝒏,𝟏𝟎 2 0 2 1 2 3

𝚺𝒏,𝟏𝟏 2 0 1 1 2 4

Note that the schedule integer values in Table 4.3 refer to the indices of the ordered

set 𝑆𝑜.

Example 4.2. Consider the following sensor set 𝑆, where 𝑆 does not cover the basis

𝐺.

𝑆 = {𝑆[0] = [−0.7953,−0.4210, 2, 0, 0]𝑇 , 𝑆[1] = [1.3333, −16, 0, 8, 0]𝑇 ,

𝑆[2] = [1.1, −3, 0, 3, 0]𝑇 ,

𝑆[3] = [1.1666,−14, 0, 7, 0]𝑇 , 𝑆[4] = [1.2, 6, 0, 0, 0]𝑇 ,

𝑆[5] = [−1.1929,−0.6315, 3, 0, 0]𝑇}

Table 4.4 shows that no 𝑛-horizon observable sensor schedules can be constructed

with only one sensor.

Table 4.4: 𝑛-horizon sensor schedules over the set 𝑆 involving only one sensor.

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧)

𝚺𝒏,𝟏 0 0 0 0 0 1

𝚺𝒏,𝟐 1 1 1 1 1 1

𝚺𝒏,𝟑 2 2 2 2 2 2

𝚺𝒏,𝟒 3 3 3 3 3 1

𝚺𝒏,𝟓 4 4 4 4 4 1

𝚺𝒏,𝟔 5 5 5 5 5 1

38 4| Algorithm numerical implementation

Note that the schedule integer values in Table 4.4 refer to the indices of the ordered

set 𝑆.

Tables 4.5 and 4.6 present the outputs of numerical implementation of the algorithm

where different combinations of sensors are used to construct sensor schedules.

Table 4.5: Sensor vectors of the set 𝑆𝑜 and their corresponding coordinate vector 𝛼𝑖

𝑺𝒐 𝜶𝒊 𝑵𝒐

𝑺𝒐[𝟎] = [1.1, −3, 0, 3, 0]𝑇 𝛼0 = [0,0,0,3,3]𝑇 2

𝑺𝒐[𝟏] = [−0.7953,−0.4210, 2, 0, 0]𝑇 𝛼1 = [0,2,0,0,0]𝑇 1

𝑺𝒐[𝟐] = [1.3333,−16, 0, 8, 0]𝑇 𝛼2 = [0,0,0,8,0]𝑇 0

𝑺𝒐[𝟑] = [1.1666,−14, 0, 7, 0]𝑇 𝛼3 = [0,0,0,7,0]𝑇 0

𝑺𝒐[𝟒] = [1.2, 6, 0, 0, 0]𝑇 𝛼4 = [0,0,0,0,6]𝑇 0

𝑺𝒐[𝟓] = [−1.1929,−0.6315, 3, 0, 0]𝑇 𝛼5 = [0,3,0,0,0]𝑇 0

Table 4.6: 𝑛-horizon sensor schedules and their corresponding observability matrix rank.

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧)

𝚺𝒏,𝟏 0 0 1 2 3 3

𝚺𝒏,𝟐 0 0 1 3 4 3

𝚺𝒏,𝟑 0 0 1 4 5 3

𝚺𝒏,𝟒 0 0 1 5 6 3

𝚺𝒏,𝟓 5 0 2 4 3 3

𝚺𝒏,𝟔 3 4 2 0 3 2

𝚺𝒏,𝟕 5 5 1 3 3 2

𝚺𝒏,𝟖 2 1 1 4 2 3

𝚺𝒏,𝟗 2 0 4 0 3 2

Note that each integer value in Table 4.6 refers to an index of the ordered set 𝑆𝑜.

4.2. Discussion and verification

We can see that schedule Σ𝑛,1 of Table 4.3 supports the main result. Building a

schedule using sensors vectors of 𝑆𝑜 and following the proposed schedule structure

of Theorem 3.1, a full rank observability matrix for schedule Σ𝑛,1 is obtained.

4| Algorithm numerical implementation 39

Looking at the rest of the schedules in Table 4.3, the first thing that we notice is that

the proposed schedule structure of Theorem 3.1 is not the only schedule structure

that can provide observability. This can be seen in schedules Σ𝑛,5, Σ𝑛,6, Σ𝑛,7 and Σ𝑛,8

in Table 4.3, which may suggest that there is a more general schedule structure that

can determine observable schedules. The second noticeable behavior is the change

of time steps. It seems that if a schedule is observable, changing the time steps of

the sensors or in other words rotating the schedule elements does not disrupt the

observability. This behavior can be seen in schedules Σ𝑛,1 to Σ𝑛,4 and Σ𝑛,5 to Σ𝑛,8 of

Table 4.3.

Schedules Σ𝑛,9 to Σ𝑛,11 in Table 4.3 show that even if all sensors of 𝑆𝑜 are used in the

schedule, there is no guarantee that the schedule will provide observability unless

the proposed schedule structure of Theorem 3.1 is used.

Concerning Example 4.2, Table 4.6 suggests that, regardless of what combination of

sensors is used, there is no combination of sensors that can provide an observable

𝑛-horizon schedule. In this specific example, the condition considered in Theorem

3.1 turns out to be also necessary for the existence of a 𝑛-horizon sensor schedule.

This remark raises a point that will be the subject of future investigation.

 41

5 Conclusion and future developments

In this thesis, the concept of sensor scheduling was introduced. The observability of

systems under scheduled measurements was investigated, resulting in the

introduction of the concept of measurement time horizon and extension of the

definition of observability to the case of linear discrete-time systems with time-

variant measurements.

The conditions guaranteeing the existence of an observable schedule were

investigated, and new definitions and results were introduced to provide a

simplified proof of the theorem in [11] and a clearer characterization of the proposed

theorem for the definition of an observable sensor schedule. In particular, an

algorithm was devised capable of defining a set of sensors that constitute an

observable sensor schedule of a specific structure.

The algorithm was numerically implemented. The numerical results suggest that a

more general structure of an observable schedule could exist. This can be a subject

of future development.

In this work, all conditions were investigated for sensors with 1 × 𝑛 measurement

matrices. A future development of this work can also consist in including conditions

supporting the existence of observable schedules for sensors with measurement

matrices with a higher dimension.

Another topic for future work can be the application of a Kalman filtering approach

with scheduled measurements. To do so, we need to develop algorithms that take

into consideration both the observability and estimation error in the optimization

problem. When developing these algorithms, the computational costs of these

algorithms are an important factor to take into consideration. For example, the

offline determination of the sensor set, and identification of all observable sensor

subsets can be considered as the first step for the development of this approach,

then the choice between observable sensor schedules can be taken (possibly online)

based on the criterion of minimizing the variance of the estimation error.

 43

Bibliography

[1] Diddigi, R. B., Prabuchandran, K. J., & Bhatnagar, S. (2018). Novel sensor

scheduling scheme for intruder tracking in energy efficient sensor networks. IEEE

Wireless Communications Letters, 7(5), 712-715.

[2] Han, D., Wu, J., Zhang, H., & Shi, L. (2017). Optimal sensor scheduling for

multiple linear dynamical systems. Automatica, 75, 260-270.

[3] Yang, W., Chen, G., Wang, X., & Shi, L. (2014). Stochastic sensor activation for

distributed state estimation over a sensor network. Automatica, 50(8), 2070-2076.

[4] Vitus, M. P., Zhang, W., Abate, A., Hu, J., & Tomlin, C. J. (2012). On efficient

sensor scheduling for linear dynamical systems. Automatica, 48(10), 2482-2493.

[5] Yang, L., Rao, H., Lin, M., Xu, Y., & Shi, P. (2022). Optimal sensor scheduling for

remote state estimation with limited bandwidth: a deep reinforcement learning

approach. Information Sciences, 588, 279-292.

[6] Mo, Y., Garone, E., & Sinopoli, B. (2014). On infinite-horizon sensor scheduling.

Systems & control letters, 67, 65-70.

[7] Mo, Y., Ambrosino, R., & Sinopoli, B. (2011). Sensor selection strategies for state

estimation in energy constrained wireless sensor networks. Automatica, 47(7), 1330-

1338.

[8] Han, D., Zhang, H., & Shi, L. (2013, June). An event-based scheduling solution

for remote state estimation of two LTI systems under bandwidth constraint. In 2013

American Control Conference (pp. 3314-3319). IEEE.

[9] Ahn, H., & Danielson, C. (2019, July). Moving Horizon Sensor Selection for

Reducing Communication Costs with Applications to Internet of Vehicles. In 2019

American Control Conference (ACC) (pp. 1464-1469). IEEE.

[10] Bian, F., Kempe, D., & Govindan, R. (2006, April). Utility based sensor selection.

In Proceedings of the 5th international conference on Information processing in

sensor networks (pp. 11-18).

44

[11] Ilkturk, U. (2015). Observability methods in sensor scheduling. Arizona State

University.

[12] Kalman, R. E. (1960, August). On the general theory of control systems. In

Proceedings First International Conference on Automatic Control, Moscow, USSR

(pp. 481-492).

[13] Kalman, R. E. (1963). Mathematical description of linear dynamical systems.

Journal of the Society for Industrial and Applied Mathematics, Series A: Control,

1(2), 152-192.

[14] Williams, R. L., & Lawrence, D. A. (2007). Linear state-space control systems.

John Wiley & Sons.

[15] Turner, L. R. (1966). Inverse of the Vandermonde matrix with applications (No.

NASA-TN-D-3547).

 45

List of Tables

Table 3.1:Algorithm parameters and functions description. 17

Table 4.1: 𝑛-horizon sensor schedules over the set 𝑆, involving only one sensor. .. 36

Table 4.2: Sensor vectors of the set 𝑆𝑜 and their corresponding coordinate vector 𝛼𝑖.

 ... 36

Table 4.3: 𝑛-horizon sensor schedules over the set 𝑆𝑜 and their corresponding

observability matrix rank. ... 37

Table 4.4: 𝑛-horizon sensor schedules over the set 𝑆 involving only one sensor. ... 37

Table 4.5: Sensor vectors of the set 𝑆𝑜 and their corresponding coordinate vector 𝛼𝑖

 ... 38

Table 4.6: 𝑛-horizon sensor schedules and their corresponding observability matrix

rank. .. 38

 47

List of symbols

Variable Description

𝑥 System state

𝑦 System output

𝑘0
Starting time of

measurement

 𝑥0 Initial state

𝐴 System matrix

𝐶 Output matrix

𝜆𝑖 Eigenvalue

𝑀(𝑘0, 𝑘) Gramian matrix

𝜙𝑁 Observability matrix

𝑇𝑁
Measurement time

horizon

𝐶𝑘
Time-variant output

matrix

𝑀𝑇(𝑘0, 𝑘0 + 𝑁 − 1)
Time variant Gramian

matrix

𝑆 Sensor set

𝑆[𝑖] Sensor vector

Σ Sensor schedule

Σ𝑁
𝑁-horizon sensor

schedule

𝜎𝑘0
 Schedule element

𝐺 Basis

𝛽 Cover set

𝑔𝑖 Basis element

𝛼𝑖 Coordinate vector

�̃�𝑖
Permutated

coordinate

𝑉𝑜
(𝜇)

Basis observability

matrix

 49

Acknowledgments

I want to express my deepest thanks to my advisers, professor Alessandro Colombo

and Marcello Farina, who helped and guided me through every step of this thesis.

Without their help and deep knowledge and understanding of the topic, this work

would not have been possible.

I must also thank the polytechnic university of Milan for providing me with an

environment to learn and grow.

Finally, I would like to thank my parents for all their love and support throughout

this journey, without which none of this would have been possible. I am very

grateful to all the friends and people who always offer support and love.

