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 ABSTRACT 
 

 

 

 

Light Sheet Fluorescence Microscopy (LSFM) also known as 
Selective Plane Illumination Microscopy (SPIM), is a 
fluorescence microscopy technique which, from its first 
publication in 2004, has been increasingly used in biological 
applications, from developmental biology to mounted 
tissues analysis. As an alternative to LSFM, Selective Volume 
Illumination (SVI) microscopy has been recently developed 
with the goal of further increasing the acquisition rate. As is 
the case of LSFM, SVI uses a perpendicular illumination and 
detection. In this technique, rather than illuminating the 
sample in a single plane, the incoming excitation beam is 
modulated across a confined volume. On top of this, Light 
emitting Diodes (LED) are usually not considered a good light 
source for Light Sheet Fluorescence Microscopy because the 
lack of spatial coherence makes it difficult to tightly focus 
light along one direction. However, using LED in 
fluorescence microscopy brings advantages such as colour 
availability, low cost, and reduced presence of speckle 
patterns.  

In my PhD I demonstrated that, upon selectively illuminating 
a volume of the sample with LEDs, it is possible to 
volumetrically reconstruct it. The volumetric light 
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modulation is possible thanks to a spatial light modulator, 
which is coupled to an illumination orthogonal to the 
detection axis. In this configuration, the modulation 
happens within the depth of field of the detection objective. 
After the acquisition of 𝑁 patterns, an inversion problem is 
solved, resulting in the sample volumetric reconstruction.  

Furthermore, I illustrated how the use of patterned 
acquisition is compatible with Compressive Sensing, a signal 
analysis technique that reduces the number of modulation 
patterns to be acquired for a 3-dimensional reconstruction, 
compared to that given by the classical Nyquist-Shannon 
sampling criterion. This is achieved upon solving an ill-posed 
problem with further mathematical constraints which are 
related to the sample spatial features. The technique yields 
an accurate reconstruction of the sample anatomy even at 
significant compression ratios, up to compressed 
reconstruction in which only the 12.5% of the whole 
patterns set was used. Hence, the technique achieves higher 
volumetric acquisition rate, and eventually reduces 
photodamage on biological samples. In my PhD, I also 
demonstrated that the presented technique yields the 
absence of shadowing artifacts which are removed thanks to 
the broad spatial frequency support of an incoherent light 
source such as an LED.  

Finally, once I obtained a technique in which the volume of 
imaging was ultimately limited by the sensor dimensions in 
the thesis it is reported a computational strategy based on 
deconvolution to overcome the limited Depth of Field 
extension. This limitation in fact hinders the imaging of 
thicker samples.  
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In the last part of my PhD, I extensively tested the cited 
strategies altogether, to assess for the overall achieved 
performances in samples like Danio rerio, a biological model 
in developmental and ecotoxicological studies and Mus 
musculus, i.e., lab mouse, imaged in different imaging 
media, both in vivo and ex vivo. 
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SOMMARIO 
 

 

 

 

La microscopia a foglio di luce (LSFM), anche conosciuta 
come SPIM, è una tecnica di microscopia di fluorescenza che, 
dalla sua prima pubblicazione nel 2004, è stata sempre più 
usata per applicazioni biologiche, dalla biologia dello 
sviluppo all’ analisi di tessuti. Come alternativa alla LSFM, la 
microscopia a illuminazione selettiva di volume (SVIM), è 
stata recentemente sviluppata con l’obiettivo di aumentare 
ulteriormente la velocità di acquisizione. Come nel caso della 
LSFM, la SVIM usa un’illuminazione perpendicolare al ramo 
di acquisizione. In questa tecnica, piuttosto che illuminare il 
campione su di un singolo piano, il fascio di illuminazione è 
modulato su di un volume limitato. Inoltre, diodi a emissione 
di luce (LED), non sono di solito considerato come buone 
sorgenti per la microscopia a foglio di luce poiché loro 
mancanza di coerenza spaziale rende difficile focalizzare 
finemente la luce su di una singola dimensione. In ogni caso, 
l’uso di LED in microscopia di fluorescenza porta vantaggi 
come disponibilità cromatica, basso costo e presenza ridotta 
di pattern a macchie. 

Nel mio dottorato ho dimostrato come, dopo aver 
selettivamente illuminato una parte di campione con un 
LED, sia possibile ricostruirlo volumetricamente. La 
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modulazione volumetrica della luce è possibile grazie ad un 
modulatore spaziale di luce, che è accoppiato con 
un’illuminazione perpendicolare all’asse di raccolta. In 
questa configurazione, la modulazione è contenuta nella 
profondità di campo dell’obiettivo di raccolta. Dopo aver 
acquisito 𝑁 pattern, si risolve un problema inverso, che ha 
come risultato la ricostruzione volumetrica del campione. 

Oltretutto, Ho illustrato come l’impiego di pattern di 
acquisizione sia compatibile col Compressive Sensing (CS), 
una tecnica di analisi dei segnali che riduce il numero di 
pattern di modulazione da acquisire per una ricostruzione 
tridimensionale, rispettivamente al numero dato dal criterio 
classico di campionamento di Nyquist-Shannon. Ciò è 
ottenuto risolvendo un problema mal posto con ulteriori 
vincoli alla soluzione legati alle caratteristiche spaziali del 
campione. La tecnica apporta una ricostruzione accurata 
dell’anatomia del campione anche a compressioni 
significative, fino a ricostruzioni compresse in cui solo il 
12.5% dei pattern totali è stato usato. Quindi la tecnica 
raggiunge velocità di acquisizione più elevate ed ottiene 
infine un ridotto danno al campione da esposizione alla luce. 
Nel mio PhD, ho anche dimostrato che la tecnica presentata 
mostra un’assenza di artefatti d’ombra, che sono rimossi 
grazie all’ampio supporto di frequenze spaziali di una 
sorgente di luce incoerente come un LED. 

Infine, una volta ottenuta una tecnica il cui volume di 
imaging fosse in ultimo limitato dalle dimensioni del 
sensore, nella tesi è riportato una strategia computazionale 
basata sulla deconvoluzione per superare la limitata 
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estensione della profondità di campo. Questo limite, infatti, 
impedisce di esaminare campioni più spessi. 

Nell’ultima parte del mio dottorato, ho testato 
estensivamente nel complesso le sopracitate strategie, per 
quantificare le performance ottenute, in campioni come 
Danio rerio, un modello biologico per studi sullo sviluppo e 
sull’ecotossicologia, e come Mus musculus, topo da 
laboratorio, studiati in diversi mezzi di imaging, sia in vivo 
che ex vivo. 
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1 FUNDAMENTALS 
 
 
 
 

1.1 OPTICS AND THEORY 

1.1.1 Optical systems 
One of the most remarkable results in optics is the 
formulation of the resolution limit of an imaging system. This 
result has been obtained by Ernst Karl Abbe in 1873 and 
finds the smallest resolvable distance between two ideal 
point sources. It is expressed as function of the imaging 
wavelength and of the system capability of collecting light, 
represented by the so-called numerical aperture 𝑁𝐴. This 
fundamental limit can be written as: 

 𝑑 =  
𝜆

2 ⋅ 𝑁𝐴 
, 1.1  

and it varies accordingly to the imaging system geometrical 
and optical features, which are considered in its 𝑁𝐴. In fact, 
𝑁𝐴 = 𝑛 ⋅ 𝑠𝑒𝑛𝜃 , with 𝑛  being the refractive index of the 
imaging medium and 𝜃  being the half of the system 
maximum acceptance ray.  

However, 𝑁𝐴 determines the optical system response to an 
object not only in the lateral and axial directions, but it 
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affects the system response in the whole space. Let it be 
considered an microscope which is fed by fluorescence 
signal coming from a small point emitter: its characteristic 
behaviour in reply to such a stimulus is a fingerprint of the 
system itself and is the so-called Point Spread function (PSF). 
The Point Spread Function is one of the fundamental pieces 
involved in the process of image formation and it strongly 
influences how an object can be imaged.   

The PSF mathematically represents the output diffraction 
pattern of light coming from an ideal point source, evaluated 
at the image plane after being transmitted through the 
imaging system. Said imaging system can collect light only 
from a limited angular cone, determined by its 𝑁𝐴, which is 
then refocused at the image plane: this plane is in literature 
commonly referred to as xy plane. The limited light 
acceptance of any real system is such that it is practically 
impossible to recover a real point source. The light pattern 
that arises at the detection image plane is given by the 
interference of different converging light waves and is 
shaped as concentric rings which encircle a central bright 
peak [1]. The diameter of the most intense central peak is 
determined by the system 𝑁𝐴, and it is related to the system 
resolution, as specified in Eq. 1.1. The obtained diffraction 
pattern takes the name after George Airy and, when 
considering ideal optics, is symmetrical both in axial and 
lateral directions. Nonetheless, real lenses suffer from 
different aberrations, which may result in a non-symmetrical 
image distortion, thus, downgrading the achievable image 
quality.  
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The knowledge of Point Spread Function of an fluorescence 
microscope brings together many valuable information 
aside from spatial resolution. Knowing in fact functional 
deviations from the ideal scenario, it is possible to correct 
for such nonidealities thanks to post processing routines 
which will be next introduced. If the mathematical 
expression of the imaging system transmission function is 
known as ℎ(𝑥, 𝑦, 𝑧) , the process of image 
𝑖(𝑥, 𝑦, 𝑧) formation in a microscope can be formally 
described as a convolution between said function and the 
object spatial representation 𝑜(𝑥, 𝑦, 𝑧): 

𝑖(𝑥, 𝑦, 𝑧) = ∭𝑜(𝑥′, 𝑦′, 𝑧′) ℎ(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧 − 𝑧′) 𝑑𝑥′𝑑𝑦′𝑑𝑧′  

= 𝑜(𝑥, 𝑦, 𝑧)  ⊗ ℎ(𝑥, 𝑦, 𝑧), 

1.2  

where the PSF has been assumed to be linear and space 
invariant. The first condition implies that the image taken of 
two objects simultaneously present on scene is identical to 
the sum of the images of the single objects, whereas the 
second condition signifies that the PSF does not depend on 
the position of the object on the field of view [2].  

Known its spatial expression, the convolution operation can 
eventually be simplified if considered in the Fourier domain. 
In this domain in fact the spatial convolution is translated as 
a multiplication between the Fourier transform of the object 
and that of the PSF, so that: 

 

ℱ{𝑖(𝑥, 𝑦, 𝑧)} =  ℱ{𝑜(𝑥, 𝑦, 𝑧) ⨂ ℎ(𝑥, 𝑦, 𝑧)} 

 

𝐼(𝑢, 𝑣, 𝑤) = 𝑂(𝑢, 𝑣, 𝑤) ∙ 𝐻(𝑢, 𝑣, 𝑤) 

 

1.3  
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with 𝐼(𝑢, 𝑣, 𝑤)  representing the image frequency 
representation and 𝐻(𝑢, 𝑣, 𝑤)  the PSF Fourier transform, 
which is called Optical Transfer Function (OTF). Similarly as 
the PSF, the OTF explicit the response of the system to 
different spectral components [1]. Hence, an objective lens 
with infinite resolution would have unitary transmission for 
every frequency component. In practice, a real system acts 
as a low pass filter whose cut off frequency is directly related 
to its 𝑁𝐴.  

1.1.2 Deconvolution 
Deconvolution is a computational technique whose goal is 
increasing the image quality upon considering the system 
nonidealities. In the field of microscopy, deconvolution has 
been widely used to compensate for PSF aberrations or 
broadening [3] and for rejecting light from out of focus 
planes.  

Once the PSF is evaluated, either by theoretical simulation 
or by beads acquisition, Eq. 1.2 can be inverted to retrieve 
the imaged signal without, in principle, any loss introduced 
by the optical system. Being �̂� the restored sample spatial 
distribution, it holds:  

 
�̂� = ℱ−1 (𝐼(𝑢, 𝑣, 𝑤) ∙

1

𝐻(𝑢, 𝑣, 𝑤)
) 

1.4  

However, Eq. 1.4 is not solvable in this form since the Optical 
Transfer function 𝐻(𝑢, 𝑣, 𝑤), rapidly goes to zero, so that 𝐼 
cannot be divided by 𝐻. Furthermore, up to this point it has 
not been considered any form of noise, which might induce 
unwanted artifacts in �̂�. 
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Figure i: Axial cross-sections of simulated PSFs for (A) an ideal widefield setup; (B) 
same microscope in A) but with introduced aberrations; and (C) ideal confocal 
PSF [4]. 

A possibility to overcome this mathematical impasse can be 
shown by recasting the problem in a matrix form:  

 𝐢 = 𝐇𝐨 1.5  

Where 𝐢 and 𝐨  are vectors representing the spatial image 
and object representation, of size 𝑀, and 𝐇 is 𝑀 × 𝑀 sized 
convolution operator with the PSF. From Eq. 1.5, it is 
possible to obtain a solvable, ill-posed inverse problem, 
which therefore needs for a priori information on the 
possible solution to restore 𝐨. They have been proposed a 
variety of feasible algorithms, each of which has its own pros 
and cons, but none of them is generally preferred over the 
others, given the numerous possible conditions of use [4]. 
Finally, not only the solution depends on the chosen 
algorithm, but it also depends on the iteration parameters 
and starting conditions used in the reconstruction. 

1.1.3 Deconvolution algorithms 
As anticipated in the previous section, many possible 
solutions have been proposed throughout the years to 
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obtain image deconvolution, an exhaustive review of which 
is given in [5], together with their working principle. One way 
of presenting these algorithms is dividing them by the 
underlying working principle; this leads to two main types of 
deconvolution algorithms, namely deblurring and image 
restoration algorithms.  

To the first family they belong those methods which obtain 
cleaner images through noise rejection. This improvement 
can be achieved in different ways, but mainly by both 
considering the problem as a whole piece of information, 
(the so-called no-neighbours’ algorithms), or by considering 
the entire dataset as constituted by smaller, adjacent, piece 
of information (called nearest neighbours’ algorithms). In 
particular, this last class of deblurring strategies mitigates 
noise by dividing the starting volume acquisition into smaller 
chunks of 3 slices each. For each chunk of the volume, to the 
central slice it is subtracted both the previous and the 
sequent slice, thus obtaining a sharper image [6]. The 
procedure is completed once this operation is performed 
over every starting chunk. Differently to other families of 
deconvolution algorithms, deblurring methodologies do not 
take into consideration contribution of light coming from 
non-adjacent planes, making the restoration process 
computationally faster, but more subject to the introduction 
of artifacts or modification of pixels relative intensities.  

A second category of deconvolution algorithms is that of 
linear filters. In this category, incoming out of focus photons, 
resulting in background noise are assigned back to their 
original plane in the volume. Differently from deblurring 
algorithms, linear filtering preserves the image intensity, i.e., 
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the total number of photons acquired. One of the most used 
filters in image restoration is called Wiener filter, here, the 
object  �̂� is stepwise calculated as:  

  

 

�̂� = ℱ−1 (𝐼 ∙
𝐻∗

|𝐻|2 + 𝑘
), 

1.6  

where 𝐻∗ is the complex conjugate of the OTF, 𝐻 and 𝑘 is a 
reconstruction parameter which controls Signal to Noise 
Ratio (SNR). Despite being computationally simple and 
readily implementable, Wiener filtering might also output 
negative intensities, which may not be easy to handle.  

Alternatively, nonlinear deconvolution approaches are a 
valuable option in image restoration. Said restoration is 
pursued over multiple iterations in which, at each step, a 
guess for the image is convolved with a PSF model and then 
compared to the starting frame. To “compare” means that 
an error metric must be defined, to quantify how far is the 
algorithm for a correct convergence towards the solution. 
Again, the correct choice for error metric must suit the type 
of noise, namely its statistics, involved in the imaging 
process.  Usually in microscopy the experimental non 
idealities arise from shot noise, which follows a Poissonian 
statistics. For such condition,  a maximum likelihood error 
metric has been shown to be an effective choice [7]. Among 
the many implementation of nonlinear filters, of the most 
famous iterative step is shown in [8] and is often referred to 
as Richardson-Lucy (RL), taking the form: 
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�̂�(𝑡+1) = �̂�(𝑡) (
𝑖

�̂�(𝑡) ⨂ 𝑃𝑆𝐹
 ⨂ 𝑃𝑆𝐹∗), 

 

1.7  

where 𝑡 is the algorithm time step. With respect to other 
filters, a Richardson-Lucy iteration converges only to 
positive-valued images and it can reconstruct frequencies 
outside the Optical Transfer Function support but at cost of 
slow convergence. Nonetheless, RL performances can be 
greatly improved both in terms of convergence [9] and 
quality of the reconstructed image. The latter can be 

obtained by making a suitable initial guess of the object �̂�(1), 
which might be made from the raw experimental data or 
from a pre-processed result (with a linear filter, for 
example). Finally, non-linear deconvolution behaviour 
strongly depends on the object structure and on the 
accuracy of the PSF model used. In particular, frequency 
component outside the OTF support, which might be 
restored by the RL algorithm, can induce artefacts as well as 
shrinking in the restored image. Conversely, an inaccurate 
PSF in Eq. 1.7 will cause a failure in the reconstruction result.  

To this aim, a third family of deconvolution approach has 
been proposed to tackle those situations in which an 
accurate PSF is difficult to model or measure, said family is 
that of blind deconvolutions. These methods, instead of 
processing object and PSF as two distinct elements, solve for 
the most likely combination of the two for a given dataset.  
However, for a better time performance and convergence, 
this last family of algorithms strongly needs for some a priori 
information either on the object or on the PSF. In the 
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presented thesis work, a Richardson-Lucy approach will be 
considered since a simulation of the PSF can be performed. 

As a final remark, when considering the possible, feasible 
algorithms for a given deconvolution problem, it must be 
considered that this choice strongly determines the 
outcome in terms of SNR, resolution, computational time, 
and resources needed, making this choice crucial.   

1.2 LIGHT SHEET FLUORESCENCE 

MICROSCOPY 
Light Sheet Fluorescence Microscopy (LSFM) is a 
fluorescence microscopy technique that, since its 
publication in 2004 [10], has been proven to be a valid tool 
for a variety of biological studies, form ecotoxicology [11] to 
developmental biology [12], from single cell specimens [13] 
to whole organisms [14]. These studies in fact often deal 
with large light sensitive samples, that need a gentle imaging 
approach at high resolution which could be easily repeated 
over time.  

This second part of the thesis has the goal of introducing the 
working principles of LSFM, focusing on its main advantages 
and drawbacks compared to other commonly used 
fluorescence microscopy techniques. To this aim, a detailed 
analysis of its hardware implementation and optical 
performances are proposed. This section will also be helpful 
to put the theoretical basis of the developments in the 
technique which are the topic of this work. 
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1.2.1 Working Principles 
LSFM historically finds its founding concepts in a technique 
named “ultramicroscopy”, presented by Richard Adolf 
Zsigmondy and Henry Siedentopf in 1902.  In an 
ultramicroscope, a solution of colloidal gold is illuminated 
from the side by light directly focused from the sun; the 
resultant scattering figured is then orthogonally detected. 
The technique presented in this first section is named after 
its distinguishing feature, namely the thin plane of light. 
Such plane of light is used to excite fluorescence emission in 
a biological sample, which is consequently optically 
sectioned. For this reason, Light Sheet Fluorescence 
Microscopy can be referred to also as Selective Plane 
Illumination Microscopy (SPIM). Once emitted, the signal is 
collected by an optical detection system which is orthogonal 
to the incoming light sheet, as in the 1902 ultramicroscope. 
The mutually orthogonal spatial arrangement of the 
illumination and detection subsystems is indeed another 
fingerprint of LSFM. In the considered configuration, the 
excitation beam is spatially localized to a narrow plane, 
which is entirely imaged onto the sensor at a given time. 
Altogether, the excitation confinement and the orthogonal 
detection path grant intrinsic optical sectioning to the 
technique, i.e., intrinsic capability of distinguish adjacent 
planes one from the other. SPIM spatial design is such that 
illumination and detection systems do not overlap, being 
one of the main differences with more widespread 
epifluorescence techniques, confocal or multiphoton 
microscopes for example. 
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A sketch of typical LSFM setup is displayed in Figure ii. The 
easiest way to obtain light focusing over a single line is in fact 
using a collimator cascaded with a cylindrical lens. At a 
distance equal to the focal length of the cylindrical lens, it is 
placed a sample chamber, which usually contains both 
sample and imaging medium.  The illumination light sheet 
profile is determined by both the collimated beam diameter 
and the lens optical power and must be designed according 
to the desired volume of imaging: thicker light sheets are 
well suited for larger sample, whereas narrower and more 
diverging light profiles match smaller samples. The 
fluorescence signal is focused by an objective and a tube lens 
onto a surface sensor, usually a Charge Coupled Device 
(CCD), so that the detection optical axis is orthogonal to the 
incoming excitation beam. To reject scattered photons, a cut 
band filter is usually placed in between objective and tube 
lens. The design of a LSFM must be such that the illumination 
waist coincides with the focus of the objective lens.   

For its one-shot acquisition of a whole plane of the sample, 
LSFM is often used to image a three-dimensional volume and 
it can be performed in several ways. The simplest way to 
perform volume scanning is to rigidly move the sample 
across the light sheet by means of a controlled translation 
stage: the motion could eventually result in shocking the 
sample and thus introducing unwanted specimen 
movement or signal translation. To avoid any possible shock, 
a gentler approach provides for the motion of the light sheet 
instead of the sample. This can be obtained by using a 
galvanometric mirror, a swinging reflective surface, that 
according to an input voltage shifts plane of illumination and 
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an electrotuneable lens, which accordingly changes its 
optical power so that the light sheet (i.e., the imaged plane) 
is always in focus at the detector plane. Said approach has 
been proposed by [15]. Another possible strategy to obtain 
motionless volumetric imaging is that of translating the light 
sheet within an extended Depth Of Field (DOF). Once again, 
said extension can be performed in a variety of ways, which 
can involve the presence of a known phase shift in the back 
focal plane of the detection lens or the introduction of 
determined optical nonidealities, namely spherical 
aberrations [16].  

Despite being a strong improvement in a LSFM setup, 
defocus-based methods bring together many disadvantages. 
This methods in fact have the detection point spread 
function delocalised along the propagation axis, therefore 
notably reducing the optical efficiency of the collection. On 
top of that, a larger extension in the DOF implies a bigger 
loss of higher spatial frequencies, causing a loss of resolution 
of the system. Nonetheless, augmenting the volume of 
imaging through rotating mirrors and DOF extension has 
been widely used in literature, due to its relatively easy 
implementation. 
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Figure ii: Light sheet fluorescence microscopy optical setup [11]. 

As introduced in the previous section, the peculiar design of 
Light Sheet Fluorescence Microscopy is such that a whole 
plane is illuminated and consequently acquired at a time. 
This feature, together with intrinsic optical sectioning, 
enables faster volumetric acquisition of a sample, without 
notable losses in resolution.  

The laser confinement in a narrow plane is one of the major 
differences with other point scan microscopy techniques, in 
which the imaging of the sample is obtained by raster 
scanning the illumination spot over the area of interest, 
implying a slower acquisition. On top of a faster image 
acquisition, LSFM also improves the efficiency in the 
illumination process. In point scanning microscopy in fact, 
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fluorescence signal is excited by a cone of light that non 
selectively illuminates the sample whilst the one point at the 
focus of the detection objective is being imaged [17]. This 
results in an unnecessary illumination of portions of 
specimen which may end up contributing to background 
noise or being photobleached, as depicted in Figure . LSFM, 
by confining light on a plane which is conjugated to that of 
the surface sensor, efficiently harvest information from the 
sample, making it a good candidate with respect to point 
scanning approaches when dealing with in-vivo, three 
dimensional samples.  

 
Figure iii: Difference in light focusing in illumination and detection in a confocal 
microscope(A) and in light sheet microscopy (B) [12]. 

It has been discussed how the excitation sheet enables an 
efficient photon harvesting from volume of interest, but how 
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does it affect the optical imaging of said volume? Or better, 
what are LSFM axial and lateral resolutions? As presented in 
the first section of this thesis, given the excitation 
wavelength and the 𝑁𝐴  of the detection objective, the 
lateral resolution is easily calculated by equation 1.1. which 
is rewritten in terms of the minimum resolvable distance ∆𝜌 
between two ideal points emitters at 𝜆𝑒𝑚 and a detection 
lens of 𝑁𝐴𝑑𝑒𝑡:  

 ∆𝜌 =  
𝜆𝑒𝑚

2 ⋅ 𝑁𝐴𝑑𝑒𝑡
 1.8 

From Eq. 1.1 it is clear how, to increase resolution, one could 
think either of reducing the emission wavelength of the 
markers or increasing the numerical aperture of the 
objective lens. While working with shorter wavelength 
fluorophores in biological samples is not always feasible due 
to autofluorescence or high absorption, it might be 
convenient to work at higher 𝑁𝐴. It is nonetheless true that, 
by doing so, one would obtain an increased resolution, but 
it would also cause a reduction in the field of view (FOV) of 
the system, making it not always convenient to choose 
higher 𝑁𝐴 objectives.  

Furthermore, whenever acquiring any kind of signal, this 
must be correctly sampled by the sensor, making it possible 
to effectively reach Abbe’s limit. CCD sensor are in fact 
divided in little pixels which, for their limited spatial 
extension, might end up cutting high spatial frequencies 
from the incoming scene. This happens when the spatial 
extension of a single pixel is bigger than that of a point 
source imaged on said pixel: this would result in an under 
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sampling of the scenery, preserving low frequencies 
component and rejecting higher frequencies.  The correct 
way to tailor the pixel size according to the wanted lateral 
resolution is given by the called Shannon-Nyquist theorem 
which states that, a point emitter must be sampled at least 
by two pixels or, equivalently, that the sampling frequency 
must at least double that of the sample; in formula this 
means:  

 𝛿𝑝𝑖𝑥𝑒𝑙 = 
𝜆𝑒𝑚

4 ⋅ 𝑁𝐴𝑑𝑒𝑡
 1.9 

which ensures correct spatial sampling.  

The lateral resolution of LSFM quantifies the capability of 
distinguishing two nearby objects along a plane which is 
parallel to that of the light sheet, whereas axial resolution 
marks the same quantity but on an axis parallel to that of the 
detection and therefore perpendicular to that of the lateral 
resolution. Considering that a fluorophore emits only if 
excited and that the axial profile of the light sheet is equal to 
its thickness, it follows that the minimum axial resolvable 
distance is this parameter. 

As previously said, the easiest way to obtain a light sheet 
illumination is to focus a collimated laser source with a 
cylindrical lens whose output is a Gaussian shaped profile, as 
depicted in Figure iv. 
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Figure iv: Gaussian beam intensity profile. The Rayleigh length 𝑥𝑅  is defined as 
the distance from the minimum beam waist 𝑤0  for which the beam intensity 

increases of a factor √2. 

A Gaussian profile along a direction of propagation 𝑥  is 
mathematically described as: 

 𝑤(𝑥) =   𝑤0√1 + (
𝑥

 𝑥𝑅
)
2

 1.10 

with 𝑤0 being the beam waist and 𝑥𝑅 being the interval in 

which the beam assumes a dimension which is √2𝑤0 and is 
called Rayleigh length. It also holds a mathematical relation 
between the minimum spot size of a Gaussian beam and its 
persistence length, namely: 

 𝑥𝑅 = 
𝜋𝑤0

2

𝜆
  1.11 

Eq. 1.10 and 1.11 highlight the mathematical relation 
between and 𝑥𝑅: the smaller the beam waist, the faster the 
divergence of the beam. In other words, if in a light sheet 
microscope, one wants to obtain high axial resolution, i.e., a 
small beam waist 𝑤0, a smaller imaging region 𝑥𝑅 must be 
considered. 
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The beam waist size 𝑤0is geometrically determined by the 

illumination optics, it holds in fact that 𝑤0 ∝
𝜆

𝑁𝐴𝑖𝑙𝑙
, from 

which it can be inferred that 𝑥𝑅 ∝
𝜆

𝑁𝐴𝑖𝑙𝑙
2 . From these 

relations, it can be seen how by increasing 𝑁𝐴𝑖𝑙𝑙 , 𝑥𝑅  
drastically decreases. Said 𝑧 the axis, which is perpendicular 
to the sensor plane, in LSFM narrower light sheet profile is 
along 𝑧, meaning that the axial resolution of the system is 
given by the Gaussian profile beam waist:  

 Δ𝑧 ~ 𝑤0. 1.12 

When designing an optical light sheet microscope, the light 
sheet persistence length must be such to evenly illuminate 
every region of the imaged plane at a convenient resolution. 
Furthermore, the light sheet profile must match the sensor 
dimension so that the wanted axial resolution is obtained all 
over the Field Of View.  

To conclude, LSFM can achieve lateral resolutions that are 
comparable with those of epifluorescence microscopy, but 
such performances are obtained with a stronger light 
confinement which results in a stronger background 
rejection and a more efficient usage of excitation photons 
compared to Laser Scanning Confocal Microscopy [18]. 
Furthermore, LSFM provide a significant improvement in 
axial resolution and imaging speed if compared to 
epifluorescence techniques.   

Despite being a valid alternative in most in vivo experiments, 
LSFM suffer from intrinsic limitation given by its design. The 
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coherence of incoming light together with the mutual 
orthogonality between illumination and detection 
subsystems are such that the final acquired image may 
present long shadowing artefacts which arise from 
absorbing and scattering centres on the sample itself. Said 
artefacts can be easily spot as long dark stripes parallel to 
the light sheet, similarly to what it can be experienced in 
everyday life. 

In second place, imaging deep inside biological tissues with 
a limited density of energy might degrade the acquired 
images quality. These, in fact, are going to show higher signal 
to noise ratio if taken of a part of the sample facing the 
detection objective. Conversely, photons coming from the 
back of the same sample are more likely, due to the longer 
path in the tissue, to incur into scattering or absorbing event, 
deteriorating the frame contrast. As well as the fluorescence 
photons, despite its high degree of the coherence, also the 
illumination light sheet might be downgraded by imaging 
part of the sample which are further away from the 
illumination objective.  

Imaging thicker, larger samples without incurring in the 
presented nonidealities, is the main goal of this thesis work. 
In the next sections few implemented methods will be 
described to obtain high resolution volumetric imaging in 
mesoscopic sized biological samples. 

1.2.2 Light Sheet Engineering 
A crucial point to consider when designing a Light Sheet 
Microscope is axial resolution. This in fact is determined by 
the light sheet thickness. As described in the previous 
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sections, the narrower the illumination beam waist (i.e., the 
bigger the 𝑁𝐴𝑖𝑙𝑙 ), the higher the beam divergence. This 
trade-off between axial resolution and Field Of View 
extension puts a strong constraint on LSFM use. However, in 
literature they have been proposed few methods to achieve 
higher axial resolution over an increased volume. A possible 
approach is that of using non-diffractive beam profiles, such 
as Bessel beams, which have been extensively studied for 
their longer persistence length and self-healing properties 
[19].  

Having an intensity profile as that of the homonym function, 
Bessel beams critically suffer from the presence of 
significant side lobes, which altogether worsen the 
sectioning capability, the image contrast and unnecessary 
light damage induced to the sample which may result in 
further, unwanted external stimuli or photobleaching.  
Again, it is easy to find in literature a way to overcome said 
drawbacks: from side lobes suppression through different 
beams superposition [20] to parallel multiphoton 
illumination [10]. In this last approach, the use of multiple 
Bessel beams prevents the sample from being illuminated by 
high intensity fields, which are typical of multiphoton 
strategies. Finally, a remark is made on Airy beams, which 
outperform Gaussian beams in terms of persistence length 
and resiliency to perturbation. Airy beams, despite being 
easily implemented, nonetheless imply a big effort in data 
reconstruction [21].  

A further paragraph is dedicated to super resolved Light 
Sheet Microscopes, in which a sub diffraction excitation light 
sheet is produced in a way that mimics Stimulated Emission 
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Depletion microscopy (STED). In this technique, an initial 
laser pulse depletes by stimulated emission (SE) all the 
fluorescent states of molecules located in the excitation 
focal plane, except for a central point, resulting in a torus 
shaped region. Thus, the central spot is photo-activable by a 
second laser pulse. The dark state saturation of molecules 
gives rise to a strongly non-linear response which leads the 
formation of an emitting region engineered to be smaller 
than Abbe’s limit. Analogously to STED, Light Sheet 
Fluorescence Microscopy has been also proven to bypass 
the diffraction limit. In this context, the number of axis along 
which super resolution is achievable is given by the number 
of light sheets simultaneously shining the sample [22]. 
Despite being relatively similar in terms of working principle, 
STED and super resolved LSFM strongly differ when 
considering the involved energy density: the latter in fact 
needs a lower photon density. Lower energies result in a 
slower molecule switch time, which is best suited for in vivo 
experiments. Furthermore, super-resolved LSFM has 
achieved a 60% enhancement in axial resolution, compared 
to its diffraction limited counterpart [23].  

To this point, they have only been considered those methods 
which extend the region of best axial resolution through light 
shaping. however, it is also possible to increase the light 
sheet persistence length by, for example, changing the 
optical power of an electrotuneable lens [24] or 
synchronizing the translation of the illumination optics with 
the line acquisition of the camera [25]. This dynamic use of 
light focusing is such to output a light profile which is 



Selective Volume Illumination Microscopy 

 

 22 

effectively narrower over a longer distance, without 
inducing side lobes or further unwanted effects.  

1.3 SELECTIVE VOLUME 

ILLUMINATION MICROSCOPY 
Despite the major advantages discussed in the previous 
section, LSFM is not the best solution when fast imaging over 
a large volume is needed. In many cases, it is fundamental to 
be able to follow at high resolution, fast dynamics over a 
large area: in these situations, a thin light sheet might not be 
enough. To this extent, Selective Volume Illumination 
Microscopy (SVIM) is a possible alternative to Light Sheet 
Fluorescence Microscopy. Firstly, the two techniques are 
both characterised by detection and illumination path 
mutually orthogonal, giving an intrinsic optical sectioning 
and a faster acquisition with respect to raster scan 
approaches.      

Furthermore, in SVIM, the sample is illuminated by an axial 
profile that lies in a confined volume, so that every acquired 
image is given by a weighted sum of the incoming 
fluorescence contribution from the different modulated 
planes. After the raw data acquisition, a 3D reconstruction 
of the imaged volume can be obtained. SVIM has been 
proven to further increase the acquisition rate, without loss 
in resolution, when compared to other microscopy 
techniques  [26]. On top of this, the excitation profile can be 
modulated according to the sample spatial features, without 
losing sectioning. Structured volume illumination has been 
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demonstrated to be less phototoxic and, to equivalently 
obtain single plane volumetric reconstruction [24]. 

1.3.1 The Technique 
LSFM, by single plane illumination, directly images light 
coming from that plane onto the sensor, yielding a sectioned 
volume acquisition without the need for reconstructions.  
Having the volume sequentially sampled by a scanning light 
sheet or by a moving stage implies that the different parts of 
the specimen are acquired at different times. Moreover, the 
time taken for a whole scan is longer than the time scale of 
many biological phenomena of interest, resulting in a loss of 
information or, at best, in a distorted acquisition. From here 
it is clear how the need for simultaneous 3D acquisition 
techniques has arisen.  

A possible answer to this troublesome demand is depicted 
in Figure v, where it is shown the working principle of Light 
Field Microscopy (LFM). In this technique, volumetric 
information is simultaneously acquired by shifting the image 
plane onto a micro-lens array, which operates differently on 
light coming from different depth of the sample. Once a 2D, 
depth encoded light field is acquired by a standard CCD 
camera, the original signal distribution is recovered after 
solving a fully determined inverse problem [27].   

Being directly derived from wide field microscopy, LFM 
shares its main drawback: namely unnecessarily exposing 
part of the sample which are not imaged yields a weak 
rejection to out-of-focus background signal.  
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Figure v: Typical setup of Light Field Microscopy: a magnified image of the sample 
(S) from the focal plane (F) to the image plane (IP) using an objective lens (OL,) 
and tube lens (TL). In the image plane is placed a micro-lens array (LA), encoding 
3D image information into a 2D light-field image (LF), which is captured by a 
planar detection camera (C) [26]. 

Analogously to what previously described for point scanning 
epifluorescence techniques, a possible way for reducing 
photodamage and efficiently harvest incoming fluorescence 
is that of illuminating orthogonally with respect to the 
sensor plane. The analogy in the approach, together with the 
presented benefits, grants SVIM a higher noise rejection, 
higher contrast, and intrinsic faster acquisition.  

In the presented work, it is presented a technique which is 
similar to SVIM, but it is not aimed at synchronous 
acquisition of a whole volume. It is instead implemented so 
to exploit structured illumination. Such technique takes 
advantage from a set of different modulated illumination 
patterns to formulate an inverse imaging problem which 
enables optically sectioned reconstructions from non-
sectioned acquisition. Furthermore, in the next sections it 
will be introduced a signal processing technique which can 
lower the amount of data needed for a lossless volumetric 
reconstruction, intrinsically reducing the light dose shining 
the sample.  Lastly, the imaging approach discussed sets its 
capability of optically sectioning the sample by acquiring 
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patterns with increasing spatial frequencies, resulting in an 
overall axial resolution inevitably limited by the maximum 
acquired spatial frequency. 

 

 
Figure vi: Schematic representation of the main operating difference between 
LSFM (a) and SVIM(b) [28]. 

The core of the idea is shown in Figure vi: instead of 
confining incoming excitation light only in a single plane as 
in LSFM, in SVIM a surface sensor acquires information 
coming from different planes at a given frame. Different 
depths are encoded in different frames in LSFM, while this is 
not true in SVIM. Here in fact the spatial distribution of the 



Selective Volume Illumination Microscopy 

 

 26 

sample is reconstructed by mixing depth and time 
information during the acquisition.  Such modulation has 
been proven to both increase axial [29] and lateral 
resolution [30]. Within the presented context, many 
possible modulation patterns have been proposed, each of 
which with its own pros and cons: this will be disserted in the 
next section together with their hardware implementation.  

As presented for the first time by Truong et al. in [26], 
Selective Volume Illumination Microscopy finds its strength 
in its speed, which is twice as faster as that achieved by a 
custom LSFM setup, on a given 100 𝜇𝑚 sample volume. The 
improvement in speed however comes at a cost which is 
lower axial resolution compared to LSFM. 

Even if the axial resolution can be greatly increased by 
reducing the volume of interest, as displayed in Figure vii, 
still SVIM is no match compared to LSFM; nonetheless 
selective illumination grants higher contrast and stronger 
resiliency to out of focus signal than those provided by LFM. 

Despite being a valuable alternative for fast 4D imaging in 
vivo, SVIM is also well suited for further implementation 
which may take advantage for the custom spatial 
modulation obtained at the sample plane. As described in 
detail in the next section, said feature opens to a numbers 
of possible reconstruction protocols which can lead the 
acquisition to be even more compatible to photo sensible 
samples. 
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Figure vii: Qualitative comparison of the results obtained when imaging the head 
of a zebrafish with SPIM, SVIM with increasing volume thickness and LFM 
showing the degrading of the resolution and the increasing of the out-of-focus 
background [24]. 

1.4 THEORY OF COMPRESSING 

SENSING 
In many fields, the concept of signal acquisition is often 
coupled with that of compression. For example, by acquiring 
an image with a cell phone camera, what is stored is a matrix 
of raw data, whose values correspond to those acquired by 
the sensor pixels. Such matrix might show up to millions of 
values, according to the characteristics of the sensor used 
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and it might take megabytes of memory to store it.  When 
storage is a scarce resource and it is limited, compression 
might come to help. The aim of compression in fact is that of 
reducing the number of resources needed to store 
information, without, ideally, losing any piece of it. Since 
1992, with it was first published, one of the most widespread 
compression algorithms is the JPG or JPEG, in which an 
image is transformed by a Discrete Cosine Transform (DCT) 
or wavelet transform, and then is stored by discarding the 
non-zero coefficient, which do not carry information in the 
transformed domain. 

In this sense, Compressed Sensing (CS) further generalises 
the concept of mathematical compression of a discretized 
sampled signal. CS aims at seizing only those pieces of signal 
which carry valuable information, by limiting the number of 
acquisitions involved in the process. Due to its general 
mathematical basis, CS has found applications in the years in 
many scientific and commercial fields such as x-ray 
computed tomography [31], magnetic resonance imaging 
[32], [33], THz spectroscopy [34], [35], electron microscopy 
[36], [37], radar imaging [38] and astronomy [39]. 

Each of said fields of application, has its own acquisition 
strategy, and their benefits from a compressed sampling 
strategy may vary with it. In fluorescence microscopy, a 
reduced number of measurements leads to a lower number 
of photons shining the sample, implying a major advantage 
when dealing with living, biological specimens. Along with 
photobleaching mechanism of fluorescent molecules and 
tissue damage, in developmental studies it is also crucial not 
to induce any photo-related shock to the sample [40]. To this 
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extent, many works have been published on the use of CS to 
speed the acquisition up at a fixed SNR, and therefore 
increasing the temporal resolution of a fluorescent 
microscopy technique, making it a good candidate for 4D 
imaging as in the case of interest for developmental studies. 
As a final remark, CS has been reported to improve 
fluorescence lifetime and hyperspectral imaging.  

For the sake of completeness, in this section it will be given 
an overview of the theoretical principles beyond 
Compressive Sensing and it will also be discussed how it 
might be implemented in different experimental conditions, 
with regards to one of its most known application: Single 
Pixel Camera (SPC). Nonetheless, in the next sections it will 
be described how CS was implemented in this thesis work, 
putting together ideas from different techniques.  

1.4.1 Ill-posed problems 
In the condition in which it is wanted to sample a quantity 
𝝌 ∈ ℝ𝑛  through a measurement routine, this can be 
represented as a matrix Φ ∈ ℝ𝑚×𝑛. The vector 𝝌 might be 
intended as any signal, and in the latter, it will be referred to 
as an image vector, but for the moment it will be considered 
as a generic vector made by 𝑛 components 𝜒𝑖. 

The matrix Φ represents the sampling process in the sense 
that any of its row vectors 𝝓𝑗 ∈ ℝ𝑛  represents a 

measurement in that given base. Conversely, the column 
vectors contain the encoding rule with which the 
information enclosed in 𝝌  are translated in what is 
measured, namely the vector 𝝃 ∈ ℝ𝑚. Formally, the scalar 
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product between the sampling vector 𝝓𝑗 and the unknown 

signal 𝝌 is equal to the measured 𝑗𝑡ℎ entry of the vector 𝑦: 

 𝜉𝑗 = 𝝓𝑗 ∙ 𝝌 = ∑𝜙𝑖𝑗𝜒𝑖

𝑛

𝑖=1

           𝑗 = 1,… , 𝑚 1.13  

In this form, Eq. 1.13 can be recast as 𝝃 = Φ𝛘, which is a 
linear equation that considers all the 𝑚  measurements. If 
the sampling matrix Φ is of the highest rank, namely it is 
made by linearly independent vectors (which therefore 
constitute an orthonormal basis of the sampling space) and 
the number of measurements 𝑚  equals the number of 
components of the unknown signal vector 𝝌, i.e., 𝑚 = 𝑛 , 
the problem 𝝃 = Φ𝛘 is said to be fully determined and has 
only one unique solution. Said condition is named well-
posedness. Experimentally, this condition is almost never 
achievable, since not every component of the signal 𝝌 might 
be measurable due to noise or inaccuracies, or simply by 
experimental signal fluctuations. 

Let it now be considered the case in which, differently from 
Eq. 1.13, an unknown, general noise term 𝜂 is perturbing the 
experimental system. In this condition, the linear sampling 
problem shows an additive noise term 𝝃 = Φ𝛘 + 𝜂 . If for 
example the noise term is such that 𝜂 ∼ 0 , then, for 
continuity this also means ‖𝝃 − Φ𝛘‖ ∼ 0, meaning that in 
small noise regime, the distance between the measured 
vector 𝝃 and the model Φ𝝌 tends to be small. In practice, 
with the term “distance” it is meant the Euclidean distance, 
namely the 𝑙2 -norm, so that finally the wanted unknown 
signal 𝝌 will such to optimize the following:  
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min(∑|𝜉𝑗 − (Φ𝛘)𝑗|
2

𝑚

𝑗=1

)   or   min(‖𝝃 − Φ𝛘‖𝑙2
2 ). 

 

1.14  

A generic 𝑙𝑝-norm is defined by (∑|𝜒𝑖|
𝑝
)
1 𝑝⁄

, hence easily 

giving meaning to the case 𝑝 = 2 , which was previously 
cited.  

Having a well-posed problem simplistically means that to 
each unknown parameter corresponds a sampled value. 
Together with this correct sampling situation, it might occur 
to have either an over sampled or an under sampled 
problem which is also called ill-posed (Figure viii). 

Undersampled problems will be largely presented in the 
next sections due to their importance in the CS theoretical 
framework. As a matter of completeness, oversampling an 
unknown signal 𝝌 (meaning that more measurements are 
taken with respect to the signal parameters) could be of help 
when dealing non-idealities, i.e., putting more constraints to 
the linear problem 𝝃 = Φ𝛘 + 𝜂   than needed.  However, 
despite mathematically speaking there is no downside in 
solving an oversampled problem, in a real-world scenario 
this might imply an overexposure of the sample to light as 
well as other unwanted situations. Thus, one might be 
willing to undersample an unknown signal more than 
oversampling it.  That is the reason why here it is discussed 
the case in which 𝝌  is sampled by an under-dimensioned 
measurement routine (i.e., 𝑚 < 𝑛). It will also be discussed 
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how and in what conditions the undersampled vector can be 
reconstructed and the entity of the reconstruction error. 

 
Figure viii: Schematics for a determined, over-determined and ill-posed problem. 

1.4.2 Regularisation 
Solving a linear problem with fewer constraints than those 
needed means that there is no mathematical guarantee 
about neither the existence nor about the uniqueness of the 
solution. A common strategy to overcome these problems is 
enforcing further constraints on the solution itself; for 
example, by assuming it to be of some analytical form or 
subject to a priori information. These assumptions result in 
a process called solution regularization. For the intrinsic 
nature of the problem, there is no such regularisation 
method that can be blindly applied to any problem. In the 
following, they will be briefly discussed the two most 
important regularisation strategies.  
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A possible approach when optimizing the residual of a least 
square term may be to enforce it to behave in a particular 
way: among many possible choices, it can be chosen that 
solution 𝑥 so that its Euclidean norm is minimized, namely 
∑‖𝜒𝑖‖

2 ≡ ‖𝝌‖𝑙2 . Said condition can be analytically 

constrained by adding a penalty term to Eq. 1.14: 

 

 

min(‖𝝃 − Φ𝛘‖𝑙2
2 + 𝜆‖𝝌‖𝑙2

2 ), 

 

1.15  

where, 𝜆 is a tuneable parameter which can strengthen or 
weaken the regularisation effect, for example by reducing 
the formulation to a least-square minimisation if 𝜆 = 0. This 
approach, for historical reasons, has been given different 
names, among which the most widely used are Tikhonov 
regularization, ridge or 𝑙2-norm regression. 

In Eq. 1.15, both the data fidelity and the regularizer term 
are expressed as 𝑙2-norms. Computationally speaking, this 
norm is calculated after a matrix inversion, which is also 
performed with means of optimisation algorithms, making 
this choice inconvenient. Linear least-square problems 
belong to the category of convex problems, i.e., those 
problems in which a local optimum is also a global optimum. 
This also holds for their 𝑙2- and 𝑙1-regularized formulations. 
Moreover, it can be shown that the 𝑙1 -norm, defined as 
∑‖𝜒𝑖 ‖ ≡ ‖𝝌‖𝑙1 , is the smallest order norm that implies 

convexity of the problem [41]. One may wonder what would 
happen then by replacing the 𝑙2 with another convex norm, 
namely the 𝑙1-norm in Eq. 1.15. This replacement would be 
formulated as:  
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min(‖𝝃 − Φ𝛘‖𝑙2
2 + 𝜆‖𝝌‖𝑙1). 

 

1.16  

Using as regularizer a norm which is the sum of absolute 
values is such that there is no closed-form solution to Eq. 
1.16. Hence, to solve a 𝑙1-regularized linear problem, one 
can follow many different computational approaches, out of 
this thesis reach, such as gradient-descent [42] or conjugate-
gradient [43] methods. 

A remarkable outcome of using 𝑙1 -norm is that the so 
obtained solution will be 𝝌 which shows the smallest sum of 
its components 𝜒𝑖  absolute values. This last behaviour can 
be demonstrated to imply maximum sparsity of 𝝌. In other 
words, a sum of absolute values regularizer enforces the 
solution to have only a few of its entries non-zero, thus 
selecting 𝑛𝑠  components and dropping the remaining 𝑛 −
𝑛𝑠 . In literature, the 𝑙1 -norm is also known as lasso-
regularization (“least absolute shrinkage and selection 
operator”) or basis pursuit [44] [45]. Its convex formulation, 
due to its link to vector sparsity, has strongly encouraged 
signal compression strategies as Compressive Sensing. 

As a final remark, the ideal regularisation to enforce sparsity, 
i.e., compressibility in the solution would be that 
regularisation which minimizes the number of non- zero 
parameters of the solution vector, which is mathematically 
expressed as ∑‖𝜒𝑖‖

0 ≡ ‖𝝌‖𝑙0 . By considering this 

regularisation term, together with the same data fidelity 
term based on the Euclidean distance between 𝝃 and Φ𝝌,  
the problem would be recast as:  
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min(‖𝝃 − Φ𝝌‖𝑙2
2 + ‖𝝌‖𝑙0). 

 

1.17  

As anticipated however, the smallest norm to show 
convexity of the solution is 𝑙1 , meaning that 𝑙0 -
regularization would not grant for a global solution. 
Technically, 𝑙0 is not even a norm since it lacks homogeneity.  
Nonetheless, the solution obtained after solving a signal 
recovery problem in the form as Eq. 1.16, i.e., with a 𝑙1 -
regularizer, can be considered formally equivalent to those 
in principle obtainable with Eq. 1.17 [46]. From this section 
on, due to its easier formalism, a  𝑙1 regularisation term will 
be considered, if not specified differently. 

1.4.3 Sparsity, compressibility, and 
incoherence 

As highlighted in the previous section, 𝑙1 -norm has been 
intensively studied for its capability of enforcing sparsity in 
the solution of an underdetermined problem. A signal is said 
to be sparse in a specified representation basis if its 
discretized form only shows few non-zero coefficients. 
However, in signal compression, there could be some 
threshold value below which a particular coefficient can be 
neglected, therefore introducing a loss, although small, of 
information. From what said, a signal can be compressed 
only if some of its parameters are needed for an accurate 
reconstruction. This means that, considering a linear map W 
which represents the unknown signal 𝝌 in a new basis, as 
𝝌 = W𝝍, the curve of sorted coefficient of 𝝍 decays rapidly 
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[47]. Trivially, a different transformation rule determines 
different degree of sparsity of the represented signal 𝝍. 

To this extent, a good representation basis to enforce 
sparsity in real world image has been of strong interest in 
the field of image processing: from this interest, the so called 
wavelet basis is an established standard in compression 
allowing the patent of JPEG-2000 algorithm [48]. JPEG, 
involving a discard in information, is a lossy reconstruction 
algorithm.  

To this point, there has not been any distinction between 
compression and compressed reconstruction, but the two 
signal processing strategies differ. The first case holds when 
the signal of whatever nature is known, and one wants it to 
be encoded in the smallest amount of data 𝝍. Conversely, 
the latter situation holds when an underdetermined set of 
sampled values is the starting point, and what is wanted is 
the unknown object of which the measurement has been 
taken. Hence, the signal is restored after taking less 
measurement than those needed in classic signal recovery 
procedures: this is Compressed Sensing.  

Let it be considered for the sake of simplicity the situation in 
which the starting dataset is a picture taken of a night sky. 
Here, the signal of interest is the star distribution. Of course, 
the pointy light sources are well separated and can be easily 
acquired by the many pixels of the camera sensor. In this 
scenario, the signal is already sparse in its former space, 
there is no need to represent it through a transform matrix 
W, as depicted in Figure ix. W would be ideally an identity 
matrix 𝐼 (or, more accurately identity matrix convolved with 
the PSF of the imaging system). Nonetheless, many natural 



Theory of Compressing Sensing 

 

 37 

images if expanded in an appropriate basis (as wavelet basis 
in Figure ix) translates the problem of sparse signal recovery 
in another domain.  

Compressed Sensing aims recovering the signal of interest 𝝌 
(or its sparse representation 𝝍  if needed) from a limited 
number of samples. To this goal, the measurement matrix Φ 
has to be design so to show maximum incoherence with the 

Figure ix: Image of a spatially sparse object (a) and corresponding coefficients in 
the real and wavelet space (b). Image of an object sparse in the wavelet space 
but not in the real space (c) and corresponding coefficients (d). Few wavelet 
coefficients are sufficient. 
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signal representation system [47]. Incoherent sampling 
means that all the fundamental features are seized with the 
minimum number of acquisitions, thus implying that each 
measurement vector in Φ  should be completely 
uncorrelated to those of W [49]. Along with wavelets, many 
other transforms have been tested for image reconstruction, 
the most remarkable of which will be discussed in detail in 
the following sections. As a final remark, the best way to 
incoherently sense the image shown in Figure ix b) would be 
that of using wavelets dual transform, which is named 
noiselet transform [50].   

1.4.4 Solution of inverse problems 
with CS 

Compressive Sensing usually recovers the solution of ill-
posed linear problems, with 𝑙1-regularization terms, in the 
form of a sparse solution. Or rephrased, CS is capable of 
reconstructing 𝑚/ log 𝑛 coefficients of a signal of 𝑛 
parameters from 𝑚  measurements [51]. One of the main 
ingredients of the CS recipe is the sparsity of the involved 
vectors, since the found solution is the sparsest of those 
mathematically correct. As previously highlighted, to obtain 
a faithful recovered signal with the highest fidelity it is 
needed an incoherent measuring matrix. However, since the 
rank of the sampling matrix is lower than the number of 
parameters of the unknown signal, it is very unlikely to use 
a complete orthonormal sensing set. To help in the search of 
a sparse representation, CS uses 𝑙1 -norm regularization 
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which performs intrinsic feature selection, selecting only few 
non-zero entries. 

Finally altogether with sparsity, incoherent sampling and the 
correct regularization form a powerful set of tools to 
outperform the classic Nyquist-Shannon theorem [52]. For 
said reason, CS opened the way to a variety of applications, 
with remarkable results in the field of image processing. 

1.5 IMPLEMENTATION OF 

COMPRESSED SENSING IN 

OPTICAL IMAGING  

1.5.1 Compressed Sensing in 
imaging  

Compressed Sensing finds application in many research 
fields such as signal processing, information theory, 
computational statistics, and imaging. Let it be considered 
the case in which the unknown sampled signal 𝝌  can be 
recast as 2D or 3D matrix. According to the notation 
introduced in the previous section, when considering 
imaging applications, 𝑁  is the number of coefficients in 
which the object plane is discretized, while 𝑀  counts the 
number of taken measurements. In the case of an ideal 
optical system used for imaging, 𝑀 = 𝑁  hence is the 
number of pixels of the sensor. Ideally, the so determined 
measurement matrix  Φ  will faithfully reproduce the 
sampled object 𝝌   at the sensor plane, thus will be 
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represented as an identity matrix I of rank 𝑁, yielding a one-
to-one correspondence of each point at the object and at the 
image plane. However, this holds only in the case of an ideal 
imaging system. In the case of a real system, characterised 
by a well specific Point Spread Function, the overall sampling 
matrix Φ would be given by the convolution of the identity 
matrix with said function in a matrix form.  A powerful tool 
to reject these non idealities induced by the limited 
frequency acceptance of a real system is image 
deconvolution: to this extent 𝑙1  regularisation has been 
extensively used as shown in [53].  

Nonetheless, when some information is known about the 
object, Compressed Sensing is used, to reconstruct the 𝑁 
pixels from 𝑀 < 𝑁  measurements. A possible, useful a 
priori information could be that of spatial sparsity of the 
object, as in the case of single pointy emitters [54] (for 
example single molecules), and nanomaterials imaging 
[55][56]. It also might be the case for spatial and temporal 
sparsity, as it holds for neural activity recording [57]; sparsity 
only in a frequency domain, as in fluorescence or Raman 
spectroscopy [58],[59],[60].  

They have been proposed many experimental setups 
through the years, an overview of compressed architecture 
is proposed in [61]. In this context, one of most successful 
architecture is that of single pixel camera [62], that for its 
importance in this thesis work, will be discussed in detail in 
the next section. 
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1.5.2 The single pixel camera 
Imaging in the visible spectral range is usually performed 
using CCD or CMOS sensors. These detectors, made by 
millions of elements, come in different shapes and features, 
making them a valuable solution for visible range imaging 
applications. Due to their spectral response, imaging outside 
of said region is usually too expensive to be achieved in 
many conditions. Surface sensor outside of the visible range 
are orders of magnitude more expensive than commonly 
used CCD or CMOS cameras. When the cost per pixel is the 
limiting factor, a possible way to overcome this issue is that 
of critically diminish the number of active elements involved. 
The strongest option in this sense is that given by the Single 
Pixel Camera [62]-[63] (SPC), that, being a cheap alternative, 
altogether offers other different advantages. SPC 
architecture flexibility makes it a suitable candidate for 
many imaging applications, from fluorescence microscopy, 
multispectral and hyperspectral [64], polarimetric [65], 
terahertz [34], and ultrafast imaging [66]. 

SPC is also referred to as optical calculator as it measures the 
inner product between the object spatial feature and the 
used test functions instead of just measuring the incoming 
signal. The inner product operation can be mainly obtained 
in two ways:  in the first, light is projected on the sample, 
which then emits, the incoming signal is spatio-temporally 
modulated by a programmable element, set to mimic a 
predetermined test function, so that the single element 
integrates the collected light, as shown in Figure x a); 
conversely a second option is that of modulating light before 
it reaches the sample as in Figure x b). In both ways, a set of 
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𝑚 masks is sequentially acquired an 𝑛 discretized vector 𝝌, 
outputs a vector made by its projection on the used test 
functions 𝜙𝑚 , that is ξ[𝑚] =  〈𝝌, 𝜙𝑚〉. This architecture is 
mostly achieved thank to Spatial Light Modulators (SLM), 
that selectively modulate light on a plane (which might be in 
the illumination or in the detection path). However, spatial 
modulation can be also obtained by having different light 
sources as an array of Light Emitting Diodes (LED) [67], that 
can be similarly modulated to generate the needed binary 
mask. 

For the sake of completeness, a Spatial Light Modulator is a 
device which can, according to its technology, modulate light 
intensity and/or its phase. These devices can work both in 
reflectance and in transmittance. The wide range of use of 
SLM have helped in the research and in the diffusion of 
Compressed Sensing. Among the many technologies 
available, one of the most used is Digital Micromirror Device 
(DMD), a matrix shaped mirror in which any matrix element 
is a singularly addressable micromirror, which can be tilted 
along its diagonal. The micromirrors can be programmed to 
sit in two states namely “on” and “off”, shaping the reflected 
light according to the programmed pattern. Together with 
the intuitive binary modulation provided, DMDs can also be 
programmed to encode light in different grey levels, which 
are obtained by letting the micromirrors oscillate back and 
forth over an acquisition cycle. The angular swing of the 
micrometric mirrors depends on the product, but it is usually 
smaller than -24 and +24 degrees. As previously specified, 
SLM can be either placed in the illumination or in the 



Implementation of Compressed Sensing in optical imaging 

 

 43 

detection path, in a plane which is optically conjugated with 
that of the sample.  

In a Single Pixel acquisition schema, the only active element 
acquires in sequence 𝑚 frames which univocally correspond 
to 𝑚 patterns.  

 

Figure x: Compressive imaging with a single pixel camera (a). Single 
pixel camera applied to fluorescence microscopy (b). Figures 
adapted from [67] and [62]. 
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In a compressed context, 𝑚 < 𝑛, i.e., the number of pixels 
of the SLM. The higher the incoherence of the sampling 
matrix rows 𝜙𝑚 with the object 𝝌, the fewer the number of 
measurements.  

As formalised in the previous introductory section, once the 
measurement vector 𝝃  is obtained, an equation formally 
equivalent to Eq. 1.16 is optimized and a possible 
reconstruction of 𝝌  is obtained. From the computational 
point of view, despite the compressed measurement routine 
intrinsically takes less time, the computational resources 
needed for the algorithm to properly converge might be 
such that the reconstruction overhead largely exceeds the 
frame acquisition time. On top of this, the time for the 
inversion strongly depends on the family of the optimisation 
algorithms implemented. Among them, the most frequently 
used are 𝑙1 -norm minimisation [68], total variation or 
gradient projection methods [69], [70].  

At this point, only one ingredient is missing in a Compressed 
Sensing strategy: the sensing matrix 𝜙. A possible answer to 
what matrix should be used, without any tailoring 
procedure, is that of using random sensing basis. Anyway, 
despite random patterns well perform in most real-world 
scenes, compressibility can be greatly increased by using a 
different measurement matrix. The most used matrices 
belong to Hadamard, Wavelet, Fourier function sets.  

A final remark is needed for tailored sensing approach, in 
which the sensing basis is not chosen a priori, but 
dynamically, as the experiments proceeds. Along with deep 
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learning strategies [71], in literature they have been 
published work in which a measurement matrix was tailored 
to seize features similar to those in the adjacent frame [72], 
in which 2D VIS information from a coupled CCD device were 
used to have further spatial information [73] or articles in 
which low resolution measurements are exploited  to 
predict parts of the field of view where higher spatial 
sampling is needed [74] [75].    

1.5.3 Selection of the patterns 
Spatial Light Modulators are capable of encoding 
information in a single, detectable point in space. These 
modulators are available to work both in reflection, as 
DMDs, and in transmission. Modulators that work in 
transmission are often limited by low efficiency, hence 
DMDs has been widely used as programmable reflective 
masks. The possibility of reproducing at the device plane any 
wanted pattern (also nonbinary, thanks to dithering), widens 
the choice of the usable sensing matrices.  

A non-tailored solution could be that of using random 
sensing matrices, which show an high degree of incoherence 
with most natural signal representation basis. For their 
intrinsic behaviour, random sensing basis have been used in 
literature to mimic speckle pattern originated in turbid 
media [76], even though their strong correlation with 
random noise asks for a larger number of samples at a 
constant SNR [77]. A possible approach to tackle this 
problem could be that of performing differential 
measurements, in which a pattern and its logic negation are 
acquired. Nonetheless said solution would come at cost of 
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either doubling the detection path, for a simultaneous 
acquisition, or to double the acquisition time, for a 
sequential acquisition.  

Together with random basis, a suitable set of sensing basis 
could be Hadamard’s. This family of functions are in fact are 
easily programmable on a Spatial Light Modulator, since 
they only show binary entries, thus avoiding any decrease in 
contrast given by the dithering working mode. As widely 
discussed in [62], this family of functions can be recursively 
defined by:  

 

 

𝐻𝑛 =
1

√2
[
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
] 

 

1.18  

Where 𝐻0  = 1. Any Hadamard matrix only shows +1 or -1 
entries, which can be programmed to correspond to the SLM 
“on” and “off” states. DMDs in fact are not capable of 
displaying negative values pixels, which must be encoded 
differently. A possible solution is to perform a differential 
measurement. Here, a single matrix is represented as the 
subtraction of two sub patterns, one which has only the 
positive entries, the other with the negatives. A second 
feasible approach is instead that of only acquiring positive 
valued Hadamard matrices and then to rescale the acquired 
pixel value according to a non-selectively illuminated 
acquisition i.e., by continuous illumination [78]. 
Nonetheless, what has been written about the differential 
acquisition in random sensing matrices holds also for 
differential Hadamard measurements [79]. Furthermore, for 
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Hadamard basis it holds an interesting property, in fact, for 
any 𝑛 dimensional element of this set it is true that 𝐻𝑛𝐻𝑛

𝑇 =
𝑛 𝐼𝑛, which implies no need for matrix inversion. On top of 
that, the heavy computational effort needed for dense 
matrix-vector product can be overcome by using the fast 
Walsh-Hadamard transform, whose computational 
complexity is of 𝑛𝑙𝑜𝑔(𝑛), instead of 𝑂(𝑛2)  [80]. Despite 
their mathematical properties and their easy 
implementation in pixelated, binary masks, Hadamard 
matrices might not be the best choice as they need large 
memory storage due to their non-sparse representation 
[81].  

Differently from the other families of test functions 
presented to this point, Fourier patterns do not show binary 
entries, so that for their correct encoding on a two-state 
modulating device, dithering of the pixels is needed. 
Nonetheless Fourier patterns have been proven to be useful 
both in Single Pixel Imaging [82] and in imaging beyond 
diffraction limit [83], [84].  

A 𝑛-dimensional Fourier complete set has a generic basis 

element formulated as 𝜓𝑗(𝑡) = √𝑛𝑒
𝑖2𝜋𝑗𝑡

𝑛    and is 

represented by: 

 

Ψ𝑛 =
1

√𝑛
 

[
 
 
 
 
 
 

  

1 1 1 ⋯ 1

1 𝑒
𝑖2𝜋𝑗𝑡

𝑛 𝑒
𝑖4𝜋𝑗𝑡

𝑛 ⋯ 𝑒
𝑖2𝜋𝑗𝑡(𝑛−1)

𝑛

1 𝑒
𝑖4𝜋𝑗𝑡

𝑛 𝑒
𝑖8𝜋𝑗𝑡

𝑛 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

1 𝑒
𝑖2𝜋𝑗𝑡(𝑛−1)

𝑛 𝑒
𝑖4𝜋𝑗𝑡(𝑛−1)

𝑛 ⋯ 𝑒
𝑖2𝜋𝑗𝑡(𝑛−1)2

𝑛 ]
 
 
 
 
 
 

. 
1.19  
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An exhaustive comparison between Hadamard and Fourier 
sensing matrices is provided [85]. Here it is proven how, 
despite better concentrating energy, a Fourier 
measurement basis provides worse noise robustness. 
Hence, in single pixel imaging, since the light budget is a 
critical issue, Fourier matrices must be preferred; 
conversely, Hadamard’s are more appropriate for imaging 
conditions that ask for an overall good quality.  

Together with said pre-determined models, more 
sophisticated, dynamic approaches have been studied. 
Some strategies in fact, involve an adaptive change in the 
measurement mask, which tailors the scenery to best seize 
its features or to change patterns resolution  [86], [88] or the 
pattern sequence is modified on fly according to the 
information carried in the low frequency patterns. 

1.6 APPLICATIONS OF 

COMPRESSED SENSING 
For its general application scheme, Compressive Sensing 
finds uncountable applications in many fields of signal 
acquisition. In this section, some of these applications will be 
briefly reviewed. 

Starting from the smallest imageable samples, spatially 
separated fluorescence molecules can be distinguished at 
higher resolution compared to that given by the imaging 
system diffraction limit; in the case of sparse point emitters, 
for its formulation, CS has been successfully exploited to 
reconstruct their spatial distribution [89].  
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Super resolved imaging has found different 
implementations, most of which imply the stochastic 
activation of the emitting fluorophores. Among them, 
Photo-activated localization microscopy (PALM) [90] and 
Stochastic Optical Reconstruction Microscopy (STORM) [91] 
have been widely used on spatially sparse samples, 
therefore which are suitable for compressed imaging. To this 
extent STORM has been used paired with CS, obtaining 
faster under-sampled localisation routines [55]-[92]-[93]. In 
sub-diffraction microscopy, CS has been also successfully 
applied to frequency domain, it has been demonstrated in 
fact that compressed strategies can reconstruct a volume 3 
orders of magnitude faster than spatial CS-STORM [94]. 
Furthermore, in STORM, CS has been also exploited to 
enhance three dimensional imaging, thanks to novel 
molecules localization algorithms [95], or thanks to the 
controlled introduction of aberrations [96].   

Another well-established super resolution technique which 
suits compressed acquisitions is Structured Illumination 
Microscopy (SIM) [30]. SIM is a technique that, by 
modulating light at the back focal plane of the illumination 
objective, obtains an excitation pattern which has sub-
diffraction fringes. To recover the final super-resolved 
image, to extend the system Optical Transfer Function and 
consequently go beyond Abbe’s limit, several raw images 
must be collected, corresponding to different patterns at the 
image plane. In this framework, CS has been used to reduce 
the number of spatial pixels to be sampled, decreasing the 
amount of collected data [97]. Furthermore, SIM schemes 
have been designed to include SLMs or DMDs to perform the 
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cited light modulation, even by using LED excitation source 
[84]. Despite in the presented thesis, a similar strategy is 
applied to fluorescence microscopy, super resolution is not 
achieved.  

Together with super resolved microscopy, CS has been 
successfully integrated in single element imaging, in a well-
studied configuration named Single Pixel camera. SPC 
working principle has been described in the previous section 
and is one of the microscopy fields in which CS is more 
beneficial. Furthermore, this thesis might also be intended 
as one application of SPC to fluorescence imaging, as it will 
be clarified in the next chapters. 

A more standard and widespread microscopy approach is 
that of confocal microscopy [98], [99], in which a point probe 
is used to scan the whole plane of interest. The excited 
fluorescence signal is consequently filtered by a pinhole, 
rejecting out of focus contributions, and then collected by a 
surface detector. A raster scan approach is intrinsically 
slower than others standard techniques like LSFM, hence 
Compressed sensing offers the possibility to reduce the 
number of points to acquire and their total acquisition time. 
To overcome the limit given by the design of a confocal 
microscope, many modifications have been adopted to 
include a spatial modulation of the excitation light, which is 
of importance when applying CS [100], [101]. For example, 
Ye et al. show in [102] how a random set of pinholes, which 
constitutes a random measurement basis, is exploited in CS-
confocal microscopy. Here. the degree of optical sectioning 
is related to the degree of sparsity of the set of pinholes. 
However, this parameter is obtained at cost of photon 
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budget efficiency, which might be crucial. Another 
remarkable example of CS in confocal design is given by 
[103], where a subsampling of the acquired data point is 
obtained. Said under sampling alone however is not 
sufficient to reconstruct the wanted signal: incoherence 
between measurement and representation matrices is not 
kept. This lack of incoherence strongly hinders the 
reconstruction process, which might be affected by artifacts 
[104]. However, said problem can be solved by considering 
the system Point Spread Function, so that any sampled value 
is a linear combination of the adjacent information content. 
The reported approaches both obtain a compression ratio 
higher than 90%, with an improved SNR.  

Another possible strategy to achieve optically sectioned 
imaging is on Structured Illumination Microscopy (SIM). In 
SIM, the sample is illuminated by a tailored set of light 
patterns and is then acquired by a pixelated sensor. Light 
modulation enables the use of compressed reconstruction 
strategy as well depicted by Parot et al. in [105] where SIM 
combined with CS, achieves fast acquisition of neuronal 
activity in Danio rerio (zebrafish). As choice of measurement 
set, the authors here use Hadamard patterns, which well fits 
the specimen sparsity and the hardware involved. In fact, 
the small number of non-zero pixels implies that 
representation of neuronal activities has a low-rank matrix 
structure. 

Despite their different applications and hardware 
implementations, compressed acquisition strategies based 
on CS all have a common paradigm, which is light 
modulation. Light modulation in fact, acts as information 
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encoder which is exploited to optically perform inner 
product between vectors, that, if correctly represented, can 
be restored with a limited number of frames. In the next 
chapter of the thesis, it will be presented how light 
modulation has been obtained and the main motivation 
beyond the adopted system design.



 

2 DESIGN AND 

OPTIMIZATION OF THE 

OPTICAL SETUP 
 

 

 

 

In this second section of the thesis, the concepts illustrated 
in the first chapter will be implemented in an optical setup 
to obtain optically sectioned volumetric imaging by 
selectively illuminating a volume. Furthermore, the 
controlled patterning of light enables the use of Compressed 
Sensing, a signal processing technique which makes it 
possible to reconstruct the spatial distribution of 
fluorophores in the field of view after a set of measurements 
which would be insufficient according to Nyquist-Shannon 
criterion. This makes the developed technique a gentle 
approach to investigate in vivo dynamics. On top of this it 
will be discussed the light source used in the presented 
setup: an LED. Incoherent sources are not usually chosen for 
microscopy due to the technical difficulties in focusing the 
incoming, high divergence, excitation beam. However, 
thanks to the spatial modulation provided by a Digital 
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Micromirror Device, it is possible to perform optically 
sectioned compressed imaging with an LED, in a technique 
called Spatially Modulated Selected Volume Illumination 
Microscopy (sm-SVIM). First, they will be described the 
optical performances of the developed setup, for then also 
giving an overlook of the optimisation procedure held to 
increase to light budget efficiency, namely the use of a light 
pipe and of a Total Internal Reflection (TIR) prism. Finally, it 
will also be described how the lateral modulation was 
extended, compared to the initially described version of the 
setup. 

2.1 OPTICAL SETUP 
In Figure xi, it is represented a sketched version of the first 
implemented optical setup. The light emitted from a LED 
(Thorlabs SOLIS-445C) is collected and refocused over a 
uniform, circular spot on the DMD (Texas-Instruments DLP 
LightCrafter 6500) by three lenses, which are set to be in a 
well-known Köhler configuration. The first collecting lens 
𝑓1 = 200 𝑚𝑚  (Thorlabs AC508-200-A-ML) is directly 
attached to the LED, while the field or base lens is of focal 
𝑓2 = 20 𝑚𝑚(Thorlabs AL2520-A) and the condenser, 𝑓3 =
50 𝑚𝑚 (Thorlabs LA1131-A). 
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Figure xi: First SVIM implemented illumination schema. 

Once illuminated, the DMD then reflects the light according 
to the programmed binary mask on the sample: the DMD 
plane is in fact optically conjugated with that of the 
specimen through a tube lens (Olympus SWTLU-C), of focal 
length 𝑓𝑇𝐵𝐿1 = 180 𝑚𝑚 , and an objective lens. As also 
displayed in Figure xi, the modulation happens on 𝑦𝑧 
direction, which is orthogonal to that of light propagation. 
The excited fluorescence signal is then collected and 
refocused by a detection objective and after being filtered 
its passes through a second tube lens of focal length 𝑓𝑇𝐵𝐿2 =
200 𝑚𝑚  (Nikon MXA20696) which focuses it on a CMOS 
camera (Hamamatsu Orca Flash 4.0).  
In the previous description, it has been intentionally omitted 
the objective lens used both in illumination and in detection. 
For the setup implementation in fact the two lenses are 
easily changeable, making the microscope readily adaptable 
to any possible specimen dimension, up to 7 𝑚𝑚 of field of 
view. To this thesis extent, they have been tested both in 
illumination and detection three different objectives: a 2X 
(Mitutoyo Plan Apo Infinity Corrected Long, 0.055NA 34mm 
WD), a 4X (Nikon CFI plan Fluor, 0,13 NA, 17,2 𝑚𝑚 WD) and 
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a 5x (Mitutoyo Plan Apochromat Objective 0.14 NA, 34 𝑚𝑚 
WD). In any case, imaging the DMD plane with different 
magnification on the sample, consequently, changes the 
modulated volume extension, which must fit the Field of 
View. As described in the Light Sheet Engineering section in 
the previous chapter, this is determined by the detection 
magnification and sensor size.  
 

 
Figure xii: Analysis of the optical étendue of an LED 

2.1.1 Incoherent Light Source  
In a piece-by-piece description of the setup, the first, 
highlighted component is the light source. This is one of the 
notable points of the presented work: an LED is used in an 
optically sectioned imaging. The reason why incoherent light 
sources are not usually employed in such condition is 
described in [106] where a quantity named optical étendue 
is introduced: said quantity is related to the angular 
divergence of light emitted by a surface. Mathematically 
speaking, it is represented as: 

 𝑑𝐺 = 𝑛2𝑑𝑆 cos(𝜃) 𝑑Ω . 2.1  
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Where 𝑛 is the refractive index of the propagation medium, 
𝑑𝑆  is the infinitesimal surface element and 𝑑Ω  is the 
divergence solid angle. Eq. 2.1, in the case of a constant 
emission or focusing solid angle per infinitesimal surface 
element, can be rewritten as: 
 

 𝐺 = 𝜋 ⋅ 𝑆 ⋅ 𝑁𝐴2. 2.2 

This optical parameter considers the angular light 
acceptance of an element with respect to its spatial 
extension. It can be evaluated at different points in the 
optical path to calculate the number of photons per unit’s 
area lost in the propagation. A lossless system is in fact such 
that the étendue is a constant value. As depicted in Figure 

xii, another possible meaning of the étendue is that of 
quantifying the effort needed to focus an highly diverging 
light profile over a small area: the smaller the area at a given 
divergence, the higher the photon losses. 

These losses are not usually an issue when using 
commercially available laser sources, since they provide a 
small divergence of the output beam (often < 1.5 𝑚𝑟𝑎𝑑), 
which is therefore easy to collect and easy to refocus over a 
diffraction limited spot. Nonetheless in this thesis work an 
LED was used instead of a conventional coherent source. An 
LED is such that photons are spread over a large angle 
(almost over a solid angle of 2𝜋 ) and are emitted from a 
large area (⦰ 3𝑚𝑚 for the LEDs sources used in this work) 
so that only a small fraction of them can be practically of use 
for imaging applications, even with collecting optics of large 
optical power. Furthermore, the low spatial coherence of 
the emitted photons implies a shorter persistence length of 
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the illumination beam, compared to those presented in the 
previous chapter.  

In a technique like LSFM, in which light is tightly focused 
along one dimension, it is impractical to use low coherence 
source. However, in SVIM, since light is focused over larger, 
modulated volumes, it is possible to obtain a sufficient 
power density at the sample plane to perform fluorescence 
imaging, especially with new commercially available high 
power LED sources.  

Along with the cited drawbacks, an incoherent source brings 
together also some advantages compared to conventional 
lasers. The most remarkable of these is the removal of 
shadowing artifacts, which are typical of LSFM. Shadowing 
artifacts, an example of which is shown in Figure xiii a), are 
given due to the presence of scattering and absorbing 
centres in the sample. These centres may hinder light 
propagation, thus resulting in shadowing stripes parallel to 
the light sheet. That might be the case for pigment on the 
skin of a biological sample. Since the absorbing process of 
such centres depends on the spatial frequency of the 
incoming photons, having a source with a broad frequency 
support prevent the formation of these artifacts[28]. 

 



Optical Setup 

 

 59 

 
Figure xiii: a) Shadowing artifacts in LSFM due to absorbing centres and coherent 
source, (b) same part of the sample reconstructed with sm-SVIM with LED [26]. 

In Figure xiii it is presented a comparison of the same plane 
of the sample acquired both with a LSFM illumination, and 
with sm-SVIM. As anticipated, panel a) clearly shows the 
presence of the typical shadowing artifacts, which are not 
present in b) due to LED illumination. The presented solution 
to avoid striping artifacts anyway is not unique, it has in fact 
been proposed in [107] a strategy called pivoting where the 
light sheet is tilted with respect to the optical propagation 
axis, to illuminate beyond the absorbing centres. Once many 
frames are taken at different angle of view, they are merged 
into one single frame which contains information otherwise 
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not accessible. Anyway, pivoting requires the acquisition of 
multiple views, overexposing the sample and therefore it 
might result in unwanted light damage and photobleaching 
of fluorophores.  

As a final remark, using an LED also brings together more 
advantages in terms of cost, colour availability and stability 
of the source. In fact, the manufacturing process of a light 
emitting diode is cheaper compared to that of laser and 
comes with a easier tunability of the emission process. This 
last point is particularly useful when designing a setup for 
fluorescence microscopy: here it is crucial that the source 
emission and excitation spectra overlap. Furthermore, light 
source power emission must be constant along the 
measurement routine, to prevent the reconstruction to 
suffer from so induced artefacts, which is the case for LEDs. 

The presented points altogether justify the use of an 
incoherent light source. Nonetheless a possible way to 
overcome to the limited persistence length of the obtained 
illumination profile will be illustrated in the lateral extension 
section. 

2.1.2 Köhler Illumination 
The benefits brought by an incoherent light source have 
been widely discussed in the previous section of the thesis, 
together with the technical difficulties in using a light source 
as such. Nonetheless in this paragraph it will be explained 
how the incoming light from a LED was collected and then 
refocused to perform fluorescence microscopy.  
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Since the volumetric acquisition encodes the spatial 
distribution of fluorophores thanks to different light 
patterns, it is crucial that the fluorescence signal variation is 
only given by two factors: different modulation mask and 
fluorophores distribution. If by any chance, further 
modulating factors are present, as it might be the case for 
striping artefacts or non-uniform illumination spot over the 
Spatial Light Modulator, these will most likely induce error 
in the reconstruction obtained by problem inversion. To this 
extent, it is crucial that the power distribution over the 
modulating pixel of the DMD is constant over a uniform 
pattern. 

As shown in Figure xiv a possible solution to avoid 
inhomogeneities with a LED is that of using a condensing 
optical apparatus which is called Köhler illuminator. This 
system aims at evenly illuminating the sample (in this case, 
the DMD pixel matrix) and has been widely used in many 
different fluorescent microscopy implementations. Starting 
from the light source, the first element encountered is a 
collector lens (also referred to as field lens), whose goal is 
that of collecting the incoming high diverging light, and to 
refocus it over a plane in which a diaphragm is placed 
(named field stop). A variation in said diaphragm aperture 
implies a magnified variation at the sample plane, i.e., a 
change in the spot size at the SLM reflective surface.  Then, 
a 4𝑓 system made by a base and a condenser lens images 
the field stop plane, magnifying said plane by a factor of 𝑀 =

 −
𝑓𝑐𝑜𝑛𝑑

𝑓𝑏𝑎𝑠𝑒
 , in which the two values are the focal length of the 

condenser and of the base lens, respectively.  Finally, an 
aperture stop is placed in the optical centre of the 4𝑓 
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system, to manually control the light intensity shining over 
the DMD [108].  

 

 
Figure xiv: Scheme of a possible Köhler implementation. The grey area and the 
black lines highlight different paths travelled by the illumination photons. 

Thanks to a Köhler illuminator design, a uniform light spot is 
obtained to illuminate the spatial light modulator, despite 
using a non-uniform light source, avoiding the presence of 
error in the recovered fluorescence signal. Finally, the 
introduction of two diaphragm to control both light intensity 
and spot size of the produced light spot, is fundamental in 
experimental condition to maximize the signal contrast. In 
this thesis work, the illumination was designed so that on the 
DMD a uniform spot of 1.2 𝑐𝑚 diameter was obtained, thus 
determining together with the illumination objective, the 
illuminated volume dimensionality. 

2.1.3 Light Modulation  
Köhler illuminators are widely used to illuminate the sample, 
which is thus set to be in the focal plane of the condenser 
lens. In this thesis work, however, a Köhler subsystem is set 
to illuminate a Digital Micromirror Device, which enables 
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light shaping. While the main feature of a DMD have been 
discussed in the first chapter, in the next section it will be 
discussed the specific device used in this thesis, namely a 
Texas-Instrument DLP LightCrafter 6500. This product is 
designed to have the ON and OFF state, respectively 
corresponding to a tilt of +12° and −12°, as shown in Figure 
xv. The DMD used consists of 1920 ∗ 1080 squared mirrors, 
whose pitch is 7.56 µ𝑚 . Finally, the device maximum 
transition frequency between the ON-OFF states is 
9,523 𝐻𝑧. However for fluorescence imaging and common 
exposure times, said frequency is not a limiting factor for the 
final frame rate of the technique.  

 

 
Figure xv: Detail of a DMD matrix (DLP products, Texas Instruments). 

As previously pointed out, the DMD is positioned so that the 
reflected light is directed along the illumination axis, as 
displayed in Figure xi. Furthermore, for its design, DMDs are 
made so that the pixel rotation happens around its diagonal: 
for this reason, in the implemented setup, the whole DMD 
mount was rotated by a 45° angle. On top of this, this 
peculiar custom-made mount granted for in-plane light 
propagation, with no need of tilted prisms or strong 
modification in a standard LSFM design.  
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After being reflected by the DMD, light travels through two 
optical elements (a tube lens and an objective lens) which 
optically couples the modulation plane with that of the 
sample enabling the axial patterning used in sm-SVIM. More 
in detail, the light modulation provided by the SLM happens 
along a 𝑦𝑧 plane, whereas along its propagation axis 𝑥, the 
beam follows a divergence profile dictated by the objective 
lens used. Furthermore, this last objective lens will have a 
limited depth, which will hence result in a limited 
persistence length of the illumination profile. This spatial 
divergence strongly hinders imaging of volumes of high 
extension along the 𝑥 axis. 

 
Figure xvi: Different illumination patterns. (a). line modulation for light sheet 
behaviour; (b) constant, “on” pattern over a thick region; (c) and (d) patterns at 
higher spatial modulation. 
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To assess for the modulation capability of the system, the 
spatial mount of the DMD is so that a single, vertical line of 
“on” pixel shows a diamond shaped profile, as highlighted in 
Figure xvi.  Said 45° rotation of the single active element is 
also present in patterns with different shapes and 
dimensions. For the sake of clarity, since the DMD plane is 
conjugated to that of the sample, the thickness of the 
modulation pattern corresponds to the axial extension of 
the modulation, which must be contained in the depth of 
field of the detection objective. Hence, the capability at 
which details of the sample can be axially distinguished is 
determined by smallest degree with which is possible to 
axially modulate light, which is therefore related to the DMD 
pixel diagonal. 
More in details, the lateral resolution of the imaging system 
is determined by the numerical aperture of the objective 
lens, as formulated in Eq. 1.1, and can be easily estimated.  

Abbe’s formula, when imaging a GFP ( 𝜆𝑒𝑥𝑐 =
450 𝑛𝑚, 𝜆𝑒𝑚 = 532 𝑛𝑚 ) with a 5X detection objective 
(𝑁𝐴𝑑𝑒𝑡 = 0.14, widely used in this thesis), is equivalent to:  

   

 
∆𝜌 =  

𝜆𝑒𝑚

2 ⋅ 𝑁𝐴𝑑𝑒𝑡
=

532 𝑛𝑚

2 ∙ 0.14
= 1.9 𝜇𝑚. 

 

2.3 

Conversely, axial resolution is given by the illumination 
optics angular acceptance, as specified in the previous 
chapter and in Appendix A. In the case in which a 4X 
illumination objective is used (𝑁𝐴𝑖𝑙𝑙 = 0.13), this would give 
diffraction limited illumination spot of  
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 ∆𝜌 =  
𝜆𝑒𝑥𝑐

2 ⋅ 𝑁𝐴𝑖𝑙𝑙
=

450 𝑛𝑚

2 ∙ 0.13
= 1.7 𝜇𝑚. 2.4 

Anyway, in the presented setup, a single active pixel of the 
DMD would result in a bright spot at the image plane whose 
dimension would be given by:  

 𝑑𝐷𝑀𝐷
𝑖𝑚𝑎𝑔𝑒

=
𝑑𝐷𝑀𝐷

𝑀
= 

7.56 𝜇𝑚

4
= 1.89 𝜇𝑚, 2.5 

which is bigger than the result of Eq. 2.5. This mismatch in 
DMD single pixel imaged dimension and illumination lens 
diffraction limit is such that the ultimate axial resolution 
achievable is proportional to the first term rather than the 
second.  

On top of that, the diamond vertical modulation presented 
in Figure xvi implies that, to correctly evaluate the axial 
resolution of the technique, it must be considered the 
effective distance between two adjacent pixel lines. This 
leads to an effective thickness of a single line patterns of 

 𝑒 =  
𝑑𝐷𝑀𝐷

𝑖𝑚𝑎𝑔𝑒
∙ √2

2
= 1.34 𝜇𝑚. 2.6 

To correctly evaluate the lateral resolution of sm-SVIM 
however, it must be considered that diffraction limited 
performances are achievable only at the centre of the 
detection DOF. Therefore, when dealing with thicker 
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samples, the volume which can be correctly reconstructed is 
that confined within said DOF.  

Due to the fact the axial modulation happens 
simultaneously, the sensor will detect signal contribution 
both from in focus and out of focus planes. Hence it is of 
interest to estimate the biggest volume achievable for a 
given detection objective, for which, the largest axial extent 
will be achieved when then modulation fully covers the DOF. 
As presented, considering the same detection objective as in 
the previous considerations, this will lead to:  

 𝐷𝑂𝐹𝑧 = 
𝑛 ∙ 𝜆𝑒𝑚

𝑁𝐴𝑑𝑒𝑡
2  +

𝑛 ∙ 𝛿𝑝𝑖𝑥𝑒𝑙

𝑀 ∙ 𝑁𝐴𝑑𝑒𝑡
 ≈ 27 𝜇𝑚. 2.7 

Here, the first term is given by the optics constraint, while 
the second arises from the limited dimension of the sensor 
pixels, as illustrated in chapter 1. Nonetheless, a total 
thickness of about double the value obtained can be 
considered as acceptable. By considering an axial extension 
of a single line at the DMD of  𝑒 = 1.34 𝜇𝑚, it results that 
said thickness can be entirely illuminated by about 40 
adjacent SLM lines, thus determining the maximum 
modulation extension. 

One last limiting factor to the imaging volume extension is 
that given by the small persistence length implied using an 
LED. To overgo this limitation, the illumination objective lens 
has been mounted on a fast-translating stage (Physik 
Instrumente, C-413 PIMag Motion Controller), which moved 
along the acquisition of a single pattern. Said movement, 
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together with its synchronisation with the camera sensor 
readout, resulted in an effective pattern with an enhanced 
persistence length, thus covering not only its central part, 
but the whole sensor. This means that the lateral profile of 
the modulation will ultimately be limited not by the 
patterning lateral extent, but by the sensor dimension 
reported at the sample plane instead. 

Considering the sensor used in the work presented in this 
thesis, a 2048 ∗  2048 CMOS, the lateral extension of the 
modulated volume by considering the same detection lens 
is: 

 ∆𝑋 = 2048 ∙ 𝛿𝑝𝑖𝑥𝑒𝑙 =  2.67 𝑚𝑚 2.8 

 
Figure xvii: Effective distance of two adjacent lines, their centres are half of the 

diameters separated. 

Nonetheless the system is prone to an easy modification of 
the imaging volume by changing the illumination and 
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detection objectives. This is done according to the sample 
size and features of interest. In this thesis, they have been 
extensively used and tested three long working air 
objectives, which have been employed both for refocusing 
the incoming excitation pattern and for fluorescence signal 
collection. Of course, by modifying 𝑁𝐴𝑖𝑙𝑙  and 𝑁𝐴𝑑𝑒𝑡 , they 
are consequently modified the pixel size reported at the 
sample chamber and the detection depth of field. These two 
changes can be easily seen from Eq. 2.5 and Eq. 2.7.  

For example, by interchanging the 4X (presented as 
illumination lens) and the 5X (previously considered as 
detection lens), this would give a slightly bigger Field Of View 
and depth of field, namely Δ𝑋 = 3.33 𝑚𝑚  and 𝐷𝑂𝐹𝑧 ≈
 32 𝜇𝑚 , and a smaller DMD pixel size, 𝑒 = 1.07 𝜇𝑚 . 
Furthermore, imaging in these experimental conditions 
would be limited laterally by a resolution of Δ𝜌 =  2.05 𝜇𝑚. 
Conversely, in the case of imaging samples whose size is 
several 𝑚𝑚𝑠, a larger FOV is achievable by using a 2X, long 
working objective of 0.055 𝑁𝐴 , both as illumination and 
detection lens. Smaller magnification would together lead to 
a reported DMD pixel size of 𝑒 = 2.67 𝜇𝑚 , a  𝐷𝑂𝐹𝑧 ≈
 176 𝜇𝑚  and a lateral resolution given by Abbe’s limit of 
Δ𝜌 =  4.83 𝜇𝑚. Said conditions altogether also results in a 
extended FOV of Δ𝑋 =  6.66 𝑚𝑚. 

On top to the experimental imaging conditions described, 
the uniform spot obtained on the DMD thanks to the Köhler 
illuminator is consequently magnified and imaged onto the 
sample. The luminous spot of 1.2 𝑐𝑚 , and yet the 
illumination magnification, must be such to completely 
illuminate the FOV, pointed as Δ𝑋  in the previous 
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descriptions. The magnification factors of 𝑀 = 2, 4 , 5 , 
respectively leads to a modulated volume which extends on 
Δ𝑋𝑖𝑙𝑙 =  6 𝑚𝑚 , Δ𝑋𝑖𝑙𝑙 =  3 𝑚𝑚 andΔ𝑋𝑖𝑙𝑙 =  2.4 𝑚𝑚, hence 
almost completely shining light over the maximum 
detectable FOV. 

As a final remark, in the evaluation of the optical parameters 
given in the previous part of this section, a refractive index 
𝑛 = 𝑛𝑤𝑎𝑡𝑒𝑟  has been considered. However, for cleared 
samples immersed in denser media, the last consideration 
may lead to an underestimation of those values. In 
particular, in the cases of Benzyl Alcohol Benzyl Benzoate 
(BABB) and Ethyl Cinnamate, used as imaging media in the 
experimental validation, their refractive indexes are  
𝑛𝐵𝐴𝐵𝐵 = 1.568  and 𝑛𝐸𝑇𝐶 = 1.558 , respectively (see 
Appendix C for more details). For this reason, they have been 
chosen modulation patterns whose axial extension extends 
well beyond the presented 𝐷𝑂𝐹𝑧, so to seize any imageable, 
modulated, information about the fluorophore distribution. 
Further details on how this has been practically achieved will 
be given in the next chapter, together will the whole 
measurement and reconstruction routine. 
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2.2 OPTIMIZATION OF THE OPTICAL 

SETUP 
In this section it will be discussed how the performances of 
the designed setup have been optimized.  

Firstly, it will be given an overall description of the lateral 
field extension, obtained as previously written, thanks to 
synchronisation between objective lens movement and 
sensor reading mode. This description will have a particular 
regard to light propagation in media when moving the stage: 
from this analysis in fact, they can be derived the 
experimental parameters needed for the best 
synchronisation of the hardware components involved.  

Secondly, it will be reported how the illumination efficiency 
has been optimised. Maximizing photon collection after the 
SLM reflection and refocusing it at the sample plane is in fact 
critical. As suggested by the DMD constructor, in this thesis 
two possible implementations have been investigated to 
solve such issue: using a Total Internal Reflection (TIR) prism, 
and/or a light pipe.   

2.2.1 Lateral Volume Extension 
The total span of the illumination beam waist is limited by 
the dimensionality of the sensor, which, in the case of a 
𝑁𝐴𝑑𝑒𝑡 = 0.14, led to an overall lateral extension of the Field 
Of View of  ∆𝑋 =  2.67 𝑚𝑚. Anyway, this displacement at 
the sample plane was not linearly connected to the 
translation of the illumination lens. It is hence necessary to 
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calculate the effect of the objective lens translation and on 
the refraction given by the different media encountered by 
the excitation beam before reaching the sample. 

 
Figure xviii: Working principle of lateral field extension. In (a) a static situation is 
represented, here, only a small central part of the volume is modulated so to 
obtain a good reconstruction whereas in (b), the modulated field is extended 
through synchronisation of illumination lens motion and CMOS reading. 

The schematics of the illumination axis is depicted in Figure 
xix, representing how light is propagating after being 
reflected by the DMD. Let 𝑎 be the distance between the 
DMD and the tube lens which collects the incoming 
modulated radiation, and let 𝑏 be the distance from this last 
element to the objective lens, 𝑏 can be also expressed as the 
sum of tube and objective lens focal range: 𝑏 = 𝑓𝑡𝑢𝑏𝑒 +
𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑓0 + 𝑓1 . Finally, let 𝑐  be the output image 

distance from the last element.  By writing the law of the thin 
lenses: 

 𝑞 =
𝑝 ∙ 𝑓

𝑝 − 𝑓
 2.9  

where 𝑝 and 𝑞 are the object and the image plane distance 
from the principal axis of the system, respectively, the tube 
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lens will form a virtual image of the DMD display at a 
distance which is given by:  

 𝑞0 =
𝑎 ∙ 𝑓0
𝑎 − 𝑓0

 . 2.10  

Said virtual image will be place 𝑝𝑖 = 𝑏 − 𝑞0 away from the 
objective lens. By considering again Eq. 2.9 to evaluate the 
final position of the DMD image, one obtains: 

 

𝑐 =
𝑝1𝑓1

𝑝1 − 𝑓1
=

(𝑞0 − 𝑏)𝑓1
(𝑞0 − 𝑏 − 𝑓1)

=
(−

𝑎𝑓0
𝑎 − 𝑓0

+ 𝑏)𝑓1

−
𝑎𝑓0

𝑎 − 𝑓0
− 𝑓1 + 𝑏

 2.11  

To consider the translation of the objective lens, it means to 
evaluate how a variation in 𝑏 affects the image formation 
i.e., 𝑐. From the presented analysis, a shift ∆𝑏 implies a ∆𝑐 
of two orders of magnitude lower, thus not justifying strong 
non linearities between objective and DMD image shifts.  

DMD Tube Lens Objective 
Lens 

𝑏 𝑎 

𝑓0 𝑓1 

𝑐 

Figure xix: Schematics of the two-lens system illumination path. 
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When propagating, light encounters different media, which 
to this extent may induce a discrepancy between these two 
quantities. Starting from the DMD, which is in air, light in fact 
travel through three different layers and therefore two 
interfaces between different refractive indices, as shown in 
Figure xx. The three media are, starting from the closest to 
the DMD: air, whose index is 𝑛𝑎𝑖𝑟 = 1; optical glass, which 
contains the imaging medium and is 2 𝑚𝑚  thick, with 
𝑛𝑔𝑙𝑎𝑠𝑠 = 𝑛1 = 1,51; and lastly the immersion medium, 𝑛2, 

which depends on the clearing procedure the sample has 
been subjected to. 

 
Figure xx: Refraction at different media interfaces. 

 The mathematical relation that exists between refractive 
index and refraction angle is the so-called Snell law: 

 𝑛0 ⋅ sin𝜃0 = 𝑛1 ⋅ sin 𝜃1 = 𝑛2 ⋅ sin 𝜃2 , 2.12  

with 𝜃1  and 𝜃2, being the angle of divergence of light 
propagating in optical glass and in the imaging medium, 
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respectively. Given that the 𝑛𝑎𝑖𝑟  as well as the other 
refractive indices are known, so is 𝜃0 which is given by the 
illumination objective numerical aperture, the following 
equalities hold:  

 

𝜃1 = sin−1 (
sin𝜃0

𝑛1
) 

𝜃2 = sin−1 (
sin 𝜃0

𝑛2
). 

2.13  

Once known the divergence angles in the different media 
and the input beam spot at the different interfaces (namely 
ℎ′  and ℎ′′  from the optical axis), from geometry, one can 
obtain that: 

 
ℎ′ = 𝑑′ ⋅ tan 𝜃2 + 𝑡 ⋅ tan 𝜃1 

ℎ′′ = 𝑑′′ ⋅ tan 𝜃2 + 𝑡 ⋅ tan 𝜃1. 
2.14  

Hence, the final displacement along of the image plane on 
the horizontal axes can be evaluated as:  

 ∆𝑥0  =
ℎ′′ − ℎ′

tan 𝜃0
 , 2.15  

that, together with Eq. 2.14, finally result in: 

 

∆𝑥0  =

=
(𝑑′′ ⋅ tan 𝜃2 + 𝑡 ⋅ tan 𝜃1) − (𝑑′ ⋅ tan 𝜃2 + 𝑡 ⋅ tan 𝜃1)

tan 𝜃0
 

=
(𝑑′′ − 𝑑′) ∙ tan 𝜃2

tan 𝜃0
=

∆𝑥1 ∙ tan 𝜃2

tan 𝜃0
 . 

2.16  

Thus, knowing the optical properties of the imaging 
medium, it is possible to predetermine the overall 
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displacement of the illumination lens to cover the FOV which 
is given by both the sample size and magnification of the 
detection lens. Experimental demonstration and assessment 
of the technique will be given in the next chapter.  

2.2.2 Total Internal Refraction 
Prism 

The construction principle of the DMD is so that a non-
tailored solution to collect the light reflected from it is such 
that the collection axis itself is tilted with respect to the light 
propagation axis. This is also the case for the presented 
Köhler illumination schema. In brief, to have a reflected 
beam orthogonal to that of the DMD, which is in the “on” 
state, and considering the geometry of the device, incident 
and reflected beams must be tilted by a mutual angle of 24°, 
as it is shown in detail in Figure xxi. 

 
Figure xxi: (a) Schematic of the light path after being reflected by a DMD “on” 
pixel (b) Geometrical propagation of light in the TIR prism are relative 
dimensions.  

In practice, this configuration proved to be not very practical 
to be aligned. Furthermore, being photon harvesting from 
the DMD a critical parameter, another approach to optically 
couple spatial modulation and illumination optics was 
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needed. Moreover, for the technique to be successfully 
applied, the light modulation must be exploited so to be 
orthogonal to the detection sensor, or, rephrased, a single 
active line at the DMD plane must result in a excitation 
profile which sections the sample orthogonally to the 
detection axis.  

A possible solution to the tedious problem of optical 
alignment is that presented in literature [109][110], where a 
Total Internal Reflection prism is specifically designed the 
collect and redirect the incoming and the modulated light 
respectively in a proper way. To the end of this thesis, a TIR 
prism was custom-tailored and produced in N-BK7, a 
widespread material in optical elements. 

For the sake of completeness, the designed TIR prism is that 
displayed in Figure xxi, it is made by two prisms of triangular 
surface, with two of their lateral surfaces fixed one on the 
other. In this design, a relatively small incidence angle is 
reflected orthogonally to the DMD surface, so that the 
Köhler illuminator can be positioned almost parallel to this 
surface.  

The light path geometry in the TIR prism can be easily 
calculated by considering the basic Snell Law of refraction, 
together with the dimensions of the system. From the 
assumption of an incidence angle of 24° on the DMD plane, 
it can be retrieved that the Köhler illuminator should have 
its optical axis tilted by 𝜃 = 0,093° with respect to the prism 
input surface. Being this angle particularly small, in practice 
the Köhler subsystems can be put perpendicularly to this 
surface.  
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For the TIR prism to perform correctly, total internal 
reflection must take place at the glass-air interface between 
the two glass prisms. From the definition of total internal 
reflection, the critical angle at which this can take place is:   

 
𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = sin−1 (

𝑛𝑎𝑖𝑟

𝑛𝑔𝑙𝑎𝑠𝑠
) =  sin−1 (

1

1.52
)

= 41.13° 

2.17  

From Figure xxi, the system was designed so that the 
incidence angle on the input prism surface was slightly 
greater than 𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, namely 𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 =  48.64°, ensuring 
total internal reflection. Conversely, after being modulated 
and reflected by the DMD, light travels through the air gap 
in between the two glass triangles: by doing so, refraction 
happens both in travelling from glass to air and from air to 
glass. The symmetry of the travelled path is such that said 
double refraction results in a lateral shift of the image which 
is therefore proportional to the in-air path. Being the gap as 
small as possible by construction, said lateral shift can be 
neglected.  

A final remark must be made on how the presence of the 
prism affects the systems. The refraction induced by the 
prism might in fact modify the overall optical power of the 
illumination so that it must be considered to obtain a 
uniform, circular spot on the DMD, of the correct size. The 
first step in this consideration is evaluating the total path 
travelled by the light in glass. To this extent, let it be 𝑥 the 
position at which light enters the prism. From geometrical 
reasoning, it follows that:  
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 𝐿1 = (33,04 − 𝑥) ∙ tan(48,58°), 2.18  

which is related to the path travelled after reflection by:  

 

ℎ = 𝑥 ∙ cos(8,3°) + 𝐿1 ∙ sin(8,3°) 

𝐿2 =
ℎ

cos(15,52°)
. 

2.19  

With a total path in glass of:  

 𝐿 = 𝐿1 + 𝐿2. 2.20  

Eq. 2.20, with the prism parameters, gives as result 𝐿 =
38,50 𝑚𝑚 , by using 𝑥 = 16,52 𝑚𝑚 . Furthermore, by 
considering 𝜃0 as the numerical aperture of the last lens of 
the Köhler illuminator, it follows that:  

 ∆ℎ = 𝐿 ∙ (tan 𝜃0 − tan 𝜃1), 2.21  

where  𝜃1 = sin−1 (
sin𝜃0

𝑛𝑔𝑙𝑎𝑠𝑠
). Altogether, the previous 

equations, makes it possible to evaluate the optical shift of 
the system working distance induced by the presence of 
the prism, which is finally calculated as:  

 
∆𝑊𝐷=

∆ℎ

tan 𝜃0
=

𝐿 ∙ (tan 𝜃0 − tan𝜃1)

tan 𝜃0

= 𝐿 ∙ (1 −
tan 𝜃1

tan 𝜃0
), 

2.22  
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which has considered in the system alignment. As a final 
remark, being 𝑛𝑔𝑙𝑎𝑠𝑠 greater than one, it holds that ∆𝑊𝐷>

0.  

In this paragraph it has been proven how the light coupling 
between a Köhler illuminator and a DMD can be increased 
by introducing a glass prism in the setup, without incurring 
in major side-effects. Moreover, by making the optical paths 
before and after the SLM almost orthogonal, the use of a TIR 
prism enables to simultaneously house a second light source 
in the system (Thorlabs SOLIS-623C), peaked at 623 𝑛𝑚 
which can hence perform multicolour imaging. In the first 
presented sketch of the setup, this feature was not 
achievable due to the small tilt angle between the optical 
axis before and after the DMD. 

2.2.3 Final setup implementation 
As depicted in the previous sections, the use of an 
incoherent light source is strongly limited by its high 
divergence. Furthermore, for most LED, the high divergence 
also comes with a relatively large emitting surface (𝑚𝑚 of 
side), which makes it even more difficult to tightly confine 
incoherent light over a small volume. To this aim, the well-
studied Köhler configuration has been used, to efficiently 
harvest the incoming excitation photons. Nonetheless, 
different options have been taken in consideration and 
tested before considering the presented setup optimized.  

The first option was using a flexible fibre optic light guide 
(Edmund Optics), which is basically made by a bundle of 
smaller glass guides which transmit light in the visible region 
of the spectrum. By illuminating the input surface of the 
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bundle with an high numerical aperture source (the LED), 
light is so transmitted through the guide and then imaged on 
the DMD reflective surface. However, said approach was not 
feasible since the output light spot was not uniform but it 
instead showed a strong modulation, present in form of 
black spot over the output plane of the fibre itself. Said 
modulation was given by the disordered structure of the 
bundle: a non-illuminated single fibre at the input surface 
was not linked to a fibre at the same position at the output 
plane. Thus, by non-completely illuminating the first, a non-
predictable mask of black dots was then reported at the 
DMD surface.  

 
Figure xxii: Scheme of setup for sm-SVIM with a light pipe. 
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A second alternative was in principle similar to that of the 
fibre bundle: homogenizing light thanks to guided 
transmission to perform uniform illumination. It was hence 
used an homogenizing rod, as displayed in Figure xxii, with 
an hexagonal input surface. The rod, also called light pipe, is 
a glass prism, mostly found in elongated shapes, which 
transmits light thanks to total internal reflection. The 
massive number of internal reflections in fact, redirects light 
to uniformly fill the output surface. The output angular 
divergence is directly linked to the input numerical aperture 
and the ratio between the two access: it is constant the term 
𝑁𝐴 ⋅ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 , which follows from étendue conservation 
(Eq. 2.2). The light pipe was put as close as possible to the 
emitting surface and then its output plane was imaged by a 
compact lens module on the DMD. Differently from the fibre 
bundle, the glass rod proved to successfully uniform light. 
However, the induced photon losses were larger than those 
given by the Köhler configuration or the fibre bundle. The 
best-case scenario gave an overall power at the modulator 
which was a factor of two smaller than that given by the 
Köhler subsystem. 

 

 
Figure xxiii: Working principle of an homogenizer rod. 

Finally, other lenses arrangements were tested, in the end 
they all showed transmission and/or uniformity properties 
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which were not comparable to the solution adopted. For this 
reason, the final system is that depicted in Figure xxiv, where 
a double colour illumination is introduced. 

 
Figure xxiv: Scheme of the final, optimized setup for sm-SVIM.  Dimensions are 
not in scale. Dimensions are not in scale. 



 

3 SM-SVIM: 
TECHNIQUE 

CHARACTERISATION 
 

 

 

 

Once obtained an optimized illumination path in terms of 
photon budget, a characterisation of the sm-SVIM overall 
acquisition protocol is needed, both in terms of optical 
properties and compression capability. As stated in the 
previous chapter, lateral extension of the Field Of View has 
been obtained thanks to a translation in the illumination 
lens, which is synchronized with the line-by-line acquisition 
of the CMOS sensor. Conversely in this chapter, it will be 
discussed how a deconvolution algorithm is implemented to 
enhance image quality along the axial direction.  

Both CS and deconvolution have proven to be effective and 
beneficial to sm-SVIM, obtaining a reduced effective light 
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dose at the sample, and an axial sharpening of the volume 
information, respectively. 

3.1 SM-SVIM IMPLEMENTATION 

3.1.1 SVIM with an LED  
The photons emitted by an incoherent source as an LED are 
spread over a large angle of divergence, making it difficult to 
collect and refocus them without significant losses. To even 
worsen this scenario, one must also consider that most 
incoherent light sources have active areas which are orders 
of magnitude bigger than the usual dimensions of a light 
sheet. For example, with respect to the LEDs used in this 
thesis project, the emitting surface are of 3 𝑚𝑚 ∗ 3 𝑚𝑚 . 
Considering the typical dimensions of a light sheet in LSFM, 
which is about  10 𝜇𝑚 , their mismatch hinders the 
possibility of tightly focus photon on a narrow plane. For said 
reason, LEDs are normally discarded as sources for LSFM set 
ups. However, by increasing the dimension of the 
illumination spot, these can provide the necessary power 
density to excite fluorescence.  

As a further remark, excitation light is propagating along the 
𝑥 axis, whereas the detection path is built parallel to 𝑧 , 
therefore denoted as lateral and axial dimensions, 
respectively. Illumination and detection paths have thus 
been designed to be mutually orthogonal, as in LSFM. 
Consequently, the spatial modulation is parallel to 𝑦𝑧. After 
light is condensed and uniformly refocused by the Köhler 
illuminator, the DMD selectively reflects a pattern which is 
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reported at the sample plane. This is obtained thanks to a 
tube lens conjugated with a long working air objective, 
whose magnification is 𝑀𝑖𝑙𝑙  numerical aperture is 𝑁𝐴𝑖𝑙𝑙 . 
Said parameter puts a constraint on the depth of 
illumination and determines the modulated volume 
extension along the 𝑥 axis without volume extension.  

The spatial arrangement of modulation plane, sample 
chamber and detection path, results in an intensity profile at 
each sensor pixel, which is the weighted sum of each voxel 
contribution from the line ∆𝑧  in front of said pixel. Thus, 
each camera pixel senses the result of a line integral over the 
axial direction of the emitted light, modulated by the DMD. 
The technique yields an acquisition and reconstruction 
procedures similar to those involved in SPC: the acquired 
signal is in fact a scalar product between line pattern and 
fluorophores distribution.  

The total LED power of 3.5 𝑊, was reported at the sample 
obtaining an intensity of about 500 𝑚𝑊/𝑐𝑚2. This yields a 
value one order of magnitude smaller than those implied in 
a typical LSFM [1], [17]. Nonetheless the illuminated volume 
in sm-SVIM has an axial extension much bigger than LSFM, 
typically 100 − 150 µ𝑚 thick, 10 times that of a common 
light sheet.   

The 𝑧  extension of the pattern i.e., the thickness of 
corresponding modulated volume, must be such to 
completely fill the Depth of Field of the detection objective. 
Because of the used DMD, said thickness will be determined 
by the number of active pixels and their magnified 
dimensions, which has been discussed in the previous 
chapter, so that Δ𝑧 = 𝑁 ⋅ 𝑒. Given 𝑁𝐴𝑑𝑒𝑡 , this determines 
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both the DOF and the sensor size, so 𝑁 and 𝑒 are accordingly 
chosen. Considering a generic detection objective whose 
magnification 𝑀𝑑𝑒𝑡 and characteristic 𝑁𝐴𝑑𝑒𝑡, this leads to a 
detectable volume with sides Δ𝑋 = Δ𝑌 = 𝑛𝑝𝑖𝑥𝑒𝑙𝑠 ∙ 𝛿𝑝𝑖𝑥𝑒𝑙 =

 2048 ⋅  
6.5𝜇𝑚

𝑀𝑑𝑒𝑡
, after lateral modulation extension. 

Moreover, with a  𝐷𝑂𝐹𝑧 by considering the tiniest degree of 

axial modulation 𝑒 =  

𝑑𝐷𝑀𝐷
𝑀𝑖𝑙𝑙

∙√2

2
, a volume thickness in the 

orders of 60 pixels lines is obtained. So that 𝑁 =  64 and 
128 care appropriate choices for the expansion of Walsh-
Hadamard patterns. Nonetheless, with some experimental 
procedures that will be given in the section Pattern Binning, 
the number of modulating pixels can be further extended by 
a factor of 2. 

Once the incoming signal is collected, a problem must be 
solved to retrieve the fluorophores volume concentration 
𝝌(𝑥, 𝑦, 𝑧). The problem is formulated upon the acquisition 
of 𝑁  images 𝜉𝑖(𝑥, 𝑦) , with 𝑖 =  1…𝑁 , one for each basis 
element of the sampling set. After the measurement is 
performed, a pixelwise equation is set, in a form analogous 
to that presented in the first chapter:  

 𝝃(�̅�, �̅�) = Φ ⋅ 𝛘(�̅�, �̅�), 3.1  

where (�̅�, �̅�) is the position of the considered pixel, 𝜉(�̅�, �̅�) 
is the measured vector, Φ  is the measurement matrix of 
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shape 𝑁 ×  𝑁  and χ(�̅�, �̅�)  is the fluorophores distribution 
on the line facing said pixel. 

3.1.2 Optical features  
The reconstruction method has been tested to quantify both 
its experimental lateral and axial resolutions, which are 
theoretically determined by the detection objective and 
DMD pixel dimension, respectively. It is hereby reported a 
quantitative analysis of the optical characteristics of the 
techniques, with the 4X objective being used as detection 
and an effective 𝑀𝑖𝑙𝑙 = 2.5. This experimental configuration 
results in an effective DMD pixel of 𝑒 = 2.14 𝜇𝑚  which, 
considering 𝑁 = 64 patterns, leads to a modulated volume 
thickness of ∆𝑧 =  𝑁 ·  𝑒 =  134 µ𝑚.  

The reconstruction procedure was carried after measuring a 
sub diffraction sample, namely fluorescent beads, 
embedded in a transparent, solid gel matrix (1.5% phytagel 
in distilled water). The beads were of average diameter of 
500 𝑛𝑚, with peak emission at 𝜆𝑒𝑚 = 582 𝑛𝑚 and central 
excitation peak at 𝜆𝑒𝑥𝑐 = 480 𝑛𝑚 . Being the last 
illumination lens of 𝑁𝐴𝑖𝑙𝑙 = 0.14 and that of detection with 
𝑁𝐴𝑑𝑒𝑡 = 0.13 , these two altogether grants a lateral 

resolution (i.e., on the 𝑥𝑦  plane) of Δ𝜌 =  
𝜆𝑒𝑚

2⋅𝑁𝐴𝑑𝑒𝑡 
=

2 𝜇𝑚 and an axial profile dominated by the imaged pixel size 
𝑒.   

After a complete measurement set, an inversion problem is 
solved, aimed at retrieving the fluorophores spatial 
distribution over a volume Δ𝑋 ∗ Δ𝑌 ∗ Δ𝑍 . It is hereby 
denoted as effective volume depth Δ𝑍, which is different 
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compared to the modulation thickness Δ𝑧 , due to the 
defocus given by the detection PSF. An example of complete 
reconstruction is shown in Figure xxv. 

 
Figure xxv: Reconstruction on fluorescent beads. Scale bar is 100 µ𝑚 . (a) 
Reconstructed single plane (xy). (b) Transverse view (xz). The volume with 

resolution of ± √2 δr laterally and ± √2δz axially, is highlighted in the yellow box. 
(c) Diffraction limited intensity profile along x and z (red arrow). (d) Same profiles 
for a bead at the border of the imaging region (green arrow). 

Here, diffraction limited lateral resolution is obtained on the 
entire extension of the sensor (xy in Figure xxv). Conversely, 
a diffraction limited axial profile is only obtained in the 
central region of the detection DOF, represented as a yellow 
box. A gaussian fit has been performed to retrieve the 
experimental feature of the reconstruction of the central 
part of the volume, leading to a measured, lateral resolution 
of 𝛿𝜌 = 2.3 ± 0.2 𝜇𝑚 and an axial resolution of 𝛿𝑧 = 2.9 ±
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0.2 𝜇𝑚 . This parameters are in agreement with the 
presented theoretical values. However, by considering a 
bead which is not perfectly in focus with respect to the 
detection lens, this last parameter worsen, as anticipated. 
Nonetheless, by considering a region in which the transverse 

resolution is √2 𝛿𝑧, this holds an overall imaging volume of 
Δ𝑋 = Δ𝑌 = 3.3 𝑚𝑚, limited by the sensor size and Δ𝑍 =
120 𝜇𝑚 .  

In the case where no translating stage is considered, the 
reconstruction volume would be further constraint by the 
illumination divergence profile. This would limit Δ𝑋  to be 
about one tenth of its final extension. Moreover, this 
situation would thus result in an elongated image region, 
with a 𝑚𝑚𝑠  extension only along y. Accordingly, with no 
illumination objective translation, narrow samples have 
been studied: to well fit the elongated reconstruction 
region. To this aim Danio rerio embryos have been 
extensively used for the characterisation of the technique, 
without lateral extension. Nevertheless, the results obtained 
and the conclusions inferred are not dependent upon such 
extension and have to be intended as generic.  

A comparison between the two situations, with and without 
lateral extension, is presented in Figure xxvi. Here, it is clear 
by comparing Figure xxvi a) and b), how in the latter, the 
whole sensor perceives the fluorescence signal from the 
plane of interest. Orthogonal reslices of the two situations 
are also displayed in panels c) and d), with the region of 
correct reconstruction highlighted in the green box: the 
whole volume is populated by fluorescent beads that, with 
no extension, would have been almost impossible to be 
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correctly reconstructed. Nonetheless some peripherical 
nanosphere can still be sensed in panels a) and c), due to the 
tails of high diverging illumination beam exciting some 
brighter emitters. The results yielded by the two procedure 
are equivalent in the central region. 

 
Figure xxvi: Reconstruction provided by the technique with and without lateral 
extension, a) and b) respectively and their related reslices. Scale bars are 500 μm. 

3.1.3 Measurement design  
The previous sections presented both the different possible 
choices of measurement functions and the importance of 
said choice. This in fact may imply the success of the under 
sampled reconstruction, as well as the SNR of the retrieved 
solution. A “good” set of sampling function is that which 
maximizes the incoherence with the signal (or its 
representation) (see Appendix D for further details). By 
considering spatially sparse fluorophores distribution, the 
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representation basis 𝑊  can be considered as the identity 
matrix. This means that for fluorescent beads the canonical 
spatial basis is the basis with which Φ must show an high 
degree of incoherence.  

Due to the hardware components involved in the presented 
setup, a good candidate is the so-called Walsh-Hadamard 
(WH) basis, previously introduced in chapter 1. Each element 
of this set only shows either +1 or -1 entries, which can be 
easily encoded on a Spatial Light Modulator working in 
binary mode. However, DMDs can produce only positive 
entries. Thus, it is needed a workaround to show the -1 
entries. To this aim, in [79]  it is presented a possible 
solution, which consists in splitting each of the WH element 
into two matrices, starting from the formulation presented 
in the first chapter:  

 

𝐻𝑛 = [
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
] 

 

𝐻𝑛 = 𝐻𝑃𝑛
− 𝐻𝑁𝑛

= [
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 0
] − [

0 0
0 𝐻𝑛−1

], 

3.2  

where it has been considered a 𝑛 -dimensional space of 
measurement for simplicity. Thus, problem Eq. 3.1 can be 
generally recast as:  

 𝝃 = 𝐻 ⋅ 𝛘 = (𝐻𝑃 − 𝐻𝑁) ⋅ 𝛘 =  𝝃𝑝 − 𝝃𝑁. 3.3  

Therefore, a single WH matrix measurement can be 
represented equivalently by two consequent 
measurements. The first, corresponding to the matrix 𝐻𝑃 , 
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which outputs the measured vector  𝝃𝑝, the second, related 

to 𝐻𝑁, which determines the vector 𝝃𝑁. Finally, to retrieve 
the total measured vector 𝝃, 𝝃𝑁 is subtracted to 𝝃𝑝 to mimic 

the negative entries of the DMD.  

Considering 𝑁  modulation pixels, which is calculated 
according to the illumination and detection features, the 
dimensionality of the measurement set is determined. 
Furthermore, this also leads to a total number of patterns to 
be acquired of 2𝑁. 

3.1.4 Compressed Sensing in sm-
SVIM  

LSFM and sm-SVIM are formally equivalent as imaging 
problem. The two measurements routines have a 
characteristic sampling matrix which in the first case, 
provides a one-to-one correspondence between imaged 
plane and acquired frame, while in the second, it mixes the 
depth information according to the modulation pattern. 
Therefore, in sm-SVIM the acquired signal is the weighted 
sum of different contributions collected from different 
planes.  

In LSFM, to sample a volume of 𝑁 planes, 𝑁 frames must be 
acquired, thus the corresponding matrix can be represented 
as an identity matrix. Conversely, sm-SVIM encodes 
information through a measurement process which has also 
nonzero off diagonal elements in its matrix form, according 
to the family of pattern chosen (as presented in the first 
chapter). Nonetheless, volumetric light modulation enables 
the use of Compressive Sensing. CS might further improve 
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the technique performances in terms of acquisition time and 
induced photodamage.  

The so formulated reconstruction problem takes the form 
(where the pixelwise dependence has been omitted for 
simplicity):  

𝝍 = argmin (
1

2
‖𝝃 − ΦW𝝍‖𝑙2

2 + 𝜆R(𝝍))  𝑠. 𝑡. 𝝌 = 𝑊𝝍, 3.4 

where 𝝍 is the signal transformed in the domain pointed by 
the linear map 𝑊, 𝜆 is an hyperparameter for regularisation 
of the solution, already discussed, and R(𝝍) is a term which 
can enforce some features in the solution. This penalty term 
is of great use and variability, since it can enforce sparsity in 
the signal itself, as in the case of R(𝝍) =  ‖𝝍‖𝑙1, or it can 

provide for sparsity in the image gradient, R(𝝍) =
 ‖𝑇𝑉(𝑥)‖, considering its 𝑙1 or 𝑙2 norm [37].  

In this context, being the unknown fluorophores distribution 
𝝌 sparse in a domain mapped by the linear transform 𝑊, it 
holds that said signal recovery might happen without 
consistent loss of information if the measurement matrix Φ 
and the representation matrix are mutually incoherent [36]. 
Therefore, the choice of these matrices is crucial for both 
compression and reconstruction capability. To this extent, 
an evaluation of the compression capability can be given by 
defining a compression factor, which is commonly define 
both as 𝐶𝑅 =  1 − 𝑀/𝑁 , given in percentual units, or as 
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𝐶𝑅 =  𝑁/𝑀. This means that the fewer the measurements, 
the higher the compression ratio. 

Analogously to what have been done for optical features of 
the complete reconstruction procedure, also the 
compression capability of the technique has been tested of 
sub diffraction beads, as displayed in Figure xxvii. Here, 
different compression ratios have been tested and are 
reported results both in lateral 𝑥𝑦  and axial 𝑥𝑧  reslices. 
Comparable results with respect to the non-compressed 
reconstruction are obtained for CR of 50% and 75%, which 
are degraded in terms of overall SNR. At higher ratios, 
namely 87.5%, the undersampled problem fails at 
recovering spatial information over the entire volume of 
interest. This might result in either a wrong position along 
the 𝑧  axis or in a false duplicate in the point emitter, as 
highlighted by the arrows in figure.  

 
Figure xxvii: Compressed volumetric reconstruction quality in a fluorescent beads 
sample at different under sampling ratio, namely 2, 4 and 8 or equivalently 50%, 
75% and 87.5%. Scale bar is 100 μm [28]. 
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Nonetheless these latter results demonstrate how CS can be 
beneficial to imaging in microscopy and more in particular to 
sm-SVIM, potentially decreasing the light dose shining the 
sample (and therefore the phototoxicity of the technique) 
and the overall acquisition time, at cost of a limited loss of 
information.  

3.2 AXIAL VOLUME EXTENSION 

3.2.1 Pattern Binning  
A possible experimental trick can be performed to enlarge to 
reconstructed volume along the axial direction. When 
measuring a sample with 𝑁 acquisition patterns, this results 
in 2𝑁  effectively stored patterns in the DMD volatile 
memory. Given a limited 2 ∗  48 MB of memory storage for 
firmware and patterns in fact, it follows that only a limited 
number of these can be of use. Once decoded, the DMD 
memory stores about 400 frames, which limits the sampling 
set to be at maximum 𝑁 = 128 and the modulated volume 
to be ∆𝑧 =  𝑁 ·  𝑒 .  
To overcome this issue, they also have been tested a set of 
measurement patterns in which the tiniest degree of 
modulation are two lines of pixels, instead of just one. This 
intrinsically doubles the modulated volume since ∆𝑧 =  𝑁 ·
 2𝑒 , at cost of also doubling the axial resolution of the 
reconstruction. This approach has proven to be very 
effective in situation in which the detection depth of field is 
strongly elongated, as in the case for the presented 2X 
objective. Furthermore, it has also been tested a binning of 
4, which conversely has shown weak modulation capability. 
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Despite this happened in a region well beyond the DOF. 
Therefore, mainly binning by a factor of two has been 
considered and exploited.  

3.2.2  Deconvolution  
Whenever one wants to apply a deconvolution algorithm, a 
fundamental step is the Point Spread Function evaluation 
procedure: a correct estimate of this function strongly 
affects the resulting reconstruction. In Light Sheet 
Fluorescence Microscopy, the overall PSF of the technique is 
given by two contributions, the illumination, and the 
detection PSF. The final function is thus given by the spatial 
contribution of these two, having an axial profile which is 
limited by the light sheet thickness, as illustrated in Figure 
xxviii. Furthermore, in LSFM, the illuminated sample and the 
sensor plane are mutually static, meaning that the acquired 
frames are always in focus with respect to the detection.  

Conversely, in the technique presented in this thesis, the 
overall PSF shows some differences with respect to said 
features. In sm-SVIM in fact light is modulated according to 
a well determined pattern, which results in different 
incoming light profiles, which are of different thickness and 
axial position. In the case of Walsh-Hadamard modulation, 
said thickness varies from the minimum value of the DMD 
pixel dimension, to its maximum for the first basis 
component of the measurement set, i.e., a continuous light 
profile which extends over the 𝑁 pixels of modulation. As 
displayed in Figure xxix the incoming modulated profile 
overlaps with the detection PSF at different depth on the 𝑧 
axis, resulting in imaged regions with different defocus 
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contribution. From a practical point of view, the farther 
away the fluorophore from the DOF centre, the more 
blurred its acquisition. 

 
Figure xxviii: Schematics of imaging a light-sheet setup. The highlighted region is 
the resulting PSF, which is the convolution between the illumination and the 
detection PSFs. 

Given the modulation of the illumination profile, it follows 
then for each pattern, an effective illumination PSF must be 
considered.  

Then, it is possible to mathematically formulate the process 
of image formation in sm-SVIM, to finally be able to solve for 
a diffraction limited object distribution over the entire 
volume of imaging. To ease said task, the detection PSF has 
been considered to be constant at any given plane. To 
rephrase, each of the camera active elements senses a 
contribution of light which only depends upon the object 
volume distribution.  
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Figure xxix: Schematics of imaging a sm-SVIM. The highlighted region is the 
resulting, modulated PSF, which is the convolution between the patterned 
illumination profile and the detection PSFs. Different axial position corresponds 
to different defocus contribution.  

In the illumination path, the axial light distribution depends 
on the illumination pattern projected at the DMD plane, 
which is one row of the measurement matrix, i.e., 𝝓𝑗(𝑧). As 

previously mentioned, it is hereby considered a sampling set 

of Walsh-Hadamard functions, so that 𝝓𝑗(𝑧) is its 𝑗𝑡ℎ vector 

row. Said vector, only shows binary entries which result in a 
binary axial illumination which selectively illuminates the 
volumetric sample at different depths. Thus, by knowing 
𝝓𝑗(𝑧), the overall collected signal 𝛀(𝑥, 𝑦, 𝑧) will depend on 

both the excited volume, and on the fluorophores 
volumetric distribution, by a simple dot product:   



Axial Volume extension 

 

 100 

 𝛀(𝑥, 𝑦, 𝑧) = 𝝓𝑗(𝑧) ⋅ 𝝌(𝑥, 𝑦, 𝑧). 3.5 

From Eq. 3.5, it can be calculated a mathematical 
formulation of the imaging of 𝛀(𝑥, 𝑦, 𝑧)  performed by an 
optical system with detection Point Spread Function 𝑃𝑆𝐹𝐷: 

 
Figure xxx: Modulation scheme in 3 dimensions. 

 
𝚰(𝑥𝐷,  𝑦𝐷)  =  ∭𝛀(𝑥, 𝑦, 𝑧) ⋅ 𝑃𝑆𝐹𝐷(𝑥 − 𝑥𝐷 , 𝑦 − 𝑦𝐷 , 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 

= ∫𝛀(𝑥𝐷 , 𝑦𝐷 , 𝑧) ⊗𝑥𝐷,𝑦𝐷
𝑃𝑆𝐹𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧) 𝑑𝑧 

3.6 

And consequently, the final formulation for the detected 
image is: 

𝚰(𝑥𝐷,  𝑦𝐷) = ∫(𝝓j(𝑧) ⋅ 𝝌(𝑥𝐷 , 𝑦𝐷 , 𝑧)) ⊗𝑥𝐷,𝑦𝐷
𝑃𝑆𝐹𝐷(𝑥𝐷, 𝑦𝐷 , 𝑧) 𝑑𝑧. 3.7 

By considering a symmetric PSF with respect to 𝑧 , it is 
possible to consider its effective representation. 
Furthermore, the binary entries of 𝝓𝑗(𝑧) are such that the 

pointwise product 𝝓𝑗(𝑧).𝝓𝑗(𝑧) is equal to 

𝝓𝑗(𝑧). Altogether these two considerations lead to: 
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𝚰(𝑥𝐷,  𝑦𝐷) = ∫ (𝝓𝑗(𝑧) ⋅ 𝝓𝑗(𝑧) ⋅ 𝝌(𝑥𝐷 , 𝑦𝐷 , 𝑧))  ⊗𝑥𝐷,𝑦𝐷
𝑃𝑆𝐹𝐷(𝑥𝐷, 𝑦𝐷 , 𝑧) 𝑑𝑧 = 

 = ∫(𝝓𝑗(𝑧) ⋅ 𝝌(𝑥𝐷 , 𝑦𝐷 , 𝑧)) ⊗𝑥𝐷,𝑦𝐷
(𝑃𝑆𝐹𝐷(𝑥𝐷, 𝑦𝐷 , 𝑧) ⋅ 𝝓𝑗(𝑧))  𝑑𝑧 = 3.8 

 
= ∫(𝝓𝑗(𝑧) ⋅ 𝝌(𝑥𝐷 , 𝑦𝐷 , 𝑧)) 𝑑𝑧 ⊗(∫𝑃𝑆𝐹𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧) ⋅ 𝝓𝑗(𝑧)𝑑𝑧), 

 
 

where the spatial dependency of the convolution has been 
neglected. Every acquired frame is in fact given by a line 
integral of the PSF, which is plane wise considered to be 
isoplanatic. Finally, the image formation in sm-SVIM can be 
modelled as:  

 𝚰(𝑥𝐷 ,  𝑦𝐷)  = ∫(𝝓𝑗(𝑧) ⋅ 𝝌(𝑥𝐷 , 𝑦𝐷 , 𝑧)) 𝑑𝑧 ⊗𝑃𝑆𝐹𝐷𝐸𝑓𝑓
 3.9 

To retrieve the modulated image, i.e., before that the 
measurement inversion takes place, a Richardson-Lucy [8] 
deconvolution algorithm is applied, whose step is 
represented as: 

 �̂�(𝑡+1) = �̂�(𝑡) (
𝚰(𝑥𝐷,  𝑦𝐷)

�̂�(𝑡) ⨂ 𝑃𝑆𝐹𝐷𝐸𝑓𝑓

 ⨂𝑃𝑆𝐹𝐷𝐸𝑓𝑓

∗). 3.10 

To perform deconvolution before inversion makes the 
problem more resilient with respect to the noise induced by 
the two inversions. 

As a final remark, to deconvolve a 2048 ∗ 2048 ∗ 128 
volume with a 128 ∗ 128 𝑃𝑆𝐹𝐷𝐸𝑓𝑓

, over 30 iterations of the 
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algorithm, it takes about 2 𝑚𝑖𝑛. The code was run in parallel 
on a TITAN RTX. 



 

4 RESULTS AND 

CONCLUSIONS 
 

 

 

 

The goal of this final chapter is to show the results obtained 
by the developed technique in terms of imaging capability 
and optical sectioning, compressibility and image quality 
achieved through deconvolution. The imaged specimens 
were biological samples, in vivo and ex vivo, of different sizes 
and fluorescent labels. 
In the first part they are presented results obtained with a 
complete measurement set, to assess for optical sectioning 
capability of sm-SVIM to establish a comparison with LSFM.  
Then, they are described the compression results in samples 
of different spatial features, with a particular regard to 
experimental artefacts induced by photobleaching, which 
might affect the final reconstruction.  
Moreover, a discussion on the deconvolution algorithm is 
proposed. Also, multicolour reconstructions are reported, 
even though this strategy has not been extensively studied 
and tested.  
Finally, the conclusions of the thesis work are drawn, also 
highlighting possible future implementation for sm-SVIM.  



Results 

 

 104 

4.1 RESULTS  

4.1.1 Volume Reconstruction 
Different samples imply different volume of interest. Thus, 
in the next sections they are presented results obtained with 
different illumination and detection lenses, according to the 
wanted reconstruction volume. In this section nonetheless, 
just non-compressed reconstructions are examined.  

 
Figure xxxi: Reconstruction of a Tg (α-actin: GFP) zebrafish embryos. Scale bars 
are 100µ𝑚. (a) Plane by plane reconstruction at different depth: z = 0, z = 
67µ𝑚, z = 134µ𝑚, from left to right. (b, c) Transverse sections of the sample 
acquired in frontal and sagittal positions. (d) Frontal Maximum Intensity 
Projections (e) Sagittal Maximum Intensity projection. (f, g) Details of the 
regions shown in the green and blue boxes. [28] 

The first test bench for the technique and its capability to 
perform in vivo volumetric imaging have been 4-day post 
fertilisation living Danio rerio embryos, with two different 
tags: Tg (α-actin: GFP) and Tg (kdrl: GFP). These two genetic 
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labels were so that GFP is expressed in the skeletal muscles 
and endothelial cells, respectively. For samples highly 
elongated along one direction as zebrafishes embryos, the 
same configuration as that presented for the bead’s 
characterisation is used, providing a reconstructed volume 
of Δ𝑋 ∗ Δ𝑌 ∗ Δ𝑍 = 200 𝜇𝑚 ∗ 3.2 𝑚𝑚 ∗  120 𝜇𝑚 , with no 
need for lateral extension. A complete Walsh-Hadamard 
measurement set of 𝑁 =  64  was exploited. The 
reconstructed anatomy of an entire zebrafish embryo is 
shown in Figure xxxi. The sample of interest expresses 
fluorescence in the muscle’s fibres, which can be clearly 
distinguished over the entire specimen, both in lateral and 
transversal projections. A measurement routine with the 
same parameters has been also tested on Tg (kdrl: GFP) 
embryos, where the fluorescent signal shows different 
spatial features: here in fact, the blood vessels are 
genetically labelled. The reconstruction of such samples is 
shown in Figure xxxii: sm-SVIM acquisition protocol leads to 
an imaged volume where the vascular network is almost 
everywhere isotropically, from the brain to its trunk-tail 
region. The presented reconstructions were carried after a 
single frame exposure of 50 𝑚𝑠 , 100 𝑚𝑠  for equivalent 
Walsh-Hadamard pattern, leading to an overall acquisition 
of 6.4 𝑠. 
As anticipated, one major requirement of the technique is 
having a motionless sample, not to further modulate the 
incoming fluorescent signal. To this end, the presented 
zebrafish embryos were anesthetized in tricaine 0.1% and 
were kept in a Fluorinated Ethylene Propylene (FEP) tubes 
[111]. In regions in which motion of the sample tissue is 
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necessary, as for the beating heart, blurring artifacts are 
produced. Nonetheless such movement-related artefacts 
did not affect the overall quality of the reconstruction 
(Figure xxxii). 
Despite the two volumetric distributions of signal are 
different in Tg (α-actin: GFP) and Tg (kdrl GFP) embryos, it 
holds for both that sm-SVIM is a suitable tool for the 
volumetric acquisition, without incurring in shadowing 
artifacts or motion of these samples.  

 
Figure xxxii: sm-SVI acquisition of a Tg (kdrl: GFP) zebrafish embryos. Scale bars 
are 100µ𝑚. (a) Maximum Intensity Projection of 3D reconstruction of the trunk 
and head region. (b) Detail of the blue box. (c) Single sagittal plane (d) Single 
frontal plane. The yellow lines indicate the corresponding position in the sagittal 
and frontal planes. [28] 
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To evaluate the quality of complete reconstruction, the 
technique has also been tested over larger volumes. As 
previously described, this has been obtained thanks to the 
motion of the illumination lens. Moreover, the DMD 
modulating surface must illuminate the whole volume of 
interest. This implies a lower magnification objective in 
illumination.  

 
Figure xxxiii: Reconstruction of part of a mouse brain. In a) a single restored plane 
is shown together with its sagittal and frontal projection, whose location is 
highlighted by the yellow, dashed lines. b) Maximum Intensity Projection of the 
recovered volume.  

In Figure xxxiii it is reported a portion of a mouse brain, in 
which the blood vessels were tagged with CY5, a fluorescent 
molecule that emits fluorescence at around 670 𝑛𝑚 upon 
being excited at 630 𝑛𝑚 . The brain tissue was cleared in 
BABB. The sample was acquired with a measurement set 
consisting of 128 Walsh-Hadamard patterns, with 𝑀𝑖𝑙𝑙  = 4X 
and 𝑁𝐴𝑖𝑙𝑙  = 0.13 and 𝑀𝑑𝑒𝑡  = 5X and 𝑁𝐴𝑑𝑒𝑡  = 0.14, 
respectively. This result in a reconstructed volume of Δ𝑋 ∗
Δ𝑌 ∗ Δ𝑍 = 2.67 𝑚𝑚 ∗ 2.67 𝑚𝑚 ∗  120 𝜇𝑚 . The brain 
vasculature is successfully retrieved (Figure xxxiii, Maximum 
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Intensity Projection on the rightmost panel), displaying an 
almost isotropic resolution over lateral and transversal 
planes.   

A trial for binned acquisition patterns has also been 
performed, as shown in Figure xxxiv. Here, brain slices of 
mice were imaged in Ethyl Cinnamate, after being labelled 
with a fluorescent probe called TOPRO (𝜆𝑒𝑥𝑐 = 630 𝑛𝑚 , 
𝜆𝑒𝑚 = 660 𝑛𝑚). Imaging was performed with 𝑀𝑖𝑙𝑙  = 4X and 
𝑁𝐴𝑖𝑙𝑙 = 0.13 and 𝑀𝑑𝑒𝑡 = 5X and 𝑁𝐴𝑑𝑒𝑡  = 0.14, respectively, 
resulting in a lateral view of Δ𝑋 = ΔY = 2.67 mm  and a 
modulation axial extension Δ𝑧 = 𝑁 ∗ 2 ∗ 𝑒 = 343 𝜇𝑚 , 
which extends well beyond the detection Depth Of Focus as 
shown in the transverse detail of Figure xxxiv: the pointy 
signal can be perceived only in the central modulated region.  

As a final example, the maximum detectable volume was 
imaged, in a brain tissue with the same label and imaging 
medium as the sample in Figure xxxiv. The imaging was 
obtained with 𝑀𝑖𝑙𝑙  = 2X and 𝑁𝐴𝑖𝑙𝑙  = 0.055 and same 
characteristics detection lens, resulting in a lateral view of 
𝛥𝑋 = 𝛥𝑌 = 6.67 𝑚𝑚  and a modulation axial extension 
Δ𝑧 = 𝑁 ∗ 2 ∗ 𝑒 = 687 𝜇𝑚, Figure xxxiv. 
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Figure xxxiv: Reconstruction of part of mouse brain. Maximum Intensity 
Projection of the Imaged volume. The two boxes point two regions which are 
displayed in the leftmost panels together with their orthogonal reslice: here the 
defocus effect is clear. 

These last presented cases of interest were acquired with a 
single frame acquisition time of 300 𝑚𝑠 , yielding an 
effective exposure time per pattern of 600 𝑚𝑠 , and an 
overall measurement time of 38.4 𝑠. 

Finally, thanks to final spatial arrangement implemented, a 
second LED source was used for multicolour imaging: results 
are reported in Figure xxxvi. This assesses for the capability 
of performing sm-SVIM measurements on a variety of 
differently labelled samples without need for modification in 
the microscope. The lenses used are 𝑀𝑖𝑙𝑙  = 4X and 𝑁𝐴𝑖𝑙𝑙  = 
0.13 and 𝑀𝑑𝑒𝑡 = 5X and 𝑁𝐴𝑑𝑒𝑡  = 0.14, with Ethyl Cinnamate 
as immersion medium. 



Results 

 

 110 

However, the analysis of this approach is limited to fully 
sampled reconstruction routines.  

 
Figure xxxv: Reconstruction of part of mouse brain. Maximum Intensity Projection 
of the Imaged volume. The two boxes point two regions which are displayed in 
the leftmost panels together with their orthogonal reslice.  

 

Figure xxxvi: Multicolour reconstruction of the same plane in a multilabel sample. 

4.1.2 Compression  
Once the optical sectioning of sm-SVIM has been proven, the 
same had to be done for the compression capability of the 
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technique. For this reason, both zebrafish embryos and 
mouse brain portions were acquired and reconstructed by 
solving an undersampled problems at different compression 
ratios. Due to the spatial sparsity of the fluorophores 
distribution in the investigated samples, the ill-posed 
problem of Eq. 3.4 can be recast as:  

 argmin (
1

2
‖𝝃 − Φ𝝍‖𝑙2

2 + 𝜆‖TV(𝝍)‖𝑙1).  4.1  

In Eq. 4.1, the representation matrix 𝑊 has been considered 
as the identity matrix, 𝐼 . Furthermore, problem 4.1 is 
suitable in recovering signals with smooth transitions and a 
small number of few sharp edges, as a blood vessels net. 

Firstly, a CS reconstruction has been carried on Tg (kdrl: GFP) 
zebrafish embryos, with increasing CR of 2, 4 and 8, 
respectively. As displayed in Figure xxxvii, at lower CRs the 
differences in the overall reconstruction are negligible. 
Nonetheless, as the starting measurement set shows fewer 
entries, loss of volumetric information occurs, as highlighted 
in the details panel: the reconstructed blood vessels, despite 
being fully visible, appear to be more blurred, as their 
fluorescent signal comes from a less axially localized region. 
This confirms what was also remarked by compressed 
reconstructions on beads. The loss of information becomes 
clearly visible at CR = 8, were the vessels crossing highlighted 
is almost not perceivable. Due to loss of different axial 
components, this results in a mixed contribution of different 
modulation planes. Nevertheless, most of the embryo 
vasculature is well preserved over the imaged volume, at 
cost of losing axial sectioning. Furthermore, the rightmost 
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panel of Figure xxxvii shows a reconstruction obtained using 
only one eighth of the starting measurement set, yielding a 
remarkable reduction both for light dose and total 
acquisition time. Furthermore, an analogous reconstruction 
procedure was performed on a sample equivalent to that 
presented in Figure xxxiii: the compressed reconstructions 
of a limited portion are shown in Figure xxxviii.  

 
Figure xxxvii: Compressed volumetric reconstruction in a Tg (kdrl: GFP) zebrafish 
embryo at different under sampling ratio C. Scale bars are 100µ𝑚. Maximum 
intensity projection (left hand side of each panel) and single frontal plane (right 
hand side). The yellow line highlights the plane shown on the right-hand side. The 
red box is a detail of the Maximum Intensity Projection, for each panel. From left 
to right: reconstruction from complete Scrambled Hadamard measurement set 
and for compressing ratio of 2, 4, 8. [28] 

Once again, the obtained results confirm what achieved in 
synthetic beads and zebrafish embryos: the higher the 
compression, the bigger the loss of information along the 
axial direction, which is the modulation axis. In the 
transverse sections, f) g) and h), the loss of information as 
CR increases is clear, as pointed by the arrow: vessels which 
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were axially resolved at CR = 2 and 4, are immersed in 
background noise at CR = 8. Moreover, also the defocus 
effect induced by the detection DOF seems to be worsened: 
a good reconstruction is reported over thinner volumes for 
increasing CR. 

 
Figure xxxviii: Compressed reconstructions at increasing CRs. a) and e) are non-
compressed reconstruction of a plane and its orthogonal projection; b) and f) are 
the same planes recovered with CR = 2. Same holds for the pairs c) g) and d) h), 
but at CR = 4 and CR = 8, respectively. Increasing the compression ration 
correspond to an higher probability of failing at axially relocating the signal, as 
pointed by the green arrow. 

As explained, the undersampled sets were obtained by 
extracting at random the frame entries used for the ill-posed 
reconstructions. In these situations, there is no preference 
on the selected axial frequencies. However, by choosing the 
frames for the CS problem in a non-random extraction, the 
recovery might happen with lower information losses on the 
fluorophores axial distribution. It is in fact true that, for the 
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presented samples, an higher amount of information hides 
in the lower frequency components. 

Nonetheless, the two reported cases of interest show how 
CS can be beneficial in an axially modulated setup with 
incoherent illumination, by critically reducing the number of 
images to be acquired for a volumetric reconstruction. 
Altogether, they demonstrate how the technique yields a 
gentle imaging approach, reducing the caused photodamage 
and equivalently shortening the total measurement time. 

4.1.3 Photobleaching Artefacts  
An unwanted signal modulation perceived by the sensor 
might result in an unwanted reconstruction artefact. That 
might be the case for a non-uniform illumination spot of the 
DMD plane or, as of interest for this paragraph, for 
photobleaching. As presented in Appendix B, 
photobleaching is a phenomenon which may occur when 
overexposing the fluorescent probe to light. Photobleaching 
causes a permanent transition of the molecules from a 
fluorescent state to a non-emitting one also referred to dark 
state. Photobleaching in an extended sample may result in 
an exponential decrease of the fluorescent signal over time.  

The described exponential modulation has ben also 
measured in some sm-SVIM measurements, where, 
together with patterned modulation, it is introduced a 
further modulation factor as an exponential decay (Figure 
xxxix b)). Said modulation makes the inversion problem time 
dependant, since it links higher modulation frequencies (i.e., 
the tiniest degree of axial information) to frames of lower 
intensity. As the measurement with a Walsh-Hadamard set 
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proceeds, the finest degree of modulation decreases as a 
power of two, down to 20 = 1,  which corresponds to a 
single line or down to two lines for binned patterns. By 
coupling patterned modulation with an exponential decay, 
this results in a volume reconstruction which is axially 
affected by this coupling. In Figure xxxix c) it is shown a 
transverse reslice in which line artifacts arise, denoting 
different intensities on regions which were acquired at 
different time, i.e., at different bleaching levels. The 
strongest of these artifacts is highlighted by the yellow 
arrow in the figure and corresponds to the centre of axial 
modulation. 

To correct for this factor, two strategies may be taken. The 
first is modulating the sample with random or scrambled 
Walsh-Hadamard basis, so to distribute over the 
reconstructed volume randomly and evenly, the exponential 
decrease of the detected signal. The second, which is the 
one reported in this thesis, consists of compensating for the 
known exponential modulation and to rescale the acquired 

frames by a factor 
𝐼(𝑡)

exp (−𝑘𝑡)
, with time being discretized by 

the patterning. The corrected result is reported Figure xxxix 
d). Here, no axial modulation of the reconstruction is 
reported, proving the efficacy of the correction.  
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Figure xxxix: a) Maximum Intensity Projection of a deconvolved, reconstructed 
volume. b) Intensity profile along the time i.e., patterned acquisitions. c) Reslice 
of the reconstruction in which photobleaching has not been considered; d) Same 
reslice but where a correcting factor has been used. Here artifacts are successfully 
removed. 

Finally, this demonstrates how it is critical to have collected 
raw frames which differ only due to the different 
illumination patterns, without no other modulation induced. 
This could critically affect the final reconstruction, to the 
same extent as a moving sample or a non-uniform 
illumination profile, either in space or time. 

4.1.4 Deconvolution  
Similarly to what it has been proposed for optical sectioning 
and compressed routines, also deconvolution has been 
tested on biological samples, namely on cleared mouse brain 
slices, imaged in Ethyl Cinnamate. The data on which 
deconvolution has been applied are those shown in Figure 
xxxix. A sample with pointy features has been chosen to ease 
the evaluation of the algorithm performances. 
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By using a 4X illumination objective with modulation 
patterns binned by a factor of 2, this led to an overall 
modulation extension of Δ𝑧 = 343 𝜇𝑚. The signal was then 
acquired by a 5X objective, whose DOF had an extension 
much smaller compared to Δ𝑧,  as displayed in the 
orthogonal reslice details panel of Figure xxxix.  

As described in 1.1.3, deconvolution approaches need a PSF, 
experimentally or computationally obtained, to infer 
information about the sample spatial distribution, or in this 
case, about the modulated sample distribution.  In this 
thesis, the detection PSF was obtained by theoretical 
simulation, without considering aberrations. The output of 
said simulation was a volume with the same axial extension 
as those given by the experiments. Because of the symmetry 
of the problem, this has been decoupled as formulated in Eq. 
3.7, in which the rightmost term is given by considering an 
effective PSF. Said effective function arises from the 
symmetry of the family of patterns used, the Walsh-
Hadamard set, and their illumination profile 𝝓𝑗(𝑧). 

A plane wise Richardson-Lucy algorithm has been then 
applied, in an entire acquired modulated volume: the results 
are reported in Figure xl. The planes displayed are those at 
the depths indicated by the arrows in the orthogonal reslice 
of Figure xxxix d). Three planes of interest have been chosen 
symmetrically with respect to the centre of the Depth Of 
Focus, at 𝑧 =  −100 𝜇𝑚, 0 𝜇𝑚, 100 𝜇𝑚, respectively . 

The comparison between the two intensity profiles 
evaluated on the straight lines of panel a) b) and c), both of 
the deconvolved inversion and the simple inversion, are 
plotted in Figure xl d) e) and f), respectively. In the three 
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planes of interest, deconvolution has proven to be effective 
in increasing the image contrast altogether with a 
sharpening of the pointy emitters, which is evident in central 
volume of reconstruction. However, the farther away from 
the focus, the more the deconvolved profile look like being 
processed more by a denoise algorithm, rather than a 
deconvolution. This might be caused by errors in the 
simulated PSF which does not consider real factor as 
refraction as well as aberrations which might arise from the 
optical glass-imaging medium interface. Furthermore, 
restored images might include artifacts which are strongly 
related to the PSF used and the algorithm applied. To this 
extent, PSF is critical to the performance of iterative 
approach, as for this Richardson-Lucy algorithm of interest.        

Nonetheless deconvolution has proven to be beneficial to 
the imaging quality, improving contrast and increasing SNR 
in region well beyond the DOF of the detection objective.  
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Figure xl: Deconvolution performances in a reconstructed volume: the top left 
corner image in a), b) and c) comes from reconstructed planes at z = -100 𝜇𝑚, 0 
and 100 𝜇𝑚   respectively, while the lower right corner is the deconvolved 
counterpart. d), e) and f) are the line plot of the intensity along the paths in a), b) 
and c). The contour colours represent the depth with respect to Figure xxxix. 

4.2 CONCLUSIONS  
In this work it has been investigated how to implement a 
compressed acquisition protocol in a LSFM context. This led 
to the development of sm-SVIM, which obtains volume 
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information about the three-dimensional distribution of 
fluorescent samples by selective axial modulation.  

The optical scheme of the proposed technique involves two 
hardware components to obtain modulated, incoherent 
illumination, namely a Spatial Light Modulator (DMD) and an 
LED, which, by efficiently collecting its high diverging 
radiation, provides a strong reduction of the shadowing 
artefacts, which are a fingerprint of LSFM. Together with 
reduced artefacts, incoherent sources are beneficial in terms 
of lower cost, wide colour availability and output power 
stability.  

Furthermore, the use of a Spatial Light Modulator opens the 
possibility to exploit compressed acquisition protocols as 
Compressed Sensing. In the presented work, compressed 
reconstructions of both synthetic and biological samples 
have been demonstrated to preserve high anatomical 
details, even at considerable compressing ratios. 
Undersampled reconstruction, brings together a lower 
phototoxicity of the technique and a shorter time required 
to volumetrically acquire signal. Nonetheless, this comes 
with an higher complexity of the matrix formulation of the 
imaging activity, which needs heavy computations to output 
a 3D volume reconstruction.  

The technique has been extensively tested in different 
configuration of illumination and detection lenses, implying 
different Field of View and illuminated regions. Each of the 
configurations presented was suited for the imaging of a 
particular sample, which had the constraint of being 
motionless all along the measurement routine, to prevent 
the formation of moving artefacts. To this extent, it has been 
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shown how further signal modulation as in the case of a 
single exponential photobleaching, might be detrimental for 
the inversion of the problem. However, it has also been 
demonstrated how to easily remove the so induced artifacts. 
Nonetheless further hardware implementation aimed at a 
more efficient LED radiation harvesting might reduce the 
exposure time, making the technique suitable to investigate 
fast biological processes. The technique is thus suited for 
large, fixed or anesthetized cleared or transparent samples 
up to 𝑚𝑚𝑠  sizes thanks to the lateral volume extension 
performed with the illumination lens movement 
synchronized with the sensor reading.  

A deconvolution algorithm has also been developed and 
investigated, to improve image quality over the sampled 
volume. This has been implemented after simulation of the 
detection PSF. Nonetheless the algorithm efficacy in both 
SNR improvement and defocus is limited only to a small 
axially extended volume. Yet, no aberrations have been 
considered in the imaging model, which could lead to a 
further improvement in the reconstruction quality. To this 
extent, elements with tunable optical power like electrically 
tunable lenses inserted in the detection could further 
improve the axial extension of the reconstructed volume. 

Altogether, the designed microscopy setup and the 
presented reconstruction technique, make a powerful tool 
for imaging over a large volume, without any sample 
translation or probe induced artifacts and with a relevant 
reduction in phototoxicity and total acquisition time.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 APPENDICES 
 

APPENDIX A: DEPTH OF FIELD 
The axial resolution of an imaging system is a expressed in 
different terms if compared to its lateral resolution. Due to 
terminology, one may think that an image plane 
corresponds to a geometrical plane with no extension along 
the optical axis but, even in the condition of ideal optical 
elements (therefore with no aberrations), each point of the 
image gives rise to a diffraction pattern which extends 
around the source point itself. Furthermore, axial resolution 
is not simply defined by the wave optics, but it is also 
determined by the detector extension. These two 
components are respectively predominant at high and low 
numerical aperture, and their overall contribution is given by 
the formula: 

 𝐷𝑂𝐹 = 
𝑛 ⋅ 𝜆

𝑁𝐴2
+ 

𝑛

𝑀 ⋅ 𝑁𝐴 
⋅ 𝑒   A.1  

with DOF being the system depth of field, 𝜆  the light 
wavelength, 𝑁𝐴  the objective numerical aperture, 𝑀  its 
lateral magnification and 𝑒 the pixel lateral dimension.  

As described in the main body of the thesis. It is possible to 
experimentally evaluate the PSF by imaging ideal point 
emitters. In practice they are used samples of fluorescent 
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beads which are embedded in a transparent gel, namely 
agarose or phytagel. These gels have the goal to hold a bead 
still in the object plane, being surrounded in a homogeneous 
medium. In real systems calibration experiments, a point 
source can be considered as such if it is much smaller than 
the system resolution described in Eq. 1.1: for example, 
considering a situation in which an objective lens of 𝑁𝐴 =
 0.14 is used to image a point emitting at 580 𝑛𝑚, a bead 
smaller than ≈ 2070 𝜇𝑚  must be used. Nevertheless, 
imaging complex biological samples and tissues might 
introduce unpredictable deviation of the PSF from its 
theoretical form, which arise from media as well as index 
inhomogeneities and scattering or absorbing centres.  

 
Figure xli: Depth of field and depth of focus variation. Here ∆z is the depth of field, 
∆Z is the depth of focus, NA the numerical aperture of the objective lens, NA’ the 
numerical aperture of the tube lens, M the magnification and e the detector pixel 
length. 
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APPENDIX B: FLUORESCENCE  
Fluorescence is that physical phenomena in which a 
molecule emits light after having absorbed electromagnetic 
radiation. It holds that in most cases, the fluorescence 
photon has a lower energy that that absorbed by the 
molecule; equivalently, fluorescence emission is at a longer 
wavelength compared to that of the excitation. 

To describe this process in the simplest way, we first 
consider a two-level fluorescent molecule. When a wave is 
impinging on the system, the energy absorption rate is 
determined by a cross-section with the following relation: 

 𝑊𝑎𝑏𝑠 = 𝜎𝑎𝑏𝑠 𝐼𝑖  B.1 

where 𝐼𝑖  is the light intensity and 𝜎𝑎𝑏𝑠  depends upon the 
radiation wavelength. Once the incoming energy is absorbed 
it might then be reemitted as fluorescence, the likelihood of 
this to happen is given by the radiative quantum yield 𝑞𝑟 , 
which is defined as ration between the number of emitted 
(fluorescence photon) and the total number of absorbed 
photons. As for absorption, so for fluorescence, it can be 
written a similar relation as that in Eq. A.1:  

 𝑊𝑓 = 𝜎𝑓 𝐼𝑖 = 𝑞𝑟 𝜎𝑎𝑏𝑠 𝐼𝑖, B.2 

with 𝜎𝑓 being the fluorescence cross section.  

The easiest way to model the fluorescence emission is that 
in which only a two-level system is considered: here, the two 
levels are mostly referred to as ground and excited state and 
are such that their energy difference, 𝐸(𝑒) − 𝐸(𝑔) = Δ𝐸 is 
greatly larger than the thermal energy of the environment, 
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𝑘𝐵𝑇𝑟𝑜𝑜𝑚  so that the state transition is very unlikely to 
happen spontaneously. However, considering a real 
molecule a two level, closed system is an oversimplification 
which does not consider the many vibrational or rotation 
sublevels of the molecule orbitals, thus being inadequate to 
describe the fluorescence emission. 

To better described real molecule dynamics, they must be 
introduced also non radiative paths, which result in a system 
relaxation, without photon emission, together with the 
presence of a third energy level, namely the triplet state, as 
shown in Figure xlii. On top of that, intersystem crossing 
might take place, in which the molecule relaxes non 
radiatively, from an excited state toward a state of lower 
energy which is not the ground state (denoted with the 𝑖𝑠𝑐 
subscript). With these physical conditions, the temporal 
evolution of the population of the three states, 𝑔, 𝑒 and 𝑡 
can be described by the following matrix equation: 

𝑑

𝑑𝑡
(
𝑔
𝑒
𝑡
) = (

−𝛼 𝑘𝑟 + 𝑘𝑛𝑟 𝑘𝑡

𝛼 −(𝑘𝑟 + 𝑘𝑛𝑟 + 𝑘𝑖𝑠𝑐) 0
0 𝑘𝑖𝑠𝑐 −𝑘𝑡

)(
𝑔
𝑒
𝑡
) = 𝛭 (

𝑔
𝑒
𝑡
), 

 

B.3 

where 𝑘 denotes the rate of a certain transition (𝑟 and 𝑛𝑟 
for radiative and non-radiative, 𝑖𝑠𝑐 for inter system crossing, 
𝑡 for triplet state) and 𝛼 is the excitation rate. Since eq. A.3 
only considers closed system in which the overall electron 
population is a constant, det (𝛭)  =  0. 

The mathematical representation of a real molecule, 
however, still lacks something. When in fact a molecule exits 
its singlet state due to intersystem crossing, it does not emit 
any photon. This transition is not permanent, and it lasts on 
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average a time which is determined by the triplet state 

lifetime 𝜏𝑡 = 
1

𝑘𝑡
. In fluorescence imaging, it must be 

considered also that physical phenomenon which 
permanently removes the molecule from its singlet state, 
which then enters a dark non emitting state: 
photobleaching. Photobleaching may be induced by 
overexposing the molecule to light and it negatively affect in 
vivo imaging possibilities. This tedious problem is differently 
explained in different molecules and media, but it can be 
mathematically formulated by introducing another, dark 
state 𝑏, with rates respectively 𝑘𝑒𝑏 and 𝑘𝑡𝑏, as depicted in 
Figure xlii. 

𝑑

𝑑𝑡
(
𝑔
𝑒
𝑡
) = (

−𝛼 𝑘𝑟 + 𝑘𝑛𝑟 𝑘𝑡

𝛼 −(𝑘𝑟 + 𝑘𝑛𝑟 + 𝑘𝑖𝑠𝑐 + 𝑘𝑒𝑏) 0

0 𝑘𝑖𝑠𝑐 −(𝑘𝑡 + 𝑘𝑡𝑏)
)(

𝑔
𝑒
𝑡
) =

 = 𝛭 (
𝑔
𝑒
𝑡
), 

 

B.4 

Since the photobleached state is not accessible, the system 
now becomes open, i.e.,  det (𝛭)  ≠  0.  

In science, many natural mechanisms affecting the light 
emission capabilities of a luminous molecule have been 
intensively studied, since such mechanism are more likely to 
decrease the quantum yield of a molecule, rather than 
increasing. Have presented before, intersystem crossing or 
resonant energy transfer are two of these mechanisms and 
are relatively well understood. Conversely, photobleaching 
has still many questions unanswered, however, from 
experimental observations it is clear how it is strongly 
related to the molecule energy levels, rate coefficients and 
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external environment. With the term environment it is also 
meant an eventual over exposition of the molecule to 
incoming light radiation which may end up in a permanent, 
dark molecule state. In literature, many strategies of 
reducing photobleaching have been presented, such as two 
photons excitation or incoherent sources. Anyway, 
microscopy techniques as LSFM or SVIM offers smart 
solutions to overcome, or at least decrease photobleaching 
by optimizing the acquisition process, as explained in 1. 

 
Figure xlii: Schematic representation of the possible transition between states of 
a fluorophore. The molecule absorbs a photon transitioning from the ground 
state to the excited state. Then, it relaxes down to the lower vibrational level of 
the excited state. 

 

 

 



Appendix C: Sample preparation and clearing methods 

 

 129 

APPENDIX C: SAMPLE PREPARATION 

AND CLEARING METHODS  
One of the main assumptions in fluorescence imaging is that 
of having a transparent sample, which is only detectable 
through its emitting molecules. This condition also implies 
that the specimen under study has an optically 
homogeneous structure, whose refraction index is perfectly 
matched by the imaging medium. Any unwanted media 
interface or inhomogeneity would in fact inevitably cause a 
degradation in imaging performances, both with regards to 
the quality of the illumination shape and to the detected 
signal.  To this extent, in fluorescence imaging is of crucial 
importance the way in which the fluorophores are labelled 
i.e., are set to emit fluorescence, and the resulting optical 
properties of the tagged sample. 

To this extent, one of the most widespread protocol is 
immunostaining, with which thanks to the use of specific 
antibodies, fluorescent protein are expressed in different 
region of the tissue [112]. The expressed proteins determine 
with their characteristic spectra the excitation and emitted 
photon frequencies. Many of them have been synthetized in 
recent years, one of the most famous family of is that of 
fluorescent proteins. The Green Fluorescent Protein (GFP) is 
one of its members which emits green fluorescence (peaked 
at 532 𝑛𝑚 ) upon blue excitation. Cyanine (CY5), which is 
used in this work, is excited at 630 𝑛𝑚  and consequently 
emits at around  670 𝑛𝑚.  
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In immunostaining, antibodies detect and bind with a 
specific protein, so that the wanted fluorophores is 
chemically bound to the site. By doing so, fluorescent 
molecules will give light signal from the region of interest. 

Furthermore, as previously highlighted, a transparent 
specimen is needed to correctly image the stained luminous 
proteins: unluckily in nature there are only a limited number, 
such as embryos of Danio rerio (presented in this thesis) and 
a few other biological tissues like cornea and retina. A 
possible way to overcome this problem is Optical tissue 
clearing (OTC) [113]. However, fluorescent staining and OTC 
must not mutually hinder, i.e., the chemical solution needed 
for clearing must not modify the fluorescence quantum yield 
of the labelled tissue.  

Clearing Methods 
A fast transition between low and high refractive index 
strongly affects good fluorescence imaging. In biological 
samples it is common to have high index portion of the 
sample embedded in parts at higher aqueous content (i.e., 
with lower 𝑛) as it is the case for membranes, collagen or 
fibres which are contained in cytosol or interstitial fluid. To 
avoid such condition, OTC has been developed to obtain an 
imaged sample as optically transparent as possible, so to 
increase illumination and detection quality in fluorescence 
microscopy.  

Among the techniques which benefitted the most from OTC, 
LSFM and SVIM have to demonstrated to image large 
volumes [24], [25], and it similarly did sm-SVIM proposed in 
this thesis. The clearing process can be pursued in several 
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ways, all of them imply either a removal, replacement or 
modification of the former, scattering tissue [114]. 
Nonetheless, tissue clearing is divided into two main 
categories: the first based on tissue dehydration and lipid 
solvation, while the second involves modern protocols with 
aqueous solutions. In solvent based protocols, the sample 
must go through two major steps [115], namely sample 
dehydration and lipid solvation.  

Solvent engineering and testing have proceeded along the 
years, at the current state of art the most widely used to 
remove water are methanol or tetrahydrofuran (THF). 
Altogether, the chemical action of such solvents also affects 
the protein and lipid composition of the former tissue 
leading to a high index sample (𝑛 > 1.5). After dehydration, 
a second step aimed at lipid removal and tissue infiltration is 
taken. Two of the most common solvents used at this point 
in the protocol are benzyl alcohol with benzyl benzoate 
(BABB) and dibenzyl (DBE), which have been also used in the 
clearing of the presented samples. Nonetheless, the 
presented protocol may incur in two major drawbacks. The 
chemical action of the used solvents, which dehydrates the 
tissue, may in fact decrease the fluorescent quantum yield 
of the fluorophores, by changing them environment. 
Furthermore, such solvents are mostly toxic for human and 
may also induce a tissue shrinkage in time.  

A possible cheaper clearing approach is given by 
hydrophobic solvents, which are based on aqueous 
solutions. In these techniques, the sample it is firstly kept in 
an high index aqueous solution (such as thiodiethanol, TDE) 
with dissolved molecules. The composition of the solvents 
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results in a penetration depth in tissue which is shorter that 
that given by more chemically aggressive procedures, 
making this last more suitable for smaller samples.  

A more complicated clearing strategy is Hyperhydration. 
Here, the tissue is put in a detergent for a period which may 
even last months. Little by little, different solvents (like urea) 
are gradually introduced in the same solution as the sample, 
gradually infiltrating among the tissues components and 
changing the overall refractive index. Nonetheless 
hyperhydration might induce a remarkable expansion of the 
sample volume and it might also remove its proteins content 
up to 40%, strongly affecting fluorescence.  

The last clearing process that will be briefly described takes 
the name of hydrogel embedding. In this technique, to avoid 
the unwanted protein removal given by other approaches, 
the sample is firstly embedded in an hydrogel. Then, the 
lipids are removed by electrophoresis, which speeds up the 
process that otherwise would take weeks to be effective. As 
final step, the sample is immersed in a clearing solution. A 
summary of the cited protocols is given in Figure xliii. 
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To correctly perform a measurement in sm-SVIM, the 
sample needs to keep a constant volume and of course it 
needs to keep a sufficient fluorescence signal intensity. 

Figure xliii: Schematic classification of the different clearing methods [118]. 
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Different samples cleared with different protocols have 
been imaged and are presented in this thesis work. 

 

APPENDIX D: SPARSITY AND 

COHERENCE 
A signal is compressible if its information is distributed over 
few nonzero entries of its vectorial representation, thus 
implying that the null entries can be easily discarded at a 
small cost in terms of signal representation accuracy or even 
without any loss. The property of being compressible can be 
mathematically described, evaluated and quantified. In fact, 
a signal 𝝌 is said to be 𝐾-sparse if the number of its non-zero 
components is 𝐾. The latter condition can be formulated as: 

 ‖𝝌‖0 < 𝐾, D.1 

where with ‖⋅‖0  is represented the 𝑙0  norm of a vector, 
which numbers its non-null components. With said 
definition, it is easy to state that an highest signal sparsity 
implies a small 𝐾.  

It is reported in [47], and it has also been demonstrated in 
this thesis work, that many real world signals can be 
represented only by their most important entries, thus can 
be compressed. Said 𝑛 the number of the signal entries, this 
means that 𝐾 ≪ 𝑛.  With this being said, it follows that those 
signals which may have a concise representation in a certain 
domain, in their complete representation carry redundant 
information, in form of zero element or periodic features. To 
this extent, Compressive Sensing aims at solving an ill-posed 
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problem by enforcing a sparsity constraint on the retrieved 
solution. Said ill-posedness comes from a fewer 
measurement set, conditions that is of benefits in many 
applications, as described in the main body of the text.  

Mathematically speaking, enforcing sparsity on a signal 
feature (its spatial representation, its gradient etc.) does not 
grant for the uniqueness of the solution: there might be a 
whole family of false signals satisfying said enforced 
features. To further decrease the population of the solution 
ensemble, it is of help the tailored designed of the sampling 
matrix Φ , which must encode information in the most 
efficient way possible: the better the sampling strategy, the 
higher the degree of compression obtained.  

It holds that the capability of efficiently seizing the 
representation feature of a vector, can be mathematically 
described by a matrix operation between the sampling and 
the representation basis. Considering Φ and 𝑊 as sampling 
and representation maps, respectively, it holds that their 
coherence is represented by:  

 𝜇(Φ,𝑊) = √𝑛 ∙ max
1≤𝑘,𝑗≤𝑛

|〈𝜙k, 𝑤𝑘〉|, D.2 

where each of the two basis sets is assumed to be a 
complete orthonormal set. The highest possible coherence 
can be obtained by considering Φ = 𝑊,  thus implying a 

maximum degree of coherence which is √𝑛, conversely, it 
can be demonstrated that coherence is lower bound by 1. 

Therefore, it is true that 1 ≤ 𝜇(Φ,𝑊) ≤ √𝑛. 

Sampling a represented signal with a measurement set 
which is highly incoherent with the former, guarantees that 
at each measurement step, only the key signal information 
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is seized, thus yielding high compression capability. 
Considering a K-sparse signal 𝝌 𝜖 ℝ𝑛 , represented by the 
linear rule 𝑊  into a sparse representation, and yet 
exploiting a measurement orthonormal set Φ , with basis 
elements 𝜙𝑘 𝜖 ℝ𝑛, the minimum number of measurements 
𝑚  [47] that are theoretically needed for a lossless 
reconstruction is:  

 𝑚 ≥ 𝐶 ∙ 𝜇2(Φ,𝑊) ∙ 𝐾 ∙ log(𝑛), D.3                                 

with 𝐶 being a positive constant.  

In the light of this, the higher the sparsity of the signal, the 
fewer the measurement needed. Furthermore, 𝑚  is also 
affected by the square of the mutual coherence of 
representation and sampling matrices. Finally, in the case of 
maximum coherence (worst case scenario in a compressed 
schema), 𝜇(Φ,𝑊) = 1, 𝑚 ~ log(𝑛), which for big 𝑛 follows 
the conventional inversion procedures.  
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