
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e
Bioingegneria

Master of Science in

Computer Science and Engineering

A comparative study on
parallelization of streaming
top-k algorithms in Kafka

Supervisor:

prof . emanuele della valle

Master Graduation Thesis by:

luca ferrera

Student Id n. 10690341

Academic Year 2019-2020

A B S T R A C T

Continuous top-k query monitoring, which reports the k top-
scored objects from data streams, is a challenging problem in
modern streaming applications due to the high data rates that
exceed the data stream infrastructure’s capacity. Streaming top-k
algorithms try to solve it by optimizing resources. We focus on
some of them to select the ones to use for our comparative study.
We choose an algorithm that sorts every window’s elements and
keeps the first ks as the top-k result; also, we select the MinTop-K
algorithm [16], an excellent resource optimization example.

We opt for Kafka as the distributed streaming platform where
to implement them. Kafka is one of the most used distributed
streaming platforms, so we want to understand if we can lever-
age it to implement streaming top-k algorithms. We develop
both centralized and parallel algorithms using Kafka Streams
and Processor APIs.

Moreover, we want to understand if it is worth parallelizing
streaming top-k algorithms and the relationship between the
top-k parameter, k, and the KPI we measured. As KPI, we use
the time needed to compute top-k results for a fixed amount of
streaming data.

To answer our questions, we perform a comparative study.
We compare the centralized and parallel versions’ KPI to un-
derstand if we can achieve better performance parallelizing the
algorithms, playing with the parallelization degree. We compare
the algorithm’s execution with different top-k values to study
the correlation between the chosen KPI and the k parameter.

The results show considerable improvements in the parallel
versions over the centralized ones in both algorithms. Moreover,
we find out that large enough top-k values significantly influ-
ence the experiments’ total time, showing exponential growth,
while small k values almost do not affect the observed KPI. Our
implementations exploit Kafka Streams and Processor API, can-
didating Kafka to be an excellent solution for continuous top-k
query monitoring.

III

E S T R AT T O

Il monitoraggio continuo delle query top-k, che riporta gli
oggetti top-scored provenienti dai data stream, è un problema
impegnativo nelle moderne applicazioni di streaming a causa
delle elevate velocità di trasmissione dei dati che superano la
capacità dell’infrastruttura. Gli algoritmi di streaming top-k cer-
cano di risolverlo ottimizzando le risorse. Abbiamo selezionato
un paio di questi algoritmi per il nostro studio comparativo. Ab-
biamo scelto un algoritmo che ordina gli elementi di ogni fines-
tra e mantiene i primi k; inoltre, abbiamo selezionato l’algoritmo
MinTop-K [16], un eccellente esempio di ottimizzazione delle
risorse.

Abbiamo optato per Kafka come piattaforma di streaming
distribuito perché è una delle piattaforme di streaming dis-
tribuito più utilizzate, e abbiamo voluto capire se fosse possibile
sfruttarla per implementare gli algoritmi di streaming top-k.
Abbiamo sviluppato sia algoritmi centralizzati che paralleli uti-
lizzando Kafka Streams e le Processor API.

Inoltre, abbiamo considerato se valesse la pena di paral-
lelizzare gli algoritmi di streaming top-k e la relazione tra il
parametro top-k, k, e il KPI che abbiamo misurato. Come KPI,
abbiamo utilizzato il tempo necessario per calcolare i top-k per
una quantità fissa di dati in streaming.

Per rispondere alle nostre domande, abbiamo eseguito uno
studio comparativo. Abbiamo confrontato i KPI delle due ver-
sioni per capire se fosse possibile ottenere migliori prestazioni
parallelizzando gli algoritmi, modificando il grado di paralleliz-
zazione. Abbiamo confrontato l’esecuzione dell’algoritmo con
diversi valori di k per studiare la correlazione tra il KPI scelto e
il parametro k.

I risultati hanno mostrato notevoli miglioramenti nelle ver-
sioni parallele rispetto a quelle centralizzate. Inoltre, abbiamo
scoperto che valori di top-k abbastanza elevati influenzano sig-
nificativamente il KPI misurato, mostrando una crescita espo-
nenziale, mentre valori di k piccoli quasi non influenzano il KPI
osservato. Le nostre implementazioni sfruttano Kafka Streams
e le Processor API, candidando Kafka ad essere una soluzione
eccellente per il monitoraggio continuo delle query top-k.

V

C O N T E N T S

Abstract III
Estratto V
1 introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Document structure 4

2 state of the art 5

2.1 Stream Processing 5

2.2 Streaming Top-K 7

2.2.1 Materialize Score & Sort 9

2.2.2 MinTopK . 10

2.3 Apache Kafka . 14

2.3.1 Kafka Streams 16

2.3.2 Processor API 17

2.3.3 KSQL . 18

3 problem setting 21

3.1 Motivation . 21

3.2 Problems . 24

3.3 Research question 25

4 parallel streaming top-k in kafka 27

4.1 Algorithm Design 27

4.1.1 Baseline Algorithm 27

4.1.2 Parallel MinTop-K 28

4.1.3 Centralized Aggregator & Top-K 32

4.2 Infrastructure . 35

4.2.1 Docker infrastructure 35

4.2.2 JVM infrastructure 36

4.3 Implementation experience 37

4.3.1 Parallel MinTop-K Implementation 39

5 experiments & results 43

5.1 Experimental Setup for comparative research . . . 43

5.2 Design of Experiments 45

5.2.1 Centralized Baseline Algorithm 46

5.2.2 Centralized MinTop-K 47

5.2.3 Parallel Baseline Algorithm 47

5.2.4 Parallel MinTop-K 48

5.3 Results . 49

5.3.1 Centralized and Parallel comparison 49

VII

5.3.2 Top-K Comparison 53

5.3.3 Algorithms Comparison 56

5.4 Findings . 60

6 conclusions & future works 61

6.1 Conclusions . 61

6.2 Future Works . 62

bibliography 65

VIII

L I S T O F F I G U R E S

Figure 2.1 Example of windows evaluation 9

Figure 2.2 Example of MinTopK 12

Figure 2.3 Anatomy of a Kafka topic 14

Figure 2.4 Two consumer groups reading from a
topic with four partitions 15

Figure 2.5 Kafka Streams architecture 16

Figure 4.1 Main Infrastructure 35

Figure 4.2 Centralized Algorithm Infrastructure . . . 36

Figure 4.3 Parallel Algorithm Infrastructure 37

Figure 5.1 Baseline Algorithm: comparison between
Centralized and Parallel versions 50

Figure 5.2 Baseline Algorithm: comparison on the
number of instances 51

Figure 5.3 MinTop-K algorithm: comparison between
Centralized and Parallel versions 52

Figure 5.4 MinTop-K algorithm: comparison on the
number of instances 52

Figure 5.5 Algorithms comparison 53

Figure 5.6 Baseline Algorithm: comparison on k values 54

Figure 5.7 Baseline Algorithm: focus on small values
of k . 55

Figure 5.8 MinTop-K: comparison on k values 56

Figure 5.9 MinTop-K: focus on small values of k . . . 57

Figure 5.10 Baseline and MinTop-K algorithms’ com-
parison: total_time for different k values . 58

Figure 5.11 Speed-up MinTop-K over baseline 59

IX

L I S T O F TA B L E S

Table 2.1 Operators with their input and output types 17

Table 4.1 List of symbols used in Algorithm 1 . . . 28

Table 4.2 List of symbols used in Algorithms 2 and 3 30

Table 4.3 List of symbols used in Algorithm 4 . . . 34

Table 5.1 Baseline Algorithm: total_time average and
standard deviation for num_instances com-
parison . 50

Table 5.2 MinTop-K Algorithm: total_time average
and standard deviation for num_instances
comparison 51

Table 5.3 Parallelization speed-up 53

Table 5.4 Baseline Algorithm: total_time average,
min and max for k values comparison . . 55

Table 5.5 MinTop-K Algorithm: total_time average,
min and max for k values comparison . . 56

Table 5.6 Baseline and MinTop-K algorithms’ com-
parison: total_time average varying k pa-
rameter. 57

Table 5.7 Speed-up MinTop-K over baseline 58

X

L I S T I N G S

Listing 2.1 Example of KSQL query using windowed
and aggregated operators. 19

Listing 3.1 Example of KSQL query to detect emerg-
ing influencer 23

Listing 3.2 Example of desirable KSQL query to de-
tect emerging influencer 24

Listing 4.1 Parallel MinTop-K: how to create, register
and pass State Stores to a Kafka Transformer. 39

Listing 4.2 Parallel MinTop-K: LBP update after new
object insertion into super-top-k list. 40

Listing 5.1 Record example 46

XI

1
I N T R O D U C T I O N

In this chapter, we show an overview of our work. In Section 1.1,
we introduce the motivations that led to this thesis. Section 1.2
describes the contributions we offered. Finally, in Section 1.3,
we show the thesis’ outline.

1.1 motivation

We are in the Data era, where an enormous amount of data
flows into systems and needs to be analyzed.

Real-time and near-real-time applications are crucial to ana-
lyze these data streams and extract useful insights. Examples
of industries that use this kind of application include telecom-
munication, finance, smart energy, security, manufacturing, and
many others. The streaming top-k monitoring applications give
an emerging subset of these applications. For every window
over a stream of data, they aim to compute the top-k elements
based on a scoring function. Due to data streams’ velocity and
volume, streaming top-k applications need to optimize their re-
sources, such as memory, CPU, storage, and communication, to
meet their requirements, i.e., high throughput and low latency.

1

In the top-k monitoring of data streams, only a portion of
data is valuable; this property can be exploited to sensibly man-
age storage and memory resources as Yang et al. made in the
MinTop-K algorithm[16], that is deepened in Subsection 2.2.2.
Moreover, streaming top-k applications could benefit from par-
allelization and distribution too. Moving the application from a
centralized monolith to a parallelized application allows split-
ting the workload, optimizing storage, and computing resources.

The problem with state of the art streaming top-k algorithms
is that they have been implemented as experimental proof of
concept or to validate technologies in the lab. So they can not be
used for real-world applications yet. Bringing these algorithms
inside real-world streaming systems would require studying
how to exploit systems’ functionalities and properties to im-
plement them. This process is crucial to benefit from these
researches in modern industries’ applications.

A distributed streaming platform as Kafka can be exploited to
implement those algorithms. Kafka offers a stream processing
system, Kafka Streams, that provides both existing operators
for continuous and reactive computation on data streams and
the flexibility to build new ones using the Processor API. On
top of Kafka Streams, they build KSQL, a declarative streaming
language, to write continuous queries over data stream in a SQL-
like syntax. Unluckily, KSQL does not provide any ORDER BY
clause and the TOPK operator computes the top-k using only
one column, resulting in a useless operator for a top-k query
where the scoring function takes as input more than one value
associated with an object.

As we mentioned before, bringing streaming top-k algorithms
into real-world systems is not trivial. Firstly, we need to study
the system to learn how to exploit its properties and functionali-
ties to implement these algorithms. In the case of Kafka Streams,
are there any operators we can use? Or should we build a new
one from scratch? Moreover, we said that parallelization and
distribution could help optimize the applications’ performance;
distributed systems are by their nature prone to distribution, so
how can we exploit this property to parallelize streaming top-k
algorithms? Is it worth parallelizing algorithms in Kafka Streams
application? Finally, different parameters influence streaming
top-k applications’ performance; examples of these parameters
are the window size and hopping_size, the top-k value, k, or
the number of parallel instances to use. Which are the correct

2

values for these parameters? Which ones most influence the
performance?

1.2 contributions

We decided to implement two different algorithms using Kafka
Streams as a baseline for the implementation of KSQL operators
for streaming top-k queries on top of them. We decided that
a comparative study would have been the best way to explore
the benefits of parallelizing streaming top-k algorithms and to
analyze how algorithms and applications’ parameters could in-
fluence performance. We opted to implement a naive algorithm
that materializes the score of each object that comes during a
data stream’s window, sorts the objects based on their score,
and keeps only the first k elements as the top-k result. Then we
opted for the MinTop-K Yang et al. algorithm, as it is a more
complex one that aims to optimize memory and CPU resources,
leveraging on the prediction of future top-k results.

We exploited the Processor API offered by Kafka Streams
to implement our algorithms. We used State Stores, which are
key-value pairs associated with each instance of a Kafka Streams
application, to keep track of the records arrived at each window
and to manage the data structures.

We wanted to question the benefits of parallelizing streaming
top-k algorithms, so we implemented a centralized and parallel
version to compare their performance. Moreover, we ran experi-
ments with different degrees of parallelization to find out how
they influence performance.

Finally, we designed experiments to understand how the
algorithms and applications’ parameters could affect the overall
application’s performance. In each experiment, we use the total
time as KPI, meaning the application’s time to compute the top-k
results for each window of the input data stream. As cited before,
we ran experiments varying the degree of parallelization, so the
number of parallel instances. Moreover, we played with the top-
k parameter to understand if there is a correlation between its
value and the KPI we measured.

3

1.3 document structure

The rest of the document is organized as follows:

• Chapter 2: State Of The Art - which is divided into three
parts. The first part describes the stream processing tech-
nique, the systems, and the requirements they should meet.
In the second section, we explain the streaming top-k prob-
lem and the state of the art solutions. Then, we show
the algorithms we choose to implement. The third part
presents the Kafka ecosystem, describing Apache Kafka,
Kafka Streams, the Processor API, and KSQL.

• Chapter 3: Problem Setting - which describes the problem
that led to this thesis. Firstly, it shows the motivation
that pushed us through this work; then, it focuses on
the main problems behind implementing streaming top-k
algorithms, such as how to exploit the existing streaming
platform or how the different parameters influence the
applications’ performance. Finally, it states the research
questions we aim to answer with our work.

• Chapter 4: Parallel Streaming Top-k in Kafka - which
shows the implementation process, from the design to the
code. Its first section describes the algorithms’ design and
explains how they work with the help of pseudo-code.
The second section shows the application’s infrastructure,
while the last section presents the implementation expe-
rience, explaining the implementation choices with their
rationale. Also, it presents some significant code fragments
explained in detail.

• Chapter 5: Experiments & Results - which describes the
experimental setup we used for the comparative research
and a general study on the costs for both centralized and
parallel versions. Then, it shows the design of experiments
grouped by the different algorithms used. Finally, it de-
scribes the experiments’ results group by the research
questions they aim to answer and the finding we obtained
from the results.

• Chapter 6: Conclusions & Future Works - which dis-
cusses the conclusion based on the experiments’ results
and proposes future research directions for this work.

4

2
S TAT E O F T H E A RT

In this chapter, we show the state of the art regarding stream
processing in Section 2.1 and streaming top-k in Section 2.2.
Section 2.3 describes the Kafka ecosystem for stream processing.

These are the bases where we build our work to implement
parallel streaming top-k algorithms using Apache Kafka as a
distributed streaming platform.

2.1 stream processing

Stream processing is the technique that analyzes data streams in
real-time. A data stream is a continuous append-only sequence
of immutable records[1] [5]. Stream processing applications usu-
ally require real-time processing of huge volumes of data and
limited memory consumption, but these are not the unique
requirements they need to meet. Stonebraker, Çetintemel, and
Zdonik presented a list of requirements that stream process
systems should meet [15]:

5

Keep the Data Moving - To achieve low latency process-
ing, the system should process messages "in-stream", with-
out the need to store them to perform any operations.

Query using SQL on Streams (StreamSQL) - Systems
should implement a query mechanism to retrieve informa-
tion or compute analytics result on streamings. It could
be a high-level language like SQL with built-in extensible
operators.

Handle Stream Imperfections (Delayed, Missing, and
Out-of-Order Data) - Systems should provide mechanisms
to tackle out-of-order and missing data, which are present
in data streams.

Generate Predictable Outcomes - Systems should present
deterministic outcomes, predicting the data stream in a
repeatable way.

Integrate Stored and Streaming Data - Systems should
support state information storage to integrate partial ag-
gregator results with streaming data. The language used to
deal with both data stream, and state information should
be unique.

Guarantee Data Safety and Availability - Systems should
provide high availability and high fault tolerance.

Partition and Scale Applications Automatically - To sup-
port the high volume of data and to meet the low la-
tency requirement, systems should be able to distribute
the workload reaching incremental scalability; preferably,
this process should be transparent to the user.

Process and Respond Instantaneously - Systems should
have an engine that optimizes the execution plan, with
minimal overhead, resulting in real-time responses.

There are three main classes of systems that try to solve
the problems related to low-latency and high-volume context.
Rule Engines operate following a condition/action paradigm
on the input stream. Database Management Systems (DBMS)
can store and query huge volumes of data, solving problems
related to high-volume; in-memory processing can tackle low-
latency related problems. Stream Processing Engines (SPEs)
operate on data as soon as they arrive without storing it for

6

processing, and they typically work with Data Stream Manage-
ment Systems (DSMS). DSMS usually uses SQL-like language
to perform stream processing. Aurora [1] is probably the first
SPEs, it is an example of how the human-active, DBMS-passive
(HADP) model shifts to the DBMS-active, human-passive (DAHP)
model to cope with the stream processing’s problem we men-
tioned before. An example of DSMS is STREAM [3], it is a
general-purpose DSMS for continuous query answering over
data streams and stored relations. STREAM supports CQL [2]
a SQL-like query language for registering continuous query
against stored relations and data streams.

2.2 streaming top-k

This section presents the top-k query answering problem; even if
researchers have studied it in different domains such as database,
Semantic Web, and stream processing, we will focus only on the
last one.

Let us begin with two crucial definitions that help to under-
stand the problem better.

Definition 2.1 (Top-k Query). A top-k query gets a user-defined
scoring function and outputs only the top-k results with the
highest score.

Definition 2.2 (Scoring Function). A scoring function is a func-
tion F(p1, p2, ..., pn) that provides a score for each result of the
query aggregating multiple predicates, where pi is a scoring
predicate.

An assumption on monotonicity of the scoring function, i.e.,
F(x1, ..., xn) > F(y1, ..., yn), is adopted in most top-k processing
techniques. This assumption leads to efficient processing of the
top-k query because an upper bound of the unseen object’s score
can be derived, guaranteeing early top-k processing termination.

Babcock and Olston [4] proposed a solution that avoids trans-
mitting data from a physically distributed location to a central-
ized server to compute top-k query results on the data stream.
Given the enormous amount of data, it can be impractical or
expensive to send them continuously to a centralized location.
They showed that it is unnecessary to transmit the whole data
stream to process these queries. They applied arithmetic con-
straints at remote streams source on data to ensure that the
top-k results remain valid within a user-defined error tolerance.

7

Distributed communications are necessary only when arithmetic
constraints are violated; in this case, the centralized server up-
dates the top-k result in the distributed location and set new
constraints.

Mouratidis, Bakiras, and Papadias [10] have seen that the
database domain’s methodologies are inapplicable to stream
processing due to the highly dynamic environment. They stud-
ied continuous monitoring of top-k query over fixed-size win-
dows, which can be both physical or logical ones, i.e., their size
can be expressed based on the number of active items or based
on time units. They restricted processing to the workspace’s
sub-domains that influence some queries; these accurate records
are indexed by a grid structure that maintains book-keeping
information. They presented two different techniques to process
top-k query: the first one compute the top-k result whenever
some of the current top-k results expire, the second one achieve
better running time precomputing the future changes in the
result, as we will see the precomputation of the future result
will be used in other techniques too.

The previous researches assume data completeness, meaning
that no data is missing nor arrives out-of-order. [8], and [6] deal
with incompleteness due to out-of-order arriving, so the missing
is temporary because as soon as the late record arrives, there
will be no missing anymore. [11] deal with permanently missing
and despise the previous approaches they adopted differential
dependecy rules [14] to imputed missing data.

Now that we have presented the theory behind streaming
top-k, we show a running example to understand the problem
better. Figures 2.1a and 2.1b show a part of a stream between
time 0 and 14. The X-axis shows the arrival time of a record in
the stream, while the Y-axis shows the record’s score computed
by a user-defined scoring function. Alphabet letters represent
every record in the plot to simplify the figure; we can see them
as the record’s ID. This data stream is observed using windows
with a length of 8-time units and slides every 4-time units.

Figure 2.1a shows the content of window W0, which starts at
time 1 and ends at time 9 (excluded). Figure 2.1b represents the
content of window W1 which opens at time 5, after a slide of 4

time units, and closes at time 13 (excluded).
We can see that during window W0 records A, B, C, D, E,

F arrives, record D and F are the ones with the higher score,
so if our goal is to find the top-2 records for a given window,
they are the top-2 records for window W0. When window W1

8

(a) Evaluation of window W_0

(b) Evaluation of window W_1

Figure 2.1: Example of windows evaluation

starts records A, B and C are out of it, but the figure shows that
A arrives again with a higher score. We can also see that new
records G and H come during window W1. The new score of
record A put it in the top-2 for window W1 together with the
new record G.

In the following subsection, we present the algorithm we
choose to implement for our study.

2.2.1 Materialize Score & Sort

Materialize score and sort is probably the most naive algorithm
in the streaming top-k query answering world. First, it mate-
rializes the score for each record in the window over the data
stream, then it sorts the result by the score, and finally, it keeps

9

only the first k results. It is easy to see that this algorithm is
costly in terms of time and memory. More specifically, in terms
of time, we have three cost terms:

1. Materializing cost: O(n)

2. Sorting cost: O(n logn)

3. Top-k cost: O(k)

Where n is the number of records arrived within a single win-
dow, and k is the number of outputs for each window. In terms
of memory, we have O(n) because we have to keep in memory
all the data inside a window. Improvements in term of CPU and
memory complexity has been made by Yang et al. with MinTopk
algorithm[16] as shown in Subsection 2.2.2

2.2.2 MinTopK

MinTopk algorithm wants to tackle the problem of periodical
recomputation of the top-k results, which is computationally
expensive and requires keeping in memory all the records in-
side the query window, which translates to significant memory
consumption.

"To solve this problem, we identify the ’Minimal Top-K can-
didate set’ (MTK), namely the subset of data stream that is
both necessary and sufficient for continuous top-k monitoring"
Yang et al.[16]. They also present the super-top-k list, which is
a compacted representation of predicted top-k result, and they
show the MinTopk algorithm responsible for the maintenance
of super-top-k-list.

Here we show in more detail the idea behind MTK; let us
consider a window of size w that slice every t, a record that
arrives in a given window will also be part of the next w/t
windows. A subset of the top-k result for the current window
will also be eligible for the w/t future windows. These predicted
top-k results compose the MTK set.

The super-top-k list contains all the predicted top-k results;
each entry has a starting_window and a ending_window that indi-
cates in which windows the records can contribute to the top-k
result.

A lower_bound_pointer (lbp) is associated with every window.
It points to the record with the smallest score in the super-top-k
list; the lbp helps efficiently handle new arrival objects.

10

Figure 2.2 shows an example of how the MinTopK algorithm
evaluates a top-k query over a data stream. Figures 2.2a, 2.2b
and 2.2c show a part of a data stream between time 0 and 14, the
X-axis shows the arrival time of data items, while Y-axis shows
the data item’s score. We observe the stream using a window
with a size of 5-time units that slide every 3-time units.

Going into the details of Figure 2.2a, it shows the content of
window W0, which starts at time 1 and ends at time 6 (excluded),
items A, B, C, and D arrive during window W0.

Figure 2.2b represents window W1 that starts at time 4 and
ends at time 9 (excluded). During this window items, E and
F come, while items A, B, and C go out from the result when
window W0 expires.

Figure 2.2c shows window W2 content, it starts at time 7 and
ends at time 12 (excluded), during window W2 items G and H
arrive while item D goes out from the result when window W1

expires.
Let us assume that we want the top-3 item for each window;

Figure 2.2d shows on the left the top-k result for window W2

and the predicted top-k result for W3, while on the right it
shows the super-top-k list at the evaluation of window W2.

In the super-top-k list, items are sorted by their scores, Ws

and We stands for starting and ending window respectively.
Also, we can see the lbp of W2, which indicates the item with
the smallest score in the super-top-k list for W2.

(a) Evaluation of window W_0

11

(b) Evaluation of window W_1

(c) Evaluation of window W_2

(d) Predicted top-k result & super-top-k

Figure 2.2: Example of MinTopK

12

Two maintenance steps compose the MinTopK algorithm:

Handling window expiration - The expired window’s top-
k result must be removed from the super-top-k list. Since
the first k items in the list are the top-k result of the expired
window, it is sufficient to purge them. This process is
implemented by increasing the starting_window mark of
the first k objects in the list. If the starting_window becomes
bigger than the ending_window, the item is removed from
the super-top-k list, and the LBP set is updated if any lbp
points to it.

Handling insertion of new arriving objects in the super-
top-k list - Firstly, it checks if the new object can enter the
current or future top-k result. If all predicted top-k result
lists have k elements or if the new object’s score is smaller
than any object in the super-top-k list, it discards the new
object. Otherwise, if the new object’s score is larger than
any object in the super-top-k list or if some predicted top-k
result lists are not full, the new object is inserted in the
super-top-k list based on its score, and the starting_window
and ending_window marks are computed. The next step
removes the smallest score object in each window where
it inserted the new item. The algorithm removes the item
from predicted top-k result in the same way as when a win-
dow expires.

The MinTopK algorithm updates the lbp moving it one posi-
tion up in the super-top-k list.

Yang et al. analyzed MinTopK complexity. The CPU complex-
ity in the general case is O(Nnew ∗ (logMTK.size)), with Nnew
the number of object coming in that window slide. The memory
complexity of MinTopK is O(MTK.size) since MinTopK requires
a costant memory size to mantain each item in MTK set. Yang
et al. showed that in the average case the size of MTK is 2k,
so the average-case CPU complexity becomes O(Nnew ∗ (logk))

while the average-case memory complexity becomes O(k).

13

2.3 apache kafka

Apache Kafka is a "distributed streaming platform that can be
used to store and process data streams" [12]. A Kafka cluster
is composed of Producer clients, Consumer clients, and Kafka
servers called brokers; this whole architecture provides publish-
subscribe service[9].

A Kafka Producer writes messages into Kafka, while a Kafka
Consumer reads messages from it.

Kafka messages are stored into brokers and organized in
topics, each message is a key-value pair, both key and value are
variable-length byte arrays, optionally a message can have a
time stamp.

Topics are divided into partitions. When a Producer writes a
message into a topic, it must specify the partition; by default, if
the message key is specified, the partition is computed hashing
the key; thus, messages with the same key always go to the
same partition. A partition is an immutable, ordered sequence
of records that is continuously appended to a commit log. Each
message is associated with an offset, which is the message po-
sition in the partition. Offsets are assigned implicitly by the
order in which messages are appended to it. Kafka guarantees
ordering within a single partition. Figure 2.3 shows the anatomy
of a Kafka topic.

Figure 2.3: Anatomy of a Kafka topic [17].

Messages consumption in Kafka works in a pull flavor, mean-
ing that the Kafka Consumer asks the broker a message. Also,
the Consumer keeps track of the last record offset read; thus,
the broker does not have to keep track of the offset of each
Consumer, which can be a challenging job since a multitude of
Consumers can read simultaneously from a broker.

14

Figure 2.4: Two consumer groups reading from a topic with four
partitions [17].

Kafka Consumer can be grouped in Consumers groups, in this
case, a single partition is assigned to exactly one Consumer
within a Consumers group, but a Consumer can read from more
than one partition. In this way, it is possible to parallelize the
reading from a specific topic. Figure 2.4 shows a Kafka Clus-
ter with two brokers where two consumer groups consume
messages from a topic with four partitions. Consumers that
belong to different consumer groups or do not belong to any
are independents, meaning that they can read messages from
the same topic without interfering with each other, resulting in
decoupling, a desirable property for a distributed system.

A Kafka Broker store messages on disk; differently from
other publish-subscribe services, Kafka can be used for long
term storage of messages since Kafka does not delete messages
after delivery. A retention policy is applied to a topic, meaning
that each message in a topic has a retention time that specifies
how long a message should be stored. Kafka topics can also
be configured for log compaction; we can use these topics to
store updates. A compacted topic implies that a newer record
replaces an older one with the same key; thus, a Consumer will
always read the newer version of a message.

Kafka cluster scales linearly with the number of brokers. Since
partitions are independent units within a topic, there is no
need for broker synchronization even if partitions are stored in
different brokers, so Kafka brokers can scale-out horizontally
and balance load within the Kafka cluster.

15

Figure 2.5: Kafka Streams application’s architecture taken from Kafka
Streams documentation1

2.3.1 Kafka Streams

Kafka Streams2 is the Apache Kafka’s stream processing library,
built on top of Kafka’s primitive for fault tolerance and scaling.
Kafka Streams supports stateless and stateful stream processing
operators such as windowing, joins, and aggregations. Also,
it supports event-time semantics and exactly-once processing
guarantees and can handle late-arriving and out-of-order data.

Given its properties, Kafka Streams can be used to build real-
time stream processing applications, where data are read from a
topic, processed using the operators provided by the Stream API,
and written to another topic. Figure 2.5 shows the architecture
of an application that uses the Kafka Streams library.

Applications that use Kafka Stream leverage on Kafka hori-
zontal scaling to cope with huge data traffic. Each stream ap-
plication forms a Consumer group, so topic partitions equally
and transparently distribute across application instances. The
programmer has not to cope with load balancing since Kafka
cluster monitors all the instances’ liveness, and if one or more

1 http://kafka.apache.org/11/documentation/streams/architecture
2 https://kafka.apache.org/10/documentation/streams/

developer-guide/dsl-api.html

16

http://kafka.apache.org/11/documentation/streams/architecture
https://kafka.apache.org/10/documentation/streams/developer-guide/dsl-api.html
https://kafka.apache.org/10/documentation/streams/developer-guide/dsl-api.html

Operator 1st Input 2nd Input Output

filter, mapValue KStream KStream
KTable KTable

map, flatMap KStream KStream

groupBy→ agg KStream KTable
KTable KTable

groupBy + windowBy→ agg KStream KTable

inner-/left-/outer-join KStream KStream KStream

inner-/left-/outer-join KTable KTable KTable

inner-/left-join KStream KTable KStream

Table 2.1: Operators with their input and output types

instances go down, Kafka rebalances the load across the ones
alive.

Table 2.1 taken from [13] shows the stream processing op-
erators provided by the library with their input and output.
These operators are quite exhaustive, but if some different oper-
ations need to be executed on the data stream, they should be
implemented.

In the next subsection, we show Kafka Processor API, which
we can use to develop user ad-hoc operators.

2.3.2 Processor API

Processor API3 are suitable for operations that cannot be imple-
mented with the Streams API.

The Processor API allows us to define custom stateless and
stateful processors and interact with state stores easily. Develop-
ers can access and process every record of the data stream and
connect to the state stores associated, defining ad-hoc process-
ing topology. State Stores offer stream processing applications
the possibility to store and query data; they can be either a
RocksDB database, an in-memory hash-map, or other useful
data structures. These stores are local to an instance, but it is
possible to access remote state stores through Interactive Queries.

Another reason to use the Processor API is to access a record’s
metadata, such as its offset, topic, or partition. Also, it is pos-
sible to combine Streams and Processor API exploiting the ad-

3 https://kafka.apache.org/10/documentation/streams/

developer-guide/processor-api.html

17

https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html
https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html

vantages of both libraries using the Streams API’s methods
KStream#process() and KStream#trasform()

2.3.3 KSQL

KSQL is a streaming SQL engine for Apache Kafka[7], where
it is possible to write queries in a SQL-like syntax. KSQL is
built on Kafka Streams and supports a wide range of stream
processing operations, providing continuous queries over the
data stream. A schema must be defined over a topic, and every
record’s value should conform to it. The schema defines a set of
typed columns.

We can define both streams and tables over Kafka topics in
KSQL, depending on how we interpreter the message inside a
topic. When we define a stream over a Kafka topic, each record is
independent; if we define a table, each record can either update
a message with the same key or add a new message where there
are no messages with the same key.

As we said, KSQL supports a wide range of stream processing
operations; it is possible to perform aggregations, counts, joins,
and windowing operations over a data stream. To stream top-k
queries, the windowed and aggregated operators are the most
interesting; windowing operators provide windowed stream pro-
cessing, grouping records with the same key to perform stateful
operations. KSQL supports three types of windows:

• Tumbling window which are time-based, fixed-sized, non-
overlapping, and gap-less windows

• Hopping window which are time-based, fixed-sized, and
overlapping windows

• Session window which are session-based, dynamically
sized, non-overlapping, and data-driven windows

Aggregate operators always result in a table because KSQL
computes the aggregate for each key and updates these results
as it processes new input data for a key. Examples of aggregator
functions are COUNT, SUM, AVERAGE, and TOPK; they all
work on a single column, so we can not use them to perform
aggregate operations on multiple columns such as sum the value
of two columns or compute the top-k using a scoring function
that takes in input multiple columns’ values.

In Listing 2.1, we show an example of a KSQL query using
windowed and aggregated operators. We create a new TABLE

18

sink (Line 1), continuously monitoring the metrics_stream stream
(Line 3). We use a hopping window of size 60 seconds that
slides every 10 seconds (Line 4). Every time a window ends, the
query returns the average of the metric->value using the SUM
and COUNT operators (Line 2), grouping the results with the
instance attribute (Line 5).

1 CREATE TABLE sink AS

2 SELECT instance, SUM(metric->value) / COUNT(*)

3 FROM metrics_stream

4 WINDOW HOPPING(SIZE 60 SECONDS, ADVANCE BY 10 SECONDS)

5 GROUP BY instance �
Listing 2.1: Example of KSQL query using windowed and aggregated

operators.

19

3
P R O B L E M S E T T I N G

This chapter presents the whole problem that we tackle with
our work. In Section 3.1, we show the motivations that pushed
us through this work. Section 3.2 describes the main problems
behind the implementation of streaming top-k algorithms. Then,
in Section 3.3, we state the research questions that we want to
answer.

3.1 motivation

The problem of streaming top-k is integral to various sectors
nowadays; examples of industries that use this kind of applica-
tion include telecommunication, finance, smart energy, security,
manufacturing, social media marketing, and many others. High
throughput and low latency are desirable properties of real-time
applications. Still, the data rates of online monitoring applica-
tions often exceed the data stream infrastructure’s capacity in
terms of processing resource, storage, and communication [5],
leading to low throughput and high latency applications. That is
why it is crucial to develop new algorithms that try to optimize
the resources used. Another way to optimize online monitoring

21

applications is parallelization and distribution. Moving the ap-
plication from a centralized monolith to a parallel or distributed
application allows splitting the workload.

As thoroughly explained in Section 2.2, a streaming top-k
algorithm aims to evaluate, for each window over a data stream,
the top-k objects based on a scoring function.

Consider the following example of the energy industry to
understand the streaming top-k problem better. In the modern
energy system, a countless number of IoT devices are connected
to provide data in real-time to control the current load on the
network or to monitoring the system to detect failures.

Assume that a water company has IoT sensors on the pipes
running underground; these sensors can measure water pressure
in the pipes and the humidity outside them. The water company
knows that if the humidity outside the pipes is over 90% and
the water pressure is under 3 bar, there may be a leak in the
tube, so they have to send a team to check it. The sooner the
possible leak is detected, the better it is for the company, so a
reactive system is fundamental.

How does streaming top-k cope with this specific problem?
The IoT sensors send the measured parameters to the water
company’s system, where a streaming application computes a
score based on the humidity and the pressure and evaluates the
top-k results, which correspond to the pipes where it is more
probable a leak.

Another example of the usage of streaming top-k algorithms
is Social Media marketing. Let us assume that a Social Media
agency wants to find emerging influencers on Instagram to offer
them a contract to advertise a new product. An Instagram user
is an "emerging influencer" if it gets 1.000 new followers and
10.000 likes to its last photo in the previous hour. Hence, every
hour the Social Media agency wants to know the five most
"emerging influencers".

Assuming a data stream containing information for each In-
stagram user, such as the number of new followers and the
number of likes to its photos, it would be great to use a query
language such as KSQL to write a continuous top-k query to
solve this problem. Unfortunately, KSQL does not provide any
functionalities for streaming top-k answering since they have
not implemented the ORDER BY clause yet, and their TOPK
aggregate function only returns the top-k for a single column
and window. The problem we are tackling is wider than re-
turning the top-k for a single column and window; we need to

22

return the top-k objects based on a scoring function that can
work with more than one column. Listing 3.1 presents a possible
workaround for answering the "emerging influencers" query we
mentioned before. We need to write two different queries, the
first computes the score, and the second computes the top-k
result.

The first query takes instagramUsersActivities stream in input
(Line 3), and filters the data using the WHERE clause to keep
only those records that have more than 1000 newFollowers and
more than 10000 newLikes (Line 4). Then, it outputs into the temp-
Scoring stream (Line 1) a new record containing the user attribute
and the score computed using the Score function (Line 2).

The second query reads each record from the tempScoring
topic (Line 7) and outputs the result into the top5InfluencerUsers
topic every hour using the WINDOW clause (Line 8). Using the
TOPK operator in Line 6, we get the top-5 scoring records; then
we group the result by the user with the GROUP BY clause.

1 CREATE STREAM tempScoring AS

2 SELECT user, Score(newFollowers, newLikes) AS score

3 FROM instagramUsersActivities

4 WHERE newFollowers >= 1000 AND newLikes >= 10000

5 CREATE TABLE top5InfluencerUsers AS

6 SELECT user, TOPK(score, 5)

7 FROM tempScoring

8 WINDOW TUMBLING (SIZE 1 HOUR)

9 GROUP BY user �
Listing 3.1: Example of KSQL query to detect emerging influencer

Using two queries in sequence, we increase the number of
reading and writing operations on topics, slowing down our
application’s performance. We want to write a single query in
KSQL as the one shown in Listing 3.2 that solves the problem of
finding "emerging influencers" in the Social Media marketing
scenario we presented above.

23

1 CREATE TABLE top5InfluencerUsers AS

2 SELECT user, Score(newFollower, newLikes) AS score

3 FROM InstagramUsersActivities

4 WINDOW TUMBLING (SIZE 1 HOUR)

5 WHERE newFollower >= 1000 AND newLikes >= 10000

6 ORDER BY DESC (score)

7 LIMIT 5 �
Listing 3.2: Example of desirable KSQL query to detect emerging

influencer

We define a new table called top5InfluencerUsers (Line 1), and
we populate it with the query’s results every hour using the
WINDOW clause (Line 4). Every time the query evaluates, the
WHERE clause (Line 5) is matched against the data in the win-
dow open on the data stream InstagramUsersActivities, the data
is filtered, keeping only users with 1.000 or more new followers
and with 10.000 or more new likes. Then, the results are ordered
by score (Line 6), which is the result of the user-specified Score
function that computes the score by the normalized sum of
newFollowers and newLikes. Finally, only the firsts five results
return using the LIMIT clause (Line 7).

As we already said, this query is not feasible in KSQL since
the ORDER BY operator has not been implemented yet.

3.2 problems

Researches in the streaming top-k field lead to different algo-
rithms that differ from how they try to tackle the problem.
However, they have something in common, all algorithms are
the result of academic research, so usually, they are available
as experimental proof of concept, and only in some rare cases
as technology validated in lab. Both [4], [10] and [16] proposed
technologies validated in lab, while [17] has lightly shown a
technology validated in relevant environment.

We aim to bring these algorithms into Kafka to build a base-
line for the ORDER BY clause we cited above. Precisely we
focus on the MinTop-K [16] implementation. We opt to use
Kafka Streams and Processor API because every KSQL clause
and operator is built on top of their implementation on Kafka
Streams.

24

Implementing an algorithm designed as a support for an
experimental proof of concept into a mainstream technology as
Kafka generates some problems:

1. How can we exploit Kafka’s functionalities, libraries, and
APIs to implement the algorithm?

2. Since Kafka is a distributed streaming platform, the next
question that comes to mind is if it worth parallelizing the
algorithm to achieve better performance and how Kafka
can help us.

3. We have different parameters that can influence algorithms’
performance for a given problem.

Examples of these parameters are the number of parallel in-
stances to use, the window size and hopping size, or the top-k
value, k. So we have to decide their values to optimize our algo-
rithms, and it can be trivial. In our work, we realize experiments
to understand how the top-k value, k, influences the algorithm’s
performance. Also, in Section 5.2, we make reasoning on al-
gorithms’ cost to understand how the values of the window
size and the number of parallel instances influence the overall
performance.

3.3 research question

Given the considerations on continuous top-k query monitoring
that we made before and the problems correlated to implement-
ing a streaming top-k algorithm inside a mainstream distributed
platform as Kafka, we decided to investigate the following re-
search questions:

Q1 - Is it possible to leverage Kafka capabilities to implement
streaming top-k algorithms?

Q2 - Is it worth parallelizing streaming top-k algorithms to
achieve better performance?

Q3 - How does the top-k parameter, k, influence the algorithms’
performance?

To answer these research questions, we design ad-hoc experi-
ments that Section 5.2 explains in detail.

25

4
PA R A L L E L S T R E A M I N G T O P - K I N K A F K A

In this chapter, we show the entire process behind the streaming
top-k algorithms’ implementation. In Section 4.1, we present
the algorithms’ design, explaining their functioning. Section 4.2
contains the infrastructure behind the applications, describing
its part in detail. In Section 4.3, we describe the algorithms’
implementation, showing the implementation choices and their
rationale that lead us to the final applications.

4.1 algorithm design

In this section, we explain in detail how the algorithms work.
We describe the algorithms with the help of pseudo-codes.

4.1.1 Baseline Algorithm

As a baseline algorithm for our experiments, we use the most
straightforward algorithm for streaming top-k; it goes under
the family of "Materialize Score & Sort" algorithms. Algorithm 1

shows in more detail the pseudo-code for the parallel instance,

27

Symbol Description

S Data stream
k Number of the outputs for each window
size Global window size
hoppingSize Global window hopping size
numInstances Number of parallel instances
localSize Local window size used by the instance
localHoppingSize Local hopping size used by the instance
recordCount Total number of records processed
Oi An arriving object
windowsList A list containing all the active window
windowToForward Window to compute top-k results
windowToForward.objects Records of the window to compute top-k
topkResult Top-k results of a given window
currentWindowID ID of the currently processed window

Table 4.1: List of symbols used in Algorithm 1

which sorts the record for each window and computes the top-k
results. Table 4.1 contains the description of symbols used.

The algorithm gets in input the data stream, S, the number
of outputs, k, the global window size, size, the global window
hopping size, hoppingSize, and the number of instances, nu-
mInstances. localSize and localHoppingSize are computed using
their respective global values and numInstances(Lines 1-2). record-
Count is inizialized at 0 (Line 3) before starting ingesting the data
stream. For every new arrival object Oi, the currentWindowID
is computed (Line 5) and if it is not already in the windowsList
it is added to it (Lines 6-7). Then, for every window Wi in the
windowsList we add the Oi object to its list of objects Wi.objects
(Lines 9-10). We check if the current window is ended, in this
case, its objects are sorted by their score and we output the top-k
results (Lines 12-15). Finally, we remove the ended window from
windowsList (Line 17) and we increment the recordCount by one
(Line 18).

4.1.2 Parallel MinTop-K

Algorithm 2 shows the pseudo-code for the parallel instance im-
plementing a slightly modified version of Yang et al.’s MinTop-
K[16]. Their version uses logical windows, while ours uses

28

Algorithm 1: Parallel Baseline Algorithm
input : S, k, size, hoppingSize, numInstances
output : topkResult

1 localSize = size/numInstances;
2 localHoppingSize = hoppingSize/numInstances;
3 recordCount← 0;
4 foreach new object Oi in the stream S do
5 currentWindowID← computeCurrentWindowID();
6 if currentWindowID NOT in windowsList then
7 add currentWindowID to windowsList;
8 end
9 foreach window Wi in windowsList do
10 add Oi to Wi.objects;
11 end
12 if recordCount 6 localSize OR recordCount %

localHoppingSize =1 then
13 windowToForward← windowsList.first;
14 topkResult← SortAndTopK(windowToForward.objects,

k);
15 return topkResult;
16 end
17 RemoveEndedWindow(windowsList);
18 recordCount ++;
19 end

29

Symbol Description

S Data stream
k Number of the outputs for each window
size Global window size
hoppingSize Global window hopping size
numInstances Number of parallel instances
localSize Local window size used by the instance
localHoppingSize Local hopping size used by the instance
windowsList A list containing all the active window
currentWindow The currently processed window
Wi A window inside the windowsList
Wi.actualRecord The number of records arrived during Wi

Wi.tkc The size of the Wi’s predicted top-k result set
Wexp The expired window
Oi An arriving object
Oi.score The score of the new arriving object
Oexp One of the first k object in the super-top-k list
Oexp.start_W The starting window mark of Oexp

Oexp.end_W The ending window mark of Oexp

Omin_supertopk The last object inside the super-top-k list

OWi.lbp The object pointed by the Wi’s lbp

Table 4.2: List of symbols used in Algorithms 2 and 3

30

physical ones. Table 4.2 contains the description of symbols
used.

The algorithm gets in input the data stream, S, the number of
outputs, k, the global window size, size, the global window hop-
ping size, hoppingSize, and the number of instances, numInstances.
localSize and localHoppingSize are computed using their respec-
tive global values and numInstances(Lines 1-2). The MinTopK
function is the core of the algorithm; it includes the MTK main-
tenance, the window expiration handling, and the top-k result
computation. Firstly, we check if the WindowList is empty; if
so, we create a new window and add it to windowList (Lines
4-6). For every new arrival object Oi and every window Wi in
windowList, we increase the window Wi’s actual record counter
(Line 10). Then, if the window Wi’s actual record counter is
equal to the local window size localSize + 1, it means that the
window Wi has expired; in this case, we call OutputTopKResults
function to output the top-k results for this window, we call
PurgeExpiredWindow function passing Wi to handle Wi’s expira-
tion, and we update currentWindow (Lines 12-14). Then we check
if it is time to create a new window; if so, we create and add it
to windowList (Lines 16-18). Finally, we update the super-top-k
list invoking UpdateSuperTopK function with Oi as a parameter.

Algorithm 3 shows in detail the functions used in Algorithm 2

and it uses the same symbols presented in Table 4.2:

OutputTopKResults - Which outputs the first k objects in
the super-top-k list.

PurgeExpiredWindow - Which is the function that takes
care of handling the input window’s expiration. For the
first k objects Oexp in the super-top-k list, we increase the
starting window mark of Oexp (Line 5); then, if its starting
window mark Oexp.start_W is larger than its ending win-
dow mark Oexp.end_W, we remove Oexp from the super-top-
k list (Lines 6-7). Finally, we remove the expired window
Wexp from the windows list (Line 10).

UpdateSuperTopK - Which gets in input the new object
Oi. Firstly, if its score is smaller than the last element
of the super-top-k list and all windows have k elements
associated within the super-top-k list, we discard the new
object Oi (Lines 12-13). Otherwise, for every window Wi
where its lower bound pointer’s score (OWi.lbp.score) is less
than the new object’s score (Oi.score), we do the following:

31

if Wi’s top-k-counter is less than k, we increase it by one
(Lines 17-18); otherwise, we increase by one the starting
window mark of the window’s lbp (OWi.lbp.start_W) (Lines
20-21). Then we check if the starting window mark of the
window’s lbp becomes greater than its ending window
mark; in this case, we remove the window’s lbp (OWi.lbp)
from the super-top-k list, and we update the window’s lbp
by moving it one position up in the super-top-k list (Lines
23-25).

Algorithm 2: Parallel MinTop-K
input : S, k, size, hoppingSize, numInstances

1 localSize = size/numInstances;
2 localHoppingSize = hoppingSize/numInstances;
3 MinTopK()
4 if windowsList is empty then
5 currentWindow ← CreateNewWindow();
6 add currentWindow to windowsList;
7 end
8 foreach new object Oi in the stream S do
9 foreach window Wi in windowsList do
10 Wi.IncreaseActualRecord();
11 if Wi.actualRecord = localSize + 1 then
12 OutputTopKResults();
13 PurgeExpiredWindow(Wi);
14 currentWindow ← windowsList.first;
15 end
16 if Wi = currentWindow AND Wi.actualRecord 6= 1

AND Wi.actualRecord % localHoppingSize = 1
then

17 newWindow ← CreateNewWindow();
18 add newWindow to windowsList;
19 end
20 UpdateSuperTopK(Oi);
21 end
22 end

4.1.3 Centralized Aggregator & Top-K

Algorithm 4 shows the pseudo-code of the centralized aggrega-
tor used by both the Parallel baseline algorithm and the Parallel

32

Algorithm 3: Parallel MinTop-K auxiliary functions

1 OutputTopKResults()
2 output first k objects on super-top-k list;
3 PurgeExpiredWindow (Wexp)
4 for first k object Oexp in super-top-k list do
5 Oexp.start_W ++;
6 if Oexp.start_W > Oexp.end_W then
7 remove Oexp from super-top-k list;
8 end
9 end

10 remove Wexp from windowsList;
11 UpdateSuperTopK (Oi)
12 if Oi.score < Omin_supertopk AND All Wi.tkc = k then
13 discard Oi;
14 end
15 else
16 foreach Wi that OWi.lbp.score < Oi.score do
17 if Wi.tkc < k then
18 Wi.tkc ++;
19 end
20 else
21 OWi.lbp.start_W ++;
22 end
23 if OWi.lbp.start_W > OWi.lbp.end_W then
24 remove OWi.lbp from super-top-k list;
25 move Wi.lbp by one position up in

super-top-k list;
26 end
27 end
28 end

33

Symbol Description

S Data stream
k Number of the outputs for each window
numInstances Number of parallel instances
Ri Record representing local top-k result
Ri.key Window associated to the top-k result
Ri.value Movie record
windowObjectMap Hash map indexed by windowID with

the list of partial top-k for that window
recordList list of partial top-k
topkResult Top-k results of a given window

Table 4.3: List of symbols used in Algorithm 4

MinTop-K algorithm. Table 4.3 contains the description of sym-
bols used.

The algorithm gets in input the data stream, S, the number of
outputs, k, and the number of instances, numInstances. For every
new arrival record Ri in the data stream S, Ri.value is added to
the list of top-k results associated to the window Ri.key (Line
2). Once we receive every partial top-k results from the parallel
instances, we sort the recordList and compute the final top-k
results (Lines 4-7), which return as the output of the algorithm.

Algorithm 4: Centralized Aggregator & Top-K
input : S, k, numInstances
output : topkResult

1 foreach new record Ri in the stream S do
2 windowObjectMap [Ri.key].add(Ri.value);
3 recordList← windowObjectMap [Ri.key];
4 if recordList.size = k ∗numInstances then
5 topkResult← SortAndTopK(recordList, k);
6 remove windowObjectMap [Ri.key];
7 return topkResult;
8 end
9 end

34

Figure 4.1: Main Infrastructure

4.2 infrastructure

The overall infrastructure is mainly based on Docker containers;
except for the Java applications that run on the JVM, everything
else runs inside containers. Figure 4.1 shows an overview of the
whole infrastructure. It represents the two main parts, the one
based on Docker containers on the left, while the JVM part is
on the right.

In Subsection 4.2.1, we explain the Docker part more in-depth,
while Subsection 4.2.2 describes the Java applications’ archi-
tecture, which slightly differs from one algorithm to another.

4.2.1 Docker infrastructure

Three Docker containers compose the Docker infrastructure:

• Zookeeper built using Docker image
confluentinc/cp-zookeeper:5.4.0

• Broker built using Docker image
confluentinc/cp-enterprise-kafka:5.4.0

• Schema-Registry built using Docker image
confluentinc/cp-schema-registry:5.4.0

35

Figure 4.2: Centralized Algorithm Infrastructure

The fundamentals of the Kafka infrastructure run inside the
containers. Zookeeper, Schema-Registry, and a Kafka broker are
the sufficient parts of the Kafka infrastructure.

We use a docker-compose.yml file to build the containers all
together from the images1.

4.2.2 JVM infrastructure

This subsection shows the experiment infrastructure, focusing
on the part based on the Java applications that run inside the
JVM.

Figure 4.2 shows the infrastructure in the case of the cen-
tralized algorithms’ version; it is the simpler one since it is
composed of only two components: Rating Driver and Central-
ized Top-K App. The former is the application that sends the input
data to a specific topic into the Kafka Broker; the latter com-
putes the top-k results; hence, it is the most crucial infrastructure
component.

In Figure 4.3, we find a slightly more complex infrastructure;
it represents the infrastructure of the parallel algorithms. N
parallel instances compute their local top-k result and send it to

1 https://github.com/Luca-Ferrera/kstream/blob/master/

docker-compose.yml

36

https://github.com/Luca-Ferrera/kstream/blob/master/docker-compose.yml
https://github.com/Luca-Ferrera/kstream/blob/master/docker-compose.yml

Figure 4.3: Parallel Algorithm Infrastructure

a single topic with one partition. Then we have the Centralized
Aggregate & TopK application that aggregates all the local top-k
results from the N parallel instances, sorts them, and computes
the final top-k result.

4.3 implementation experience

The process behind algorithms’ implementation is simple. Firstly
we implement the centralized version, we test its correctness,
and then we run the experiment. Secondly, we use this central-
ized version as one element of our parallel application; each
parallel instance runs the streaming top-k algorithm as it is inde-
pendent of the other instances, then it sends the top-k results to
a topic with one partition. A centralized application aggregates
the results by consuming the parallel part’s output topic, sorts
them by their score, and outputs the final top-k results.

We decide to base the algorithm’s implementation on Kafka
because we want to experiment inside a real word environ-
ment. Thanks to its Streams and Processor API, Kafka provides
excellent tools for data streaming computation and analysis.

Firstly, we reasoned on the windowing operation, meaning
dividing the data stream into portions to compute top-k results.
Kafka Streams provides windowing operators such as groupBy
or Count, but none of these operators offer functionalities useful

37

to solve our problem. To implement our algorithms, we needed
a level of freedom that only the Processor API provides, but
Kafka Processor API does not give windowing operations. Since
we could not rely on Kafka Streams windowing operator, we
had to implement it by ourselves.

Implementing the centralized baseline algorithm, we came out
with a solution that implies the use of ProcessorContext#schedule()2.
This method is used to schedule a punctuation function, which
is a function that periodically triggers the punctuate method of
the Punctuator interface.

We used ProcessorContext#schedule() to trigger the sorting of
all the elements that arrived inside a window. These elements
are saved in the processor’s State Store; every store record is a
key-value pair, with the windowID as key and an ArrayList of
records as value.

Unfortunately, when it was time to implement the parallel al-
gorithm’s version, we realized that this solution was not feasible
because, in a distributed environment, we have a state store as-
sociated with each instance that only keeps track of the elements
that arrived there. Kafka Streams provides Interactive Queries, a
way to access state stores of the parallel instances. We needed to
access the state stores in write mode to maintain a distributed
data structure updated to keep track of all the records arrived at
every instance. Unfortunately, Interactive Queries provides only
read access to remote State Stores, so we could not exploit them
for our purpose.

We started the implementation from scratch, basing it on State
Stores. We decided to use physical windows instead of logical
ones since we found it easier to keep track of them. For each
instance, our idea was to use a local state store to count the
number of elements that arrived inside a window.

Each parallel instance works on a subset of the window of
size window_size/num_instances. In this way, we know that
when window_size/num_instances records arrive at an in-
stance, the current global window has expired, meaning that
the instance will not receive another element for that window,
and it can start processing the new one as soon as a new record
arrives.

To make this work, we made two assumptions: window_size
and hopping_size should be multiple of num_instances, and input
data should be sent to the input topic in a Round-Robin fashion.

2 https://kafka.apache.org/10/documentation/streams/

developer-guide/processor-api.html#defining-a-stream-processor

38

https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html#defining-a-stream-processor
https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html#defining-a-stream-processor

To meet the assumption of sending input data in a Round-
Robin fashion, we came across a problem using the Kafka De-
faultPartioner, since it does not send data strictly in Round-Robin
when the partitioning key is null, to improve performance3. So
we implemented our custom RoundRobinPartitioner class.

4.3.1 Parallel MinTop-K Implementation

Let us discuss the most interesting points of our MinTop-K
implementation.

We use State Store to save the super-top-k list and keep track of
the active windows. Listing 4.1 shows how we create, register,
and pass the stores to the Transformer.

1 StoreBuilder superTopkStoreBuilder = Stores.

keyValueStoreBuilder(

Stores.persistentKeyValueStore("super−topk−l is t −store "),
Serdes.Integer(),

minTopKEntryAvroSerde(envProps));

2 builder.addStateStore(superTopkStoreBuilder);

3 StoreBuilder windowsStoreBuilder = Stores.

keyValueStoreBuilder(

Stores.persistentKeyValueStore("windows−store "),
Serdes.Long(),

physicalWindowAvroSerde(envProps));

4 builder.addStateStore(windowsStoreBuilder);

5 builder.<~>stream(scoredMovieTopic).transform(

6 new TransformerSupplier<String,ScoredMovie,KeyValue<~>>(){

7 public Transformer get(){

8 return new DistributedMinTopKTransformer(k,

cleanDataStructure);

9 }

10 },

11 "windows−store ",
12 "super−topk−l is t −store "); �

Listing 4.1: Parallel MinTop-K: how to create, register and pass State
Stores to a Kafka Transformer.

3 https://cwiki.apache.org/confluence/display/KAFKA/FAQ#

FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioning

keyisnotspecified?

39

https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified?
https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified?
https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified?

1 for(PhysicalWindow window: lowerBoundPointer){

2 MinTopKEntry lowerBoundPointed = window.

getLowerBoundPointer();

3 if(movie.getScore() < lowerBoundPointed.getScore() &&

window.getTopKCounter() < k){

4 window.setLowerBoundPointer(newEntry);

5 window.increaseTopKCounter(1);

6 physicalWindowsStore.put(window.getId(), window);

7 }

8 int index = superTopKList.indexOf(lowerBoundPointed);

9 if(index == -1){

10 MinTopKEntry newLowerBound = superTopKList

11 .get(superTopKList.size() - 1);

12 window.setLowerBoundPointer(newLowerBound);

13 physicalWindowsStore.put(window.getId(), window);

14 } else if(lowerBoundPointed.getScore() < movie.getScore())

{

15 if(window.getTopKCounter() < k){

16 window.increaseTopKCounter(1);

17 physicalWindowsStore.put(window.getId(),window);

18 } else {

19 //increase starting window

20 lowerBoundPointed.increaseStartingWindow(1L);

21 window.setLowerBoundPointer(lowerBoundPointed);

22 if(lowerBoundPointed.getStartingWindow() >

lowerBoundPointed.getEndingWindow()) {

23 //remove from superTopKList

24 superTopKList.remove(index);

25 superTopKListStore.delete(index);

26 } else{

27 //update lowerBoundPointed into superTopKList

28 superTopKList.set(index,lowerBoundPointed);

29 superTopKListStore.put(index,lowerBoundPointed);

30 }

31 //move lbp one position up in the superTopKList

32 MinTopKEntry newLowerBound = superTopKList.get(

index - 1);

33 window.setLowerBoundPointer(newLowerBound);

34 physicalWindowsStore.put(window.getId(), window);

35 }

36 }

37 } �
Listing 4.2: Parallel MinTop-K: LBP update after new object insertion

into super-top-k list.

40

To ease our process, we use auxiliary data structures to save
State Stores’s content at the beginning of each record processing.
When iterating on KeyValueStore, no ordering guarantees are
provided4, but we need ordering guarantees for the super-top-k
list, so we save the "super-topk-list-store" content into an ArrayList.
Also, we store the "windows-store" content into a LinkedList,
which we use as the Lower Bound Pointer list (LBP). Then, at the
end of each record’s processing, we save them back to the State
Stores. Also, we store the changes into State Stores as soon as we
modify the data structures not to lose any update.

Listing 4.2 shows the code for updating the LBP; it is a portion
of the updateSuperTopK function, which is the most critical part
of the algorithm. We are right after the new item insertion in
the super-top-k list.

For every active window, we get the object pointed by its lbp
(Lines 1-2), then if the window has not k items yet, and the new
entry’s score is less than the window lbp’s score, we increase the
TopKCounter and set the new entry as window’s lbp (Lines 3-6).
Now, we check if the element pointed by the lbp has already
been removed from the super-top-k list (because it was the lbp
of another window already processed); in this case, we set as
new lbp the last super-top-k list’s object (Lines 8-13). Otherwise,
we update the super-top-k list according to the algorithm (Lines
14-34), we leave the code explanation to the reader.

4 https://kafka.apache.org/21/javadoc/org/apache/kafka/streams/

state/ReadOnlyKeyValueStore.html#all--

41

https://kafka.apache.org/21/javadoc/org/apache/kafka/streams/state/ReadOnlyKeyValueStore.html#all--
https://kafka.apache.org/21/javadoc/org/apache/kafka/streams/state/ReadOnlyKeyValueStore.html#all--

5
E X P E R I M E N T S & R E S U LT S

In this section, we show the experimental setup for comparative
research in 5.1, the design of experiments in 5.2, the final results
in 5.3, and the findings in 5.4.

As an experimental environment, we use an m5d.4xlarge
instance on AWS.1 The operating system is Ubuntu 16.04; Open-
JDK 11.0.8, Docker 19.03.13 and docker-compose 1.27.4 are in-
stalled on the machine.

5.1 experimental setup for comparative research

In order to perform comparative research, we used the following
experimental setups:

• Centralized Baseline Algorithm

• Parallel Baseline Algorithm

• Centralized MinTop-K

• Parallel MinTop-K

1 https://aws.amazon.com/it/ec2/instance-types/m5/

43

https://aws.amazon.com/it/ec2/instance-types/m5/

Running experiments with both centralized and parallel versions
of the two algorithms make it possible to compare them and tell
if it is worth parallelizing streaming top-k algorithms.

Setting up the experiments, we noticed that some parameters
influence the results more than others. More specifically, we
found that it is fundamental to choose the window_size and the
num_instances in the right way.

Below, we show the reasoning that leads us to the parameters’
values for the experiments. The following are the cost functions
for both the centralized and the parallel versions of the Baseline
algorithm. In both functions, there are three constant values:

• Cm: materialize cost

• Cs: sorting cost

• Ck: top-k cost

Equation 5.1 shows the centralized algorithm’s cost, while
Equation 5.2 contains the parallel one. More in detail lines 1,2,3
of 5.2 represent materializing cost, sorting cost and top-k cost
respectively for the parallel part, while lines 4 and 5 represent
sorting cost and top-k cost respectively for the centralized ag-
gregation part.

Cm ∗window_size +

Cs ∗window_size ∗ log2(window_size) +Ck ∗ k
(5.1)

Cm ∗window_size +

Cs ∗window_size ∗ log2(
window_size

num_instances
) +

Ck ∗ k ∗num_instances +
Cs ∗ k ∗num_instances ∗ log2(k ∗num_instances) +
Ck ∗ k

(5.2)

Looking closer to the above cost functions, we can see that the
first and last terms are the same so that they can be simplified.

Cs ∗window_size ∗ log2(window_size) =

Cs ∗window_size ∗ log2(
window_size

num_instances
) +

Ck ∗ k ∗num_instances +
Cs ∗ k ∗num_instances ∗ log2(k ∗num_instances)

(5.3)

44

Here, we can see that by choosing the window_size and the
num_instances in the right way, we can have the parallel cost
lower than the centralized one.

Setting up the experiments with different values of window_size
and num_instances, we concluded that we could not use small
values of window_size. The centralized algorithm’s workload will
be too low, and the gain of distributing this load between the
instances will be almost null or even negative due to the cost
of coordination between the parallel instances, the cost of the
centralized aggregation of partial top-k results, and the final
top-k computation.

Also, the num_instances should not be too small to gain in the
parallel version, so we decided to use 6 instances.

To sum up, we have seen that a window_size of 1200 brings no
gain in using the parallel version, while a window_size of 3600

brings gain. Said so, 3600 is the value used for window_size in
the experiments.

Moreover, the design we have chosen for the parallel applica-
tions leads to the following constrain that we have to meet to
gain from the parallelization:

k ∗num_instance < window_size

In the Equation 5.4, we place k ∗ num_instance equal to
window_size to see how the cost function become if we do not
meet the constrain; we can see that the second term is equal
to the first one plus two positive addends, so the parallel cost
is greater than the centralized one. Given this constrain, the
number of instances, and the value of window_size we choose
for the experiments, we know upfront the experiments that
for k > 600 we will have a worse performance of the parallel
algorithm over the centralized one.

Cs ∗window_size ∗ log2(window_size) =
Cs ∗window_size ∗ log2(k) +

Ck ∗window_size +

Cs ∗window_size ∗ log2(window_size)

(5.4)

5.2 design of experiments

We run each experiment five times using five different datasets
as input data. In this way, we have more statistically consistent
results.

45

Each dataset is randomly generated using a python script
and contains 100.000 records in Avro format. The idea is to
simulate a movie-rating platform where users can rate movies;
each record in the dataset represents a movie with its unique ID,
title, year of release, user rating, and score (Listing 5.1 shows an
example). The score is computed as a weighted sum of the year
of release and user rating (5.5).

score =
rating

10
∗ 0.8+

release_year
2020

∗ 0.2 (5.5)

{" id": 140, " t i t l e ": "La Grande Bellezza", " release_year":
2013, " rating ": 8.77084821316125, "score":
0.9009747877459693} �

Listing 5.1: Record example

Before each experiment, a Kafka Producer sends the input
data to a different topic for each experiment. We decide to ingest
the data before starting the measurements because the ingestion
time is irrelevant compared to the experiment’s total duration.

We measure the total time that passes between the first record
consumed and the last top-k result of each experiment’s last
window.

This is the list of the parameters used and their explanation:

• k: number of the outputs for each window

• size or window_size: by how many records a window is
made

• hopping_size: by how many records each window moves
forward relative to the previous one

• #dataset: a number indicating which dataset is used as
input

• num_instances: how many application instances run in
parallel

We divide the experiment into four parts corresponding to
each algorithm.

5.2.1 Centralized Baseline Algorithm

This subsection shows the different settings we used for testing
the Centralized Baseline Algorithm.

46

For each dataset, we run the experiments using different
values of the k parameter, without varying the others.

We have three different configurations for our experiment:

1. k = 5, size = 3600, hopping_size = 300, num_instances = 1

2. k = 10, size = 3600, hopping_size = 300, num_instances = 1

3. k = 50, size = 3600, hopping_size = 300, num_instances = 1

5.2.2 Centralized MinTop-K

In this subsection, we present the settings we used for testing
the Centralized MinTop-K algorithm.

For each dataset and experiments, we use different values of
the k parameter, while keeping constant the others.

These are the three different configurations for our experi-
ment:

1. k = 5, size = 3600, hopping_size = 300, num_instances = 1

2. k = 10, size = 3600, hopping_size = 300, num_instances = 1

3. k = 50, size = 3600, hopping_size = 300, num_instances = 1

5.2.3 Parallel Baseline Algorithm

This subsection shows the settings we used for testing the Paral-
lel Baseline Algorithm.

For the parallel version, we run two kinds of experiments. In
the first one, we run the experiments using different values of
the k parameter, without varying the others. We want to see any
correlation between the value of the top-k and the experiment’s
total time.

We have seven configurations for this experiment:

1. k = 5, size = 3600, hopping_size = 300, num_instances = 6

2. k = 10, size = 3600, hopping_size = 300, num_instances = 6

3. k = 50, size = 3600, hopping_size = 300, num_instances = 6

4. k = 100, size = 3600, hopping_size = 300, num_instances = 6

5. k = 150, size = 3600, hopping_size = 300, num_instances = 6

6. k = 200, size = 3600, hopping_size = 300, num_instances = 6

47

7. k = 300, size = 3600, hopping_size = 300, num_instances = 6

In the second experiment, we change the number of parallel
instances num_instances, while keeping the other parameters
constant. We expect that by increasing the number of parallel
instances, the experiment’s total time will decrease.

We have three configurations:

1. num_instances = 3, k = 10, size = 3600, hopping_size = 300

2. num_instances = 6, k = 10, size = 3600, hopping_size = 300

3. num_instances = 10, k = 10, size = 3600, hopping_size = 300

5.2.4 Parallel MinTop-K

In this subsection, we present the different settings we used for
testing the Parallel MinTop-K algorithm.

For the parallel version, we run two kinds of experiments. In
the first one, we run the experiments using different values of
the k parameter, without varying the others. We want to see any
correlation between the value of the top-k and the experiment’s
total time.

These are the seven configurations we use:

1. k = 5, size = 3600, hopping_size = 300, num_instances = 6

2. k = 10, size = 3600, hopping_size = 300, num_instances = 6

3. k = 50, size = 3600, hopping_size = 300, num_instances = 6

4. k = 100, size = 3600, hopping_size = 300, num_instances = 6

5. k = 150, size = 3600, hopping_size = 300, num_instances = 6

6. k = 200, size = 3600, hopping_size = 300, num_instances = 6

7. k = 300, size = 3600, hopping_size = 300, num_instances = 6

In the second experiment, we change the number of parallel
instances num_instances while keeping the other parameters
constant. We expect that by increasing the number of parallel
instances, the experiment’s total time will decrease.

We have three different configurations:

1. num_instances = 3, k = 10, size = 3600, hopping_size = 300

2. num_instances = 6, k = 10, size = 3600, hopping_size = 300

3. num_instances = 10, k = 10, size = 3600, hopping_size = 300

48

5.3 results

In this section, we expose the experiments’ results. In detail, in
Subsection 5.3.1, we show the comparative research results that
compare the centralized and the parallel versions of the two
implemented algorithms (baseline and MinTop-K) by varying
the number of parallel instances.

Subsection 5.3.2 describes the comparative research results
based on the top-k parameter; the experiment aims to define if
there is a correlation between the value of the top-k parameter,
k, and the experiment’s total time. We measure the total time
that passes between the first record consumed and the last top-k
result of each experiment’s last window.

As already described in Section 5.2, we run each experiment
using five different datasets to have more statistically consistent
results.

5.3.1 Centralized and Parallel comparison

This experiment aims to prove that by parallelizing the stream-
ing top-k algorithm, we can achieve better performance in terms
of total time to elaborate a given amount of streaming data. We
run the experiments using a fixed value of the top-k parameter
equal to 10, varying the number of instances between values 1,
3, 6, and 10.

5.3.1.1 Baseline Algorithm

Figure 5.1 shows the box-plots of the total_time using one in-
stance for the centralized version, and six instances for the
parallel one. We can see that the parallel version’s total_time
is significantly less than the centralized’s one; as we expected,
parallelizing the algorithm improves its performance.

Table 5.1 shows the total_time average and standard deviation
for the experiment. Figure 5.2 compares the total time using a
different number of instances; on X-axis, we have the number
of parallel instances (1 means a single centralized instance),
while on Y-axis, we have the experiments’ total_time in second.
We can see that between 1 and 3 instances, there is already a
considerable gain in performance. We can see that by increasing
the number of parallel instances, we still get better performance.

49

Figure 5.1: Baseline Algorithm: comparison between Centralized and
Parallel versions.

1 Instance 3 Instances 6 Instances 10 Instances

Average (s) 7117.44 868.55 270.13 152.69

Standard
Deviation (s)

426.03 23.70 8.67 9.09

Table 5.1: Baseline Algorithm: total_time average and standard devia-
tion for num_instances comparison.

5.3.1.2 MinTop-K

This experiment is equivalent to the one in Section 5.3.1.1, but we
use a different algorithm; we want to verify that by parallelizing
the MinTop-K algorithm, we can achieve better performance.

Figure 5.3 compares the centralized and parallel version of the
MinTop-K algorithm. The experiment confirms our hypothesis;
we see that, as in the Baseline Algorithm, we have improvements
in terms of total_time.

Figure 5.4 shows the experiment’s result using different num-
bers of parallel instances. On Y-axis, we have the total_time in
second, while X-axis represents the number of parallel instances.
The MinTop-K algorithm shows the same trend as the baseline
algorithm, but we can see from the values measured for both
experiments that it is more performant in terms of total_time
than the baseline algorithm. Tabel 5.2 contains the total_time
average and standard deviation for the experiment.

Finally, to end the comparison between the centralized and
parallel versions of the proposed algorithms, we group the

50

Figure 5.2: Baseline Algorithm: comparison on num_instances.

1 Instance 3 Instances 6 Instances 10 Instances

Average (s) 5632.19 677.58 199.46 119.01

Standard
Deviation (s)

58.67 15.22 11.67 6.57

Table 5.2: MinTop-K Algorithm: total_time average and standard de-
viation for num_instances comparison.

experiments’ results into a single plot. For each experiment,
we use k=10, and for the parallel ones, we use 6 instances. As
shown in Figure 5.5, both versions of MinTop-K are faster than
the respective versions of the baseline algorithm.

Moreover, Table 5.3 reports the parallel version’s speed-up
over the centralized one. The columns represent the number
of parallel instances, while each row represents the algorithm.
Here, we can see better how significant the improvement is in
the parallel versions.

The speed-up is computed as the ratio between the average
total_time of the centralized and the parallel versions.

avg_total_time =

D∑
d=1

total_timed
D

(5.6)

speedup =
avg_total_timeCentralized

avg_total_timeParallel
(5.7)

51

Figure 5.3: MinTop-K algorithm: comparison between Centralized
and Parallel versions.

Figure 5.4: MinTop-K algorithm: comparison on num_instances.

52

Figure 5.5: Algorithms comparison.

3 Instances 6 Instances 10 Instances

Baseline 8.19 26.34 46.61

MinTop-K 8.31 28.71 47.32

Table 5.3: Parallelization speed-up

5.3.2 Top-K Comparison

Once we confirm our hypothesis that by parallelizing the stream-
ing top-k algorithms, we can achieve better performance; we
wanted to seek the correlation between the value of top-k and
the total_time measured.

Before we started with the experiments, we reasoned on the
possible outcomes. In order to explain our reasoning, it is bet-
ter to recap the structure of our parallel solutions: we have
num_instances parallel instances of the same application that
send their partial top-k result to the centralized application,
which aggregates the partial results and compute the final top-k
sorting them and keeping the first k elements.

Starting from this, we expected that for large enough values
of top-k, the experiment’s total time would grow up signifi-
cantly. Increasing the top-k’s value means having bigger partial
top-k results from the parallel instances, leading to an even
larger amount of data that the centralized application has to
sort to compute the final top-k result. For the same reason, we
think that small k’s values would not significantly influence the
measurements.

53

5.3.2.1 Parallel Baseline Algorithm

In this subsection, we show the results of the experiments de-
scribed in Section 5.2.3.

Figure 5.6 shows the comparison between the total time for
computing top-k results, using different k values. On X-axis, we
have the top-k values, while on Y-axis, we have the total_time
measured in seconds. The upper cap in the error bar represents
the max value of total_time, the downer cap represents the min
value of total_time, and the central marker represents the average
value of total_time for a given experiment.

We can see from this plot that starting from k = 100, the
total_time value grows exponentially. We can confirm our first
hypothesis that after a large enough k value, the time needed to
compute the top-k results grows exponentially.

Our second hypothesis is confirmed too. Figure 5.7 focuses
on the top-k values that are smaller than the threshold we
defined before (k = 100). Thanks to the box-plots, we can see
that the total_time values do not vary substantially between
the experiments, considering that the avg_total_time’s variation
between k = 5 and k = 100 is 30 s, while its variation between k
= 100 and k = 150 is 210 s.

Table 5.4 contains the average, the min and the max values of
total_time measured during the experiments.

Figure 5.6: Baseline Algorithm: total_time for different k parameter
values.

54

Top-5 Top-10 Top-50 Top-100 Top-150 Top-200 Top-300

Average (s) 250.63 270.13 269.97 282.38 496.12 793.03 1865.77

Min (s) 239.15 254.54 260.27 267.64 474.05 786.86 1851.96

Max (s) 256.20 279.57 275.54 295.13 518.45 816.67 1887.47

Table 5.4: Baseline Algorithm: total_time average, min and max for k
values comparison.

Figure 5.7: Baseline Algorithm: focus on small values of k.

5.3.2.2 Parallel MinTop-K

Here we want to confirm our hypothesis for the MinTop-K algo-
rithm case. Section 5.2.4 describes in detail the design of these
experiments; we used different values of top-k parameter, k, to
seek for a correspondence between its value and the total_time
of the experiment.

In Figure 5.8, we have on X-axis the top-k values and on Y-
axis the total_time in seconds. The plot shows how the different
values of k used influence the experiment’s duration. We can see
how the Y-axis values grow exponentially from top-K=100. It is
true that starting from a certain value of k, k = 100 in our case,
the experiment’s total_time grows exponentially because of the
increasing work that the centralized aggregator has to perform
to sort all the partial top-k results received.

Figure 5.9 shows the results that confirm our second hypothe-
sis. We can see that for top-k values inside the range [5;100], we
have a small variation of total_time, meaning that top-k values
inside that range do not substantially influence total_time. We
have seen from the experiments that the avg_total_time variation

55

between k = 100 and k = 150 is 220 s, while its variation between
k = 5 and k = 100 is only 28 s.

Figure 5.8: MinTop-K: total_time for different k parameter values.

Table 5.5 sums up the experiments’ results showing the av-
erage, the minimum, and the maximum values of total_time
measured varying the top-k.

Top-5 Top-10 Top-50 Top-100 Top-150 Top-200 Top-300

Average (s) 200.32 199.46 203.78 228.20 448.64 745.23 1715.86

Min (s) 190.41 185.09 197.02 213.64 438.84 707.17 1681.89

Max (s) 210.71 219.96 217.46 240.53 458.48 769.92 1751.23

Table 5.5: MinTop-K Algorithm: total_time average, min and max for
k values comparison.

5.3.3 Algorithms Comparison

In the last part of the experiments’ results, we compare the base-
line and MinTop-K algorithms. We know that the centralized
version of MinTop-K outperforms the baseline algorithm; is it
valid for the parallel version too? To answer this question, we
run both algorithms with the same configuration; we perform
seven different experiments, varying only the k parameter.

We expect that the results show that the parallel MinTop-K
outperforms the parallel baseline version. Both have the central-
ized aggregator as the last processing unit, so this part should
weigh in the same way for both. The differences are inside the
parallel instances, but we know that the centralized MinTop-K

56

Figure 5.9: MinTop-K: focus on small values of k.

outperforms the baseline algorithm and since each parallel in-
stance runs exactly the centralized algorithm’s version but on a
subset of the window, why should the performance change?

Figure 5.10 shows in blue the baseline algorithm’s error bars
for the different values of k, while the red ones refer to the
MinTop-K algorithm. We can see that every downer blue cap, so
the min value for the baseline algorithm, is above every upper
red cap, so the max value for the MinTop-K algorithm; this
means that even the MinTop-K’s worst case is better than the
baseline’s best case.

Table 5.6 compares the total_time average between the baseline
and the MinTop-K algorithms for different top-k values. We can
see that baseline data are always larger than the MinTop-Ks.

Top-5 Top-10 Top-50 Top-100 Top-150 Top-200 Top-300

Baseline average (s) 250.63 270.13 269.97 282.38 496.12 793.03 1865.77

MinTop-K average (s) 200.32 199.46 203.78 228.20 448.64 745.23 1715.86

Table 5.6: Baseline and MinTop-K algorithms’ comparison: total_time
average varying k parameter.

Moreover, we want to calculate the speed-up we achieve using
the parallel MinTop-K with respect to the baseline algorithm.
We compute the speed-up as the ratio between the average

57

Figure 5.10: Baseline and MinTop-K algorithms’ comparison:
total_time for different k parameter values.

total_time of the baseline algorithm and the average total_time of
the MinTop-K algorithm.

avg_total_time =

D∑
d=1

total_timed
D

(5.8)

speedup =
avg_total_timeBaseline

avg_total_timeMinTop-K
(5.9)

worst_case_speedup =
min_total_timeBaseline

max_total_timeMinTop-K
(5.10)

best_case_speedup =
max_total_timeBaseline

min_total_timeMinTop-K
(5.11)

Top-5 Top-10 Top-50 Top-100 Top-150 Top-200 Top-300

speed-up 1.25 1.35 1.32 1.23 1.10 1.06 1.08

Table 5.7: Speed-up MinTop-K over baseline algorithm

Table 5.7 reports the speed-up achieved for each k value, which
is bigger for small values of k and decreases for larger values.
Figure 5.11 shows the speed-up’s trend. On X-axis, we have the
top-k values used in the experiments, while on Y-axis, we have

58

Figure 5.11: Speed-up MinTop-K over baseline algorithm

the speed-up. The blue circles represent the speed-up computed
using the average total_time as explained in the Equation 5.9.
The downer caps indicate the worst-case speed-up, computed as
the ratio between the minimum total_time value for the baseline
algorithm and the maximum total_time value for the MinTop-K
algorithm (Equation 5.10). The upper caps represent the best-
case speed-up, computed as the ratio between the maximum
total_time value for the baseline algorithm and the minimum
total_time value for the MinTop-K algorithm (Equation 5.11). We
can see that values in the left part of the plot are larger than
those on the right side.

59

5.4 findings

In this section, we summarize the results we obtained from the
experiments, but first, we want to recap our research question
and the hypotheses we made.

Through this work, we wanted to understand if it is worth
parallelizing streaming top-k algorithms in Kafka. Our first
hypothesis is that we can achieve better performance by splitting
the work into parallel instances than using a single instance.

Secondary to this, we seek a correlation between the per-
formance of the application and the top-k parameter’s size, k.
This seeking led us to our second hypothesis: for large enough
top-k values, the application’s performance will significantly
decrease, while small top-k will not substantially influence the
performance.

Lastly, we wanted to understand if the MinTop-K algorithm
implemented using Kafka Stream would be as convenient as
it shows in [16], meaning that the MinTop-K algorithm will
outperform the naive Materialize Score & Sort approach.

Thanks to the results shown in Subsection 5.3.1, we can con-
firm our first hypothesis; both the baseline and the MinTop-K
algorithms’ parallel versions outperform their centralized ver-
sions. Moreover, results show that we take less time to process
all the input data by increasing parallel instances.

Experiments’ results in Subsection 5.3.2 show that the to-
tal_time of our experiments grows exponentially when the top-k
value is larger than 100, while under this threshold, we do not
see any considerable changes in the measurements. We can con-
firm our second hypothesis under our experimental conditions.

As we can see from Subsection 5.3.3, our implementation of
MinTop-K using Kafka Stream outperforms the baseline imple-
mentation. We have better performance in every experiment;
however, the speed-up is higher in experiments with small k
values. The gain of MinTop-K over the baseline algorithm is
probably mitigated by the centralized aggregator’s work, which
we know influence more the cost when the top-k value increases,
so that is why we reasonably have lower speed-up in experi-
ments with high k. To sum up, we can affirm that it is convenient
to use our implementation of the MinTop-K algorithm using
Kafka Stream over the baseline algorithm.

60

6
C O N C L U S I O N S & F U T U R E W O R K S

In this final chapter, we sum up the work we have done, we
present the conclusion we have drawn from the experiments in
Section 6.1, and we outline some directions for future works in
Section 6.2.

6.1 conclusions

This comparative research aimed to determine if it is worth
parallelizing streaming top-k algorithms to achieve better perfor-
mance for real-time and near-real-time applications. Secondary,
we sought a correlation between the top-k parameter, mean-
ing the number of outputs for each window, and the total_time
that we used as a KPI. Moreover, we wanted to understand if
Apache Kafka could be the right distributed streaming platform
to implement streaming top-k algorithms.

In the beginning, we did some researches on state of the art
for streaming top-k query computation, finding out that Yang
et al.’s MinTop-K algorithm could have been the right candi-
date for our research. Then, we worked incrementally on the
design and implementation of the algorithms. We started with

61

the centralized version of the algorithm that we would use as a
baseline; then, we moved to its parallel version. Finally, we im-
plemented the MinTop-K algorithm, starting with its centralized
version and then realizing the parallel one. Once all the algo-
rithms were implemented, we designed our ad-hoc experiments
to answer our research questions. We compared a centralized
and parallel version of each algorithm using different degrees
of parallelization; we set up experiments using different top-k
values to understand how this parameter could influence the
application’s performance.

Based on these experiments, we can conclude that there are
significant advantages in parallelizing streaming top-k algo-
rithms; that the top-k parameter considerably influences the
performance negatively when it assumes large values, while the
application’s performance is higher and nearly stable when k
assumes small values. Lastly, we can state that implementing
streaming top-k algorithms using Kafka Streams could be both
an excellent solution for real-time and near-real-time applica-
tions and a baseline to build KSQL operator upon it. Also, it is
possible to leverage Kafka’s benefits, such as the scalability and
load balancing, when building a streaming top-k application;
focusing only on the application itself would ease the develop-
ment of stream monitoring systems like the ones presented in
Section 3.1.

6.2 future works

Future development of our work can move in different research
directions.

It could be possible to implement other streaming top-k al-
gorithms to perform more comparisons between them or study
how to exploit existing Kafka’s APIs or plug-ins to implement
new algorithms. An example could be the TopK+N algorithm,
presented by Zahmatkesh and Valle in their Relevant Query An-
swering over Streaming and Distributed Data - A Study for RDF
Streams and Evolving Web Data[17], which could exploit Kafka
Connect API 1, to collect the updates of a distributed data source,
used to perform joins with the data stream.

Another possible direction for our work could be to re-run
the experiments inside a real distributed system. Thus, it could
be possible to understand if the results we achieved with our

1 https://docs.confluent.io/current/connect/index.html

62

https://docs.confluent.io/current/connect/index.html

algorithms’ parallelization could be achieved by distributing the
parallel instances into different physical machines.

For our parallel implementations, we assumed that the win-
dow’s size and hopping_size must be a multiple of the number
of parallel instances, so it would be interesting to relax this
assumption and manage the distribution of the data inside a
window differently.

Moreover, it would be worth focusing on implementations
based on logical windows instead of physical ones, maybe study-
ing deeper how Kafka Streams’ windowing operators work with
logical windows.

Last but not least, it would be possible to implement KSQL
operators for streaming top-k based on the Kafka Streams’ im-
plementation that we proposed in this thesis. An example could
be a different TOPK operator that works with more than one
column.

63

B I B L I O G R A P H Y

[1] Daniel J. Abadi et al. “Aurora: a new model and archi-
tecture for data stream management.” In: VLDB J. 12.2
(2003), pp. 120–139. doi: 10.1007/s00778-003-0095-z.
url: https://doi.org/10.1007/s00778-003-0095-z
(cit. on pp. 5, 7).

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The
CQL continuous query language: semantic foundations
and query execution.” In: VLDB J. 15.2 (2006), pp. 121–142.
doi: 10.1007/s00778-004-0147-z. url: https://doi.
org/10.1007/s00778-004-0147-z (cit. on p. 7).

[3] Arvind Arasu et al. “STREAM: The Stanford Stream Data
Manager.” In: IEEE Data Eng. Bull. 26.1 (2003), pp. 19–26.
url: http://sites.computer.org/debull/A03mar/paper.
ps (cit. on p. 7).

[4] Brian Babcock and Chris Olston. “Distributed Top-K Mon-
itoring.” In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, Califor-
nia, USA, June 9-12, 2003. Ed. by Alon Y. Halevy, Zachary
G. Ives, and AnHai Doan. ACM, 2003, pp. 28–39. isbn:
1-58113-634-X. doi: 10.1145/872757.872764. url: https:
//doi.org/10.1145/872757.872764 (cit. on pp. 7, 24).

[5] Brian Babcock et al. “Models and Issues in Data Stream
Systems.” In: Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, June 3-5, Madison, Wisconsin, USA. Ed. by Lucian
Popa, Serge Abiteboul, and Phokion G. Kolaitis. ACM,
2002, pp. 1–16. isbn: 1-58113-507-6. doi: 10.1145/543613.
543615. url: https://doi.org/10.1145/543613.543615
(cit. on pp. 5, 21).

[6] Parisa Haghani, Sebastian Michel, and Karl Aberer. “Eval-
uating top-k queries over incomplete data streams.” In:
Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM 2009, Hong Kong, China,
November 2-6, 2009. Ed. by David Wai-Lok Cheung et
al. ACM, 2009, pp. 877–886. isbn: 978-1-60558-512-3. doi:
10.1145/1645953.1646064. url: https://doi.org/10.
1145/1645953.1646064 (cit. on p. 8).

65

https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
http://sites.computer.org/debull/A03mar/paper.ps
http://sites.computer.org/debull/A03mar/paper.ps
https://doi.org/10.1145/872757.872764
https://doi.org/10.1145/872757.872764
https://doi.org/10.1145/872757.872764
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/1645953.1646064
https://doi.org/10.1145/1645953.1646064
https://doi.org/10.1145/1645953.1646064

[7] Hojjat Jafarpour and Rohan Desai. “KSQL: Streaming SQL
Engine for Apache Kafka.” In: Advances in Database Tech-
nology - 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019.
Ed. by Melanie Herschel et al. OpenProceedings.org, 2019,
pp. 524–533. isbn: 978-3-89318-081-3. doi: 10.5441/002/
edbt.2019.48. url: https://doi.org/10.5441/002/edbt.
2019.48 (cit. on p. 18).

[8] Kostas Kolomvatsos, Christos Anagnostopoulos, and Stathes
Hadjiefthymiades. “A time optimized scheme for top-k
list maintenance over incomplete data streams.” In: Inf. Sci.
311 (2015), pp. 59–73. doi: 10.1016/j.ins.2015.03.035.
url: https://doi.org/10.1016/j.ins.2015.03.035
(cit. on p. 8).

[9] Jay Kreps. “Kafka : a Distributed Messaging System for
Log Processing.” In: 2011 (cit. on p. 14).

[10] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papa-
dias. “Continuous monitoring of top-k queries over sliding
windows.” In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006. Ed. by Surajit Chaudhuri, Vagelis
Hristidis, and Neoklis Polyzotis. ACM, 2006, pp. 635–646.
isbn: 1-59593-256-9. doi: 10.1145/1142473.1142544. url:
https://doi.org/10.1145/1142473.1142544 (cit. on
pp. 8, 24).

[11] Weilong Ren, Xiang Lian, and Kambiz Ghazinour. “Effec-
tive and efficient top-k query processing over incomplete
data streams.” In: Inf. Sci. 544 (2021), pp. 343–371. doi:
10.1016/j.ins.2020.08.011. url: https://doi.org/10.
1016/j.ins.2020.08.011 (cit. on p. 8).

[12] Matthias J. Sax. “Apache Kafka.” In: Encyclopedia of Big
Data Technologies. Ed. by Sherif Sakr and Albert Y. Zomaya.
Springer, 2019. isbn: 978-3-319-63962-8. doi: 10.1007/978-
3-319-63962-8_196-1. url: https://doi.org/10.1007/
978-3-319-63962-8%5C_196-1 (cit. on p. 14).

[13] Matthias J. Sax et al. “Streams and Tables: Two Sides of
the Same Coin.” In: Proceedings of the International Work-
shop on Real-Time Business Intelligence and Analytics, BIRTE
2018, Rio de Janeiro, Brazil, August 27, 2018. Ed. by Malú
Castellanos et al. ACM, 2018, 1:1–1:10. doi: 10.1145/

3242153 . 3242155. url: https : / / doi . org / 10 . 1145 /

3242153.3242155 (cit. on p. 17).

66

https://doi.org/10.5441/002/edbt.2019.48
https://doi.org/10.5441/002/edbt.2019.48
https://doi.org/10.5441/002/edbt.2019.48
https://doi.org/10.5441/002/edbt.2019.48
https://doi.org/10.1016/j.ins.2015.03.035
https://doi.org/10.1016/j.ins.2015.03.035
https://doi.org/10.1145/1142473.1142544
https://doi.org/10.1145/1142473.1142544
https://doi.org/10.1016/j.ins.2020.08.011
https://doi.org/10.1016/j.ins.2020.08.011
https://doi.org/10.1016/j.ins.2020.08.011
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8%5C_196-1
https://doi.org/10.1007/978-3-319-63962-8%5C_196-1
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/3242153.3242155

[14] Shaoxu Song and Lei Chen. “Differential dependencies:
Reasoning and discovery.” In: ACM Trans. Database Syst.
36.3 (2011), 16:1–16:41. doi: 10.1145/2000824.2000826.
url: https://doi.org/10.1145/2000824.2000826 (cit. on
p. 8).

[15] Michael Stonebraker, Ugur Çetintemel, and Stanley B.
Zdonik. “The 8 requirements of real-time stream pro-
cessing.” In: SIGMOD Rec. 34.4 (2005), pp. 42–47. doi:
10.1145/1107499.1107504. url: https://doi.org/10.
1145/1107499.1107504 (cit. on p. 5).

[16] Di Yang et al. “An optimal strategy for monitoring top-
k queries in streaming windows.” In: EDBT 2011, 14th
International Conference on Extending Database Technology,
Uppsala, Sweden, March 21-24, 2011, Proceedings. Ed. by
Anastasia Ailamaki et al. ACM, 2011, pp. 57–68. isbn:
978-1-4503-0528-0. doi: 10.1145/1951365.1951375. url:
https://doi.org/10.1145/1951365.1951375 (cit. on
pp. III, V, 2, 3, 10, 13, 24, 28, 60, 61).

[17] Shima Zahmatkesh and Emanuele Della Valle. Relevant
Query Answering over Streaming and Distributed Data - A
Study for RDF Streams and Evolving Web Data. Springer,
2020. isbn: 978-3-030-38338-1. doi: 10.1007/978-3-030-
38339-8. url: https://doi.org/10.1007/978-3-030-
38339-8 (cit. on pp. 14, 15, 24, 62).

67

https://doi.org/10.1145/2000824.2000826
https://doi.org/10.1145/2000824.2000826
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1951365.1951375
https://doi.org/10.1145/1951365.1951375
https://doi.org/10.1007/978-3-030-38339-8
https://doi.org/10.1007/978-3-030-38339-8
https://doi.org/10.1007/978-3-030-38339-8
https://doi.org/10.1007/978-3-030-38339-8

R I N G R A Z I A M E N T I

Per prima cosa vorrei ringraziare il Prof. Emanuele Della Valle
per avermi affiancato in questo lavoro e per avermi aiutato nella
stesura di questo documento. Sono grato dei consigli che mi
ha dispensato in questi mesi di lavoro, ne farò tesoro per il
mio futuro, sia in ambito professionale che personale. Ancor di
più lo ringrazio per avermi appassionato e avvicinato al mondo
dello streaming di dati, il quale vorrò approfondire nel prossimo
futuro. Inoltre, vorrei ringraziare il gruppo di ricerca del Prof.
Della Valle per l’aiuto mostratomi durante le fasi preliminari di
questa ricerca, ed in particolare la Dott.ssa. Shima Zahmatkesh,
PhD, per il suo supporto durante le fasi di progettazione degli
algoritmi.

Ringrazio la mia famiglia per avermi sempre sostenuto du-
rante questi anni di studio, e per aver gioito con me per i tra-
guardi raggiunti. Grazie mamma e papà per avermi sempre
spronato a dare il meglio di me, per avermi cresciuto con l’idea
che avrei potuto puntare al massimo, e per avermi sempre
sostenuto in questo percorso ed in tutte le altre esperienze che
mi hanno reso ciò che sono ora. E’ soprattutto grazie a voi se
ho raggiunto questo traguardo! Ringrazio i miei nonni, che mi
hanno cresciuto come un figlio, e che mi hanno insegnato la
disciplina che mi ha portato fin qui. Ringrazio i miei zii, che mi
hanno allietato nei giorni di festa e mi hanno sostenuto quando
ne ho avuto bisogno. Infine ringrazio i miei due cugini, che sono
per me come fratelli.

Ringrazio i miei compagni ed amici universitari, con cui ho
trascorso questo magnifico periodo, vi ringrazio per le intense
sessioni di studio affrontate insieme, per le chiacchierate nelle
pause studio e per tutti i momenti di svago che mi hanno aiutato
a vivere al meglio questa avventura.

Ringrazio gli amici di una vita, con cui ho condiviso questo ed
altri percorsi di vita, e con cui mi auguro di condividerne ancora.
Vi ringrazio per essermi stati vicino sempre, anche quando ci
separavano 500km. Grazie per le giornate chiusi in biblioteca
a preparare esami, e per le giornate trascorse fuori, a ridere di
cuore.

Per ultimo, ma non per importanza, ringrazio Giulia, la mia
compagna di vita in questi ultimi tre anni. Ti ringrazio per

69

avermi sostenuto in questo percorso, e per essermi stata accanto
nonostante la distanza. Grazie per tutti i momenti di gioia e di
amore che abbiamo vissuto insieme, mi hanno sempre accom-
pagnato in questi anni e mi hanno aiutato a diventare l’uomo
che sono. Grazie per non essere gelosa del mio computer, con
il quale a volte trascorro più tempo che con te. Questo non è il
primo e non sarà l’ultimo traguardo che festeggeremo insieme.

Luca

70

	Abstract
	Abstract

	Estratto
	Estratto
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Document structure

	2 State Of The Art
	2.1 Stream Processing
	2.2 Streaming Top-K
	2.2.1 Materialize Score & Sort
	2.2.2 MinTopK

	2.3 Apache Kafka
	2.3.1 Kafka Streams
	2.3.2 Processor API
	2.3.3 KSQL

	3 Problem Setting
	3.1 Motivation
	3.2 Problems
	3.3 Research question

	4 Parallel Streaming Top-K in Kafka
	4.1 Algorithm Design
	4.1.1 Baseline Algorithm
	4.1.2 Parallel MinTop-K
	4.1.3 Centralized Aggregator & Top-K

	4.2 Infrastructure
	4.2.1 Docker infrastructure
	4.2.2 JVM infrastructure

	4.3 Implementation experience
	4.3.1 Parallel MinTop-K Implementation

	5 Experiments & Results
	5.1 Experimental Setup for comparative research
	5.2 Design of Experiments
	5.2.1 Centralized Baseline Algorithm
	5.2.2 Centralized MinTop-K
	5.2.3 Parallel Baseline Algorithm
	5.2.4 Parallel MinTop-K

	5.3 Results
	5.3.1 Centralized and Parallel comparison
	5.3.2 Top-K Comparison
	5.3.3 Algorithms Comparison

	5.4 Findings

	6 Conclusions & Future Works
	6.1 Conclusions
	6.2 Future Works

	 Bibliography
	Ringraziamenti

