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Abstract

The investigation of small bodies through proximity operations and landing is
the future of the current space exploration. Achieving these goals with low-cost
solutions as CubeSats can be the required boost to accelerate the European
race for space. The present work is a step forward a more extensive use of Cube-
Sats for deep space exploration. Through a characterization of the dynamical
environment around Didymos, a Near Earth binary Asteroid, the thesis aims
to find proximity trajectories around it for a CubeSat. Orbiting around aster-
oids can be challenging due to their irregular gravity field generated by their
complex mass distribution. In the past, different gravity models have been
used to design the gravity field around small bodies. Spherical harmonics and
complex shape-based models have been investigated in this work with the aim
of finding the best representation of the gravity field close to the asteroid. Ad-
ditional complexity is given by the inherent non-Keplerian dynamics around
a binary system which precludes any analytical solutions, a complex scenario
in which mission designers have to work. However, non-Keperlian problems
can offer advantageous trajectories precluded to a simple two body problem
and for this reason they are one of the main current interests of the scientific
community. This issue has been addressed in this thesis by working in a high
fidelity model considering a generic restricted three body problem. After the
characterization of the dynamical system, close trajectories have been designed
and reproduced to obtain possible solutions for future observation strategies.
From the results, some important information and features have been extrap-
olated as possible trajectories design strategies for future works.

Keywords: CubeSats; Binary Asteroid; Restricted Three Body Problem;
Trajectory Design; Gravitational Model; Proximity Operations;



Sommario

Lo studio dei corpi minori attraverso operazioni di prossimità e tentativi di
atterraggi è il futuro dell’attuale esplorazione spaziale. Raggiungere questi
obbiettivi con soluzioni a basso costo come i CubeSats può essere la spinta
necessaria per accelerare la corsa Europea allo spazio. Il seguente lavoro è un
ulteriore passo verso un uso maggiore dei CubeSats per l’esplorazione dello
spazio profondo. Attraverso una caratterizzazione dell’ambiente dinamico vi-
cino Didymos, un asteroide binario orbitante vicino alla Terra, la presente tesi
si prefissa di trovare traiettorie ad esso ravvicinate per un CubeSat. Orbitare
attorno ad asteroidi può essere impegnativo a causa del loro campo gravitazio-
nale irregolare generato dalla loro forma complessa. Diversi modelli sono stati
usati in passato per descrivere il campo gravitazionale attorno ai corpi minori.
L’uso di modelli con forme complesse e armoniche sferiche è stato considerato
in questo lavoro allo scopo di trovare la migliore rappresentazione del campo
gravitazionale prossimo all’asteroide. Ulteriore difficoltà è data dal problema
non kepleriano attorno a un sistema binario che preclude l’esistenza di qualsiasi
soluzione analitica, uno scenario complesso in cui gli ingegneri di volo devono
lavorare. Tuttavia, problemi non kepleriani possono offrire traiettorie vantag-
giose precluse a un semplice problema a due corpi e per questo sono uno degli
interessi attuali della comunità scientifica. Al termine di una caratterizzazione
del sistema dinamico, traiettorie di prossimità sono state progettate e simulate
al fine di ottenere possibili soluzioni per future strategie di osservazione. Dai
risultati, importanti informazioni e caratteristiche sono state estrapolate come
possibili strategie di progettazione di traiettorie per lavori futuri.

Parole chiave: CubeSats; Asteroidi Binari; Problema Ristretto a Tre
Corpi; Progettazione di Traiettoria; Modelli Gravitazionali; Operazioni di
Prossimità;
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Chapter 1

Introduction

Over the past twenty years, space exploration has vastly expanded its horizons
by introducing a new concept of satellites that greatly reduces manufacturing
costs, CubeSats. This has not only opened the space sector to low-budget
companies, but has also made agencies more prone to high-risk operations,
opening a huge window of new missions opportunities. Due to their relatively
fast development, it is now mandatory to study CubeSats’ actual capabilities
or limitations away from Earth.
Concurrently, the first rendezvous missions targeting asteroids began. As for
CubeSats, asteroids represent a huge opportunity for space exploration, since
they carry with them important information about the solar system and the life
origin. In addition, a population of them, the Near Earth Asteroid (NEA), has
opened the possibilities of a large number of scientific missions targeting bodies
that can be reached easier than the Moon. Moreover, some of them intersect
the Earth’s orbit, and for that, are also being investigated for planetary defence
purpose. However, operating around small bodies is not as easy as it is for
planets due to their weak and irregular gravity field. Different strategies have
been used in the past to address these irregularities. Shape-based models
can be adopted to reproduce the gravity field of homogeneous bodies once
their shape and density are known. Conversely, mass-concentrated models
can be used to represent bodies with voids and irregularities in the density
distribution, as long as these information is provided or assumed.
Additional complexity is present if the target is a binary asteroid. As a high
risk-high reward mission, targeting a binary asteroid can be productive since
their mass and density can be easily retrieved, but also troublesome, since
having more than one gravitational source with comparable mass leads to non-
Keplerian dynamics which is a matter hard to deal with. No general analytical
solution is present and numerical methods are the only way to find particular
trajectories close to such binary systems. However, although relevant solutions
have been found for a three-body problem in the form of periodic orbits and
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Chapter 1. Introduction

trajectories close to the Lagrangian points, the general three body problem is
still far to be considered as fully understood.
Yet, non-Keplerian dynamics can offer new and low-cost transfer solutions
along with proximity trajectories forbidden in a simple two body problem and
this is why it is a current interest for new millennium space mission designers.

1.1 Historical review

Asteroids are small bodies orbiting the Sun primarily between Mars and Jupiter
in what it is known as Main Belt. Due to the large amount of information they
possess on planets and the origin of life, they have always represented a theme
of great scientific interest in space exploration. Indeed, the first mission target-
ing a small body dates to 1996 when NASA’s Near Earth Asteroid Rendezvous
(NEAR-Shoemaker) concluded the first non-incidental close rendezvous with
an asteroid, (253) Mathilde, in 1997. NEAR-Shoemaker achieved also the first
soft-landing on (433) Eros’ surface in 2001[1].
Close rendezvous and landing are non trivial activities for spacecrafts deal-
ing with bodies characterized by strongly irregular mass distributions and so
irregular gravity fields. Therefore, in order to perform invaluable operations
around small bodies, it is necessary to efficiently overcome the technological
challenges that they entail by implementing innovative solutions.
One of the biggest challenges posed by close operations to asteroids is radio
communication with the ground and its drawbacks in terms of speed and ac-
curacy. Many has thought of overcoming this limit by directly eliminating
ground control, introducing degrees of autonomy in operations. This would
bring a huge benefit also from the economical point of view in terms of less
resources usage. However, NASA is also planning to increase communication
performances of spacecrafts with the use of lasers instead of radio waves. In
2026, the mission Psyche is going to communicate with Earth in optical fre-
quency with a huge planned benefit in terms of efficiency without worsen the
mass, volume or power demands[2][3]. NASA has already demonstrated the
performance of optical communication in the Lunar Atmosphere and Dust En-
vironment Explorer (LADEE) mission[4] and now it is going to use it targeting
the metal asteroid (16) Psyche.

NEA - A scientific interest and a technology demonstration occasion

In recent years, many missions have followed the trend of autonomous op-
erations, especially around Near-Earth Asteroids (NEA), small bodies with
semi-major axis of about 1 AU. Due to their large accessibility to spacecrafts,
NEAs are the current frontier for small bodies exploration. A recent ren-
dezvous with a NEA and the first sample return mission is Hayabusa by the
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1.1 Historical review

Japan Aerospace eXploration Agency (JAXA) in 2005[5][6].
Hayabusa collected a small sample from the surface of Itokawa performing a so
called touch-and-go procedure where the spacecraft descents near the surface
for the time necessary to collect samples and lifts off before being damaged.
Such critical and hazardous operations require the presence of an accurate and
autonomous control since ground control would be slow and inaccurate. The
cancellation of horizontal velocity and the safety maneuver after the sample
collection are two of the most important operations to be controlled on board.
In particular, Hayabusa kept track of an artificial landmark on the surface
to check for its relative position with respect to the sampling site. Landmark
navigation uses targets onto the surface (natural or placed artificially) to orient
the spacecraft motion working as points of reference for the navigation. This,
allowed Hayabusa for hoovering on the surface during the sampling procedure.
The mission was so successful that it was followed by its evolution, Hayabusa
2[7]. Hayabusa 2 is a more massive, redundant and with higher scientific ca-
pability version of Hayabusa. It is expected to return in December 2020 with
three sampling from 1999JU3 obtained with the same touch-and-go proce-
dure of Hayabusa. This time, five spherical artificial markers of a diameter of
100mm were used to estimate the position.
Although it was not provided with any autonomous navigation features, Rosetta
[8][9] is worth of mentioning among the missions targeting small bodies. As
the first rendezvous with a comet achieved in 2014, Rosetta was the first time
that optical navigation with landmark was used in ESA operations.
Nowadays, landmarks navigation can be performed in a completely autonomous
way as seen recently during OSIRIS REx close operations.
OSIRIS REx is a sample return mission to asteroid Bennu, actually operating
and performing close proximity functions, planned to end in 2023 [10][11][12].
Its sample recovery strategy is similar to Hayabusa, performing a touch-and-go
landing, while the close proximity navigation is fully autonomous exploiting
a natural target tracking strategy. Good accuracy is guaranteed since, after
a detailed survey campaign, enough information has been provided to build a
3D model of the asteroid’s shape.
Moving towards fully autonomous operations there is M-ARGO[14]. Minia-
turised – Asteroid Remote Geophysical Observer, or M-ARGO, will be ESA’s
first stand-alone CubeSat for deep space targeting an asteroid. The mission
has just completed its phase A of its developing, but the idea is to reach the
target with a completely autonomous optical navigation during the approach
phase. Proximity operations are dedicated to building a 3D model of the as-
teroid and navigating close to it using landmarks as tracking elements while
hovering over the surface.
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Chapter 1. Introduction

NEA crossing Earth - A planetary defense theme

Among NEAs there are also asteroids crossing Earth’s orbit. Consequently,
such asteroids represent a planetary defense theme which had inspired mis-
sions facing this problem like the Asteroid Redirect Mission (ARM)[13], now
cancelled, NEA Scout[15] or the Asteroid Impact and Deflection Assessment
(AIDA) mission[16].
The Near-Earth Asteroid Scout (NEA Scout) will be one of the thirteen Cube-
Sats carried as secondary payload of the NASA mission Artemis 1 planned for
the end of 2021. The official target is still unknown, but the mission’s goal
will be demonstrating the capability of reaching an asteroid proximity with a
solar sail propulsion on a CubeSat.
Instead, AIDA is a joint mission between ESA and NASA aimed to demon-
strate the kinetic impactor technique for planetary defense[16][17]. A NASA
spacecraft, DART, will impact the moon of Didymos, a binary asteroid, while
Hera, from ESA, will investigate the effect of such impact. Hera will be the
first in-depth investigation of a binary asteroid. It will be equipped with a sen-
sor suite consisting of optical cameras, a laser altimeter and a hyper-spectral
imager which will guarantee complete autonomy during close proximity opera-
tions. Once in vicinity of the asteroid, two CubeSats will be released by Hera.
The first, Juventas, is a 6U CubeSat responsible of observing the moon of
the system from few km, while operating fully autonomously using the Hera
mothercraft as a proxy[18].
The design for the second CubeSat has changed many times over the past
years. The first concept was known as Asteroid SPECTral imaging mission
(ASPECT) which was a 3U CubeSat demonstration mission with the goal
of proving whether a CubeSat can handle operations in the rough environ-
ment close to a binary asteroid[19]. In addition, ASPECT should also have
contributed from the scientific point of view by providing information on the
composition of the asteroid’s surface. ASPECT then evolved into APEX[20]
which was a bigger CubeSat of 6U with more scientific instrument on-board.
Recently, an ultimate project for the second CubeSat is born in September
2020 with the name of Milani. As for the previous ideas, Milani will navigate
with the same degree of autonomy of Juventas exploiting its inner-satellite link
radio with which it will be in contact with Hera[21].
The reason why AIDA’s target was chosen is not only related to planetary de-
fense. In fact, Didymos is a binary asteroid. Binary asteroids are the 16%[22]
of NEA and they represent a strategic target for space exploration. Binary
systems are characterized by two small bodies that are gravitationally bound
and orbit around their common center of mass. Usually they are made of a big-
ger asteroid called primary and a smaller satellite called secondary. Something
can be said about their formation although there is still a controversial debate
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about it. Both bodies are believed to belong to the same original asteroid and
their formation can be attributed to a collision for big systems with slow spin
primaries, or to a fission due to an excessive spin rate for small systems with
fast spin primaries. Since they enable investigation of properties that are often
difficult to probe by other means, binary asteroids can be considered one of
the most interesting population of NEA.

1.2 Motivation

During the space exploration of the last century, spacecrafts were large and
unique vehicles characterized by a huge cost which allowed only few national
agencies to launch them. However, in the new millennium, miniaturized satel-
lites, the so called CubeSats, have captured the interest of the scientific com-
munity. Born as educational tools, they have began valuable low-cost solutions
becoming the subjects of a large number of missions[2][14][18]. For this reason,
it is crucial to investigate CubeSats’ capabilities and limitations when operat-
ing in rough environments far from Earth.
The mission Hera involves the use of two CubeSats around the Near Earth
Asteroid (NEA) Didymos and can be the perfect scenario to explore the dy-
namical solutions offered by miniaturized satellites. It is well known that
NEAs represent a current theme for space exploration due to their proximity
to Earth (1AU) and their threat as possible collider, so they have already been
the target of many past missions. However, no satellite has ever achieved close
exploration of a binary asteroid like Didymos. Considering the scientific op-
portunities offered by a binary asteroid and the uniqueness of a first in-depth
mission around this type of asteroid, exploring the dynamical solutions offered
by a CubeSat around Didymos can be both revealing and cutting edge.
Furthermore, the dynamical environment offered by a binary asteroid repre-
sents an additional benchmark for CubeSats. The weak and irregular gravity
field of a small body and the three-body problem posed by a binary aster-
oid and the spacecraft lead to complex and non-Keplerian solutions. Orbiting
around binary asteroids, especially in proximity where the irregularities play a
major role in the dynamics, can be a challenging aspect to investigate. For this
reason, the aim of this work is exploring the dynamical solutions in proximity
of a binary asteroid to further contribute to the investigation of CubeSats’
possibilities for deep space exploration.
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1.3 Research question and objectives

The aim of this work is to study realistic dynamics of a CubeSat orbiting a
binary asteroid like Didymos using a high fidelity model. However, the adopted
strategy, as well as the knowledge obtained, can be easily adapted at any three-
body system with strong irregularity in the gravity field. In brief, the main
question that this thesis wants to answer is:
"What are the actual capabilities of a CubeSat near a binary asteroid and what
kind of solutions can be obtained?
Then, the main research question is broken into three objectives of study,
which are:

• Study the dynamical environment around the binary asteroid in a high
fidelity model. The aim is to examine the forces acting on the third body
and the order of magnitude of the perturbations. Therefore, the work
intends to answer the question:
"How is the dynamical environment for a third body orbiting in proximity
of the asteroid?"

• Compare different strategies for the design of the irregular gravity field
of the asteroid. From the comparison, it is possible to find the minimum
distance at which the point-like model for the gravity field of the asteroid
is reliable. Thus, the work intends to answer the question:
"Which is the best model for the gravity field close to the asteroid?"

• Investigate particular solutions in proximity of the asteroid. The final
purpose is to find possible non-trivial stable trajectories in the region
between 4 and 10km from the binary system barycenter, and, if possi-
ble, orbits that are at a distance below 4km. These trajectories can be
considered as a possible scenario for a close observation mission of the
asteroid. Therefore, the work intends to answer the question:
"What are the operative regions in which close trajectories can be ob-
tained around the asteroid?".

6



1.4 Thesis overview

1.4 Thesis overview

This work mainly deals with the analysis of the dynamical environment around
a binary asteroid and the possible close solutions around it. The results can
be considered as possible observation trajectories around Didymos, the case
study.
After this short introductory chapter, Chapter 2 will be about the background
knowledge on the problem’s dynamic. The Non-Keplerian environment, the
equations of motion and the involved dynamical elements are described.
Chapter 3 describes the model of the dynamical environment considered, to-
gether with its validation.
Chapter 4 is about the software architecture used for the propagation of prox-
imity orbits.
In Chapter 5 the results are shown and Chapter 6 summarizes all the work
and shows the results inherent to the presented research questions.
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Chapter 2

Theoretical Background

The general solution to the orbital problem around a binary asteroid is one
of the most challenging aspect of operating around them, since it requires:
the solution of the mutual orbital and rotational motion of the bodies, the
modelling of their non-spherical mass distribution and the not negligible Sun
perturbation on the system. In this section, the background knowledge about
the dynamical problem under investigation is present. The Non-Keperlian
dynamical environment generated by multiple bodies is mentioned and the
decrescent hierarchical order of models is shown down to the RF3BP adopted
in this work. The equations of motion and the main dynamical elements are
shown together with the perturbations considered.

2.1 Non-Keplerian dynamical models

General problem

The general formulation of the problem of a mass-less particle orbiting a bi-
nary asteroid orbiting the Sun is a Restricted Hill Full Four Body Problem
(RHF4BP). "Restricted" due to the negligible mass of the spacecraft, "Hill" as
the asteroids and the spacecraft are relative close to each other in orbit around
a more massive body and "Full" due to the non-spherical mass distribution of
the asteroids. Scheeres and Bellerose[23] derived the equations of motion for
this problem by considering the case of a spacecraft orbiting a binary asteroid.
However, to solve for the spacecraft, it is necessary to first have dealt with
the motion of the primaries (asteroids and Sun) in what can be considered a
Hill Full 3 Body problem. Although the HF3BP has been extensively studied
in the past[24], it is evident that this problem is complex to be handled and
it may be convenient to consider the Sun as a perturbation, and the solution
of particle motion as a Restricted Full Three Body Problem (RF3BP) around
asteroids. Consequently, the asteroids’ motion can be studied as a F2BP.

9



Chapter 2. Theoretical Background

Full 2 Body Problem F2BP

The Full Two Body Problem studies the motion of two bodies with comparable
mass and non-spherical shape under the influence of their mutual attraction.
The general formulation of the F2BP can be troublesome due to its 12 degrees
of freedom and the coupling between the translation and rotational motion
introduced by the non-spherical mass distribution. Several results have been
obtained by assuming at least one body spherical [25] or assuming the bodies
as polyhedra[26].Scheeres has studied the stability of the problem in case both
bodies are non spherical, but considering planar motion[27]. For simplicity,
the formulation found in [23] is reported here for a complete description of the
problem. The model used is a sphere-approximation for one of the asteroids
and the dimensionsless equations of motion in Eq. (2.1) are derived in a body
fixed frame centered in the barycenter of the binary system. As it can be seen
in the equations, the advantage of considering a spherical approximation is to
decouple the rotational dynamics of that body from the system.

r̈B + 2ω ∧ ṙB + ω̇ ∧ rB + ω ∧ (ω ∧ rB) =
∂Ũ

∂rB
(2.1)

I ∧ ω̇ + ω ∧ Iω = −νrB ∧
∂Ũ

∂rB
(2.2)

Here, rB is the relative position vector between the two mass centers, the time
derivatives are considered as taken in the body-fixed reference frame and ω is
the angular velocity of the general body, I is its inertia matrix normalized by
the mass, ν is:

ν =
M1

M1 +M2

Ũ is the mutual potential defined as:

Ũ =
α

M2

∫
B2

dm2(ρ)

|rB + ρ|
(2.3)

where ρ is the position vector of the infinitesimal mass dm2.
All the dimensional parameters are normalized by the maximum radius of the
distributed body α and the mean motion of the system at that radius.
In this work, solving the motion of the asteroids was not necessary since their
ephemerides were taken from ESA database∗.

∗https://www.cosmos.esa.int/web/spice/spice-for-hera
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2.1 Non-Keplerian dynamical models

Restricted Three Body Problem R3BP

The Restricted Three Body Problem studies the motion of a particle, which
moves under the attraction of two massive bodies, the primaries. Depending
on the motion of the primaries, this problem has been extensively studied con-
sidered as a Circular Restricted Three Body Problem (CR3BP) or Elliptical
Restricted Three Body Problem (ER3BP). In this work, the goal was to de-
scribe the dynamical environment with a high fidelity model and therefore the
following formulation is based on a generic R3BP.

Figure 2.1: The Restricted Three Body Problem formed by the mass-less
spacecraft and the two asteroids. In grey, the inertial reference frame, in black
the body-fixed reference frame.

Once the dynamical background has been properly introduced, the equa-
tions of motion can be written. To obtain them, a newtonian approach was
used and the dynamics can be expressed in an inertial reference frame as in
Eq. (2.4):

R̈ =
∂U1

∂R1

+
∂U2

∂R2

(2.4)

where U1 and U2 are the gravitational potentials of the primaries, R is the
position of the third body with respect to the barycenter of the binary system
and R1 and R2 are the relative positions of the third body with respect to the
asteroids. The acceleration can be additionally enriched by adding the pertur-
bations considered, as the SRP described in Section 2.4. Once the potential
has been modelled, the problem can be entirely treated using Eq. (2.4) since
the positions of the primaries are assumed to be known. However, it may be
convenient to express the equations in terms of a body fixed frame in which
the gravity potential of the asteroids can be considered time invariant and can
be easily computed as shown in Section 2.2.
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Chapter 2. Theoretical Background

As graphically shown in Fig. 2.1, the body fixed reference frame considered
is centered in the system barycenter and its axis are parallel to the principal
axis of the primary asteroid. Assuming the inertial z-axis coincident with the
body’s one, the rotation of the asteroid only influences the relative position of
the x an y components. Consequently, to convert the position of the spacecraft
in the body fixed frame, a planar rotation of the xy plane around z is necessary
and obtained through the matrix T as seen in Eq. (2.5) and Eq. (2.6).

p(t) = T(ω, t)R(t) (2.5)

T(ω, t) =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 1

 (2.6)

The rotation matrix T is orthonormal. Thus, the inertial position of the third
body can be written as in Eq. (2.7).

R(t) = T(ω, t)>p(t) (2.7)

Therefore, the acceleration in the inertial frame can be rewritten as in Eq. (2.8).

p̈(t) = ¨(T(ω, t)>p(t))

= T̈(ω, t)>p(t) + 2Ṫ(ω, t)>ṗ(t) + T(ω, t)>p̈(t)
(2.8)

By substituting Eq. (2.8) into Eq. (2.4) and by rotating the right hand side,
Eq. (2.9) is obtained.

T̈(ω, t)>p(t) + 2Ṫ(ω, t)>ṗ(t) + T(ω, t)>p̈(t) = T(ω, t)>
(
∂U1

∂p1

+
∂U2

∂p2

)
(2.9)

By pre-multiplying each quantity per T and considering that:

T(ω, t) ·T(ω, t)> = I

T(ω, t) · Ṫ(ω, t)> =

 0 −ω 0
ω 0 0
0 0 0


T(ω, t) · T̈(ω, t)> = −ω2I

the equations of motion in the body frame can be written as in Eq. (2.10)

p̈ + 2ω ∧ ṗ + ω ∧ (ω ∧ p) =
∂U1

∂p1

+
∂U2

∂p2

(2.10)

where p is the position of the particle and ω is the angular velocity of the
asteroid around its axis.
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2.2 Small bodies gravitational models

2.2 Small bodies gravitational models

The distinguished features of small bodies are their irregular shapes and hence
their strong non-spherical mass distribution. This peculiarity leads to a com-
plex evaluation of the gravity potential generically expressed as:

U(r) = G

∫
B

dm(ρ)

|r− ρ|
(2.11)

To easily deal with this quantity, a common strategy used for planets is to
consider a spherical model. The irregularities are then accounted with the ad-
dition of harmonic expansions of the gravitational potential. For this purpose,
spherical or ellipsoidal harmonics have been both used in past.[28]. These
methods exploit the separation of variables in terms of spherical coordinates
and then the transition from the integral to a Laplace series expansion. As
a drawback, these methods work well with planets which are quasi-spherical
bodies since the convergence of the series to the actual field is ensured up to
the Brillouin sphere, the sphere circumscribing the body. With elongated and
complex shape bodies, as asteroids or comets, it is hard to design proximity
operations that do not enter this boundary.

Figure 2.2: Brillouin sphere around an asteroid. The divergence zone is
highlighted in red.

A better choice for complex shapes would be to consider exact solutions
coming from definite shape like a polyhedron or an ellipsoid. In this way, no
regions of divergence are present since the solution is exact. The problem of
these formulations relies on the fact that the body’s shape can be different
with respect to the best model that can be used, introducing an error.

Spherical harmonics

The most common harmonic expansion is the one using spherical harmonics.
As seen in [29], the gravitational potential can be expressed as an infinite series

13



Chapter 2. Theoretical Background

as shown in Eq. (2.12).

U(r, δ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(R0

r

)l
Plm(sin δ)[Clm cosmλ+ Slm sinmλ] (2.12)


r =

√
x2 + y2 + z2

sin δ = z
r

tanλ = y
x

Therefore, the problem is shifted to the evaluation of the polynomial coeffi-
cients. It can be shown that there is a relationship between the gravity coeffi-
cients of all degree and orders and the high-order mass distribution moments
of the body.
By performing the gradient of the potential, the contribution to the accelera-
tion can be derived as seen in [29] obtaining Eq. (2.13).

a = −GM
R2

r̂ +
∞∑
l=1

l∑
m=0

al,m (2.13)

al,m =
GMRl

0

Rl+m+1

{
Cl,mCm + Sl,mSm

R
[Al,m+1ê3 − (sin δAl,m+1 + (l +m+ 1)Al,mR̂]+

mAl,m[(Cl,mCm−1 + Sl,mSm−1)ê1 + (Sl,mCm−1 − Cl,mSm−1)ê2]

}
Here, R is the position vector of the field point, R0 is an arbitrary reference
radius of the body, Cl,m and Sl,m are the spherical harmonics coefficients, while
ê1, ê2 and ê3 are three unit vector mutually perpendicular fixed to the body.
They are usually the axis of a body fixed frame.
Cm and Sm are parameters related to the equatorial shape of the body. Defined
in [30], they can be expressed as in Eq. (2.14)

Sm
∆
= ρm sinmλ Cm

∆
= ρm cosmλ (2.14)

where:
ρ2 ∆

= (R · ê1)2 + (R · ê2)2 (2.15)

Al,m represents the derived Legendre polynomial of degree l and order m related
to the associate Legendre function Pl,m and can be obtained as in Eq. (2.16)

Al,m(sin δ) =

(
R

ρ

)m
Pl,m(sin δ) (2.16)

For a complete description and the derivation of the acceleration gradient see
[29].
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2.2 Small bodies gravitational models

Polyhedron shape

If a shape model is available, the best representation would be an homogeneous
polyhedron with constant density. Despite the complexity, this strategy can be
extremely powerful as it is able to give accurate modelling of complex shapes.
As done for (216) Kleopatra, shown in Fig. 2.3.

(a) (b)

Figure 2.3: (a) Polyhedron model 3D of asteroid (216) Kleopatra. The shape
was built with 4092 faces. (b) Radar image of Kleopatra (Credit: Stephen
Ostro et al. (JPL), Arecibo Radio Telescope, NSF, NASA), texture and colours
are fake.

As shown by [33] in detail, the potential of a polyhedron can be expressed
as:

Upoly(x, y, z) = −1

2
Gρ

( ∑
f∈Faces

rf · (Ff · rf )ωf −
∑

e∈Edges

re · (Ee · re)Le

)
(2.17)

This is an analytical expression that consider the sum of the potential of the
faces and edges of the polyhedron.
The first contribution is made by the quadratic multiplication between rf , the
vector from the field point to face f and the associated dyad Ff obtained from
the dyadic product of the unitary vector normal to f , n̂f , with itself.

Ff = n̂f n̂f (2.18)

Similarly, the second contribution is obtained considering the vector connecting
the field point and the edge e, re, and the dyad Ee obtained as follow:

Ee = n̂f1n̂
f1
e + n̂f2n̂

f2
e (2.19)

n̂f1
e is the unitary vector normal to the edge e and to n̂f1 and pointing opposite

with respect to the centre of face f1. The same is valid for the face f2.
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Chapter 2. Theoretical Background

Both contributions are then multiplied by a scalar parameter. ωf multiplies
the contribution of the faces and represents the solid angle of f seen by the
field point, which is:

ωf = 2 arctan
rf1 · r

f
2 ∧ rf3

rf1r
f
2r

f
3 + rf1 rf2 · r

f
3 + rf2 rf1 · r

f
2 + rf3 rf1 · r

f
2

(2.20)

here, rf1 , rf2 and rf3 are the vectors connecting the field point to the vertexes of
the triangular face
Differently, Le represents the potential of a wire associated to the edge e which
is:

Le = ln
re1 + re2 + le

re1 + re2 − le
(2.21)

where re1 and re2 are the vectors connecting the field point to the vertexes at
the end of edge e.
As the gradient of the potential expressed in Eq. (2.17), the acceleration can
be computed as shown in Eq. (2.22)

apoly = Gρ

( ∑
f∈Faces

Ff · rfωf −
∑

e∈Edges

Ee · reLe

)
(2.22)

By performing the second derivatives, the Jacobian che be then computed as
in Eq. (2.23)

∇apoly = −Gρ

( ∑
f∈Faces

Ffωf −
∑

e∈Edges

EeLe

)
(2.23)

Ellipsoidal shape

A simpler solution with respect to the polyhedron shape is to model the aster-
oid as a constant density ellipsoid with semi major axis γ < β < α. Simpler
than a polyhedron model, this strategy can be convenient for quasi-elliptical
bodies as for Itokawa (Fig. 2.4)

As seen in [32] the potential for the ellipsoid can be expressed as:

U(r) = −3

4
µ

∫ ∞
λ(r)

Φ(r, u)
du

∆(u)
(2.24)

where 
Φ(r, u) = x2

α2+u
+ y2

β2+u
+ z2

γ2+u
− 1

∆(u) =
√

(α2 + u)(β2 + u)(γ2 + u)

λ | Φ(r, λ) = 0

(2.25)
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2.2 Small bodies gravitational models

Figure 2.4: Asteroid Itokawa imaged from 8 kilometers by JAXA’s Hayabusa
spacecraft in 2005

Once the gradient of the potential has been computed, the acceleration can be
obtained as in Eq. (2.26)

aell = −3

2
GMr

∫ ∞
λ

du

(ξ + u)∆(u)
(2.26)

Where ξ is α2 when computing the first component, β2 when computing the
second component and γ2 when computing the third component.
By performing the second derivatives, the Jacobian of the acceleration can be
computed as shown in Eq. (2.27)

∇aell = −2Gρπαβγ

 Uxx Uxy Uxz
Uxy Uyy Uyz
Uxz Uyz Uzz

 (2.27)

where:
Uxx =

∫ ∞
λ

du

(α2 + u)∆(u)
− 2x2

(α2 + λ)2∆(λ)ψ

Uyy =

∫ ∞
λ

du

(β2 + u)∆(u)
− 2y2

(β2 + λ)2∆(λ)ψ

Uzz =

∫ ∞
λ

du

(γ2 + u)∆(u)
− 2z2

(γ2 + λ)2∆(λ)ψ

Uxy = − 2xy

(α2 + λ)(β2 + λ)∆(λ)ψ

Uxz = − 2xz

(α2 + λ)(γ2 + λ)∆(λ)ψ

Uyz = − 2yz

(β2 + λ)(γ2 + λ)∆(λ)ψ

with:
ψ =

x2

(α2 + λ)2
+

y2

(β2 + λ)2
+

z2

(γ2 + λ)2
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Chapter 2. Theoretical Background

Mascon Model

Another possible approach is to discretize the asteroid by considering N con-
centrated masses. This strategy is particularly convenient from the computa-
tional point of view. The resulting gravity field will be the sum of the multiple
central fields:

r̈ = G
N∑
i=1

mi

|ri|3
ri (2.28)

This method is particularly indicated for inhomogeneous asteroids that cannot
be modelled with constant density shapes. However, this kind of application is
effective only if the distribution of the point masses is similar to the real mass
distribution. Simulation of the asteroid aggregation process can help from this
point of view.

2.3 State transition matrix

As clearly shown in Chapter 4, the trajectory design in the non-Keplerian
environment close to the asteroid will require the use of a Newton’s method to
solve for the initial state, given some constraints on the final state. To do that,
the State Transition Matrix (STM) is needed. The STM is the derivative of
the flow generated by the N-body vector field with respect to initial conditions
as shown in Eq. (2.29)

Φ(t, t0) =
∂X

∂X0

(2.29)

where X is the n-dimensional state vector of the system of nonlinear differential
equations in Eq. (2.30) and initial conditions X0.

Ẋ = f(X) (2.30)

Rigorously, the evaluation of the STM is done by solving the variational equa-
tions as additional differential equations to the previous system that becomes:{

Ẋ = f(X)

Φ̇(t, t0) = J(t)Φ(t, t0)
(2.31)

where J is the Jacobian of the vectorial field as shown in Eq. (2.32)

J =
∂f

∂X
(2.32)
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2.4 Non gravitational perturbations: Solar Radiation Pressure

2.4 Non gravitational perturbations: Solar Radiation Pres-
sure

Due to their relatively small mass, other non-gravitational perturbations can
be considered not negligible when dealing with spacecraft dynamics around
asteroids. Among these, the effect of the Solar Radiation Pressure (SRP) is
the most relevant for our case. In this work, SRP has been modelled with a
simple cannonball model[34] as shown in Eq. (2.33):

as =
A

m
(1 + Cr)

P0

c

(
RSE

RSS

)2
RSS

|RSS|
(2.33)

where A
m

is the area-to-mass ratio of the spacecraft facing the Sun, Cr is the
reflectivity, P0 is the solar power measured at the Earth (1346 W/m2), c is
the speed of light, RSE is the Sun-Earth distance (1 AU) and RSS is the Sun-
spacecraft position vector.
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Chapter 3

Dynamical system

The motion close to small bodies usually deviates significantly from the fa-
miliar Keplerian orbits due to their small and irregular gravity field and not
negligible perturbations as Solar Radiation Pressure. Additionally, in case of a
binary target, the resultant three body problem would significantly complicate
the trajectory design around the asteroid. To successfully orbit in such a chal-
lenging environment, an understanding of the orbital dynamics is mandatory
and a reliable model of the entire ambient is the key point for a successful
mission design.
In this chapter, the description of the dynamical system introduced to simulate
the motion around Didymos is present. In Section 3.1 there is information on
the case study under investigation. Section 3.2 is about the reference frames
used during the simulations, while in Section 3.3 there is a description of the
dynamical model used and its validation with the ESA data about Hera. Sec-
tion 3.4 shows the results obtained by the modelling of the gravity field with
the use of a point-like model, spherical harmonics and an ellipsoid shape model.
After a comparison between the results, the minimum distance at which the
point-like model is reliable is highlighted.

3.1 Case study

The mission

In this section, the case study under investigation is introduced. As men-
tioned in Chapter 1, this thesis concerns the European contribution to the
AIDA mission. As a NASA-ESA joint mission, AIDA is the first planetary de-
fense mission aimed to investigate the kinetic impactor technique for deflecting
a small body. After the impact on the asteroid by DART, the American space-
craft, ESA will control his mothership Hera near the body, with the aim of
investigating the effects of this impact. In proximity of Didymos, Hera will
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Chapter 3. Dynamical system

deploy two CubeSats with the aim of performing even closer observations of
the body by acting as a proxy for these two. Also being the first in-depth
inspection of a binary asteroid, the mission represents a milestone in the Eu-
ropean space exploration.
In particular, this work deals with possible close trajectories for Hera’s second
CubeSat, Milani.

The asteroid

65803 Didymos is a binary Near Earth Asteroid of both Apollo and Armor
group since it crosses the orbit of both Earth and Mars. Its orbital and physical
properties are depicted in Table 3.1. As shown in Table 3.1, the asteroid’s
perihelion is just below the aphelion radius of Earth orbit. Therefore, Didymos
poses no particular threat to Earth, making him a good subject for the first
planetary defense experiment.

Orbital Parameters
aH pH a e

2.2760 AU 1.0133 AU 1.66446 AU 0.3839

i T n aorb

3.4083° 770 days 0.4673°/day 1.18 km
Physical Parameters

Rg1 Rg2

(0.832, 0.837, 0.786) km (0.082, 0.063076, 0.0525641) km

M1 M2 M2/M1 ρbulk

5.226x1011 kg 4.860x109 kg 0.0093 2146 kg/m3

Table 3.1: Didymos’ orbital and physical properties. A complete description
of the nomenclature used is present in the list of symbols at the end of the
thesis.

Additional peculiarities not present in the table can be said about Didymos.
The asteroid is a synchronous binary system, which means that Didymoon or-
bits around Didymain with a period equal to the average rotational period of
the primary. This, coupled with the assumption of zero relative inclination
between the orbital planes of the asteroids, makes the natural satellite fac-
ing the same Didymain area as a geostationary satellite does with the Earth.
Furthermore, the same plane also coincides with the equatorial plane of the
primary asteroid.
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3.2 Reference frames

In this section, the reference frames used during the simulations are described.
Generally, two kinds of reference frame were used:

• Inertial reference frames: all the integrations were done using an
inertial reference frame. During the first propagations in this chapter
the J2000 reference frame was used. In this work, this frame is centered
in the binary system barycenter, has the x-axis pointing to the Vernal
Equinox at epoch J2000, the z-axis perpendicular to the mean Earth’s
equatorial plane at epoch J2000 and the y-axis that completes the right-
hand frame. In Chapter 5 the inertial frame used was the ECLIPJ2000
which is similar to the J2000 with the difference of having the z-axis
perpendicular to the mean ecliptic plane at epoch J2000.

• Non-Inertial reference frames: These frames were used to assess the
gravity potential of the asteroids or to impose constraints and show the
results in Chapter 5. Complex gravity fields were computed using body-
fixed reference frames which are centered in the body’s barycenter with
the axis parallel to the principal axis of the body. To impose constraints
on close trajectories and show them, a Didymos Equatorial Sun South
reference frame was conceived. This frame is centered in the system
barycenter, has its z-axis parallel to the south pole of the asteroid, its x-
axis as the projection of the Sun direction on the equatorial plane and the
y-axis completing the right-hand frame. The frame is shown in Fig. 3.1.

Figure 3.1: Didymos Equatorial Sun South reference frame.
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3.3 Dynamical setting

The aim of this section is to reproduce the dynamical environment around
Didymos in a high fidelity model in order to reliably propagate proximity
trajectories in Chapter 5. The forces and perturbations acting on a mass-less
body orbiting around Didymos are studied and their orders of magnitude are
compared with each other.
All simulations around Didymos were conducted in an inertial reference frame
centered in the system barycenter. Consequently, the system of differential
equations solved is similar to the one seen for a Restricted Three Body problem
( Eq. (2.4)) with a richer right-hand side as in Eq. (3.1)

R̈ =
∂U1

∂R1

+
∂U2

∂R2

+ ap + a0 (3.1)

Together with the gravitational contributions of the two asteroids, two addi-
tional accelerations were considered. ap collects all the perturbations intro-
duced by additional gravity sources (Eq. (3.2)) and SRP (Eq. (2.33)), while
a0 is the relative acceleration that the binary system barycenter feels since it
moves around the Sun (Eq. (3.3)).

ap =
n∑
i

−GMi

(
r− ri
|r− ri|3

)
+ as (3.2)

a0 =
n∑
i

−GMi
ri
|ri|3

(3.3)

here, G is the universal gravity constant, Mi is the mass of the i-th of the n
bodies considered, r is the position of the mass-less particle, ri is the position
of the i-th body considered and as is the SRP shown in Eq. (2.33).
All the information used in the simulations on the celestial bodies involved,
including their states at every time instants and their physical properties,
were taken from the kernels present in the ESA database∗. The spacecraft’s
parameters needed for the evaluation of the SRP were provided courtesy of
Dr. Fabio Ferrari and are depicted in Table 3.2

∗https://www.cosmos.esa.int/web/spice/spice-for-hera
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m [kg] A [m2] Cr

512 10 0.5

Table 3.2: Hera physical parameters needed for the correct evaluation of the
SRP.

The integration has always been conducted with the use of a Adams-
Bashforth-Moulton method of orders 1 to 13. However, the highest possible
order used is 12, since 13 is used for error estimation with the solution given at
a order 13 only due to local extrapolation. The algorithm used is the built-in
ode113.m in Matlab.

Setting validation

To validate the dynamical setting used, ESA kernels about the motion of Hera
around Didymos were used. The considered epoch starts on the 28th of Jan
2027 at 08:17:00 et and ends on the 31st of Jan 2027 at 08:15:00 et. The results
shown in Fig. 3.2, Fig. 3.3, Table 3.4 and Fig. 3.4 were obtained using spherical
harmonics. There is no need of showing the performances of the other models
due to the similarity of the results. Table 3.3 shows the difference in terms of
maximum relative error, while the complete comparison between the different
gravity models considered is present in the second part of this section.

Point-like Spherical harmonics Ellipsoid
7.20893×10−3 7.20821×10−3 7.20850×10−3

Table 3.3: Maximum relative error using different models obtained at a dis-
tance of 45 km during the considered trajectory around Didymos in the inte-
gration time [28 Jan 2027 - 31 Jan 2027]. The error considered is the norm of
the difference between the propagated position and ESA’s ephemerides divided
by the norm of the ephemerides.

Didymain Didymoon Earth Sun Jupiter SRP
5.7×10−11 5.3×10−13 1.4×10−11 8.9×10−06 3.0×10−10 1.9×10−10

Table 3.4: Mean value of the involved accelerations acting on Hera expressed
in km/s2 evaluated in between 30 and 48 km.(Here only the absolute accel-
erations are shown without the relative acceleration due to the not perfectly
inertial reference frame used).
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Figure 3.2: Hera trajectory around Didymos in the integration time [28
Jan 2027 - 31 Jan 2027] in the J2000 reference frame. The red line is the
real trajectory, the orange line is the propagated orbit and the blue orbit is
Didymoon around Didymos.
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Figure 3.3: Order of magnitude of the acceleration on Hera due to Didymain
(continuous blue line) and Didymoon (dashed blue line) compared with the
distance from the binary system barycenter (red line).
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Figure 3.4: Relative error (blue line) compared with the distance from the
binary system barycenter (red line). The error considered is the norm of the
difference between the propagated position and ESA’s ephemerides divided by
the norm of the ephemerides.

Fig. 3.3 shows how the gravity field of the primary is practically unaffected
by its motion around the system barycenter, differently from the one belonging
to the secondary. This is due to the fact that the barycenter of the primary is
very close to the one of the binary system with a relative distance of the order
of tens meters. Furthermore, it seems that the higher the distance the higher
the gravitational attraction. However, this unexpected non-physical effect can
be attributed to some numerical issue as the maximum increment is in the
order of 10 nm/s2 after a variation of 10km from the system barycenter.
Table 3.3 shows no appreciable difference between the gravity models consid-
ered. This is probably due to the fact that Didymain’s shape is close to a
sphere and at this distance the difference between the models is not remark-
able.
It should be noted that the trajectory shown in Fig. 3.2 is part of a longer
orbit around Didymos and shows a ballistic arc between two maneuvers. The
full trajectory with all maneuvers is depicted in Fig. 3.5. The performances of
the full trajectory are not shown since they are a cyclic repetition of the one
already shown.
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Figure 3.5: Full orbit around Didymos in the integration time [28 Jan 2027 -
25 Feb 2027] in the J2000 reference frame. The red line is the real trajectory,
the orange line is the propagated orbit and the blue orbit is Didymoon around
Didymos.
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3.4 Different gravity models

In this section, the asteroids’ gravity field is modelled following different strate-
gies. The aim is to build a reliable characterization of the vector field in close
proximity of the asteroid where the point-like model is no longer trustfully.
Together with the point-like model, the strategies considered as alternatives
are the use of spherical harmonics and the ellipsoidal-shape model.
Spherical harmonics coefficients were taken from [35] and are depicted in Ta-
ble 3.5. For the simulations, Didymain was modelled up to the 4th order while
Didymoon up to the 2nd.

Order l Degree m Cl,m Sl,m

0 0 1.0 -
1 0 0 -
1 1 0 0
2 0 -6.3422x10-2 -
2 1 0 0
2 2 4.0949x10-3 0
3 0 -1.5154x10-3 -
3 1 2.8455x10-4 1.1578x10-4

3 2 2.89891x10-5 -1.89599x10-5

3 3 3.995x10-4 -1.293x10-4

4 0 4.066049x10-2 -
4 1 -2.65537x10-5 3.352119x10-5

4 2 -9.588539x10-5 -1.28121x10-6

4 3 -8.305724x10-6 -4.819896x10-6

4 4 3.544874x10-5 -7.124178x10-6

(a)

Order l Degree m Cl,m Sl,m

0 0 1.0 -
1 0 0 -
1 1 0 0
2 0 -9.8273x10-2 -
2 1 0 0
2 2 2.6374x10-2 0

(b)

Table 3.5: Unnormalized exterior spherical harmonic coefficients of (a) Didy-
main and (b) Didymoon.
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To find the minimum altitude at which the point-like model is still reliable,
a vector of distances between 0.8 km and 4 km from the binary system barycen-
ter has been considered. For each distance the gravity field of the asteroids was
evaluated in all three gravity models previously discussed at a given time in-
stant (28 Jan 2027 08:17:00 et). Then, by measuring the relative error (norm of
the difference between the propagated position and ESA’s ephemerides divided
by the norm of the ephemerides) between the point-like model, the spherical
harmonics model and the ellipsoid shape model the minimum distance has
been found. The maximum admissible relative error was of 1%. Assuming
the point-like model the worst approximation for the asteroid, from Fig. 3.6
spherical harmonics appears to be the most accurate strategy. Compared to
it, the point-like model gives a minimum altitude of 2.74km at which the error
is 1%. Differently, the ellipsoid model deviates from the point-like model at
lower altitudes with a minimum distance of 1.46km.

1 1.5 2 2.5 3 3.5 4 4.5
10

-3

10
-2

10
-1

Figure 3.6: Relative error of the point-like model with respect to spherical
harmonics (blue) and ellipsoid-shape model (red). The error is computed with
the norm of the difference between the positions considered divided by the
norm of the complex gravity model considered.
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Chapter 4

Numerical Methods

One of the biggest challenge about non-Keplerian dynamics is finding solutions
that suit the mission requirements. The chaotic environment of a three body
problem, the strong non-linearity and the absence of analytical solutions make
the design of generic orbital solutions problematic. Numerical methods are
the most powerful tool that can be used to deal with these problems. With
them, few particular solutions such as periodic orbits have been extensively
studied for a three-body system. However, the problem is far from being con-
sidered well treated. In this section, the numerical methods used to compute
trajectories in a non-Keplerian system are present.

4.1 Generic software architecture for non-Keplerian tra-
jectories

In this chapter, a generic software architecture used to propagate orbits in a
non-Keplerian environment is present. The aim is to show a general purpose
algorithm that can be used for any desired orbit. The basic architecture is
composed by two main blocks, as shown in Fig. 4.1: a good initial solution,
fundamental due to the strong non-linearity of the dynamical environment
and a correction method to converge to the desired trajectory. The correction
strategy is based on the imposition of a constraint on the solution of the
propagation in order to obtain a desired final state.

Initial Guess

The initial guess will be the starting point used by the algorithm to approxi-
mate the trajectory for the first time. As entrance value, its proximity to the
desired initial condition is important to aim to convergence. The initial guess
will be made by the initial state of the spacecraft. The considered problem is
focused on finding the trajectory connecting two desired points. Consequently,
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Chapter 4. Numerical Methods

Figure 4.1: Graphical representation of the algorithm used to find the tra-
jectories.

the initial position will already be the corrected one, while as a guess for the
initial velocity, the solution of a Lambert problem involving the primary as-
teroid as gravity source can be used. It is clear that the dynamic is far from
being an unperturbed two body problem as described in the Lambert problem.
However, Lambert’s solution seems to be the best starting point for the algo-
rithm. To increase efficiency, particular attention can be paid to the prograde
or retrograde expected nature of the transfer.

Figure 4.2: Sketch of the Lambert problem solution were only Didymain is
considered as source of gravity.

Clearly, the initial position is given as well as the final position as desired
maneuver points.
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4.1 Generic software architecture for non-Keplerian trajectories

Correction method: Differential Correction

With a good initial guess, an approximation of the desired trajectory is ob-
tained and must be corrected in order to fulfill the desired constraints onto
the final state of the spacecraft. Applying a correction method is equivalent
to solving a boundary value problem in which some of the initial conditions
are missing and must be obtained using some information on the other bound-
ary. The most common correction method is the use of differential corrections.
The application is straightforward and requires two steps: the definition of the
constraints to be satisfied on the final state and the identification of the free
variables that the algorithm can change.
Correction methods have been widely used enforcing periodicity constraints
searching for periodic orbits[36]. However free variables and constraints de-
pend only on the desired orbit. In this work, a condition on the final position
has been enforced, considering as free variables the components of the initial
velocity. The simplest implementation of differential corrections is an iterative
Newton’s method as shown in Eq. (4.1)

Xk+1
g = Xk

g −∇G(Xk
g) (4.1)

This algorithm moves from the previous guess Xk
g in the direction of the neg-

ative gradient of the objective function G(Xk
g).

For our purpose, the vector Xk
g represents the initial velocity at the the k-th

step, while the gradient of the objective function is the product between the
inverse of the Jacobian and the error between the propagated final position
and the desired one (Eq. (4.2)).

∇G(Xk
g) = J(Xk)−1F(Xk) F(Xk) = Xk

end −Xd
end (4.2)

The Jacobian is found by computing the derivatives of the constraints with
respect to free variables. As such, the Jacobian is built using the components
of the STM defined in Section 2.3 as the derivative of the state with respect
to a variation of the initial condition.
In the case of an under-constrained problem, the solution can be found using
the Moore-Penrose (pseudo) inverse of the Jacobian as in Eq. (4.3)

Xk+1
g = Xk

g − J(Xk)>
[
J(Xk)J(Xk)>

]−1
F(Xk) (4.3)

Newton’s algorithm is only a particular method of the more general gradi-
ent descent algorithm, for which the stepsize of the correction factor is not
unitary. More powerful than Newton’s algorithm, this generalization can be
useful when convergence problems arise. As a drawback, this strategy can
slow down convergence and for that reason is only suggested when necessary.
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Chapter 4. Numerical Methods

The algorithm and the computation of the stepsize are shown in Eq. (4.4) and
Eq. (4.5)

Xk+1
g = Xk

g − γk∇G(Xk
g) (4.4)

γk =
|(Xk

g −Xk−1
g )>[∇G(Xk

g)−∇G(Xk−1
g )]|

||∇G(Xk
g)−∇G(Xk−1

g )||2
(4.5)

γ should be small enough to guarantee that the next value of the error function
will be lower than the precedent. There are several ways to find the right γ
(e.g. via line search or the Barzilai–Borwein method[37] seen in Eq. (4.5)).
Once the correction algorithm has been chosen, its implementation can be
done considering either a single-shooting strategy or a multiple-shooting strat-
egy. Single shooting algorithms foresee a single integration over the whole
arc, while multiple-shooting strategies discretize the trajectory into a series of
patch points. The sub-arcs are integrated independently and the problem is
enriched by enforcing continuity at the end and at the begging of each con-
secutive arc in order to form a single trajectory. Although the constraints
grow significantly as the number of patch points increases, multiple-shooting
algorithms seem to be more powerful than single-shooting ones, in general.

4.2 State Transition Matrix

As seen in Section 4.1, the evaluation of the State Transition Matrix is an
important step for computing trajectories in a non-Keplerian environment.
Section 2.3 shows how the STM can be obtained analytically without any
approximations. However, solving variational equations can be both compu-
tational expensive and troublesome, especially when using complex gravity
models. A valid alternative is to compute the Jacobian of the vector field with
the use of finite difference methods.
The idea is to capture the variation of the final conditions given a perturbation
dx of the initial condition with a simple Euler formula as shown in Eq. (4.6)

J =
Xf (X0 + dx)−Xf (X0)

dx
(4.6)

To save time, only the derivative with respect to the free variables considered
in Section 4.1 should be computed in order to directly obtain the Jacobian
without evaluating the entire State Transition Matrix.
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Chapter 5

Results

The prime ambition of this work is to explore the dynamical environment
close to a binary asteroid and propose proximity solutions for future observa-
tion strategies. All proposed trajectories start on 19th May 2027 at 00:00:02
et and have been obtained with the same dynamical setting seen in Chapter 3
and the same algorithm described in Chapter 4.
Differently from the results shown in Section 3.3, the spacecraft is now a Cube-
Sat with the physical parameters depicted in Table 5.1.
The case study is related to Didymos, target of the AIDA mission. As a mis-
sion requirement, the CubeSat shall be always in sunlight to successfully adopt
optical navigation close to the asteroid. As a consequence, all the maneuver
points were placed in the illuminated subspace around Didymos. To easily
impose such requirement, a new reference frame has been conceived in which
the maneuver points are defined and the results are shown. The new reference
frame, centered in the system barycenter, has the xy plane coincident with the
equator of the asteroid, the z-axis pointing to its South pole and the x-axis as
the projection of the direction pointing the Sun onto the equator. This new
reference frame is depicted in Fig. 3.1.
Two orbit shapes have been investigated and proposed for the proximity oper-
ations around Didymos. For both, a grid search strategy has been adopted to
explore their capabilities and stability around the asteroid. Section 5.1 shows a
loop cycle solution close to the equator, able to produce flexible results in terms
of distance from the binary system. Promising is the possibility of orbiting in
quasi-circular trajectories explored with this shape. Differently, Section 5.2 of-
fers the possibility to orbit also far away from the equator in order to observe
polar zones. The relative solutions offered are numerous, especially in terms
of maneuver points position and duration of the ballistic arcs.
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Chapter 5. Results

m [kg] A [m2] Cr

12 0.516 0.193

Table 5.1: CubeSat physical parameters needed for the correct evaluation of
the SRP.

5.1 Loop cycle trajectories

Loop cycles are orbits designed to approach as close as possible the asteroid,
while respecting the constraint on solar illumination. They consist of single
arcs that can be endlessly repeated or alternated each other. While their de-
sign is easy as it is based on maximizing the distance between the points, their
performance is outstanding as it is shown in Section 5.1. Furthermore, their
scientific relevance is excellent since with them it is possible to observe the
same region while preserving the same features in terms of distance and phase
angles for a theoretical infinite amount of time. The main drawback is that
regions of high declination are almost never covered during these orbits.
In this section, the design of the maneuver points for a loop cycle shape orbit
close to Didymos is shown. The trajectory degrees of freedom are highlighted
and a grid search aimed to find the effects of their variation onto the orbit
performance is described. Finally, some possible solutions are shown and com-
mented.

Desired maneuver points design

Being a loop cycle, this shape allows for an unconstrained large number of
maneuver points. Therefore, each one can be retrieved with the same ratio-
nale. After the imposition of the constraints related to the subspace always
illuminated by the Sun, each couple of points of these trajectories are found
maximizing their distance. This helps the spacecraft get closer to the as-
teroid by positioning the perigee of its trajectory as near as possible to the
middle point of the line connecting the two points. As a consequence, an ad-
ditional constraint is enforced onto the radial position of this middle point.
All the maneuvers points are also taken at the same distance from the system
barycenter.
Following this strategy, together with close hyperbolic arcs, relevant quasi-
circular trajectories have been obtained.

Loop grid search

A grid search algorithm has been used to explore the performances of these
trajectories after the variation of its degrees of freedom. The goal is to check
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5.1 Loop cycle trajectories

the trajectory stability and investigate which configuration can ensure quasi-
circular orbits.
The loop cycle has 3 degrees of freedom: the distance at which the maneuver
points are located, the distance at which the middle point between them is
positioned and the duration of the parabolic arc. The values considered for
them are all depicted in Table 5.2.

R 1.5,2,3,4,5,6,7,8,9,10
Xm 0.5,1,2,3,4,5,6
∆t1 1,2,3

Table 5.2: Candidate distances from the system barycenter, position of the
middle point and duration of the parabolic arc considered. Distances are ex-
pressed in km while duration in days.

For each value of R, the maneuver points are found by maximizing the
distance between them and forcing the middle point to be in each position
considered. Then the trajectory between the two points is computed for all
the time spans considered. If the trajectory is stable, the solution is marked
with a green dot. If the distance of the perigee from the system barycenter
is less than 1km different with respect to the one of the maneuver points, the
solution is marked with a gold dot to highlight the possible quasi-circular orbit.
In case the solution is unstable it is marked with black dot. The results are
shown in Fig. 5.1 and Table 5.3.

Xm/∆t 0.5 1 2 3 4 5 6
1 3-4 3-4 4 4-5 5-6 6 6-7
2 5 5-6 5-6 6-7 7 7-8 8-9
3 6-7 7 7-8 8 8-9 9-10 9-10

Table 5.3: Range of distances, values of duration and middle points distance
at which a quasi-circular trajectory is obtained. Distances are expressed in km
while durations in days.

From Fig. 5.1 it is possible to capture the behaviour of the perigee of close
trajectories around Didymos as function of the position of the two boundary
points and the duration of the ballistic arc. As expected, the shorter the time
imposed to perform the arc, the closer the perigee, since the spacecraft is forced
to reach the end of the trajectory faster. Graphically, it is as if the spacecraft
were forced to perform a trajectory as close as possible to the shortest track,
the straight line connecting the two boundary points.
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Chapter 5. Results

Figure 5.1: Results from the stability analysis on loop cycle trajectories. The
black dots are unstable solutions, the green dots are stable solutions and the
gold dots are quasi-circular arcs.
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Figure 5.2: Distance from Didymain of a single arc of 3 days between points
at: 3km (blue), 6km (red), 7km (orange), 9km (purple), 10km (green). For all
the points the middle point of the line connecting them is at 500m from the
system barycenter.

38



5.1 Loop cycle trajectories

Therefore, the closer the middle point of the straight line connecting the dots
is to the lowest perigee possible at that time, the more circular the trajectory.
An example of this behaviour is shown in Fig. 5.2.
From the figure, three operative regions can be distinguished:

• For maneuver points placed at an altitude higher than 7km, trajectories
with perigee at a minimum of about 6km are possible. In this region,
orbits with maneuvers far from the asteroids are present

• For maneuver points placed at an altitude in between 6km and 7km,
quasi-circular trajectories are possible. This is the boundary between
the first and the third region

• For maneuver points placed at an altitude lower than 6km, trajectories
with maneuvers as closest points are possible. In this region, the only
possibility to get closer to the asteroid is to place the maneuver points
at low altitude. As a result, the apogee of the trajectory will always be
about 7km from the asteroid.

By looking for the gold dots in Fig. 5.1 and looking at Table 5.3, other regions
can be identified for 2-day and 1-day maneuver frequencies. The best perfor-
mance is possible with the midpoint placed as close as possible to the asteroid.
However, different regions occurs with middle points placed farther from the
asteroid. In Fig. 5.3 it is possible to see the behaviour of some solutions as the
time between the arc or the position of the middle point changes.
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Figure 5.3: a) Distance from Didymain of trajectories with points at 3km
with the middle point at 2km in: 1 day (blue), 2 days (red), 3 days (orange). b)
Distance from Didymain of trajectories with points at 7km in 3 days with the
middle point at: 0.5 km (blue), 2m (red), 4km (orange). The high frequency
oscillations are due to the motion of the primary around the system barycenter.
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Possible loop trajectory solutions

Here, some possible solutions with a loop cycle shape are shown.
In Fig. 5.4 trajectories with maneuver points at lower altitudes with respect
to the other points are present. Three different solutions have been proposed
with manevuers each 3 days, 2 days and 1 day.
In Fig. 5.5 quasi-circular trajectories are present. As before, three differ-
ent solutions have been proposed with manevuers each 3 days, 2 days and
1 day. These figures have the role of showing the possibilities of flying at
quasi-constant altitudes. However, for safety reason it is possible to explore
distances slightly different from the one offering quasi-circular trajectories.
In Fig. 5.6 trajectories with maneuver points at higher altitudes with respect
to the ohter points are present. Also for them, three different solutions have
been proposed with manevuers each 3 days, 2 days and 1 day. These shapes
may be preferred to the one in Fig. 5.4 since performing scientific measure-
ments far away from the maneuvers is always recommended. In Table 5.4 the
costs for all the maneuvers present in the solutions shown are depicted.
Additionally, peculiar solutions can be obtained using different combinations
of the arcs shown in Fig. 5.1. These trajectories can be useful in case a more
relaxed maneuver frequency is needed as in Fig. 5.7 or in case the maneuver
points must be placed far from the asteroid as in Fig. 5.8. The costs of these
alternative solutions are depicted in Table 5.5.

∆V1 ∆V2 ∆V3

16.80 16.83 16.96

(a)
Cost of Fig. 5.4a

∆V1 ∆V2 ∆V3

23.98 24.08 23.61

(b)
Cost of Fig. 5.4c

∆V1 ∆V2 ∆V3

35.62 35.17 42.77

(c)
Cost of Fig. 5.4e

∆V1 ∆V2 ∆V3

15.48 15.67 15.92

(d)
Cost of Fig. 5.5a

∆V1 ∆V2 ∆V3

18.13 17.86 18.11

(e)
Cost of Fig. 5.5c

∆V1 ∆V2 ∆V3

20.53 20.55 20.77

(f)
Cost of Fig. 5.5e

∆V1 ∆V2 ∆V3

16.02 15.96 15.95

(g)
Cost of Fig. 5.6a

∆V1 ∆V2 ∆V3

17.73 17.49 17.72

(h)
Cost of Fig. 5.6c

∆V1 ∆V2 ∆V3

22.70 22.55 22.73

(i)
Cost of Fig. 5.6e

Table 5.4: Cost of the loop maneuvers in cm/s.
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Figure 5.4: Loop trajectories with perigee at higher altitudes. a-b) Points at
6km, arc of 3 days. c-d) Points at 3km, arc of 2 days. e-f) Points at 1.5km, arc
of 1 day. In purple the direction pointing the Sun. Next to the trajectories:
the phase angle (Sun-asteroid-CubeSat) (up). The distance (down). In blue
the data with respect to Didymain, in red the data with respect to Didymoon.
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Figure 5.5: Quasi circular loop trajectories. a-b) Points at 7km, arc of 3
days. c-d) Points at 5km, arc of 2 days. e-f) Points at 3.5km, arc of 1 day.
In purple the direction pointing the Sun. Next to the trajectories: the phase
angle (Sun-asteroid-CubeSat) (up). The distance (down). In blue the data
with respect to Didymain, in red the data with respect to Didymoon.
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Figure 5.6: Loop trajectories with perigee at lower altitudes. a-b) Points at
9km, arc of 3 days. c-d) Points at 7km, arc of 2 days. e-f) Points at 5km, arc
of 1 day. In purple the direction pointing the Sun. Next to the trajectories:
the phase angle (Sun-asteroid-CubeSat) (up). The distance (down). In blue
the data with respect to Didymain, in red the data with respect to Didymoon.
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Figure 5.7: Peculiar loop trajectories with costumed maneuvers frequency.
a-b) Points at 3.5km, maneuvers each 1 and 3 days. c-d) Points at 6.5km,
maneuvers each 3 and 1 days. e-f) Points at 5km, maneuvers each 2 and 3
days. In purple the direction pointing the Sun. Next to the trajectories: the
phase angle (Sun-asteroid-CubeSat) (up). The distance (down). In blue the
data with respect to Didymain, in red the data with respect to Didymoon.
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Figure 5.8: Loop trajectories where the maneuver points are placed far from
the asteroid. a-b) Points at 7km, maneuvers frequency each 2 and 1 days. In
purple the direction pointing the Sun. Next to the trajectory: the phase angle
(Sun-asteroid-CubeSat) (up). The distance (down). In blue the data with
respect to Didymain, in red the data with respect to Didymoon.

∆V1 ∆V2 ∆V3

21.56 21.27 21.49

(a)
Cost of Fig. 5.7a

∆V1 ∆V2 ∆V3

18.23 18.21 18.27

(b)
Cost of Fig. 5.7c

∆V1 ∆V2 ∆V3

20.05 20.04 20.06

(c)
Cost of Fig. 5.7e

∆V1 ∆V2 ∆V3

22.90 23.02 23.04

(d)
Cost of Fig. 5.8a

Table 5.5: Cost of the peculiar loop maneuvers in cm/s

Fig. 5.6, Fig. 5.5 and Fig. 5.4 perfectly show the three operative regions
anticipated before. As expected, the shortest the time to perform the arc,
the closer the perigee. Excluding the trivial solutions of placing the maneuver
points as close as possible, minimum distances of 6.5km, 5km and 3.5km can
be obtained for maneuvers frequencies of 3, 2 and 1 day.
Wide variety of phase angles from few degrees up to 80° can be obtain in every
operative regions. Fig. 5.7 shows the possibility to customize the maneuver
frequency when more relaxed maneuver timetables or different performance
between two consecutive arcs are needed.
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5.2 Retrograde Equatorial trajectories

Retrograde equatorial orbits are known to be strongly stable against gravita-
tional instabilities. These solutions have been widely used in past also around
asteroids, as for Itokawa[38]. These features have been exploited by designing
a three loop trajectory where the first two points are on the equator while the
third is an intermediate point before returning to the initial position.
In this section, the design of the maneuver points for these retrograde equa-
torial orbits is shown. The trajectory degrees of freedom are highlighted and
a grid search aimed to study the stability of the solutions as function of their
degrees of freedom is described. Finally, some possible solutions are shown
and commented.

Desired maneuver points design

This trajectory is composed by only three points. However, several trajectories
can be combined to form a longer loop around Didymos.
The first two points are constrained to be on the equator at a desired altitude
from Didymos and their azimuthal position around the asteroid is chosen by
maximizing their distance such that the first arc is retrograde. Instead, the
third point is chosen to be at the maximum distance from both the initial
points. By doing that, it would be far from the equator ensuring the possibility
of exploring high-declination regions.

Retrograde equatorial grid search

A grid search was conducted on the multiple combinations of degrees of free-
dom which are: the three different distances from the system barycenter of
the three points involved and the duration of each parabolic arc. Initially, a
constrained on the duration of each arc of 3 or 4 days have been requested.
However, the possibility of performing two consecutive maneuvers after 2 days
was also investigated. All the possible values of the chosen degrees of freedom
are depicted in Table 5.6.

X1 2,3,4,5
X2 2,3,4,5
X3 2,3,4,5

∆t1,∆t2,∆t3 2,3,4

Table 5.6: Candidate distances from the system barycenter and durations of
the parabolic arcs considered. Distances are expressed in km while duration
in days.
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5.2 Retrograde Equatorial trajectories

Starting from the first arc, the boundary value problem for each consecutive
pair of points is solved for all the time options. First a simple Newton’s method
is used as a correction strategy. Then, if the solution is not stable, a gradient
descent algorithm is used for further control. At the end of each propagation, if
the solution is not stable, it is discharged and no further integrations are done
to continue from that point. Otherwise, if the solution is good, the algorithm
continues to try all the possible combinations for the next parabolic arc. In
the end, only the combinations of points and durations that have managed to
survive until the return to the starting point can be considered eligible for a
possible orbit. A graphical representation of how the algorithm works is shown
in Fig. 5.9 while the results are shown in Fig. 5.9 and Table 5.5. The results
are split in three images for clarity. The first represents the trajectories for
a first arc of 2 days, the second for a first arc of 3 days and the third for a
first arc of 4 days. From the stable triplets, some useful information can be
retrieved. From Table 5.5, it is evident that a good option is to place the
maneuver points at the same distance from the system barycenter. Copious
stable solutions are present for maneuver points in this configuration, especially
far from the asteroid, as expected. However, Table 5.5 can give also several
solutions with triplets of points at different altitudes showing good stability
properties in terms of number of possible combinations of arcs’ durations.

Figure 5.9: A graphic representation of how the algorithm works and how
it highlights the right path. A good solution is marked with a 1 while a bad
solution is marked with a 0. When a 1 appears, the algorithm proceeds to the
next possible arcs. In the image it is highlighted the path followed to design
the orbit passing through X1

1 -X1
2 -X2

3 -X1
1 with maneuvers distant of ∆t21 - ∆t12

-∆t13

47



Chapter 5. Results

48



5.2 Retrograde Equatorial trajectories

Figure 5.9: Stability results for ∆t1 = 2 days (up), for ∆t1 = 3 days (center)
and for ∆t1 = 4 days (down). The solutions are shown as circles with different
lengths and colours. The shape represents the duration of the third arc. From
the smaller with ∆t3 = 2 days, to the bigger with ∆t3 = 4 days. Colours are for
the second arc. Red, green and blue should be for trajectories admitting only
a ∆t2 of 2, 3 and 4 days, respectively. Yellow circles are solutions admitting
both a ∆t2 of 2 and 3 days. Magenta circles are for ∆t2 of 2 and 4 days, Cyan
circles are for ∆t2 of 3 and 4 days, while gold circles are solutions in which
all the durations considered are possible for the second arc. Black circles are
unstable solutions.
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Stable position triplets Stable duration triplets
2,2,2 (3,2,2)

2,2,5 (2,2,2) (3,2,2) (3,2,4) (3,3,2) (3,3,3)

2,3,5 (2,2,2) (2,2,3) (4,2,2) (4,2,3) (4,2,4)

2,4,4 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

2,4,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

2,5,4 (2,2,2) (2,2,3) (3,2,2) (3,2,3) (4,2,2) (4,2,3)

2,5,5 (2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(3,2,2) (3,2,3) (3,2,4) (4,2,2) (4,2,4)

3,2,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

3,3,2 (2,2,2) (3,3,2)

3,3,3 (2,2,2) (2,2,3) (2,3,2) (2,3,3) (3,2,2) (3,2,3)
(3,3,2)

3,3,4 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (4,4,2)

3,3,5 (2,2,2) (3,2,2) (3,2,4)

3,4,4 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2), (4,2,3) (4,2,4)

3,4,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3), (4,2,4)

3,5,3 (3,2,2) (3,2,3) (3,2,4)
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Stable position triplets Stable duration triplets
3,5,4 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)

4,2,4 (3,2,2) (3,2,3) (3,2,4)

4,2,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

4,3,4 (4,2,2) (4,2,3) (4,2,4)

4,3,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

4,4,2 (2,2,2) (4,2,2) (4,2,3)

4,4,3
(2,2,2) (2,3,2) (2,3,3) (2,3,4) (3,2,2) (3,2,3)
(3,2,4) (3,3,2) (3,3,3) (3,4,2) (4,2,2) (4,2,3)

(4,3,2)

4,4,4

(2,2,2) (2,2,4) (2,3,2) (2,4,2) (2,4,3) (2,4,4)
(3,2,2) (3,3,2) (3,3,3) (3,3,4) (3,4,2) (3,4,3)
(3,4,4) (4,2,2) (4,2,3) (4,2,4) (4,3,2) (4,3,3)

(4,3,4) (4,4,2) (4,4,3) (4,4,4)

4,4,5
(2,2,2) (2,2,3) (2,3,2) (2,3,3) (2,3,4) (3,2,2)
(3,2,3) (3,2,4) (3,3,2) (3,3,3) (3,3,4) (4,2,2)

(4,2,3) (4,2,4) (4,3,2) (4,3,3) (4,3,4)

5,2,4 (2,2,2) (2,2,3) (2,2,4)

5,2,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)
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Stable position triplets Stable duration triplets
5,3,4 (2,2,2) (2,2,3) (2,2,4) (4,2,2) (4,2,3) (4,2,4)

5,3,5 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

5,4,4 (2,2,2) (2,2,3) (2,2,4) (3,2,2) (3,2,3) (3,2,4)
(4,2,2) (4,2,3) (4,2,4)

5,4,5 (2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(3,2,2) (3,2,3) (3,2,4) (4,2,2) (4,2,3) (4,2,4)

5,5,2

(2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(2,4,2) (2,4,3) (2,4,4) (3,2,2) (3,2,3) (3,2,4)
(3,3,2) (3,3,3) (3,3,4) (3,4,2) (3,4,3) (3,4,4)
(4,2,2) (4,2,3) (4,2,4) (4,3,2) (4,3,3) (4,3,4)

(4,4,2) (4,4,3)

5,5,3

(2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(2,4,2) (2,4,3) (2,4,4) (3,2,2) (3,2,3) (3,2,4)
(3,3,2) (3,3,3) (3,3,4) (3,4,2) (3,4,3) (4,2,2)
(4,2,3) (4,2,4) (4,3,2) (4,3,3) (4,4,2) (4,4,3)

(4,4,4)

5,5,4

(2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(2,4,2) (2,4,3) (2,4,4) (3,2,2) (3,2,3) (3,2,4)
(3,3,2) (3,3,3) (3,3,4) (3,4,2) (3,4,3) (3,4,4)
(4,2,2) (4,2,3) (4,2,4) (4,3,2) (4,3,3) (4,3,4)

(4,4,2) (4,4,3)

5,5,5

(2,2,2) (2,2,3) (2,2,4) (2,3,2) (2,3,3) (2,3,4)
(2,4,2) (2,4,3) (2,4,4) (3,2,2) (3,2,3) (3,2,4)
(3,3,2) (3,3,3) (3,3,4) (3,4,2) (3,4,3) (3,4,4)
(4,2,2) (4,2,3) (4,2,4) (4,3,2) (4,3,3) (4,3,4)

(4,4,2) (4,4,3) (4,4,4)

Table 5.5: Stable retrograde equatorial loops: for each triplets of points’
distances, the respective possible triplets of durations are listed. Distances are
in km while durations in days.
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5.2 Retrograde Equatorial trajectories

Possible Retrograde Solutions

Here some possible solutions with retrograde arcs are shown.
Fig. 5.10 shows general solutions at different altitudes from the system.
Fig. 5.11 shows solutions with maneuver points at the same distance from the
system. These trajectories are interesting not only for the variety of possible
arcs’ durations. Indeed, they can be easily repeated in a theoretical infinite
loop to perform longer trajectories. Moreover, as in Fig. 5.11f, quasi-circular
trajectories can be found with this configuration.
Fig. 5.12 shows particular solutions where 2 loops are combined to form a
longer trajectory.
In Table 5.6 the maneuver costs for these trajectories are depicted.

∆V1 ∆V2

20.95 10.32

(a)
Cost of Fig. 5.10a

∆V1 ∆V2

13.31 12.86

(b)
Cost of Fig. 5.10c

∆V1 ∆V2

28.35 21.40

(c)
Cost of Fig. 5.10e

∆V1 ∆V2

16.93 20.99

(d)
Cost of Fig. 5.11a

∆V1 ∆V2

14.50 15.57

(e)
Cost of Fig. 5.11c

∆V1 ∆V2

12.06 10.82

(f)
Cost of Fig. 5.11e

∆V1 ∆V2 ∆V3 ∆V4 ∆V5

12.06 2.83 11.94 11.83 2.84

(g)
Cost of Fig. 5.12a

∆V1 ∆V2 ∆V3 ∆V4 ∆V5

14.67 18.45 18.72 14.10 15.45

(h)
Cost of Fig. 5.12c

∆V1 ∆V2 ∆V3 ∆V4 ∆V5

13.34 5.08 13.14 14.08 9.86

(i)
Cost of Fig. 5.12e

Table 5.6: Cost of the retrograde maneuvers in cm/s.
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Figure 5.10: General retrograde equatorial trajectories. a-b) Points at 2-
3-5km, arcs of 2-2-2 days. c-d) Points at 4-4-5km, arcs of 2-2-2 days. e-f)
Points at 5-2-4km, arcs of 3-2-4 days. In purple the direction pointing the
Sun. Next to the trajectories: the phase angle (Sun-asteroid-CubeSat) (up).
The distance (down). In blue the data with respect to Didymain, in red the
data with respect to Didymoon.
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Figure 5.11: Retrograde equatorial trajectories with points at the same dis-
tance. a-b) Points at 3km, arcs of 2-2-2 days. c-d) Points at 4km, arcs of 3-3-3
days. e-f) Points at 5km, arcs of 2-3-2 days. In purple the direction pointing
the Sun. Next to the trajectories: the phase angle (Sun-asteroid-CubeSat)
(up). The distance (down). In blue the data with respect to Didymain, in red
the data with respect to Didymoon.
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Figure 5.12: Combined retrograde equatorial trajectories. a-b) Points at
5-5-5-5-5-5km, maneuvers each 2 and 3 days. c-d) Points at 4-4-4-4-4-5km,
maneuvers each 3 and 4 days. e-f) Points at 5-5-4-5-5-3km, maneuvers each 3
and 4 days. In purple the direction pointing the Sun. Next to the trajectories:
the phase angle (Sun-asteroid-CubeSat) (up). The distance (down). In blue
the data with respect to Didymain, in red the data with respect to Didymoon.
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From Fig. 5.10, two retrograde equatorial loop solutions are visible. The
former forms a shield shape which exhibits worse performance than loop cycle
trajectories. Due to the additional constraint imposed on the declination of the
first two points, the distance between them is less. Therefore, the minimum
allowable altitude in the operative regions found in Section 5.1 is higher.
The other solutions consist of an initial retrograde equatorial arc and two
quasi-Sun terminator orbit. The performance of the initial equatorial arc is
still unsatisfactory with respect to the loop cycle solutions. However, the
effectiveness of quasi-Sun terminator arcs is exceptional. The possibility of
increasing the flight path and therefore the distance traveled between two
consecutive points enables new operative regions in which lower altitudes can
be reached with the same maneuver frequencies considered for the loop cycle.
As seen in Fig. 5.10d, where, during an arc of 2 days between two points at
4km and 5km, a perigee of 3km is reached versus the 5km possible for a loop
cycle. A similar behaviour is also present for maneuver points at the same
distance in Fig. 5.11d. These arcs exhibit a peculiar behaviour of the distance
from the system barycenter which does not reach its perigee/apogee in half
the time of the ballistic arc.
As additional strength, these orbits can reach polar regions forbidden in the
trajectories shown in Section 5.1, as clearly visible in all the figures in this
section.
Fig. 5.12 shows the possibility of combining different three loop together to
form longer trajectories. The main advantage of these configurations is to
obtain orbits with maneuver frequency of 3 and 4 days that respect a weekly
timetable useful from the point of view of ground control.

57





Chapter 6

Conclusions

This work deals with non-Keplerian proximity solutions around binary aster-
oids. The case study is the one of the NEA Didymos in the context of the
AIDA mission. This chapter summarizes the results obtained after the inves-
tigation of the several aspects of the problem, together with a recall of the
strategy pursued to achieve the desired goals.

The first objective was to study the dynamical environment close to the bi-
nary asteroid in a high fidelity model. In the past, as mentioned in Chapter 2,
three-body-problems have been extensively studied in their circular approxi-
mation. However, to obtain an accurate dynamical description of the proximity
of an asteroid, a general model of the effects is needed. Consequently, grav-
itational models different from the simple point-like one have been designed
for the gravity field of the primaries. The gravitational perturbations of all
the relevant massive bodies around the target have been considered, together
with the not negligible effect of the Solar Radiation Pressure. As an addi-
tional element of accuracy, all the physical parameters and especially all the
instantaneous positions of the celestial bodies considered were taken from the
reliable ephemerides from ESA.
From the investigation, SRP and the solar gravity perturbation appeared to
be the most important effects acting on a mass-less particle in proximity of
the asteroid, together with the irregularities of the primaries’ gravity field. At
distances greater than 10 km, no high frequency variations of the gravity field
are expected from Didymain’s rotation around the system barycenter due to
the proximity of his barycenter to it. While this is not true for Didymoon,
the mass ratio between the primary asteroid and its moon is too small to let
the latter influence the spectrum of the gravity field. During closer trajecto-
ries, such as those in Chapter 5, it may be possible to see the high frequency
variations of the gravity field due to the effects of the F2BP, especially during
quasi-circular orbits.
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Concerning the second goal of comparing different gravity models and estab-
lishing a lower boundary for the point-like model, an expected result has been
obtained. After an analysis of the point-like model’s error obtained with re-
spect to spherical harmonics and ellipsoid model, the former seems to be the
most accurate. In fact, the ellipsoid shape model deviates from the point-
like one closer to the asteroid, giving at the same altitude a lower error than
spherical harmonics. However, since the mass ratio between the primary and
its moon is high and Didymain’s shape can be easily considered as quasi-
spherical, the point-like model appears to be reliable up to 3 km from the
system barycenter allowing for a maximum of 1% of error at 2.74 km.

Regarding the main purpose of this thesis to find proximity orbits around
Didymos, important results have been obtained. The software built to find
trajectories around the asteroid in the non-Keplerian environment of a R3BP
can serve as a general purpose algorithm. After the setting of the dynamical
environment, the software can find the correct orbit connecting two desired
positions. Once a specific design has been chosen for the maneuver points, the
algorithm corrects each initial state of the ballistic arcs needed to reach the
next desired position. Then, grid search strategies were used to find possible
stable solutions around the asteroid and a set of possible close trajectories have
been collected.
For orbiting around Didymos, two different shapes have been considered. One
made of a loop cycle near the equator, while the second is a three-points loop
that can reach high declination values.

From the solutions in Section 5.1, a transition from hyperbolic to circular orbit
was obtained. In particular, two different behaviour can be highlighted. The
first where the maneuvers points are the closest points to the asteroid of the
entire trajectory and the second where they are the farthest. Typically, the
second configuration is preferred as scientific measurements away from maneu-
vers are promoted. As a boundary between these two, there is the possibility
of performing circular orbits.
However, the two behaviours and their boundary share the position of the or-
bit perigee which seems to depend only on the flight time considered, together
with the distance between the two maneuver points enforced in their design.
As a result, different dynamical regions can be observed around Didymos. A
perigee of minimum 6.5km can be obtained for a 3 days arc, while 5km can be
obtained in 2 days and 3.5km in 1 day of flight.
Similar regions are expected to be observed by performing the same investiga-
tion to different binary systems due to the generality of the algorithms used.
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0.0

Regarding the solutions in Section 5.2, searching for stable trajectories near
the asteroid, interesting orbits were obtained. The three-loops found can be
divided in two groups. The shield-shape trajectories do not exhibit interesting
performance except for the possibility of reaching regions distant from the
equator. Differently, the trajectories made by a retrograde equatorial arc and
two quasi-Sun terminator orbits exhibit exceptional features. Because the
spacecraft is forced to fly longer arcs, the minimum allowable altitudes are
lower than those obtained in the loop cycle orbits. Although their design is
not simple, since it seems impossible to force the Sun-terminator arc versus
the shield-shape, these solutions can represent a step forward towards closer
trajectories with maneuver frequency still in the order of days.
Particularly interesting is the possibility of performing combined loop with a
frequency of 3 and 4 days in order to respect a weekly frequency of maneuvers’
control that brings huge benefits from the ground operational point of view.
In addition, during the same trajectory, both small and large phase angles are
possible as the spacecraft orbits very distant regions of the asteroids during
the loop.
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List of Acronyms

Acronym Meaning
AIDA Asteroid Impact and Deflection Assessment
ARM Asteroid Redirect Mission

ASPECT Asteroid SPECTral imaging mission
AU Astronomical Unit

CR3BP Circular Restricted Three Body Problem
DART Double Asteroid Redirection Test
ER3BP Elliptical Restricted Three Body Problem
ESA European Space Agency
F2BP Full Two Body Problem
HF3BP Hill Full Three Body Problem
JAXA Japan Aerospace eXplloration Agency
LADEE Lunar Atmosphere and Dust Environment Explorer
M-ARGO Miniaturised – Asteroid Remote Geophysical Observer
NASA National Aeronautics and Space Administration
NEA Near Earth Asteroid
NEAR Near Earth Asteroid Rendezvous

OSIRIS REx Origins, Spectral, Interpretation, Resource,
Identification, Security, Regolith Explorer

RHF4BP Restricted Hill Full Four Body Problem
RF3BP Restricted Full Three Body Problem
SRP Solar Radiation Pressure
STM State Transition Matrix
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List of Symbols

Symbol Meaning
aH Aphelion
pH Perihelion
a Semi-major axis
e Eccentricity
i Inclination
T Orbital period
n Mean motion

aorb Distance between the center of the primary and the secondary
Rg1 Primary geometrical dimensions
Rg2 Secondary geometrical dimensions
M1 Mass of the primary
M2 Mass of the secondary
ρbulk Assumed bulk density for both asteroids
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