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My thesis is mainly about Visual Odometry,
that is the process of estimation of the position
and/or the motion of a body through compar-
isons in images taken by a camera mounted on
it.
Visual Odometry, from now on VO, has been im-
proved a lot and has found an increasing num-
ber of application across the last years, but few
attempts have been done to characterize the dy-
namic of errors in VO systems and to find out
how it depends on environmental conditions.

1. Experimental setup
Visual Odometry can use Feature Based meth-
ods, that track only some features of the pic-
tures, and Direct Methods, that track all pixels.
It has been chosen to do a factorial design of

experiments, based on the factors, the variables
that can influence the experimental outcomes,
and on their levels. The effect of a change in
the level of a single factor is called maineffect;
if the effect of a factor varies in relationship with
the level of another factor, the two factors are
said to have an interaction.
For the purpose of this thesis, it has been used a
quadrotor UAV called ROG-1, built by students
and research fellows of Politecnico di Milano,

that has been operated inside an indoor arena
with a Motion Capture system, in order to have
a sort of "ground truth" in the estimation of the
position. The reference frame is centered in the
point of coordinates (0,0,0) and has the x, y ans
z axes pointing, respectively, East, North and
upward.
The VO system was a Stereolabs ZED stereo-
scopic camera with an embedded algorithm.
The flight trajectory contained vertical, horizon-
tal and circular parts.
Four factors, each with two levels, have been
considered (2k design, with k = 4): the height,
the angular velocity of the circular part of the
flight (from now on TAV), the state of the Yaw
Following (from now on YF) and the light in
the arena. Sixteen experimental runs have been
performed.

2. Statistical analysis
To build a dynamic model for the noise, the Al-

lan Variance (AVAR) technique has been used
[1].
It is based on splitting a dataset into clusters
and computing the variance of the difference of
mean values of adiacent clusters.
The AVAR and its square root, the Allan Devi-
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ation (ADEV), are connected by the so-called
integral transformation to the Power Spectral
Density (PSD).
The considered noise dynamics has as input a
white driving noise, as output the total noise
and, as states, some fundamental noises:
• Angular Random Walk (ARW)
• Rate Random Walk (RRW)
• Bias instability
• Gauss-Markov noise
• Drift Rate Ramp noise

These noises provide a total PSD of the noise
with five coefficients: N , K, TB, QB and R.
A study on how the first four coefficients de-
pend on the four factors has been done using a
method from inference statistics, the Analysis of
Variance (ANOVA) [3].
It is a method that inspects the variability
between groups of data and the variability
within each group; based on the so-called null

hypotheses, it is the procedure to test them. If
the mean squared errors between and within ex-
perimental treatments are good estimators of
the variance of the stochastic error that is in-
trinsic in the data, called �

2, the dependence of
the studied quantity on the considered factor or
interaction is not relevant.
ANOVA requires that the data follow a spe-
cific data model and that the stochastic errors
in the data are normally distributed with null
mean and variance �

2; these assumption can be
checked through the Normal Probability Plots
of the residuals.
ANOVAs on AVAR coefficients put in evidence
that:
• K mainly depends on the TAV, on the

height and on their interaction;
• N is mainly influenced by the height, by the

interaction between the YF and the light
and by the interaction between the height
and the TAV;

• TB is not affected in a recurrent way by the
factors;

• QB mainly depends on the height, on the
TAV and on two interactions involving the
light.

3. Model identification and
Kalman prediction

Using as input the position estimates and as out-
put the position errors, a black-box model iden-

tification process of the discrete-time error dy-
namics has been performed, using an algorithm
called MOESP-PO, that is a subspace algorithm
[2]. It starts, basically, from the MOESP algo-

rithm, suitable in deterministic cases, that elab-
orates a projection of a data equation that con-
tains Hankel matrices, uses this projection to re-
cover a column space, constructs a basis for this
column space and, in the end, estimates the ma-
trices of the state-space representation through
shift invariance and through the least-squares
method.
The MOESP-PO algorithm is a generalization of
the MOESP algorithm for stochastic cases, with
process and measurement noise; in such case the
projection procedure does not lead to an unbi-
ased estimation. This problem is solved through
the use of the so-called Instrumental Variables

(IVs), splitting the dataset into two groups, one
shifted ahead in time, and using the previous
data as IVs for the subsequent data.
Sixteen models have been identified, all having
A matrices similar to identity matrices and B

and C matrices without specific trends.
In order to evaluate the performance of the mod-
els, two sets of one-step ahead Kalman predictors

have been built, one using the complete position
estimates and the other using only the vertical
components. They have been evaluated through
the inspection of mean values and standard devi-
ations of prediction errors; the prediction errors
have tended to be bigger with the height and
TAV at higher level.
In the end, the study of the influence of the fac-
tors through the ANOVA has been done also
on three characteristics of the models, analyzing
also the mean variation of them when the factors
change level:
• ��

max
B , the maximum excursion of the sin-

gular values of the matrices B, that mostly
depends on the height (that makes it in-
crease a lot), the TAV and the interaction
between the TAV and the YF;

• �
max
G1 , �

max
G2 , �

max
G3 , the maximum values

of the singular values of the frequency re-
sponse matrices G(j!), that are mainly in-
fluenced by the TAV and by the YF (that,
when activated, makes �

max
G2 , �

max
G3 much

smaller);
• The error in the position estimation in abso-

lute value e =
q
y2x + y2y + y2z , that mainly
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depends on the height, on the TAV and on
the interaction between height and YF.

All these characteristics, in the end, have big
increases when the TAV is raised to 0.6 rad/s.

4. Parametric modeling
The following, important part of the work has
been the construction of parametric linear mod-
els for the coefficients K, N , TB and QB on the
Cartesian axes from the AVAR analysis, using
the factors as independent variables and using
the least-squares interpolation method.
In this case, in order to not neglect the influence
of the YF, the only factor with qualitative lev-
els, two separate procedures have been carried
out, one with the data with the YF and another
without it, bringing to a total of 24 models.
The used models have one, two or three inde-
pendent variables, that have been chosen start-
ing from the dependences put in evidence by the
ANOVAs.
In the case without the YF all the variables have
been used in an almost equal manner; in the case
with the YF the light has come into play much
less times and the coefficients TB and QB have
required less variables to be modeled than in the
other case. In both cases, TB and QB have more
complex models than K and N .
In the end, the process of linear interpolation
has been done also on the matrices A, B, C

and K from the model identification process [4].
The choice of what terms to interpolate (the
other terms have been considered as constant
and equal to their mean value) has been done
looking mainly to the difference of their mean
values between the two TAV levels. It resulted
that the C and K matrices were more influenced
than the A and B matrices by the variation of
the TAV.

5. Equations, Figures and Ta-
bles

5.1. Equations
Here there are some important equations and
formulas used in the thesis.
Visual Odometry transformation

Cti = Cti�1Ti


Ri,i�1 ti,i�1

0 1

�
(1)

Allan variance, with M clusters of data, each

with mean value ȳi

�
2(⌧) =

1

2(M � 1)

M�1X

i=1

(ȳi+1 � ȳi)
2 (2)

Integral transformation, linking AVARs and

PSDs, with f = !
2⇡

�
2(⌧) = 4

Z 1

0
S(f)

sin4(⇡f⌧)

(⇡f⌧)2
df (3)

Total noise PSD

Stot(f) = N
2 +

✓
K

2⇡f

◆2

+
QB⇣

1
TB

⌘2
+ (2⇡f)2

+
R

2

(2⇡f)3

(4)

ANOVA quantities

ȳi =

nP
j=1

yij

n
=

yi

n
(5)

ȳ =

aP
i=1

nP
j=1

yij

an
(6)

ANOVA identity

aX

i=1

nX

j=1

(yij � ȳ)2 = n

aX

i=1

(ȳi � ȳ)2 +
aX

i=1

nX

j=1

(yij � ȳi)
2

(7)

SST = SSTr + SSE (8)

ANOVA: data model in the single factor case,

with µ overall mean effect, ⌧i main effect of the

i-th level of the factor and ✏ij random error com-

ponent

yij = µ+ ⌧i + ✏ij

(
i = 1, 2...a

j = 1, 2...n
. (9)

ANOVA: data model in the two factors case,

with µ overall mean effect, ⌧i effect of the i-th

level of the first factor, �j effect of the j-th level

of the second factor, (⌧�)ij interaction of the two

factors and ✏ij random error component

yij = µ+ ⌧i + �j + (⌧�)ij + ✏ij , (10)

3



Executive summary Pietro Giannagostino

ANOVA: bigger values of F mean a not negligi-

ble dependence

F =
MSTr

MSE
=

SSTr

a� 1

N � a

SSE
(11)

ANOVA: null hypotheses in the single factor

case

H0: ⌧1 = ⌧2 = ... = ⌧a = 0
H1: there is at least one ⌧i 6= 0

ANOVA: null hypotheses in the two factors case

H0: ⌧1 = ⌧2 = ... = ⌧a = 0
H1: there is at least one ⌧i 6= 0
H0: �1 = �2 = ... = �b = 0
H1: there is at least one �i 6= 0
H0: (⌧�)ij = 0 for all i, j
H1: there is at least one (⌧�)ij 6= 0

Structure of the identified discrete-time models,

deterministic case

(
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(12)

Structure of the identified discrete-time models,

stochastic case

(
x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)
(13)

MOESP algorithm: data equation

Ytij = �iXt,j +HiUt,i,j . (14)

MOESP algorithm: orthogonal projection

Ut,i,j⇧ = 0 (15)

⇧ = I � U
T
t,i,j(Ut,i,jU

T
t,i,j)

�1
Ut,i,j (16)

MOESP algorithm: A and C estimated through

shift invariance

�"A =

2

666664

C

CA

CA
2

...
CA

i�2

3

777775
A =

2

666664

CA

CA
2

CA
3

...
CA

i�1

3

777775
= �#. (17)

MOESP algorithm: B and D estimated through

LS method

B,D = argmin
B,D

sX

k=0

[y(t)� ŷ(t)]2 (18)

ŷ(t) = Du(t) +
t�1X

r=0

CA
t�r�1

Bu(r) (19)

MOESP-PO algorithm: Instrumental Variables

(matrix Z)

rank( lim
N!1

1

N
(Xt,j⇧)Z

T ) = n (20)

lim
N!1

1

N
(EiWt,i,j + Vt,i,j)Z

T = 0 (21)

MOESP-PO algorithm: modified data equation

Yt,i,j⇧Z
T = �Xt,j⇧Z

T + (EiWt,i,j + Vt,i,j)⇧Z
T

(22)
Kalman predictor: general structure

(
xp(t+ 1) = Ap(t)xp(t) +Bp(t)up(t)

yp(t) = Cp(t)xp(t),
(23)

Matrices of the complete Kalman predictor, built

from 12, being K the gain matrix

Ap = A�KC (24)

Bp =
⇥
B K

⇤
(25)

Cp1 = C (26)

up =
⇥
u y,

⇤
(27)

Matrices of the partial Kalman predictor, built

from 12, being K the gain matrix
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Ap = A�

2

4
K(1, 3)
K(2, 3)
K(3, 3)

3

5

2

4
C(1, 3)
C(2, 3)
C(3, 3)

3

5 (28)

Bp =

2

4B

2

4
K(1, 3)
K(2, 3)
K(3, 3)

3

5

3

5 (29)

Cp = C (30)

up =

2

4u

2

4
y(1, 3)
y(2, 3)
y(3, 3)

3

5

3

5 (31)

5.2. Figures
Here there are some figures, for illustrative pur-
pose only; all the figures and plots that illustrate
the results are retrievable in the main thesis doc-
ument.

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height         0.01572     1    0.01572    2.81   0.1547

  TAV            0.02541     1    0.02541    4.54   0.0864

  YF             0.00285     1    0.00285    0.51   0.5079

  Light          0.00003     1    0.00003    0.01   0.9461

  Height*TAV     0.00359     1    0.00359    0.64   0.4595

  Height*YF      0.01632     1    0.01632    2.91   0.1486

  Height*Light   0.00051     1    0.00051    0.09   0.774 

  TAV*YF         0.00493     1    0.00493    0.88   0.3911

  TAV*Light      0.00046     1    0.00046    0.08   0.7857

  YF*Light       0           1    0          0      0.9943

  Error          0.02801     5    0.0056                  

  Total          0.09785    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 1: A 2-ways ANOVA table (the one of
the estimation error e)
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Figure 2: A plot of the main effects of the factors
(on ��

max
B )
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Figure 3: A comparison of the mean values of
the prediction errors (with respect to the light)
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Figure 4: The plot of a parametric model with
1 variable (the one of K on z axis without YF
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Figure 5: The plot of a parametric model with
2 variables (the one of K on z axis with YF
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Figure 6: A comparison of the standard devi-
ations of the prediction errors (with respect to
the TAV)

5.3. Tables

Run number Height TAV YF Light

1 1 m 0.2 rad/s No 100 lx
2 2 m 0.2 rad/s No 100 lx
3 1 m 0.6 rad/s No 100 lx
4 2 m 0.6 rad/s No 100 lx
5 1 m 0.2 rad/s Yes 100 lx
6 2 m 0.2 rad/s Yes 100 lx
7 1 m 0.6 rad/s Yes 100 lx
8 2 m 0.6 rad/s Yes 100 lx
9 1 m 0.2 rad/s No 250 lx
10 2 m 0.2 rad/s No 250 lx
11 1 m 0.6 rad/s No 250 lx
12 2 m 0.6 rad/s No 250 lx
13 1 m 0.2 rad/s Yes 250 lx
14 2 m 0.2 rad/s Yes 250 lx
15 1 m 0.6 rad/s Yes 250 lx
16 2 m 0.6 rad/s Yes 250 lx

Table 1: List of the 16 experimental runs with
their conditions

Number of factors Equation

1 y = a+ bx

2 y = a+ bx1 + cx2

3 y = a+ bx1 + cx2 + dx3

Table 2: General forms of the parametric models
for the AVAR coefficients

Coefficient Axis Height TAV Light

K x !
K y ! !
K z ! !
N x ! !
N y ! !
N z !
TB x ! ! !
TB y ! !
TB z ! ! !
QB x ! !
QB y ! ! !
QB z ! ! !

Table 3: Summary of the used independent vari-
ables for the AVAR coefficients without the YF
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Coefficient Axis Height TAV Light

K x ! !
K y ! !
K z !
N x !
N y !
N z ! !
TB x ! !
TB y ! ! !
TB z ! !
QB x !
QB y !
QB z ! !

Table 4: Summary of the used independent vari-
ables for the AVAR coefficients with the YF

6. Conclusions
In the end, the factors that appeared to be more
important in affecting the studied characteristics
of the VO dynamics were the height, the TAV
and their interaction.
The light, instead, has not appeared to be very
relevant
An important step of the process would have
been a validation of the identification and mod-
eling processes, with other data or with the
cross-validation technique, not done only due to
logistical issues.
In general, a better analysis can be carried out
through a more complex experimental campaign
and/or through the collection of a bigger amount
of data.
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Abstract

During the last years, the process of Visual Odometry (VO) has acquired a rel-
evant importance in unmanned machines, such as robots and both ground and
aerial vehicles, thanks mainly to the constant cost decrease and performance im-
provement in technologies.

VO can be used in sinergy with other tools in order to acquire a greater preci-
sion and has the advantage to be totally independent from external infrastructures
and radio signals.

Few attempts, however, have been done to study the e↵ects of environmental
conditions on behavior and time accumulation of errors in VO systems.

The purpose of this thesis is to model the errors in the estimation of position in
a VO system on a drone and to identify dependences on environmental conditions
in the odometry process.

A campaign of experimental flights has been designed and carried out; the
dynamics of the errors in the resulting data has been studied using both the
Allan Variance (AVAR) technique and a model identification algorithm; Kalman
predictors have been built in order to compare errors from the identified models
with real errors.

The e↵ects on experimental conditions on some relevant quantities have been
studied using the Analysis of Variance (ANOVA) and some involved quantities
have been parametrically modeled.
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Sommario

Negli ultimi anni, il processo di odometria visuale ha acquisito una certa impor-
tanza nei macchinari, come robot e veicoli aerei e terrestri, principalmente grazie
al costante abbassamento dei costi ed al costante miglioramento tecnologico.

L’odometria visuale può essere impiegata unitamente ad altri sistemi allo scopo
di ottenere una precisione migliore ed ha il vantaggio di essere totalmente indipen-
dente da infrastrutture e segnali in radiofrequenza esterni.

Pochi sono stati, tuttavia, i tentativi di studiare come le condizioni ambientali
influiscano sul comportamento e sulla modalità di accumulazione nel tempo degli
errori nei sistemi di odometria visuale.

Questa tesi è finalizzata a presentare un processo di modellazione degli errori di
stima della posizione nel sistema di odometria visuale di un drone ed a individuare
dipendenze dalle condizioni ambientali all’interno del processo di odometria.

È stata progettata e messa in opera una campagna di voli sperimentali del
drone; la dinamica degli errori è stata analizzata a partire dai dati raccolti imp-
iegando la tecnica delle Varianze di Allan ed un algoritmo per l’identificazione
di modelli; sono stati costruiti dei predittori di Kalman per comparare gli errori
calcolati con i modelli identificati e gli errori reali.

L’influenza delle condizioni sperimentali su alcune quantità di interesse è stata
studiata mediante Analisi della Varianza; di alcune quantità coinvolte sono stati
realizzati modelli parametrici.
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Introduction

This thesis is about Visual Odometry (VO), that is term used to identify all the
procedures that allow to localize an object and/or to estimate its motion through
the progressive comparison of images taken by one or more cameras placed on the
object itself.

Used since 1980s, Visual Odometry has been extensively studied and has found
an increasing number of application across years, both in the Aerospace field and
in other areas of industrial engineering and both on Unmanned Ground Vehicles
(UGVs) and on Unmanned Aerial Vehicles (UAVs), the latter commonly known
as drones. It has been used both alone and in sinergy with other localization
systems, such as satellite-based systems (for example the GPS) or Inertial Navi-
gation Systems (INS), in order to improve the overall performance of the motion
estimation. This has been possible because of the constant decrease in cost of
electronic equipments.

Visual Odometry systems have been improved a lot in terms of speed and
precision, but few attempts have been done to characterize the noise a↵ecting
their dynamics, to give state-space representation of such dynamics and to find
out how the odometry process is a↵ected by environmental conditions.

This thesis had as objective to do such a process. Using the factor-based
design of experiments, an experimental campaign made of sixteen experiments
with a flying drone, each one with a di↵erent setting of four experimental variables
(factors), has been designed and carried out. The collected data have been about
the position of the drone and the di↵erence between the position detected by
the Visual Odometry system, equipped with a Stereolabs ZED camera, and the
position measurements coming from a Motion Capture (MOCAP) system.

From these data, an attempt to model and characterize the dynamics of the
Visual Odometry system has been done using the statistical technique of the Allan
variance (AVAR), that allows to build a state-space model of the dynamics of the
noise based on some fundamental noises with some coe�cients, and the MOESP-
PO black-box model identification algorithm, that allows to go directly from the
Visual Odometry position estimates to the estimation errors. In order to evaluate
the ability of models to capture the evolution of the errors, two types of one-step
ahead Kalman predictors have been built and a simple analysis, based on mean
values and standard deviations, has been done on the prediction results.
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The coe�cients from the AVAR and some characteristics of the identified mod-
els have been treated with another statistical technique, the Analysis of Variance,
known as the ANOVA, that basically determines if and how much a quantity is
a↵ected by a change in other quantities through the analysis of the variability
between and within groups of data.

The last part of the work has been the creation of parametric models having as
independent variables the factors and as dependent values the AVAR coe�cients
and the terms of the matrices in the state-space representations of the models and
the predictors, using the least-squares regression method.

The thesis is organized in four Chapters:

• Chapter 1 starts with an overview on Visual Odometry, then the experi-
mental setup (the drone, its Visual Odometry system and the flying envi-
ronment) is introduced, the technique used to design the experimental cam-
paign is presented and the sixteen experiments with di↵erent environmental
conditions that have been performed are explained.

• Chapter 2 is mainly dedicated to the statistical analysis tools that have been
used, the Allan variance and the Analysis of Variance (ANOVA). As regards
the AVAR, some fundamental noises are described in terms of their Power
Spectral Densities (PSDs) and of the AVAR-based approach. The results
the ANOVA provided on the data from the AVAR-based analysis are also
listed and commented.

• Chapter 3 contains the explanation of the MOESP-PO identification algo-
rithm. Kalman predictors are then introduced, with a general overview, the
procedure used to construct them in this work and a brief analysis of the
prediction results. The last part contains, again, a statistical analysis with
the ANOVA, done on some characteristics of the models.

• Chapter 4 is about the least-squares (LS) interpolation processes that have
been carried out in order to parametrically model the AVAR coe�cients and
the state-space matrices, as functions of one or more factors.



Chapter 1

Visual odometry and
experimental setup

This chapter presents a brief overview on Visual Odometry and introduces the
experimental processes at the basis of this work.

1.1 What is Visual Odometry (VO)

The term Visual Odometry (acronym VO) has been introduced in 1996 and in-
dicates the process of estimating the position of a body through the examination
of the changes due to motion of pictures taken by cameras mounted on the body
itself. It is called Monocular VO if the camera is one and Stereo VO if there is a
stereoscopic camera [1] [2].

VO can be used as a complement or a substitute to other tools, such as wheel
odometry (that is less accurate), inertial navigation systems (INU) and satellite
positioning systems, such as GPS (that can be not always available). The first
time VO has been used out of Earth has been in 2004 on Spirit and Opportunity
Mars rovers.

VO computes the followed path incrementally. Let’s consider two subsequent
time instants, called ti�1 and ti, and the camera poses Cti�1 and Cti ; what here is
called ”pose” is, actually, the rigid transformation matrix from the fixed ground
reference frame to the camera reference frame. Visual Odometry consists in find-
ing, for each instant time, the transformation matrix Ti for which

Cti = Cti�1Ti (1.1)

holds.
The structure of Ti is:

Ti =


Ri,i�1 ti,i�1

0 1

�
(1.2)
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There are many methods to estimate transformation matrices, mainly divided
in Feature Based methods, that track how only some particular features of the
images evolve in time, and Direct Methods, tracking the time evolution of all
pixels.

1.2 Design of experiments

Design of experiments is the problem of defining appropriate input sequencies and
experimental conditions for MIMO model identification [3], that is explained in
Section 3.1.

The dynamic system needs to be excited in such a way that collected data con-
tain su�cient information and, at the same time, respects operational constraints,
imposed by safety and/or by system performance limits.

The data have also to be structured in a way so that they can be easily analyzed
with statistical instruments. It is necessary to select some experimental conditions
that are supposed to have an influence on the results; these variables are called
factors and, usually, can assume a finite number of values, that are called levels.
The variation in the response of the under-test system when the level of a factor
is changed is called the e↵ect of the factor.

Having identified the factors, it is necessary to decide which of them can be
controlled during experimentation and have an e↵ect being of interest for the
purpose of the experiment; there can be the so-called held-constant factors, the
ones whose e↵ects are not of interest, and the so-called allowed-to-vary factors,
that cannot be controlled by the experimenter.

To design the testing procedure in this case, the so-called factorial design has
been used, in which all the possible levels of all the factors are taken into account.

When a single factor is modified, the consequence is called main e↵ect. When
the di↵erence in response between two levels of a factor is not the same at all
levels of the other factors, an interaction between factors is coming into play.

Factorial design of experiments has the advantages to avoid erroneous con-
clusions when interactions between factors are suspected to be present and to
estimate the e↵ect of each factor at several levels of the other factors, bringing
results that can be applied to a wide range of experimental conditions.

In this case, the design has been done following a particular case of factorial
design, the so-called 2k design, that is used when the experiment has k factors,
each one with two levels, that can be quantitative, such as two possible values of
a physical quantity, or qualitative, for example an experimental feature that can
be used or not. A complete execution of an experimental campaign designed in
this way requires exactly 2k experimental runs.

It has been decided to have k = 4 and to choose as relevant factors:

• Height [m]: two values of maximum height in the flight trajectory have been
alternated during the runs;
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• Trajectory Angular Velocity (TAV) [ rads ]: a part of the flight trajectory,
following a circular path, has been covered with two di↵erent and alternated
values of speed during the runs;

• Yaw following (YF): this is a logical variable, since the YF is a feature of
the used drone that can be activated and de-activated. When the YF is
activated, the attitude of the UAV is adjusted in order to have a defined
body axis always parallel to the velocity vector;

• Light [lux]: the intensity of neon lamps in testing environment has been
alternated between two values during the runs.

It is evident that height, TAV and light have quantitative levels, whereas YF
has qualitative levels.

As described in detail in Table (1.1), sixteen experiments have been performed,
each one characterized by di↵erent levels of these four factors.

Run number Height TAV YF Light
1 1 m 0.2 rad/s No 100 lx
2 2 m 0.2 rad/s No 100 lx
3 1 m 0.6 rad/s No 100 lx
4 2 m 0.6 rad/s No 100 lx
5 1 m 0.2 rad/s Yes 100 lx
6 2 m 0.2 rad/s Yes 100 lx
7 1 m 0.6 rad/s Yes 100 lx
8 2 m 0.6 rad/s Yes 100 lx
9 1 m 0.2 rad/s No 250 lx
10 2 m 0.2 rad/s No 250 lx
11 1 m 0.6 rad/s No 250 lx
12 2 m 0.6 rad/s No 250 lx
13 1 m 0.2 rad/s Yes 250 lx
14 2 m 0.2 rad/s Yes 250 lx
15 1 m 0.6 rad/s Yes 250 lx
16 2 m 0.6 rad/s Yes 250 lx

Table 1.1: Runs and experimental conditions

1.3 Experimental setup

1.3.1 UAV

The drone used to perform the experiments is called ROG-1 and has been designed
by students and research fellows of Politecnico di Milano for the Leonardo Drone
Contest, held in Turin, Italy. Its characteristics are [4] [5]:
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• 4 rotors

• 8 plastic propellers

• 4 KDE2315XF-965 DC brushless motors

• Size: 50x50x35 cm

• Weight: 3.75 kg

• LiPo 16000 mAh rechargeable battery

1.3.2 Flying arena

All the experiments have been performed in the indoor flying arena of the ASCL
(Aerospace System & Control Laboratory) of Politecnico di Milano. Its size is 12
x 6 x 4 m.

1.3.3 VO system

The images to perform the VO process have been taken by a Stereolabs ZED
stereoscopic camera, that has been rigidly mounted on the UAV. It takes pictures
and integrates the VO algorithm that processes the pictures and provides the data
about the estimated position in Cartesian coordinates [4] [6].

The sampling frequencies of these data is around 15 Hz, that has been the
value used for the computations related to the Allan variances (see Section 2.1),
whereas when identifying models using the MOESP-PO algorithm (see Section
3.1), each experiment has been given a specific sampling frequency Fs, obtained
in Equation (1.3):

Fs =
ns � 1

T
(1.3)

where T is the duration of the sampling period and ns is the number of sampled
data in the same period.

1.3.4 Motion capture system

In order to have a ”ground truth” about the position of the drone to be compared
with the results of the VO algorithm and to the identified models, the flying arena
Motion Capture system, acronym MOCAP, has been used. The MOCAP consists
of eight OptiTrack Prime 13 cameras, connected to a desktop computer equipped
with the OptiTrack Motive Tracker software [4] [7].
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1.3.5 Reference frame

Both the ZED odometer and the motion capture system use a reference frame
centered in the point with coordinates (0,0,0) and with the x axis pointing East,
the y axis pointing North and the z axis pointing upwards. The coordinates in
these reference frame have the meter ([m]) as measurement unit.

1.3.6 Trajectory

The drone has been requested to follow this trajectory when flying:

• Take o↵ from the reference frame origin

• Vertical climb to a fixed height z, reaching point (0,0,z)

• Movement on a straight line to point (0,1,z)

• Movement on a circular path centered in point (0,1,z), doing a precise num-
ber of circles at constant height, the last of which ending in point (0,1,z)
again

• Movement on a straight line to point (0,0,z)

• Vertical descent and landing in point (0,0,0)

This is the setup used for all the previously mentioned sixteen experiment with
four factors, each one with two levels.
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Chapter 2

Statistical analysis

This chapter presents the most important statistical analysis tools used in this
thesis, the Allan Variance and the Analysis of Variance, and an application of the
second tool on the results from the first one.

2.1 Allan Variance

2.1.1 Definition

The Allan Variance (AVAR) is a mathematical tool first proposed by David Allan
to study errors in atomic clocks; in this thesis it will be used in the time domain,
as typically done when studying noises in rate gryos, despite its original use was
in frequency domain [4] [8] .

Let’s consider n values of the studied error yi, with i = 1, 2...n, and split this
vector into M clusters each containing ⌧ values (with ⌧ <

n
2 ), each with average

value ȳi, with i = 1...M . The Allan variance is now defined as the variance of the
random di↵erence ⇠ between the averages of two adiacent clusters:

⇠i+1,i = ȳi+1 � ȳi. (2.1)

Consequently, the AVAR expression turns out to be:

�
2(⌧) =

1

2(M � 1)

M�1X

i=1

(⇠i+1,i)
2
. (2.2)

Later on, the Allan Deviation (ADEV), defined as the square root of the
AVAR, will be used.

Let’s now define the Power Spectral Density (PSD) of a random process, that
is a quantity representing the energy content of the process at various frequencies.
The PSD So(!) of a rational random process is the Fourier transform of its co-
variance. Being H(j!) the frequency response of the transfer function of the
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process H(s) and Sw(!) the PSD of a white noise, that is, by definition, constant,
it holds that

So(!) = |H(j!)|2 Sw(!). (2.3)

The AVAR and the PSD of a process are linked by the integral transformation:

�
2(⌧) = 4

Z 1

0

S(f)
sin4(⇡f⌧)

(⇡f⌧)2
df, (2.4)

being

f =
!

2⇡
. (2.5)

The integral transformation cannot be reversed in a unique way, so an AVAR
can determine more than one PSD.

2.1.2 Fundamental noises

The modeling of the dynamics of the noise requires to build a noise model including
some fundamental noise processes (for example noises with PSD described by a
power law, such as S(f) = �f

�↵, with f frequency) with known PSDs and AVARs
and to tune it in order to obtain an ADEV that is similar to the one found from
experimental data.

The objective of this analysis is to construct a state-space model of the noise
dynamics, as in (2.6):

(
ẋ(t) = Ax(t) + Bu(t)

z(t) = Cx(t) +Dv(t),
(2.6)

Here x is a state vector containing the values of the fundamental noises, u is an
input vector containing independent, white and Gaussian noises used as ”driving”
noises, z is the total noise and v is another white and Gaussian noise entering the
total noise.

A, B and C have dimensions depending on how many fundamental noises are
in use, whereas D = 1.

Fundamental noises used in this analysis are now listed.

• White frequency noise or Angular Random Walk (ARW)

It is a noise characterized by constant PSD SARW = N
2.

The ADEV is

�ARW =
Np
⌧
, (2.7)
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that has as logarithmic plot a straight line with slope -0.5. The state repre-
sentation of ARW, being zARW its contribution to total noise z, is the one
of a white Gaussian noise !:

z(t) = zARW (t) = !(t). (2.8)

• Random walk frequency noise or Rate Random Walk (RRW).

It is a noise whose PSD SRRW (f) is a power law with exponent 2.

SRRW (f) =

✓
K

2⇡f

◆2

. (2.9)

The ADEV results to be

�RRW = K

r
⌧

3
, (2.10)

that has as logarithmic plot a straight line with slope 0.5. Being zRRW the
contribution of RRW to total noise z and ! a white Gaussian noise, the
state-space representation is

(
˙zRRW (t) = !(t)

z(t) = zRRW (t).
(2.11)

• Bias instability .

It is a noise due to flickering of electronic components. Given a cut-o↵
frequency f0, its PSD is defined as follows:

SB(f) =

(
B2

2⇡f for f < f0

0 for f > f0.
(2.12)

The ADEV of bias instability has the following expression:

�B(⌧) =
2B2

⇡
[ln2� sin3

x

2x2
(sin x+ 4x cos x) + Ci(2x)� Ci(4x)], (2.13)

where x = ⇡f0⌧ and Ci is the cosine integral function:

Ci(x) = �
Z +1

x

cos(t)

t
dt. (2.14)



12 Statistical analysis

Bias instability has a problem: since its PSD is an odd function of fre-
quency, it cannot be factored into a rational transfer function in order to
provide a state-space representation. This can be avoided approximating
bias instability with Gauss-Markov noise.

• Gauss-Markov noise (GM)

Being zB the approximation of the bias instability noise’s contribution to
the total noise z and !b a white Gaussian noise with PSD S(!b) = QB, a
Gauss-Markov process is state-space represented as in (2.15):

(
˙zB(t) = � 1

TB
zB + !B

z(t) = zB(t).
(2.15)

The PSD of the GM process is

SGM(f) =
QB⇣

1
TB

⌘2

+ (2⇡f)2
, (2.16)

and, consequently, the ADEV is:

�(⌧) = TB


QB

⌧

✓
1� TB

2⌧
(3� 4e

� ⌧
TB + e

�2⌧
TB )

◆�0.5
. (2.17)

• Drift Rate Ramp noise (R)

It is a noise presenting the same PSD and the same ADEV of another noise,
the frequency modulated (FM) flicker walk, that has, however, di↵erent
nature: the FM is an ideal noise, whereas the Rate Ramp noise results
from deterministic errors. The PSD of these two noises is a power law with
esponent 3:

SR(f) =
R

2

(2⇡f)3
. (2.18)

In the end, these fundamental noise components are characterized by some
coe�cients that will be useful for the next steps of this analysis: N , K, TB, QB

and R.
The PSD of the total noise is shown in Equation (2.19):

Stot(f) = N
2 +

✓
K

2⇡f

◆2

+
QB⇣

1
TB

⌘2

+ (2⇡f)2
+

R
2

(2⇡f)3
. (2.19)
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2.2 Analysis of Variance (ANOVA)

Analysis of Variance, acronym ANOVA, is a method from inference statistics used
to understand variability inside groups of data depending on some factors. It has
been developed by Ronald Fisher [9].

ANOVA is extremely useful to determine whether and which factors, through
their main e↵ects and their interactions, do or do not play a significant role in
determining experimental outcomes.

To understand what ANOVA is, let’s follow the approach of [3]. Imagine to
have a single factor having a possible levels, to do n experimental observations
and to consider the observed value of the quantity of interest as a random variable.
This defines the so-called single-factor ANOVA.

It is necessary to define a model for the observed data, as in Equation (2.20):

yij = µ+ ⌧i + ✏ij

(
i = 1, 2...a

j = 1, 2...n
. (2.20)

Here µ is a parameter called overall mean e↵ect, ⌧i identifies the main e↵ect
of the i-th level of the factor and ✏ij is a random error component. Let’s indicate
the variance of the errors of this model with �

2.
ANOVA can apply to two di↵erent situations. When levels under examination

are specifically chosen by the experimenter, conclusions can’t be extended to not
directly considered levels: this situation is called fixed e↵ects model. When the
considered levels are a random sample taken within a large number of levels, it is
not so important knowing the particular ones investigated, so ⌧i is random: this
is the so-called random e↵ect model.

Let’s call

ȳi =

nP
j=1

yij

n
=

yi

n
(2.21)

the average of the observations under the i-th level and

ȳ =

aP
i=1

nP
j=1

yij

an
(2.22)

the overall average of the observations.
It is necessary to test the equality of all treatments, that translates in the

following hypotheses about main e↵ects:

H0: ⌧1 = ⌧2 = ... = ⌧a = 0
H1: there is at least one ⌧i 6= 0

H0 is the so-called null hypothesis and the ANOVA is the procedure to test it.
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A measure of the variability of the data can be the total sum of squares (SST ):

SST =
aX

i=1

nX

j=1

(yij � ȳ)2. (2.23)

Note that

aX

i=1

nX

j=1

(yij � ȳ)2 = n

aX

i=1

(ȳi � ȳ)2 +
aX

i=1

nX

j=1

(yij � ȳi)
2 + 2

aX

i=1

nX

j=1

(ȳi � ȳ)(yij � ȳ),

(2.24)
where, however, the last term is zero, because

nX

j=1

(yij � ȳi) = yi � nȳi = 0, (2.25)

so (2.24) turns into (2.26):

aX

i=1

nX

j=1

(yij � ȳ)2 = n

aX

i=1

(ȳi � ȳ)2 +
aX

i=1

nX

j=1

(yij � ȳi)
2
, (2.26)

that is the so-called ANOVA identity. It tells that the total variability in the
data (measured by SST ) can be partitioned into a sum of squares of the di↵erences
between the treatment averages and the total average, from now on SSTr, plus a
sum of squares of the di↵erences of data within treatments from the treatment
average, from now on SSE, that can be due only to the random error.

Equation (2.26) can be symbolically written as in (2.27):

SST = SSTr + SSE. (2.27)

Having a levels of the factor and an = N total observations, SST has N � 1
degrees of freedom, SSTr has a � 1 degrees of freedom; since each level provides
n � 1 degrees of freedom, it results that the error has a(n � 1) = N � a degrees
of freedom.

Let’s now introduce mean squares between and within treatments:

MSTr =
SSTr

a� 1
; (2.28)

MSE =
SSE

N � a
. (2.29)

If all the null hypotheses are satisfied, both MSTr and MSE have to be good
estimators of the variance of the model errors �2. Consequently, it is necessary to
inspect a parameter called F , defined as in (2.30):
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F =
MSTr

MSE
. (2.30)

When F assumes a large value, it means that the null hypotheses are not valid
and the dependence of the under-study quantity on that factor is relevant and
cannot be neglected. High values of F correspond to low values of the so-called
p-value, that represents the probability of experimental outcomes verifying H0.

In this analysis, it has been necessary to use a di↵erent version of the ANOVA,
that is useful for experiments with more than one factor and keeps into account
also interactions between factors. In a case considering two factors and their
interaction, the model of the observed data becomes

yij = µ+ ⌧i + �j + (⌧�)ij + ✏ij, (2.31)

with µ overall mean e↵ect, ⌧i e↵ect of the i-th level of the first factor, �j e↵ect
of the j-th level of the second factor and (⌧�)ij interaction of the two factors.

The hypotheses regarding main e↵ects become

H0: ⌧1 = ⌧2 = ... = ⌧a = 0
H1: there is at least one ⌧i 6= 0

and

H0: �1 = �2 = ... = �b = 0
H1: there is at least one �i 6= 0

and it is necessary to add hypotheses about the interaction:

H0: (⌧�)ij = 0 for all i, j
H1: there is at least one (⌧�)ij 6= 0

Data models can be further extended adding other main e↵ects, as many as
the factors to keep into account, and other interactions, containing even more
than two factors.

What has been previously explained can be generalized to these other versions
of the ANOVA and the conclusions are exactly equal, with the parameter F that
has the same role even with the interactions.

The 1-way ANOVA does not keep into account the interactions, the x-way
ANOVA keeps into account interactions of up to x factors.

All this analysis, however, is valid if and only if data follow the assumed data
model and the errors are normally and independently distributed with zero mean
and constant variance �

2. These assumptions have to be checked looking at the
Normal Probability Plot of the residuals of the ANOVA, where data lie on an
approximately straight line if they are normally distributed.

When the ANOVA has been used in this work, all the necessary computations
have been done using the automatic anovan tool in MATLAB ®[10], that allows
the user to choose between 1-way or 2-ways data model, produces the so-called
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ANOVA table containing all values of the sum squares, the mean squares, the F

parameters and the p-values and computes the residuals to obtain the Normal
Probability Plots.

2.3 ANOVA on AVAR coe�cients

In Section (2.1), coe�cients N , K, TB, QB and R have been introduced in order to
describe the AVARs and the ADEVs of some important noises. Two models of the
total noise have been built, one without the Drift Rate Ramp noise, bringing to
not consider the R coe�cient, and one with it. It is evident that the dependence
of these coe�cients on experimental conditions can and has to be studied. For
each coe�cient the study has been conducted on all the three axes of the reference
frame and using both ANOVAs with one and two ways.

It has been decided, for the sake of simplicity, to consider only the model
without the Rate Ramp noise, that does not include the R coe�cient, and to
report both the 1-way and the 2-ways ANOVAs. In the analysis done for each
coe�cient, the most relevant factors and interactions are listed from the most
relevant one to the less relevant one.
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Coe�cient: K
Cartesian axis: x

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.0004      1    0.0004      6.41   0.0279

  TAV      0.00189     1    0.00189    30.48   0.0002

  YF       0.00009     1    0.00009     1.52   0.2432

  Light    0           1    0           0.05   0.8274

  Error    0.00068    11    0.00006                  

  Total    0.00307    15                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.1: Table of the 1-way ANOVA of K along x axis

  Source         Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------------

  Height         0.0004      1    0.0004     13.91   0.0136

  TAV            0.00189     1    0.00189    66.1    0.0005

  YF             0.00009     1    0.00009     3.3    0.129 

  Light          0           1    0           0.11   0.7557

  Height*TAV     0.00017     1    0.00017     6.06   0.0571

  Height*YF      0.0001      1    0.0001      3.44   0.123 

  Height*Light   0.00002     1    0.00002     0.82   0.4068

  TAV*YF         0.00007     1    0.00007     2.5    0.1744

  TAV*Light      0.00001     1    0.00001     0.52   0.5016

  YF*Light       0.00016     1    0.00016     5.51   0.0657

  Error          0.00014     5    0.00003                  

  Total          0.00307    15                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.2: Table of the 2-ways ANOVA of K along x axis

The most relevant variables here are the TAV, the height, the interaction
between height and TAV and the interaction between YF and light.
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Coe�cient: K
Cartesian axis: y

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.00057     1    0.00057    11.8    0.0056

  TAV      0.0018      1    0.0018     37.47   0.0001

  YF       0.00001     1    0.00001     0.25   0.6249

  Light    0.00004     1    0.00004     0.8    0.3905

  Error    0.00053    11    0.00005                  

  Total    0.00295    15                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.3: Table of the 1-way ANOVA of K along x axis

  Source         Sum Sq.   d.f.   Mean Sq.     F      Prob>F

------------------------------------------------------------

  Height         0.00057     1    0.00057     32.08   0.0024

  TAV            0.0018      1    0.0018     101.85   0.0002

  YF             0.00001     1    0.00001      0.69   0.4448

  Light          0.00004     1    0.00004      2.17   0.2005

  Height*TAV     0.00012     1    0.00012      7.04   0.0452

  Height*YF      0.00006     1    0.00006      3.41   0.1243

  Height*Light   0.00003     1    0.00003      1.71   0.2477

  TAV*YF         0.00008     1    0.00008      4.48   0.088 

  TAV*Light      0.00002     1    0.00002      1.26   0.3129

  YF*Light       0.00012     1    0.00012      7.01   0.0456

  Error          0.00009     5    0.00002                   

  Total          0.00295    15                              

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.4: Table of the 2-ways ANOVA of K along x axis

Here the most important elements in the dependence are the TAV, the height
and the following interactions: height ⇥ TAV, YF ⇥ light, TAV ⇥ YF.
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Coe�cient: K
Cartesian axis: z

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   0.0003      1    0.0003     5.64   0.0369

  TAV      0.00026     1    0.00026    4.91   0.0486

  YF       0.00001     1    0.00001    0.23   0.6418

  Light    0.0001      1    0.0001     1.95   0.1898

  Error    0.00059    11    0.00005                 

  Total    0.00126    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.5: Table of the 1-way ANOVA of K along z axis

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height         0.0003      1    0.0003     7.3    0.0427

  TAV            0.00026     1    0.00026    6.37   0.053 

  YF             0.00001     1    0.00001    0.3    0.6096

  Light          0.0001      1    0.0001     2.53   0.1726

  Height*TAV     0.00015     1    0.00015    3.56   0.118 

  Height*YF      0.0002      1    0.0002     4.77   0.0807

  Height*Light   0.00001     1    0.00001    0.25   0.6367

  TAV*YF         0.00002     1    0.00002    0.37   0.5721

  TAV*Light      0           1    0          0      0.9555

  YF*Light       0.00001     1    0.00001    0.3    0.6078

  Error          0.00021     5    0.00004                 

  Total          0.00126    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.6: Table of the 2-ways ANOVA of K along z axis

The K coe�cient on the z axis is mostly influenced by the height, the TAV,
the interaction between height and YF, the interaction between height and TAV
and, in the end, the light.
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Coe�cient: N
Cartesian axis: x

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   3.67473e-07     1    3.67473e-07   5.52   0.0385

  TAV      7.45201e-08     1    7.45201e-08   1.12   0.3126

  YF       4.13807e-09     1    4.13807e-09   0.06   0.8076

  Light     1.1793e-08     1     1.1793e-08   0.18   0.6818

  Error    7.31729e-07    11    6.65208e-08                

  Total    1.18965e-06    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.7: Table of the 1-way ANOVA of N along x axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height         3.67473e-07     1    3.67473e-07   4.29   0.0932

  TAV            7.45201e-08     1    7.45201e-08   0.87   0.394 

  YF             4.13807e-09     1    4.13807e-09   0.05   0.8348

  Light           1.1793e-08     1     1.1793e-08   0.14   0.7259

  Height*TAV     1.03816e-07     1    1.03816e-07   1.21   0.3213

  Height*YF      9.08847e-09     1    9.08847e-09   0.11   0.7579

  Height*Light   1.70155e-08     1    1.70155e-08   0.2    0.6746

  TAV*YF         1.28856e-09     1    1.28856e-09   0.02   0.9072

  TAV*Light      5.30887e-10     1    5.30887e-10   0.01   0.9403

  YF*Light       1.71322e-07     1    1.71322e-07   2      0.2166

  Error          4.28667e-07     5    8.57334e-08                

  Total          1.18965e-06    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.8: Table of the 2-ways ANOVA of N along x axis

The N coe�cient on x axis mostly depends on the height, the interaction
between the YF and the light, the interaction between the height and the TAV
and the TAV alone.



2.3 ANOVA on AVAR coe�cients 21

Coe�cient: N
Cartesian axis: y

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   5.92012e-07     1    5.92012e-07   7.33   0.0204

  TAV      9.43506e-08     1    9.43506e-08   1.17   0.3028

  YF        1.1727e-09     1     1.1727e-09   0.01   0.9062

  Light    4.41981e-08     1    4.41981e-08   0.55   0.4748

  Error     8.8804e-07    11    8.07309e-08                

  Total    1.61977e-06    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.9: Table of the 1-way ANOVA of N along y axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height         5.92012e-07     1    5.92012e-07   7.67   0.0394

  TAV            9.43506e-08     1    9.43506e-08   1.22   0.3192

  YF              1.1727e-09     1     1.1727e-09   0.02   0.9067

  Light          4.41981e-08     1    4.41981e-08   0.57   0.4833

  Height*TAV     1.66349e-07     1    1.66349e-07   2.16   0.202 

  Height*YF      1.35724e-08     1    1.35724e-08   0.18   0.6923

  Height*Light   8.62019e-08     1    8.62019e-08   1.12   0.3389

  TAV*YF          1.8142e-09     1     1.8142e-09   0.02   0.8841

  TAV*Light      2.60619e-08     1    2.60619e-08   0.34   0.5863

  YF*Light        2.0825e-07     1     2.0825e-07   2.7    0.1613

  Error          3.85791e-07     5    7.71583e-08                

  Total          1.61977e-06    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.10: Table of the 2-ways ANOVA of N along y axis

In this case the most relevant factors are the height, the YF ⇥ light interaction,
the height ⇥ TAV interaction and the TAV alone.
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Coe�cient: N
Cartesian axis: z

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   7.30391e-11     1    7.30391e-11   0.19   0.674 

  TAV       3.8653e-10     1     3.8653e-10   0.99   0.3415

  YF        2.9574e-10     1     2.9574e-10   0.76   0.4031

  Light    1.52625e-09     1    1.52625e-09   3.9    0.0738

  Error    4.30229e-09    11    3.91117e-10                

  Total    6.58385e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.11: Table of the 1-way ANOVA of N along z axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height         7.30391e-11     1    7.30391e-11   0.15   0.7106

  TAV             3.8653e-10     1     3.8653e-10   0.82   0.4075

  YF              2.9574e-10     1     2.9574e-10   0.63   0.465 

  Light          1.52625e-09     1    1.52625e-09   3.23   0.1324

  Height*TAV     1.09278e-09     1    1.09278e-09   2.31   0.189 

  Height*YF      2.52223e-13     1    2.52223e-13   0      0.9825

  Height*Light   4.95636e-10     1    4.95636e-10   1.05   0.353 

  TAV*YF         2.82852e-13     1    2.82852e-13   0      0.9814

  TAV*Light      2.39444e-10     1    2.39444e-10   0.51   0.5086

  YF*Light       1.08336e-10     1    1.08336e-10   0.23   0.6525

  Error          2.36555e-09     5    4.73111e-10                

  Total          6.58385e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.12: Table of the 2-ways ANOVA of N along z axis

The N coe�cient on the z axis mostly depends on the light, the interaction
between height and TAV, the interaction between height and light and the TAV.
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Coe�cient: TB

Cartesian axis: x

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height    2722.9     1    2722.89    1.48   0.2493

  TAV       5835.5     1    5835.54    3.17   0.1025

  YF         168.9     1     168.88    0.09   0.7676

  Light     5240.2     1    5240.23    2.85   0.1196

  Error    20241      11    1840.09                 

  Total    34208.5    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.13: Table of the 1-way ANOVA of TB along x axis

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height          2722.9     1    2722.89    1.55   0.2684

  TAV             5835.5     1    5835.54    3.32   0.128 

  YF               168.9     1     168.88    0.1    0.7691

  Light           5240.2     1    5240.23    2.98   0.1448

  Height*TAV      3148.6     1    3148.61    1.79   0.2383

  Height*YF       4410.7     1    4410.67    2.51   0.174 

  Height*Light     350.6     1     350.65    0.2    0.6738

  TAV*YF            16.3     1      16.35    0.01   0.9269

  TAV*Light       3527       1    3526.99    2.01   0.2157

  YF*Light           1.5     1       1.45    0      0.9782

  Error           8786.2     5    1757.25                 

  Total          34208.5    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.14: Table of the 2-ways ANOVA of TB along x axis

Here the most important dependences are on the TAV, the light, the height ⇥
YF interaction, the TAV ⇥ light interaction and the height.
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Coe�cient: TB

Cartesian axis: y

  Source   Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------

  Height     3226.3     1     3226.3    0.35   0.5652

  TAV       12552.6     1    12552.6    1.37   0.2669

  YF         2253.4     1     2253.4    0.25   0.63  

  Light      8786.1     1     8786.1    0.96   0.3489

  Error    100941.3    11     9176.5                 

  Total    127759.7    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.15: Table of the 1-way ANOVA of TB along y axis

  Source         Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------------

  Height           3226.3     1     3226.3    0.29   0.6105

  TAV             12552.6     1    12552.6    1.15   0.3332

  YF               2253.4     1     2253.4    0.21   0.6691

  Light            8786.1     1     8786.1    0.8    0.4114

  Height*TAV       6052.7     1     6052.7    0.55   0.4906

  Height*YF       16612.9     1    16612.9    1.52   0.2728

  Height*Light     6156.2     1     6156.2    0.56   0.4871

  TAV*YF            804.4     1      804.4    0.07   0.7972

  TAV*Light        4219.7     1     4219.7    0.39   0.5619

  YF*Light        12357.9     1    12357.9    1.13   0.3366

  Error           54737.6     5    10947.5                 

  Total          127759.7    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.16: Table of the 2-ways ANOVA of TB along y axis

The TB time on the y axis mainly depends on the interaction between the
height and the YF, on the TAV, on the interaction between the YF and the light
and on the light alone.
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Coe�cient: TB

Cartesian axis: z

  Source   Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------

  Height    17542.9     1    17542.9    0.9    0.3622

  TAV       17432.7     1    17432.7    0.9    0.3637

  YF        22613.5     1    22613.5    1.16   0.3036

  Light     13140.8     1    13140.8    0.68   0.4281

  Error    213539      11    19412.6                 

  Total    284268.8    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.17: Table of the 1-way ANOVA of TB along z axis

  Source         Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------------

  Height          17542.9     1    17542.9    1.01   0.3607

  TAV             17432.7     1    17432.7    1.01   0.3621

  YF              22613.5     1    22613.5    1.3    0.3052

  Light           13140.8     1    13140.8    0.76   0.4239

  Height*TAV      21888.3     1    21888.3    1.26   0.3123

  Height*YF       23456.6     1    23456.6    1.35   0.2973

  Height*Light    23857.9     1    23857.9    1.38   0.2937

  TAV*YF          15263.2     1    15263.2    0.88   0.3913

  TAV*Light       22864.1     1    22864.1    1.32   0.3029

  YF*Light        19487.8     1    19487.8    1.12   0.3376

  Error           86721.2     5    17344.2                 

  Total          284268.8    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.18: Table of the 2-ways ANOVA of TB along z axis

In this case the most important factors and interactions are the height ⇥ light
interaction, the height ⇥ YF interaction, the TAV ⇥ light interaction and, in the
end, the YF.
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Coe�cient: QB

Cartesian axis: x

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height    2.7037e-11     1     2.7037e-11   0.06   0.807 

  TAV      7.98651e-10     1    7.98651e-10   1.85   0.201 

  YF       1.61527e-10     1    1.61527e-10   0.37   0.5532

  Light    2.06053e-10     1    2.06053e-10   0.48   0.504 

  Error     4.7486e-09    11     4.3169e-10                

  Total    5.94186e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.19: Table of the 1-way ANOVA of QB along x axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height          2.7037e-11     1     2.7037e-11   0.05   0.8261

  TAV            7.98651e-10     1    7.98651e-10   1.58   0.264 

  YF             1.61527e-10     1    1.61527e-10   0.32   0.596 

  Light          2.06053e-10     1    2.06053e-10   0.41   0.551 

  Height*TAV     4.55098e-10     1    4.55098e-10   0.9    0.3859

  Height*YF      2.60699e-10     1    2.60699e-10   0.52   0.5045

  Height*Light   2.52713e-10     1    2.52713e-10   0.5    0.5108

  TAV*YF         5.97971e-11     1    5.97971e-11   0.12   0.7447

  TAV*Light       1.1944e-09     1     1.1944e-09   2.37   0.1846

  YF*Light        2.3302e-12     1     2.3302e-12   0      0.9485

  Error          2.52356e-09     5    5.04711e-10                

  Total          5.94186e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.20: Table of the 2-ways ANOVA of QB along x axis

The QB coe�cient on the x axis mainly depends on the interaction between
TAV and light, on the TAV itself, on the interaction between height and YF and
on the interaction between height and light.
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Coe�cient: QB

Cartesian axis: y

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   8.36111e-12     1    8.36111e-12   0.07   0.7968

  TAV      2.43101e-11     1    2.43101e-11   0.2    0.6615

  YF       8.39965e-11     1    8.39965e-11   0.7    0.4207

  Light    7.82613e-11     1    7.82613e-11   0.65   0.4366

  Error    1.32089e-09    11    1.20081e-10                

  Total    1.51582e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.21: Table of the 1-way ANOVA of QB along y axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height         8.36111e-12     1    8.36111e-12   0.09   0.7754

  TAV            2.43101e-11     1    2.43101e-11   0.26   0.6294

  YF             8.39965e-11     1    8.39965e-11   0.91   0.3836

  Light          7.82613e-11     1    7.82613e-11   0.85   0.3991

  Height*TAV     3.65706e-10     1    3.65706e-10   3.97   0.103 

  Height*YF      2.78279e-11     1    2.78279e-11   0.3    0.6063

  Height*Light   1.84655e-10     1    1.84655e-10   2      0.2161

  TAV*YF         1.30097e-10     1    1.30097e-10   1.41   0.2881

  TAV*Light      1.26118e-10     1    1.26118e-10   1.37   0.2948

  YF*Light       2.57137e-11     1    2.57137e-11   0.28   0.6199

  Error          4.60774e-10     5    9.21548e-11                

  Total          1.51582e-09    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.22: Table of the 2-ways ANOVA of QB along y axis

Here the most relevant dependences are on the interaction between height and
TAV, on the interaction between height and light, on the interaction between TAV
and YF and on the interaction between TAV and light.
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Coe�cient: QB

Cartesian axis: z

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   4.64286e-09     1    4.64286e-09   0.29   0.6013

  TAV      3.11538e-09     1    3.11538e-09   0.19   0.6679

  YF       8.97816e-09     1    8.97816e-09   0.56   0.47  

  Light    1.09442e-08     1    1.09442e-08   0.68   0.4263

  Error    1.76427e-07    11    1.60388e-08                

  Total    2.04108e-07    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.23: Table of the 1-way ANOVA of QB along z axis

  Source           Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------------

  Height         4.64286e-09     1    4.64286e-09   0.4    0.5536

  TAV            3.11538e-09     1    3.11538e-09   0.27   0.6254

  YF             8.97816e-09     1    8.97816e-09   0.78   0.4179

  Light          1.09442e-08     1    1.09442e-08   0.95   0.3747

  Height*TAV     2.77695e-08     1    2.77695e-08   2.41   0.1814

  Height*YF      1.92565e-08     1    1.92565e-08   1.67   0.2527

  Height*Light   1.43628e-08     1    1.43628e-08   1.25   0.3151

  TAV*YF         1.79672e-08     1    1.79672e-08   1.56   0.2672

  TAV*Light      1.63675e-08     1    1.63675e-08   1.42   0.2869

  YF*Light       2.30571e-08     1    2.30571e-08   2      0.2164

  Error          5.76464e-08     5    1.15293e-08                

  Total          2.04108e-07    15                               

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 2.24: Table of the 2-ways ANOVA of QB along z axis

The QB coe�cient on the z axis mainly depends on: height ⇥ TAV interaction,
YF ⇥ light interaction, height ⇥ YF interaction, TAV ⇥ YF interaction, TAV ⇥
light interaction.
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2.3.1 Overview of the results

Looking to the above listed ANOVAs, it is evident that:

• K mainly depends on the height, on the TAV and on their interaction;

• N mainly depends on the height, on the interaction between the YF and
the light and on the interaction between the height and the TAV;

• No recurrent factors or interactions have been identified when studying TB;

• The interaction between the height and the TAV and two interactions in-
volving the light seem to have a recurrent influence on QB.

From a more general point of view, the most important factors defining the
experimental dependences of the AVAR coe�cients result to be, in decreasing
order, the TAV, the height and the interaction between these two.
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Chapter 3

Model identification and Kalman
prediction

In this chapter the MOESP-PO algorithm, used to identify models, and the
Kalman predictors, used to evaluate the performances of the models, are de-
scribed.

3.1 MOESP-PO black-box model identification

A model identification (or system identification) problem is a situation where
there is a system whose mathematical model has one or more parameters being
uncertain or unknown and it is possible to carry out experiments on the system to
collect data that are useful to reduce or remove these uncertainties; in synthesis,
doing model identification is trying to incorporate information from data in a
mathematical model [11] [12].

Black-box model identification is a particular case of model identification where
also the model structure is unknown. It is a very old procedure: something similar
to black-box model identification has been done by Isaac Newton to discover
gravity.

Black-box model identification is usually performed by transformation into
grey-box model identification; it means that the first step is the choice of a model
structure, then it is possible to estimate parameters. A fundamental goal, here, is
to build a model that explains data su�ciently well and at the same time is not
too complex.

In our case, the identification process has been conducted through an algo-
rithm called MOESP-PO, that is part of the so-called subspace class of model
identification algorithms.

Let’s consider, at first, a purely deterministic case, for sake of simplicity.
Consider the state-space representation of a finite-dimensional, linear and

time-invariant (LTI) system in discrete time, as in Equation (3.1):
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(
x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)
(3.1)

For i > n it holds that
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(3.2)
This describes the system’s behaviour over a finite time interval and, repeating

it for various initial time instants, Equation (3.3) is obtained. It is the so-called
data equation:

Ytij = �iXt,j +HiUt,i,j. (3.3)

Yt,i,j and Ut,i,j are Hankel matrices.
From now on, the general structure of an Hankel matrix, for example At,i,j,

will be assumed as

At,i,j =

2

6664

a(t) . . . a(t+ j � 1)
a(t+ 1) . . . a(t+ j)

...
. . .

...
a(t+ i� 1) . . . a(t+ i+ j � 2)

3

7775
. (3.4)

Xt,j has the following expression:

Xt,j =
⇥
x(t) x(t+ 1) . . . x(t+ j � 1)

⇤
. (3.5)

In 1991, Patrick Dewilde and Michel Verhaegen proposed the MOESP algo-
rithm, that basically has the following steps:

• Construct a projection ⇧ such that Ut,i,j⇧ = 0

• Use ⇧ to project data equation and recover the column space of �i:

Yt,i,j⇧ = �Xt,j⇧ (3.6)

• Construct a basis for this column space and estimate the A and C matrices

• Estimate the B and D matrices through the least-squares (LS) estimation
method
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The projection is given by

⇧ = I � U
T
t,i,j(Ut,i,jU

T
t,i,j)

�1
Ut,i,j, (3.7)

being careful that this requires Ut,i,jU
T
t,i,j to be non-singular.

⇧ can be computed through an RQ factorisation:
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�
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= RQ (3.8)
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�
, (3.9)

from which, through some algebraic manipulation, it results that

R22 = �iXt,jQ
T
2 , (3.10)

so R22 has dimensions il ⇥ il and contains information on �i.
If u(t) is such that

rank(


Xt,j

Ut,i,j

�
) = n+ im, (3.11)

it holds that

range(R22) = range(�i). (3.12)

This is not an identifiability condition, since it depends on the state, but is
valid if the input u is persistently exciting of order n+ i, a characteristic implying
also that

lim
N!1

1

N


Xt,j

Ut,i,j

� ⇥
X

T
t,j U

T
t,i,j

⇤
> 0. (3.13)

The rank of the estimated column space of �i is reduced through singular value
decomposition (SVD) of R22 (that is possible being rank(R22) = n), because the
number of non-zero singular values of R22 reveals the order of the system:

R22 =
⇥
Un U

T
n

⇤
⌃V T =

⇥
Un U

T
n
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0 0

�
V

T
. (3.14)

Matrix C is now estimated as made by the first l rows of �i, while A is
computed through shift invariance, i.e. by solving this linear system:
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It is now time to estimate the B and D matrices.
Through convolution, it is possible to determine the output of the identified

model:

ŷ(t) = Du(t) +
t�1X

r=0

CA
t�r�1

Bu(r). (3.16)

It is useful to write Equation (3.16) as a linear regression in the elements of B
and D:

ŷ(t) = �
T
D(t)vec(D) + �

T
B(t)vec(B), (3.17)

with

vec(X) =
⇥
x11 . . . xm1 x12 . . . xm2 x1n . . . xmn

⇤T
. (3.18)

Now, being A 2 R
m⇥n and B 2 R

r⇥s, the Kronecker product of A and B is a
matrix with size mr ⇥ ns defined as

A⌦ B =

2

6664

a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB

3

7775
. (3.19)

There is a relationship between the Kronecker product and the vec operation.
Having A 2 R

mxn, A 2 R
nxo and A 2 R

oxp, it holds that

vec(ABC) = (CT ⌦ A)vec(B). (3.20)

Using all this, Equation (3.16) can be written as

ŷ(t) = [u(t)T ⌦ Il]vec(D) + (
t�1X

r=0

u(r)T ⌦ CA
t�r�1)vec(B), (3.21)

and this allows to find the B and D matrices as the solutions of the least-
squares problem of Equation (3.22):

B,D = argmin
B,D

sX

k=0

[y(t)� [u(t)T ⌦ Il]vec(D)� (
t�1X

r=0

u(r)T ⌦ CA
t�r�1)vec(B)]2.

(3.22)
In general, however, the considered situation is not at all deterministic, so the

state-space representation to be considered is not the one of (3.1), but the one of
(3.23):
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(
x(t+ 1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) +Du(t) + v(t),
(3.23)

where v(t) is the measurement noise and w(t) is the process noise; both noises
are considered as zero-mean, white and uncorrelated with u(t).

In this more general case, (3.3) turns into (3.24):

Yt,i,j = �iXt,j +HiUtij + EiWt,i,j + Vt,i,j, (3.24)

where Vt,i,j and Wt,i,j are Hankel matrices.
It follows that the residual is no longer white, so the orthogonal projection

procedure does not work anymore, i.e. it does not lead to unbiased estimators of
the model.

This problem can be solved through the so-called Instrumental Variables (IV),
assuming to be able to found a Z matrix such that

rank( lim
N!1

1

N
(Xt,j⇧)Z

T ) = n (3.25)

lim
N!1

1

N
(EiWt,i,j + Vt,i,j)Z

T = 0 (3.26)

and to estimate the column space of �i from

Yt,i,j⇧Z
T = �Xt,j⇧Z

T + (EiWt,i,j + Vt,i,j)⇧Z
T (3.27)

The term Yt,i,j⇧ZT can be computed from the RQ factorisation, holding that
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Yt,i,j⇧Z
T = R32R

T
22 (3.29)

and

range(�i) = range( lim
N!1

1

N
R32R

T
22). (3.30)

IVs can be chosen through splitting the available data into two sets of samples
to be treated with two separate data equations, the second one shifted ahead with
respect to the first, and using previous data as IVs when treating future data; this
is the MOESP-PO algorithm, proposed by Michel Verhaegen in 1994.
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3.2 Kalman predictors

In this thesis, the MOESP-PO algorithm has been applied to the collected data to
identify models having as input u(t) the position data estimated by the odometry
system on the UAV and as output y(t) the errors in the estimation of position
with respect to the position pMC(t) detected by the motion capture system.

In synthesis:

y(t) = u(t)� pMC(t). (3.31)

Since the position in a Cartesian reference frame has three components (x, y
and z), the produced models are MIMO systems where input, state and output are
all vectors with three elements and the state-space matrices are 3 ⇥ 3 matrices.

Furthermore, it has been decided, for the sake of simplicity, to assume that
the matrix D is null in all the models.

In these models, the A matrices have turned out to be very close to identity
matrices in all cases, whereas the B and C matrices have not shown a systematic
trend of the values of their terms; in order to study how the models are influenced
by the factors, it has been necessary to consider more general characteristics, as
in Section (3.3).

In order to evaluate the performance of the identified models and see how they
are able to follow the evolution of the errors, it has been necessary to build and
use one-step ahead Kalman predictors [13].

3.2.1 Definition

For the sake of simplicity, let’s consider a discrete-time system with input u(t) = 0
structured as in (3.32):

8
><

>:

x(t+ 1) = Fx(t) + w(t)

y(t) = Hx(t) + v(t)

x(1) = x1,

(3.32)

with v white Gaussian measurement noise with v ⇡ G(0, V ), w white Gaussian
process noise with w ⇡ G(0,W ) and x1 ⇡ G(0, P1).

Assuming that the observed interval of time t goes from t = 0 to t = T , the
prediction problem is the problem to find estimators for the state given measure-
ments of the output at time instants t > T ; the one-step ahead prediction problem
is the prediction problem at time T + 1.

It is known that the free response, obtained considering the system with

(
x(t+ 1) = Fx(t)

x(1) = x1,
(3.33)
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has as expression

x(t) = F
t�1

x1, (3.34)

whereas the forced response, obtained considering the system with

(
x(t+ 1) = Fx(t) + w(t)

x(1) = 0,
(3.35)

is expressed by (3.36):

x(t) =
t�1X

k=1

F
t�k

w(k). (3.36)

Since (3.34) is Gaussian because it is linear in the Gaussian initial state, and
also (3.36) is Gaussian, because it is linear in w(t), the total response, that is the
summation of the two, is also Gaussian.

A result from theory called Bayes rule allows to state that the optimal one-step
ahead state and output predictors have these expressions:

x̂(N + 1\N) = E[x(N + 1)\yN ] (3.37)

ŷ(N + 1\N) = E[y(N + 1)\yN ]. (3.38)

Let’s define two quantities that will be often recalled in the following deriva-
tion:

e(N + 1) = y(N + 1)� E[y(N + 1)\yN ] (3.39)

is called the innovation, while

⌫(N + 1) = x(N + 1)� E[x(N + 1)\yN ] (3.40)

is the state prediction error.
Now, the output prediction is

ŷ(N + 1\N) =

= E[y(N + 1)\yN ] =
= HE[x(N + 1)\yN ] + E[v(N + 1)\yN ],

(3.41)

and, since E[v(N + 1)\yN ] = 0 because v(N + 1) is independent of previous
noise samples and of the initial state, that means v(n + 1) is unpredictable from
previous data,

ŷ(N + 1\N) = Hx̂(N + 1\N). (3.42)
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Consider now the state prediction:

x̂(N + 1\N) =

= E[x(N + 1)\yN ] =
= E[x(N + 1)\yN�1] + E[x(N + 1)\y(N)] =

= E[x(N + 1)\yN�1] + E[x(N + 1)\e(N)] =

= E[Fx(N) + w(N)\yN�1] + E[x(N + 1)\e(N)] =

= FE[x(N)\yN�1] + E[w(N)\yN�1] + E[x(N + 1)\e(N)] =

= F x̂(N\N � 1) + E[x(N + 1)\e(N)].

(3.43)

The second term is zero because y(N � 1) is a function of v up to time N � 1,
of w up to time N � 2 and of x1 and w(N) is independent of previous samples of
the noises and of the initial state, again.

The Bayes rule, again, allows to state that

E[x(N + 1)\e(N)] = ⇤x(N+1)e(N)⇤
�1
e(N)e(N)e(N), (3.44)

so it is needed to compute the two variance matrices ⇤x(N+1)e(N) and ⇤e(N)e(N).
After some algebraic passages, it is found that

⇤x(N+1)e(N) = FE[⌫(N)⌫(N)T ]HT
, (3.45)

and, defining

P (N) = E[⌫(N)⌫(N)T ], (3.46)

Equation (3.45) turns into

⇤x(N+1)e(N) = FP (N)HT
. (3.47)

It is also possible to prove that

⇤e(N)e(N) = HP (N)HT + V. (3.48)

The complete expression of the predictor is then

x̂(N + 1\N) = F x̂(N\N � 1) +K(N)e(N), (3.49)

having defined the predictor’s gain K(N) (note that K(N) is not constant) as

K(N) = FP (N)HT (HP (N)HT + V )�1
. (3.50)

Finally, a strategy to update P (N) is needed. Starting from the definition of
the prediction error
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⌫(N + 1) = x(N + 1)� x̂(N + 1\N) (3.51)

and doing some manipulation, it is possible to obtain the Di↵erence Riccati
Equation (DRE):

P (N + 1) = FP (N)F T +W � FP (N)HT [HP (N)HT + V ]HP (N)F T
, (3.52)

with

W = E[w(N)wT (N)]. (3.53)

The first two terms together are called prediction, the last is called correction.
To initialize the predictor, let’s consider the initial values of the prediction

x̂(1\0) = E[x(1)\y0] = 0 (3.54)

and of the variance of the prediction error

P (1) = E[(x(1)� x̂(1\0))2] = P1. (3.55)

All these results have been derived under some simplifying assumptions, some
of which can actually be removed. An element that is important to add to use
Kalman predictors on the identified models is an input u(t), turning the system
of Equation (3.32) into this one:

8
><

>:

x(t+ 1) = Fx(t) +Gu(t) + w(t)

x(1) = x1

y(t) = Hx(t) + v(t).

(3.56)

The input can be included in the above derivation, so the one-step ahead
prediction turns into

8
><

>:

x̂(N + 1\N) = F x̂(N\N � 1) +Gu(N) +K(N)(y(N)� ŷ(N\N � 1))

x̂(1\0) = x1

ŷ(N\N � 1) = Hx̂(N\N � 1),
(3.57)

where K(N) and the DRE to update P (N) remain unchanged.

3.2.2 Application

In this thesis, two types of predictors have been considered:
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• The first uses all the three components of the position estimation error y

and, even if very useful to evaluate the performance of the models, it could
not be used in a working contest on an UAV without an onboard motion
capture system;

• The second is a partial predictor, since it uses only the vertical component
zy of y, that could be computed onboard if the UAV is equipped with an
accurate altitude measurement system, for example a LASER sensor, whose
measurement could be used in the error computation.

Each predictor has been built for each one of the 16 identified models, bringing
to a total of 32 predictors.

Let’s consider the state-space representation of one of the models as in (3.58):

(
xm(t+ 1) = Amxm(t) + Bmum(t)

ym(t) = Cmxm(t)
(3.58)

The corresponding complete predictor has the following structure:

(
xp1(t+ 1) = Ap1(t)xp1(t) + Bp1(t)up1(t)

yp1(t) = Cp1(t)xp1(t),
(3.59)

with

Ap1 = Am �KCm, (3.60)

Bp1 =
⇥
Bm K

⇤
, (3.61)

Cp1 = Cm (3.62)

and

up1 =
⇥
um ym

⇤
, (3.63)

being K the gain matrix.
The partial predictor uses only the third column of the C and K matrices,

corresponding to the components on the z axis, and has the following structure:

(
xp2(t+ 1) = Ap2xp2(t) + Bp2up2(t)

yp2(t) = Cp2xp2(t),
(3.64)

with

Ap2 = Am �

2

4
K(1, 3)
K(2, 3)
K(3, 3)

3

5

2

4
Cm(1, 3)
Cm(2, 3)
Cm(3, 3)

3

5 , (3.65)
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Bp2 =

2

4Bm

2

4
K(1, 3)
K(2, 3)
K(3, 3)

3

5

3

5 , (3.66)

Cp2 = Cm (3.67)

and

up2 =

2

4um

2

4
ym(1, 3)
ym(2, 3)
ym(3, 3)

3

5

3

5 , (3.68)

being, again, K the gain matrix.
To evaluate the validity of these predictors, it is necessary to inspect how much

they are able to capture the evolution of the estimation error, that comes from
the collected data and is the output of the models.

A first trial to do this has been done using as indicator the percentage relative
error on the three axes as a function of the time. Being y the output of the
model and yy the output of the considered predictor at the same time instant,
the percentage relative error is computed as

Er% =

✓
|y � yy|

y

◆
⇤ 100. (3.69)

This choice, however, has turned out to be not very wise, since when the value
of y, that comes from the trajectory described by the drone, becomes very small,
Er% grows towards infinity.

It has been decided, then, to consider the di↵erence Eabs between y and yy in
absolute value.

Being yx, yy and yz the components of y along the three Cartesian axis and
yyx, yyy and yyz the components on the same axes of yy, Eabs is computed, at
each time instant, as in Equation (3.70):

Eabs =
q
(yx � yyx)2 + (yy � yyy)2 + (yz � yyz)2. (3.70)

A simple statistical analysis has then been done on Eabs, inspecting its mean
values µ and the standard deviation � and looking to how they behave when the
levels of the factor is changed.

The following plots, showing how the statistical indicators of Eabs variate be-
tween the sixteen experimental runs, with an emphasis on the di↵erent levels of
the factors, have been produced.

As clearly expectable, the partial predictor generates a bigger error than the
complete one, because it is based on much less data.
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In the following figures, µ and � of the prediction error of the partial predictor
in the run number 5 do not appear, because they are much bigger than in the
other runs, so it is better to discard that predictor.

From Figures (3.1) and (3.2), it is evident that the error produced by the
complete predictor is bigger in mean and standard deviation at the height of 2 m
than at 1 m, a trend that is not present in the case of the partial predictor.
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Figure 3.1: Mean values of the prediction error at the two di↵erent levels of the
height
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Figure 3.2: Standard deviations of the prediction error at the two di↵erent levels
of the height
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Figures (3.3) and (3.4) show that also the TAV causes a general increase of
the statistical indicators of the error when increased (except, again, for the partial
predictor in the run number 5, that has not been considered); in this case, such a
trend is present in both the types of predictor.
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Figure 3.3: Mean values of the prediction error at the two di↵erent levels of the
TAV
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Figure 3.4: Standard deviations of the prediction error at the two di↵erent levels
of the TAV
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Figures (3.5) and (3.6) show how µ and � of the prediction errors behave when
the Yaw Following is enabled or disabled. In this case all the values seem to be
similar and a specific influence of the YF is not detected.
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Figure 3.5: Mean values of the prediction error at the two di↵erent levels of the
YF
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Figure 3.6: Standard deviations of the prediction error at the two di↵erent levels
of the YF
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The last two plots are about the variation of means and standard deviations
of errors with the light, that, again, seems not to have a relevant e↵ect, since the
values look similar between the two levels.
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Figure 3.7: Mean values of the prediction error at the two di↵erent levels of the
light
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In general, in addition to the run number 5, the other runs that show a big
di↵erence between the indicators of the two predictors are the number 3, 4, 6, 7,
8, 11, 14 and 15; the experimental condition that is more present in all them is
the TAV of 0.6 rad/s.

3.3 ANOVA on model characteristics

After the inspection of the results from MOESP-PO model identification and
Kalman prediction, the dependence from experimental factors of some character-
istics of the collected data and of the models has been studied, again, through the
ANOVA. These features are:

• Di↵erence between maximum and minimum singular value (�) of the B

matrices (it is a directionality indicator), called from now on ��
max
B ;

• Maximum value (depending on frequency) of the three singular values of the
frequency responses matrices G(j!), called from now on �

max
G1 , �max

G2 , �max
G3

(they are, again, directionality indicators);

• Maximum error on the estimated position with respect to the reference frame
origin in absolute value (it is an indicator of the validity of the odometry
process): being yx, yy, yz the components of the estimation error on each
Cartesian axis, the maximized quantity is defined as e =

p
y2x + y2y + y2z .

It has been decided to start doing 2-ways ANOVAs, to check the Normal
Probability Plots and then, if the normality of the residuals was not satisfying, to
switch to 1-way ANOVA; the 2-way ANOVAs have been discarded only when the
residuals were not valid in the central part of the Normal Probability Plot.

Furthermore, in this case, a cross-check on the results from the ANOVAs
has been done computing the variation between mean values of the considered
quantities at the two levels of the factors.
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��
max
B : the Normal Probability Plot of the 2-ways ANOVA is shown in Figure

(3.9). It is evident that the residuals of the 2-ways ANOVA do not have significant
deviations from normality, so the analysis is kept as valid.
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Figure 3.9: Normal Probability Plot of the residuals of the 2-ways ANOVA of
��

max
B

The ANOVA table is shown into Figure (3.10). The values of F tell that
��

max
B mostly depends on the height, on the TAV and on the interaction between

the TAV and the YF.

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height         0.00013     1    0.00013    1.98   0.2189

  TAV            0.00008     1    0.00008    1.2    0.323 

  YF             0           1    0          0.03   0.8724

  Light          0           1    0          0.04   0.8574

  Height*TAV     0.00002     1    0.00002    0.3    0.6058

  Height*YF      0           1    0          0.02   0.8808

  Height*Light   0           1    0          0      0.9786

  TAV*YF         0.00008     1    0.00008    1.13   0.3373

  TAV*Light      0.00001     1    0.00001    0.12   0.7476

  YF*Light       0.00006     1    0.00006    0.86   0.3957

  Error          0.00034     5    0.00007                 

  Total          0.00073    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.10: Table of the 2-ways ANOVA of ��
max
B
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This is confirmed by the inspection of the mean variations, shown in Figure
(3.11); it is clear that ��

max
B increases as all the four factors have their levels

increased.
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Figure 3.11: Mean variations of ��
max
B between the levels of the factors
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�
max
G1 : the Normal Probability Plots of the residuals with the data models,

respectively, at 1 and 2 ways, are shown in Figures (3.12) and (3.13). Using 2
ways, residuals seem to not follow normality very well, whereas using only 1 way
the situation seems to become better in the central part of the plot, so the 1-way
ANOVA has been kept into account.
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Figure 3.12: Normal Probability of the residuals of the 1-way ANOVA of �max
G1
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Figure 3.13: Normal Probability Plot of the residuals of the 2-ways ANOVA of
�
max
G1
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The ANOVA reported in Figure (3.14) tells that �max
G1 is influenced mainly by

the TAV; also the light has a minimum relevance, whereas the other factors are
completely irrelevant.

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height     0.109     1     0.1094    0.01   0.912 

  TAV       34.585     1    34.5852    4.05   0.0694

  YF         0         1     0.0001    0      0.9977

  Light      2.216     1     2.2157    0.26   0.6207

  Error     94.007    11     8.5461                 

  Total    130.917    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.14: Table of the 1-way ANOVA of �max
G1

The mean variations, shown in Figure (3.15), confirm the huge relevance of
the TAV. The YF has null relevance (as correctly told by the fact that its F = 0),
while the other factors make �

max
G1 to grow when their levels are increased.
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Figure 3.15: Mean variations of �max
G1 between the levels of the factors
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�
max
G2 : in this case both the 1-way and the 2-ways ANOVAs have been reported,

in order to make a comparison, even if, again, the 1-way one has been considered
better, as clearly visible from the Normal Probability Plots in Figures (3.16) and
(3.17).
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Figure 3.16: Normal Probability Plot of the residuals of the 1-way ANOVA of
�
max
G2
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Figure 3.17: Normal Probability Plot of the residuals of the 2-ways ANOVA of
�
max
G2
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The ANOVAs for �max
G2 are reported in Figures (3.18) and (3.19). Also in this

case the most relevant factor is the TAV and, unlike �max
G1 , there is also an influence

of the YF. Here the height is not giving any dependence at all (F = 0). The most
important interactions are the one between the height and the YF and between
the TAV and the light, even if with F much lower than single factors.

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   0           1    0          0      0.9772

  TAV      0.01999     1    0.01999    5.33   0.0414

  YF       0.0111      1    0.0111     2.96   0.1132

  Light    0.00103     1    0.00103    0.28   0.6099

  Error    0.04124    11    0.00375                 

  Total    0.07338    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.18: Table of the 1-way ANOVA of �max
G2

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height         0           1    0          0      0.9792

  TAV            0.01999     1    0.01999    4.68   0.0829

  YF             0.0111      1    0.0111     2.6    0.168 

  Light          0.00103     1    0.00103    0.24   0.6437

  Height*TAV     0.00004     1    0.00004    0.01   0.9238

  Height*YF      0.00708     1    0.00708    1.66   0.2546

  Height*Light   0.00255     1    0.00255    0.6    0.4751

  TAV*YF         0.00345     1    0.00345    0.81   0.4104

  TAV*Light      0.0062      1    0.0062     1.45   0.2823

  YF*Light       0.00055     1    0.00055    0.13   0.7334

  Error          0.02138     5    0.00428                 

  Total          0.07338    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.19: Table of the 2-ways ANOVA of �max
G2
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The mean variations, shown in Figure (3.20), confirm the statistical results
again and show that, unlike the other factors, the YF, when its level is increased,
produces a decrease in �

max
G2 .
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Figure 3.20: Mean variations of �max
G2 between the levels of the factors
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�
max
G3 : here the Normal Probability Plot of the residuals of the 2-ways ANOVA,

shown in Figure (3.21), does not show big deviations from normality in residuals,
so the analysis has been kept in consideration.
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Figure 3.21: Normal Probability Plot of the residuals of the 2-ways ANOVA of
�
max
G3

The ANOVA is reported in Figure (3.22).

  Source         Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------------

  Height         0.00003     1    0.00003     0.65   0.4568

  TAV            0.00169     1    0.00169    34.83   0.002 

  YF             0.00175     1    0.00175    35.97   0.0018

  Light          0.00001     1    0.00001     0.2    0.677 

  Height*TAV     0           1    0           0      0.9795

  Height*YF      0.00005     1    0.00005     1      0.3629

  Height*Light   0.00007     1    0.00007     1.35   0.2984

  TAV*YF         0.00041     1    0.00041     8.5    0.0332

  TAV*Light      0.00009     1    0.00009     1.9    0.2262

  YF*Light       0.00025     1    0.00025     5.23   0.071 

  Error          0.00024     5    0.00005                  

  Total          0.00459    15                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.22: Table of the 2-ways ANOVA of �max
G3
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There is a big influence of the TAV, of the YF and, even if with less importance,
of their interaction; another important interaction is the one between the YF and
light.

Also in this case the plots of the mean variations, visible in Figure (3.23),
are in line with the ANOVAs’ results, portraying the relative influences of the
factors, and show that the only factor producing a decrease of �max

G3 when its level
is increased is the YF.
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Figure 3.23: Mean variations of �max
G3 between the levels of the factors
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Estimation error in absolute value e: the 1-way and 2-ways ANOVAs
have both been reported, even if in both cases the residuals do not seem very
respectful of the normality hypothesis, as visible in the Normal Probability Plots
of Figures (3.24) and (3.25).
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Figure 3.24: Normal Probability Plot of the residuals of the 1-way ANOVA of e
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Figure 3.25: Normal Probability Plot of the residuals of the 2-ways ANOVA of e
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ANOVAs tell that the factors having the biggest influence on e are the height
and the TAV, even if the other two have a not null influence; the 2-ways case
shows that the interaction between height and YF is also relevant (the YF alone
is not so important).

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   0.01572     1    0.01572    3.21   0.1006

  TAV      0.02541     1    0.02541    5.19   0.0437

  YF       0.00285     1    0.00285    0.58   0.4618

  Light    0.00003     1    0.00003    0.01   0.9407

  Error    0.05384    11    0.00489                 

  Total    0.09785    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.26: Table of the 1-way ANOVA of e

  Source         Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------------

  Height         0.01572     1    0.01572    2.81   0.1547

  TAV            0.02541     1    0.02541    4.54   0.0864

  YF             0.00285     1    0.00285    0.51   0.5079

  Light          0.00003     1    0.00003    0.01   0.9461

  Height*TAV     0.00359     1    0.00359    0.64   0.4595

  Height*YF      0.01632     1    0.01632    2.91   0.1486

  Height*Light   0.00051     1    0.00051    0.09   0.774 

  TAV*YF         0.00493     1    0.00493    0.88   0.3911

  TAV*Light      0.00046     1    0.00046    0.08   0.7857

  YF*Light       0           1    0          0      0.9943

  Error          0.02801     5    0.0056                  

  Total          0.09785    15                            

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 3.27: Table of the 2-ways ANOVA of e
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These results are, again, confirmed, by the mean variations, as visible in Figure
(3.28); the YF and the light, when their levels are increased, cause e to decrease.
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Figure 3.28: Mean variations of e between the levels of the factors

3.3.1 Overview of the results

The above reported ANOVAs tell that the factor causing the biggest changes
in the studied characteristics of the models is the TAV, that always cause the
under-study feature to highly increase when brought from 0.2 to 0.6 .

The height, when increased, causes a big change (increase) in ��
max
B and e,

while the activation of the YF produces a big decrease in �
max
G2 and �

max
G3 .

The light, in the end, has not a big influence on the studied quantities.



Chapter 4

Parametric modeling

ANOVAs, in the end, explain which variables depend on which factor.
An important step, explained in this chapter, has been trying to construct lin-

ear parametrical models of some quantities of interest, doing a linear interpolation
through the method of least-squares regression; this has been done on the AVAR
coe�cients found in the model without the Rate Ramp noise and on the terms of
the matrices coming from the identified models.

4.1 Linear regression

The characteristics of the models used for the regressions are reported in Table
(4.1).

Number of factors Equation
1 y = a+ bx

2 y = a+ bx1 + cx2

3 y = a+ bx1 + cx2 + dx3

Table 4.1: General form of regression models
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4.2 Interpolations on AVAR coe�cients

Since the ANOVAs done on the AVAR coe�cients in Section (2.3) put in evidence
that the YF, the only factor with qualitative levels, has an influence on them, so
neglecting it would not have been very wise, and since it is not convenient to
perform a regression with a variable not having numerical values, it has been
decided to split the data in two groups, one containing only the values with the
YF and the other only the values without the YF, and to do two ANOVAs and
two regressions for each coe�cient.

The results of these ANOVAs have been used as driving elements to choose
how many and which of the factors was better to use as independent variables in
the regression processes, having the AVAR coe�cients as dependent variables.

Here it has been considered, again, only the model without the Rate Ramp
noise (no R coe�cient) and only 1-way ANOVAs have been done, because their
residuals were much nearer to normality, so the interactions between the factors
have been neglected.

4.2.1 Data without yaw following

Let’s list all the ANOVA-based models done on the AVAR coe�cients in the eight
experimental runs without the YF.

From now on, in the expressions of the models, y will indicate the considered
coe�cient.
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Coe�cient: K
Cartesian axis: x
ANOVA: reported in Figure (4.1)

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.00005    1     0.00005     0.86   0.4074

  TAV      0.00135    1     0.00135    22.93   0.0087

  Light    0.0001     1     0.0001      1.74   0.2574

  Error    0.00024    4     0.00006                  

  Total    0.00174    7                              

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.1: 1-way ANOVA of K on x axis without YF

Model: y = a+ bx, with x TAV and

a = �0.002218623066802 (4.1)

b = 0.064913963258429 (4.2)
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Figure 4.2: Plot of the model for K on x axis without YF
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Coe�cient: K
Cartesian axis: y
ANOVA: reported in Figure (4.3)

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.00013    1     0.00013     2.62   0.1808

  TAV      0.00132    1     0.00132    26.79   0.0066

  Light    0.00015    1     0.00015     3.05   0.1555

  Error    0.0002     4     0.00005                  

  Total    0.0018     7                              

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.3: 1-way ANOVA of K on y axis without YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 light and

a = �0.007259645073151 (4.3)

b = 0.064197151770991 (4.4)

c = �0.000057800048341 (4.5)

Figure 4.4: Plot of the model for K on y axis without YF
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Coe�cient: K
Cartesian axis: z
ANOVA: reported in Figure (4.5)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   0.00001    1     0.00001    0.21   0.6726

  TAV      0.0002     1     0.0002     7.55   0.0515

  Light    0.00009    1     0.00009    3.53   0.1335

  Error    0.00011    4     0.00003                 

  Total    0.00041    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.5: 1-way ANOVA of K on z axis without YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 light and

a = �0.001126306931063 (4.6)

b = 0.025072369784152 (4.7)

c = 0.000045705586494 (4.8)

Figure 4.6: Plot of the model for K on z axis without YF
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Coe�cient: N
Cartesian axis: x
ANOVA: reported in Figure (4.7)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height    1.3049e-07    1      1.3049e-07   1.47   0.2924

  TAV      4.77035e-08    1     4.77035e-08   0.54   0.5045

  Light    1.36507e-07    1     1.36507e-07   1.54   0.283 

  Error    3.55587e-07    4     8.88967e-08                

  Total    6.70287e-07    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.7: 1-way ANOVA of N on x axis without YF

Model: y = a+ bx1 + cx2, with x1 height, x2 light and

a = 0.233223823824975e� 3 (4.9)

b = �0.255431130359799e� 3 (4.10)

c = 0.001741688500999e� 3 (4.11)

Figure 4.8: Plot of the model for N on x axis without YF
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Coe�cient: N
Cartesian axis: y
ANOVA: reported in Figure (4.9)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.13154e-07    1     2.13154e-07   1.53   0.2839

  TAV      3.49992e-08    1     3.49992e-08   0.25   0.6427

  Light    2.22163e-07    1     2.22163e-07   1.59   0.2754

  Error    5.57684e-07    4     1.39421e-07                

  Total      1.028e-06    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.9: 1-way ANOVA of N on y axis without YF

Model: y = a+ bx1 + cx2, with x1 height, x2 light and

a = 0.313308966020439e� 3 (4.12)

b = �0.326461368587362e� 3 (4.13)

c = 0.002221924117212e� 3 (4.14)

Figure 4.10: Plot of the model for N on y axis without YF
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Coe�cient: N
Cartesian axis: z
ANOVA: reported in Figure (4.11)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   3.23536e-11    1     3.23536e-11   0.04   0.8524

  TAV      2.03862e-10    1     2.03862e-10   0.25   0.6447

  Light    1.22392e-09    1     1.22392e-09   1.49   0.2895

  Error    3.28912e-09    4      8.2228e-10                

  Total    4.74926e-09    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.11: 1-way ANOVA of N on z axis without YF

Model: y = a+ bx, with x light and

a = 0.492929253430033e� 4 (4.15)

b = �0.001649191622407e� 4 (4.16)
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Figure 4.12: Plot of the model for N on z axis without YF
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Coe�cient: TB

Cartesian axis: x
ANOVA: reported in Figure (4.13)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height    7032.3    1     7032.3     1.94   0.2364

  TAV       3234.8    1     3234.8     0.89   0.3987

  Light     2708.1    1     2708.15    0.75   0.4365

  Error    14525.5    4     3631.38                 

  Total    27500.8    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.13: 1-way ANOVA of TB on x axis without YF

Model: y = a+ bx1 + cx2 + dx3, with x1 height, x2 TAV, x3 light and

a = 57.062236898472534 (4.17)

b = 59.297129266946740 (4.18)

c = �100.5422890965609 (4.19)

d = �0.245318340230278 (4.20)
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Coe�cient: TB

Cartesian axis: y
ANOVA: reported in Figure (4.14)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   2598.5     1     2598.5     3.12   0.1523

  TAV      3500.91    1     3500.91    4.2    0.1098

  Light     151.94    1      151.94    0.18   0.6915

  Error    3336.32    4      834.08                 

  Total    9587.67    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.14: 1-way ANOVA of TB on y axis without YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 height and

a = 55.958829356058899 (4.21)

b = �104.5960849546154 (4.22)

c = 36.045123104501954 (4.23)

Figure 4.15: Plot of the model for TB on y axis without YF
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Coe�cient: TB

Cartesian axis: z
ANOVA: reported in Figure (4.16)

  Source   Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------

  Height    40785.1    1     40785.1    1.06   0.3606

  TAV       32659.8    1     32659.8    0.85   0.4082

  Light     32317      1     32317      0.84   0.4105

  Error    153319.3    4     38329.8                 

  Total    259081.1    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.16: 1-way ANOVA of TB on z axis without YF

Model: y = a+ bx1 + cx2 + dx3, with x1 height, x2 TAV, x3 light and

a = �85.356064176341945 (4.24)

b = 142.8024447796917 (4.25)

c = 319.4712610919590 (4.26)

d = �0.847440165647982 (4.27)
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Coe�cient: QB

Cartesian axis: x
ANOVA: reported in Figure (4.17)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.27823e-10    1     2.27823e-10   0.23   0.6588

  TAV       2.1069e-10    1      2.1069e-10   0.21   0.6707

  Light    8.22795e-11    1     8.22795e-11   0.08   0.7889

  Error    4.01797e-09    4     1.00449e-09                

  Total    4.53877e-09    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.17: 1-way ANOVA of QB on x axis without YF

Model: y = a+ bx1 + cx2, with x1 height, x2 TAV and

a = 0.101694524685570e� 4 (4.28)

b = 0.106729373400217e� 4 (4.29)

c = �0.256594386057576e� 4 (4.30)

Figure 4.18: Plot of the model for QB on x axis without YF
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Coe�cient: QB

Cartesian axis: y
ANOVA: reported in Figure (4.19)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.84092e-12    1     2.84092e-12   0.01   0.9231

  TAV       2.0966e-11    1      2.0966e-11   0.08   0.7939

  Light    9.68472e-11    1     9.68472e-11   0.36   0.5807

  Error    1.07534e-09    4     2.68836e-10                

  Total      1.196e-09    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.19: 1-way ANOVA of QB on y axis without YF

Model: y = a+ bx1 + cx2 + dx3, with x1 light, x2 TAV, x3 height and

a = �0.033977522000897e� 5 (4.31)

b = 0.004639137082416e� 5 (4.32)

c = 0.809437223117382e� 5 (4.33)

d = �0.119183088695481e� 5 (4.34)
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Coe�cient: QB

Cartesian axis: z
ANOVA: reported in Figure (4.20)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.14051e-08    1     2.14051e-08   0.79   0.4253

  TAV      1.80229e-08    1     1.80229e-08   0.66   0.4615

  Light    3.28859e-08    1     3.28859e-08   1.21   0.3335

  Error    1.08905e-07    4     2.72264e-08                

  Total    1.81219e-07    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.20: 1-way ANOVA of QB on z axis without YF

Model: y = a+ bx1 + cx2 + dx3, with x1 light, x2 height, x3 TAV and

a = �0.030766130155979e� 3 (4.35)

b = �0.000854867556257e� 3 (4.36)

c = 0.103453126015541e� 3 (4.37)

d = 0.237321972505578e� 3 (4.38)

4.2.2 Data with yaw following

Let’s list, now, all the ANOVA-based models done on the AVAR coe�cients in the
eight experimental runs with the YF; y ,again, indicates the considered coe�cient.
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Coe�cient: K
Cartesian axis: x
ANOVA: reported in Figure (4.21)

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.00045    1     0.00045    14.91   0.0181

  TAV      0.00061    1     0.00061    20.52   0.0106

  Light    0.00006    1     0.00006     1.95   0.235 

  Error    0.00012    4     0.00003                  

  Total    0.00124    7                              

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.21: 1-way ANOVA of K on x axis with YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 height and

a = �0.020998700796724 (4.39)

b = 0.043759987614534 (4.40)

c = 0.014924021403213 (4.41)

Figure 4.22: Plot of the model for K on x axis with YF
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Coe�cient: K
Cartesian axis: y
ANOVA: reported in Figure (4.23)

  Source   Sum Sq.   d.f.   Mean Sq.     F     Prob>F

-----------------------------------------------------

  Height   0.0005     1     0.0005     29.02   0.0057

  TAV      0.00056    1     0.00056    32.74   0.0046

  Light    0.00001    1     0.00001     0.71   0.4472

  Error    0.00007    4     0.00002                  

  Total    0.00114    7                              

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.23: 1-way ANOVA of K on y axis with YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 light and

a = �0.019392772537509 (4.42)

b = 0.041946587940947 (4.43)

c = 0.015795599832171 (4.44)

Figure 4.24: Plot of the model for K on y axis with YF
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Coe�cient: K
Cartesian axis: z
ANOVA: reported in Figure (4.25)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height   0.00049    1     0.00049    7.67   0.0503

  TAV      0.00008    1     0.00008    1.18   0.3378

  Light    0.00002    1     0.00002    0.35   0.586 

  Error    0.00026    4     0.00006                 

  Total    0.00085    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.25: 1-way ANOVA of K on z axis with YF

Model: y = a+ bx, with x height and

a = �0.004857761712008 (4.45)

b = 0.015669830932098 (4.46)
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Figure 4.26: Plot of the model for K on z axis with YF
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Coe�cient: N
Cartesian axis: x
ANOVA: reported in Figure (4.27)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.46072e-07    1     2.46072e-07   5.06   0.0877

  TAV      2.81052e-08    1     2.81052e-08   0.58   0.4894

  Light    4.66089e-08    1     4.66089e-08   0.96   0.3829

  Error    1.94442e-07    4     4.86106e-08                

  Total    5.15228e-07    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.27: 1-way ANOVA of N on x axis with YF

Model: y = a+ bx, with x height and

a = 0.713183436681427e� 3 (4.47)

b = �0.350764592305823e� 3 (4.48)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Height [m]

0

1

2

3

4

5

6

7

8

9

Q
n

rx

10-4

Figure 4.28: Plot of the model for N on x axis with YF
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Coe�cient: N
Cartesian axis: y
ANOVA: reported in Figure (4.29)

  Source     Sum Sq.     d.f.    Mean Sq.       F     Prob>F

------------------------------------------------------------

  Height   3.92431e-07    1     3.92431e-07   14.71   0.0185

  TAV      6.11657e-08    1     6.11657e-08    2.29   0.2046

  Light    3.02851e-08    1     3.02851e-08    1.14   0.3467

  Error     1.0672e-07    4     2.66801e-08                 

  Total    5.90602e-07    7                                 

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.29: 1-way ANOVA of N on y axis with YF

Model: y = a+ bx, with x height and

a = 0.894019167634692e� 3 (4.49)

b = �0.442962101016783e� 3 (4.50)
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Figure 4.30: Plot of the model for N on y axis with YF
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Coe�cient: N
Cartesian axis: z
ANOVA: reported in Figure (4.31)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   4.09378e-11    1     4.09378e-11   0.18   0.6923

  TAV       1.8295e-10    1      1.8295e-10   0.81   0.4192

  Light    4.10665e-10    1     4.10665e-10   1.82   0.249 

  Error    9.04296e-10    4     2.26074e-10                

  Total    1.53885e-09    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.31: 1-way ANOVA of N on z axis with YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 light and

a = 0.381154534499600e� 4 (4.51)

b = �0.239106511750383e� 4 (4.52)

c = �0.000955295448642e� 4 (4.53)

Figure 4.32: Plot of the model for N on z axis with YF
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Coe�cient: TB

Cartesian axis: x
ANOVA: reported in Figure (4.33)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height    101.27    1      101.27    0.31   0.6047

  TAV      2617.09    1     2617.09    8.13   0.0463

  Light    2533.54    1     2533.54    7.87   0.0485

  Error    1286.97    4      321.74                 

  Total    6538.87    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.33: 1-way ANOVA of TB on x axis with YF

Model: y = a+ bx1 + cx2, with x1 TAV x2 light and

a = 134.0600641529644 (4.54)

b = �90.4345233867286 (4.55)

c = �0.2372778726718 (4.56)

Figure 4.34: Plot of the model for TB on x axis with YF
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Coe�cient: TB

Cartesian axis: y
ANOVA: reported in Figure (4.35)

  Source   Sum Sq.    d.f.   Mean Sq.    F     Prob>F

-----------------------------------------------------

  Height    17240.7    1     17240.7    1.02   0.3703

  TAV        9856      1      9856      0.58   0.4883

  Light     20992      1     20992      1.24   0.3282

  Error     67829.9    4     16957.5                 

  Total    115918.7    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.35: 1-way ANOVA of TB on y axis with YF

Model: y = a+ bx1 + cx2 + dx3, with x1 light, x2 height, x3 TAV and

a = 181.8667337622135 (4.57)

b = 0.6830003644207 (4.58)

c = �92.8459520344171 (4.59)

d = �175.4997015752402 (4.60)
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Coe�cient: TB

Cartesian axis: z
ANOVA: reported in Figure (4.36)

  Source   Sum Sq.   d.f.   Mean Sq.    F     Prob>F

----------------------------------------------------

  Height    214.36    1     214.364    0.43   0.5495

  TAV        36.03    1      36.028    0.07   0.8022

  Light     311.63    1     311.633    0.62   0.4753

  Error    2012.19    4     503.048                 

  Total    2574.22    7                             

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.36: 1-way ANOVA of TB on z axis with YF

Model: y = a+ bx1 + cx2, with x1 light, x2 height and

a = 34.111377223048336 (4.61)

b = 0.083217697322009 (4.62)

c = �10.352885861998592 (4.63)

Figure 4.37: Plot of the model for TB on z axis with YF
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Coe�cient: QB

Cartesian axis: x
ANOVA: reported in Figure 4.38

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   5.99124e-11    1     5.99124e-11   0.59   0.4861

  TAV      6.47758e-10    1     6.47758e-10   6.35   0.0653

  Light    1.26104e-10    1     1.26104e-10   1.24   0.3284

  Error    4.07795e-10    4     1.01949e-10                

  Total    1.24157e-09    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.38: 1-way ANOVA of QB on x axis with YF

Model: y = a+ bx, with x TAV and

a = 0.275570501634261e� 4 (4.64)

b = �0.449915860176829e� 4 (4.65)
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Figure 4.39: Plot of the model for QB on x axis with YF
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Coe�cient: QB

Cartesian axis: y
ANOVA: reported in Figure (4.40)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   3.33481e-11    1     3.33481e-11   2.15   0.2161

  TAV      1.33441e-10    1     1.33441e-10   8.62   0.0425

  Light    7.12783e-12    1     7.12783e-12   0.46   0.5346

  Error    6.19104e-11    4     1.54776e-11                

  Total    2.35828e-10    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.40: 1-way ANOVA of QB on y axis with YF

Model: y = a+ bx, with x TAV and

a = 0.128145104308231e� 4 (4.66)

b = �0.204206864633445e� 4 (4.67)
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Figure 4.41: Plot of the model for QB on y axis with YF
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Coe�cient: QB

Cartesian axis: z
ANOVA: reported in Figure (4.42)

  Source     Sum Sq.     d.f.    Mean Sq.      F     Prob>F

-----------------------------------------------------------

  Height   2.49424e-09    1     2.49424e-09   1.38   0.3056

  TAV      3.05968e-09    1     3.05968e-09   1.69   0.2634

  Light    1.11538e-09    1     1.11538e-09   0.62   0.4764

  Error    7.24079e-09    4      1.8102e-09                

  Total    1.39101e-08    7                                

Analysis of Variance

Constrained (Type III) sums of squares.

Figure 4.42: 1-way ANOVA of QB on z axis with YF

Model: y = a+ bx1 + cx2, with x1 TAV, x2 height and

a = 0.114449047778092e� 3 (4.68)

b = �0.097782942500976e� 3 (4.69)

c = �0.035314610255495e� 3 (4.70)

Figure 4.43: Plot of the model for QB on z axis with YF
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4.2.3 Overview of the results

Tables (4.2) and (4.3) sum up all the previously illustrated analysis, showing for
each of the AVAR coe�cients how many and what independent variables have
been used.

In the case without the YF all the variables have been used in an almost equal
manner, even if the TAV has been used once more than the other two, whereas in
the case with the YF the light has come into play much less times. The coe�cients
TB and QB require more variables than K and N to be parametrically modeled.
It is noticed that, in general, in the case with the YF the models for TB and QB

are simpler than in the case without the YF, whereas the other two coe�cients
do not exibit such a regularity.

Coe�cient Axis Height TAV Light

K x !
K y ! !
K z ! !
N x ! !
N y ! !
N z !
TB x ! ! !
TB y ! !
TB z ! ! !
QB x ! !
QB y ! ! !
QB z ! ! !

Table 4.2: Summary of the used independent variables for AVAR coe�cients
without YF
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Coe�cient Axis Height TAV Light

K x ! !
K y ! !
K z !
N x !
N y !
N z ! !
TB x ! !
TB y ! ! !
TB z ! !
QB x !
QB y !
QB z ! !

Table 4.3: Summary of the used independent variables for AVAR coe�cients with
YF

4.3 Interpolations on matrices

It has been decided, then, to try to make linear parametric models also on the
terms of the A, B, C and K matrices coming from the identified models and from
the Kalman predictors [14].

In this case, for the sake of simplicity, only one factor has been considered,
choosing the TAV since the previous steps have revealed that it is very relevant.

The linear regression process has not been done on all terms, but only on the
ones that show a non-negligible variation between the two levels of the factor; for
the other terms it has been taken a constant value equal to the average of all the
values.

The choice of what terms to interpolate has been conducted not through
ANOVAs or other statistical tools, but simply looking to two macroscopic in-
dicators:

• The di↵erence between the range of values covered by the terms at the two
factors’ level

• The di↵erence between the mean values of the terms at the two factors’ level

The second indicator has been given more importance than the first one in the
choice of the terms, because it has turned out to be more conservative.

Doing all the calculations, the following four matrices, calling x the value of
the TAV, have been obtained. It is clear that the TAV produces a much larger
variability on the C and K matrices rather than on the A and B matrices.
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A =

2

4
0.997934 �0.0118058 0.0037696

5.079863e� 4 0.980773 0.021803� 0.0169617x
�3.651178e� 5 �0.0070356 0.9616464� 0.0196969x

3

5 (4.71)

B =

2

4
�5.827294e� 4 3.945836e� 4 �4.058273e� 4

0.0022336 1.579183e� 4 �0.0013049
8.404396e� 4 �0.003858 3.5994212e� 4

3

5 (4.72)

C =

2

4
0.068151� 0.1236792x �0.1303572 + 0.1157025x 0.006166
�0.1140281 + 0.287701x �0.08805 + 0.330028x 0.0343085 + 0.0504399x

�0.0410961 �0.2104276 + 0.4704582x 0.1479916� 0.0654206x

3

5

(4.73)

K =

2

4
0.4085824� 0.6858456x 0.421089 + 0.8898056x �0.350039 + 0.6850546x
�0.2424603� 0.0212521x �0.2026322 + 1.0614513x �0.8039088 + 1.664683x
0.5752862� 1.50499x �0.0229125� 0.1215274x 0.2118715

3

5

(4.74)
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Conclusions

This thesis had as objectives to model the dynamics of a Visual Odometry sys-
tem and to find some systematic relationships between the characteristics and the
conditions of the environment where the system is operated; the studied features
have been taken from the dynamics of the noise and of the error, the first identi-
fied through the AVAR technique, the second through the MOESP-PO black-box
technique.

The LS regression technique has allowed to build parametric models of part
of the data and the ANOVA technique has been extremely useful to understand
what factors had been better to use as independent variables and, more generally,
what factors have a relevant influence on the selected dynamic features.

It is evident that the height and the Trajectory Angular Velocity (TAV), both
individually and through their interaction, are much more important in changing
all the studied variables (AVAR coe�cients, prediction errors and characteristics
of the models) than the setting of the Yaw Following (YF) and the environmental
light; about the last two factors, in some cases it has been turned out to be more
important their interactions rather than their main e↵ects.

An important step of the work, that has not been done only for logistic reasons,
is the validation of the results from model identification and parametric modeling
[11].

To carry out a validation, basically, it is necessary, at first, to check if the char-
acteristics of the identified models are compatible with the prior knowledge about
the system, then it is required to collect some new data, for example repeating
all or only some of the experiments that provided the data that have been used,
to do again the identification and modeling processes on these new data and to
check if the new results are coherent with the ones from the first identification.

When it is not possible to collect new data, it is often possible to do a cross-
validation, that basically consists in splitting the available data set in two parts,
one to be used to do the identification process and the other to be used to validate
it; in this case it has been decided that, since the available data were not so much
even from the beginning of the work, a further splitting of them would have not
been very wise.

Here there are reported some ideas that could allow to repeat this analysis in
a better manner:
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• Make flights longer or use a more complex trajectory;

• Introduce other factors in the design of the experiments, in addition to the
already used ones

• Use more than two levels for each factor;

• In the parts of the work involving the coe�cients of the AVAR, use the
model that includes also the Rate Ramp noise, with the R coe�cient;

• Carry out each experiment more than once, in order to have multiple data
sets corresponding to the same conditions and to make the identification
and the validation with only one experimental campaign.

It is evident, in synthesis, that the analysis can be improved through a more
complex experimental campaign and/or through the collection of a bigger amount
of data, as implied by all the above-listed solutions.
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