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Abstract

The aim of the following thesis is to present a new kind of guidance that allows
to obtain a pinpoint landing on low gravity bodies without atmosphere. After
a preliminary analysis of different kind of guidance laws already present, a
new method has been investigated. This method is obtained by combining the
Model Predictive Control (MPC) guidance with Reinforcement Learning (RL)
techniques. The main idea behind this method is to enhance the performances
of MPC by computing the cost function minimization through machine learning
processes in order to overcome the problem related to the computational time
usually needed for this kind of operation. Moreover, the combination with
the artificial intelligence enables to consider a larger variety of constraints by
embedding them in the definition of the learning environment. In order to
achieve these tasks, three kinds of Reinforcement Learning algorithms have been
considered and applied. Finally the results presented at the end of the work
confirm the possibility of the presented method to have an important impact for
future missions if deepened and enhanced in the correct way.
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Chapter 1

Introduction

The aim of this thesis is to identify a method in order to get optimal results in the
field of the pinpoint landing problem on low gravity bodies without atmosphere.
Indeed this is an issue of great importance considering the increasing interest of
the last decades in planet exploration as well as the renewed interest towards
the Moon for what concerns the building of infrastructures for easy access to the
Lunar surface in the next years. For these reasons the landing system technology
will need to progress to satisfy the demand for more stringent requirements and
an higher landing accuracy is for sure one of them. In fact the pinpoint landing
problem subsumes other issues such as the hazard avoidance problem or the
possibility to enable a landing in peculiar regions such as the centre of a crater.
Furthermore, in case of having a rover to be deployed, a landing position closer
to a location of scientific interest reduces the risk of the rover malfunctioning
before it reaches the desired site. Moreover, reducing the distance the rover is
required to travel can relax the design requirements for the rover, with a potential
reduction in rover mass. As a consequence, landing accuracy on the order of
several meters is desirable as it would both reduce mission risk and extend the
scope of feasible missions. In general there are two necessary capabilities to
enable a lander to achieve a pinpoint landing. First, the navigation system must
be capable of accurately estimating the lander’s state during the powered descent
phase. Second, the lander’s guidance and control system must be capable of
using these state estimates to achieve a pinpoint landing. Nowadays the state
of the art is to have three separately optimized systems: navigation, guidance
and control. In this work the focus is to find a guidance to enable pinpoint
landing performances on low gravity bodies without atmosphere. At first several
guidance laws were taken under consideration analysing the advantages and
disadvantages of each of them together with the performances achieved in some
real applications, considering also landing environments different from the target
one. In this way it was possible to have a general insight of what is the state of
the art in this field, which is fundamental to understand in which direction to
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Chapter 1. Introduction

proceed in the development of a new or at least renewed technology.

1.1 State of the art

At first some real landing missions were considered in order to understand the
state of the art of the landing precision together with the involved techniques.
For what concerns successful missions, the 3-sigma ellipse of 19 km by 7 km for
the Martian landing achieved by the Mars Space Laboratory (MSL) is for sure
one of the best results ever obtained in this sense, in which the powered descent
phase employs a guidance very similar to the one introduced by the Apollo
mission [1]. This guidance was based on an iterative approach that computed
on the ground a flyable reference trajectory in the form of a quartic polynomia
and generated an acceleration command that targets the final condition of the
trajectory. This trajectory, which was not optimized for minimal fuel usage, is
designed so that it can be tracked thanks to six feedback control loops, taking
position and attitude estimates from the navigation filter as showed by Figure 1.1
([1], [2]). One of the main reasons that avoids the landing accuracy to be even

Figure 1.1. MSL Curiosity powered descent controller

better is that even in case of an optimal estimation of the lander state in the
target-centered reference frame the guidance law is only capable of relatively
small divert maneuvers. In any case it is still possible to appreciate the degree
of accuracy obtained if the landing ellipse dimensions are compared with the
initial conditions at the beginning of the Entry, Descent and Landing (EDL)
phase reported in Table 1.1. Moreover, the recent events of the Mars 2020
mission, with the successful landing of the Perseverance rover inside the Jezero
Crater on Mars of the last 18th February 2021, gives even more importance to
what done by the MSL, since it was the base of this last mission. Practically
speaking the Mars 2020 EDL design adds two great improvements: a strong
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1.1. State of the art

Mission Entry velocity [km/s] Entry flight path angle [deg] Entry altitude [km] Entry mass [kg]

MSL 6 -15.2 125 2800

Table 1.1. MSL entry features

reduction of the landing ellipse ( 7.7 km by 6.6 km) and the introduction of
Terrain Relative Navigation, which is the ability to determine in the last minutes
that the spacecraft is heading unluckily toward a known hazard, and to divert
to a safe spot [3], [4]. Unfortunately there are still few information about the
exact guidance applied.
Of course it is important to underline that the landing conditions of MSL are
considerably different from the ones taken into consideration in this thesis due
to the crucial importance of the Martian atmosphere and gravity for the above
described mission. However, what presented is still an important insight in
terms of both landing guidance and precision. In fact a similar approach could
be taken into consideration even for the pinpoint landing problem case with low
gravity and no atmosphere. In this sense it is important to consider that, as
already said, the MSL guidance was based on the one used during the Apollo
mission, whose landing body was the Moon, hence a body without atmosphere.
Another successful mission that can be taken into consideration is the Rosetta
mission with the landing of Philae on the 67P/Churyumov–Gerasimenko comet
in 2014. The environment where this landing took place is very similar to the
target one of this work with the absence of atmosphere and the presence of a
very low gravity. Nevertheless, the landing technique applied was a ballistic kind
of descent without the involvement of any particular guidance law, resulting in
a landing ellipse of around 100 m starting from an initial altitude between 1 km

to 2 km with a pre-adjustable velocity between 0.05 m/s to 0.52 m/s [5].
Finally, in order to better understand what is the actual state of the art in
terms of guidance laws, different approaches were analyzed and reported in the
following section even if some of them have not been applied yet during real
missions or are applied in other contexts such as missile guidance.

1.1.1 Guidance Laws

Before starting with the description of the analysed guidance laws, an impor-
tant aspect to be considered is the difference between trajectory-tracking and
trajectory-free guidance, since the following laws are of both types. The first
kind of guidance consists in generating a trajectory in real time based on the
lander’s state at the beginning of the powered descent phase that is then passed
to a control system that tracks it by determining which thrusters to fire and at
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Chapter 1. Introduction

what thrust level. On the contrary, the second kind is a global guidance that
maps the lander’s state in the target-centered reference frame to a commanded
acceleration in the inertial frame that then is passed to an actuator control
system.

Zero-Effort-Miss/Zero-Effort-Velocity

The Zero-Effort-Miss/Zero-Effort-Velocity (ZEM-ZEV) is a trajectory-free guid-
ance that outputs an acceleration that aims to minimize the overall energy of
the system identified by the following cost function:

J =
1

2

∫ tf

t0

~aT~adt (1.1)

This method, that was at first applied to the missiles, has been developed and
taken under consideration in the landing field in the last years. In order to
obtain the desired result an Hamiltonian function is evaluated:

H =
1

2
~aT~a+ ~pr

T~v + ~pv
T (~a+ ~g) (1.2)

where ~pr and ~pv are the co-states. The optimal acceleration is the one that
maximises the Hamiltonian function and is described by the following equation:

~a =
kr
t2go

~ZEM +
kv
tgo

~ZEV (1.3)

where tgo is the time-to-go (final time - current time), ~ZEM = ~rf − ~rnc and
~ZEV = ~vf−~vnc. ~rnc and ~vnc are the position and velocity computed through the

integration of the equations of motion from the current time instant to the end of
the mission with control action equal to zero. This feedback guidance is attractive
because of its analytical simplicity and accuracy: guidance mechanization is
straightforward and it can theoretically drive the spacecraft to a target location
on the planetary surface both autonomously and with minimal guidance errors.
It resulted to be finite time stable and robust to uncertainties (if proper sliding
parameters are added) but with no capability of enforcing thrust or flight
constraints as showed by Roberto Furfaro and Massari in [6].
Eventually this method represents a very good candidate as the basis for the
development of a new guidance law. However, the presented drawbacks regarding
thrust and flight constraints constitute important obstacles for the achievement
of a pinpoint landing on low gravity bodies without atmosphere, where the
thrusting conditions represent a crucial aspect.
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1.1. State of the art

Guidance for Fuel Optimal Large Divert

The Guidance for Fuel Optimal Large Divert (G-Fold) is an algorithm that is
developed to compute, on board in real-time, global fuel optimal trajectories for
large divert maneuvers necessary for planetary pinpoint or precision landing. This
trajectory-tracking guidance is based on the lossless convexification approach
that provides the solution of a general class of non-convex optimal control
problems via convexification method. This method aims to minimize a specific
function that describes the fuel consumption (Equation 1.4) while respecting
several constraints, that could be both convex and non-convex as shown by
Brhçet Açikmese et al. in [7].

max m(tf ) −→ min

∫ tf

0

α|~Tc|dt (1.4)

subject to:
~x(t) ∈ ~X ∀t ∈ [0, tf ] (1.5)

0 < ρ1 ≤ |~Tc(t)| ≤ ρ2, ~n
T ~Tc(t) ≥ |~Tc(t)| cos θ (1.6)

m(0) = m0 (1.7)

~r(0) = ~r0, ~̇r(0) = ~̇r0 (1.8)

~r(tf ) = ~0, ~̇r(tf ) = ~0 (1.9)

Equation 1.5 reports the constraints regarding the state in general such as the
glide slope constraint on the position vector and an upper bound constraint
on the velocity vector magnitude, both convex. In Equation 1.6 are reported
the thrust constraints in terms of upper boundary (convex), lower boundary
(non-convex) and thrust direction (convex if θ ≤ π

2
, non-convex when θ > π

2
).

Then Equation 1.7, Equation 1.8 and Equation 1.9 represent the initial condition
for the mass and the state and the final condition of the state. In order to solve
the problem the lossless convexification method is applied to convert the optimal
control problem into an equivalent problem with convex control constraints. This
is achieved by using a particular convex relaxation of the control constraints. In
the relaxed problem a slack variable is introduced (Γ) to lift the control space to
a higher dimension (with one additional dimension) and relaxing the non-convex
set of controls to a convex set as reported in Equation 1.10.

|~Tc(t)| ≤ Γ(t), 0 < ρ1 ≤ Γ(t) ≤ ρ2, ~n
T ~Tc(t) ≥ cos θΓ(t) (1.10)
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Chapter 1. Introduction

As J. M. Carson and Blackmore describe in [8] the optimal solution of the relaxed
problem is also the optimal solution of the non relaxed one. So the next step is
to discretize the optimal control in such a way to be able to use the Interior Point
Methods (IPM) of convex optimization as Açikmese and S.R.Ploen show in [9].
IPM are powerful computational methods that establish guarantees of obtaining
global optimal solutions of convex optimization problems to any accuracy in
polynomial time, which means that as the size of the problem increases the
computational complexity does not increase too much. Finally, thanks to this
method the thrust vector over time is computed and as a consequence the overall
trajectory is calculated as well.
Despite the good results obtained, the G-Fold presents some drawbacks. In fact
the obtained result may not be the most fuel efficient trajectory and the method
may not be suitable for missions where the cone constraint is incompatible with
the mission goals, as it could be in the case of landing inside a crater. This could
be a problem for the development of a more advanced version of the guidance
that this work aims to develop, since in general the bodies with low gravity
and without atmosphere are usually relatively small with a non-smooth surface,
hence the presence of features like craters is probable.

Universal Powered Guidance

The Universal Powered Guidance (UPG) is a trajectory-tracking guidance that,
similarly to G-Fold, tries to achieve a pinpoint landing minimizing the propellant
consumption. However, the result is achieved in a very different way with respect
to the previous method. In fact in this case a bang-bang magnitude thrust
profile is considered and the whole method focuses on determining the number
of switches and the optimal burn times of each sub-arc. In the case of a pinpoint
landing, the performance index is just the propellant consumption, and the
optimal thrust profile is the one that maximises the following Hamiltonian with
dimensionless variables presented by Lu in [10]:

H = ~pTr ~v + ~pTv ~̇v − pm
~T

vex

√
R0

g0

−
~T

vex

√
R0

g0

(1.11)

where ~pr, ~pv and pm are the co-states and the resulting optimal unit thrust
direction vector is

~uT =
~pv
|~pv|

(1.12)

As demonstrated in [10] the optimal thrust magnitude T for the powered descent
problems will be either on the upper bound Tmax or lower bound Tmin, that is,
a bang–bang profile. Any intermediate thrust value in a finite interval is not
optimal. Then, to actually define completely the thrust profile for a pinpoint
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1.1. State of the art

landing, the following conditions have to be considered:

~r(tf ) = ~r∗ (1.13)

~v(tf ) = ~v∗ (1.14)

H(tf ) = 0 (transversality condition) (1.15)

These conditions constitute a root finding problem of a system of seven nonlinear
algebraic equations for ~z, with ~z = (~pTv0 , ~p

T
r0
, tf)

T . Although a number of
possible numerical methods exist for solving this system of equations, such as the
Newton–Raphson method, the dogleg trust-region method by Powell is the most
robust in offering reliable convergence for several problems [10]. However, some
other ways to solve the problem in some peculiar cases have been successfully
actuated. For instance, in the case of considering a 3D dynamics, a common
solution is the one of considering at maximum two switches. In this way the
correspondent time instants t1 and t2 can be found thanks to an outer loop
minimization method. This method consists in treating t1 as a tuning parameter
to be fixed and then finding the optimal t2 in order to minimize the performance
index through a loop.
The advantages of UPG, especially if compared to G-Fold, are the simpler
algorithm, the absence of the need of customization of an optimization solver
and the flexibility of accommodating different problem formulations. On the
other hand, this method presents some important drawbacks such as the difficulty
of imposing constraints such as the glide slope, thrust direction and velocity
direction. In addition, it also presents the problem of having no theoretically
guaranteed convergence. As already said for the ZEM-ZEV guidance, the
difficulty of imposing certain constraints such as the thrusting direction represents
an important drawback for the considered pinpoint landing case.

Hybrid Guidance

The Hybrid Guidance (HG) is a method that combines different techniques to
achieve a precise landing. The analyzed case of a hybrid system utilizes a global
controller that implements an optimal guidance law augmented with a sliding
mode (Optimal Sliding Guidance (OSG)) to bring the lander from an initial state
to a predetermined reference trajectory and an Linear quadratic regulator (LQR)
- based local controller to bring the lander to the desired point on the surface
as described by Daniel R. Wibben and Sanfelice in [11]. The idea behind this
guidance law is the utilization of a combination of a controller that works well
globally with one that is more efficient near the desired target point, increasing

7



Chapter 1. Introduction

the overall flexibility and precision of the system. A switching logic between the
two control laws is implemented in a hybrid controller to develop a more robust
guidance law as shown in Figure 1.2. This control strategy is usually called
“throw-and-catch”. In fact the OSG ‘throws’ the lander from an initial state to a
state near a pre-defined reference trajectory while the LQR ‘catches’ the lander
and forces the system to track the reference trajectory to the target point. The

Figure 1.2. Hybrid Guidance Scheme

development of both guidance laws involves defining a reference trajectory as a
target state for the global guidance law and as a reference to track for the local
guidance law. For this reason it is possible to define the Hybrid Guidance as a
trajectory-tracking guidance. The chosen reference trajectory is determined and
found numerically by solving the minimum-fuel optimal landing problem, seen
also in previous cases, via pseudo-spectral methods as described in [11].
Concerning the OSG, it is an enhancement of the Zero-Effort-Miss/Zero-Effort-
Velocity, already described in section 1.1.1. At first the ZEM-ZEV guidance law
is rewritten in terms of error state ~εr and ~εv, then a sliding surface is defined as
follows:

~s = ~εv + λ~εr = ~0 (1.16)

This surface goes to zero when both the state errors tend towards null values.
For this reason the idea is to construct the guidance law in such a way that
the system is always driven to the sliding surface. This can be done by taking
the derivative of Equation 1.16 and introducing the optimal control given by
the ZEM-ZEV guidance. In this way, after some steps described in [11], it is
possible to obtain a new guidance law:

~ac(τ) =
k1

t2go
~εr +

k2

tgo
~εv − ~g −

Φ

tgo
sign(~s) (1.17)

8
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where Φ is a positive non-null constant. Daniel R. Wibben and Sanfelice show,
through the use of Lyapunov’s second method, that this guidance law is also
globally stable [11].
Regarding the LQR part, the system dynamics must be linearized at first. In
this way the dynamics can be written in the following way:

∆~̇y = A∆~y +B∆~u (1.18)

If the action is defined as a linear feedback controller (∆~u = −k∆~y), the system
takes the following form:

∆~̇y = (A−Bk)∆~y = Ac∆~y (1.19)

where k is the gain of the feedback controller. At this point, the LQR approach
can be introduced. It consists in finding the value of k that minimizes the
following cost function:

J =

∫ ∞
0

(∆~yTQ∆~y + ∆~uTR∆~u)dτ (1.20)

subject to Equation 1.18 as a physical constraint, where Q and R are weighting
matrices. The solution of this problem is expressed in Equation 1.21 where P is
the matrix that satisfies the Riccati equation reported in [11].

k = R−1BTP (1.21)

As described, this method represents a very attractive guidance solution thanks
to its flexibility and precision that are aspects of fundamental importance for the
considered landing case. However, the fact that two different kind of methods
are combined together could also represent a drawback in case of undesired
errors in one of the two involved optimization approaches. In fact a minor error
in the development of one guidance could bring to a wrong application of the
other one resulting in an overall globally higher error.

Generalized Proportional Navigation

The Generalized Proportional Navigation (GPN) is a trajectory-free guidance
law mainly used in the field of missile guidance. However, if the particular case
of a non-moving target is considered, it could have some interesting applications
in the field of landing as well. The equations of motion are written in polar
coordinates with the origin fixed at the interceptor, while the velocity vector is
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considered as the target vector velocity relative to the interceptor.

~v = ~vr~er + ~vθ~eθ = ~̇r~er + ~rθ̇~eθ (1.22)

The equations of motion are the following:

d~v

dt
= ~at − ~am (1.23)

where ~at is the target acceleration and ~am the interceptor one.
After defining ψ as the angle between the direction of the interceptor acceleration
and the direction normal to the Line of Sight (LOS), the interceptor acceleration
is considered to be proportional to the LOS angular rate as follows:

~am = krθ̇~er + kθθ̇~eθ (1.24)

where kr = λ~vθ0 sinψ, kθ = −λ~vr0 cosψ and λ is the navigation constant as
Ciann-Dong Yang and Ghen describe in [12].
As said, this kind of solution could be used in the case of landing after imposing
the target velocity and acceleration equal to zero. Despite being very interest-
ing for its simplicity and efficiency, there are still several problems regarding
especially some constraints such as the difficulty of granting low velocities once
reached the landing point, which is actually an important problem for the kind
of landing considered in this work. In fact the impact with a relatively high
velocity on the surface of a low gravity body could result in the bouncing of the
lander itself, compromising the final landing precision.

Reinforcement Learning derived Integrated Guidance and Control

The Reinforcement Learning derived Integrated Guidance and Control (IGCRL)
is a trajectory-free guidance that maps the navigation system estimate of the
lander state directly to commands specifying thrust levels for each engine by
means of a global policy learned by the use of reinforcement learning methods
as described by Brian Gaudet and Furfaro in [13].
The general problem is formulated in a similar manner with respect to the
previously seen methods: the main objective is to find the thrust program
and flight time that minimize a cost function that expresses the propellant
consumption while respecting some given constraints such as the equations of
motions, the glide slope and thrust constraints and while also following the
boundary conditions regarding the initial and final states. The peculiarity of this
approach is the way by which this result is obtained. In fact the RL framework
is defined such that the agent (i.e., the lander) responds to a single reward
signal which needs to be generally maximized during the search process. The
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reward is a function that tells the system how good the action taken by the
agent is and for this reason it is strictly related to all the constraints and the
cost function that define the problem. Indeed the construction of the reward
function is a fundamental aspect of the RL process, and it is dependent on the
kind of problem that the system has to face.
Another fundamental aspect is the kind of learning process selected. In fact this
selection is the one that determines how the policy is learnt depending on the
rewards received after each agent’s action. Finally, the learnt policy is the actual
function that maps each state to the correspondent action needed time by time
to bring the lander to the wanted landing point.
This kind of solution is very interesting for the application considered in this
thesis since it gives very good results and allows to impose a great variety of
constraints by simply modifying the reward function. This results in a great
flexibility of the method that makes this approach really attractive for the
pinpoint landing case considered in this thesis. However, there is the drawback
of a lack of local or global stability guarantees.

Model Predictive Control

The MPC is a trajectory-free guidance that is able to give at each time step
the needed control action to bring the state to the desired landing point. This
method aims to handle different constraints and step by step calculation at the
same time by means of a receding horizon optimization method reported by
Ting Wang, Ma, and Liang in [14]. The algorithm considers the following general
performance index to be minimized dependent on lander’s state and control:

J =

∫ tf

0

(~xTQ~x+ ~T TR~T )dt (1.25)

subject to some convex constraints such as: glide slope, thrust direction, thrust
magnitude and safe height. However, this is not the actual cost function that
is considered. In fact the MPC considers a discretized system of equations
of motion described by Equation 1.26 and exploits them to evaluate a model
prediction within an arbitrary chosen finite horizon N (i = 0, ..., N−1) as shown
by Lee and Mesbahi in [15].

~xt,i+1 = At~xt,i +Bt~ut,i + Ct (1.26)

In Equation 1.26 t is the time instant at which the system is sampled and the
matrices containing the system properties At, Bt and Ct (gravity term) are
assumed to be constant during the time interval [t, t+ 1]. So at each considered
time step, the system is discretized and the future states are predicted thanks
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to Equation 1.26. Then the predicted states are used to build the following cost
function:

Ct = (
N−1∑
i=0

q(~xt,i) + r(~ut,i)) + p(~xt,N) (1.27)

where q = ~xTt,iQ~xt,i , r = ~uTt,iR~ut,i and p = ~xTt,NQ~xt,N (Q, R and P are the
weighting matrices on state, control and final state). Finally the needed control
sequence U = [~ut,0, ..., ~ut,N ] that minimizes the cost function of Equation 1.27 is
obtained thanks to a convex programming solver. At this point the first control
action of the obtained sequence (~ut,0) is applied to the system to obtain the
state at the next time step where the whole process is repeated again until the
end of the trajectory [15]. A final important aspect to be considered is to verify
at each step that the finite horizon does not exceed the optimal time-to-go, that
can be evaluated thanks to this equation:

~gT~gt4go − 4~vT~vt2go − 24~rT~vtgo − 36~rT~r = 0 (1.28)

In the case that the finite horizon results higher with respect to the time-to-go,
then it has to be reduced until it becomes smaller than the tgo.
This method is very interesting since it is able to compensate uncertainties
in a very effective way and is capable to consider varying system model and
constraints at each time step. In fact this feature is something that can be
fundamental in order to reach a very high degree of precision, making this
method really fit for the considered kind of landing. However, some drawbacks
are present such as the difficulty in considering non-convex constraints and the
time consuming optimization of the cost function.

1.2 Guidance choice

Having in mind all these different types of guidance laws, each with their ad-
vantages and disadvantages, the first step was to choose whether to have a
trajectory-tracking or trajectory-free kind of guidance. On one hand, as it is
possible to understand from the above analysis, the trajectory-tracking guidance
laws result to be quite stable and reliable, as some of them have already been
applied in real applications such as for the case of MSL, but in general with poor
flexibility. On the other hand, trajectory-free guidance laws are more flexible,
hence they are able to better counteract disturbances step by step thanks to their
nature. However, they are not always able to respect particular constraints. For
these reasons at the end the final choice was to select a trajectory-free guidance,
considering the overall flexibility as a fundamental aspect especially thinking
about the final aim of achieving an autonomous pinpoint landing in the consid-
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ered kind of landing environment. In fact, having an high flexibility enables to
counteract in a better way possible disturbances, errors or uncertainties that
have a crucial impact on the final landing precision during the landing phase on
a low gravity body without atmosphere.
Between all the presented guidance laws of this kind, the MPC was the selected
one. This selection was done because, as already described, this method presents
a very high degree of flexibility thanks to its nature of predicting and optimizing
the control action and the consequent trajectory at each step with the possi-
bility of tuning different parameters such as the finite horizon time and the
discretization time step. In addition, in order to enhance its performances, a
machine learning approach was introduced in order to be able to use any kind of
constraints, including the non-convex ones, and especially in order to reduce the
time needed for the optimization of the cost function at each step. The idea is
in fact to let a neural network learning how to perform this optimization in such
a way to overcome the problem of the relatively long time time of computation
making this approach more attractive for real applications.
In order to develop and test this new guidance method, a similar situation in
terms of environment and initial state of the Philae lander of the previously
cited Rosetta mission was considered [5], [16]. This choice was done in order to
have a relatively simple environment without atmosphere and with low gravity
in order to focus as much as possible on the development of the method itself
without introducing immediately too much complications that could lead to
problems not directly related to the actual guidance method.

1.3 Thesis organization

This thesis is organized as follows. In chapter 2, the overall method is presented
and described. In this chapter also the dynamics considered for the development
of the algorithm and the relative equations of motion are presented. In chapter 3,
the part relative to the machine learning is analysed in detail, together with
the way selected for its implementation. In chapter 4, after the presentation
of the environment used to test and train the guidance, the obtained results
are presented and discussed. In chapter 5, the conclusions and future possible
developments are reported.
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Chapter 2

Method Description

As already anticipated in section 1.2 the final method analysed by this thesis is
the application of MPC combined with the use of machine learning.
A general architecture of the method is presented in Figure 2.1. As it is possible

Figure 2.1. MPC+RL guidance architecture block scheme

to see this new guidance basically consists in all the passages of MPC already
presented in section 1.1.1, with the addition of the cost function optimization
obtained through machine learning techniques. The sampled dynamics block is
where the dynamics is sampled at each time instant in order to get the matrix
and vectors At, Bt and Ct that define the sampled dynamics equations of motion
as it will be described later in subsection 2.1.1. These features, together with
the current state and the constraints, are used by the machine learning process,
defined by the machine learning cost function optimization block, to output the
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needed control action ut,0, which is the first action of the sequence that optimizes
the MPC cost function determined by a prediction of the states inside a certain
finite horizon defined by the user. This control action is then used to obtain the
actual next state, thanks to the dynamics and integration blocks, and to define
the mass at the following time instant, thanks to the mass flow rate definition
identified by the homonym block and its integration. Finally the succession of
all the states builds the overall landing trajectory expressed by the block of the
same name. An important aspect to be underlined is that, in contrast to the
classic MPC approach, in this case also the system constraints and boundary
conditions are enforced thanks to a machine learning kind of approach. In this
way the renewed obtained guidance maintains all the advantages of the original
MPC with an enhanced ability in considering different kind of constraints and
an important reduction in computational time regarding the cost function mini-
mization that is needed to be performed at each time step in real time.

2.1 Dynamics

The dynamics taken in consideration for the development of the method is a
3D dynamics. This dynamics considers the lander as a point mass subjected
to the low gravity of the considered landing body and to the thrust of each
engine, with a variable mass in time depending on the chosen engine features.
The presence of atmosphere is not considered.

2.1.1 Equations of motion

This kind of dynamics is ruled by the following equations:

~̇r = ~v (2.1)

m~̇v = ~T +m~g (2.2)

ṁ = − |
~T |
Isg0

(2.3)

where ~r and ~v are the position and velocity vectors, that constitute the state
~x(t) = [~v(t)T , ~r(t)T ]T , m is the mass of the lander, ~T is the overall thrusting force
vector, ~g is the gravitational acceleration vector, Is the engine specific impulse
and g0 the Earth’s gravity absolute value. The constraints are considered on the
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initial and final state as follows:

~x(0) = ~x0 (2.4)

~x(tf ) = ~0 (2.5)

stating that the wanted final velocity and position are null, considering the
target landing position as the origin of the reference system at the beginning
of the powered descent phase (target-centred reference system). An additional
constraint is the one that considers the impossibility of having additional thrust
once the propellant is totally consumed, expressed by the following statement:

if m(t) ≤ 0.5m0 −→ ~T = ~0 (2.6)

considering the assumption of having the propellant mass as half of the initial
mass.
However, as already revealed in section 1.1.1, the dynamics needed for the MPC
guidance is a sampled dynamics, so it is possible to discretize Equation 2.1,
Equation 2.2 and Equation 2.3 with a sampling period of ∆t as:

~r(t+ 1) = ~r(t) + ∆t~v(t+ 1) (2.7)

m~v(t+ 1) = m~v(t) + ∆t~T (t) + ∆tm~g (2.8)

m(t+ 1) = m(t)− |
~T |
Isg0

∆t (2.9)

In this way, the initial set of non-linear equations can be rewritten as a set of
linear equations:

M(t)~x(t+ 1) = A1(t)~x(t) +B1(t)~u(t) + C1(t)~g (2.10)

(~u(t) = ~T (t)) with

A1(t) =

[
mI3 03x3

03x3 I3

]
B1(t) =

[
∆tI3

03x3

]
(2.11)

C1(t) =

[
∆tmI3

03x3

]
M(t) =

[
mI3 03x3

−∆tI3 I3

]
(2.12)
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The linear set of equations of motion can be further simplified in this way:

~x(t+ 1) = A(t)~x(t) +B(t)~u(t) + C(t)~g (2.13)

with

A(t) =

[
I3 03x3

∆tI3 I3

]
B(t) =

[
∆t
m(t)

I3

∆t2

m(t)
I3

]
C(t) =

[
∆tI3

∆t2I3

]
(2.14)

This set of linear equations is simpler to be treated and enables to do faster
calculations, which is important especially considering that at each time step it
is needed to perform a prediction up to the considered finite horizon.
Another important aspect regards the considered thrusters’ configuration that
gives the lander the overall ~T (t) that interacts with the dynamics. The con-
sidered configuration is the one reported in Figure 2.2. As it is possible to

xb

yb

zb

Figure 2.2. Lander thrusters configuration in body centred reference frame

see, the lander is considered to have 5 thrusters in such a way to be able to
have thrust in any direction regarding the horizontal xy plane while for the
vertical z direction it is only considered the possibility of having a positive thrust.

2.1.2 Initial state considerations

Another important aspect is the one relative to the initial state. In fact the
errors on the initial state are considered as described by Figure 2.3a. The
possible error on the initial horizontal position is considered in terms of radial
distance from the landing point on the xy plane while the error on z direction is
bounded between a maximum and a minimum value. Regarding the velocity,
the nominal velocity is considered as always directed towards the target point.
In this way it is possible to exploit the system symmetry and identify the x-axis
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Figure 2.3. Lander initial state errors and orientation

of the reference system as always having the same direction of a general ~a vector
that starts from the initial lander position and points the target landing point
projection on the horizontal plane as showed in Figure 2.4.
In this way the initial horizon-
tal position error can always be
identified as along only the such
described x-axis. Then, an un-
certainty in terms of both direc-
tion and magnitude is applied
to the initial velocity. Concern-
ing the direction it is introduced
an uncertainty in terms of the
initial flight path angle γ0 and
initial heading angle β0 while for
the magnitude a maximum and
minimum value are considered.
This makes sense with the

initial lander 

position

a

target landing 

point
x

y

znominal  

v0

Figure 2.4. Reference system orientation

assumption of being in a similar environment of the Rosetta mission, where
Philae is released from the orbiter directly into the powered descent phase. For
this reason the assumption that errors on the initial position can be considered
as an error in terms of radial distance for what concerns the horizontal position
can be acceptable.
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Furthermore, at the beginning of the powered descent phase, the lander is
always considered to be with its x-axis aligned with the x-axis of the landing
target-centred reference frame as showed in Figure 2.3b. In this way a couple of
thrusters is always assumed to be oriented towards the landing position on the
xy plane, letting the other couple of horizontal thrusters to work only in case of
errors in the direction of the initial velocity vector.
At the beginning of each trajectory the radial direction becomes the x-axis
previously discussed and for this reason, as just described, the couple of thrusters
in y direction is used only in case that the initial velocity vector has an uncertainty
on the β0 angle.

2.2 Machine Learning general features

Concerning the machine learning part in general there are three kinds of tasks
that can be considered [17]:

• Supervised Learning is the task of inferring a classification or regression
from labeled training data.

• Unsupervised Learning is the task of drawing inferences from data sets
consisting of input data without labeled responses.

• Reinforcement Learning (RL) is the task of learning how agents ought
to take sequences of actions in an environment in order to maximize
cumulative rewards.

In order to achieve the task needed by the guidance presented above, the RL
approach results to be the best one. In fact this is the kind of machine learning
technique that is used in many other different works concerning guidance laws
such as the ones presented in [6] and [13]. The main idea behind RL is that
an artificial agent may learn by interacting with its environment, similarly to a
biological agent. Using the experience gathered, the artificial agent should be
able to optimize some objectives given in the form of cumulative rewards. This
approach applies in principle to any type of sequential decision-making problem
relying on past experience. The environment may be stochastic, the agent may
only observe partial information about the current state, the observations may
be high-dimensional, the agent may freely gather experience in the environment
or, on the contrary, the data may be constrained. So the overall idea in the case
of the considered guidance law is to obtain an agent that learns what action it
has to make, depending on the lander state, in order to minimize the MPC cost
function while respecting all the given constraints and boundary conditions. The
function that relates the observation given to the agent to the actual actions that
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the agent takes is known as the policy. This policy can be any kind of function
that depends on certain parameters that have to be learnt or, in general, it can
be related to as a neural network.
A deep neural network is characterized by a succession of multiple processing
layers. Each layer consists in a non-linear transformation and the sequence
of these transformations leads to learning different levels of abstraction. An
example is shown in Figure 2.5, where a simple neural network with one fully
connected hidden layer is represented. The first layer is basically composed by
the input values x in the form of a column vector of size nx (nx ∈ N). The values

Figure 2.5. Fully Connected Neural Network example with one hidden layer

of the next hidden layer are a transformation of these values by a non-linear
parametric function, which is a matrix multiplication by W1 of size nh × nx
(nh ∈ N), plus a bias term of size nh, followed by a non-linear transformation:

h = A(W1 · x+ b1) (2.15)

where A is the activation function. This non-linear activation function is what
makes the transformation at each layer non-linear, which ultimately provides the
expressivity of the neural network. Then the output layer y can be expressed
in a similar manner as the hidden one. It is important to highlight that in the
presented example only fully connected feed-forward layers are considered, which
means that each neuron of a layer is considered in the creation of each neuron
of the following one through Equation 2.15. In general, other kinds of layers
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can be considered such as convolutional or recurrent layers as described in [17].
However, these types of layers are better suited for other kinds of problems like
images and sequential data. For this reason fully connected feed-forward layers
are the only ones that have been considered throughout the development of the
guidance algorithm.
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Reinforcement Learning

The general RL scheme is reported in Figure 3.1. [18]. Formally, the RL problem

Figure 3.1. Reinforcement Learning scheme: Interaction between an agent and its
environment

can be described as a Markov Decision Process (MDP). At time t, the agent is
in state st and decides to perform an action at by obeying the policy π(at|st). At
the next time step, it arrives in the state st+1 and obtains the reward rt+1. The
environment may be fully or partially observable. Future rewards are discounted
by γk where γ ∈ [0, 1] and k is the future time-step. Horizon H is the number
of time-steps, T , needed to complete one episode from s0 to sT . The goal of the
agent is to maximize the reward obtained on the long term by learning a policy
π∗ that will decide which action to take given a state:

π∗ = argmaxπRt (3.1)

where Rt =
∑T

k=0 γ
krt+k is known as the return. In general it is possible to

distinguish between two kind of policies:

• stochastic policy π: determines the probability distribution P (A) of per-
forming an action.

• deterministic policy µ(st): is a discrete mapping from states to actions
(S −→ A).
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where S and A are respectively the state and action spaces. From Equation 3.1
it is possible to notice that future rewards have lower weights when compared
to the immediate rewards since generally γk < 1. At the extremes, when γ = 0,
only the immediate reward matters while when γ = 1 future rewards have the
same weight as the immediate ones. In general the return can be interpreted as
a measure of the value of a given state by following an arbitrary policy π:

V π(st) = Eπ[Rt|st] (3.2)

where E[x] is the expected value function. In other words, the value of a state
s is the expected discounted return received if the agent starts in s and then
follows its policy π. In this sense the goal of the agent is to learn the optimal
policy that maximizes V π for all states s:

π∗ = argmaxπV
π(s) (3.3)

The sequence of events leading to the terminal state can be modeled as the
trajectory of the policy:

τ = (s0, a0, r1, ..., sT−1, aT−1, rT , sT ) (3.4)

If the MDP is episodic, when the agent reaches the terminal state, sT , the state
is reset to s0. If T is finite, we have a finite horizon, otherwise the horizon is
infinite.
In general it is possible to distinguish between two methods by which the agent
is able to learn by interacting with the environment: Q-Learning and Policy
Gradient.

3.1 Q-learning

Concerning the first one it is necessary to firstly define the Q-value function, that
is the mathematical expectation of the return over all the trajectories starting
from a state-action pair (s,a) defined by the policy π:

Qπ(st, at) = Eπ[Rt|st, at] (3.5)

The Q-value and value function are linked by the following relation:

V π(s) =
∑
a∈A

π(s, a)Qπ(s, a) (3.6)
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At this point, instead of finding the policy that maximizes the value for all
states as done by Equation 3.3, the aim of Q-Learning is to find the action that
maximizes the Q-value for all the states:

π∗ = argmaxaQ(s, a) (3.7)

In practice, the Q-value is learnt thanks to the following iterative algorithm
known as the Bellman Equation [19]:

Q(s, a) = Es′ [r + γmaxa′Q(s′, a′)] (3.8)

Q-Learning attempts to approximate the first-order expansion of the value
expressed by Equation 3.2 as a function of both current state and action. Q-
Learning is an off-policy RL algorithm. In fact it learns to improve the policy
by not directly sampling experiences from that policy. In other words, the Q
values are learned independently of the underlying policy being used by the
agent. Once the Q-value function has converged, then the optimal policy is found
thanks to Equation 3.7. It is important to notice that the agent must continually
explore its environment while gradually taking advantage of what it has learned
so far. Finding the right balance between Exploration and Exploitation is one of
the main issues in RL. Generally, during the start of the learning process, the
action is mainly random (exploration). As the learning progresses, the agent
takes advantage of the Q value (exploitation). For instance, it could be that at
the start 90% of the action is random and 10% from Q value function, while by
the end of each episode the action becomes 10% random and 90% from Q value
function.
Despite being very promising, the Q-Learning method presents some important
limitations such as the fact that it is not able to deal with continuous action
space environments and, as described above, it is not directly optimizing the
policy along the learning process.

3.2 Policy Gradient

Policy gradient methods are in contrast applicable to environments with both
discrete or continuous action spaces and are also directly optimizing the policy
along the learning process. For these reasons at the end only policy gradient
RL methods have been considered for the development of the guidance, giving
particular attention to three types that are described in this section.
As for the Q-Learning, also for the Policy Gradient method the goal of the agent
is to learn an optimal policy π∗ that maximizes the return from all the states
(Equation 3.1). However, now the aim is to directly learn the policy by a policy
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parameterization π(at|st) −→ π(at|st, θ), where θ indicates the parameters. In
this way it is also possible to use a neural network to learn the policy. The
learning process itself is done through an objective function J(θ) maximization,
being J(θ) a performance measure with respect to the parameters θ. The
function maximization is achieved by performing gradient ascent, which means
that the gradient update is in the direction of the derivative of the function
being optimized.
Concerning discrete action spaces the policy can be represented by the following
equation:

π(ai|st, θ) = softmax(ai) for ai ∈ A (3.9)

where ai is the i-th action that can be the prediction of a neural network or a
general function of the state. In this case π(ai|st, θ) determines the probability
of each ai. Then the agent takes the action with the highest probability,
at = maxiπ(aist, θ).
For continuous action spaces, π(ai|st, θ) samples an action from a probability
distribution given the state. In general it is usually a Gaussian distribution
whose mean µ and standard deviation σ are predicted by the policy network or
are general functions of the states, each with their own parameters θµ and θσ.
The predicted action is a sample from this Gaussian distribution (Equation 3.10).
To ensure that no invalid prediction is generated, the action is clipped between
its maximum and minimum values depending on the action space A.

π(ai|st, θ) = at ∼ N(µ(st), σ(st)) (3.10)

Training a policy network is therefore a matter of optimizing the parameters
θ = [θµ, θσ].
Given a continuously differentiable policy function, the policy gradient can be
computed as:

∇J(θ) = Eπ[
∇θπ(aist, θ)

π(aist, θ)
Qπ(st, at)] = Eπ[∇θlnπ(aist, θ)Q

π(st, at)] (3.11)

where the property of the natural logarithm ∇x
x

= ∇lnx is exploited. As it can
be noticed from Equation 3.11, the performance gradient is estimated from the
target policy samples and it is proportional to the policy gradient. The policy
gradient is scaled by the Q-value to encourage actions that positively contribute
to the state value. The gradient is also inversely proportional to the action
probability to penalize frequently occurring actions that do not contribute to
the increase of performance measure.
In the following sections different policy gradient methods are presented, each
of them with their own way of estimating the policy gradient.
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3.2.1 Reinforce with Baseline

The Reinforce with Baseline (RB) method, based on the simpler Reinforce
algorithm, is a method where the policy gradient is estimated in the following
way:

∇J(θ) = Eπ[(Rt −B(st))∇θlnπ(at|st, θ)] = Eπ[Rt∇θlnπ(at|st, θ)] (3.12)

where δ = Rt −B(st) is an unbiased sample of Qπ(st, at) in the policy gradient
theorem. B(st) is a baseline that is subtracted to the return and requires its
own network to be determined. In most of the cases, the value function is used
as the baseline B(st) = V (st). As shown by Figure 3.2, the parametrized policy
and value functions can be modeled by neural networks.

Figure 3.2. Reinforce with Baseline scheme

algorithm 1 reports the Reinforce with Baseline algorithm. Only experience
samples are needed to optimally tune the parameters of the policy and value
networks. The discount factor γ takes into consideration that rewards decrease
in value as the number of steps increases. Both the gradients are discounted by
γt and for this reason gradients taken at later steps have smaller contributions,
since in general γ ∈ [0, 1]. The two learning rates α and αv are scaling factors of
the two gradient updates. The parameters are updated by performing gradient
ascent using the discounted gradients and learning rates. This method requires
that the agent completes an episode before processing the gradient updates and
for this reason in general the gradient update is characterized by high variance.
However, the presence of the baseline reduces this variance and does not affect
the expectation of the performance gradient since it is not a function of the
actions, as it is possible to see from Equation 3.12. If the return is overestimated,
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the scaling factor δ is proportionally reduced by the value function resulting
to a lower variance. This reduction of variance accelerates the learning process
especially if compared to the already cited Reinforce algorithm, which is actually
the very same algorithm but with the absence of the baseline function [20].

Algorithm 1: Reinforce with Baseline algorithm

Repeat:

Generate an episode (s0, a0, r1, ..., sT−1, aT−1, rT , sT ) by following
π(at|st, θ)

for steps t=0,...,T-1 do
Compute Return, Rt =

∑T
k=0 γ

krt+k

Subtract Baseline, δ = Rt − V (st, θv)

Compute discounted value gradient, ∇V (θv) = γtδ∇θvV (st, θv)

Perform gradient ascent, θv = θv + αv∇V (θv)

Compute discounted performance gradient,
∇J(θ) = γtδ∇θlnπ(at|st, θ)

Perform gradient ascent, θ = θ + α∇J(θ)

end

3.2.2 Actor Critic

The Actor-Critic (AC) is a variation of the RB method where the policy and
value networks showed by Figure 3.3, play the roles of actor and critic networks.
The policy network is the actor that decides which action to take given the
state while the value network acts as a critic which quantifies how good or bad
the chosen action made by the actor is. This last network evaluates the state
value by comparing it with the received reward and the discounted value of the
observed next state as expressed by δ:

δ = rt+1 + γV (st+1, θv)− V (st, θv) (3.13)

Since estimating distant future rewards is difficult, the used estimate is based
only on the immediate future. This technique, known as bootstrapping, often
accelerates learning and reduces variance. As it is possible to see from algo-
rithm 2, at every step both networks are trained unlikely to what is done in the
RB case, where the agent completes an episode before the training is performed.
The value network is consulted twice. Firstly, during the value estimate of the
current state and secondly for the value of the next state. Both values are used
in the computation of gradients.
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Figure 3.3. Actor-Critic scheme

Algorithm 2: Actor-Critic algorithm

Repeat:

for steps t=0,...,T-1 do
Sample an action, a ∼ π(a|s, θ)

Execute the action and observe reward r and next state s′

Execute state value estimate, δ = r + γV (s′, θv)− V (s, θv)

Compute discounted value gradient, ∇V (θv) = γtδ∇θvV (st, θv)

Perform gradient ascent, θv = θv + αv∇V (θv)

Compute discounted performance gradient,
∇J(θ) = γtδ∇θlnπ(at|st, θ)

Perform gradient ascent, θ = θ + α∇J(θ)

Update state, s = s′

end

3.2.3 Advantage Actor-Critic

The Advantage Actor-Critic (A2C) method is a variation of the AC one where
the value gradient is equal to the partial derivative of the mean squared error
between the return, Rt , and the state value:

∇V (θv) =
δ(Rt − V (s, θv))

2

δθv
(3.14)
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where the quantity (Rt − V (s, θv)) is called Advantage and as it tends to zero,
the value network prediction gets more accurate. The corresponding network
for A2C is similar to Figure 3.3 since only the method of gradient computation
has changed.
As it is possible to see from algorithm 3, there are also other differences with
respect to the AC procedure. In fact A2C, similarly to RB, is trained after one
episode has been completed. However, the learning process starts from the last
state and ends on the first one. Moreover, the A2C policy and value gradients
are no longer discounted by γt and the gradient of the weighted entropy value of
the policy function, β∇θH(π(at|st, θ)), where β is the entropy weight, is added
to the gradient function [21].

Algorithm 3: Advantage Actor-Critic algorithm

Repeat:

Generate an episode (s0, a0, r1, ..., sT−1, aT−1, rT , sT ) by following
π(at|st, θ)

Rt=

[
0 if st is terminal

V (st, θ) for non− terminal st, bootstrap from last state

]
for steps t=T-1,...,0 do

Compute return, Rt = rt + γRt

Compute value gradient, ∇V (θv) = δ(Rt−V (s,θv))2

δθv

Accumulate gradient, θv = θv + αv∇V (θv)

Compute performance gradient,

∇J(θ) = ∇θlnπ(at|st, θ)(Rt − V (s, θv)) + β∇θH(π(at|st, θ))

Perform gradient ascent, θ = θ + α∇J(θ)

end

All the algorithms described above are implemented and tested, as it will be
shown in chapter 4, in order to compare the different performances achieved by
each of them and eventually chose the one that produces the best results.

3.3 Environment Description

As already said and showed by Figure 3.1, the environment is what interacts
with the agent, taking as input the actions and giving as output the reward and
the next state. For this reason building a good environment that well represents
the dynamics of the system with a reward that correctly respects the objectives
of the learning process is fundamental to obtain good results. In this section
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the environment used for the development of the guidance is presented with its
main features.
At first, some of the already working relatively simple environments, such as
the continuous mountain car or the continuous cart-pole presented in [22], were
analysed in order to have a better idea on how to proceed in the development
of the applied environment. In this way it was possible to understand that one
fundamental aspect, as also expressed in [23], is to have a reward designed in
such a way that it leads the algorithm faster to more promising solutions by
incorporating domain knowledge into Reinforcement Learning through reward
shaping. In addition, it was possible to observe that the reward is in general
bounded between a maximum and minimum value, usually between [−1, 1], in
order to avoid excessive large gradients during the learning process.
Another important aspect is the one relative to the terminal condition of an
episode. In fact in the environment it is needed to define when to terminate an
episode. In general there are three kinds of terminal conditions:

• Time limits, maximum number of iterations exceeded

• Positive terminal, the system reaches a final state that is inside the desired
boundaries

• Negative terminal, the system reaches a final state that is outside the
desired boundaries

A final observation can be done relatively to the meaning of the numerical value
of the reward obtained step by step that can be usually distinguished between
positive and negative rewards. In fact, in general, a positive reward encourages
the system to keep going to accumulate more rewards and avoid terminals unless
they yield a very high reward. On the contrary, a negative reward normally
encourages the system to reach the terminal state as quick as possible in order
to avoid accumulating penalties.
Having all these considerations in mind the environment was built as follows.
The actions given by the agent are used to build the temporal history of each
control action prediction ut,x(t), ut,y(t) and ut,z(t) thanks to a cubic function
interpolation until the decided finite horizon instant N . This finite horizon is
compared at every step to the time-to-go tgo and reduced if bigger than this
parameter (N ≤ tgo). The action history is then sampled by a ∆t defined by the
user in order to be compatible with the sampled equations of motion described
in subsection 2.1.1 that are used to predict the future states until the end of
the finite horizon. Then all the predicted states are grouped together in a single
vector ~X = [~xTt,0, ..., ~x

T
t,N ]T . The same is done for the sampled control action

~U = [~uTt,0, ..., ~u
T
t,N ]T , where ~ut,i = [ut,x(i), ut,y(i), ut,z(i)]

T . These vectors are then
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used to build the cost function of the MPC process that has to be minimized:

J = wx ~X
T ~X + wu~U

T ~U (3.15)

where wx and wu are the weights for the states and control actions. In order to
have comparable values of J along the trajectory, each component of the X and
U vectors is normalized as follows:

anorm =
a− amin

amax − amin
(3.16)

where a represents a general vector’s component. Furthermore, to have a value
of J independent from the size of the X and U vectors, each of them is divided
by its length in the construction of the cost function:

J = wx
~XT ~X

length( ~X)
+ wu

~UT ~U

length(~U)
(3.17)

At this point it is possible to formulate the reward. This is actually the most
important part of the environment definition since it is what defines the quality
of the actions applied by the agent, hence it deeply influences the whole learning
process. The reward is chosen to be a shaped reward since it makes the learning
process more efficient with respect to a reward where values are given in a
discontinuous way. At first the idea was to construct a reward dependent only
on the value of J . Since the objective of the learning process is to minimize
the value of the cost function, the reward was built in order to give increasing
rewards the more the value of J was reduced. Two possible reward functions
were built in this sense:

•
r = 1− J

Jmax
(3.18)

where r ∈ [0, 1]

•
r = k tanh

∆J

∆Jmax
(3.19)

where ∆J = Ji−1 − Ji, ∆Jmax = Jmax − Ji and r ∈ [−k, k].

The maximum value of J is estimated by running a test episode and looking the
values assumed by the cost function along the episode. In Equation 3.18, the
reward gets closer to its maximum value the more the value of J −→ 0, where 0

is the minimum achievable value of the cost function, since J ≥ 0 by definition.
In Equation 3.19 instead the reward depends on how much the cost function
is reduced step by step along the trajectory of each episode, being i = 1, ..., T
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where T is the last instant of the episode. So the main difference is that while
Equation 3.18 rewards the reduction of J in a global way, Equation 3.19 does the
same thing in a local manner along each instant of the episode. Unfortunately,
once tested, both of these methods resulted to be not sufficiently satisfying
since the final wanted landing conditions were hardly reached especially in terms
of final horizontal landing position. For this reason it resulted necessary to
introduce in the reward construction a part that was directly related to the
position at each instant in order to lead the lander towards the wanted final state
step by step. Eventually this idea resulted in the following reward construction:

rdistance = 1− (
d

dmax
)0.4 (3.20)

r = Jdiscountrdistance (3.21)

where Jdiscount = 1 − J
Jmax

, d = |[rx, ry]T | and dmax is in general the distance
between the goal and the edge of the workspace on the horizontal plane. As it is
possible to see, the reward is constituted by two main parts: one related to the
horizontal position and one related to the cost function J . This two parts are
built in such a way that at first a value of reward based only on the horizontal
position (∈ [0, 1] if d ∈ [0, dmax]) is given with a magnitude that is higher the
more the lander is close to the origin, as showed in Figure 3.4. Then this initial
reward is discounted by a value ∈ [0, 1] that is actually what already previously
described by Equation 3.18 and whose shape is showed in Figure 3.5.

Figure 3.4. Distance Reward Figure 3.5. J Discount

This kind of reward is the one that actually worked better and brought some
promising results as it will be showed in chapter 4. However, there is still another
important aspect relative to the reward at the terminal states. In fact when the
episode reaches its final condition the reward is given in a different manner with
respect to what just described. The termination of an episode is defined by a
boolean parameter called "Done" that is set to "True" once one of the following
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conditions is reached:

• vz > 0, the lander starts going away from the ground

• rz ≤ 0, the lander has reached ground

If at the end of the episode the lander has not reached ground or has violated
some constraints, then the reward is set to a value that depends on which kind
of constraint has been broken. On the contrary, if the lander has managed
to land respecting all the imposed constraints, a positive final reward is given.
Establishing the value of the final reward resulted to be actually part of the
optimization process of the algorithm since the whole learning process resulted
to be highly sensitive to these particular parameters.
A final important aspect relative to the environment is the one relative to its
reset at the end of each episode. As said, for each step of the trajectory the cost
function J is evaluated accordingly to the selected finite horizon and the reward
is consequently evaluated. Then only the first predicted state is considered and
set as the following state that is used by the agent to obtain the new action
and repeat the whole process until the end of the episode. Once the episode
is terminated the lander state and initial mass are resorted according to their
uncertainty and error distribution, that concerning the state variables are the
ones already described in subsection 2.1.2.
Having all these considerations in mind, in general it is possible to define three
main functions that constitute the environment: the "initialization" function,
the "step" function and the "reset" function. The first one, as its name says,
has the role of initializing all the parameters that form the environment. The
second one is the function that, given the current state and action as input,
outputs the next state, the reward and the "Done" variable. The third function
instead has the role of resetting the environment according to the considerations
made above.

3.4 Algorithm Implementation

In this section the implementation of all the three algorithms presented in
section 3.2 is described, since all of them have been tested for the development
of the desired guidance. The software used is Keras, which is an Application
Programming Interface (API) built on top of Tensorflow 2.0 in Python program-
ming language.
The implementation was done by taking inspiration from the codes presented
in [19], where the implementation of all the presented algorithms is developed
for the continuous mountain car environment case. The general algorithm is
structured as follows:
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• Neural network construction

• Learning Algorithm implementation

3.4.1 Neural Network Construction

As already described in section 2.2 only fully connected feed-forward layers,
implemented by using the Dense command in Keras, have been considered in
the development of the applied neural networks. Since the continuous action
space case has been considered, the policy network, as anticipated in section 3.2,
has the role to estimate the µ(st) and σ(st) needed to sample the action from a
Gaussian distribution. As it is possible to see from Figure 3.6, the main network
is formed by two hidden layers of 64 neurons each. The second hidden layer
is then connected in parallel to the "mean" and "standard deviation" layers,
each with a number of neurons equal to the wanted action dimension. This two
layers are then connected to another layer that actually evaluates the action,
called "action" layer. Then the "mean", "standard deviation" and "action"
layers are connected to a final layer, the "logp" layer, that is used to evaluate
the logarithmic probability of taking a certain action, which is fundamental for
the definition of the loss needed by the learning process.

Figure 3.6. Logarithmic Probability Network Model

The activation function for the hidden layers is the "relu" (Rectified Linear
Unit) one, which is typical for this kind of layers. It basically consists in taking
the maximum value between 0 and the input (a(x) = max(x, 0)). The presence
of these layers is very important since they are what in principle can actually
allow the approximation of any kind of arbitrary function. In fact in the case of
absence of this type of layers what is obtained as an output of the network is
just a linear regression of the input variables. In general the hidden layers are
two at maximum, with a number of neurons that has to be kept not too high
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but nor too low depending on the considered problem. Usually this number is
chosen to be a certain power of 2. The "mean" layer has a "linear" activation
function (a(x) = x) while the "standard deviation" layer applies a "softplus"
activation function which enables to have an output value always higher than
zero (a(x) = ln(expx+ 1)). In order to avoid values too close to zero, which
wouldn’t have sense for the σ(st) values, this activation function was modified
as follows and called "softplusk": softplusk(x) = softplus(x) + 10−10. The
"action" layer applies a custom (Lambda) activation function that samples a
Gaussian distribution N(µ(st), σ(st)) using the values given by the "mean" and
"standard deviation" layers. Then this action is clipped between its minimum
and maximum values. The "logp" layer finally uses the outputs of the "mean",
"standard deviation" and "action" layers to evaluate the logarithmic probability
of the action using another custom activation function. This whole network
just described actually is what builds the "logp" model that is what is actually
trained during the learning process. In fact another model can be defined as
the "actor" (or "policy") model, that is constituted by the very same network
of the previous one with the absence of the last "logp" layer, as it is possible to
see from Figure 3.7. Since these two models share the same parameters training
the "logp" model means training also the "actor" one. However, as already said

Figure 3.7. Actor Network Model

in section 3.2 there are also other networks that are needed for the learning
process: the value network and the entropy network (used only by A2C). As it
is possible to see from Figure 3.8, the entropy network is basically the same as
the actor one with the only difference regarding the last layer, where a custom
activation function is used to evaluate the entropy associated to each action.
Concerning the value network, as shown by Figure 3.9, it is simply made by two
hidden layers and a final layer with a "linear" activation function.
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Figure 3.8. Entropy Network Model

Figure 3.9. Value Network Model

A fundamental aspect to be considered while using these networks is the im-
portance of scaling the inputs to avoid saturating the activation functions at
each layer [13]. For this reason, in the development of the algorithm, the
input of the network (the observation) was considered as the following one:
~obs = [vx, vy, vz, tgo, rz]

T , where each component has been normalized according
to the already described Equation 3.16. In addition, in order to have a more
efficient learning process, it is also important to insure that the magnitude of the
neural network outputs are are reasonably close to unity [13]. This is obtained
thanks to the activation function of the "action" layer where the action values are
clipped between [−1, 1]. Then this values are reinterpreted by the environment,
where the value of 1 is associated to the maximum value of available thrust.
Once the networks are built, the next step is preparing the networks for the
training. In the previously presented algorithms (section 3.2) it was performed
an objective function maximization by gradient ascent in order to update the
network’s weights. Instead in Keras what it is usually done is to perform a
loss function minimization by gradient descent. The loss function is simply the
negative of the objective function being maximized while the gradient descent is
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the negative of gradient ascent. In order to prepare the models to the learning
it is needed to define the loss functions as well as the kind of optimizer used. In
this sense for all the models involved the chosen optimizer was "Adam", which is
a typical optimizer used in the field of Reinforcement Learning, since it is usually
more robust with respect to the hyperparameters selection if compared to other
methods. The hyperparameters are some of the parameters that influence the
learning process like: the learning rate α, the number of hidden layers, the
number of neurons for each hidden layer, the discount factor γ and the number
of episodes.
Concerning the loss functions they are defined as follows:

• "logp" model:

losslogp = −mean((ypred ∗ ytrue) + (β ∗ entropy)) (3.22)

• "value" model
lossvalue = −mean(ypred ∗ ytrue) (3.23)

where β is the entropy loss weight (usually equal to 0.9 for A2C, equal to 0 for
RB and AC), ypred is the common term of all the performance gradients reported
in Table 3.1, directly evaluated thanks to the involved network, and ytrue is a
value that depends on the involved method as it possible to see from Table 3.2.

ypred of losslogp ypred of lossvalue

∇θ lnπ(at|st, θ) ∇θvV (st, θv)

Table 3.1. ypred of losslogp and lossvalue

Algorithm ytrue of losslogp ytrue of lossvalue

Reinforce with Baseline γtδ γtδ
Actor-Critic γtδ γtδ

Advantage Actor-Critic (Rt − V (s, θv)) Rt

Table 3.2. ytrue of losslogp and lossvalue

3.4.2 Learning Algorithm implementation

With all the network models and loss functions in place, the last part is the
training strategy, which is different for each algorithm. In general two train
functions are used: "train by episode" and "train".
The first function, that is different for each algorithm, is applied only in the RB
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and A2C cases. In fact these algorithms are the ones that need the end of the
episode before starting the learning process. Once an episode is completed, the
whole trajectory history (states, actions and rewards) is stored in the computer
memory. Then this function has the role of analyzing the whole trajectory in
order to obtain the ytrue values for each step and call the "train" function where
the parameters of both the "logp" and "value" models are actually updated
thanks to the Keras fit function, that needs the current state and the ytrue value
as inputs. Since the AC algorithm directly trains step by step without waiting
the end of the episode only the "train" function is needed in this case. Of course
what makes the difference between the analysed methods is the evaluation of the
ytrue value and what states are used during the learning process. These features
are selected according to the algorithms presented in section 3.2. In fact, for
instance, a remarkable aspect is that the training strategy of A2C is different in
the sense that it computes gradients from the last step to the first step. Hence,
in the evaluation of ytrue the return accumulates beginning from the last step
reward or the last state value.
In the Keras implementation, all the mentioned routines are implemented as
methods in the "PolicyAgent" class. The role of the "PolicyAgent" is to represent
the agent implementing policy gradient methods including building and training
the network models and predicting the action, logarithmic probability, entropy,
and state value.
Finally a general main code is implemented. This code deals with all the
presented functions of the "PolicyAgent" class and has the role of managing the
whole learning process. At first the selected environment is loaded and initialized
and the needed neural networks are created. Then a for loop is executed for the
selected number of episodes. At the beginning of each episode the environment
is restored by the "reset" function and a while loop is started until the end of the
episode to evaluate all the trajectories. In the case of applying the AC algorithm,
the weights are updated directly inside this loop by the "train" function. On
the contrary, for the RB and A2C cases, the network weights are updated by
the "train by episode" function once the while loop has terminated. Eventually
at the end of the for loop the learning process is terminated.
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Results

4.1 Test Case Description

As already anticipated in section 1.2, the kind of environment selected to
test and develop the guidance algorithm is inspired by the Philae lander
of the Rosetta mission. Rosetta is a Cornerstone Mission of the Horizon
2000 ESA Programme, launched in 2004, that has reached its target, comet
67P/Churyumov–Gerasimenko, in 2014. Since the landing body is a comet, no
atmospheric drag is present and the gravity force that acts on the system is very
low. However, since asteroids and comets are not spherical, the gravitational
field may not be assumed to be homogeneous and the rotation can include large
nutation or may even be chaotic. The Lander, whose overall mass is around 98 kg,
is separated from the main Orbiter with high accuracy and a pre-adjustable
velocity between 0.05 m/s to 0.52 m/s at an altitude between 1 km to 2 km and
descends ballistically to the surface as shown by Figure 4.1, with a small landing
ellipse (< 100 m) [5].
Tanking this situation as a reference, the initial nominal landing conditions
considered as a test case are the ones reported in Table 4.1. As said, this kind

m0 [kg] ~r0 [m] ~v0 [m/s] g [m/s2]

100 [0, 0, 1000]T [0, 0,−0.52]T 10−10

Table 4.1. Initial nominal lander conditions for the test case

of situation was considered as one of the possible best environments that could
represent the low gravity without atmosphere pinpoint landing case to start the
development of a new kind of guidance. In this context the comet gravity accel-
eration was considered as constant, helping in keeping the dynamics as simple as
possible. In addition to the original Philae case, where only one z-axis oriented
thruster was involved, in the considered test case also horizontal thrusters were
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Figure 4.1. Philae landing scenario

applied, as explained in subsection 2.1.1, in order to counteract possible initial
state errors and enable the possibility of having a landing ellipse considerably
smaller with respect to the 100 m one of the Rosetta mission. In subsection 2.1.2
the initial state conditions were already presented without saying the considered
numerical values. Being the selected nominal initial altitude of 1 km, an error
of 100 m with respect to the horizontal position was considered. In this way it
was considered a potential dispersion of 10 % with respect to the initial lander
position in horizontal direction. Concerning the vertical position, a smaller error
was initially considered as it will be showed in chapter 4. Having in mind this
kind of situation and comparing the possible initial position with the initial
nominal velocity, an electric kind of thrust was considered to be sufficient for
the case taken under consideration, with the maximum and minimum thrust
values and specific impulse reported in Table 4.2.

Tmax [mN ] Tmin [mN ] Isp [s]

150 1 3000
Table 4.2. Thruster features for the learning process

Of course this range of thrust is something that can not be achieved by any
kind of throttlable electric thruster at the moment. However, the aim of giving
such an high range of values is to encourage the lander to explore different

42



4.2. Introduction to the results

possible levels of thrust along the learning process. In this way the possibility of
finally stabilizing around an optimal range of thrust levels is increased. Finally,
once obtained this range, the proper model of thruster can be selected. For
instance, for the test case described above the engines reported in Table 4.3
were considered as possible options.

Thruster Thrust range [mN ] Isp [s] Mass [kg]

QinetiQ T5 (Gridded Ion) 1 to 25 > 3000 2.5
QinetiQ T6 (Gridded Ion) 20 to 230 > 4200 8.3
RIT 10 EVO (Gridded Ion) 5 to 25 ∼ 3000 1.8

RIT 2X (Gridded Ion) 80 to 200 ∼ 3000 8.8
Arcjet 100 to 300 ∼ 1000

Table 4.3. Electric thrusters features

A final important aspect is relative to the observation of the state space that
is passed to the neural network. In fact, as described in subsection 3.4.1, this
observation is represented by the following vector:

~obs = [vx, vy, vz, tgo, rz]
T (4.1)

which is strictly connected to the initial state representation of the test case. In
fact, since the initial horizontal position can be in any direction (subsection 2.1.2),
instead of passing the components of the horizontal position vector (rx and ry),
this information is passed thanks to the time-to-go obtained by Equation 4.2.

tgo =
|~r|
|~v|

(4.2)

Eventually the absence of the lander translational coordinates results in a policy
with good generalization in the policy’s behavior that can extend to areas of the
full state space not experienced during learning as also done by Brian Gaudet
and Furfaro in [13].

4.2 Introduction to the results

In the following sections are reported the obtained results of the described
guidance algorithm. As anticipated, all the three presented learning methods
have been applied and tested. Moreover, two different cases have been analyzed
concerning the dynamics. In fact, in order to identify the best learning method,
at first a 2D case was applied where the only difference with respect to the 3D
one previously described is the absence of velocity deviation along the y-axis (no

43



Chapter 4. Results

β0 uncertainty), hence no thrust in this direction is needed leading to a simpler
2D dynamics. Then, once the best method was identified, the learning process
in a 3D environment was executed.
Before starting with the analysis of the results obtained from each of the
conducted tests, it is important to define some of the most important learning
parameters (hyperparameters and environment parameters) that have been used
for the learning process. These values, reported in Table 4.4, were identified
after a long trial and error procedure and are the ones that are applied for all the
following presented results. The chosen learning rate, that has the same value for

Learning parameters

Learning Rates α and αv 10−4

RB and AC discount factor γ 0.99
A2C discount factor γ 0.95
Action Dimension 20

Hidden layers’ neurons 64
Finite horizon time tf [s] 30
Sampling time ∆t [s] 3

dmax [m] 100
State weight wx 1.5

Control action weight wu 1
Horizontal position error boundary [m] 10
Horizontal velocity error boundary [m/s] 0.5
Vertical velocity error boundary [m/s] 1.5

Number of episodes 400 to 2000

Table 4.4. Main learning parameters values

both the policy and value networks, was found as a good compromise between
learning time and weight updates. In fact, in general, the higher the learning
rate is the faster the learning process is. However, this also implicates increasing
values of gradient updates that could eventually cause very high training errors,
hence a wrong learning process. Concerning the ∆t and maximum horizontal
position error accepted, these values come from a compromise between results
and computational time. In fact, even considering the reported values for
these parameters, the learning process takes approximately one minute for each
episode, which means that considering 1000 episodes for instance the whole
learning process takes approximately 17 h. In this context, in order to reduce the
maximum horizontal position boundary, in general it would be needed a more
refined trajectory integration, which means a reduction of the considered ∆t,
hence a consistent increment of the computational time. Anyway the considered
∆t, especially if compared to the velocities involved, has an acceptable value
as well as the horizontal boundary, which is the 10 % of the initial horizontal
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position error, meaning that an overall reduction of the 90 % of the initial error
is guaranteed.

4.3 2D

Concerning the above described 2D case, at first several learning processes of
1000 episodes each were tested using the initial conditions reported in Table 4.5,
that reflects what previously explained in subsection 2.1.2 and section 4.1.
In this context, the first 10 action values were used to build the ux(t) while
the other 10 were used for the uz(t). Unfortunately no results were obtained,

2D initial state conditions

|~v0| ±5%
x0 [m] −100 to 0
z0 [m] ±10
γ0 [deg] ±0.05

Table 4.5. 2D initial state conditions

probably due to the necessity of having a consistent higher number of episodes
to manage a proper learning process. However, this would have meant also a
large increase in the computational time that would have reached even several
days, leading to a complicated situation to be dealt especially considering the
fact that the applied method has the need of a large number of trial and error
processes in order to optimize the algorithm as much as possible. For this reason,
in order to achieve results while keeping a similar number of episodes it was
decided to split the initial horizontal error range in five different sub-ranges
of 20 m each (−100 m to −80 m, −80 m to −60 m, −60 m to −40 m, −40 m to
−20 m, −20 m to 0 m). This subdivision is done with respect to the horizontal
position error since it resulted to be the most influencing one. In this way five
different networks are optimized for each sub-range and in the end they can be
combined to obtain an overall policy that is able to deal with the whole range of
error. By doing so it was possible to work at the same time on different networks
and test the different methods in acceptable time frames. Eventually the main
learning parameters were set to the ones reported in Table 4.4 and the only
tuning parameter left was the reward given at the end of each episode, which
resulted to be the most determinant one in order to obtain acceptable results.
In fact, after having set these parameters, the training process resulted to start
converging towards certain regions of solutions, making the lander to always
land in a certain range of ground positions while always respecting the velocity
boundaries. However, these positions were strongly dependent on the value of
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final reward and so a trial and error process was needed in order to have these
landing points inside the wanted boundary.

4.3.1 Reinforce with Baseline

Using the RB learning algorithm some promising results for the −60 m to −40 m

sub-range were obtained. In particular three different interesting results are
described in this section considering the final rewards reported in Table 4.6,
where the terminal conditions are the following:

• Positive Terminal: The final state respects all the imposed constraints

• Negative Terminal #1: The final state is outside the final horizontal
position boundary but respects all the other constraints

• Negative Terminal #2: The final state does not respect the final velocity
boundaries

• Negative Terminal #3: The episode ends without reaching ground

Case Positive Terminal Negative Terminal #1 Negative Terminal #2 Negative Terminal #3
reward reward reward reward

A 50(1− ( d
10

)0.4) 50(1− ( d
10

)0.4) −1000 −10rz

B 100 −0.8d −1000 −10rz

C 100(1− ( d
100

)0.6) 100(1− ( d
100

)0.6) −1000 −10rz

Table 4.6. RB Case A, B and C terminal rewards for the −60m to −40m

The results obtained by these three cases are shown in Figure 4.2, Figure 4.3 and
Figure 4.4. As it is possible to notice, there are different philosophies behind
these three kinds of final rewards. Case A considers a reward that is shaped in
the same way for both the Positive and Negative Terminal #1. In fact the idea
is to have a continuous function that rewards the agent in a continuous manner
depending on the final position, giving negative rewards for being out of the
boundary, zero reward for being exactly on the boundary and positive rewards
for being inside. On the contrary, in case B the reward is shaped only for the
case of being outside the boundary, whereas a constant positive reward is given
for being inside, with a value that is totally independent from how close to the
target the final position is. Finally case C does something really similar to case
A but with the only difference of giving positive rewards even in the case of a
Negative Terminal #1 in order to encourage the learning process of the system
in any case. By looking at the reported figures, it is possible to understand that
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(a) Case A horizontal landing position along
learning

(b) Case A total reward trend along learning

Figure 4.2. Reinforce with Baseline case A, −60m to −40m sub-range

(a) Case B horizontal landing position along
learning

(b) Case B total reward trend along learning

Figure 4.3. Reinforce with Baseline case B, −60m to −40m sub-range

(a) Case C horizontal landing position along
learning

(b) Case C total reward trend along learning

Figure 4.4. Reinforce with Baseline case C, −60m to −40m sub-range

the second option is the one that gives the best results. In fact, while in case
A and C the landing position is stabilized slightly above the boundary of 10 m,
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in case B the landing positions result to be inside the wanted boundary in a
very high number of cases. However, despite being the best result obtained over
several tests with this method, this is still not an acceptable result since the
number of landing points outside the boundary is considerably high.
Different tries were done also concerning the other sub-ranges. Unfortunately,
none of them resulted in a completely successful learning, leading to similar
results to the ones reported above.

4.3.2 Actor-Critic

Concerning the AC learning algorithm, also in this case some promising results for
the −60 m to −40 m sub-range were obtained considering different final rewards,
where only the rewards for the Positive Terminal and Negative Terminal #1

were changed with respect to the previous case, keeping the others identical to
the ones of Table 4.6. However, a successful learning was actually obtained only
by using the very same final rewards of the RB case B, as shown by Figure 4.5.
In fact it is possible to notice that in this case acceptable results are obtained,
since the final landing horizontal position always falls below the considered
10 m boundary and the overall total reward of each episode is stabilized around
high positive values. The reason why this method produced better results with
respect to the previous one is probably due to the fact that by learning at each
step the agent is able to understand what are the best actions to take directly
throughout the episode. For this reason, if the rewards are correctly shaped, the
agent is able to produce better trajectories.
Unfortunately, despite the high number of tests, it resulted very difficult to
obtain similar results for all the other sub-ranges.

(a) Actor-Critic horizontal landing position
along learning

(b) Actor-Critic total reward trend along
learning

Figure 4.5. Actor-Critic −60m to −40m sub-range
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4.3.3 Advantage Actor-Critic

Finally with the A2C method it was possible to obtain acceptable results for
all the considered sub-ranges as showed by Figure 4.6, Figure 4.7, Figure 4.8,
Figure 4.9 and Figure 4.10. In order to obtain these results the final rewards
reported in Table 4.7, obtained after a large number of trial and error tests,
were used. As for the previous case, the reward for Negative Terminal #2 and
Negative Terminal #3 were kept the same of the RB case.

(a) −20m to 0m range horizontal landing po-
sition along learning

(b) −20m to 0m range total reward trend
along learning

Figure 4.6. Advantage Actor-Critic −20m to 0m range

(a) −40m to −20m range horizontal landing
position along learning

(b) −40m to −20m range total reward trend
along learning

Figure 4.7. Advantage Actor-Critic −40m to −20m range
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(a) −60m to −40m range horizontal landing
position along learning

(b) −60m to −40m range total reward trend
along learning

Figure 4.8. Advantage Actor-Critic −60m to −40m range

(a) −80m to −60m range horizontal landing
position along learning

(b) −80m to −60m range total reward trend
along learning

Figure 4.9. Advantage Actor-Critic −80m to −60m range

(a) −100m to −80m range horizontal landing
position along learning

(b) −100m to−80m range total reward trend
along learning

Figure 4.10. Advantage Actor-Critic −100m to −80m range

As it is possible to see, the learning process resulted successful in all the presented
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Range Positive Terminal reward Negative Terminal #1 reward

−100 m to −80 m 100 −d
−80 m to −60 m 100 −1.3d
−60 m to −40 m 100 −1.3d
−40 m to −20 m 100 −10
−20 m to 0 m 100 −10

Table 4.7. 2D A2C terminal rewards for every sub-range

cases, leading to a total reward that is stabilized around high values and a final
landing distance that is always inside the considered boundary of 10 m. The fact
that this last algorithm is the one that produced the best results is probably
due to its nature. In fact, since this algorithm starts the learning process from
the last state, very high importance is given to this state and its related reward.
Moreover, another important aspect could be the fact that, as reported in
subsection 3.2.3, the A2C algorithm shares the very same network model of
the AC one, which is the first one that produced very promising results. As
shown in Table 4.7, the final rewards used are of the same kind of the previously
presented RB case B, which resulted to be the best one also for the other two
tested algorithms as described above. In this sense the analysis done with those
algorithms resulted to be fundamental to identify a kind of final reward shape
that could produce acceptable results. Indeed the rewards here reported present
a fixed positive reward for the case of a Positive Terminal and a negative reward
proportional to the landing distance from the target point in case of Negative
Terminal #1. An exception is done with respect to the −40 m to −20 m and
−20 m to 0 m sub-ranges where a fixed negative reward for Negative Terminal
#1 resulted to be sufficient.

Network test

In order to test the above presented working results, the initial conditions
described in Table 4.5 were changed by increasing some values and introducing
an uncertainty in terms of initial mass magnitude as showed by Table 4.8.

2D test initial state conditions

|~v0| ±10%
x0 [m] −100 to 0
z0 [m] ±50
γ0 [deg] ±0.1
m0 ±5%

Table 4.8. 2D test initial state conditions
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Starting from these values an overall number of 500 trajectories was evaluated
using the combination of all the trained networks presented above. As it
is possible to see from Figure 4.11, all the evaluated trajectories manage to
land inside the boundary with the only exception of few of them that in any
case still manage to land very close to the 10 m boundary. Concerning the
velocity constraints, they are always respected. An important aspect that
has been noticed throughout the test sessions of the trained network is the
great sensitivity with respect to the value of γ0 which resulted to be the most
influencing parameter in terms of final landing precision.

Figure 4.11. 2D case test Trajectories

Concerning the amount of thrust that each thruster has to employ, the trend
of both ux and uz for the extreme sub-ranges are reported in Figure 4.12 and
Figure 4.13. As it is possible to see the values of thrust never exceed 25 m N,
confirming that the choice of an electric kind of thrust is correct. Moreover, by
referring to Table 4.3, it is possible to see that choosing the QinetiQ T5 engine
could be a good option for the analysed case. As expected, the required thrust
in x direction is higher with respect to the one in z direction and the closer we
start to the wanted horizontal position, the lower the required magnitude of
thrust is, confirming the quality of the obtained results.
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(a) −100m to −80m range ux (b) −100m to −80m range uz

Figure 4.12. 2D −100m to −80m range ux and uz

(a) −20m to 0m range ux (b) −20m to 0m range uz

Figure 4.13. 2D −20m to 0m range ux and uz

4.4 3D

Since the best results for the 2D case were obtained by using the A2C method,
this was the only method considered for the learning process of the 3D case.
As previously done, also in this case the horizontal position initial error was
divided in five sub-ranges for the same reasons explained in section 4.3. All
the learning processes were developed using the initial conditions reported in
Table 4.9, where the uncertainties of the initial flight path angle (γ0) and heading
angle (β0) are typical values that can be found in other landing missions, as it
is possible to see in [24]. In this case the action dimension was kept the same
of the 2D case. The first 10 values were used to build an uxy(t) kind of control
while the last 10 values were used to build uz(t). The uxy(t) is the overall control
action magnitude on the horizontal xy plane directed towards the origin of the
system. In this context, the consequent ux(t) and uy(t) are the projections of
uxy(t) over the x and y-axis. As said for other previous decisions, also in this
case this kind of choice related to the number of actions was done in order to
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3D initial state conditions

|~v0| ±5%
x0 [m] −100 to 0
z0 [m] ±10
γ0 [deg] ±0.1
β0 [deg] ±0.5

Table 4.9. 3D initial state conditions

keep the computational time as low as possible and be able to conduct as many
tests as possible.

4.4.1 Advantage Actor-Critic

Also in this case a successful learning was obtained for all the considered sub-
ranges as showed by Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17 and
Figure 4.18, where the considered values of the final rewards, obtained after a
large number of tries, are reported in Table 4.10.

Range Positive Terminal reward Negative Terminal #1 reward

−100 m to −80 m 100 −1.55d
−80 m to −60 m 100 −1.8d
−60 m to −40 m 100 −1.3d
−40 m to −20 m 100 −19
−20 m to 0 m 100 −20

Table 4.10. 3D A2C terminal rewards for every sub-range

(a) −20m to 0m range horizontal landing po-
sition along learning

(b) −20m to 0m range total reward trend
along learning

Figure 4.14. Advantage Actor-Critic −20m to 0m range
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(a) −40m to −20m range horizontal landing
position along learning

(b) −40m to −20m range total reward trend
along learning

Figure 4.15. Advantage Actor-Critic −40m to −20m range

(a) −60m to −40m range horizontal landing
position along learning

(b) −60m to −40m range total reward trend
along learning

Figure 4.16. Advantage Actor-Critic −60m to −40m range

(a) −80m to −60m range horizontal landing
position along learning

(b) −80m to −60m range total reward trend
along learning

Figure 4.17. Advantage Actor-Critic −80m to −60m range
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(a) −100m to −80m range horizontal landing
position along learning

(b) −100m to−80m range total reward trend
along learning

Figure 4.18. Advantage Actor-Critic −100m to −80m range

As it is possible to notice, in all the reported cases, the total reward is stabilized
around very high values and the final horizontal landing position is always below
10 m, demonstrating the success of the learning process. Concerning the final
reward shapes, the considerations done in subsection 4.3.3 can be confirmed.

Network test

As previously done, also in this case the trained networks were tested by increas-
ing the initial conditions values to the ones reported in Table 4.11.

3D test initial state conditions

|~v0| ±10%
x0 [m] −100 to 0
z0 [m] ±50
γ0 [deg] ±0.5
β0 [deg] −0.5 to 0
m0 ±5%

Table 4.11. 3D test initial state conditions

It can be noticed that the heading angle uncertainty has been considered only
in the range of negative values in order to exploit at maximum the symmetry of
the system, since in the case of having positive β0 angles the situation would
be symmetrical in terms of applied uy. An important difference with respect to
what done for the 2D case is the increased uncertainty in terms of γ0 that the
system is able to overcome. This is probably due to the fact that, contrarily to
what done for the 2D case, in this case the networks were trained by immediately
considering the presence of an higher uncertainty for this value. Also in this
case an overall number of 500 trajectories was evaluated and as it is possible to
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see from Figure 4.19 and Figure 4.20, the combination of the obtained networks
is able to satisfy the requirements. In fact only 9 trajectories out of 500 landed
outside the position boundary, but still really close to the desired 10 m distance
from the origin of the reference system (the desired landing point).

Figure 4.19. 3D case test Trajectories

Figure 4.20. 3D case test Landing Points

Concerning the amount of thrust that each thruster has to employ, the trend
of ux, uy and uz for the extreme sub-ranges are reported in Figure 4.21 and
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Figure 4.22. In Figure 4.22, the uz trend is not reported since it is equal to the
one of Figure 4.21.

(a) 3D case test ux for the −100m to −80m
sub-range

(b) 3D case test uy for the −100m to −80m
sub-range

(c) 3D case test uz for the −100m to
−80m sub-range

Figure 4.21. 3D −100m to −80m range ux, uy and uz

(a) 3D case test ux for the −20m to 0m sub-
range

(b) 3D case test uy for the −20m to 0m sub-
range

Figure 4.22. 3D −20m to 0m range ux and uy

In this case the overall magnitude of thrust needed is even lower with respect to
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the 2D case, symptom of an even better learning process. In fact the maximum
value of thrust is around 10 m N. As a consequence, also in this case the QinetiQ
T5 engine could result in a good choice for the considered case. A peculiarity is
the complete absence of vertical thrust needed this time. However, this makes
sense thinking about the involved values of initial velocity, gravity acceleration
and vertical velocity boundary. Another interesting aspect is the trend of ux.
In fact, as it is possible to notice, the applied thrust initially accelerates the
lander towards the landing position and then, once it is close to the target, a
negative thrust is applied in order to slow down the system. Concerning uy, it
is applied really close to ground in order to reduce the deviation along the y
direction before landing.
Eventually, by exploiting the system symmetry, it is possible to obtain a complete
3D graph of the considered situation in Figure 4.23 and Figure 4.24, from which
it is possible to appreciate even more the obtained results.

Figure 4.23. 3D case test overall Landing Points on ground plane compared to the
initial maximum horizontal position error
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Figure 4.24. 3D case test overall Landing points compared to the initial maximum
horizontal position error

4.4.2 A2C reduced horizontal error case

Despite what said in section 4.2 relatively to the possibility of reducing the
horizontal error boundary, a final try was done in any case to understand if it was
possible to manage to reduce the accepted horizontal position error at landing
from 10 m to 5 m while keeping the same ∆t to maintain a computational time
similar to the one of the previous learning processes. Surprisingly, acceptable
results were obtained also in this case for all the considered sub-ranges as shown
in Figure 4.25, Figure 4.26, Figure 4.27, Figure 4.28 and Figure 4.29, by using
the final rewards reported in Table 4.12.

Range Positive Terminal reward Negative Terminal #1 reward

−100 m to −80 m 50 −0.9d
−80 m to −60 m 100 −1.8d
−60 m to −40 m 100 −0.8d
−40 m to −20 m 100 −16
−20 m to 0 m 100 −10.5

Table 4.12. 3D A2C terminal rewards for every sub-range

60



4.4. 3D

(a) −20m to 0m range horizontal landing po-
sition along learning

(b) −20m to 0m range total reward trend
along learning

Figure 4.25. Advantage Actor-Critic −20m to 0m range

(a) −40m to −20m range horizontal landing
position along learning

(b) −40m to −20m range total reward trend
along learning

Figure 4.26. Advantage Actor-Critic −40m to −20m range

(a) −60m to −40m range horizontal landing
position along learning

(b) −60m to −40m range total reward trend
along learning

Figure 4.27. Advantage Actor-Critic −60m to −40m range
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(a) −80m to −60m range horizontal landing
position along learning

(b) −80m to −60m range total reward trend
along learning

Figure 4.28. Advantage Actor-Critic −80m to −60m range

(a) −100m to −80m range horizontal landing
position along learning

(b) −100m to−80m range total reward trend
along learning

Figure 4.29. Advantage Actor-Critic −100m to −80m range

Unfortunately, as it is possible to see from the total reward trend figures, the
learning processes are not as optimal as the ones with the 10 m error boundary.
In fact, once that the total reward is stabilized around high values there are still
few cases that do not respect the imposed final position boundary, causing a
drop in terms of total reward for those particular episodes. Moreover, finding the
values reported in Table 4.12 in order to achieve the reported results required
even a greater number of trial and error processes with respect to the previous
cases. For these reasons it is possible to confirm that a reduction of ∆t together
with an increase in the number of actions that the networks have to produce
are needed to obtain more optimal results. Indeed in this way a more refined
control action wold be produced leading to more precise results that could let
the lander to always land even in smaller horizontal boundaries. Eventually this
would enhance the overall performances but sensibly increase the computational
learning time at the same time. However, the obtained results just reported are
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the best ones obtained during the whole work in terms of final landing precision
since the produced networks are able to achieve a 5 m landing precision, halving
the previously accepted error.

Network test

Finally also for this last case the trained networks were tested by increasing
the initial conditions values to the values reported in Table 4.13. As previously
done, a total number of 500 trajectories was evaluated as shown in Figure 4.30
and Figure 4.31.

3D test initial state conditions

|~v0| ±10%
x0 [m] −100 to 0
z0 [m] ±50
γ0 [deg] ±0.1
β0 [deg] −0.5 to 0
m0 ±5%

Table 4.13. 3D test initial state conditions

Figure 4.30. 3D case test Trajectories
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Figure 4.31. 3D case test Landing Points

The overall networks combination is able to satisfy the requirements in most
of the cases, leading to landing points inside the 5 m error boundary excluding
a certain number of episodes that still manage to land close to the considered
boundary. However, as it is possible to see, the number of points outside the
target boundary is relatively high, confirming the non completely optimal result of
the learning process. Moreover, these results are obtained by keeping the β0 and
γ0 values in the same uncertainty ranges used during the training process, since
an increase in these values, especially concerning γ0, would cause landing points
even in the range of 10 m. This proves the fact that the overall learning process
was more successful for the previous 3D case, since those networks resulted to be
able to withstand higher uncertainties by keeping almost unchanged the overall
precision with respect to the considered error boundary. These considerations
highlight even more the need of a reduced ∆t and an increased number of action
to achieve similar results for a reduced error boundary case. At the same time,
the results here reported demonstrate the feasibility of performing a learning
process able to achieve very important results in terms of landing accuracy.
Concerning the amount of thrust that each thruster has to employ, the trend
of ux,uy and uz for the extreme sub-ranges are reported in Figure 4.32 and
Figure 4.33. In this case the overall magnitude of thrust needed is even lower
with respect to the previous case. In fact the maximum value of thrust never
exceeds 10 m N. As a consequence, also in this case the QinetiQ T5 engine could
result as a good engine choice. Concerning the trends of ux and uy, they are
very similar to the ones of the 10 m boundary case, hence similar considerations
can be done. On the contrary, the uz trend is different. In fact it is possible to
notice the presence of a non-zero vertical thrust in this case. This is probably
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needed in order to slow down the vertical descent and let the horizontal thrust
act for a longer time with respect to the 10 m boundary case. Eventually, by
acting in this way, this thrust enables the lander to achieve the landing inside
the 5 m position boundary and reduces the final vertical velocity at the same
time.

(a) 3D case test ux for the −100m to −80m
sub-range

(b) 3D case test uy for the −100m to −80m
sub-range

(c) 3D case test uz for the −100m to −80m
sub-range

Figure 4.32. 3D −100m to −80m range ux, uy and uz
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(a) 3D case test ux for the −20m to 0m sub-
range

(b) 3D case test uy for the −20m to 0m sub-
range

(c) 3D case test uz for the −20m to 0m sub-
range

Figure 4.33. 3D −20m to 0m range ux, uy and uz
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Conclusions

In conclusion it is possible to say that the new guidance developed in this
work presents some interesting and promising results. In fact in the end it
was obtained a system able to guide the lander inside the decided boundary of
landing points counteracting some consistent errors achieving a pinpoint landing
in low gravity and no atmosphere conditions. One of the main problems of
this method is for sure the difficulty in setting the parameters needed for the
learning process and the amount of computational time needed by this process
itself, especially in the case of small ∆t required. However, it is important to
remember that all this training procedure does not have any particular time
constraints since it is not something that is done while the system is at work
in a real environment. In fact the training is done on ground and then, once
the system is deployed, the obtained networks can be used by the lander in
real time with practically very low computational time needed, which on the
contrary is something that the original MPC guidance is not able to do, since at
each time-step it needs the time to perform the cost function optimization. This
aspect can be seen also under the view of the need of less powerful and power
consuming computer systems for the application of this kind of guidance, since
the employment of an already trained neural network is surely less demanding
with respect to the real time computation of a cost function minimization process.
Another important aspect is the flexibility offered by the proposed system. In
fact in principle the same procedure presented in this work could be applied to
a large variety of landing situations and constraints by a correct redefinition of
the learning environment. Moreover, the machine learning field is in continuous
evolution and it is strongly possible that in the foreseeable future the progresses
in this field will lead to a great enhancement in the techniques applied for the
development of the presented guidance algorithm.
Defining the presented guidance system and facing new topics such as the ones
related to machine learning has been a challenging but exciting experience,
which has required effort and time to be completed. Of course what proposed
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is far from being something already applicable since several enhancements are
still needed, but anyway it represents a method that could offer an important
option in the pinpoint landing context for the future, as showed by the promising
obtained results and the advantages described above. In this sense the initial
goal of defining a technique that could be successfully applied for an autonomous
pinpoint landing process on bodies with low gravity and no atmosphere has
been achieved. As said, to proceed towards the definitive implementation of a
method of this kind several steps need to be done, such as the implementation of
a more complete environment with a 6D dynamics and a deeper optimization of
the overall learning process, that could include the application of Reinforcement
Learning algorithms that have not been taken in consideration during this work.
Once these aspects will be overcome, I am confident that the presented approach
could provide a significant contribution for the future space missions.
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Acronyms

ZEM-ZEV Zero-Effort-Miss/Zero-Effort-Velocity

MSL Mars Space Laboratory

UPG Universal Powered Guidance

OSG Optimal Sliding Guidance

LQR Linear quadratic regulator

GPN Generalized Proportional Navigation

MPC Model Predictive Control

IGCRL Reinforcement Learning derived Integrated Guidance and
Control

G-Fold Guidance for Fuel Optimal Large Divert

RL Reinforcement Learning

RB Reinforce with Baseline

AC Actor-Critic

A2C Advantage Actor-Critic

IPM Interior Point Methods

HG Hybrid Guidance

LOS Line of Sight

EDL Entry, Descent and Landing

MDP Markov Decision Process

API Application Programming Interface
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