
POLITECNICO DI MILANO

School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering

Master of Science Degree in Computer Science and Engineering

Robustness in Multi-Agent Pickup and

Delivery with Delays

Supervisor: Prof. Francesco Amigoni

Co-Supervisor: Prof. Nicola Basilico

Author:

Giacomo Lodigiani, 946455

Academic Year 2020-2021

Alla mia famiglia, ai miei amici, e a tutti quelli

che hanno sempre creduto in me.

Abstract

Multi-Agent Pickup and Delivery (MAPD) is the problem of computing

collision-free paths for a group of agents such that they can safely reach de-

livery locations from pickup ones. These locations are provided at runtime,

making MAPD a combination between classical Multi-Agent Path Finding

(MAPF) and online task assignment. Current algorithms for MAPD do not

consider many of the practical issues encountered in real applications: real

agents often do not follow the planned paths perfectly, and may be subject

to delays and failures. The objectives of this thesis are to study the prob-

lem of MAPD with delays, and to present solution approaches that provide

robustness guarantees by planning paths that limit the effects of imperfect

execution. In particular, two algorithms are introduced, k-TP and p-TP,

both based on a decentralized algorithm typically used to solve MAPD, To-

ken Passing (TP), which offer deterministic and probabilistic guarantees,

respectively. Experimentally, these algorithms are compared against a ver-

sion of TP enriched with recovery routines. k-TP and p-TP, planning robust

solutions, are able to significantly reduce the number of replans caused by

delays, with little or no increase in solution cost and running time.

Estratto in Lingua Italiana

In un problema di Multi-Agent Pickup and Delivery (MAPD) [19], un gruppo

di agenti deve congiuntamente pianificare percorsi senza collisioni per svol-

gere compiti di raccolta-consegna che appaiono a tempo di esecuzione. Il

MAPD combina la soluzione del problema di assegnamento dei compiti, dove

gli agenti devono essere assegnati a coppie di posizioni di raccolta-consegna,

col Multi-Agent Path Finding (MAPF) [30], dove bisogna calcolare i per-

corsi per completare i compiti assegnati. Una caratteristica particolarmente

impegnativa dei problemi di MAPD è la loro natura a lungo termine e di-

namica, che permette a nuovi compiti di apparire in ogni momento e in ogni

posizione nell’ambiente.

Motivazione

Il problema MAPD ha una grande importanza in un numero considerevole

di applicazioni reali. I magazzini automatizzati, dove i robot soddisfano

continuamente nuovi ordini, ne costituiscono sicuramente il più significativo

impiego industriale; un esempio è il sistema sviluppato da Amazon Robotics

impiegato con successo da Amazon [43]. Oltre alla logistica, le applicazioni

del problema MAPD includono anche il coordinamento di squadre di robot di

servizio [40] o di flotte di auto a guida autonoma, e il controllo automatico di

personaggi non giocanti nei videogiochi [23]. Altri esempi includono veicoli

per il traino automatico di aeromobili [25], la gestione automatica degli

incroci [7], i robot per il trasporto di oggetti [24], i robot per attività di

pattuglia [1], i robot di ricerca e salvataggio [14], e le flotte di robot a

trasmissione differenziale e quadricotteri [13].

viii

Obiettivi

Recentemente, la comunità MAPF si è focalizzata sulla robustezza [2,3,19],

generalmente intesa come una proprietà delle soluzioni di resistere a rilas-

samenti, suggeriti dalle applicazioni concrete, di alcune assunzioni fatte dai

modelli. Un tipico esempio è rappresentato dall’assunzione che i percorsi

vengano eseguiti senza errori. In realtà l’esecuzione dei percorsi è soggetta a

ritardi e ad altri problemi che possono compromettere alcune proprietà (ad

esempio l’assenza di collisioni) della soluzione. La robustezza nel contesto

a lungo termine del problema MAPD, invece, non è stata ancora consis-

tentemente studiata. Questa tesi ha l’obiettivo di contribuire a colmare

questo divario studiando l’impatto dei ritardi sul problema MAPD propo-

nendo soluzioni applicabili in contesti realistici.

Contributi

In questa tesi, la robustezza del problema MAPD in caso di ritardi viene

studiata definendo una variante del problema chiamata MAPD-d (MAPD

with delays). In questa variante, gli agenti, come nel problema MAPD clas-

sico, vengono assegnati a compiti (coppie di posizioni di raccolta-consegna),

i quali possono continuamente comparire ad ogni istante di tempo, e succes-

sivamente vengono calcolati i percorsi per completare tali compiti evitando

collisioni. Durante l’esecuzione dei percorsi, dei ritardi possono accadere

in istanti arbitrari, causando l’arresto di uno o più agenti in alcuni istanti

di tempo, rallentando quindi l’esecuzione dei loro percorsi pianificati. In

questo lavoro vengono proposti diversi algoritmi per calcolare soluzioni ro-

buste al problema MAPD-d. Il primo è basato su un algoritmo MAPD

decentralizzato, chiamato Token Passing (TP), al quale sono state aggiunte

alcune procedure di recupero che permettono di ripianificare quando ven-

gono individuate collisioni causate da ritardi. Il TP è in grado di risol-

vere istanze MAPD ben-formate [22], e viene dimostrato che, con alcune

assunzioni, l’introduzione dei ritardi nel problema MAPD-d non intacca

la proprietà di istanza ben-formata. In seguito, vengono presentati due

nuovi algoritmi, k-TP e p-TP, che adottano l’approccio della pianificazione

robusta, calcolando percorsi che limitano il rischio di collisioni causate da

potenziali ritardi. L’algoritmo k-TP ritorna soluzioni con garanzie determin-

istiche sulla robustezza in caso di ritardi (k-robustezza), mentre le soluzioni

calcolate dall’algoritmo p-TP hanno garanzie di robustezza probabilistiche

(p-robustezza). Infine, questi algoritmi sono comparati con esperimenti ese-

guiti in ambienti simulati e vengono valutati i compromessi offerti da diversi

ix

livelli di robustezza.

Struttura della tesi

I contenuti della tesi sono organizzati nei seguenti capitoli.

Il Capitolo 1 introduce il contesto, le motivazioni, gli obiettivi e i contributi

della ricerca svolta.

Nel Capitolo 2 viene introdotto il problema MAPF con le sue proprietà e

vengono presentati vari algoritmi, ottimi e sub-ottimi, usati per risolverlo

con i loro vari compromessi. In seguito sono discusse le limitazioni del prob-

lema MAPF, le quali hanno portato all’introduzione di nuove varianti del

problema. In particolare, viene studiato nel dettaglio il problema MAPD

(struttura teorica, algoritmi, assunzioni), una versione a lungo termine del

problema MAPF che riesce a modellare fedelmente ciò che accade in contesti

applicativi. Infine vengono descritte brevemente altre direzioni seguite dalla

attuale ricerca per avvicinare il problema MAPF alle applicazioni, come

considerare i vincoli cinematici o ritardi nell’esecuzione.

Nel Capitolo 3 viene introdotto il problema MAPD-d (MAPD with delays),

che estende il concetto di ritardi al contesto a lungo termine del MAPD,

vengono studiate le sue proprietà teoriche ed è proposto un algoritmo come

base di riferimento, TP con procedure di recupero, che permette di risolvere

un significativo sottoinsieme di istanze di problemi MAPD-d.

Il Capitolo 4 raccoglie il principale contributo algoritmico di questa tesi, che

consiste in due algoritmi, k-TP e p-TP, i quali, considerando la possibilità di

ritardi a tempo di pianificazione, permettono di ridurre significativamente

l’impatto dei ritardi sull’esecuzione. Questi algoritmi seguono rispettiva-

mente un approccio deterministico e probabilistico.

Nel Capitolo 6, k-TP and p-TP sono confrontati con l’algoritmo di rifer-

mento TP con procedure di recupero in diversi ambienti che rappresentano

magazzini simulati. Vengono analizzati i compromessi dei diversi livelli di

robustezza e l’impatto degli algoritmi nel ridurre ripianificazioni causate da

ritardi in diversi ambienti con diverso numero di robot, di ritardi, e diversa

frequenza degli incarichi.

Nel Capitolo 7 sono riassunti i risultati ottenuti i questa tesi, sottolineando

punti di forza e limiti dei metodi proposti. Infine, vengono suggeriti possibili

miglioramenti e future direzioni per la ricerca.

L’Appendice A arricchisce gli esperimenti riportati nel Capitolo 6 presen-

tando ulteriori simulazioni effettuate con differenti parametri e dettagli sulle

deviazioni standard.

Nell’Appendice B un breve manuale utente mostra al lettore come usare

x

il codice fornito per eseguire le simulazioni e gli esperimenti presentati in

questa tesi.

Ringraziamenti

Prima di tutto, desidero porgere un sentito ringraziamento al mio relatore,

il Prof. Francesco Amigoni, per avermi affidato un progetto di notevole

interesse ed essersi prestato, con pazienza e dedizione, a farmi da guida

in questo lungo percorso. Voglio inoltre ringraziare il mio correlatore, il

Prof. Nicola Basilico, per tutto il tempo dedicatomi, per la cordialità, e

per il supporto che non ha mai fatto mancare nelle nostre innumerevoli

discussioni. Grazie al loro impegno e alla loro disponibilità, non solo porterò

con me importanti lezioni per la futura vita professionale, ma anche un bel

ricordo a conclusione della mia carriera accademica.

Cari mamma e papà: non so da dove cominciare a ringraziarvi. Potrei

iniziare ringraziandovi per avermi sostenuto ogni giorno, anche quando forse

non lo meritavo, e per avermi incoraggiato a seguire le mie inclinazioni.

Potrei ringraziarvi per essere qui oggi, alla mia laurea, e lo faccio, con tutto

il cuore, ma sento che è ancora troppo poco. Questa laurea è anche vostra,

e spero oggi possiate essere felici. Un ringraziamento speciale va poi a mia

nonna Rosa, il cui supporto ha per me un valore inestimabile.

Infine, ci tengo a ringraziare i miei amici, quelli di sempre e quelli incontrati

lungo il percorso. Grazie per esserci sempre stati, nei momenti felici e in

quelli bui. Grazie a chi ha condiviso con me sia spensierate ed interminabili

chiacchierate fino all’alba, che mesti viaggi di ritorno dopo un’estenuante

giornata di università. Grazie per essere le stelle che, nelle notti della vita,

illuminano questo cammino.

Contents

Abstract v

Estratto in Lingua Italiana vii

Ringraziamenti xi

1 Introduction 1

2 Preliminaries and Related Work 5

2.1 MAPF . 6

2.1.1 Problem Definition . 6

2.1.2 Some theoretical results for MAPF 7

2.1.3 MAPF Algorithms . 7

2.2 MAPD . 10

2.2.1 Some theoretical results for MAPD 11

2.2.2 MAPD Algorithms . 12

2.3 Kinematic Constraints . 13

2.4 Robustness . 15

3 MAPD with Delays 17

3.1 MAPD-d . 17

3.2 Well-formedness of MAPD-d 18

3.3 TP with Recovery Routines 19

4 MAPD-d Algorithms 23

4.1 k-TP Algorithm . 23

4.2 p-TP Algorithm . 24

5 Implementation Details 29

5.1 Environments . 29

5.2 Simulation Code Structure . 30

xiv Contents

5.3 Visualization . 33

6 Experimental Results 35

6.1 Setting . 35

6.2 Results . 36

6.2.1 Effect of the Number of Delays 41

6.2.2 Scalability in Larger Environments 41

7 Conclusions 45

A Tables of Results 47

A.1 Low Number of Delays . 47

A.2 Low Number of Delays (Standard Deviations) 49

A.3 High Number of Delays . 53

A.4 High Number of Delays (Standard Deviations) 56

B User Guide 61

B.1 Requirements . 61

B.2 Run One Simulation . 61

B.3 Run Multiple Experiments . 63

Bibliography 64

List of Figures

2.1 Three MAPD problem instances. 11

3.1 Example of how TP with recovery routines works. 21

5.1 High level view of the simulation pipeline. 31

6.1 Small warehouse with 8 agents. Black cells are obstacles.

Colored squares are task pickup vertices, triangles are task

goal vertices. Green circles are endpoints. 37

6.2 Large warehouse with 24 agents. Black cells are obstacles.

Colored squares are task pickup vertices, triangles are task

goal vertices. Green circles are endpoints. 38

6.3 Larger warehouse with 52 agents. Black cells are obstacles.

Colored squares are task pickup vertices, triangles are task

goal vertices. Green circles are endpoints. 43

List of Tables

6.1 Results of experiments in small warehouse with task frequency

λ = 0.5 and 10 delays per agent 38

6.2 Results of experiments in small warehouse with task frequency

λ = 3 and 10 delays per agent 39

6.3 Results of experiments in large warehouse with task frequency

λ = 0.5 and 10 delays per agent 39

6.4 Results of experiments in large warehouse with task frequency

λ = 3 and 10 delays per agent 40

6.5 Results of experiments in small warehouse with task frequency

λ = 1 and 50 delays per agent 41

6.6 Results of experiments in large warehouse with task frequency

λ = 1 and 50 delays per agent 42

6.7 Results of experiments in larger warehouse (25x37) with task

frequency λ = 1 and 10 delays per agent (100 tasks) 42

A.1 Results of experiments in small warehouse with task frequency

λ = 1 and 10 delays per agent 48

A.2 Results of experiments in large warehouse with task frequency

λ = 1 and 10 delays per agent 48

A.3 Results of experiments in small warehouse with task frequency

λ = 0.5 and 10 delays per agent (standard deviation) 49

A.4 Results of experiments in small warehouse with task frequency

λ = 1 and 10 delays per agent (standard deviation) 50

A.5 Results of experiments in small warehouse with task frequency

λ = 3 and 10 delays per agent (standard deviation) 50

A.6 Results of experiments in large warehouse with task frequency

λ = 0.5 and 10 delays per agent (standard deviation) 51

A.7 Results of experiments in large warehouse with task frequency

λ = 1 and 10 delays per agent (standard deviation) 51

List of Tables xvii

A.8 Results of experiments in large warehouse with task frequency

λ = 3 and 10 delays per agent (standard deviation) 52

A.9 Results of experiments in larger warehouse (25x37) with task

frequency λ = 1 and 10 delays per agent (100 tasks, standard

deviation) . 52

A.10 Results of experiments in small warehouse with task frequency

λ = 0.5 and 50 delays per agent 53

A.11 Results of experiments in small warehouse with task frequency

λ = 3 and 50 delays per agent 54

A.12 Results of experiments in large warehouse with task frequency

λ = 0.5 and 50 delays per agent 54

A.13 Results of experiments in large warehouse with task frequency

λ = 3 and 50 delays per agent 55

A.14 Results of experiments in small warehouse with task frequency

λ = 0.5 and 50 delays per agent (standard deviation) 56

A.15 Results of experiments in small warehouse with task frequency

λ = 1 and 50 delays per agent (standard deviation) 57

A.16 Results of experiments in small warehouse with task frequency

λ = 3 and 50 delays per agent (standard deviation) 57

A.17 Results of experiments in large warehouse with task frequency

λ = 0.5 and 50 delays per agent (standard deviation) 58

A.18 Results of experiments in large warehouse with task frequency

λ = 1 and 50 delays per agent (standard deviation) 58

A.19 Results of experiments in large warehouse with task frequency

λ = 3 and 50 delays per agent (standard deviation) 59

List of Algorithms

2.1 Token Passing . 14

3.1 TP with recovery routines . 22

4.1 k-TP . 25

4.2 p-TP . 27

Chapter 1

Introduction

In Multi-Agent Pickup and Delivery (MAPD) [19], a set of agents must

jointly plan collision-free paths to serve pickup-delivery tasks that are sub-

mitted at run-time. MAPD combines the resolution of a task-assignment

problem, where agents must be assigned to pickup-delivery pairs of locations,

with Multi-Agent Path Finding (MAPF) [30], where paths for completing

the assigned tasks must be computed. A particularly challenging feature of

MAPD problems is their time-extension and dynamic nature that allows for

new tasks to be submitted at any time and location in the environment.

Motivation

MAPD has a great relevance for a number of real-world application do-

mains. Automated warehouses, where robots continuously fulfill new or-

ders, have arguably the most significant industrial deployments; an example

is the successful Amazon Robotics system employed by Amazon [43]. Be-

yond logistics, MAPD applications include also the coordination of teams

of service robots [40] or fleets of autonomous cars, and the automated con-

trol of non-player characters in video games [23]. Others examples include

autonomous aircraft-towing vehicles [25], autonomous intersection manage-

ment [7], object-transportation robots [24], patrolling robots [1], search-

and-rescue robots [14], and swarms of differential-drive robots and quad-

copters [13].

2 Chapter 1. Introduction

Goal

Recently, the MAPF community has focused on robustness [2, 3, 19], gen-

erally understood as a property of solutions that can withstand real-world-

induced relaxations of some idealistic assumptions made by the models. A

typical example is represented by the assumption that paths are executed

without errors. In reality, however, paths execution is subject to delays and

other issues that can hinder some properties (e.g., the absence of collisions)

of a solution. In contrast, robustness in the time-extended setting of MAPD

has not been yet consistently studied. The goal of this thesis is to contribute

to bridge this gap by studying the impact of delays in the MAPD problem

and by proposing solutions applicable in real applications.

Contribution

In this thesis, the robustness of MAPD to the occurrence of delays is studied

by defining a variant of the problem called MAPD-d (MAPD with delays).

In this variant, agents, like in standard MAPD, are assigned to tasks (pickup-

delivery locations pairs), which may continuously appear at any time step,

and paths to accomplish those tasks avoiding collisions are computed. Dur-

ing path execution, delays can occur at arbitrary times, causing one or more

agents to halt at some time steps, thus slowing down the execution of their

planned paths. Three algorithms are devised to compute robust solutions

for MAPD-d. The first one is based on a decentralized MAPD algorithm,

Token Passing (TP), to which some recovery routines are added to provide

replanning in case collisions caused by delays are detected. TP is able to

solve well-formed MAPD problem instances [22], and it is shown that, un-

der some assumptions, the introduction of delays in MAPD-d does not affect

well-formedness. Then, two new algorithms are proposed, k-TP and p-TP,

which adopt the approach of robust planning, computing paths that limit

the risk of collisions caused by potential delays. k-TP returns solutions with

deterministic guarantees about robustness in face of delays (k-robustness),

while solutions returned by p-TP have probabilistic robustness guarantees

(p-robustness). These algorithms are compared by running experiments in

simulated environments and the trade-offs offered by different levels of ro-

bustness are evaluated.

3

Outline

The contents of this thesis are organized in the following chapters.

In Chapter 2 the MAPF problem is introduced, its proprieties are analyzed

along with various algorithms, either optimal and sub-optimal, used to solve

it with various trade-offs. Then the discussion focuses on the limitations of

MAPF, which led to the introductions of new variations of the problem.

In particular, MAPD, a time-extended version of MAPF which manages to

model closely what happens in real applications, is studied in detail (theoret-

ical framework, algorithms, assumptions). Finally other research directions

to bring MAPF closer to reality are presented, like considering kinematic

constraints of robots or delays in execution.

Chapter 3 presents the problem of MAPD-d (MAPD with delays), which

extends the concept of delays to the MAPD setting, and its theoretical

properties are analyzed; then, a baseline algorithm, TP with recovery rou-

tines, is proposed to solve a relevant subset of MAPD-d problem instances.

Chapter 4 collects the main algorithmic contribution of this thesis, which

consists if two algorithms, k-TP and p-TP, that, by considering the possi-

bility of delays at planning time, allow to significantly reduce the impact

of delays on execution. These algorithms follow a deterministic and proba-

bilistic approach, respectively.

In Chapter 6 k-TP and p-TP are evaluated against the baseline algorithm

TP with recovery routines in several realistic warehouse environments. The

evaluation is performed by analyzing the trade-offs of different level of ro-

bustness and impact of the algorithms in reducing delay-induced replans

in different settings with a varying number of robots, task frequencies and

delays.

In Chapter 7 the results obtained in this thesis are summarized, underling

strengths and limitations of the proposed methods. Finally, possible im-

provements and future directions for research are suggested.

Appendix A enriches the experimental evaluation performed in Chapter 6

with additional simulation settings and details about the standard devia-

tions.

In Appendix B a brief user guide instructs the reader on how to use the given

code to run the simulations and the experiments presented in this thesis.

Chapter 2

Preliminaries and Related

Work

In the domain of Multi-Agent Systems many path finding problems have

been formulated to solve variations of the general problem of coordinating

multiple agents to reach a set of locations. The original and most studied

problem, Multi-Agent Path Finding (MAPF), involves a set of agents, each

one with a starting vertex and a target vertex in a graph representing the

environment, and asks for a set of paths, one for each agent, such that,

when the agents follows such paths they reach their targets without collisions

(paths could be also required to minimize some cost function). Variations

of this problem have been introduced to make it more general: Anonymous

MAPF [31] allows the freedom of assigning targets to agents, combining the

problem of path planning and target assignment; Target Assignment and

Path Finding (TAPF) [21], still combines the problem of path planning and

target assignment, but agents are divided in teams and an agent can only

be assigned a target if that target is given to its team (allocation of targets

to teams is predetermined and fixed). All these problems, however, are

one-shot, meaning they relies on the notion that all tasks (start-target pairs

of locations) are known a priori and the mission is ended when all targets

are reached, which is not true in many applications. To solve this issue, the

theoretical framework of Multi-Agent Pickup and Delivery (MAPD) [19] has

been developed: MAPD combines path planning and target assignment but,

differently from previous problems, it is long-term and dynamic, meaning

that new tasks may enter at any time step. The one-shot assumption is not

the only limitation of MAPF, but also other problems exists in the practical

domain [38]; to address them, some solutions have been proposed in the

6 Chapter 2. Preliminaries and Related Work

MAPF setting to consider the kinematic constraints of real robots [20] and

to deal with imperfect execution caused by delays [2, 3].

Chapter Outline

The chapter is organized as follows. Section 2.1 introduces the problem

of MAPF, its theoretical proprieties, and different algorithms, optimal and

sub-optimal, used to solve it. Section 2.2 presents instead the problem of

MAPD, its theoretical framework and the stat of the art regarding MAPD

algorithms. Section 2.3 describes MAPF with kinematic constraints, one of

the directions followed by research to extend MAPF to address problems of

real applications. Finally, in Section 2.4 the different concepts of robustness

in MAPF and MAPD setting are introduced.

2.1 MAPF

To better understand the topic and the next problem formulations, some

basic definitions are needed.

Definition 2.1. An undirected graph G = (V,E) is a mathematical struc-

ture that consists of a set of vertices, or nodes, V , and a set of edges E ⊆ V 2,

which are non ordered pairs of vertices.

Definition 2.2. A vertex vi is said to be neighbor, or adjacent, of a vertex

vj in some graph G if vi is connected to vj through an edge.

2.1.1 Problem Definition

A MAPF problem instance consists of:

• A given finite connected undirected graph G = (V,E), whose vertices

V correspond to locations and whose edges E correspond to connec-

tions between locations that the agents can move along.

• A given set of ` agents {ai|i ∈ [`]}1. Each agent ai has a start vertex

si ∈ V and a goal vertex gi ∈ V (that represents the preassigned

target). All start vertices are pairwise different. All goal vertices are

also pairwise different.

Time is discrete and starts from time step 0. At time step 0, each agent

starts from its initial vertex.

1We let [`] denote the positive integer set {1, ..., `}, representing the number of agents.

2.1. MAPF 7

Definition 2.3. A path πi = 〈πi,t, πi,t+1, ..., πi,t+n〉 for agent ai starting at

time step t and ending at time step t + n is a finite sequence of vertices

πi,h ∈ V that satisfies the following conditions:

1. The agent starts at its start vertex, that is, πi,0 = si.

2. The agent ends at its goal vertex at the arrival time Ti, which is

the minimal time step Ti such that, for all time steps t = Ti, ...,∞,

πi,t = gi.

3. The agent either moves to an adjacent vertex or does not move, that

is, for any vertex πi,h in πi, (πi,h, πi,h+1) ∈ E or πi,h+1 = πi.

Definition 2.4. A vertex collision is a tuple 〈ai, aj , v, t〉, where agents ai
and aj occupy the same vertex v = πi,t = πj,t at the same time step t.

Definition 2.5. An edge collision is a tuple 〈ai, aj , u, v, t〉, where agents ai
and aj traverse the same edge (u, v), where u = πi,t = πj,t+1 and v = πj,t =

πi,t+1, in opposite directions between time steps t and t+ 1.

We call plan the set of paths computed by the agents. Paths in a plan are

required to be be collision-free, namely two (or more) agents, when following

their paths, cannot be in the same vertex or traverse the same edge at the

same time step.

Definition 2.6. The makespan maxi∈[`]Ti of a MAPF plan is the maximum

of the arrival times of all agents at their goal vertices.

Definition 2.7. The flowtime
∑

i∈[`] Ti of a MAPF plan is the sum of the

arrival times of all agents at their goal vertices.

The problem of MAPF is to find a solution with the smallest makespan or

flowtime.

2.1.2 Some theoretical results for MAPF

While single agent path finding is tractable (Dijkstra [6]), MAPF is NP-hard

to solve optimally for both makespan minimization [33] and flowtime mini-

mization [45]. The optimal makespan and optimal flowtime of any MAPF

problem instance are both bounded by O(|V |3) [46], however, as stated, it

is NP-hard to find a solution with the minimum makespan.

2.1.3 MAPF Algorithms

MAPF algorithms can be divided in four classes based on their methodolo-

gies: reduction based, rule-based, search-based, and hierarchical algorithms;

8 Chapter 2. Preliminaries and Related Work

algorithms differ for completeness (find a solution, if one exists, for all MAPF

problem instances, for some MAPF problem instances on graphs with spe-

cial properties, or offer no guarantee) and optimality (optimal, bounded-

suboptimal, or suboptimal).

Reduction-Based Algorithms Reduction-Based Algorithms work by re-

ducing MAPF to other well-studied combinatorial problems, such as Integer

Linear Programming (ILP) [44], Boolean Satisfiability [34], and Answer Set

Programming [8]. The idea behind these algorithms in to use variables and

constraints to construct an explicit representation of the state space of a

MAPF problem instance up to some value of the makespan, try to solve

the problem for this value of makespan and, if no solution exists, increase

the value. These algorithms are complete for solving MAPF and minimiz-

ing makespan. Variation exists to to solve MAPF with other objectives

optimally [36] [44], bounded-suboptimally (in this case, the level of subop-

timality can be chosen) [37], and suboptimally [35].

An example of optimal ILP-based algorithm is the one proposed in [44],

where MAPF is reduced to the integer multi commodity flow problem on

a time-expanded flow network and then this reduction is used to solve the

problem optimally for makespan minimization with ILP techniques. Infor-

mally, the MAPF instance graph G = (V,E) is expanded up to T time steps

(a single vertex v ∈ V is expanded to multiple vertices in the time-expanded

flow network representing it at beginning and at the end of time step t, new

vertices are connected by E edges with unit capacities), and for each agent

ai a supply of one at start vertex at time 0 and a demand of one at goal

vertex at time t is set for commodity time i. An optimal solution can be

found by starting with a lower bound on T and iteratively checking if, for

increasing values of T, a feasible integer multi-commodity flow of ` (number

of agents) units can be found in the corresponding T -step time-expanded

flow network (which is an NP-hard problem), until an upper bound on T

is reached. A MAPF solution with the smallest makespan corresponds to a

feasible integer multi-commodity flow for the smallest value of T.

Rule-Based Algorithms Rule-based algorithms are based on a set of

primitives used to choose agent actions in different situations. They usually

guarantee completeness for a restricted class of MAPF problem instances.

Rule-based algorithms are often very efficient since they limit choices to a

predefined set of operations, but provide no optimality guarantee (lots of

redundant actions in solution, very inefficient). One of the most known

algorithm in this category is Push and Swap [18]; its extension Push and

2.1. MAPF 9

Rotate [5] is complete for MAPF problem instances on graphs with at most

` = |V | − 2 agents. Another algorithm, BIBOX [32], is complete for MAPF

problem instances on bi-connected graphs with at most ` = |V | − 2 agents.

Finally, some algorithms like FAR [41] and MAPP [42] try to find patterns

to combine paths of individual agents, using both primitive operations and

search.

Search-Based Algorithms The problem associated with solving MAPF

optimally is that the number of possible states of a MAPF problem in-

stance is exponential in the number of agents: each joint state is given by

the Cartesian product of the vertices of all the agents, and each joint ac-

tion is the Cartesian product of the actions of all the agents. Search-based

algorithms try to reduce the exponential size of the state space; they are

often efficient but provide no optimality or even completeness guarantee. A

technique used to achieve this result is decoupled planning : the main idea

is to plan for each agent separately. Many of these algorithms are based

on Prioritized Planning [4] that plans a path for a single agent at a time,

selected by following predefined priorities. Cooperative A* and Hierarchical

Cooperative A* (HCA*) [28] are prioritized planning algorithms that use a

space-time A* search [10] to plan a path for one agent at a time avoiding

collisions with agents that have already planned. An extension of HCA*,

Windowed-HCA* [28], uses a limited time window when considering paths

of other agents for planning and assigns priority for agents dynamically.

Hierarchical Algorithms Hierarchical algorithms are two-level algorithms:

they decouple MAPF into one-shot single-agent path-planning problems on

the low level and dynamically couple the resulting single-agent paths on the

high level. They are complete and optimal for all MAPF problem instances,

and the two most notable examples are Conflict-Based Search (CBS) [26]

and Increasing Cost Tree Search (ICTS) [27].

CBS is a two-level complete and optimal MAPF algorithm that does not

convert the problem into a single “joint agent” model. At the high level, a

search is performed on a Conflict Tree (CT) which is a tree based on con-

flicts between individual agents. Each node in the CT represents a set of

constraints on the motion of the agents. At the low level, fast single-agent

searches are performed to satisfy the constraints imposed by the high level

CT node. In many cases this two-level formulation enables CBS to examine

fewer states than a classical algorithm based on A∗ search over the joint

space of agents while still maintaining optimality. CBS minimizes either the

makespan or the flowtime.

10 Chapter 2. Preliminaries and Related Work

ICTS is another example of complete and optimal two-level search algo-

rithm. The high-level phase of ICTS searches the increasing cost tree for a

set of costs (one cost per agent). The low-level phase of ICTS searches for

a valid path for every agent that is constrained to have the same cost as

given by the high-level phase. A compact data-structure called multi-value

decision diagram (MDD) [29] is involved to store all single-agent paths of a

certain length, for each agent. ICTS minimizes the flowtime.

2.2 MAPD

A MAPD problem [19] consists of:

• A finite connected undirected graph G = (V,E), whose vertices V

represent locations and whose edges E represent connections between

locations that the agents can traverse.

• A set of ` agents A = {a1, a2, . . . , a`}.

• A task set T that contains the unexecuted tasks in the system. The

task set changes dynamically as, at each time step, new tasks can be

added to the system. Each task τj ∈ T is characterized by a pickup

vertex sj ∈ V and a delivery vertex gj ∈ V and is added to the system

at an unpredictable (finite) time step. A task is known to the agents

(and can thus be executed) from the time step at which it is added to

T .

Time is discrete and starts from time step 0. At time step 0, each agent

starts from an initial vertex; initial vertices are all different. Differently from

the MAPF setting, agents are not preassigned to a task. Agents move in

the environment represented by G along paths.

Definition 2.8. A path πi = 〈πi,t, πi,t+1, ..., πi,t+n〉 for agent ai starting at

time step t and ending at time step t + n is a finite sequence of vertices

πi,h ∈ V that satisfies the following condition: the agent either moves to

an adjacent vertex or does not move, that is, for any vertex πi,h in πi,

(πi,h, πi,h+1) ∈ E or πi,h+1 = πi.

An agent is called free when it is currently not executing any task. Other-

wise, it is called occupied when it is assigned to a task. If an agent is free,

it can be assigned to any task τj ∈ T (thus becoming occupied), with the

constraint that a task can be assigned to only one agent. When a task is as-

signed to an agent, it is removed from T . To execute a task τj , the assigned

agent has to plan and follow paths to move first from its current location to

2.2. MAPD 11

the pickup vertex sj of the task and then from there to the delivery vertex

gj . When the agent arrives at the delivery vertex gj , the task is completed

and the agent becomes free. We call plan the current set of paths computed

by the agents. Paths in a plan are required to be be collision-free, namely

two (or more) agents, when following their paths, cannot be in the same

vertex or traverse the same edge at the same time step. Solving a MAPD

problem means finding collision-free paths that complete all the tasks in T .

Due to the dynamic and online nature of MAPD, the paths cannot be fully

planned in advance, but they are planned as soon as the tasks appear. The

quality of a solution for a MAPD problem is measured according to service

time or to makespan.

Definition 2.9. The service time is the average number of time steps needed

to complete each task, measured from the time step it is added to T .

Definition 2.10. The makespan is the earliest time step when all tasks are

completed.

2.2.1 Some theoretical results for MAPD

Figure 2.1: Three MAPD problem instances.

Not all MAPD problem instances are solvable. According to Ma et al. [22]

some characteristics of the problem environment, summarized under the

term well-formedness, are a sufficient condition to enable long-term robust-

ness, that is the guarantee to complete a finite number of tasks in a finite

time. The underlying idea is that agents could be forced to idle only at

specific vertices, called (non-task) endpoints, where they do not block other

agents. A MAPD problem instance is well-formed when:

1. the number of tasks is finite;

2. the agents are less or equal than the endpoints (arbitrary vertices

designated as rest locations);

12 Chapter 2. Preliminaries and Related Work

3. for any two endpoints, there exists a path between them that traverses

no other endpoints.

Figure 2.1 shows three MAPD problem instances. Black cells are blocked.

Blue and green circles are the initial vertices of agents. Red dashed circles

are task endpoints. Black dashed circles are non-task endpoints. We assume

each of the MAPD problem instances has finitely many tasks. The MAPD

problem instance on the left is well-formed. The MAPD problem instance

in the center is not well-formed because there are more agents than non-task

endpoint (2 agents, 1 non-task endpoint). The MAPD problem instance on

the right is not well-formed because all paths between endpoints e3 and e4
(or e2 and e3) traverse endpoint e1.

Since MAPD is a generalization of MAPF, and MAPF is NP-hard to solve

optimally (see Section 2.1.2), also MAPD is NP-hard to solve optimally,

either using the service time or makespan objective function.

2.2.2 MAPD Algorithms

Some algorithms have been proposed to address the MAPD problem. Given

the dynamic and online nature of the problem, they interleave planning and

execution. Ma et al. [22] illustrate different algorithms able to solve well-

formed MAPD problem instances, divided in two categories: decentralized

(where each agent assigns itself to tasks and computes its own collision-free

paths given some global information) and centralized.

Token Passing (TP, Algorithm 2.1) This decoupled algorithm is based

on a token, a synchronized shared block of memory that contains the current

paths πi of all agents, the current task set T , and the current assignment of

tasks to the agents. When the algorithm starts, the token is initialized with

trivial paths in which agents rest at their initial locations (line 2). At each

time step, any task that enters the setting is added to the task set T (line

4). When an agent has reached the end of its path in the token, it requests

the token (at most once per time step). The system then sends the token

to each requesting agent, in turn (line 5). The agent with the token can

assign itself (line 10) to the task τ in T whose pickup vertex is closest to its

current location (line 9, in our experiments we use Manhattan distance as

h()), provided that no other path already planned (and stored in the token)

ends at the pickup or delivery vertex of such task (line 7). The agent then

finds a collision-free path from its current position to the pickup vertex and

then to the delivery vertex of the task and it eventually rests at the delivery

2.3. Kinematic Constraints 13

vertex (line 12). Finally, the agent returns the token to the system and

moves one step along its path in the token (lines 18 and 20). If it cannot

find a feasible path it stays where it is or calls function Idle to compute a

path to an endpoint (see Section 2.4) in order to avoid deadlocks and ensure

long-term robustness (lines 14 and 16).

Token Passing with Task Swaps (TPTS) TPTS is a decoupled algo-

rithm similar to TP except that its task set now contains all unexecuted

tasks, rather than only unassigned tasks. This means that an agent with

the token can assign itself not only a task that is not yet assigned to any

agent but also a task that is already assigned to another agent as long as

that agent is still moving to reach the pickup vertex of the task. This might

be beneficial when the former agent can move to the pickup vertex of the

task in fewer time steps than the latter agent. The latter agent is then no

longer assigned the task and no longer needs to execute it. The former agent

thus sends the token to the latter agent so that the latter agent can try to

assign itself a new task.

Central A centralized algorithm that makes decisions for multiple agents

at a time is also proposed in [22]. Similar to TPTS, Central allows agents

that have just become free to consider not only unassigned tasks but also

all unexecuted tasks, thus including the ones that have been assigned to

agents, in the task set. Unlike TPTS, Central uses a centralized target-

assignment algorithm, the Hungarian method [16], to assign (or reassign)

tasks to agents and allows all free agents to consider tasks that have just

been added to the system. It uses the centralized MAPF algorithm CBS to

plan paths for multiple agents.

From experimental results [22], centralized algorithms offer better results in

terms of service time and makespan, but require higher computational costs.

A decentralized algorithm, Token Passing, proves instead most suitable for

real-time long-term operations.

2.3 Kinematic Constraints

So far we have considered agents as abstract entities; in reality they are often

robots and, as such, they are subject to physical constraints like minimum

turning radius, maximum velocity, maximum acceleration, etc.; to introduce

these physical limitations in the formulation of the problem, some solutions

14 Chapter 2. Preliminaries and Related Work

Algorithm 2.1: Token Passing

1 /* system executes now */;

2 initialize token with the (trivial) path 〈loc(ai)〉 for each agent ai
(loc(ai) is the current location of ai);

3 while true do

4 add new tasks, if any, to the task set T ;

5 while agent ai exists that requests token do

6 /* system sends token to ai and ai executes now */;

7 T ′ ← {τj ∈ T | no path in token ends in sj or in gj};
8 if T ′ 6= {} then

9 τ ← arg minτj∈T ′ h(loc(ai), sj);

10 assign ai to τ ;

11 remove τ from T ;

12 update ai’s path in token with the path returned by

PathPlanner(ai, τ, token);

13 else if no task τj ∈ T exists with gj = loc(ai) then

14 update ai’s path in token with the path 〈loc(ai)〉;
15 else

16 update ai’s path in token with Idle(ai, token);

17 end

18 /* ai returns token to system, which executes now */;

19 end

20 agents move along their paths in token for one time step;

21 /* system advances to the next time step */;

22 end

have been proposed.

Hoenig et al. [12] presented MAPF-POST, an approach that makes use of a

simple temporal network to post-process a MAPF plan in polynomial time

to create a plan-execution schedule that works on non-holonomic (not all

degrees of freedom can be controlled at the same time) robots, takes their

maximum translational and rotational velocities into account, provides a

guaranteed safety distance between them, and exploits slack (defined as the

difference of the latest and earliest entry times of locations) to absorb im-

perfect plan executions and avoid time intensive replanning in many cases.

A similar approach was later followed by Hoenig et al. [11]: their solution

exploits a particular type of graph, called Action Dependency Graph, that

captures the action precedence relationships of a MAPF solution and can be

2.4. Robustness 15

used to enforce these relationships on real robots with higher-order dynam-

ics. More recently, Ma et al. [20] proposed, for the MAPD problem, an im-

proved version of TP, called TP-SIPPwRT, keeping into account kinematic

constraints. TP is made more effective using a novel combinatorial search

algorithm, called Safe Interval Path Planning with Reservation Table (SIP-

PwRT) for single-agent path planning. SIPPwRT uses an advanced data

structure that allows for fast updates and lookups of the current paths of all

agents in an online setting. The resulting MAPD algorithm TP-SIPPwRT

takes kinematic constraints of real robots into account directly during plan-

ning, computes continuous agent movements with given velocities that work

on non-holonomic robots rather than discrete agent movements with uniform

velocity, and is complete for well-formed MAPD instances.

2.4 Robustness

In the context of MAPF, a robust solution allows to follow the same paths

even when some unexpected event forces a deviation of the execution from

what originally expected. In real applications, this behaviour is typically

caused by delays afflicting agents’ executions of planned paths. When an

agent, following its path, intends to move to an adjacent vertex, a delay

leaves the agent at its current vertex, thus slowing down the execution of

the path. In the MAPF setting, different kinds of robustness have been

considered. The idea of k-robustness, introduced by Atzmon et al. [3], is

defined as follows.

Definition 2.11. A plan is k-robust iff it is collision-free and remains

collision-free when at most k delays for each agent occur.

To create k-robust plans, an algorithm should ensure that, when an agent

leaves a vertex, that vertex is not occupied by another agent before k time

steps. In this way, even if the first agent delays k times, no collision occurs.

The concept of p-robustness [2] is an alternative to k-robustness. Assume

to know the delay probability pd, which is the probability that an agent is

delayed at a given time step. Assume also that delays are independent of

each other and that the delay probability is fixed across all agents, locations,

and time steps (this last assumption can be easily generalized). Then, p-

robustness is defined as follows.

Definition 2.12. A plan is p-robust iff the probability that it will be exe-

cuted without a collision is at least p.

16 Chapter 2. Preliminaries and Related Work

Note that p-robustness offers a probabilistic guarantee on the absence of

collisions in presence of delays, while k-robustness offers a deterministic

guarantee.

Robustness for MAPD has been less studied. A first result comes from the

fact that it is not possible to solve all MAPD problem instances. As we have

discussed in Section 2.2.1 some characteristics of the problem environment,

summarized under the term well-formedness, are a sufficient condition to

enable long-term robustness, meaning that we have the guarantee to com-

plete a finite number of tasks in a finite time. It is important to notice that

here the term robustness, despite coming form literature, can be misleading:

it actually describes a feasibility condition.

In this theis, we contribute to the study of robustness for MAPD by ex-

tending the concepts of k- and p-robustness from MAPF to the long-term

setting of MAPD. We also propose two new algorithms, based on TP, able to

produce solutions to MAPD problems, that are not only long-term robust,

but also robust to delays.

Chapter 3

MAPD with Delays

Delays are typical problems in real applications of MAPF and MAPD and

may have multiple causes. For example, robots can slow down when fol-

lowing paths due to some errors occurring in sensors (encoders, gyroscopes,

accelerometers) used for localization and coordination [15]. Moreover, real

robots are subject to physical constraints, like minimum turning radius,

maximum velocity, and maximum acceleration, and, although algorithms

exists to convert time-discrete MAPD plans into plans executable by real

robots [20], small differences between models and actual agents may still

cause delays. Another source of delays is represented by anomalies occur-

ring during path execution and caused, for example, by partial or temporary

failures of some agent [9].

Chapter Outline

The chapter is organized as follows. Section 3.1 presents the problem of

MAPD with delays (MAPD-d), which introduces delays in a long term

setting. Section 3.2 is devoted to the analysis of the property of well-

formedness in MAPD-d. Finally, Section 3.3 introduces a baseline algorithm

to solve MAPD-d.

3.1 MAPD-d

We define the problem of MAPD with delays (MAPD-d) as a MAPD prob-

lem (see Section 2.2) where the execution of the computed paths πi can be

affected, at any time step t, by delays represented by a time-varying set

D(t) ⊆ A. Given a time step t, D(t) specifies the subset of agents that

18 Chapter 3. MAPD with Delays

will delay the execution of their paths (lingering at their currently occupied

vertex) during time step t. An agent could be delayed for several consecu-

tive time steps (but not for indefinitely long to preserve well-formedness, see

next section). The temporal realization of D(t) is unknown, so a MAPD-

d instance is formulated as a MAPD one: no other information is avail-

able at planning time. The difference lies in how the solution is searched:

in MAPD-d we compute solution accounting for robustness to delays that

might happen.

More formally, delays affect each agent’s execution trace. Agent ai’s execu-

tion trace ei = 〈ei,0, ei,1, ..., ei,m〉1 for a given path πi = 〈πi,0, πi,1, ..., πi,n〉
corresponds to the actual sequence of m (m ≥ n) vertices traversed by ai
while following πi and accounting for possible delays. Let us call idx(ei,t)

the index of ei,t (the vertex occupied by ai at time step t) in πi. Given that

ei,0 = πi,0, the execution trace is defined, for t > 0, as:

ei,t =

{
ei,t−1 if ai ∈ D(t)

πi,h | h = idx(ei,t−1) + 1 otherwise

An execution trace terminates when ei,m = πi,n for some m.

Notice that, if no delays are present (that is, D(t) = {} for all t) then the

execution trace ei exactly mirrors the path πi and, in case this is guaran-

teed in advance, the MAPD-d problem becomes de facto a regular MAPD

problem. In general, such a guarantee is not given and solving a MAPD-d

problem opens the issue of computing collision-free tasks-fulfilling MAPD

paths (optimizing service time or makespan) characterized by some level of

robustness to delays.

The MAPD-d problem reduces to the MAPD problem as a special case, so

the MAPD-d problem is NP-hard.

3.2 Well-formedness of MAPD-d

The fact that delays only affect execution does not harm long-term robust-

ness (namely, the guarantee that a finite number of tasks will be completed

in a finite time), since the property is guaranteed by well-formedness that

depends mostly on the environment (see Section 2.4). The only possible

exception is when an agent cannot move anymore (namely when ei,t+1 = ei,t

1For simplicity, we consider a path and a corresponding execution trace starting from

time step 0. The generalization to paths starting at a generic time step t is intuitive, but

requires a more complex notation and is not reported here.

3.3. TP with Recovery Routines 19

for all t ≥ T or, equivalently, when the agent is in D(t) for all t ≥ T). In

this case, the agent becomes a new obstacle in the environment, potentially

blocking a path critical for preserving the well-formedness of the environ-

ment. In a real context, this problem can be solved by removing or repairing

the blocked agent. So it is reasonable to add the following assumption: if an

agent fails permanently, it will be removed (in this case its incomplete task

will return in the task set) or repaired after a finite number of time steps.

This guarantees that the well-formedness of a problem instance is preserved

(or, more precisely, that it is restored after a time interval).

Hence, an instance of the MAPD-d problem is well-formed and, conse-

quently, long-time robust when, in addition to conditions (1)-(3) from Sec-

tion 2.4, we have:

(4) there is not any agent that belongs to D(t) for t ≥ T .

In what follows, we implicitly consider well-formed instances of MAPD-d

problems.

3.3 TP with Recovery Routines

From the previous discussion it follows that algorithms able to solve well-

formed MAPD problems, like Token Passing (TP), are in principle able

to solve well-formed MAPD-d problems as well. The only issue is that

these algorithms return paths that do not consider possible delays occurring

during execution. Delays cause planned paths to possibly collide, although

they did not at the time they have been created. Note that, according to

our assumptions, when an agent is delayed at time step t, there is no way

to know for how long it will be delayed.

In the original TP algorithm (Section 2.2.2), only agents that have reached

the end of their paths in the token can request the token to plan again. To

address the presence of delays, we add a simple recovery routine to the TP

algorithm such that, when a collision is detected between agents following

their paths in the token, it assigns the token to one of the colliding agents

to allow replanning of a new collision-free path. This TP with recovery

routines algorithm (Algorithm 3.1) will be a baseline for experimentally

evaluating the algorithms we propose in the next section. In addition to

the other information (Section 2.2.2), we also store in the token the current

execution traces of the agents. The algorithm checks if there will be a

collision at the current time step using the function CheckCollisions in line 5:

a collision occurs at time step t if the path πi of an agent ai that is not delayed

20 Chapter 3. MAPD with Delays

(ai 6∈ D(t)) tells ai to move to a vertex occupied by a delayed agent aj
(aj ∈ D(t)). The function returns the set R of non-delayed colliding agents

that try to plan new collision-free paths (line 8). Note that PathPlanner

considers as constraints the current paths of other agents in the token.

A problem may happen when multiple delays occur at the same time; in

particular situations, two or more delayed agent may prevent each other to

follow the only paths to complete their tasks. In this case, the algorithm

recognizes the situation and implements a deadlock recovery routine. In

particular, although with our assumptions agents cannot be delayed forever,

we plan short collision-free random walks for the involved agents in order to

speedup the deadlock resolution (line 12).

Figure 3.1 shows hot TP with recovery routines work. The setting is a

grid environment, with two agents and two tasks, at different time steps.

Initially, the agents plan their paths without collisions (top). At time steps

6 and 7, a2 is delayed (middle) and at time step 7 a collision is detected in

the token. Then, a1 regains the token and replans (bottom).

3.3. TP with Recovery Routines 21

Figure 3.1: Example of how TP with recovery routines works.

22 Chapter 3. MAPD with Delays

Algorithm 3.1: TP with recovery routines

1 /* system executes now */;

2 initialize token with the (trivial) path 〈loc(ai)〉 for each agent ai;

3 while true do

4 add new tasks, if any, to the task set T ;

5 R ← CheckCollisions(token);

6 foreach agent ai in R do

7 retrieve task τ assigned to ai;

8 πi ← PathPlanner(ai, τ, token);

9 if πi is not null then

10 update ai’s path in token with πi;

11 else

12 recovery from deadlocks;

13 end

14 end

15 while agent ai exists that requests token do

16 proceed like in Algorithm 2.1 (lines 6 - 18);

17 end

18 agents move along their paths in token for one time step (or stay

at their current position if delayed);

19 /* system advances to the next time step*/;

20 end

Chapter 4

MAPD-d Algorithms

As we have discussed in Section 3.1, TP with recovery routines just reacts

to the occurrence of delays, ensuring that long-term robustness is preserved.

The algorithms proposed here, instead, plans considering that delays may

occur, reducing the need of replanning during execution.

Chapter Outline

The chapter is organized as follows. Section 4.1 presents k-TP, an algorithm

able to produce robust solutions to the MAPD-d problem following a deter-

ministic approach. Section 4.2 presents p-TP, an algorithm able to produce

robust solutions to the MAPD-d problem following a probabilistic approach.

4.1 k-TP Algorithm

Since it is not a one-shot problem, a k-robust solution for MAPD-d is a plan

which is long-term robust and avoids collisions due to at most k consecu-

tive delays for each agent, not only considering the paths already planned

but also those planned in the future. This is what our proposed k-TP al-

gorithm, shown as Algorithm 4.1, does. The basic structure is similar to

TP with recovery routines, but the path planning is subject to additional

constraints. A new path πi, before being added to the token, is used to

generate the constraints (the k-extension of the path, also added to the to-

ken, lines 18 and 24) representing that, at any time step t, any vertex in

{πi,t−k, . . . , πi,t−1, πi,t, πi,t+1, . . . , πi,t+k} should be considered as an obstacle

(at time step t) by agents planning later. In this way, even if agent ai or

agent aj planning later are delayed up to k times, no collision will occur. For

24 Chapter 4. MAPD-d Algorithms

example, if πi = 〈v1, v2, v3〉, the 1-extension constraints will forbid any other

agent to be in {v1, v2} at the first time step, in {v1, v2, v3} at the second

time step, in {v2, v3} at the third time step, and in {v3} at the fourth time

step.

The path of an agent added to the token ends at the delivery vertex of the

task assigned to the agent, so the space requested in the token to store the

path and the corresponding k-extension constraints is finite, for finite k.

Note that, especially for large values of k, it may happen that a sufficiently

robust path for an agent ai cannot be found at some time step; in this case,

ai simply returns the token and tries to replan at the next time step. The

idea is that, as other agents advance along their paths, the setting becomes

less constrained and a path can be found more easily. Since delays that affect

the execution are not known beforehand and an agent could be delayed more

than k consecutive time steps, recovery routines are still necessary.

Note that k-TP is an extension of TP with recovery routines, so it is able

to solve all well-formed MAPD-d problem instances.

4.2 p-TP Algorithm

The idea of k-robustness considers a fixed value k for the guarantee, which

could be hard to set: if k is too low, plans may not be robust enough and the

number of replans could be high, while if k is too high, it will increase the

total cost of the solution with no extra benefit (see Chapter 6 for numerical

data supporting these claims).

An alternative approach is to resort to the concept of p-robustness (Chap-

ter 2). A p-robust plan guarantees long-term robustness and keeps collision

probability below a certain threshold p (0 ≤ p ≤ 1). In a MAPD setting,

where tasks are not known in advance, the planner could quickly reach the

threshold with just first few paths planned, so that no other path can be

added to the plan until the current paths have been executed. Our solu-

tion to avoid this problem is to impose that only the collision probability of

individual paths should remain below the threshold p, not the whole plan.

We thus need a way to calculate collision probability for a given path: in

the p-TP algorithm we use Markov chains, a tool typically employed to

model the future states of systems when transitions are defined in term of

probability [17]. A sequence of states {Xt, t ≥ 0} is said to be a Markov

chain if, for all state values xi, P{Xt+1 = xt+1 | X0 = x0, . . . , Xt−1 =

xt−1, Xt = xt} = P{Xt+1 = xt+1 | Xt = xt}. In fact, p-TP assumes that the

4.2. p-TP Algorithm 25

Algorithm 4.1: k-TP

1 /* system executes now */;

2 initialize token with the (trivial) path 〈loc(ai)〉 for each agent ai;

3 while true do

4 add new tasks, if any, to the task set T ;

5 R ← CheckCollisions(token);

6 foreach agent ai in R do

7 proceed like in Algorithm 3.1 (lines 7 - 13);

8 end

9 while agent ai exists that requests token do

10 /* system sends token to ai and ai executes now */;

11 T ′ ← {τj ∈ T | no path in token ends in sj or in gj};
12 if T ′ 6= {} then

13 τ ← arg minτj∈T ′ h(loc(ai), sj);

14 assign ai to τ ;

15 remove τ from T ;

16 πi ← PathPlanner(ai, τ, token);

17 if πi is not null then

18 update token with k-extension(πi, k);

19 else if no task τj ∈ T exists with gj = loc(ai) then

20 update ai’s path in token with the path 〈loc(ai)〉;
21 else

22 πi ← Idle(ai, token);

23 if πi is not null then

24 update token with k-extension(πi, k);

25 end

26 /* ai returns token to system, which executes now */;

27 end

28 agents move along their paths in token for one time step (or stay

at their current position if delayed);

29 /* system advances to the next time step*/;

30 end

set of possible execution traces {ei} corresponding to a path πi of an agent

ai is compactly represented as a Markov chain, where we have a probability

pd of remaining on the current vertex (probability of being delayed) and a

probability 1−pd of advancing along πi. Our model assumes that transitions

along chains of different agents are independent.

26 Chapter 4. MAPD-d Algorithms

From Algorithm 4.2, we can see that p-TP inherits the structure of TP

with recovery routines but, before inserting a new path πi in the token, a

Markov chain associated to the path is derived (states of the Markov chain

are the vertices composing the path and transitions of the Markov chain are

defined according to pd, as explained before) and the collision probability

cprobπi between path πi and paths already in the token is calculated (lines

20 and 33). Let us show the procedure in detail. The properties of Markov

chains [17] allows to calculate the probability that an agent occupies a vertex

at a time step as follows. The probability distribution for the vertex occupied

by an agent ai at the beginning of a path πi = 〈πi,t, πi,t+1, ..., πi,t+n〉 is given

by a (row) vector s0 with length n that has every element set to 0 except that

corresponding to the vertex πi,t, which is 1. The probability distribution for

the location of an agent at time step t+ j is given by s0P
j , where P is the

matrix describing transition probabilities constructed considering that an

agent has probability 1 − pd of advancing one step in the path. Hence, for

any vertex traversed by the path πi, we calculate its collision probability as

1 minus the probability that all the other agents are not in that vertex at

that time step (i.e., the probability that at least one of the other agents is in

that vertex at that time step) multiplied by the probability that the agent

is actually at that vertex in that given time step. All the probabilities of the

steps along the path are summed to obtain the collision probability cprobπi
for the path πi. If this probability is above the threshold p (lines 20 and

32), the path is rejected and a new one is calculated. If an enough robust

path is not found after a fixed number of rejections itermax, the token is

returned to the system and the agent will try to replan at the next time

step (as other agents advance along their paths, chances of collisions could

decrease).

Also for p-TP, since the delays are not known beforehand, recovery routines

are still necessary because p-TP provides only a probabilistic guarantee that

collisions won’t occur. Moreover, we need to set the value of pd, with which

we build that guarantee, according to the specific application setting. Fi-

nally, notice that, since p-TP is an extension of TP with recovery routines,

it is able to solve all the well-formed MAPD-d problem instances.

4.2. p-TP Algorithm 27

Algorithm 4.2: p-TP

1 /* system executes now */;

2 initialize token with the (trivial) path 〈loc(ai)〉 for each agent ai;

3 while true do

4 add new tasks, if any, to the task set T ;

5 R ← CheckCollisions(token);

6 foreach agent ai in R do

7 proceed like in Algorithm 3.1 (lines 7 - 13);

8 end

9 while agent ai exists that requests token do

10 /* system sends token to ai and ai executes now */;

11 T ′ ← {τj ∈ T | no path in token ends in sj or in gj};
12 if T ′ 6= {} then

13 τ ← arg minτj∈T ′ h(loc(ai), sj);

14 assign ai to τ ;

15 remove τ from T ;

16 j ← 0;

17 while j ¡ itermax do

18 πi ← PathPlanner(ai, τ, token);

19 cprobπi ← MarkovChain(πi, token);

20 if cprobπi < p then

21 update ai’s path in token with πi;

22 break

23 j ← j + 1;

24 end

25 else if no task τj ∈ T exists with gj = loc(ai) then

26 update ai’s path in token with the path 〈loc(ai)〉;
27 else

28 j ← 0;

29 while j ¡ itermax do

30 πi ← Idle(ai, token);

31 cprobπi ← MarkovChain(πi, token);

32 if cprobπi < p then

33 update ai’s path in token with πi;

34 break

35 j ← j + 1;

36 end

37 end

38 /* ai returns token and system executes now */;

39 end

40 agents move along their paths in token for one time step (or stay

at their current position if delayed);

41 /* system advances to the next time step*/;

42 end

Chapter 5

Implementation Details

To compare the proposed algorithms and evaluate the trade-offs offered by

the different levels of robustness, we developed a simulation pipeline and

algorithm implementations using Python. All the code used in this thesis

can be found at https://github.com/Lodz97/Multi-Agent_Pickup_and_

Delivery.git, MIT Licence.

Chapter Outline

The chapter is organized as follows. Section 5.1 describes how environments

are represented. Section 5.2 presents the core code structure of both the

simulation pipeline and the algorithm implementations. Section 5.3 focuses

on how visualization is performed.

5.1 Environments

All the experiments have been run in several simulated warehouse envi-

ronments created following typical warehouse representations described in

the literature [22, 43]. An environment is completely defined by a yaml file

which contains information regarding environment size, obstacles, starting

positions of the agents, task and non-task endpoints. Information regarding

tasks (pickup location, goal location, time of appearance) and delays (agent

involved, time of appearance) is also present in the yaml file, and can either

be fixed or change in different simulations. In this latter case, a yaml file

containing just the number of tasks to insert and the number of delays per

agent to insert is processed and transformed into a new yaml file containing

complete information about tasks (inserted randomly following a Poisson

https://github.com/Lodz97/Multi-Agent_Pickup_and_Delivery.git
https://github.com/Lodz97/Multi-Agent_Pickup_and_Delivery.git

30 Chapter 5. Implementation Details

distribution [39]) and delays (inserted randomly in a given interval). An

example of a yaml file where tasks and dealys are not fixed is presented in

Listing 5.1.

1 agents:

2 - start: [0, 1]

3 name: agent0

4 - start: [0, 5]

5 name: agent1

6 map:

7 dimensions: [10, 10]

8 obstacles:

9 - !!python/tuple [3, 2]

10 - !!python/tuple [4, 2]

11 - !!python/tuple [5, 2]

12 - !!python/tuple [6, 2]

13 non_task_endpoints:

14 - !!python/tuple [0, 1]

15 - !!python/tuple [0, 5]

16 start_locations:

17 - [4, 1]

18 - [6, 1]

19 - [8, 1]

20 goal_locations:

21 - [0, 0]

22 - [0, 2]

23 - [0, 3]

24 n_tasks: 50

25 task_freq: 1

26 n_delays_per_agent: 10

Listing 5.1: Example of a yaml file.

5.2 Simulation Code Structure

Our simulation pipeline relies on the interaction of few key objects.

In Figure 5.1 we can see a representation of such pipeline. Green rectan-

gles represents the input and the output of the simulation. Blue rectangles

constitute the core components of the simulation. The orange rectangular

outline symbolizes the loop performed by advancing the simulation of one

5.2. Simulation Code Structure 31

time step until all the tasks are completed. Finally, the purple rectangular

outline represents the loop performed at any time step on all the agents that

can be assigned to a task or that need a replan.

Figure 5.1: High level view of the simulation pipeline.

Simulation Manger Class This class manages the simulation. It re-

ceives in input a yaml files containing all the information regarding obsta-

cles, agents, tasks, delays, and starts the simulation. At every time step, the

simulation class interacts with the high-level algorithm class and receives the

planned paths for each agent. Then, following this computed path, agents

are moved forward by one step. Agents may not move if delays occur or

an imminent collision caused by a delay is detected (simulating local ob-

stacle avoidance). Information about these agents whose execution trace

(see Chapter 3) differs from the planned path is passed to the high-level

algorithm class at the next time step to possibly replan paths. From exper-

iments, we found that replanning only when obstacles are detected on the

path (for agents blocked by a simple delay just reuse the already computed

path shifted forward by one time step) gives the best results, especially in

terms of algorithm running time. When all the tasks are completed, the

simulation class outputs a yaml file containing the execution traces of all

the agents.

32 Chapter 5. Implementation Details

High-Level Algorithms Class This class can be initialized with different

parameters to implement k-TP or p-TP with different levels of robustness,

and can even be initialized without robustness guarantees to implement TP

with recovery routines. The main duty of this class is to manage the token

object, which contains information about tasks, agents, paths. In principle

the token should be a block of shared memory requested by one agent at a

time; to keep implementation simple we did not explicitly model an agent

object receiving the token and the returning it to the system, but we just

keep track in the token of free agents or agents needing replan. When an

agent is selected, he is assigned to the closest task according to Manhattan

distance (in case of a replan task, assignment is already done) and then

the low-level algorithm classes are called to compute a path from the start

location of the agent to the pickup vertex of task (in case of a replan, if an

agent has already reached the pickup vertex this first path is empty) and

then a path from the the pickup vertex to the goal vertex of the task. These

paths are then combined together and added to the token. In the case of

p-TP, before adding a path to the token, another class calculates the Markov

chains and collision probability, and if the probability is above threshold the

path is rejected. If one of this two paths is not found for several time steps,

deadlock recovery procedures like planning random movements around the

starting position of the agent are performed. When all the agents are not

free or there are no more available tasks in the token, the control is returned

to the simulation class.

In this class we can set the various parameters for k-TP and p-TP, like the

level of robustness, represented by k and p, respectively, that present the

trade-offs that will be discussed in Chapter 6. Another parameter for p-TP

is the number of times a new path can be recalculated if the one calculated

before exceeds the probability threshold; in our experiments we set it to 1

since it’s difficult to impose constraints such that the paths computed next

will have a strictly lower collision probability. For example, avoiding loca-

tions where the Markov chains suggest conflicts are more likely, ensures that,

if a path still exists, it will be different form the one computed previously,

but gives no guarantees on the new collision probability. Finally, for p-TP,

we can also set pd, which is the probability of an agent of being delayed at

any time step.

Low-Level Algorithm Classes All the proposed algorithms (TP with

recovery routines, k-TP, and p-TP), employ as low-level search algorithm

an implementation of space-time A*. The original algorithm (https://

github.com/atb033/multi_agent_path_planning.git, MIT Licence) has

https://github.com/atb033/multi_agent_path_planning.git
https://github.com/atb033/multi_agent_path_planning.git

5.3. Visualization 33

been modified to take into account dynamic obstacles, which are the agents

that have already planned. In our implementation the high-level class does

not call directly space-time A*, but another object implementing CBS (see

Chapter 2). Then the CBS algorithm is not actually used, since space-time

A* is called at the root node of CBS and no other node is expanded (we

cannot modify the paths of agents that have already planned).

The space-time A* class has an important parameter, the maximum number

of states to be explored. In this variation of A*, states not only differ for

their location, but also for the time step at which they are visited; this

means that a maximum number of states to be visited is needed in case no

solution exists, otherwise the algorithm will keep exploring forward in time.

For example, a solution may not exist in a particular time step because the

robustness requirements are too tight at that time step. This parameter

should be tuned according to the specific environment: if it is set too low,

no solution will be found even if one exists; if it is set too high, lots of time

will be wasted searching for a solution when none exists.

5.3 Visualization

Visualization is performed through a script that exploits the animation ca-

pabilities of the Python matplotlib package. Information found in the envi-

ronment yaml file and in the simulation output yaml file are used to draw

the environment, the tasks, and move the agents according to the time step

of their execution traces.

Parameters allow to change the speed of the visualization and to save the

output in various video formats.

Chapter 6

Experimental Results

Since the problem of delays in the long term setting of MAPD has never

been studied (to the best of our knowledge), no specific algorithms exists

for a direct comparison. This is why a baseline algorithm, TP with recovery

routines, has been developed trying to resemble as close as possible a cur-

rent state of the art MAPD algorithm, TP. Morover, since the focus is on

real applications, the experimental evaluation of the proposed algorithms is

performed in simulated warehouse environments.

Chapter Outline

The chapter is organized as follows. Section 6.1 describes the hardware

on which simulations are run, as well as the differences among simulation

settings. Section 6.2 presents the results of the conducted experiments, with

a particular focus on the trade-offs offered by different levels of robustness,

impact of the number of delays, and scalability.

6.1 Setting

The experiments are conducted on a laptop equipped with 1 x CPU Intel(R)

Core(TM) i7 8750H @ 3.30 GHz (6 cores, 12 threads, 9 MB cache) and 16

GB RAM.

We test our algorithms in two warehouse 4-connected grid environments in

which effects of delays can be significant: a small one, 15× 13, with 4 and 8

agents (Figure 6.1), and a large one, 25× 17, with 12 and 24 agents (Figure

6.2). (Environments of similar size have been used in [22].) We create a

sequence of 50 tasks choosing the pickup and delivery vertices uniformly at

36 Chapter 6. Experimental Results

random among a set of predefined vertices. The arrival time of each task

is determined according to a Poisson distribution [39]. We test 3 different

arrival frequencies λ for the tasks: 0.5, 1, and 3 (since, as discussed later,

the impact of λ on robustness is not relevant, we do not show in this section

results for all values of λ). The complete results can be found in Appendix A.

At the beginning, the agents are located at the endpoints selected for well-

formedness (Section 2.4).

We measure the total cost of a solution as the sum of the lengths of all the

paths in a run (total cost is strictly related to service time), the number of

replans performed during execution, and the total runtime of a simulation

(in s). Results are averaged over 100 runs. During each run, 10 delays

per agent are randomly inserted. A run ends when all the tasks have been

completed.

We test both k-TP and p-TP against the baseline TP with recovery rou-

tines (as said, to the best of our knowledge, we are not aware of any other

algorithm for finding robust solutions to MAPD-d). For p-TP we use two

different values for the parameter pd, 0.02 and 0.1, modeling a low and a

higher probability of delay, respectively (note that this is the expected de-

lay probability used to calculate the robustness of a path and could not

match with the delays actually observed). Implementation details about

these algorithms are discussed in Section 5.

6.2 Results

Results relative to small warehouse are shown in Tables 6.1 and 6.2 and

those relative to large warehouse are shown in Tables 6.3 and 6.4. To keep

readability, we do not report here the standard deviation in tables. All the

standard deviation tables can be found in Appendix A. Standard deviation

values do not present any evident oddity and support the conclusions about

the trends that are reported below.

The baseline algorithm, TP with recovery routines, appears two times in

each table: as k-TP with k = 0 (that is the basic implementation as in

Algorithm 3.1) and as p-TP with pd = 0.1 and p = 1 (which accepts all

paths). The two versions of the baseline return the same results in terms of

total cost and number of replans (we use the same random seed initialization

for runs with different algorithms), but the total runtime is larger in the

case of p-TP, due to the overhead of calculating the Markov chains and the

collision probability for each path.

6.2. Results 37

Figure 6.1: Small warehouse with 8 agents. Black cells are obstacles. Colored squares

are task pickup vertices, triangles are task goal vertices. Green circles are endpoints.

Looking at robustness, which is the goal of our algorithms, we can see that, in

all settings, both k-TP and p-TP significantly reduce the number of replans

with respect to the baseline. For k-TP, increasing k leads to increasingly

more robust solutions with less replans, and the same happens for p-TP

when the threshold probability p is reduced. However, increasing k shows a

more evident effect on the number of replans than reducing p. More robust

solutions, as expected, tend to have a larger total cost, but the first levels

of robustness (k = 1, p = 0.5) manage to reduce significantly the number of

replans with a small or no increase in total cost. For instance, in Table 6.4,

k-TP with k = 1 decreases the number of replans of more than 75% with an

increase in total cost of less than 2%, with respect to the baseline. Pushing

towards higher degrees of robustness (i.e., increasing k or decreasing p) tends

to increase cost significantly with diminishing returns in terms of number of

replans, especially for k-TP.

Comparing k-TP and p-TP, it is clear that solutions produced by k-TP tend

38 Chapter 6. Experimental Results

Figure 6.2: Large warehouse with 24 agents. Black cells are obstacles. Colored squares

are task pickup vertices, triangles are task goal vertices. Green circles are endpoints.

Table 6.1: Results of experiments in small warehouse with task frequency λ = 0.5 and

10 delays per agent

` = 4 ` = 8

k or p tot. cost # replans runtime tot. cost #replans runtime

k
-T

P

0 1459.52 7.26 0.85 1876.72 16.04 2.11

1 1497.92 1.4 0.91 1925.52 3.85 2.27

2 1563.28 0.1 1.16 1929.12 0.73 2.15

3 1644.36 0.01 1.59 2075.04 0.09 3.12

4 1744.48 0.0 2.0 2226.64 0.04 4.49

p
-T

P
,
p
d
=
.1

1 1459.52 7.26 1.14 1876.72 16.04 2.63

0.5 1478.0 6.29 1.81 1898.16 12.59 5.0

0.25 1580.28 4.29 2.88 2041.68 5.63 6.11

0.1 1636.68 2.9 3.16 2151.92 3.23 6.32

0.05 1714.56 2.93 3.42 2234.08 2.76 6.48

p
-T

P
,
p
d
=
.0
2 0.5 1466.88 7.34 1.29 1910.64 12.81 3.87

0.25 1513.68 6.8 1.57 1889.68 10.21 4.38

0.1 1566.52 4.53 2.37 2003.12 6.73 5.57

0.05 1622.12 3.51 2.66 2049.92 4.25 5.34

6.2. Results 39

Table 6.2: Results of experiments in small warehouse with task frequency λ = 3 and

10 delays per agent

` = 4 ` = 8

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 1419.08 8.3 0.6 1742.32 14.67 1.93

1 1452.88 1.47 0.77 1758.96 4.01 1.81

2 1534.36 0.2 0.95 1814.0 0.58 1.89

3 1603.08 0.01 1.33 2001.84 0.12 3.02

4 1716.48 0.0 1.68 2107.76 0.01 4.32

p
-T

P
,
p
d
=
.1

1 1419.08 8.3 0.86 1742.32 14.67 2.53

0.5 1441.16 6.7 1.45 1794.48 11.06 4.93

0.25 1527.92 5.12 2.3 1961.92 6.46 5.83

0.1 1619.68 2.93 2.81 2011.36 3.55 5.66

0.05 1668.16 2.65 3.05 2101.84 3.65 6.11

p
-T

P
,
p
d
=
.0
2 0.5 1432.56 8.05 1.25 1756.64 13.19 3.61

0.25 1491.68 7.02 1.57 1826.0 10.93 3.77

0.1 1521.24 4.41 2.12 1871.76 6.89 4.65

0.05 1574.2 3.45 2.5 1956.96 4.81 4.98

Table 6.3: Results of experiments in large warehouse with task frequency λ = 0.5 and

10 delays per agent

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 3403.44 17.18 2.8 6462.0 20.71 8.32

1 3320.4 3.88 3.27 6359.04 5.37 5.78

2 3423.84 1.18 4.89 6611.52 1.62 9.54

3 3648.6 0.24 7.54 7213.2 0.4 15.55

4 3727.08 0.01 10.9 7210.8 0.1 22.11

p
-T

P
,
p
d
=
.1

1 3403.44 17.18 4.12 6462.0 20.71 11.2

0.5 3443.4 10.02 11.3 7002.72 17.09 38.61

0.25 3661.56 5.38 17.26 7527.12 9.59 58.95

0.1 3966.96 4.51 19.6 7734.24 4.51 54.92

0.05 4047.96 3.56 20.27 8373.36 3.89 57.24

p
-T

P
,
p
d
=
.0
2 0.5 3478.32 14.51 7.41 6961.2 20.3 28.74

0.25 3452.64 9.92 10.19 6882.48 14.15 39.47

0.1 3732.0 6.53 13.76 7301.76 8.94 49.04

0.05 3760.56 6.41 14.91 7394.4 7.02 49.96

to be more robust at similar total costs (e.g., see k-TP with k = 1 and p-TP

with pd = .1 and p = 0.5 in Table 6.1), and decreasing p may sometimes

40 Chapter 6. Experimental Results

Table 6.4: Results of experiments in large warehouse with task frequency λ = 3 and 10

delays per agent

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 3182.76 18.96 2.91 6203.76 30.83 8.12

1 3237.36 4.22 3.28 6109.44 8.98 9.81

2 3297.36 1.19 4.75 6271.2 1.71 12.03

3 3348.24 0.18 7.31 6565.44 0.59 19.43

4 3487.08 0.04 10.76 6769.68 0.17 30.91

p
-T

P
,
p
d
=
.1

1 3182.76 18.96 4.16 6203.76 30.83 10.78

0.5 3224.88 11.31 9.04 6183.36 17.21 36.74

0.25 3576.12 7.39 14.58 6906.0 9.96 48.14

0.1 3820.44 5.3 16.33 7451.04 6.32 47.11

0.05 3973.2 3.83 16.83 8017.44 4.42 47.62

p
-T

P
,
p
d
=
.0
2 0.5 3115.68 12.47 7.22 5946.24 20.47 26.21

0.25 3477.0 12.05 9.23 6350.4 15.72 39.68

0.1 3360.84 6.78 11.59 6975.6 9.88 42.76

0.05 3580.08 6.21 12.98 7048.32 8.81 42.23

lead to relevant increases in costs. This suggests that our implementation

of p-TP has margins for improvement: if the computed path exceeds the

threshold p we wait the next time step to replan, without storing any collision

information extracted from the Markov chains; finding ways to exploit this

information may lead to an enhanced version of p-TP (this investigation is

left as future work). It is also interesting to notice the effect of pd in p-TP: a

higher pd (which, in our experiments, amounts to overestimating the actual

delay probability that, considering that runs last on average about 300 time

steps and there are 10 delays per agent, is equal to 10
300 = 0.03) leads to

solutions requiring less replans, but with a noticeable increase in total cost.

Considering runtimes, k-TP and p-TP are quite different. For k-TP, we

see a trend similar to that observed for total cost: a low value of k (k = 1)

often corresponds to a slight increase in runtime with respect to the baseline

(sometimes even a decrease), while for larger values of k the runtime may

be much longer than the baseline. Instead, p-TP shows a big increase in

runtime with respect to the baseline, but then it does not change too much,

at least for low values of p (p = 0.1, p = 0.05). Finally, we can see how

different task frequencies λ have no significant impact on our algorithms,

but higher frequencies have the global effect of reducing total costs since

tasks (which are always 50 per run) are available earlier.

6.2. Results 41

6.2.1 Effect of the Number of Delays

We repeat the previous experiments increasing the number of random delays

inserted in execution to 50 per agent, thus generating a scenario with multi-

ple troubled agents. We show results for task frequency λ = 1 in Tables 6.5

and 6.6. Both algorithms significantly reduce the number of replans with

respect to the baseline, reinforcing the importance of addressing possible

delays during planning and not only during execution, especially when the

delays can dramatically affect the operations of the agents, like in this case.

The k-TP algorithm performs better than the p-TP one, with trends similar

to those discussed above.

Table 6.5: Results of experiments in small warehouse with task frequency λ = 1 and

50 delays per agent

` = 4 n` = 8

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 1679.44 24.52 1.34 2267.36 44.27 4.37

1 1696.4 8.77 0.87 2269.52 18.35 3.21

2 1711.16 3.88 1.03 2239.28 8.28 3.18

3 1782.08 1.27 1.46 2429.84 4.7 3.66

4 1881.68 0.53 1.74 2462.08 2.17 4.63

p
-T

P
,
p
d
=
.1

1 1679.44 24.52 1.71 2267.36 44.27 5.64

0.5 1659.16 16.18 1.64 2268.64 28.85 7.74

0.25 1723.96 11.83 2.46 2359.76 15.42 8.03

0.1 1794.0 6.82 2.81 2402.08 8.39 8.48

0.05 1835.68 5.68 2.91 2472.24 5.77 7.38

p
-T

P
,
p
d
=
.0
2 0.5 1629.16 18.47 1.46 2175.68 32.15 5.44

0.25 1670.08 16.62 1.69 2282.32 28.41 6.49

0.1 1722.2 12.5 2.26 2325.76 17.75 7.14

0.05 1759.8 7.83 2.41 2328.4 9.76 6.12

6.2.2 Scalability in Larger Environments

Finally, we run simulations in a even larger warehouse 4-connected grid

environment of size 25 × 37, with 52 agents (Figure 6.3), λ = 1, 100 tasks,

and 10 delays per agent. The same qualitative trends discussed above are

observed also in this case. For example, k-TP with k = 2 reduces the number

of replans of 93% with an increase of total cost of 5% with respect to the

baseline. The runtime of p-TP grows to hundreds of seconds, also with large

values of p, suggesting that some improvements are needed.

42 Chapter 6. Experimental Results

Table 6.6: Results of experiments in large warehouse with task frequency λ = 1 and 50

delays per agent

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost #replans runtime

k
-T

P

0 3726.12 42.8 4.83 7613.52 66.53 12.66

1 3771.12 18.79 4.7 7295.52 26.76 12.26

2 3853.56 9.43 5.98 7598.4 18.29 16.56

3 3961.2 4.7 7.8 8000.4 7.61 22.42

4 4151.16 2.98 11.26 8068.8 4.7 28.49

p
-T

P
,
p
d
=
.1

1 3726.12 42.8 9.71 7613.52 66.53 19.36

0.5 3962.88 28.99 19.26 7665.36 38.59 48.64

0.25 4055.88 17.06 23.28 8195.76 22.81 62.19

0.1 4260.36 10.16 25.25 8834.4 13.19 63.77

0.05 4456.08 7.23 25.21 8812.8 9.48 56.24

p
-T

P
,
p
d
=
.0
2 0.5 3887.28 35.19 9.66 7686.24 49.95 37.02

0.25 3913.08 27.45 11.6 8154.96 40.87 56.83

0.1 3971.16 15.9 13.6 8229.84 24.73 54.53

0.05 4204.68 15.67 15.11 8298.96 20.17 55.37

Table 6.7: Results of experiments in larger warehouse (25x37) with task frequency

λ = 1 and 10 delays per agent (100 tasks)

` = 52

k or p tot. cost # replans runtime

k
-T

P

0 19262.88 58.98 40.06

1 20146.36 16.16 51.54

2 20246.72 3.7 95.96

3 21718.84 1.16 204.25

4 22564.88 1.87 454.91

p
-T

P
,
p
d
=
.1

1 19262.88 58.98 53.99

0.5 21005.92 32.97 462.18

0.25 23568.48 19.35 475.23

0.1 26770.12 12.98 505.72

0.05 28459.08 12.17 525.51

p
-T

P
,
p
d
=
.0
2 0.5 20742.8 44.63 337.64

0.25 21577.92 28.63 414.17

0.1 23047.96 18.57 454.63

0.05 23861.76 17.36 464.08

6.2. Results 43

Figure 6.3: Larger warehouse with 52 agents. Black cells are obstacles. Colored squares

are task pickup vertices, triangles are task goal vertices. Green circles are endpoints.

Chapter 7

Conclusions

This thesis provided a theoretical, algorithmic and experimental contribu-

tion to field of Multi-Agent Path Planning. In recent years, the research

community has focused on bringing theoretical models closer to applica-

tions, due to the growing industrial deployment of autonomous multi-agent

systems. This is why great importance has been given to robustness, un-

derstood as a property of solutions that can withstand real-world-induced

relaxations of some idealistic assumptions made by the models. Differently

from the one-shot MAPF problem, robustness in the long-term setting of

Multi-Agent Pickup and Delivery (MAPD) has not been yet consistently

studied, and the proposed work aims to bridge this gap.

We introduced a variation of the MAPD problem, called MAPD with de-

lays (MAPD-d), which considers an important practical issue encountered

in real applications: delays in execution. In a MAPD-d problem, agents

must complete a set of incoming tasks (by moving to the pickup vertex of

each task and then to the corresponding delivery vertex) even if they are

affected by an unknown but finite number of delays during execution.

We presented two algorithms, k-TP and p-TP, to solve well-formed MAPD-d

problem instances with deterministic and probabilistic robustness guaran-

tees, respectively.

Experimentally, these algorithms have been compared against a baseline al-

gorithm that reactively deals with delays during execution. Both k-TP and

p-TP plan robust solutions, greatly reducing the number of replans needed

with a small increase in solution cost and runtime. k-TP showed the best

results in terms of robustness-cost trade-off, but p-TP still offers great op-

portunities for future improvements.

46 Chapter 7. Conclusions

Future work will address the enhancement of p-TP according to what we

outlined in Chapter 6 and the experimental testing of our algorithms in

more real-world settings. Another possible direction for future research is

considering an adversarial environment: delays are no more random, but

are selected by an adversary to cause the greatest possible damage.

Appendix A

Tables of Results

In this appendix, we report all the results of the experiments not presented

in Chapter 6, including the standard deviations. The data appearing in this

appendix are coherent with the considerations made in Chapter 6.

A.1 Low Number of Delays

In this section we report all the experiments done introducing 10 delays per

agent and not already presented in Chapter 6.

48 Appendix A. Tables of Results

Table A.1: Results of experiments in small warehouse with task frequency λ = 1 and

10 delays per agent

n. of agents = 4 n. of agents = 8

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 1404.4 7.64 0.64 1815.68 18.12 2.69

1 1478.76 1.38 0.73 1780.88 3.98 1.71

2 1552.68 0.2 1.0 1911.76 0.75 1.94

3 1644.96 0.01 1.39 2008.64 0.12 3.13

4 1716.8 0.0 1.77 2204.16 0.02 4.44

p
-T

P
,
p
d
=
.1

1 1404.4 7.64 0.9 1815.68 18.12 3.6

0.5 1482.64 7.44 1.59 1871.36 12.03 5.06

0.25 1549.72 4.27 2.48 1934.72 6.47 5.97

0.1 1628.16 3.07 2.86 2043.76 3.08 6.16

0.05 1671.0 2.46 3.08 2125.28 2.86 6.29

p
-T

P
,
p
d
=
.0
2 0.5 1463.88 6.68 1.22 1818.72 13.65 4.49

0.25 1474.44 6.53 1.58 1858.56 10.36 4.24

0.1 1537.48 4.24 2.14 1947.44 6.26 5.17

0.05 1603.36 2.96 2.49 1958.16 3.62 5.05

Table A.2: Results of experiments in large warehouse with task frequency λ = 1 and

10 delays per agent

n. of agents = 12 n. of agents = 24

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 3221.04 15.4 2.81 6175.44 26.63 6.87

1 3303.24 4.49 3.41 6350.16 7.11 8.03

2 3416.4 1.28 4.98 6555.84 1.8 11.23

3 3383.88 0.18 7.16 6651.36 0.52 17.59

4 3616.08 0.04 10.62 7240.56 0.21 26.43

p
-T

P
,
p
d
=
.1

1 3221.04 15.4 3.97 6175.44 26.63 9.09

0.5 3358.32 12.91 9.38 6970.8 19.06 50.29

0.25 3572.52 6.14 14.74 6775.68 4.43 42.64

0.1 3815.88 4.72 16.88 7823.28 6.23 57.98

0.05 3999.12 3.81 18.68 7960.8 3.73 50.8

p
-T

P
,
p
d
=
.0
2 0.5 3270.0 12.7 6.76 6675.84 22.12 30.16

0.25 3442.32 10.48 9.49 6703.44 14.5 39.05

0.1 3549.48 6.96 11.76 6995.76 10.44 45.36

0.05 3623.88 6.63 13.22 7257.84 7.94 47.98

A.2. Low Number of Delays (Standard Deviations) 49

A.2 Low Number of Delays (Standard Deviations)

In this section we report all the standard deviations of the experiments done

introducing 10 delays per agent.

Table A.3: Results of experiments in small warehouse with task frequency λ = 0.5 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 154.85 3.08 1.2 245.69 5.25 2.79

1 124.39 1.43 0.69 245.43 2.53 3.34

2 129.05 0.3 0.29 216.49 1.05 0.59

3 107.42 0.1 0.5 242.7 0.32 1.15

4 116.49 0.0 0.59 189.75 0.31 1.82

p
-T

P
,
p
d
=
.1

1 154.85 3.08 1.08 245.69 5.25 2.54

0.5 129.1 2.69 1.05 240.61 4.86 3.54

0.25 114.61 2.54 1.12 239.22 2.54 1.88

0.1 134.02 1.87 0.94 235.89 2.14 2.28

0.05 135.75 1.75 0.9 232.27 1.9 1.53

p
-T

P
,
p
d
=
.0
2 0.5 113.53 2.95 0.59 219.49 4.89 2.84

0.25 115.99 2.71 0.43 239.62 4.47 2.92

0.1 111.49 2.37 0.72 264.44 2.98 3.44

0.05 121.11 2.22 0.88 237.56 2.36 1.73

50 Appendix A. Tables of Results

Table A.4: Results of experiments in small warehouse with task frequency λ = 1 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 123.4 3.1 0.6 279.17 5.08 3.03

1 133.31 1.54 0.15 190.58 2.46 2.41

2 127.83 0.57 0.22 231.43 0.95 0.65

3 133.14 0.1 0.32 208.94 0.38 0.92

4 112.4 0.0 0.44 227.09 0.14 1.53

p
-T

P
,
p
d
=
.1

1 123.4 3.1 0.62 279.17 5.08 3.39

0.5 139.93 2.69 0.78 259.2 4.36 3.99

0.25 139.21 2.36 0.72 212.32 2.74 2.39

0.1 138.63 2.0 0.78 212.73 1.99 2.34

0.05 134.69 1.72 0.84 233.56 1.97 1.86

p
-T

P
,
p
d
=
.0
2 0.5 138.25 2.95 0.47 217.81 4.85 4.13

0.25 127.48 2.9 0.76 271.18 3.82 3.07

0.1 125.6 2.22 0.57 219.64 3.25 3.11

0.05 131.42 2.32 0.95 210.85 2.24 1.52

Table A.5: Results of experiments in small warehouse with task frequency λ = 3 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 131.39 3.03 0.47 227.38 4.4 2.2

1 126.53 1.31 0.59 207.95 2.57 2.38

2 115.12 0.51 0.2 189.49 0.81 0.47

3 94.93 0.1 0.27 214.41 0.45 1.58

4 114.66 0.0 0.44 218.44 0.1 1.48

p
-T

P
,
p
d
=
.1

1 131.39 3.03 0.48 227.38 4.4 2.26

0.5 106.88 2.37 0.53 232.65 3.61 4.17

0.25 123.01 2.42 0.67 227.57 3.24 3.14

0.1 134.56 2.18 0.78 233.48 2.57 1.72

0.05 135.58 1.82 0.8 210.63 2.03 1.9

p
-T

P
,
p
d
=
.0
2 0.5 113.34 2.64 0.53 222.56 4.57 2.82

0.25 122.1 2.82 0.49 251.94 3.86 2.53

0.1 126.63 2.27 0.54 213.7 3.2 2.04

0.05 126.7 1.89 0.76 196.12 2.82 2.52

A.2. Low Number of Delays (Standard Deviations) 51

Table A.6: Results of experiments in large warehouse with task frequency λ = 0.5 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 565.06 4.84 2.95 2011.61 6.9 33.43

1 475.11 2.43 1.85 840.26 3.07 2.15

2 474.37 1.23 1.3 897.15 1.73 3.23

3 493.82 0.69 2.7 1010.84 0.77 5.75

4 569.3 0.1 3.61 920.66 0.5 7.81

p
-T

P
,
p
d
=
.1

1 565.06 4.84 3.05 2011.61 6.9 35.8

0.5 583.34 3.72 6.03 1069.48 6.47 21.58

0.25 503.23 2.45 4.89 1916.98 4.33 40.99

0.1 595.78 2.47 4.95 929.51 2.84 15.4

0.05 509.47 1.83 5.78 1191.88 2.34 19.69

p
-T

P
,
p
d
=
.0
2 0.5 540.14 4.55 3.46 1976.54 6.31 23.46

0.25 495.1 4.09 3.97 1017.08 5.63 21.84

0.1 581.78 3.05 3.36 998.73 4.11 27.03

0.05 474.97 2.96 4.87 804.32 3.56 26.41

Table A.7: Results of experiments in large warehouse with task frequency λ = 1 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 498.53 4.52 2.65 950.47 7.35 7.68

1 453.91 2.86 2.55 991.87 3.51 5.51

2 586.78 1.58 2.75 1001.62 1.66 9.99

3 487.87 0.46 1.77 1006.99 0.89 5.68

4 507.35 0.2 3.39 1068.54 0.68 21.0

p
-T

P
,
p
d
=
.1

1 498.53 4.52 2.74 950.47 7.35 8.08

0.5 503.16 4.59 3.75 3099.79 6.68 54.35

0.25 484.63 2.94 4.98 1077.99 2.91 11.9

0.1 586.82 2.23 4.76 1115.29 3.93 56.32

0.05 537.63 2.27 7.69 919.49 2.4 15.28

p
-T

P
,
p
d
=
.0
2 0.5 431.05 3.89 3.21 2020.55 6.98 31.11

0.25 467.49 3.56 2.93 2057.01 5.43 36.51

0.1 564.88 3.4 3.11 911.47 5.16 34.86

0.05 498.76 3.3 4.25 1939.77 3.82 49.05

52 Appendix A. Tables of Results

Table A.8: Results of experiments in large warehouse with task frequency λ = 3 and

10 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 454.4 5.39 3.3 968.96 8.48 8.29

1 534.22 2.41 2.28 845.12 3.63 7.59

2 559.54 1.35 1.24 919.81 1.59 3.03

3 441.98 0.54 2.95 1044.64 0.85 9.55

4 459.93 0.2 4.1 877.5 0.88 28.57

p
-T

P
,
p
d
=
.1

1 454.4 5.39 3.5 968.96 8.48 8.8

0.5 493.97 3.78 5.01 1050.84 5.98 35.6

0.25 455.77 3.31 6.15 1111.31 4.01 38.41

0.1 505.76 2.45 4.14 979.04 3.91 15.67

0.05 575.43 2.38 4.76 1192.25 2.32 10.54

p
-T

P
,
p
d
=
.0
2 0.5 446.21 4.79 3.99 930.86 6.61 13.76

0.25 595.32 4.37 3.83 1075.07 5.93 48.45

0.1 489.59 2.82 4.95 2588.22 3.61 48.88

0.05 566.01 3.03 5.13 1030.78 3.78 25.26

Table A.9: Results of experiments in larger warehouse (25x37) with task frequency

λ = 1 and 10 delays per agent (100 tasks, standard deviation)

` = 52

k or p tot. cost # replans runtime

k
-T

P

0 2798.6 11.29 29.34

1 3000.2 5.21 20.54

2 2959.17 2.08 25.97

3 4344.1 1.7 100.25

4 2847.61 3.13 368.13

p
-T

P
,
p
d
=
.1

1 2798.6 11.29 30.28

0.5 4466.36 10.83 322.6

0.25 3889.32 5.74 302.5

0.1 4969.69 6.86 427.1

0.05 5107.51 7.33 430.99

p
-T

P
,
p
d
=
.0
2 0.5 5225.75 12.58 242.56

0.25 5118.99 11.33 266.14

0.1 3899.47 7.29 307.4

0.05 3048.33 8.2 406.58

A.3. High Number of Delays 53

A.3 High Number of Delays

In this section we report all the experiments done introducing 50 delays per

agent and not already presented in Chapter 6.

Table A.10: Results of experiments in small warehouse with task frequency λ = 0.5

and 50 delays per agent

n. of agents = 12 n. of agents = 24

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 1673.6 23.32 0.97 2322.64 43.41 3.67

1 1714.0 8.52 0.89 2317.76 17.9 3.13

2 1716.8 2.95 0.99 2352.24 9.05 3.13

3 1785.64 0.92 1.31 2396.4 3.9 3.6

4 1879.76 0.48 1.58 2511.84 1.9 4.54

p
-T

P
,
p
d
=
.1

1 1673.6 23.32 1.28 2322.64 43.41 4.55

0.5 1719.2 17.39 1.75 2224.24 23.35 6.22

0.25 1743.4 11.26 2.55 2423.76 14.81 7.85

0.1 1816.6 7.23 2.77 2438.08 8.03 7.14

0.05 1860.72 5.72 2.96 2525.36 6.18 7.35

p
-T

P
,
p
d
=
.0
2 0.5 1682.56 19.55 1.57 2319.2 32.48 7.32

0.25 1716.56 17.27 1.88 2221.12 27.37 6.26

0.1 1739.88 11.51 2.35 2256.96 15.49 6.58

0.05 1788.28 8.19 2.65 2361.12 10.38 6.91

54 Appendix A. Tables of Results

Table A.11: Results of experiments in small warehouse with task frequency λ = 3 and

50 delays per agent

n. of agents = 12 n. of agents = 24

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 1625.44 24.04 0.96 2181.76 44.93 4.47

1 1618.16 7.39 0.79 2148.24 18.11 2.66

2 1682.08 3.23 0.96 2214.08 8.51 3.24

3 1777.88 1.12 1.34 2320.16 3.88 3.71

4 1866.0 0.38 1.6 2454.96 2.34 4.82

p
-T

P
,
p
d
=
.1

1 1625.44 24.04 1.38 2181.76 44.93 5.77

0.5 1631.56 16.82 1.61 2204.16 27.45 7.04

0.25 1734.76 12.49 2.51 2256.72 13.61 7.05

0.1 1812.08 7.37 2.88 2347.76 8.36 7.38

0.05 1837.12 5.92 3.01 2411.68 6.31 6.67

p
-T

P
,
p
d
=
.0
2 0.5 1693.44 21.13 1.69 2276.24 38.04 7.17

0.25 1696.8 18.94 1.78 2255.44 29.35 6.58

0.1 1716.28 12.56 2.32 2245.76 14.73 6.43

0.05 1757.32 8.22 2.49 2327.84 11.22 6.88

Table A.12: Results of experiments in large warehouse with task frequency λ = 0.5 and

50 delays per agent

n. of agents = 12 n. of agents = 24

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 4056.96 44.36 4.16 7785.36 64.16 9.24

1 3879.6 16.54 3.9 7726.56 27.39 9.9

2 3987.96 9.34 5.43 7919.28 15.62 13.99

3 4087.56 5.61 7.2 7817.04 6.78 16.88

4 4230.12 2.83 10.23 8136.48 4.2 24.46

p
-T

P
,
p
d
=
.1

1 4056.96 44.36 5.64 7785.36 64.16 12.57

0.5 4042.68 27.49 11.95 8142.24 40.4 54.63

0.25 4196.28 17.35 18.16 8849.76 21.67 62.63

0.1 4393.2 10.34 18.26 9144.72 11.8 63.6

0.05 4439.04 6.38 18.26 9117.36 9.22 62.05

p
-T

P
,
p
d
=
.0
2 0.5 3840.48 33.14 9.43 7511.52 45.29 42.98

0.25 4083.0 26.76 11.42 8036.16 36.08 56.78

0.1 4179.48 18.43 15.16 8525.76 24.17 72.01

0.05 4239.72 13.69 16.56 8665.68 19.42 71.32

A.3. High Number of Delays 55

Table A.13: Results of experiments in large warehouse with task frequency λ = 3 and

50 delays per agent

n. of agents = 12 n. of agents = 24

k or p tot. cost n. replans runtime tot. cost n. replans runtime

k
-T

P

0 3638.64 38.87 3.81 7364.64 71.11 13.7

1 3688.68 18.31 4.21 7635.84 33.04 13.89

2 3781.44 9.01 5.59 7497.84 17.62 16.02

3 3796.32 4.69 7.14 7864.56 10.67 25.12

4 4003.08 2.77 10.25 7848.72 5.49 28.56

p
-T

P
,
p
d
=
.1

1 3638.64 38.87 5.25 7364.64 71.11 18.69

0.5 3927.48 29.95 10.84 7758.0 41.43 54.17

0.25 3967.68 16.8 15.58 8510.88 23.81 63.46

0.1 4239.84 10.41 16.29 8532.48 13.29 65.92

0.05 4351.08 7.95 16.9 8894.88 10.23 53.14

p
-T

P
,
p
d
=
.0
2 0.5 3761.28 34.9 9.11 7174.8 42.09 36.52

0.25 3682.8 26.57 11.15 6664.56 22.49 33.21

0.1 3893.88 15.89 13.0 8116.8 27.09 60.01

0.05 4090.92 14.51 15.68 8319.6 22.43 58.28

56 Appendix A. Tables of Results

A.4 High Number of Delays (Standard Deviations)

In this section we report all the standard deviations of the experiments done

introducing 50 delays per agent.

Table A.14: Results of experiments in small warehouse with task frequency λ = 0.5

and 50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 153.74 6.48 0.93 272.33 9.65 3.36

1 165.77 3.34 0.54 296.61 5.45 3.36

2 125.88 1.98 0.22 257.04 3.74 3.45

3 129.92 1.08 0.32 261.23 2.41 2.75

4 127.58 0.82 0.4 303.76 1.64 3.23

p
-T

P
,
p
d
=
.1

1 153.74 6.48 0.95 272.33 9.65 3.43

0.5 140.66 4.29 0.77 278.62 6.91 3.56

0.25 127.42 3.72 0.82 261.88 4.71 5.54

0.1 163.94 3.08 0.67 234.72 3.56 3.37

0.05 160.99 2.48 0.78 284.68 2.75 3.82

p
-T

P
,
p
d
=
.0
2 0.5 153.94 5.98 1.02 628.84 8.99 19.86

0.25 159.82 4.85 0.95 232.12 7.2 3.75

0.1 165.62 3.71 0.73 274.35 5.19 3.13

0.05 126.83 3.45 0.86 237.78 3.85 3.1

A.4. High Number of Delays (Standard Deviations) 57

Table A.15: Results of experiments in small warehouse with task frequency λ = 1 and

50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 153.32 6.69 1.4 290.6 11.21 3.77

1 144.03 3.26 0.55 300.03 5.69 3.48

2 123.4 2.22 0.25 254.46 4.03 3.43

3 125.77 1.52 0.72 245.01 2.59 2.78

4 121.98 0.95 0.37 251.31 1.84 1.85

p
-T

P
,
p
d
=
.1

1 153.32 6.69 1.5 290.6 11.21 4.19

0.5 157.48 4.49 0.73 267.01 7.58 4.88

0.25 139.41 3.38 0.8 305.8 4.6 4.89

0.1 151.91 2.98 0.91 252.67 3.26 5.09

0.05 164.58 2.79 0.82 307.56 2.99 2.81

p
-T

P
,
p
d
=
.0
2 0.5 153.6 5.36 1.09 290.54 8.13 3.44

0.25 134.54 4.61 0.72 255.19 8.51 4.2

0.1 132.19 4.27 0.68 246.76 5.37 4.98

0.05 130.28 3.46 0.62 283.12 4.06 2.54

Table A.16: Results of experiments in small warehouse with task frequency λ = 3 and

50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 121.03 6.66 0.92 226.18 12.56 4.2

1 148.42 2.88 0.51 235.5 6.13 3.06

2 143.52 2.11 0.46 270.59 3.51 4.31

3 137.23 1.27 1.57 270.97 2.36 4.17

4 133.76 0.66 0.69 262.4 2.05 4.1

p
-T

P
,
p
d
=
.1

1 121.03 6.66 1.03 226.18 12.56 4.89

0.5 138.19 4.73 0.68 246.5 7.49 4.58

0.25 142.27 3.6 0.96 342.19 4.9 3.64

0.1 136.53 3.01 0.74 249.39 3.42 4.68

0.05 160.29 2.99 0.93 279.79 2.99 2.41

p
-T

P
,
p
d
=
.0
2 0.5 165.6 5.39 1.14 262.68 9.8 5.07

0.25 133.96 5.84 0.87 248.14 8.17 4.17

0.1 138.3 4.2 0.78 298.22 5.18 3.5

0.05 131.03 3.38 0.72 280.29 4.19 4.06

58 Appendix A. Tables of Results

Table A.17: Results of experiments in large warehouse with task frequency λ = 0.5 and

50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 582.36 9.93 3.88 946.75 15.53 7.34

1 547.2 4.91 2.18 1032.03 7.49 6.15

2 555.84 3.44 2.71 1876.55 4.78 21.9

3 569.64 2.96 3.6 1055.55 3.66 12.06

4 490.53 1.85 4.04 1055.35 2.85 13.51

p
-T

P
,
p
d
=
.1

1 582.36 9.93 4.08 946.75 15.53 8.34

0.5 671.03 6.6 5.34 1999.36 9.31 74.42

0.25 494.52 5.53 7.05 2365.54 7.27 33.51

0.1 500.15 3.73 6.17 2848.57 4.49 49.33

0.05 543.8 3.22 4.98 1110.67 4.14 46.02

p
-T

P
,
p
d
=
.0
2 0.5 478.52 8.4 6.08 1110.35 10.99 41.31

0.25 574.7 7.55 5.05 1181.37 8.76 30.66

0.1 514.48 5.6 5.07 1918.32 7.46 57.26

0.05 526.11 4.73 8.75 1885.51 7.02 52.72

Table A.18: Results of experiments in large warehouse with task frequency λ = 1 and

50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 472.19 10.72 4.0 963.5 16.07 11.95

1 540.22 6.22 3.11 1080.33 6.92 10.84

2 553.33 3.64 4.13 947.18 5.5 11.15

3 567.68 2.42 3.47 1188.09 3.71 20.89

4 553.38 1.77 5.64 1311.17 2.55 13.13

p
-T

P
,
p
d
=
.1

1 472.19 10.72 7.05 963.5 16.07 16.0

0.5 590.07 7.0 9.75 1465.16 9.25 40.65

0.25 496.55 4.54 15.33 1076.06 6.17 38.21

0.1 589.33 3.43 9.58 1079.22 5.07 33.89

0.05 637.05 3.26 10.69 1056.31 4.11 34.83

p
-T

P
,
p
d
=
.0
2 0.5 541.5 8.61 5.83 1160.0 12.41 22.28

0.25 567.13 6.99 5.43 2042.04 11.89 63.58

0.1 511.58 5.14 5.4 1906.14 6.31 34.39

0.05 559.58 4.9 6.24 1075.56 6.04 51.5

A.4. High Number of Delays (Standard Deviations) 59

Table A.19: Results of experiments in large warehouse with task frequency λ = 3 and

50 delays per agent (standard deviation)

` = 12 ` = 24

k or p tot. cost # replans runtime tot. cost # replans runtime

k
-T

P

0 704.05 9.58 4.2 1231.87 17.03 15.43

1 551.08 5.38 3.96 1288.84 9.5 10.63

2 524.29 3.84 4.3 965.55 5.57 8.26

3 541.62 2.7 3.03 1047.69 4.28 31.45

4 648.21 2.02 5.17 1041.45 2.65 11.49

p
-T

P
,
p
d
=
.1

1 704.05 9.58 4.54 1231.87 17.03 17.75

0.5 624.71 7.04 5.18 1922.1 10.59 39.26

0.25 569.87 5.25 6.09 2960.43 6.44 53.52

0.1 611.36 4.38 5.21 1948.69 4.7 53.12

0.05 543.02 3.16 4.38 1057.41 3.71 18.7

p
-T

P
,
p
d
=
.0
2 0.5 538.18 8.12 4.91 2059.79 9.86 37.26

0.25 548.05 7.27 5.3 1140.45 6.35 15.22

0.1 540.39 4.32 4.98 1143.88 7.41 40.38

0.05 590.78 4.89 8.65 1107.27 7.26 48.75

Appendix B

User Guide

In this appendix, we describe how to run a demonstration of our algorithms

and how use the code to replicate the results obtained in Chapter 6.

B.1 Requirements

The code has been tested with Python version 3.6.9.

All the packages needed to run the code can be found in the file require-

ments.txt. To install all the requirements, run the following code:

pip i n s t a l l −r requ i rements . txt

B.2 Run One Simulation

Before running the simulation, an environment can be chosen. The Environ-

ments folder contains different predefined environments, some of which have

been used for the experiments in Chapter 6. There exists two main types

of environments, differentiated by the presence or absence of the sub-string

random in the name. The “random” environments just specify the number

of tasks and delay per agents, while the others present fixed tasks and delays

(to use these environments, a special simulation parameter must be set). To

change the simulation environment, open the file config.json and modify the

parameter “input name” with the file name of the desired environment.

Then, to start the simulation, the script demo.py can be run. The script

accepts various command line arguments:

62 Appendix B. User Guide

• -k : an integer (k ≥ 0) which represents the robustness parameter for

k-TP;

• -p: a float (0 ≤ p ≤ 1) which represents the robustness parameter

(probability threshold) for p-TP;

• -pd : a float (0 ≤ pd ≤ 1, default 0.02) which represents the expected

probability of an agent of being delayed at any time step (used in

p-TP);

• -p iter : an integer (p iter ≥ 1, default 1) which represents the number

of times a new path can be recalculated if the one calculated before

exceeds the probability threshold (used in p-TP);

• -a star max iter : an integer (a star max iter ≥ 1, default 5000) which

represents the maximum number of states explored by the low-level al-

gorithm state-space A*;

• -slow factor : an integer (slow factor ≥ 1, default 1) which allows to

slow down the visualization;

• -not rand : this parameter needs to be present if the input environment

is not randomized.

Note that if the script is run without both k and p, it becomes TP with

recovery routines. If the visualization does not start after the end of the

simulation, the error could be related to the non-GUI back-end of matplotlib.

To resolve this problem, restart the simulation after the following code has

been run:

sudo apt−get i n s t a l l python3−tk

In the following we present some example runs.

Run TP with recovery routines:

python3 demo . py

Run k-TP with k = 2 and slower visualization:

python3 demo . py −k 2 −s l o w f a c t o r 3

B.3. Run Multiple Experiments 63

Run p-TP with p = 0.6, pd = 0.05 in a non-randomized environment:

python3 demo . py −p 0 .6 −pd 0 .05 −not rand

B.3 Run Multiple Experiments

To run multiple experiments and collect all the statistics, a specific script,

run all experiments new.py, can be used. This script contains a list of ex-

periments (easy to modify and extend) that will be run exploiting multi-

threading; after all the experiments terminate a json file with the results

will be saved in the Experiments folder. The script can be run with the

following code:

python3 −m U t i l s . run a l l expe r iment s new

To see the results plotted as box plots, the script plot experiments can be

used. First, modify the file config.json changing the parameter “experi-

ments name” with the name of the experiments file that has just been cre-

ated. Then run the visualization tool with the following code:

python3 −m U t i l s . p l o t expe r iment s

When a plot is closed, the next one will appear until the end of the experi-

ments.

Bibliography

[1] Noa Agmon, Daniel Urieli, and Peter Stone. Multiagent patrol gener-

alized to complex environmental conditions. In Proc. AAAI, 2011.

[2] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven

Koenig. Probabilistic robust multi-agent path finding. In Proc. ICAPS,

pages 29–37, 2020.

[3] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták,

and Neng-Fa Zhou. Robust multi-agent path finding. In Proc. AAMAS,

pages 1862–1864, 2018.

[4] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Finding

and optimizing solvable priority schemes for decoupled path planning

techniques for teams of mobile robots. Robot. Auton. Syst., 41(2-3):89–

99, 2002.

[5] Boris de Wilde, Adriaan ter Mors, and Cees Witteveen. Push and

rotate: cooperative multi-agent path planning. In Proc AAMAS, pages

87–94, 2013.

[6] Edsger W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.

[7] Kurt M. Dresner and Peter Stone. A multiagent approach to au-

tonomous intersection management. J. Artif. Intell. Res., 31:591–656,

2008.

[8] Esra Erdem, Doga Gizem Kisa, Umut Öztok, and Peter Schüller. A gen-

eral formal framework for pathfinding problems with multiple agents.

In Proc. AAAI, pages 290–296, 2013.

[9] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu, Minghui Zhu, and

Peng Liu. Roboads: Anomaly detection against sensor and actuator

misbehaviors in mobile robots. In Proc. DSN, pages 574–585, 2018.

66 BIBLIOGRAPHY

[10] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis

for the heuristic determination of minimum cost paths. IEEE Trans.

Syst. Sci. Cybern., 4(2):100–107, 1968.

[11] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and

Nora Ayanian. Persistent and robust execution of mapf schedules in

warehouses. IEEE Robot. Autom. Lett., 4:1125–1131, 2019.

[12] Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong

Xu, Nora Ayanian, and Sven Koenig. Multi-agent path finding with

kinematic constraints. In Proc. ICAPS, pages 477–485, 2016.

[13] Wolfgang Hönig, T. K. Satish Kumar, Hang Ma, Sven Koenig, and Nora

Ayanian. Formation change for robot groups in occluded environments.

In Proc IROS, pages 4836–4842, 2016.

[14] J.S. Jennings, G. Whelan, and W.F. Evans. Cooperative search and

rescue with a team of mobile robots. In Proc. ICAR, pages 193–200,

1997.

[15] Eliahu Khalastchi and Meir Kalech. Fault detection and diagnosis in

multi-robot systems: A survey. Sensors, 19(18):1–19, 2019.

[16] Harold. W. Kuhn. The hungarian method for the assignment problem.

Naval Research Logistics Quarterly, 2, pages 83–97, 1955.

[17] David A Levin and Yuval Peres. Markov chains and mixing times,

volume 107. American Mathematical Soc., 2017.

[18] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative

path-finding with completeness guarantees. In Proc IJCAI, pages 294–

300, 2011.

[19] Hang Ma. Target Assignment and Path Planning for Navigation Tasks

with Teams of Agents. PhD thesis, University of Southern California,

Department of Computer Science, Los Angeles, CA, 2020.

[20] Hang Ma, Wolfgang Hönig, T. K. Satish Kumar, Nora Ayanian, and

Sven Koenig. Lifelong path planning with kinematic constraints for

multi-agent pickup and delivery. In Proc. AAAI, pages 7651–7658,

2019.

[21] Hang Ma and Sven Koenig. Optimal target assignment and path finding

for teams of agents. In Proc. AAMAS, pages 1144–1152, 2016.

BIBLIOGRAPHY 67

[22] Hang Ma, Jiaoyang Li, T.K. Satish Kumar, and Sven Koenig. Lifelong

multi-agent path finding for online pickup and delivery tasks. In Proc.

AAMAS, pages 837–845, 2017.

[23] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Kumar, and Sven Koenig.

Feasibility study: Moving non-homogeneous teams in congested video

game environments. Proc. AIIDE, pages 270–272, 2017.

[24] Maja J. Mataric, Martin Nilsson, and Kristian T. Simsarin. Coopera-

tive multi-robot box-pushing. In Proc. IROS, pages 556–561, 1995.

[25] Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow, Waqar Malik,

Hang Ma, T. K. Satish Kumar, and Sven Koenig. Planning, scheduling

and monitoring for airport surface operations. In Plan. for Hybrid Syst.

Workshop, volume WS-16-12, 2016.

[26] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant.

Conflict-based search for optimal multi-agent pathfinding. Artif. In-

tell., 219:40–66, 2015.

[27] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The

increasing cost tree search for optimal multi-agent pathfinding. In Proc.

IJCAI, pages 662–667, 2011.

[28] David Silver. Cooperative pathfinding. In Proc. AIIDE, pages 117–122,

2005.

[29] Arvind Srinivasan, Timothy Kam, Sharad Malik, and Robert K. Bray-

ton. Algorithms for discrete function manipulation. In Proc. ICCAD,

pages 92–95, 1990.

[30] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,

Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish

Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding:

Definitions, variants, and benchmarks. In Proc. SoCS, pages 151–159,

2019.

[31] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,

Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish

Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding:

Definitions, variants, and benchmarks. In Proc. SOCS, pages 151–159,

2019.

[32] Pavel Surynek. A novel approach to path planning for multiple robots

in bi-connected graphs. In Proc. ICRA, pages 3613–3619, 2009.

68 BIBLIOGRAPHY

[33] Pavel Surynek. An optimization variant of multi-robot path planning

is intractable. In Proc. AAAI, pages 1261–1263, 2010.

[34] Pavel Surynek. Towards optimal cooperative path planning in hard

setups through satisfiability solving. In Proc. PRICAI, pages 564–576,

2012.

[35] Pavel Surynek. Reduced time-expansion graphs and goal decomposition

for solving cooperative path finding sub-optimally. In Proc. IJCAI,

pages 1916–1922, 2015.

[36] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT

approach to multi-agent path finding under the sum of costs objective.

In Proc. ECAI, pages 810–818, 2016.

[37] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Modifying

optimal SAT-based approach to multi-agent path-finding problem to

suboptimal variants. In Proc. SOCS, pages 169–170, 2017.

[38] Jiŕı Svancara. Bringing multi-agent path finding closer to reality. In

Proc. AAMAS, pages 1784–1785, 2018.

[39] Kung-Kuen Tse. Some applications of the poisson process. Appl. Math.,

05:3011–3017, 2014.

[40] Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosen-

thal. Cobots: Robust symbiotic autonomous mobile service robots. In

Proc. IJCAI, pages 4423–4429, 2015.

[41] Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-

agent pathfinding. In Proc. ICAPS, pages 380–387, 2008.

[42] Ko-Hsin Cindy Wang and Adi Botea. MAPP: a scalable multi-agent

path planning algorithm with tractability and completeness guarantees.

CoRR, abs/1401.3905, 2014.

[43] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating

hundreds of cooperative, autonomous vehicles in warehouses. In Proc.

IAAI, pages 1752–1759, 2007.

[44] Jingjin Yu and Steven M. LaValle. Multi-agent path planning and

network flow. In Proc. WAFR, volume 86, pages 157–173, 2012.

[45] Jingjin Yu and Steven M. LaValle. Structure and intractability of opti-

mal multi-robot path planning on graphs. In Proc. AAAI, pages 1443–

1449, 2013.

BIBLIOGRAPHY 69

[46] Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations:

Efficient feasibility tests and planning algorithms. In Proc. WAFR,

volume 107, pages 729–746, 2014.

	Abstract
	Estratto in Lingua Italiana
	Ringraziamenti
	Introduction
	Preliminaries and Related Work
	MAPF
	Problem Definition
	Some theoretical results for MAPF
	MAPF Algorithms

	MAPD
	Some theoretical results for MAPD
	MAPD Algorithms

	Kinematic Constraints
	Robustness

	MAPD with Delays
	MAPD-d
	Well-formedness of MAPD-d
	TP with Recovery Routines

	MAPD-d Algorithms
	k-TP Algorithm
	p-TP Algorithm

	Implementation Details
	Environments
	Simulation Code Structure
	Visualization

	Experimental Results
	Setting
	Results
	Effect of the Number of Delays
	Scalability in Larger Environments

	Conclusions
	Tables of Results
	Low Number of Delays
	Low Number of Delays (Standard Deviations)
	High Number of Delays
	High Number of Delays (Standard Deviations)

	User Guide
	Requirements
	Run One Simulation
	Run Multiple Experiments

	Bibliography

