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Abstract

Visual localization is the problem of estimating the pose of a camera from a query image,
comparing it to a 3D reconstruction of the scene. When the scene was obtained in very
different visual conditions from the query, e.g. seasonal changes, we talk about long-term
localization. Applications of this problem are already part of our lives, from autonomous
driving to augmented reality.
Visual localization usually involves matching points of the query to those in the 3D struc-
ture, and using these matches to infer a pose through geometric reasoning. In the long-
term setting, matching is challenged by the mutated appearance of keypoints, causing
match scarcity. The subsequent pose estimation produces lower quality, or even com-
pletely wrong, pose estimates.
In this thesis, we propose solutions to the problem of localizing with match scarcity,
through fine-grained segmentations robust to long-term visual variations. Our contribu-
tion is two-fold: (i) we devise a novel matching strategy – Semantic Matching – which
combines local appearance information to global semantic cues to provide higher quality
matches, (ii) we modify the random sampling and consensus pose estimation algorithm
to account for models with few inliers with high semantic consistency, as it happens with
match scarcity. The resulting method, Biased Consensus, selects the sampled model with
largest overall semantic consistency.
We experimentally verify that Semantic Matching improves the quality of matches and
increases their quantity. Moreover, it shows excellent performances in the task of pose es-
timation, outperforming state-of-the-art methods on sequences with match scarcity on all
accuracy levels. The combination of Semantic Matching and Biased Consensus exhibits
more than doubled correct localizations on the best performing method from literature.

Keywords: visual localization, camera pose estimation, semantic consistency, robust
fitting





Abstract in lingua italiana

La localizzazione visiva consiste nello stimare la posa di una fotocamera da un’immagine
query, comparandola a una ricostruzione 3D della scena. Se la scena osservata nella
ricostruzione è radicalmente diversa dalla query, ad esempio in presenza di variazioni sta-
gionali, si parla di localizzazione a lungo termine. Applicazioni di questo problema sono
già parte della quotidianità, dalla guida autonoma alla realtà aumentata.
La localizzazione visiva solitamente segue due fasi. In primo luogo, punti della query ven-
gono accoppiati a punti della ricostruzione 3D. Quindi le corrispondenze vengono usate
per ricavare una posa tramite ragionamenti geometrici. Nello scenario di lungo termine,
la creazione di corrispondenze è messa alla prova dai cambiamenti di aspetto dei punti
descritti, e la conseguente scarsità di corrispondenze.
In questa tesi, proponiamo una soluzione al problema di localizzazione con scarsità di cor-
rispondenze attraverso segmentazioni fini delle immagini. Il nostro contributo si articola
in due strumenti: (i) una nuova strategia per la creazione di corrispondenze – Semantic
Matching – che combini informazione locale sull’aspetto di porzioni di immagine con seg-
nali semantici globali, per fornire corrispondenze di alta qualità, (ii) una nuova versione
dell’algoritmo di stima robusta della posa così da tenere conto di modelli con pochi in-
liers, ma complessivamente fortemente consistenti dal punto di vista semantico. Il metodo
risultante, Biased Consensus, seleziona la posa con consistenza semantica maggiore.
Verifichiamo sperimentalmente che Semantic Matching migliora sia la qualità, sia la quan-
tità di corrispondenze trovate. Inoltre, i risultati della stima della posa sono eccellenti,
e in contesti con scarsità di match superano per ogni soglia di accuratezza algoritmi allo
stato dell’arte. Infine, la combinazione di Semantic Matching e Biased Consensus perme-
tte di raggiungere oltre il doppio di immagini correttamente localizzate rispetto al miglior
metodo dello stato dell’arte.

Parole chiave: localizzazione visiva, stima della posa, consistenza semantica, fitting
robusto
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1| Introduction

1.1. The problem of visual localization

Visual localization is the problem of inferring the pose of a camera from a picture, the
query. This tool has several applications in contemporary technologies, from autonomous
driving to augmented reality, which require stable and reliable information about the lo-
cation of cars, or devices, in space. Doing so with a standard camera rather than with
the help of ad-hoc sensing tools, such as LIDAR, is a significant step towards lightweight
and cost-effective localization.
Differently from visual place recognition, whose focus is on recognizing the broader lo-
cation of a picture, visual localization entails accurate identification of the position and
orientation of the camera. To obtain such precise information, the query is compared to
a 3D reconstruction of the scene, previously obtained from a database of images. Cor-
respondences are found between 2D interest points in the image and 3D points. Once
several of these correspondences have been found, a pose can be estimated via geometric
reasoning. To contrast the negative effect on the pose of incorrect matches, a robust
estimation framework, like the Random Sample Consensus (RANSAC) algorithm [13] is
employed. In Figure 1.1 we represent visual localization.

Although some outliers can be tolerated with robust model estimation, the higher the
percentage of these, the harder, and more computationally intensive, the estimate. The
problem is even worsened by scenes evolving in time, where corresponding points disappear
or move in relation to one another, and the appearance of objects varies. Think, for
example, of a tree observed across seasons. The foliage, as well as the colour and size of
the tree are subject to variations. It is highly desirable to minimize the impact of these
variations on the localization performances.
Because traditional, appearance-only based localization methods [34, 42] have difficulties
reaching high precision estimates in long-term localization settings [37], literature has
focused on techniques to complement appearance information, so to achieve robustness
even when scenes are visually different. Semantics are well suited to this goal, because
they describe the nature of objects and not their appearance. For example, one can verify
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Figure 1.1: Visual localization: a query is registered to a point cloud of the scene.

if matching 2D and 3D points are also representing consistent semantic classes, hence
discarding accidental matches arising from similarly visual patches of completely different
objects.
One successful approach employs semantic consistency of a match to the scene as a soft
filter, and promotes the sampling of the most promising matches during pose estimation
[44]. Furthermore, a finer and more robust segmentation can be obtained through self-
supervision [22], so that the score becomes even more discriminative. However, whereas
these methods increase the chance to pick the correct model during pose estimation, they
still inherently depend on the quality of matches that are presented to the filter. Since this
is only assessed through appearance, long-term variations may disrupt a significant portion
of matches before the semantic filter comes in, leaving few valid matches overall (match
scarcity). Hence, some effort should be made to improve the quality of matches while
these are created. In the context of urban localization, some authors [35, 49] proposed to
tackle the ambiguity of repetitive structures across the scene by exploring multiple match
options for all query keypoints.

The first finding of this work is that the same strategy can be successfully applied not only
to man-made repeated structures, but also to a broader range of scenarios with long-term
variations. Indeed, as appearance changes there is higher probability to find ambiguity of
descriptors, and thus to find the correct descriptor within the first few neighbors, although
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not necessarily the first.
We furthermore observe that localizing with match scarcity entails worse pose estimates.
Indeed, the underpinning assumption of robust pose estimation is that the correct pose
will have a larger consensus than other poses obtained with incorrect match samples,
that is the number of matches supporting the correct pose will always exceed that of
other randomly sampled poses. However, in the presence of match scarcity the overall
amount of correct matches could lower significantly, becoming comparable to the achieved
consensus of random poses. Thus, we verify the need to re-design the evaluation of poses
during robust fitting.

1.2. Our contribution

In the present work we make the following contributions:

(i) we demonstrate the benefits of shifting the focus of semantic consistency from a post-
matching filtering stage to the matching procedure itself, when facing situations with
ambiguous matching and match scarcity;

(ii) we devise a framework to perform Semantic Matching, revisiting the Geometric-
Semantic Match Consistency algorithm of [44];

(iii) we propose an ad-hoc pose estimation variation of the RANSAC [13] algorithm,
adding Biased Consensus, which allows correct pose estimation with severe match
scarcity.

We perform experiments on the Extended CMU Seasons dataset [4, 37] to analyse in
depth our method. Finally, we compare the proposed versions to relevant localization
pipelines directly on the task of pose estimation.

1.3. Outline

The rest of this work is organized as follows. In chapter 2 we report theoretical notions
from computer vision and projective geometry as background to all our work. An expert
reader may skip this part.
In chapter 3 we present the problem formulation, and discuss relevant work in chapter 4.
We propose our method in chapter 5, whose validity is extensively verified in chapter 6.
Finally, in chapter 7 we summarize findings and discuss interesting future research lines.
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2| Domain background

As introduced in the previous chapter 1, being able to estimate the location from which
an image was captured is of paramount importance for a variety of applications. Although
assumptions and problem boundaries vary with the application, at the heart of the prob-
lem is a geometric modeling of the camera. In this chapter we present the mathematical
foundations of this theory, giving the necessary background for the following work.

2.1. Camera geometry

When capturing a picture, both analog and digital photography start with transferring
the appearance (in the form of light) of a 3D scene to a bi-dimensional screen in a process
called image formation. In reality, light is captured by a system of lenses, which aim
to maximize the amount of light that reaches film or CCD (Charge Coupled Device,
the device that transforms light stimuli in electrical signals for digital cameras). For
our purposes, a simplified model of the camera will however suffice. In this simpler
representation, rays of light go through a small hole surrounded by an opaque screen for
the image to be correctly rendered (inverted) on screen. Such device is called pinhole.
Figure 2.1 illustrates this idea.

Figure 2.1: The process of image formation for a pinhole camera. Figure from [16].

The geometric transformation from 3D to 2D points is also named perspective projection.
It consists in projecting points X ∈ R3 to x ∈ R2, as outlined in Figure 2.2. A point C,
representing the camera centre, is the origin of a 3D reference system for points in the
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world. The centre is the ideal location of the pinhole, while the image will be projected
onto the image plane (physically, the film or CCD). The principal axis is the orthogonal
line to the image plane through the camera centre. Note the z axis of the 3D reference
system is set parallel to this line. The intersection of the principal axis and image plane
is the principal point, on which the origin for a 2D image reference system is commonly
set. Finally, the distance between camera centre and image plane is the focal length f .

Figure 2.2: Pinhole geometry outline. Figure from [15].

Thanks to similarities among triangles, the projection of X = (x, y, z)T onto the image
plane has well-defined coordinates x = (fx/z, fy/z)T .
The final image representation requires a further change of coordinates, from physical
CCD elements (pixels) to image coordinates. In particular, the conversion possibly entails
a shift of the origin, so the principal point is mapped to (px, py). Moreover, as pixels might
not be square, a relative rescaling of the abscissa and ordinate in the image reference
system could be needed. The factor to correct for this is called aspect ratio, and is usually
defined as r = sx/sy. After applying this rescaling, the principal point is mapped to
(u0, v0). It could also happen that the CCD elements are skewed from rectangular form
to parallelogram form. Such a deformation is then expressed by the skew γ.

All together, these allow a compact representation of the perspective projection in matrix
form, provided homogeneous coordinates are introduced.

2.2. Projective geometry

We start by observing that a projective transformation maps 3D lines to 2D lines, but
does not necessarily preserve parallelism of two 3D lines. Indeed, we can think of a picture
of straight railroad. Only if the railroad runs parallel to the horizon line, we will correctly
project the binaries as parallel. In all other cases, binaries will appear to converge to a
unique point at infinite distance. Such point has well defined location in the image, and
yet has no 3D correspondent.
Motivated by this example, we introduce a larger vector space to hold both points at
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finite and at infinity. A projective space P3 is obtained by extending E3, the Euclidean
3D space, with a plane at infinity, i.e. the locus of improper points. An improper point
is the ideal intersection of parallel lines with fixed direction.
Points in a 3D projective space are conveniently represented with 4 homogeneous co-
ordinates, namely they are 4-tuples defined except for a multiplicative factor. Let, for
example, X = (x, y, z)T ∈ E3 represent a point in space.

The corresponding homogeneous point is X̃ =

(
sX
s

)
∈ P3, s ̸= 0, which can then be

normalized X̃ =

(
X
1

)
.

The original point in E3 can be retrieved by taking the first three coordinates and dividing
them by the last one.
Improper points have instead representation X̃ = (x, y, z, 0)T , which does not have a
corresponding point in E3. Indeed, intuitively, if we were to divide the first three coordi-
nates by the last one, the resulting point would degenerate to infinity in the direction of
X = (x, y, z)T .

One key advantage of using homogeneous coordinates is that they unify the representation
of transformations such as rotations, translations and similarities in the concept of projec-
tive map. General projective transformations are named collineations or homographies,
and are represented by a 4 x 4 invertible matrix. Among these we will be especially con-
cerned with affine rigid transformations with proper rotation (thus excluding reflections).

Definition 1. The special Euclidean group SE(n) is the set

SE(n) = {A | A =

[
R t

01×n 1

]
, R ∈ Rn×n, t ∈ Rn, RTR = RRT = 1}. (2.1)

Transformations in SE(3) are known as 6 DoF poses, because they have 6 free parameters
(or Degrees of Freedom).

Finally, to project , the 3D world to a 2D image representation central projection will be
used.

2.3. Perspective projections

We now identify the representation of a projective map from a point XW ∈ P3 to a point
xI ∈ P2, where W indicates the reference system of the world, and I the pixel coordinates



8 2| Domain background

reference system.

A generic transformation consists in the following steps:

1. From a 3D point in the world reference system, map the point to its coordinates in

the camera reference system. This is represented by a matrix

[
R t

01xn 1

]
∈ SE(3).

2. Project the point from 3D to 2D on the image plane. This is represented by the

matrix M = diag(f, f, 1)[I|0] =

f 0 0 0

0 f 0 0

0 0 1 0

.

3. map physical coordinates to pixel coordinates in 2D. As described in Section 2.1, this
entails skewing, rescaling and translating the image coordinate system. A matrix

representation for this is K̃ =

1 γ u0

0 r v0

0 0 1

 where γ ≈ 0 in most applications.

The first step is concerned with the position of the camera in the world. These are defined
extrinsic parameters of the camera. Conversely, the second and third step are influenced
by the internal design of the camera, the intrinsic parameters.
It is often convenient to rearrange the representation for the whole transformation in the
composition of two matrices, one for the intrinsics and one for the extrinsics. We thus
obtain the 3 x 4 camera projection matrix P:

P = K[R|t] =

f γf u0

0 rf v0

0 0 1

 [R|t]. (2.2)

The matrix K is called camera calibration matrix. It is often the case that this matrix
is known, and in such circumstances the camera is said to be calibrated. We will later
see how calibration plays an important role in removing projective ambiguities from the
reconstruction, and therefore it is very important to have access at least to partial calibra-
tion information. Fortunately, most images nowadays contain metadata regarding camera
calibration.

Finally, the transformation is summarized as

zx̃I = P X̃W (2.3)
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with x̃I = (xI , yI , 1)T and X̃W = (xW , yW , zW , 1)T .

We will from now on omit the subscripts I and W , yet still refer to mappings from a
unified world reference system to individual camera coordinates.

2.4. Camera anatomy

We now analyze a few concepts of camera geometry in light of the projective geometry
framework we have just introduced.

Ray of a point. The ray of a 3D point is the line through the point itself and the
camera centre. It is mapped on a unique point in the image, and we can therefore identify
the central projection as a mapping of rays (lines) of P3 to points of P2. Thanks to the
introduced generalization, points at infinity are treated just as any other point in the ray.
In particular, the horizon line is visible in the image through this mechanism.

The generic equation for a ray through the point Ã ∈ P3 is

X̃(λ) = λÃ + (1− λ)C̃ (2.4)

and its mapping to P2 is then

x̃ = λP Ã + (1− λ)P C̃. (2.5)

Camera centre. The only 3D point whose mapping is undefined in the image is the
camera centre. Indeed, by definition the centre of projection is the point that belongs to
every ray. Intuitively, such point has no defined direction.
More formally, we select the point C̃ such that P C̃ = 0 and show it coincides with the
camera centre, as every ray passes through this point.
Consider a generic Ã ∈ P3. We specialize equation 2.3 to x̃ = λP Ã (where the multi-
plicative factor has been moved to the right side for convenience) and add the null term
(1−λ)P C̃. We finally obtain an equation in the form of 2.5, meaning the point C̃ belongs
to the ray of Ã. For arbitrariness of Ã we conclude C̃ is the centre of projection.

Assuming P is full rank, we may recover the Euclidean coordinates of the centre of pro-
jection C from knowledge of P. Indeed,

0 = P C̃ = P·,1:3C + P·,4
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thus obtaining
C = −P·,1:3P·,4

where we denoted with P·,1:3 the first three columns of P, and P·,4 is the last column of P.
Since the matrix K of camera internals is upper triangular, thus invertible, we may also
rewrite the relation between camera centre and translation vector as

C = −RT t. (2.6)

Depth of a point. The multiplicative factor z appearing in equation 2.3 has an interest-
ing interpretation. This factor depends on the representation that is chosen for P. Indeed,
since 2.3 is a homogeneous equation, any P defined up to a multiplicative factor maps X̃
to the same point in E2.
Considering homogeneous representations of X̃ and C̃, we may assume both have last
coordinate 1.

Then
zx̃ = P X̃ = P (X̃− C̃) = P·,1:3(X−C)

where we have denoted with P·,1:3 the first three columns of P. According to the decom-
position of P introduced in 2.2, the third row of P·,1:3 coincides with the third row of the
rotation matrix R. Therefore, such vector represents the direction of the principal axis.
By taking the third equation, we find

z = P3,1:3(X−C).

Thus, if the matrix P is scaled such that K3,3 = 1, z represents the projection of the
vector X−C onto the principal axis, thus the depth of X.

2.5. Absolute pose solving

The final objective of our efforts will be to register effectively a query image to the world
coordinates. We now assume sufficient correspondences {(Xi,xi)}, Xi ∈ R3, xi ∈ R2, i =

1, ..., Nc are given, and see how P can be estimated. From time to time we will refer to
this problem as absolute pose estimation, image registration or simply pose estimation.
Let us start from the uncalibrated case, where we have complete uncertainty about ma-
trices K, R and t.
In this general case, assuming the matrix P is full rank, the solution is found with the
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Direct Linear Transform (DLT) algorithm.

2.5.1. DLT equations

For every match (Xi,xi), it must hold equation 2.3. The equation entails vectors xi and
PXi are parallel, or their vector product is null. We may rewrite it conveniently by
adopting the skew-symmetric representation of xi:

[xi]xPXi = 0⇐⇒ vec([xi]xPXi) = 0⇐⇒ (XT
i ⊗ [xi]x)vec(P ) = 0

and finally obtain a system of 3 equations in 12 unknowns, with 11 DoF, since P is unique
up to a scale factor:  0T −xi,3XT

i xi,2XT
i

xi,3XT
i 0T −xi,1XT

i

−xi,2XT
i xi,1XT

i 0T


P

T
1,·

P T
2,·

P T
3,·

 = 0.

These equations are linearly dependent. In fact, [xi]x has rank 2, and the Kronecker
product of a rank 1 matrix by a rank 2 matrix yields a rank 2 matrix. By convention, the
third equation is dropped, yielding the final system:

[
0T −xi,3XT

i xi,2XT
i

xi,3XT
i 0T −xi,1XT

i

]P
T
1,·

P T
2,·

P T
3,·

 = 0. (2.7)

Therefore, each point correspondence adds two equations, and a total of 5 1
2

correspon-
dences suffice to solve for P.
Overall, the system may be written as Ap = 0, where A is the matrix obtained by stacking
the equations for 5 1

2
correspondences, and p = vec(P ).

In most cases, the correspondences are not exact but noisy. Thus, it is desirable to use
a least-square generalization of the system. One way to proceed is to minimize ∥Ap∥
subject to ∥p∥ = 1.
Finally, the DLT does not generally yield a P that is consistent with any assumptions on
the camera internals. To add any domain information, different procedures are needed.
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2.5.2. The perspective-n-point problem

The perspective-n-point problem (PnP) is an alternative formulation of the image regis-
tration problem in the assumption of calibrated camera.

Given a set of n points in space and their location on an image, the problem is to find the
length of the segments from each 3D point to the centre of perspective. With a sufficient
number of these points, the centre and orientation of the camera are determined without
ambiguity.

We now outline the solution to the P3P problem. We start by considering three control
points A,B,C ∈ R3. The centre of projection CP forms with these points a tetrahedron,
whose vertex we take as the CP itself. The base of the tetrahedron is fully known –
angles and sides, which we will name Rab, Rbc, Rac –, as well as the angles θab = ÂCPB,
θac = ÂCPC, θbc = B̂CPC (cf. Figure 2.3). Note that the image projections of the
control points xA, xB, xC , are not considered in this problem, but they are important
to determine the face angles θab, θbc, θac. Indeed, the same angles are formed in the
faces of the tetrahedron with base the triangle of xA, xB, xC on the image plane and
with vertex CP . This tetrahedron is fully determined because the camera calibration is
known.

Figure 2.3: Geometry of the P3P problem. Figure adapted from [13]

The objective is to determine the lengths of the sides a, b, c of the tetrahedron (“legs”).
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One can write three equations by using the law of cosines:

R2
ab = a2 + b2 − 2ab cos θab

R2
bc = b2 + c2 − 2bc cos θbc

R2
ac = a2 + c2 − 2ac cos θac.

[13] show that this system of equations has no more than 4 admissible solutions, depending
on the configuration of the problem. Interestingly, when extending to more than 3 control
points, for 4 and 5 correspondences there is still no guarantee of a unique solution, unless
the points are coplanar. When providing 6 or more point correspondences, instead, a
unique solution can always be found.

In practice, since a robust estimation scheme has to be used and different models have to
be taken in consideration, the preferred approach is to proceed with P3P and disambiguate
among the 4 solutions through consensus.

The above procedure, however, considers an exact geometry, and no errors are accounted
for in the matches. In reality, errors are frequent and both imprecise measurement and
false matches can hinder the estimate. In light of this, robust estimation is crucial for
success.

2.6. RANSAC

We present here the general framework of the RANdom SAmple Consensus (RANSAC)
algorithm, first introduced by [13] in the domain of pose estimation, but that can be
used in greater generality for robust fitting in a range of problems where gross errors may
occur. In visual localization the scheme is used, for instance, for absolute and relative
pose estimation and pose verification.
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Figure 2.4: An example of failure of a heuristic outlier detector. The procedure consists
in fitting a model through least squares, and later removing any points that deviate
excessively from the model. In this configuration, the model is very close to point 7, which
is in reality an outlier. Point 6 is instead labelled as outlier, despite being consistent with
the “real” model. Figure from [13].

Many model fitting procedures are based on sample mean as an estimator. It is well
known that this estimator is not robust, since very large extreme sample values can im-
pact severely on the resulting mean. Let us consider, as an example, fitting a line to some
data with ordinary least squares (cf. Figure 2.4).
The idea behind RANSAC is quite straightforward: rather than attempting to fit a model
to all the available data and removing outliers only after the fitting – when the model
might be already compromised by outliers – several models are estimated with few points
and the one with the largest consensus within data is eventually chosen. In other words,
RANSAC is a framework for joint model fitting and selection, outputting both a model
and a subset of data that supports that model.
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Algorithm 2.1 RANSAC
0: Inputs: candidate points set S, maximum number of iterations Niter, inlier threshold
ϵ

0: Output: model θ∗, inliers S∗

1: best model θ∗ = N.A., optimal consensus set CS(θ∗, ϵ) = ∅
2: for all k = 1, ..., Niter do
3: Sample a random minimal set Sk from S
4: Fit model θk to Sk

5: if |CS(θk, ϵ)| > |CS(θ∗, ϵ)| then
6: θ∗ = θk

7: end if
8: end for
9: Fit model to CS(θ∗, ϵ)

=0

Let us describe in more detail RANSAC’s algorithm, as outlined in Algorithm 2.6.
Let S be the dataset. The fitting process starts by randomly sampling a minimal set of
data points Sk ⊂ S to fit a model θk. In our example of linear regression, Sk would be two
points, and θk the slope and intercept of the line. Such model is then evaluated based on
its consensus set CS(θ, ϵ). Usually, we count how many points are within some predefined
error ϵ, the inlier threshold, from the estimated model, so in our example we would draw
a band around the fitted line and count how many data points are included within that
region. Sampling and model fitting are repeated for a fixed number of iterations Niter,
and eventually the model θ∗ with largest support is returned, along with its consensus set
CS(θ∗, ϵ). One could even specify an absolute threshold τ on the consensus set size, such
that if the consensus is larger, the algorithm terminates before completing all iterations.
Note that, if unlimited resources were available, one could try all possible models and
return the best – RANSAC would therefore deterministically choose the model with the
largest consensus. However, since the number of possible models is way too large to be
searched exhaustively, a probabilistical solution is adopted. Thus, the maximum number
of iterations of RANSAC is usually decided by fixing the probability of not finding the
optimal solutions by that number of attempts. This can be easily done if an estimate of
the probability p for a data point to be an outlier is available, and under the assumption
that the “inlier-ness” of point is independent on that of other points, which might not
always hold. In this framework, the probability to sample at least one model with inliers
only by the k-th iteration is 1 − (1 − (1 − p)m)k, hence to have such probability larger
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than a fixed probability α, we have

Niter ≈
log(1− α)

log(1− (1− p)m)
. (2.8)

Naturally, values of α close to 1 will demand a high confidence on the chosen model, thus
leading to larger iteration numbers, while values close to 0 will accept nearly any model.

Experimentally, the results of RANSAC are outstanding, as it can handle accurately
datasets with a majority of outliers.

2.7. Epipolar geometry

In the following subsection we explore the main results in the two-view setting, where two
images observing the same scene are given, but the 3D structure is not provided. The
images can be taken simultaneously from slightly different points of view, or in subse-
quent moments for a moving camera, provided that the scene can be approximated as
unchanged.
The broader goal of two-views geometry is to use 2D-2D correspondences to jointly per-
form inference on camera projection matrices of both images and the location of 3D points
of the scene, and is useful in visual localization to obtain a 3D reconstruction of the scene
(cf. Section 4.3.1).
Our formulation, assumes that a number of 2D-2D correspondences {(xi, x′

i) | xi ∈
R2, x′

i ∈ R2, i = 1, ..., N} is given, and we are interested in the camera projection matri-
ces P, P ′ and the 3D location of the points {Xi | Xi ∈ R3, i = 1, ..., N} which generated
both sets of projections.
We start by analyzing epipolar geometry, the geometrical relationship between two distinct
cameras that observe a common scene. Interestingly, the epipolar geometry is indepen-
dent of the scene structure, and is rather a function of the cameras internals and relative
position. The mapping is linear: a 3×3 matrix F (called the fundamental matrix ) is used
to describe the relationship between any two correspondences (x,x′).
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(a) Epipolar geometry outline (b) Formation of the epipolar line.

Figure 2.5: (a) displays the projection of a common 3D point onto the image planes for
two cameras with centers C and C′. (b) illustrates the constraints of the position of a
point if the centers and position in the other image are known. Figure from [15].

Figure 2.5 illustrates the main features of epipolar geometry. Two centers C, C′ represent
the two cameras. A plane π called epipolar plane is defined for every 3D point X observed
by both images. Thus, before observing the scene, the epipolar geometry is an epipolar
pencil, or a pencil of planes through a common line denominated baseline. The centers
C, C′ define the baseline, and the intersections of such line with the image planes are
the epipoles. Figure 2.5b shows that fixing a point in one of the two images constrains the
corresponding point in the other image to lay on a line, as these points must be coplanar.
The line is called epipolar line, and is exemplified by l for the point x’ of Figure 2.5a, and
by l’ for the point x.
The epipolar geometry therefore defines a function T : x 7→ l’, which depends on the con-
figuration of the cameras and their intrinsic parameters. It is a projective transformation
from points of P2 to lines in P2. The transformation can be conveniently decomposed in
two steps, the first mapping x to a candidate x′ ∈ l′ and in a second stage defining l’ as
the line passing through x’ and the epipole e’. It can be argued that the global transfor-
mation is represented by a 3× 3 matrix F , since it is a composition of homographies.
The first transformation is a 2D homography because it preserves lines. To see this, we
can think of the two views geometry as in Figure 2.5. Let ψ be a plane not containing the
camera centres (see Figure 2.6). This plane intersects all rays through a camera centre
in exactly one point (thereby fixing the homogeneous scale and removing any uncertainty
on the pre-image of projected points). If we imagine to intersect the plane ψ with rays
of a number of points that lay on a line in the image with camera C, we find a line,
since a plane ζ contains all the rays. Therefore, a plane ζ’ can be found containing the
intersection of ζ and ψ and the centre C’. Finally we intersect ζ’ with the image plane
relative to C’ and find a line.
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Overall, this first step may be formalized as follows:

T1 : x 7→ x′ = Hψx.

Figure 2.6: Illustration of the homography connecting points in two views.

It is also quite straightforward to map the point x’ to the line l’. Indeed T2 : x′ 7→ l′ =
e′ × x′ since in P2 such relation holds in general.

By using the skew-symmetric operator, it is possible to rewrite the transformation T2 as
a linear function of x’: l′ = [e′]×x′. Finally, we obtain

T : l′ = [e′]×Hψx. (2.9)

A few observations are now due. First, we define the fundamental matrix F as F =

[e′]×Hψ. Hψ depends on the choice of ψ. Solving such ambiguity corresponds to choosing
a coordinate frame in the projective space. Therefore, the matrix F is defined up to an
arbitrary projective transformation.
F is also a singular matrix. Indeed, it has a zero right eigenvalue in correspondence of
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the epipole e. To see this, it suffices to recall that every line l = F Tx′ goes through the
epipole e. As a consequence, eT (F Tx′) = (Fe)Tx′) = 0 for all x’, which means Fe = 0.
Therefore F has rank 2 and it is a homogeneous matrix with 7 degrees of freedom.
Finally, a more explicit expression for F is

F = [e′]×P
′P−, (2.10)

where P− is the pseudoinverse of the camera matrix P, namely PP− = I.
The transformation 2.7 induces the condition

x′TFx = 0. (2.11)

This condition holds for every valid pair (x, x’) and allows to retrieve F in case the
correspondences are given.
In case the calibration is known for the cameras, a simpler expression is available, and
the uncertainty on the matrix (now called essential matrix is reduced to a similarity
(transforming rigidly and fixing a scale). It can be written as

E = (K ′)TFK. (2.12)

Estimating F can be done similarly to the DLT algorithm (cf. Sections 2.5.1). We can
extract one linear equation from every correspondence, with 9 unknowns and the following
form

x′TFx = 0⇐⇒ vec(x′TFx) = 0⇐⇒ (xT ⊗ x′T )vec(F ) = 0.

The full system can be written as

Af = 0

where A is n× 9.
Because the equations are homogeneous, the solution f cannot be unique. It must be
rank(A) ≤ 8, which holds as equality in general. Therefore, the minimum number of
correspondences is generally set to 8, and in such case the solution is the right null-space
of A, which can be easily computed by solving the linear equations. The rank of A
might become 9 in presence of noise, which demands for more correspondences and a
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least squares solution.
Once the fundamental matrix has been computed, the camera matrices and scene structure
can be evicted. Let us first consider the matrices P and P’. These are commonly found
as follows:

P = [I3×3|0]

P ′ = [[e′]×F |e′]

where P is set as reference. Once both have been fixed, one can express the rays corre-
sponding to image points (x, x’) thanks to the projective relation 2.5. The intersection
of such rays in R3 yields the desired 3D point location.
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This chapter provides a formulation of our problem, introducing the notation we will be
using throughout the work.

Inputs We are interested in retrieving the pose of a camera starting from a query image
and a 3D reconstruction of a scene. Formally, our inputs are:

• the query image Iq ∈ RH×W×3, with a related set of keypoint-descriptor pairs Q =

{(x,f) | x ∈ R2,f ∈ RD}

• a set of database images I = {Id}, from which we may extract the following infor-
mation through SfM (cf. Section 4.3.1):

– a 3D reconstruction of the scene X = {(Xj ,Pj,Vj)}, where Xj ∈ R3 are the
point locations, Pj = {d1, ...,dnj

} ⊂ RD are two or more associated descrip-
tors and Vj includes directions and distances of observation of the point at
reconstruction time

– accurate poses of all cameras {(Rd, td)}

Output The output is a pose for the query image:

(R, t), R ∈ SO(3), t ∈ R3

Objective Given a query image q we aim to retrieve its pose (R, t), minimizing the
position error and orientation error of the camera with respect to its ground truth pose
(Rq, tq).

The position error is defined as the Euclidean distance between predicted and target
camera centre. Note the centre is not the vector t, but it can be retrieved from it as from
Equation 2.4 :

Ep = ∥C−Cq∥2.
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The orientation error is the minimum angle to re-align the predicted to the target coor-
dinates:

Eo = |α|, 2 cos(|α|) = tr(R−1
q R)− 1.

In literature, it is common practice to evaluate the localization algorithms based on the
percentage of queries registered within given thresholds for both errors. Three degrees of
accuracy are usually evaluated, with respective thresholds:

• High precision: 0.25m, 2°

• Medium precision: 0.5m, 5°

• Coarse precision: 5m, 10°

Assumptions Because modern cameras have access to a variety of metadata, we may
assume additional information is provided for each image we will use, both from the
training and query datasets. This comprises camera intrinsics and a rough prior for the
location through GPS data. Furthermore, in several applications one can estimate the
gravity direction g and height of the shot z0. These allow further restriction of the number
of equations needed to estimate a pose.

We may also assume that a semantic segmentation M ∈ {1, ..., L}H×W of all images is
available. The segmented classes could be quite high level (e.g. building, vegetation, vehi-
cle, person, ...), or more fine-grained. In the latter case, which we discuss in Section 4.6.2,
the classes will not correspond to specific semantic classes, but will preserve robustness
to variations of appearance.

Challenges We outline here some of the most relevant issues to be dealt with during
general localization and in the specific long-term setting:

• quality of data: especially in applications where the capturing device is in motion,
the resulting images might suffer from blur and saturation, thus hindering the task
of describing the image. Increasing uncertainty should be expected in the detections
of keypoints, that is the noisy position of a keypoint x = xt+η will see an increase
in the magnitude of Σ, with xt being the “true” keypoint position and η ∼ (0, Σ)
a random variable with null mean and variance Σ.

• computational and memory load : we typically store very large models. For each im-
age thousands of descriptors are stored, and because the scene needs to be accurately
triangulated millions of 3D points are usually saved in the SfM reconstruction of a
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city-scale scene. Therefore, exhaustive matching procedures like nearest neighbor
search appear unsatisfactory to scale to the required model size.

• structural ambiguities : large-scale localization also makes it easier to match to vi-
sual and geometric structures that are very similar but unrelated. Ambiguities are
especially likely to arise in zones rich in vegetation, or urban scenarios with consis-
tent architectural style. Moreover, objects like road signs, vehicles and shops signs
can be deceiving, as these appear in different locations too.

• long-term variations and descriptor variability : the descriptors used for creating
correspondences are built to be invariant and discriminative. Yet, there is a trade-
off between such invariance and ability to discriminate between different scenes. In
relatively easy localization problems, the queries are visually similar to database
images. Therefore, descriptors are able to pass a quite tight Lowe’s ratio test,
and false correspondences are mostly filtered out at this stage. However, in case of
long-term variations, including day-night, seasonal and radical viewpoint variations,
appearance may vary drastically. In such cases, descriptors related to the same
keypoints will be farther in space. Formally, this means a query descriptor fi could
have similar or even larger distance to its corresponding descriptors dj ∈ Pi than to
unrelated descriptors dj ∈ Ph, h ̸= i. Consequently, the probability for matches to
be rejected by Lowe’s ratio test will increase and localization will suffer from match
scarcity, which could compromise the ability of RANSAC to find a large enough
consensus set and thus decrease the probability of successful localization.

Figure 3.1 reports images which display examples of some of these issues.
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(a) Challenging query images from the CMU
Seasons dataset. Image and data from [4].

(b) Challenging query images from the Oxford RobotCar
Seasons dataset [25]. Image adapted from [37].

Figure 3.1: Query images captured across different conditions. Images in the CMU Sea-
sons dataset exemplify seasonal changes, as well as shadowing, while images in the Robot-
Car Seasons dataset exhibit blur and day-night illumination changes.
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In this section we outline previous research efforts in visual localization, describing how
the state of the art techniques compare to our methods.

4.1. A taxonomy of visual localization methods

The problem of localizing from images can be cast in different versions, according to its
objectives and use-cases. For example, only certain applications have GPS information
available as a location prior, and when the location is roughly known, it still comes with
noise. In some cases, it is necessary to estimate pose and intrinsics of a camera, while other
applications assume the latter are known. The database might cover a restricted area of
interest (e.g. a building, a university campus), a whole city or the whole world. Many
more variations are possible, yet two sub-classes of problems can be identified based on the
database scale and required precision of the estimate. These are visual place recognition
and camera pose estimation.
Visual place recognition (VPR), aims at providing a coarse estimation of the location of a
shot. Often, the problem is considered to be solved by successfully retrieving the correct
place tag. The procedure consists in scanning for the nearest neighbor in a large-scale
database of geo-tagged images, and transferring its tag to the query image. In this case,
the challenges are represented by performing efficient comparison of images, given the large
database size, and discriminating among different places with similar appearance, which
are frequently present at such large scale. Note in this image retrieval approach the pose
is not directly inferred. When available in the database images, the query pose might be
roughly estimated with the nearest neighbour’s pose, or by interpolating neighbor poses.
Several applications require a much higher precision , while often encompassing smaller-
scale scenes. In in camera pose estimation, therefore, an accurate pose is sought, by
leveraging denser and more accurately annotated datasets.

Pose estimation techniques are traditionally based on geometric reasoning. They can be
divided into image-based and structure-based methods. For the latter, 2D-3D matches are
used to infer the pose as explained in Section 2.5, while in the former case some strategies
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use 2D-2D matches between query and database images to solve for the absolute pose.
For example, [50] match rectangular structures in pairs of views, and use such matches
to deduce the pair (R, t).
More recently, learning-based pose regression techniques have emerged. These methods
receive as input the images and train a neural network to directly regress a pose.

The focus of this work is camera pose estimation. We will adopt the traditional approach,
and employ structure-based techniques, as these still represtent the state of the art for
most localization benchmarks.

4.2. Image description

Although visual localization problems come with different goals and constraints, they
share the need to effectively encode images’ appearance. Particularly, finding image de-
scriptors is often the starting point for both techniques. Image contents can be observed
at local level or at global level. The former focuses on the information carried by a small
regions of the image. For example, these could be the colour of a pixel, its semantics,
or the color gradients of the pixel with respect to a few of its neighbors. For this type
of description small patches of pixels are analyzed independently of other patches and
regardless of the context of the image. In this sense, local descriptions are not unique,
since the same image patches might appear in different images in very different positions,
scale and orientation. Only when local features are gathered and analyzed in group the
peculiarity of one image emerges from another. Conversely, a global description naturally
aims at describing the picture on the whole, and is thus a discriminative property of the
image it represents. Although giving a comprehensive summary of the image content, a
global descriptor carries no information on local features, i.e. no details on the position,
scale and orientation of the features are kept.

Both local and global description techniques are widely used in the context of localiza-
tion tasks, since they provide useful information to recover similarities in a wide pool of
candidate database images.
Global descriptors are by nature compact and well suited to computing pairwise similarity
between images. Indeed, provided that a distance is defined on the space of descriptors,
when every image is described by one global vector comparison is immediate. Conversely,
using local features, entails the comparison of all pairs of features from both images, dra-
matically increasing the number of operations to be done.
Local description is more robust than global description. Indeed, even when a signifi-
cant part of the image content is occluded or has changed appearance due to long-term
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visual variations (e.g. seasonal changes, changes in illumination), the presence of a few
local matches and their position with respect to one another might still make localiza-
tion possible. Furthermore, the ability to estimate the pose of an image is conditional
to having information on several matching points, in order to triangulate the accurate
camera position and orientation. In summary, from case to case there is a need for both
representations, and sometimes both are used (cf. Section 4.6.1).
We now explore a few successful description techniques for both local and global descrip-
tors, and anticipate their usefulness within the problem of camera pose estimation.

Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform descriptor, first proposed by [24], is a technique
to obtain local image descriptors with desired properties of invariance to changes of scale
and rotation of the feature, as well as some invariance to illumination conditions and
viewpoint. Such properties are particularly interesting for the repeatability of detection
and description in different images. Description follows a sequence of steps:

1. An efficient search is performed across the image at different scales to identify can-
didate interest points. Identification is carried out through convolution of the image
with a difference of Gaussians, as an approximation of the laplacian of Gaussians.
In particular, maxima of the so-obtained curve are selected. This is a standard
technique that aims at pointing out the locations and scales of edges in the pictures,
that is regions in the image where the intensity of pixels suddenly changes.

2. Starting from promising locations, keypoints are chosen within the surrounding
regions based on their stability. This is achieved by interpolating a 3D quadratic
function to the difference of Gaussians computed at the previous step, and acts as
a regularizer. Keypoints are further filtered by checking the surrounding area has a
sufficient contrast around the edge.

3. The described region is assigned one or more orientations, based on the directions
with the strongest appearance variation. The gradient of pixel intensity is again
used to search for peaks in discretized directions. The highest peak is selected,
along with all other local peaks with comparable intensity. Thus, multiple keypoints
can originate from one described region. This guarantees stability in presence of
rotations, since the final description is given relative to the orientation.

4. Finally, a descriptor is assigned to the selected region. To maximize invariance
to viewpoint changes the proposed approach computes a histogram of the image
gradients in the described region. The histogram is filled by uniformly sampling
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gradients in the region, and accumulating votes for discretized orientations based
on the gradient magnitude, with a Gaussian weight falling lower as distance from the
keypoint increases. The resulting histograms are 128-dimensional, since 8 discrete
bins are used to describe every subregion from a 4 x 4 grid over the whole described
region. These are further normalized to contrast variations in illumination.

Overall, the histogram of gradients representation demonstrates robustness to local ap-
pearance variations, and is thus well suited to the purpose of matching keypoints in
different images.

The authors originally proposed to compare the SIFT descriptors by Euclidean distance,
and validated the effectiveness of such embedding for matching even in presence of clutter
and occlusion. Conversely, later research by [2] proposed to compare descriptors in a
more natural space, namely that of probability distributions over the 128-dimensional
space of discrete orientations. The descriptors are thus l1 normalized and compared with
the Hellinger distance, d2H(x,y) = 1−

∑128
i=1

√
xi yi.

Another interesting modification of SIFT that was proposed specifically for large-scale and
long-term place recognition is the DenseSIFT [47]. The challenging scenario of day-night
variations is shown to completely disrupt not only the descriptor, but also the keypoint
detectability. Indeed, when appearance changes, very different keypoints are found using
the classical difference of Gaussian detector. The proposed solution is then to sample
keypoints on a predefined dense grid of locations on the image, and describing constant
size patches around them with RootSIFT. This approach is naturally suited to views
from approximately the same viewpoint. Hence the authors combine the DenseSIFT with
additional synthetic views of the scene, generated through Google maps data, including
panoramas and depth maps. In our setting, however, we do not have available depth
maps of the scene, and we will rather use sparse descriptors.

SuperPoint

Inspired by the wide success of convolutional neural networks (CNNs) in many relevant
tasks in the image domain, [11] propose a competitive approach as alternative to the
hand-crafted SIFT descriptor.
The SuperPoint approach well represents the challenges of learning a suitable keypoint
representation, arising from the fact that the concept itself of an interest point is ill-
defined. Indeed, we require from a keypoint that it is as repeatable and as stable as
possible across different viewpoints, illumination conditions and orientations of an object.
In reality, not all objects have obvious endpoints and, even if they do, these are not nec-
essarily visible from all directions and under all lighting conditions. Thus, we are first
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Figure 4.1: The three phases of SuperPoint training. (a) A base detector architecture
is trained on synthetic images representing geometric shapes, whose interest points are
unambiguously detectable. (b) The base detector is trained with homographic adaptation
to generate pseudo-ground truth keypoints of available dataset images. (c) The final
architecture is trained to output the same keypoints and descriptors for corresponding
points in the image. Figure from [11].

challenged by labelling interest points, and subsequently detecting them. SuperPoint’s de-
rives both keypoint locations and description from direct training on the dataset, ensuring
the best detection for the goal of repeatability.

We now briefly explain the self-supervised training mechanism proposed in the paper,
and derive some key ideas on the capabilities of self-supervised learning in the context of
description and matching.
As illustrated in Figure 4.1, SuperPoint training is composed of three phases.
Firstly, the keypoint detection task is cast in a domain where labels can be easily ob-

tained. For this purpose, synthetic geometric shapes are created, and keypoint labels are
automatically assigned to angles, centres of ellipses and segment endpoints. A classifica-
tion network is used to predict the probability of a small region in the image with size 8 x
8 pixels to contain a keypoint, and in that case the pixel at which the potential keypoint
is found. Thus, the problem is cast as a 65-class classification, where the 65th class cor-
responds to no interest point, and the others all represent one pixel in the region. After
training in this first phase, the base network is able to detect a wide range of interest
points in the synthetic domain, but still falls behind of traditional methods on real world
images. Thus, a second phase of training is used as a domain adaptation step. The pro-
posed procedure is named homographic adaptation, and consists in refining the predictions
of the base network on a database image by averaging detected keypoints for a number of
random homographies of the same image. The so-obtained ground-truths are now stable
to a wide variety of transformations that are chosen to be as representative as possible
of real world scene transformation, and can therefore be used for a final joint training
of the SuperPoint network to output keypoints and their descriptors. In particular, the
D-dimensional descriptors are trained in a metric learning fashion, promoting descriptors
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similarity where these represent the same keypoint, and encouraging their separation for
different points.

The experimental results show a dominance of SuperPoint on other traditional descrip-
tors such as SIFT. This type of descriptor is employed in some current state-of-the-art
localization pipelines, such as HF-Net (cf. Section 4.6.1). However, as other learning
based methods, a drawback of the SuperPoint approach is that the network might not
generalize to unseen conditions. For this reason, the SIFT descriptor and its variations
are still widely used in literature, which motivates us to also adopt this type of traditional
representation.

Global descriptors

Global descriptors are particularly fit for retrieval tasks, for their lightweight nature and
ease of comparison. In such situation, one can attempt to make descriptors very “general”,
so that they work well on images regardless of their domain, or tie them to the specific
dataset by learning the best representation on that domain. The latter methods employ
CNNs trained with contrastive losses, which pull together positive samples and push apart
negative ones. The former methods, instead, are often built on local representations of
the image, so that despite the loss of local information when aggregating descriptors, the
whole image content weighs in the description.

Starting from the former methods, a first approach is called Bag-of-Visual-Words [40] and
its idea is to describe the image content through a fixed “vocabulary”, a partition of the
space of local descriptors usually obtained with K-means clustering on the union of all
local descriptors from the database. The whole image is then represented as histogram
of the occurrence of each word, and intuitively images with similar content will carry
similar global descriptions. However, this approach is quite simplistic, since visual words
can include quite a variety of descriptors, and we might still want to discriminate among
them.

A more fine grained description can be obtained by storing residuals within each visual
word, rather than simply the count of descriptors falling in that word. This approach
goes under the name of VLAD [17]. The VLAD representation is naturally more fine
grained than the Bag-of-Visual-Words one: if the local descriptor space is D-dimensional
and we choose a quantization of W words, the global descriptor is a WD dimensional
vector, whose components from wD to (w+ 1)D− 1 are given by the sum of residuals of
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descriptors falling in the w-th visual word from the centre of the word, that is

dG(I) =


∑N1

i=1 dL
i − c1
...∑NK

i=1 dL
i − cK

 .
The comparison of VLAD descriptors is usually performed by dot product. Therefore,
images which have opposite residuals contribute negatively to the measure of similarity.
As in the case of local descriptors, hand-crafted methods- for global description can be
greatly improved by deep learning. However, as mentioned above, the risk of relying
on deep learning is to fail generalizing to broader datasets rather than the training one.
For this reason, it has been proposed to maintain a structure similar to VLAD but with
learned parameters. In practice, the procedure to construct the VLAD descriptor is
not differentiable due to the assignment of each local descriptor to a visual word, which
makes it impossible to directly train a VLAD descriptor. Hence, [3] propose a layer
with a soft version of cluster assignment and design a full architecture to train NetVLAD
descriptors. Training on a contrastive loss with positive and negative examples, they
are able to exceed the performances of hand-crafted descriptors on datasets not seen at
training time, confirming the ability to generalize of the method.

4.3. Key steps of localization

As introduced in chapter 1, the localization pipeline is composed of several steps, sum-
marized in Figure 4.2.

Before localizing, the available dataset has to be processed to obtain a 3D reconstruc-
tion of the scene. After reconstruction, keypoints and descriptors are extracted from the
query image, usually with local features such as SIFT descriptors [24] (cf. 4.2). The
reconstructed point cloud is also enriched with local features from the images it was re-
constructed from, so to enable matching.
Localization proceeds with matching the query descriptors to database descriptors, fil-
tering the resulting correspondences and estimating a pose with a pose solver, inside a
robust estimation framework such as RANSAC [13] to prevent outliers from disrupting
the model.

We now see these phases in greater detail.
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Figure 4.2: Standard structure of an online visual localization pipeline. Having previously
reconstructed the scene, the query image is described, then matched to the point cloud.
Before pose estimation, matches are filtered to discard mismatches. The so obtained
correspondences are then used for pose estimation with a pose solver within a RANSAC
framework. Figure adapted from [32].

4.3.1. 3D reconstruction from database

The first step consists in reconstructing the database scene offline. A popular tool for this
is incremental Structure from Motion (SfM).
The standard pipeline for SfM starts with identifying overlapping images and their rela-
tive pose. To this end, images are matched with 2D-2D correspondences between SIFT
descriptors [24], which are subsequently tested for distinctiveness. Geometric verification
with RANSAC further discards outliers and outputs a relative pose between the two im-
ages. Once the relationships among all pairs of images have been summarized in a scene
graph, with images as nodes and verified overlaps as edges, incremental reconstruction of
the scene is performed following the graph edges, and absolute poses of all images are
found. To initiate the process, two initial images have to be carefully selected to generate
the first partial reconstruction of the scene via triangulation. Subsequently, a new im-
age from the neighbor nodes of the starting images can be registered (an absolute pose
is estimated) and additional points not yet in the 3D point cloud can be added if they
appear in at least two images from the previously visited ones. Bundle adjustment, a pro-
cedure for readjusting the estimated absolute poses and 3D point positions by minimizing
reprojection errors, is also needed after triangulation and pose estimation to ensure the
reconstruction does not accumulate errors.
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Throughout this work, we will assume 3D SfM models are reconstructed with the pipeline
of [39]. Such work is based on the standard pipeline, with additional improvements to
enhance the reconstruction effectiveness while limiting the computational effort.

4.3.2. Match formation and filtering

The matching phase takes as inputs collections of keypoints and descriptors for the query
image and the database. Let Q,F be the sets of keypoints and descriptors for the query
image, and X ,P points in the point cloud and the associated descriptors. Note that every
point could have multiple associated descriptors.
The goal of matching is to find a subsetM⊂ Q×X representing putative matches to be
tested in RANSAC. It is clearly prohibitive to investigate all possible matches, since the
average number of descriptors in a query is over 103, and for the point cloud it is commonly
in the order of 105 − 106. Testing all pairs would be impractical for the sampling scheme
of RANSAC.
It is worth observing that there can be no more than |Q| correct matches, but there are
usually fewer. This is either due to backgound noise in the keypoint detection phase, the
disappearance of the keypoint from view or the disappearance of the interest point in the
real 3D scene. In fact, when localizing with a long time span, the scene is not static.
The SIFT descriptor [24] is designed to guarantee some invariance to visual variations, and
ideally to be distinctive, that is close to similar keypoints and far from others. Similarly,
CNN-based descriptors such as SuperPoint [11] learn an embedding with metric learning,
so that by construction corresponding points lie close to each other, and far from unrelated
points. Hence, standard matching schemes establish corresponding points by finding the
nearest neighbor in descriptor space.

Once correspondences have been formed, a pruning step usually follows to discard matches
that are most likely outliers. The authors of the SIFT descriptor themselves propose a
widely used strategy, the ratio test [24], specifically designed to single out matches that
were formed by chance. The test relies on the distinctiveness of the descriptors, and only
accepts a match if there is a sufficient gap between the distances d1, d2 of the source
descriptor with its two nearest neighbors from the set of target descriptors to match to.
That is, we will only retain a match if

∥d1∥
∥d2∥

< threshold (4.1)

where the threshold is commonly fixed between 0.7 and 0.9 depending on whether a more
or less aggressive filtering is preferred.
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It is interesting to reflect on the direction of matching. Indeed, one could assign to
every image descriptor its nearest point cloud descriptor (2D-3D matching), assign an
image descriptor to the point cloud descriptors and retain the top match for every query
descriptor (3D-2D matching), or check that 2D and 3D descriptors are mutually near-
est neighbors. A few studies were made to compare the 2D-3D versus 3D-2D matching
approaches, reaching conflicting conclusions.

The work of [23] argues the most convenient direction of search is from 3D to 2D, namely
from Point to Feature (P2F), since exploiting the richer information of the dataset can
help reduce the computation overhead of nearest neighbor search for the whole point
cloud. For instance, knowing how often a point is observed in the dataset naturally yields
a probability distribution over the 3D descriptors for prioritizing the search. Moreover,
once valid matches have been found, it is likely to find more in the nearby areas, which also
restricts the number of matches to be searched. Thus, they assign to each point a visibility
score based on the number of times it was observed in the database. The 3D-2D search
starts from a selection of the most visible points, called seed points from different areas in
the model. Whenever a match is found, the nearby points receive a higher priority, and are
visited soon. The search is terminated upon finding enough correspondences. Given that
only few mismatches will be accepted by chance (one in 500 on average, as reported by
the authors), the prioritization scheme should ensure the algorithm can quickly terminate
once it finds the right location in the 3D structure.

Conversely, [36] report the superiority of the direct approach (2D-3D) both in compu-
tational terms and for the discriminative quality of the ratio test. Regarding the first
observation, they note that the search has a cost of O(|F| log|P|). This is extremely
competitive with respect to the opposite search since usually there are far more points in
the point cloud than in the query. As for the second observation, they report that the
ratio test is more effective when applied to prune ambiguities in the 3D domain, which
are more frequent and thus tend to generate more outliers. For these reasons, the 2D-3D
approach is usually preferred as first instance for the search, although a more refined ap-
proach can also perform back matching on some selected points (cf. Section 4.3.2). Yet,
the direct matching approach remains too computationally expensive even in the 2D-3D
case for most applications, which demands for a clever pruning of the query descriptors
to search from. Indeed, [36] note that fewer than 10% of matches has a corresponding
point in the point cloud. We now explore some solutions to this issue.
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Vocabulary-based priority search (VPS)

With the aim of selecting the most likely matchable points, [33, 36] propose to quantize
the space of descriptors in a Bag of Words fashion (cf. Section 4.2) and use the size of
resulting visual words as a priority scheme for the search.

(a) Query image and
keypoints

(b) 3D reconstruction of the scene
and corresponding features

(c) Quantization and prioritization

Figure 4.3: Example of prioritization adopted in the VPS approach. All images are from
[32].

First the query features are assigned to their visual words by finding the nearest centre.
The assignments are then sorted from smallest to largest visual word (in terms of number
of database descriptors) and an attempt to match the query features is made by searching
the closest neighbor among database features within the visual word, with a subsequent
ratio test. The search stops when a sufficient number of descriptors is found, which makes
the prioritization useful for a quicker search. Such number is experimentally tuned at 100
correspondences.
Consider, for instance, Figure 4.3. The stars correspond to features in the query image,
while the points are database features. The light blue feature is preferred to the red
one, as there are fewer descriptors in its search space, and it is more likely that the ratio
test will not reject the correspondence. This is also a speed-up in the nearest neighbor
search, as fewer descriptors have to be searched to find the nearest neighbor. However,
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the procedure might bring inaccuracies due to quantization errors, namely the assignment
of true neighbors to different words with subsequent loss of the correspondence.

Active search

To overcome the quantization artifacts of the previous method, [34] have observed that a
hierarchical quantization would often allow to recover lost matches. The proposed way to
exploit this fact without undermining the computational advantage of VPS is by triggering
a 3D-2D search on a coarser level in the surroundings of a verified match. The method is
known as active search(AS).

The algorithm of active search naturally integrates to the VPS pipeline. The rationale
for the method is that whenever finding a valid match, there will likely be more in the
surroundings. Therefore, a fixed neighborhood of N3D 3D points could be prioritized for
an inverse search –namely in the 3D-2D direction – to speed-up the matching, as well
as recovering matches lost due to quantization and structural ambiguities across different
locations of the 3D model.
The prioritization scheme of VPS is easily adapted to this strategy, and the most im-
portant design choice is whether to add the 3D-2D search immediately after verifying a
match (direct prioritization) or by proceeding according to the cost of search, just as in
the 2D-3D prioritization choice (combined prioritization). The search is concluded af-
ter finding N correspondences, just as in VPS. Once the matches are formed, a pose is
estimated with a standard pose solver inside a RANSAC scheme.

These approaches are particularly efficient and thus widely used. However, they have
been shown [37] to perform poorly on challenging long-term scenarios, such as those rich
in vegetation. In those situations, it is not advisable to terminate the search of matches
early as these methods do, since a high probability of mismatches combined with overall
match scarcity may cause failure of pose estimation.

4.3.3. Pose estimation and verification

Having discussed the creation and filtering of matches, we explore how these are used to
infer the camera pose via geometric pose solving within a robust fitting framework.
Let us specialize the methods introduced in the domain background (cf. Section 2.5.2,
2.6) to the pose estimation problem.
The standard fitting technique is the P3P algorithm used within the RANSAC framework,
as described in the work of [13]. 3 point correspondences are required as minimal sample
size to find a model (in case the configuration offers multiple solutions, all can be tested
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looking for the largest consensus), and subsequently consensus is evaluated by counting
how many projected points fall within error ellipses of the matching points in the image.
Such ellipses depend on how much the fitted model is sensitive to fixed perturbation in
the three image points.
Since a minimal sample size of 3 is used, we can compute with equation 2.6 a reasonable
number of iterations for the algorithm. For example, if we choose α = 0.99, an outlier
probability of 0.95% has Niter ≈ 37000, while if the probability grows to 0.97%, iterations
increase to Niter ≈ 170600.

Reducing minimal sample set size

The major drawback of RANSAC is the high computational cost of fitting and evaluating
thousands of models. Since the number of models to try to reach a sufficient confidence
on the chosen model has super-exponential growth in the minimum sample size, several
efforts have been directed towards reducing this size. It is possible, for example, to reduce
the number of required correspondences by introducing constraints on the pose.
One notable example is when the gravity direction is known in camera coordinates, and
can be solved with 2 points correspondences as proven in [21]. Knowing the gravity
direction means removing two degrees of freedom in the 6-DoF pose of calibrated cameras,
specifically from the rotation matrix.
Intuitively, if the gravity direction is known, there is a possibility to measure the angle
between the known vertical direction and two of the axes of the camera reference system –
the third axis follows from the other two – which only leaves ambiguity of a 1-dimensional
rotation around the vertical direction. In practice, the authors derive two independent
polynomial equations of degree two for every point correspondence, thus requiring exactly
two correspondences to compute a pose.

Designing a strategy for sampling models

An alternative strategy to improve the speed in RANSAC, presented in [8], builds on the
observation that RANSAC sampling strategy is “blind” to any prioritization in the dataset,
since samples are selected randomly. However, the data generation process often offers a
proxy of the quality q(·) of data, which can be used to speed-up the fitting. In the case
of absolute pose estimation, the ratio between descriptor distance with first and second
nearest neighbor has been considered as prioritization strategy, under the assumption that
less ambiguous matches are more likely to be correct. The authors propose a Progressive
Sample Consensus (PROSAC) algorithm.
PROSAC is designed to yield not-worse-than-RANSAC performances in the worst case,
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when data do not have a specific ordering and are independent of the quality function q(·),
while terminating much earlier in favorable cases. To achieve this, correspondences are
sampled from small, high quality sets first, and their size is gradually increased to include
the next correspondence in the order dictated by match quality, until the termination
condition is reached.
Before sampling, correspondences have to be sorted in descending order with respect to
the quality function, namely with respect to the following relation:

i < j =⇒ q(mi) ≥ q(mj)

for every two correspondences mi,mj. We denote the resulting sequence with m(1), ...,m(N).
Consider sets Sn = {m(1), ...,m(n)}. One crucial assumption here is monotonicity with
respect to q(·) of the probability of a match to be an outlier p, i.e.

q(mi) ≥ q(mj) =⇒ p(mi) ≤ p(mj).

Under this assumption, sampling from the set Sn maximizes the probability to pick good
matches on a subset of data of size n. In the worst case, when probabilities are all equal,
the sampling strategy will not be worse than another random strategy.
The algorithm starts with the smallest sampling set Sm and alternates sampling from the
current set and adding one more correspondence to the set, until termination.
To define how many samples should be extracted from each set Sn, the worst-case scenario
is considered. In fact, to achieve RANSAC-like performances when the quality function
is uninformative, the amount of sampled matches of each increasing set should be equal
to the average number of samples belonging to sets of the same dimension when sampled
from the largest set SN .
This amount is computed through a growth function. To find the growth function, we
first set a fixed number of total samples TN . The authors propose TN = 200000. The
average number of samples within these TN containing points from Sn only is then

Tn =

(
n

m

)
(
N

m

)TN
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with m = 3 the sample size. From this relation, simple computations show the recursive
relation between Tn+1 and Tn

Tn+1 =
n+ 1

n+ 1−m
Tn.

The sequence {T ′
1, ..., T

′
N} is obtained from T ′

n+1 = T ′
n + ⌈Tn+1 − Tn⌉ , T ′

m = 1, and
finally the growth function can be defined as

g(k) = min{n : T ′
n > k}.

In the comparison with RANSAC, PROSAC proves up to 100 times faster than RANSAC,
making it a preferable strategy.

The idea of sampling with prioritization is also at the heart of the semantic consistency
method of [44]. In their work, the quality of every match is used as a bias for sampling
points. This procedure relies on the validity of the quality function even more than
PROSAC and is a useful tool to accelerate the correct model among very large collections
of matches.

4.4. Large-scale visual localization

The localization pipelines outlined above are very effective and efficient for relatively small
models, where ambiguities are easy to filter out. However, as the model size increases,
especially in urban scenarios, it is more and more likely to encounter similar structures,
which in the best case make it difficult to match individual features and in the worst case
can cause localization to fail completely.
To tackle this challenging situation, literature has focused on exploring an increasing
number of matches, up to multiple matching hypotheses, in an efficient way. We now
explore three such methods in detail.

4.4.1. Matching hyperpoints

Aiming at urban settings with a large amount of repeated structures, the authors of [35]
propose to go beyond traditional match filtering with a strategy based on three key points:

1. An extremely fine visual vocabulary is created to store all point descriptors in the
database.

2. Lowe’s ratio test is not performed to validate one-to-one matches between query
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and database features. Instead, several matching database descriptors from the
same word as the query descriptor are kept (one-to-many matching strategy). The
collection of these descriptors is called a hyperpoint.

3. Consistent hypotheses are formed out of the possible configurations dictated by
hyperpoints. Each such hypothesis votes for an image in the database, and based
on the largest amount of votes a few final inlier sets are selected for robust pose
estimation.

Figure 4.4: An illustration of the matching procedure with hyperpoints. At first, descrip-
tors are extracted from the query image, and assigned to visual words from a fine visual
vocabulary. All database descriptors that belong in the same words as the query descrip-
tors are potential matching points for that feature. Hyperpoints are subsequently formed
by a subset of such points, by enforcing no co-visibility among the remaining points. For
example, we can see two light blue points were removed since they were observed by the
same camera. Finally, cameras are ranked in terms of observed matches in the hyper-
points, and a pose is estimated starting from the top ranked camera (highlighted in black
in the picture). Figure from [35].

Let us now define the data representation and subsequently examine the detailed strategy,
whose steps are illustrated in Figure 4.4.
The inputs are the query keypoints and descriptors, for example classic 128-dimensional
SIFT keypoint descriptors, and a bipartite graph encoding 3D structure and visibility
information of the database. With a slight abuse of notation, we will refer to image
keypoints and descriptors simply as features in the feature set F ⊂ RD, and we will
address 3D points and their descriptors simply as points, whose set is P ⊂ R3. The
resulting visibility graph, which connects 3D points X ∈ P and database images c ∈ C,
has edges in the set E for every pair of point-camera such that the point was detected in
the camera. The graph is then G = (P ∪ C, E).
The goal is to find a set of matchesM = {{f, p} | f ∈ F , p ∈ P} that yields a good pose
estimate in presence of large-scale ambiguities.
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Firstly, the fine vocabulary structure is chosen to compress descriptor information while
keeping discriminative ability. Compared to the 100k typical vocabulary size in [34],
the 16M word vocabulary naturally captures much more fine-grained distinctions among
descriptors, which make it superfluous to apply Lowe’s ratio test on a second neighbor,
since either the second neighbor is extremely close to the first – in which case the match
would likely be rejected – or the second neighbor is assigned to a different visual word and
Lowe’s test is not performed at all. In light of this fact, it is of paramount importance
to design a strategy to choose among possible ambiguous matches from the same visual
word.
The authors observe that, although at local level it may not be clear which descriptor
is best to choose, uncertainty is easily resolved at larger scale, namely when considering
matches in respect to each other. Indeed, it is unlikely to find the very same collections of
matches with similar geometric layout in unrelated places, therefore a voting procedure
will let the “right” location emerge.
To better explain the concept let us consider the situation depicted in Figure 4.4. The red
2D keypoint falls in a visual word including two 3D points far away from each other. Their
descriptors are quite similar, so that a strict ratio test would likely reject the assignment
between the query and 3D red points. However, if an oracle provided information about
the rough location of the picture – say we were told to restrict our search around the
camera highlighted in black, an information which in practice is provided by a voting-
based image retrieval mechanism – there would be no ambiguity on the right match to
be chosen. The red dot in the upper part of the picture would be the unique match
available, having discarded the one at the bottom. Vice versa, when considering the light
blue feature and its corresponding dots, we can observe there is ambiguity even at larger
scale. Imagine the right location was in the bottom part of the picture, where two light
blue features appear next to each other –for example, this might be the case of a repeated
structure. In such situation, knowing about other valid matches would not help choose
among the two putative matches, and therefore we prefer to discard the uncertain matches
all together.
In other words, it is important to evaluate mutually exclusive hypotheses. Indeed, only
those matches which give a unique correspondence when limited to a smaller region of
the 3D model are informative. These suitable matches are then defined as locally unique.
The novelty with respect to the previous methods is that the match needs not be globally
unique, allowing for much more information to be evaluated for pose estimation. In
practice, authors link the definition of locally unique match (f, p) to the property of not
having any other putative match (f, p′) with p′ co-visible with p. A point p is co-visible
with p′ if there exists a camera c such that both {p, c} and {p′, c} are in the visibility
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graph G.
All locally unique points matched to a feature f are gathered in a hyperpoint H(f).
Considering the collection of matches {(f,H(f))}, we would then wish to generate all
consistent hypotheses extracting at most one point from every hyperpoint, and rank these
hypotheses so to obtain a final inlier set to estimate a pose. This problem is equivalent to
retrieving the database image c which observes most points belonging to some hyperpoint.
It can efficiently be found by letting every point in all hyperpoints vote for a camera and
simply choosing the camera with highest vote count.
Finally, as it is customary in image retrieval, top-N retrieved images are evaluated with
RANSAC (whose sampling set may be enriched with further matches found on nearby
database images). The final estimate is selected by re-ranking these N images, based on
their effective inlier count – a measure of both the number of inliers and how uniformly
these are distributed across the image, so to avoid small clusters of very close matches to
disrupt the solution.

4.4.2. Localization by scene registration

Another tractable strategy to handle ambiguities [42], not involving image retrieval, pro-
poses to relax the ratio test [24]. The ratio threshold used by the original paper is quite
low (0.7), hence filtering a large portion of ambiguities. When increasing the threshold,
more valid matches are recovered, but many more wrong matches are also kept. The
focus of the paper is thus to devise a pose estimation technique which can explore the
space of models faster than RANSAC with very high percentage of outliers. The authors
propose an efficient framework based on registration of the query camera to the 3D scene.
Instead of estimating a pose through sample consensus, the registration approach consists
in finding a transformation of the camera coordinates that aligns the camera to the 3D
structure.
All keypoints in an image come with some noise, for example due to imprecise keypoint
detection. That is why, when computing the consensus of a certain model, it is not re-
quired that 3D points project exactly on the image point, but they should be found in a
small region around it, which we will call Ri.
The perspective can be switched from counting inliers in the 2D image plane, to counting
them in the 3D space. In this case, the error region R̃i is a cone, called error cone, with
vertex on the camera centre and whose section by the image plane is the region Ri. Inliers
are 3D points Xi falling in the error cone R̃i of their matched 2D point.
With this novel point of view, the core idea put forward by the authors is to maximize in
the camera pose the number of 3D inliers falling into their respective error cones.
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Figure 4.5 depicts a sketch of the registration procedure. In the figure, the camera pose
initialization is not optimal, as some points are not registered within their cones. There-
fore, a roto-translation is applied to the reference system to maximize the number of
points in the cones, and the optimal transformation yields the pose estimate. Note that
in the picture the camera reference has been kept constant and the 3D structure was
moved.

Figure 4.5: An illustration of the registration procedure of [42]. On the left, a wrong pose
causes most inliers to fall outside of the error cones determined by the pose. However,
by optimizing the relative positioning of the point cloud and camera, a larger number of
points can be registered in the cones, as it is seen on the right. Figure from [42].

Given the complexity of this problem, some crucial assumptions are introduced. Firstly,
it is required that gravity direction is known in camera coordinates. Secondly, a rough
prior on the camera height is needed.
When this information is given, the pose to be estimated becomes simpler: thanks to
the known gravity direction, and without loss of generality, we can assume the camera y
axis is registered to the vertical direction. If the camera centre is fixed, the pose will be
specified up to the camera rotation on a horizontal plane, described by a 2 x 2 rotation
matrix. The translation furthermore adds three unknowns, yet with the constraint that
the height should only be sought in an interval [ hmin, hmax].
In formulas, we are required to find

R =

[
R̃2×2 0

0 1

]
, t =

txty
h


with h ∈ [ hmin, hmax].
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We now imagine moving the 3D point cloud instead of the camera, of course with the same
degrees of freedom as the previous situation. With an appropriate change of reference
system, it is possible to prove the two movements are equivalent. Although the optimiza-
tion procedure is based on the theory of KKT points (cf. [12]), which offer a framework
for finding argmaxR̃,t|I|, I being the set of inliers, an interesting further pre-processing
step is used to reduce the number of correspondences to search from. Such procedure is
inspiring for further methods which we will explore in the following sections. We briefly
describe it here.
The algorithm, denominated Fast Outlier Rejection, aims at discarding all correspon-
dences which would constrain the model to have too few inliers. The problem is again
cast as a registration task, although in this filtering step the geometry constraints can be
relaxed to speed up the search of obvious outliers.

Figure 4.6: The error cone of a 2D keypoint intersected by the camera height boundaries
can be projected onto the ground plane. A subsequent approximation to a quadrilateral
region makes it easy to verify the inclusion of 3D point projections within the approximate
area. Figure from [42].

The approximated registration procedure, also illustrated in Figure 4.6, considers pro-
jections onto the ground plane of the error cones and their respective points. Indeed,
let us assume as before the camera pose is fixed and the 3D point cloud needs to be
registered to the camera. Each error cone corresponding to a 2D point will intersect the
planes z = hmin and z = hmax in a conic section (ignoring the degenerate cases). Overall,
projecting this region onto the ground plane yields a composite figure, which can be well
approximated by a quadrilateral Q. Thus, we may project also 3D points onto the ground
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and transform the problem into an easier 2D-2D registration procedure.
The final outlier filtering is carried out by considering the correspondences one by one,
and, in the hypothesis that the chosen correspondence is an inlier for the relaxed model,
quickly assessing the maximum number of other inliers – namely points that also fall in
their respective quadrilaterals Qi. If such number is smaller than a threshold, the corre-
spondence may be safely discarded.
The computational complexity of the algorithm is driven by the outlier removal step. The
cost of performing a check on one match is found to be O(n log n), thereby giving a total
cost of O(n2 log n). The subsequent optimization step goes as O(n4

filtered), but since the
number of filtered points is much lower than n the impact of the latter slower computation
is marginal.

4.4.3. Camera pose voting

Starting from the geometric setup of the city-scale localization procedure in the previ-
ous paragraph, and borrowing the same assumptions of knowing gravity direction and a
boundary for camera height, the authors of [49] propose an even faster pose estimation
algorithm, allowing to handle 1-to-many matches.
While in the previous approach the algorithm had a complexity O(n2 log n), with n the
number of matches, the voting approach allows to achieve a linear runtime in n, at cost
of more memory to store votes for every camera pose hypothesis.
As seen in the city-scale localization paper (cf. Section 4.4.2), when the gravity direction
is known, only a 2D rotation – or one degree of freedom – and a 3D translation need to
be estimated. It is also possible to remove the last degree of freedom pertaining to the
rotation by exhaustive search on a 1-dimensional parameter space, spanning the rotation
angle on a 2D plane. Error cones can thus be produced, and, by adding a constraint
on the camera height, a conic section – more precisely, the projection of a continuous
range of conic sections onto the ground – defines if the 3D correspondence is an inlier for
the model. As a further step, the camera pose voting approach proposes to substitute
the optimization step with a voting approach. Therefore, every match casts a vote for a
limited set of camera poses it is compatible with, and the pose with the most votes yields
a group of inliers for the final estimation.
To better understand the voting procedure, it is useful to reformulate the outlier rejection
step of City-Scale Localization (cf. Section 4.4.2) with a further switch of perspective,
moving uncertainty from the 3D points location to the camera pose itself. Indeed, any
match will constrain the pose just as the pose restricts the location of a 3D point to an
error cone in space. Interestingly, when passing from points to pose, the camera location
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Figure 4.7: An illustration of voting shapes. On the left: the camera pose hypothesis
generates error cones whose projections are then used to define error regions where we
expect to find matches. On the right: the same error region is transferred to the camera
centre and orientation, and votes are accumulated from all matches, defining an optimal
configuration. Figure from [49].

can be shown to lie in a region with the same shape as the projected error region of a 3D
point from Section 4.4.2. The necessary assumptions here are that both references are
gravity aligned and the camera orientation has been temporarily fixed. The new regions
are called voting shapes. Building on this observation, it is easy to extend the reasoning
to one more degree of freedom induced by the rotation: the voting shapes are merged to
form an annulus, which can also be simplified if visibility assumptions are added. The
situation is illustrated in Figure 4.7. In particular, voting shapes can be observed on the
right side as the juxtaposition of voting shapes pertaining to fixed camera poses

The computation of the voting shapes is carried out for all matches, and for simplicity the
space is quantized into fixed size bins. Every voting shape covering a bin casts a vote for it,
so that eventually the regions with the most votes can be selected. For example, in Figure
4.7 all three depicted matches cast a vote for the yellow region, which is eventually chosen
as the most likely camera location. This, in turn, defines inliers which are eventually used
for the final pose computation.

An interesting observation is that this voting mechanism can handle a multi-modal dis-
tribution, and is thus helpful in case of repeated structures. However, this approach
implicitly assumes a large number of inliers can be found, so that the votes cast for the
model stand out from the background noise. In case of match scarcity, this assumption
is harder to verify, and thus the method performs worse.

Overall, camera pose voting and City-Scale Localization (cf. Section 4.4.2) set the theo-
retical framework for the semantic consistency score of [44]. We will deal with it in detail
in Section 4.6.2. We first need to introduce a further field of research, namely the range



4| Related work 47

of methods specific to the long-term localization problem.

4.5. Visual localization with semantics

Several localization methods have tried to take advantage of additional information that
is orthogonal to appearance to improve the performances of localization. Semantics are
particularly interesting in this sense, because they are relatively easy to obtain and robust.
In the following, we explore relevant solutions proposed in the visual localization literature
with semantics.

4.5.1. Pose estimate with semantics only

To demonstrate the richness of the semantic information when performing camera pose
estimation, [43] explore the localization performance that can be obtained when only us-
ing semantic information to solve for the camera matrix P.
Their approach consists in constructing a loss function in P, that is a measure of the
difference of the semantic content of the query image and a reference 3D point cloud re-
constructed via a standard SfM pipeline and enriched with semantic labels. Semantics are
in both cases obtained by using a segmentation CNN previously trained on the Cityscapes
dataset [9]. No descriptors are necessary in this method, besides when performing SfM.
The loss function is constructed by using the projection through the unknown value of
P of two types of primitives – 3D points and 3D curves separating two different seman-
tic classes. Ideally, the former should provide high level information, allowing to exclude
similarity among places with very different semantic content. The latter provide more dis-
criminatory information, as semantic labels are not considered just on standalone points,
but in relation to other points with the same label and neighboring classes.
Consequently, the loss function is composed of two parts: a weighted average of the dis-
tance dLi

(PXi) of the projection PXi on the query of a point Xi to the closest point
sharing the semantic label Li, and the integral of the distance dL1

iL
2
i
(x(s)) along the pro-

jection of a curve onto the query, PCi, with the closest curve separating the same labels
L1
i and L2

i . One further refinement consists in truncating both distances at a maximum
value, to avoid outliers when an object is missing in the query due, for instance, to occlu-
sion.
Finally, the loss is computed as the following function of P:

E(P ) =
N∑
i=1

λL1
iL

2
i
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li

∫
PCi

ηL1
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(x(s)ds+
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where λL1
iL

2
i
, γLi

are weights that allow different treatment of different classes, li is the
length of the projected curve Ci, and MLI

the amount of points with label Li in the query.
The distances dLi, ηL1

iL
2
i

are the truncated Euclidean distances.
Rather than minimizing this highly non-convex function directly, the chosen approach is
to perform marginal optimization for the rotation parameters first, followed by the camera
centre. Overall, the optimization strategy is quite scene-specific, and the choice of curves
to project onto the query is also very much connected to the content of the scene. Hence,
the procedure is not very well suited to automatization. For this reason, as well as a
high variability in the accuracy of the resulting pose, the approach was later only used as
theoretical justification for including semantic information in the localization pipeline.

Several methods, conversely, make use of semantics as an additional step, to enhance
localization capabilities. These may be divided according to the stage in the localization
pipeline where semantics are used: either in the description phase, with the goal to find a
more robust yet discriminative embedding for descriptors, or in the match outlier filtering
phase. In the latter case, semantics are used to enable successful termination of RANSAC
even in presence of significant amounts of match outliers, or as a strategy to re-rank top
retrieved images when performing coarse-to-fine localization.

4.5.2. Keypoint description with semantics

One first example of usage of semantics in the description phase may be found in the work
of [1], whose method became known as semanticSIFT. The authors observe that while de-
scriptors per-se are prone to ambiguity of appearance, matching quality may be improved
by also considering the semantic content of the described patch. For example, a patch
including elements of {sea, sky} would not be matched to a patch that is visually similar
but contains pixels from the classes {sky, road, vegetation}, as it would be immediately
clear that the two patches do not represent the same place.
To exploit the additional semantic cues, the authors adopt a bag-of-visual-word approach
(cf. Section 4.2), and augment the SIFT-based vocabulary to as many copies of it, as there
are possible combinations of semantic content in the patch (for instance {{sky}, {road},
{vegetation}, {sky, road}, {sky, vegetation}, {road, vegetation}, {sky, road, vegetation},
{unknown}, {sky, unknown}, ...}).
An incoming descriptor will only be matched to words which have a similar semantic
content, decreasing the amount of false matches that are formed in the first place.
Although simple, this idea is very powerful, because it automatically enforces semantic
consistency before matches are created. We will adopt a similar approach in our method,
since we wish to increase the quality of matches to fight match scarcity.
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One further interesting possibility when adopting a mixed visual and semantic vocabulary
is to ignore the visual words that have uninteresting semantic content, as for example the
class {animal}. As we will see, it will not be possible to do any such thing in our case,
since segmentation will not be semantic. However, it would be interesting to find whether
some classes are correlated to transitory objects, in which case they should rather be
discarded.

4.6. Robust long-term visual localization

As anticipated in the problem formulation (cf. Section 3), one of the most challenging
tasks of long-term visual localization is matching descriptors across very different visual
conditions, as appearance is not robust in this case. The negative impact of contaminated
matches on pose estimation is both in terms of computational effort and probability to
output a correct pose. Indeed, match scarcity entails the correct model hardly achieves
higher consensus than randomly sampled models. Hence, two strategies have been studied
to improve the quality of matches: restricting the search space for descriptors, or relaxing
matching criteria and subsequently pruning outliers in an additional filtering step. While
in this work we will mostly be concerned with the latter option, it is worth to consider
some examples from the former, too. We now illustrate some notable literature from both
categories.

4.6.1. Coarse-to-fine localization

Restricting the search space of descriptors during matching can be useful for compu-
tational savings, as well as to reduce the amount of correct matches not found due to
ambiguity. Indeed, it is often the case that large-scale reconstructions include similar
keypoints for far-away places, which are usually not assigned to a match since there is
high probability to accept gross mismatches. When restricting the search to a smaller
portion of the point cloud, the probability of collisions is much lower, hence more correct
matches can be retrieved.
Many of the aforementioned localization tools count on visibility information to select the
most promising places for the search. Among these, P2F [23] matches from 3D to 2D and
uses co-visibility with correct matches to prioritize the search (cf. Section 4.3.2), Active
Search [34] filters out points that are further than two edges from the trigger point in
the visibility graph when matching from 3D to 2D (cf. Section 4.3.2), and Hyperpoints
[35] casts the search of the maximum number of co-visible matches as an image retrieval
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problem.
Finally, HF-Net [31] combines the power of NetVLAD [3] and SuperPoint [11] in a coarse-
to-fine retrieval approach to obtain state-of-the-art performances in visual localization.
The pipeline first retrieves with NetVLAD database images similar to the query, and
then matches to the selected places only through SuperPoint descriptors. Although this
method achieves outstanding speed and accuracy, it heavily relies on learning and is
therefore data-intensive. In our work we will rather focus on improving the robustness of
non-learned localization methods to long-term visual variations.

4.6.2. Outlier filtering strategies

To address the scenario of relaxed matching criteria, namely a Lowe’s ratio test with a
rather loose tolerance (for example fixing the threshold to 0.9), both methods for deter-
ministic and stochastic outlier filtering have been extensively studied.
The former take a hard decision on removing outliers before robust pose estimation, while
the latter use a measure of the quality of matches to prioritize some over the others during
pose estimation.
Among deterministic filtering, we may find simple semantic consistency [22]. Matches
whose points do not have the same semantic label, or are labelled with transitory classes,
are discarded.
Conversely, when using a probabilistic approach one may penalize sampling of poor-quality
matches within model estimates, which falls into deterministic filtering if the sampling
probabilities are set to zero. In the following, we explore some interesting methods related
to this approach.

Geometric-semantic match consistency

The probabilistic outlier filter by [44] proposes to incorporate global information from
the semantics of the point cloud into the sampling probabilities of each match, so to
promote the sampling of semantically consistent matches and speed up the convergence
of RANSAC to the right solution. The paper borrows the set up of [49] (cf. Section 4.4.3),
with known gravity direction and camera height. Additionally, rather than considering
error shapes for each match, they employ an exact geometry, since the constrained pose
is used for computing the score and not for direct inference on the pose.

To assess the global semantic consistency, 3D points need to be projected onto the image
plane through some pose. Thanks to simplifying assumptions of known gravity direction
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and camera height, the authors show how to lock all but one degree of freedom in the pose
with the information of an individual match. The remaining uncertainty is the location
of the camera centre on a circle of height z0, with known orientation. This set of poses
can be easily explored through discretization.
The evaluation is made possible by the constraint of poses to a bounded, one-dimensional
parametrization thanks to the addition of simplifying assumptions of known gravity di-
rection and camera height. We now briefly describe the reasoning to obtain these poses.

Any rotation in 3D spaces can be represented by three elemental rotations, i.e. rotations
around some axis. In the GSMC derivation, the known gravity direction locks two of the
three degrees of freedom of the camera rotation matrix R, since it defines the elemental
rotation around two coordinate axes, only leaving ambiguity on the horizontal rotation (cf.
Figure 4.8a). Moreover, the match itself, together with the gravity direction constrains the
camera centre to lie on a cone with opening angle θ as measured between the ray through
the considered image point and camera centre, and gravity (cf. Figure 4.8b). When the
camera height is also known, the cone is reduced to a circle, in red in the figure. Finally,
the last degree of freedom of the camera rotation is locked by imposing that the 3D point
projects onto the 2D image point. In summary, the poses to be spanned are those around
a specific circle, which can be easily parametrized through an angle ϕ ∈ [0, 360◦) and
explored in discrete steps.
Once a finite number of poses has been selected for exploration, the set of 3D visible

points from the putative camera centres is projected onto the image plane through each
pose. Note not all points are projected, as this might introduce several false detections.
Instead, points are filtered both through their distance from the 3D matched point and
the consistency with database information of the direction and distance of observation
from the putative camera centre. The final step consists in verifying which points project
onto pixels that share their semantic label. These are defined semantic inliers, whose set
we will call Isi ⊂ X . The score associated to a match is computed as the largest semantic
inlier count among spanned poses, that is

si = max
ϕ
|Isi (ϕ)|.

The paper shows improved localization performances across many scenarios and datasets.
The semantic score is quite rich in information, as it carries an estimate of the pose for
every match, and yet does not appear to be exploited to the fullest, being employed as
weak signal during pose estimation. One possible reason for this is the little discrim-
inative ability of the segmentations, which only use few semantic classes as available
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(a)

(b)

Figure 4.8: Illustration of the geometry constraints induced by a match and by the known
camera height and gravity. Figure (a) shows the constraints imposed on rotation of the
camera axes by the known gravity direction. In the image, the angles between xcam and
the vertical direction, as well as ycam and the vertical direction are measured and hence
fixed. The remaining degree of freedom is a rotation around the vertical axis. Figure (b)
instead depicts the set of possible camera centres C, laying on a cone whose vertex is Xi.
The angle θ as measured between g and the ray of the image point xi determines the cone
opening angle. The known camera height further reduces the possible poses to a circle (in
red). This can be parametrized through the angle ϕ. For every camera centre hypothesis,
the camera orientation is also fully determined. This is because of the considerations of
(a) and since the position of xi in the image plane has to align to the line between C and
Xi. In red we show an example of possible camera orientation.
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in off-the-shelf semantic segmentation networks, and these are not explicitly trained for
robustness to long-term appearance changes. Such qualities can be achieved with an ap-
propriate training procedure, which uses 2D-2D correspondences across different seasons
to enforce consistent behavior in various scenarios. We now explore how to obtain such
correspondences, and later the training procedure for obtaining cross-seasonal robustness
in semantic consistency.

Robust semantic segmentation across seasons

To enforce robustness of semantic segmentation across various visual conditions, it is
necessary to have ground truth information on the corresponding keypoints in different
scenarios. Such information can be obtained with minimum supervision, according to
[27].

The paper uses the CMU-Seasons [4] and Oxford RobotCar [25] datasets with their dif-
ferent traversals (seasonal for CMU, day-night and seasonal for RobotCar) to generate
dense point clouds for every traversal. Then, the point clouds are aligned to common
world coordinates, and they proceed to search point correspondences among two point
clouds by selecting mutual nearest neighbor pairs of points. Correspondences are stored
for image pairs.
The approach is largely independent of the appearance of points, and can therefore achieve
better invariance to long-term changes. A direct application explored in the paper is the
training of a segmentation network whose labels are robust to visual variations. Let us set
the notation for the training procedure, which uses a PSPNet architecture [51] to predict
semantic classes for the input image. We will always assume that the correspondences
are available between a reference condition – images taken with favorable weather and
lighting – and a target traversal, which may include seasonal and illumination changes.
We indicate the given correspondences with (Ir, I t,xr,xt), where I are the whole images
and x are the pixel locations of corresponding points. Moreover, a standard semantic
segmentation dataset with ground truth labelling is available. For the present paper, the
Cityscapes dataset was chosen [9].

The segmentation network trains shared weights on a mixed dataset with Cityscapes
images, which can be trained with full supervision but no correspondences, and CMU or
RobotCar images, which are only weakly supervised by the correspondences. At every
epoch, the network weights are updated through a mixed loss with the following terms:

L = Lsup + λLcorr.
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Lsup is a standard categorical cross-entropy, while the correspondence loss Lcorr is more
involved. The paper proposes two versions to encourage the same prediction for corre-
sponding points. The first is a cross-entropy for the traversal predictions on the reference
labels, which quite intuitively penalizes all predictions assigned to different classes:

Lcorr = −
∑
(r,t)

1

Ncorr,(r,t)

N∑
i=1

cri · log dt
i,

with Ncorr,(r,t) the number of correspondences for a given reference-traversal image pair
(Ir, I t), cri the one-hot assignment of correspondence i and dt

i the feature in the last CNN
layer describing the point xt

i.
The second proposed loss is a hinge loss, whose form is

Lcorr =
∑
(r,t)

1

Ncorr,(r,t)

N∑
i=1

max(0,m− dr
i · dt

i

∥dr
i∥∥dt

i∥
).

Ncorr,(r,t) is the number of correspondences for a given reference-traversal image pair
(Ir, I t), while di are the last- or second-last-layer feature vectors in the segmentation
CNN describing the pixels from the i-th correspondence. This loss pushes the feature
vectors of reference and traversal points to become parallel – and consequently yield the
same prediction at inference time. The authors propose a margin of 0.8, which allows for
an angle of about 37° between the two vectors.
Training is further refined by excluding the correspondences belonging to transitory
classes, like cars or pedestrians. The rationale for this correction is that the correspon-
dence must either be mistakenly assigned or uninteresting for localization purposes, since
the objects are free to move in the scene.

Overall, the value of the correspondence dataset is greater than just a means for perform-
ing domain adaptation. Indeed, it is possible to design a self-supervised training procedure
to produce much more fine-grained segmentations, and enforce consistency across visual
variations. We now discuss the theoretic background for this training procedure, named
Deep Clustering.

Deep Clustering

Convolutional neural networks have proven excellent for learning image-based tasks, but
their weakness lays in the domain specificity. In an effort to train general purpose features,
the authors of [6] study techniques to scale model training to billions o images, which are
easily found online. In this challenging scenario, it is not possible to annotate every image
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manually. Therefore, a self-supervised training procedure must be studied.

The starting point is the observation that convolutional neural networks retain strong
prior on the input, and for this reason they tend to perform well even before training on
classification tasks where inputs are well separated. In the case of a classfication task on
the ImageNet dataset [10], the authors report an accuracy of 12%, far above the 0.1%
of random labelling. They thus propose to bootstrap the discriminative ability of the
network with a succession of clustering of the final layer features and classification to the
pseudo-labels obtained through clustering. Figure 4.9 illustrates the training procedure
adopted in the paper.

Figure 4.9: Illustration of the pipeline of Deep Clustering. The same network is used
to produce features to be clustered and for predicting the pseudo-labels obtained at the
previous clustering step. Figure from [6].

Formally, assume the encoding network is a mapping dθ(·) ∈ RD depending on weights θ.
The purpose of the paper is to find a mapping dθ∗(·) whose embedding is well suited for
a wide range of tasks, like classification, image retrieval, ...
Assuming the specific task is represented by a further mapping gW on top of the previous
features dθ(·), given N input images {In} and target labels {yn}, a cross-entropy loss is
employed to train the features dθ(·):

min
θ,W

1

N

N∑
n=1

lCE(gW (dθ(In)), yn)

with lCE(p, y) = −
∑K

k=1 log pk Iy=k and I(·) is the indicator function.
The proposed method alternates on every epoch training weights (θ,W ) to the above loss
and finding suitable labels {yn} through k-means clustering of {dθ(In)}.
To assess what the network has learned after training, the authors report the 9 database
images that cause the highest excitation of a few selected filters in the final convolution
of the encoding network (a standard AlexNet architecture [20] is used for simplicity). As
depicted in Figure 4.10, the network seems to have learned to map different object classes
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Figure 4.10: The top 9 activated images for six filters in the last convolutional layer of the
network, which directly produces the features dθ to be used for clustering. The top row
shows filters that are maximally excited by objects of the same kind, while the bottom
row filters respond to the same styles. Figure from [6].

to different filters, which are in a one-to-one correspondence with the D components of dθ.
In particular, the top row filters gather images from homogeneous object classes, while at
the bottom stylistic textures are more impactful. Since the features are then commonly
used as scores for classification, the visualization results suggest the network learned to
classify similar objects in the same classes as a subproduct of the self-supervised training
procedure.

The final assessment on ImageNet [10] places classifiers trained with Deep Clustering only
1.4% in accuracy below the benchmark of supervised networks. This result confirms the
validity of the method. Furthermore, the general nature of the learned features is verified
by evaluating the network on different data (PASCAL VOC datasets). The evaluation
sets Deep Cluster well above the other unsupervised methods and about 6.9% below
supervised networks trained on ImageNet.
The results of this paper are very encouraging towards the possibility of obtaining self-
supervised classes even in the problem of semantic segmentation, which is just an instance
of classification, with labels assigned to every pixel rather than to the whole image. Thus,
Deep Clustering opens up to the possibility of segmenting far more classes than it is
usually possible with human annotators. In our problem, for example, it might allow to
distinguish not only vehicles from vegetation, but also wheels from car body and trees
from bushes.
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Figure 4.11: Fine-Grained Segmentation Networks is trained in a self-supervised manner
to classify pixels in a pre-defined number of classes. Several repetitions of clustering of
features, followed by training the network to predict the cluster labels are performed for
training. At training time, robustness across visual variations is enforced by means of
geometric correspondences mapping a reference condition to a variety of other seasonal
conditions. Figure from [22].

Fine-grained segmentation networks

Starting from the previous correspondence dataset (cf. Section 4.6.2), and leveraging the
results of Deep Clustering (cf. Section 4.6.2), [22] propose an extension of the semantic
consistency score of [44] (cf. Section 4.6.2). The rationale is that few semantic classes,
as allowed from supervised segmentation networks, have a small discriminative power,
especially in urban scenarios where only few semantic classes appear with several different
instances. The semantic consistency score needs a large variety of classes in the scene to
increase its ability to select the correct matches. Conversely, it is not required that
classes hold semantic meaning, as long as the class assignments are repeatable. Indeed,
the desired property of high quality matches is stability under visual changes, just as
shown by the success of SuperPoint (cf. Section 4.2).
In light of these observations, the authors propose to train a custom number of robust
semantic classes by enforcing the same class prediction on corresponding points across
visual conditions. Such network is named Fine-Grained Segmentation Network (FGSN).
Let us now describe its architecture and training procedure.

The network is largely inspired on the architecture employed for the robust semantic
segmentation training with correspondences (cf. Section 4.6.2). The base is a PSPNet
[51], which produces features that are later fed to a dense layer for pixel-wise classification.
The network is pre-trained on fully supervised semantic segmentation, using the Cityscapes
[9] and Mapillary Vistas [28] datasets, among the best-known datasets for semantic seg-
mentation. The subsequent training procedure, depicted in Figure 4.11 alternates clus-
tering the pooled features to obtain pseudo-labels and training the network weights under
the supervision of those labels, as in Deep Clustering (cf. Section 4.6.2). The clustering
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step is repeated every 10000 epochs, followed by random re-initialization of weights in the
classification layer. The dataset used at this stage are the CMU Seasons Correspondence
Dataset and Oxford RobotCar Correspondence Dataset from [27], whose images are not
overlapping with the Extended CMU Seasons and Oxford RobotCar images used for eval-
uation. As in that scenario, correspondences are available between a reference traversal
and all other target traversals.
Similar to the cross-season correspondences work, the training loss of FGSN also has two
components, to encourage the correct labelling of the class in the reference traversal and to
adapt the output of the target traversal to the corresponding point in the reference. The
two terms are both cross-entropy losses. Let a sample pair of reference-target images be
(Ir, I t,xr,xt), where I are the whole images and x are the pixel locations of corresponding
points. The classification loss is straightforwardly computed as the average misclassifica-
tion error over all pixels in the reference image. Batches with only one pair (r, t) are used
for computational limits. Formally,

Lclass = −
1

Npixels

Npixels∑
i=1

cri · log yr
i,pred,

where yr
pred,i is the vector of predicted class scores at pixel i, and cri the pseudo-label for

that pixel. The correspondence loss term is instead

Lcorr = −
1

Ncorr

Ncorr∑
i=1

cri · (log dr
i + log dt

i),

where di are the latent representation vectors at pixel i. The final loss is computed as
L = Lclass + Lcorr.

Provided the correspondences are of high quality, the FGSN can produce a fine texture of
segmentation classes that are invariant to long-term appearance variations and that best
reflect the dataset content. Moreover, the network needs very little human supervision
for training, which makes it suitable for large scale settings.
The authors exploit the novel class predictions to compute a match consistency score,
which is used as a bias towards the most promising matches at RANSAC’s sampling
stage, in the same fashion as [44]. This strategy achieves excellent results, increasing of
several points the accuracy achieved in [44] for most settings and precision levels. How-
ever, the performance is still lagging behind state-of-the-art methods employing learned
descriptors. In the Extended CMU Seasons dataset [4, 37], this is especially true for the
most challenging scenario, i.e. the Park setting. Whereas urban settings offer better sta-
bility in presence of buildings, this subset of data is characterized by a predominance of
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vegetation. The visual variations of long-term scenarios entail increased ambiguity in the
space of descriptors and more points with no detected correspondent. While providing
an excellent tool for filtering the resulting matches, the GSMC method appears to suffer
from the declined match quality. Therefore, in our work we target the issue upstream,
and look at improving correspondences.





61

5| Proposed method

As illustrated in the problem formulation of Chapter 3, we will be concerned with local-
ization in situations where very few matches are available, or in general largely ambiguous
situations. In these settings, we choose to use semantic cues of images to overcome the
challenge of estimating a correct pose. This work introduces two novel tools: a matching
strategy, which we name Semantic Matching, and an improved version of the RANSAC
[13] algorithm including Biased Consensus to perform effective pose estimation in situa-
tions with match scarcity.

We illustrate each of them, after discussing the innovation with respect to similar ap-
proaches.

5.1. Long-term visual variations and repeated struc-

tures

Long-term scenarios are affected by match scarcity due to two concurring effects, that are
(i) the disappearance of some keypoints due to changed structure of the scene, and (ii)

the variation of appearance of other keypoints, perturbing the associated location in the
descriptor space. Whereas previous methods such as Geometric-Semantic Match Consis-
tency [44] and Fine-Grained Segmentation Networks [22] create match filtering strategies
based on semantics, we propose to anticipate the focus of semantic consistency during the
matching process, to benefit maximally from the richness of information that semantics
carry. In fact, if those methods look at increasing the chances of sampling the correct
matches during pose estimation, we work in situations where filtered matches may not
be enough to achieve consensus above the level of chance. Hence, our Semantic Matching
approach is designed to recover a crucial portion of matches, in addition to increasing
their quality, rather than filtering potentially valid matches.
Because a portion of matches lost to long-term variations are ambiguous correspondences,
we learn lessons from the problem of repeated structures. Among those works, the Hy-
perpoint strategy [35] embraces the ambiguity by postponing the formation of definitive
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matches, and work with candidate matches to find the combinations that allow the best
solution globally, while the camera pose voting method [49] highlights the importance of
the broader context to solve the local ambiguity.
We assume that several correct matches lay within the first few neighbors, but not neces-
sarily the closest. Similarly to the camera pose voting approach, we use context informa-
tion orthogonal to appearance to guide the decision on which matches we should retain.
However, in contrast to [35], we do not employ a retrieval approach, as match scarcity
makes it hard to retrieve the correct images in the first place. Moreover, whereas [49]
employ a voting procedure without choosing any particular match above other candidates,
our setting with match scarcity dictates a more surgical approach. We thus use global
semantic consistency of candidate matches to select a single best match.
We also need to cope with the increase of interest points with no correspondent, whose
inclusion in the set of matches is adding complexity to the pose estimation stage, and
could potentially disrupt the localization overall.
It is difficult to set these points apart from matchable keypoints, also because of the
blurred boundary from keypoints with a noisy location. In fact, as noted by [11], the
notion itself of a keypoint is ill-defined. For these reasons, most methods in the visual
localization literature avoid discussing the nature of keypoints and postpone actions to
already formed matches, where the distinctive quality of descriptors and robust fitting
(e.g. RANSAC [13]) take care of the filtering. Similarly to [44], our method addresses
the issue in a soft manner, cutting down the probability of sampling keypoints with no
correct match through semantic consistency. Thanks to an improved score computation,
our method is more effective than the original Semantic Consistency score when reducing
the impact of false matches.

5.2. Semantic Matching

Figure 5.1 illustrates the functioning of Semantic Matching. Following [33] we match from
query to database keypoints. The query keypoints are represented in the figure by yellow
and red stars, and we may see the database descriptors associated as nearest neighbors
(pink and purple dots) do not correspond to the correct match. However, the correct
descriptors might be within the first few neighbors and we look to retrieve them through
semantic consistency.
Let us define features the query descriptors and associated keypoints and points the
database descriptors and 3D location. For every feature fi, we select a neighborhood
Ui in the descriptor space, and search for a matching descriptor dk∗ among those falling
into this neighborhood. The neighborhood might include a fixed or variable number of
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Figure 5.1: Illustration of our method. In a first phase, keypoints are associated to a
neighborhood of 3D points based on appearance. The best candidate is then selected
based on the semantic score. Finally, all information is used to fit a final pose estimate.

neighbors. In the latter case, for example, it may depend on the local density of the
descriptor space, such as words in a visual vocabulary framework. In our experiments
we select a fixed number of neighbors K. The so obtained pairs form candidate matches,
among which we select exactly one confirmed match. To this end, we compute a quality
measure q associated to each candidate match, and select the match with highest quality.
Formally,

dk∗ = arg max
dk∈Ui

q(dk).

As we highlighted above, local appearance alone is often ambiguous in presence of long-
term variations. The quality measure q should be designed to bring in orthogonal infor-
mation, so to single out correct matches. To this end, we propose to use a fine-grained
semantic score inspired by the works of [22, 44]. The rationale is that projecting the
whole scene through a single match injects global information into the choice of the cor-
rect match. A fine grained segmentation helps making scores more distinctive.
Similarly to [44], we take as inputs the gravity direction in the camera reference system
and with known camera height z0, and use the same derivation of the camera pose hy-
pothesis by spanning the centres positions along a circle with angle ϕ and finding the
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camera reference system accordingly. We finally project semantic labels onto the query
semantic mask, both obtained with a fine-grained segmentation network as in [22], to
obtain semantic inliers Isi ⊂ X , and overall projected points Ps

i ⊂ X . Unlike [22, 44],
we choose to weigh both the correct and incorrect semantic projections in the semantic
score. Indeed, we observe that commonly appearing classes, such as greenery in scenes
with predominance of vegetation, may achieve high numbers of semantic inliers even in
mistaken poses. In those cases, less frequent classes would still achieve lower scores, which
supports the idea of including this information into the score (see for an example Figure
6.13). The proposed score will thus be the ratio of semantic inliers to the sum of semantic
inliers and outliers, that are projected points:

q = max
ϕ

|Isi (ϕ)|
|Ps

i (ϕ)|
.

A summary of our matching procedure can be found in Algorithm 5.1. We input a
set of query keypoints and descriptors Q = {(xi,fi)}Nq

i=1, the query semantic mask M,
the point cloud points and descriptors reconstructed from database with additional se-
mantic and visibility information (visibility direction and angle, distance boundaries)
X = {(Xj, dj, cj, vj, θj, d

low
j , dupj )}NX

j=1, the gravity direction g and the camera height z0.
The algorithm produces a set of matchesM = {(xi,Xi), si, (Ri, ti)}Nq

i=1, each associated
with a score and the pose which yielded the score.
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Algorithm 5.1 Semantically guided matching
Inputs:
Q query keypoints and descriptors
M query semantics
X point cloud with descriptors, semantics, visibility
g gravity direction
z0 camera height

Output:
M match set with scores and poses

M← ∅
for all i = 1, ..., Nq do
Ui ← {X1, ...,XK} {select K nearest neighbors in descriptor space}
Mi,K ← {(xi,Xk)}k∈Ui

{Form candidate matches set}
for all (xi,Xk) ∈Mi,K do
Is,Ps, (R, t)← GSMC Score(xi, Xj,k, g, z0, M, X )
si,k ← Is

Ps

end for
i∗ ← argmaxUi

si,k

M←M∪ {(xi∗ ,Xi∗), si∗ , (Ri∗ , ti∗)} {Add confirmed match to final result}
end for=0

Finally, we use the computed matches directly for pose estimation without filtering. We
adopt the biased RANSAC framework proposed by [44]. The overall pipeline can be
observed in Figure 5.2.

While increasing the computational cost of creating matches, the semantic score is rich in
information that may be used also in subsequent steps of localization. The semantic score
may be used as a sampling probability during pose estimation, as shown in [44]. Moreover,
as we show in the experimental section (6.2.6), the score can be used as weight to evaluate
model consensus, with gains of over 10% of correctly localized images in severely ambigu-
ous scenes. Finally, we also note that the score computation outputs as a by-product an
estimate for the pose of the camera. One interesting future research direction aims to
explore pose inference directly on these poses.
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Figure 5.2: Illustration of our proposed pipeline. After describing inputs, all k nearest
neighbors of query descriptors are evaluated, based on the semantic score of the resulting
candidate match. Chosen matches and their scores are then used to estimate a pose with
biased RANSAC. Figure adapted from [32].

5.3. Robust fitting with match scarcity

Another weakness of visual localization with long-term settings rests in the robust pose
estimation algorithm that is commonly used, that is the RANSAC [13] framework.
To estimate a pose with robust fitting, a RANSAC [13] iteration comprises three phases:
(i) sampling correspondences in number equal to the minimal sample size (MSS), (ii)
estimation of a hypothesis of pose θ with the PnP method on the sampled points, (iii)
evaluation of consensus.

We now focus on stage (iii): if we consider the number of inliers I associated to correct
and random poses, the correct functioning of RANSAC rests on the assumption that
|Igt| ≫ |I(R,t)| ∀ (R, t) ̸= (Rgt, tgt). However, in long-term settings few correct matches
{(xi,Xi)} could be available, due to match scarcity. Thus the assumption is likely to be
violated, and incorrect poses could be accepted as better than the correct one.

5.4. Biased Consensus

The key solution to the consensus problem problem is to include once more orthogonal
information to the current evaluation. Thus, instead of counting the number of inliers we
will be looking at their total quality.

Consider a collection of matchesM = {(mi, qi)} with associated semantic score.
We propose to use the previously computed semantic scores for pose evaluation, to better
assess models in presence of match scarcity. Particularly, we evaluate a model through
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the total quality of matches that agree with this model. Formally, if Iθ are the inliers of
a pose θ = (R, t), we evaluate consensus as CS =

∑
i∈Iθ qi.

The outline of our fitting method can be found in algorithm 5.2.

Algorithm 5.2 Biased Sampling and Consensus
Inputs:
M = {(mi, qi)}, Niter

Output:
finalθ

MSS ← 4, bestCS ← 0, bestθ ← ∅
for it = 1, ..., Niter do
MS ← sample(MSS, {mi}, {qi})
θ, Iθ ← PnP (MS)

CSθ ←
∑

i∈Iθ qi

if CSθ > bestCS then
bestCS ← CSθ

bestθ ← θ

end if
end for
finalθ ← local optimization(bestθ, Ibestθ)
=0

The best model will only be updated if it can exhibit matches with better quality than
previously sampled poses. Overall, this more conservative estimate is well suited to situ-
ations where the best model is not believed to have significantly more consensus than a
random sample.
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In the experimental section, we wish to empirically validate the theoretic model behind
our matching strategy.
To this end, we carefully select a database with sequences of images that exhibit significant
long-term variations with match scarcity, and empirically demonstrate analogies between
long-term scenarios and repeated structures.
We use the selected sequences to verify the effectiveness of Semantic Matching and Biased
Consensus, both individually and jointly. Finally, we are able to outperform the state of
the art algorithms for long-term visual localization of over 14% of correctly localized
images, with overall more than doubled performance.

6.1. Setting

In this section we introduce dataset and tools used for conducting experiments, as well
as reporting the details of our implementation.

6.1.1. Data set

The dataset we use to perform our experiments is the Extended CMU Seasons dataset
[4, 37]. This dataset is composed of over 100k pictures from two cameras mounted on a
car, organised in 17 slices, i.e. separate chunks of the traversed route. Such route, running
across the city of Pittsburgh (PA, USA), was traversed in 11 different dates between 01-
09-2010 and 28-07-2011 to cover as many different visual conditions as possible. Captured
conditions include views with and without foliage and snow, and the lighting varies with
sunny, overcast, and low sun scenarios.

Slices are divided in Urban, Suburban and Park types, according to the main content of
their images. In Figure 6.1 we compare some samples from Urban and Park slices. While
in the Urban scenario we may find several buildings and city facilities, the Park images are
dominated by vegetation. Even for a human eye, the latter present fewer reference points
and get easily confused with one another. Moreover, the seasonal excursion is much more
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Figure 6.1: Some images from the Extended CMU Dataset [4, 37]. The top row reports
examples from the Urban scenario, while on the bottom we can see Park images.

impactful in these cases, whereas urban scenes are more stable. The reported results of
other methods confirm this observation, with a decrease of 32.1% of localized images at
the finest precision for the best performing method HF-Net [31].
Each slice in the dataset includes a point cloud, reconstructed from the images of a single
traversal – that of 04-04-2011, which we will refer to as database. Additionally, all database
images and some of the others, which we will define as query, are provided with ground
truth poses. For our experiments, we only use queries with ground truth poses, so to
be able to evaluate our results. All database and query images have SIFT keypoint and
descriptor data.
A mapping of database image points to their reconstruction is also provided, so that it
is possible to trace back the keypoint information associated to every point in the point
cloud. Particularly, each 3D point can be represented with two or more SIFT descriptors
from the database images it was reconstructed from. We choose to work on two slices,
one from Park (22) and one from Urban (6), which offer plenty of sequences exhibiting
long-term variations, match scarcity, repeated structures and a mixture of these.

6.1.2. Libraries and implementation details

To reproduce a complete localization pipeline, we implement from scratch matching and
pose estimation routines, using tools from well-known computer vision libraries.
Firstly, for matching SIFT descriptors we rely on the FLANN library [26], which offers a
framework for fast approximate nearest neighbor search. Differently from [22, 44], we use
all database descriptors rather than the average on each 3D point.
We set a fixed number of neighboring descriptors to search for the confirmed match. We
experimentally find that k = 4 works well in most scenarios.
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To obtain the Fine-Grained Segmentation masks for scoring, we use the code from [22]
and generate predictions from their trained network (100 clusters, trained on correspon-
dences from the CMU Seasons dataset [4]).
We implement our version of the semantic consistency score with NumPy and some tools
from the OpenCV library. In particular, to project the point cloud we use the Project-
Points() function with a correction of distortion according to the Brown-Conrady model,
as specified by the authors of the dataset [37].
Some additional checks are added to maintain feasible the computation of the scores, since
we require to compute several times as many scores as the previous semantic consistency
filter [44]. We select a w × w window around the query keypoint and check whether the
candidate 3D point’s semantic label appears within the labels present in the semantic
window. If not, the match is assigned a score of zero. Moreover, during computation of
the number of semantic inliers and outliers, we add one additional check, namely that the
3D point is visible from the spanned camera centre positions. We assess visibility as in
[44]. If the point is not visible, the score is set to zero.
All k scores are then evaluated to find the best matching 3D point for every query key-
point. In case of equal scores (including zero), the closest to the query descriptor is
selected.
After obtaining correspondences, we estimate a pose with a P3P solver inside a RANSAC
loop. Because we experiment with biased sampling, we choose to implement our own
version of the algorithm for pose estimation, using logic closely modeled on the solveP-
nPRansac function in the OpenCV library. In particular, we maintain the reprojection
error of 8 pixels, and use the Efficient PnP solver (cv.SOLVEPNP_EPNP) for local op-
timization.

6.2. Experiments

We compare our method against others in literature on both the ability to produce correct
matches and the quality of the resulting poses. We start by assessing matching, then
perform a comparison of several versions of our algorithm to validate some design choices.
Finally, we compare the localization performance of our methods against state-of-the-art
methods, showing increased localization ability in most settings.

6.2.1. Evaluation metrics

In the first experiment regarding the ability to find correct matches, we wish our method
to detect as many as possible, yet without having too many false matches. In fact, two
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pitfalls arise when too many outliers are present: (i) the probability of sampling a correct
model is very low, therefore a very large number of iterations is needed to ensure the
correct model has been found with high confidence, (ii) the probability of larger consensus
sets from wrong poses increases. The latter becomes a particularly serious concern when
there are few correct matches, as other images with similar structures could obtain a larger
consensus, as reported in [49]. For these reasons, our metrics of choice in this experiment
are recall and precision of the produced matches.
Formally, we build Nq×NX-dimensional match tables indexed by query keypoints (Nq) in
the rows and 3D points (NX) in the columns, and such that the entry is 1 on the real or
detected correspondences, and 0 otherwise. Let Mgt be the ground truth matches table,
and Me the estimated matches table. We find recall as

recall =
TP

TP + FN
=

∑
i,j(Mgt & Me)i,j∑

i,j(Mgt)i,j
.

Similarly, precision is

precision =
TP

TP + FP
=

∑
i,j(Mgt & Me)i,j∑

i,j(Me)i,j
.

With regard to the pose estimation experiments, we use the standard evaluation frame-
work proposed by [37]. As introduced in the problem formulation in Section 3, we compute
the percentage of queries that fall within fixed thresholds of position and orientation error.
We select the commonly used thresholds:

• High precision: 0.25m, 2°

• Medium precision: 0.5m, 5°

• Coarse precision: 5m, 10°

6.2.2. Obtaining ground truth correspondences

Some of our experiments require the availability of ground truth matches. As introduced
by [11] (see Section 4.2) the task of defining interest points so to be repeatable across
images is quite hard. Ideally, we interpret correspondences as the location of the same
point across different images if these also correspond to the same 3D location. Note
this last condition is crucial, as objects are not rigid in our scenes. To the best of our
knowledge no datasets offer such ground truth information.

While having to deal with the lack of exact correspondences, a more pragmatic definition
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(a) Projected points from the whole point cloud (b) Confirmed projected points

Figure 6.2: An example of projected point cloud (a) with and (b) without visibility
filtering (cyan points) and the query keypoints (fuchsia points). A large density of points
in Figure (a) is concentrated on the left side of the Figure (b). A subsequent filtering
through visibility data shows that these points do not project onto the image. These are
likely far away points whose projections fall onto the image plane, but are not visible in
the image since some trees occlude their view.

suffices to our purposes. Since we want to show we can improve the ability to detect
valid matches, we do not make a distinction on whether the correspondences refer to
the same point in the represented object, as long as their locations yield accurate pose
estimates. This means that for every 3D point we will be satisfied if we can retrieve
matches that fall within a small neighborhood of its projection in the image plane of the
query image. To keep a conservative estimate, we choose a neighborhood of 5 pixels around
the projection, which is smaller than the 8 pixels reprojection error used to evaluate model
consensus. We can easily obtain all point projections with the ground truth poses from
our database. Most of these pseudo-ground truth matches will never be retrieved based
on appearance, as the keypoint will likely match the appearance of at most one keypoint
in its neighborhood. Yet, observing the increase in the number of retrieved matches we
can still effectively compare different matching strategies.
Thus, we create pseudo-ground truth matches for all queries by projecting 3D points
onto the image plane. As observed in [44], not all points should be projected, as not
all are visible in the picture. Consider, for example, Figure 6.2. The left side image
reports all points whose projection falls into the image plane (30496). However, a large
portion of these points is concentrated on the left-hand side in a small area, with several
points falling on the same pixels. It is thus clear that, without further filtering, several
hidden points project onto the image plane. Hence the necessity to design a mechanism
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for selecting projection points. We use the visibility filtering technique adopted in [44]
– we only project a point if the direction of viewing and the distance from the camera
centre are within the ranges observed during reconstruction. After applying this filter,
we plot the resulting points (636) in 6.2b. The concentration of points on the left has
now disappeared, confirming most of the projected points of the image are not actually
visible.
Despite using the visibility filter to project, we observe this might be too restrictive.
Indeed, when the visibility recorded at the stage of reconstruction from the database
is limited, possibly due to illumination or noise, points hardly pass the filter, despite
being clearly visible. For this reason, whereas database images observe a relatively stable
number of points –roughly 2000– visibility filters can lower this amount to less than 100.
Thus, in the following experiments we prefer to compute ground truths on the set of seen
points of the database images whose centre is within 10 m from the considered camera.

6.2.3. Choosing challenging sequences of images

Having obtained pseudo-ground truth matches, we first employ them to select sequences
of images that best allow to test the performance of our algorithm.
We look for sequences that present match scarcity, long-term ambiguities and repeated
structures. We initially focus our search on the Park setting, as it has been previously
indicated as a very difficult localization sequence [37] due to limited capabilities of local
description.
Since our strategy to find matches tends to overestimate the amount of correspondences
we can detect, to pick the most appropriate sequences we rely on the joint observation
of the amount of projected points, ground truth matches obtained from all such points
and detected matches. For the latter, for computational reasons we stop the search at
all candidate matches produced by the four nearest neighbors to query keypoints in the
descriptor space. Figure 6.3 illustrates the full data for both cameras. We represent on the
same chronological disposition of images the overall amount per image of pseudo-ground
truth matches and detected matches, obtained considering all matches formed by query
descriptors and four nearest neighbors in the database.
All trends for the left side seem more regular on the left traversal (Figure 6.3a), hence we
choose to focus on this side. Across traversals, the trend is quite similar, with a drop of
true and detected matches at the edges of every traversal likely due to fewer reconstructed
points to project.
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(a)

(b)

Figure 6.3: Plots of the evolution of detected and “true” matches across traversals. Figure
(a) reports data for the left camera, while (b) refers to the right camera. Pseudo-ground
truth matches (blue line) show periodicity across traversals, and their number is smallest
around the edges of each traversal. Detected matches are significantly fewer, and seem to
vary with the date of the traversal. Sequences affected by match scarcity can be observed
in the last segment of the left traversal (a), where the number of matches drops despite a
still significant number of projected points.

An interesting overall growth in the number of detected matches is observed around the
winter, i.e. in the dates from 2010-11-22 to 2011-03-04. We attribute this phenomenon
to the largest similarity of these traversals to the database, which was shot on the 2011-
04-04. We obtain visual confirmation of this hypothesis in Figure 6.4, which shows larger
similarity to the database for the queries in late autumn up to early spring.
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Figure 6.4: Display of corresponding images by date. It is observed that the most similar
visual conditions to the reference image are dates from 2010-11-22 to 2011-03-04.

Figure 6.5: A close-up of the projected points and detected matches for the traversal of
2010-09-01, indexed by the frame order of the traversal. The highlighted area (in red)
shows signs of match scarcity.
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In the left traversal, a drop in the number of projected points is observed a few shots
earlier than the end of the entire sequence, on all traversals. Concurrently, we find a
drop in the number of detected positives, which remain quite low until the end of the
sequence. For clarity, we highlight such area for the traversal of 2010-09-01 in Figure 6.5.
We can observe how the number of detected matches oscillates but remains above 20 for
most frames, until, around the 180th frame, the number of detected matches drops well
below 10. We thus identify such region as appropriate for our purposes. Indeed, the drop
in projected points is likely due to a sparser point cloud around the area, which in turn
can be attributed to highly ambiguous scenes, or match scarcity at reconstruction time.
Moreover, the lack of detected matches in the subsequent shots confirms that the problem
of match scarcity is persistent in the area.

We select 70 images from these traversals for our experiments. To choose the most relevant
images, we observe how many additional true matches are detected when passing from
one to four nearest neighbors, and select a sequence with consistent gain. We exclude
the traversals from 2010-11-22 to 2011-03-04, as in these the long-term match scarcity
problem is mitigated by the similar appearance to the database condition. Finally, visual
inspection ensures the choice is relevant. We report some of these images in figure 6.6, and
we verify the presence of long term appearance variations that cause mismatches in Figure
6.7. For the selected query image, the correct match is only found as fourth neighbor, as
shown in the first row (a). A close-up (b) on the described areas highlights variability due
to different appearance, which is confirmed when looking at the actual described patches
(c). Indeed, observing the patches only, the similarity among the correct pair is blurred
in background noise, causing unrelated patches to be identified as more similar than the
correct one. Only by checking a larger portion of the image we may recover an intuition
of the correct keypoint to be associated. Therefore, the example confirms the need to
include global information in the matching process.

Having selected the target sequence with match scarcity, we are also interested in assessing
the pose estimation performance of our methods in sequences that exhibit milder problems
related to long-term changes and repeated structures, so to isolate different phenomena.
We select three more sequences, two from the Park setting and one from Urban setting.
In the Park setting we additionally look for a sequence without long-term variations, but
with ambiguity given by vegetation as the prevailing content. To this end, we select 150
random images from all the traversal length, and from the dates between 2010-11-22 and
2011-03-04. We furthermore look for a sequence with abundance of matches and some
man-made ambiguities. This is easily found by checking peaks of detected matches in
Figure 6.3a. Samples from this sequence are reported in Figure 6.8.
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Figure 6.6: Some images from the sequence with match scarcity. The scenario is very
challenging, including adverse illumination and changes of appearance due to seasonality
and sunlight.

(a)

(b)

(c)

Figure 6.7: Example of incorrect match caused by long-term variations and descriptor
ambiguity. The first row reports the full images with relative keypoints associated. The
leftmost image is the query, followed by the database images of the associated descriptors
in the order of distance from the query descriptor. The correct keypoint is only selected
as fourth-nearest neighbor. The second row is a closeup on the described area, while the
third row reports the actual described patches.



6| Experimental evaluation 79

Figure 6.8: Images containing repeated structures in the Park setting. Lines on the road
and light poles represent recurring structures whose description becomes ambiguous (see
Figure 6.10b).

Figure 6.9: Images containing repeated structures in the Urban. The recurrent architec-
tural elements of the depicted building bring significant confusion at matching time (see
Figure 6.10c).

Finally, in the Urban setting we select a sequence with repeated structures, to observe
the methods behavior in ambiguous settings without long-term variations nor vegetation.
Images from this sequence are reported in Figure 6.9.

To summarize, we will use four sequences in our analyses:

• S1: a hard sequence from Park with long-term variations, severe match scarcity and
ambiguity of descriptors,

• S2: a medium sequence from Park without long-term variations but with prevailing
vegetation,

• S3: an easy sequence from Park with abundance of matches and both man-made
repeated structures and vegetation,

• S4: a Urban sequence with man-made repeated structures.

We seek visual confirmation of the ability to reach new valid matches in these sequences
by searching neighbors beyond the first. Some examples from S1, S3 and S4 are displayed
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in Figure 6.10.

6.2.4. Analysis of matching

The first experiment is a comparison of the matching performance of our algorithm and
the most common matching techniques in literature. Methods with a focus on long-
term settings such as Geometric-Semantic Match Consistency [22, 44], employ nearest
neighbor matching with Lowe’s ratio test and threshold at 0.9. The Simple Semantic
Match Consistency method [27] also considers the first neighbor matches, but applies a
semantic filter, discarding points with inconsistent semantic. Finally, the most efficient
approaches such as Active Search [34] perform a strict filtering of nearest neighbor matches
with a ratio test and threshold at 0.7. We compare our matching strategies to these
options, and additionally plot the figures of a K-nearest neighbors matching with no
filtering – this represents an optimistic boundary in terms of recall, although remaining
impractical for its extremely low precision.
We start by analysing the achieved recall of the above listed filtering methods against the
optimistic k-NN matching. We experiment on the Park sequence with match scarcity (S1).
Figure 6.11 illustrates its trend, on average, as a function of the number k of explored
neighbors. It is immediately evident how several matches are lost through filtering even
with 1-NN only, and such difference is only marginally reduced, if not worsened, by the
increasing number of considered neighbors and a more relaxed filter – indeed, we follow
[49] and perform k-NN ratio test with the k+1th neighbor for all k neighbors.
The dashed lines further allows comparison with literature methods, which only consider
the first nearest neighbor. The emerging fork of recall is quite significant. We note that,
as k increases, the k-NN method can find nearly three-fold the amount of correct matches
– compared to twice the amount for the first neighbor only – as the 1-NN with ratio
test and threshold at 0.9. This evidence confirms there is room for large gains through
considering additional neighbors.

We repeat the analysis including variations of our method. In particular, we assess the
following design choices:

• inclusion of both semantic inliers and outliers in the semantic score. We indicate
with sum the original version of [44], which does not account for the number of
incorrectly projected points, and with ratio the option weighting the number of
semantic inliers on the total number of projected points

• match selection with the score as measure of quality. We compare the proposed
method, which only picks one match among the candidate k nearest neighbors
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(a)

(b)

(c)

Figure 6.10: Plot of one example of incorrect first neighbor matching which is solved at
the second neighbor. The sequences they refer to are respectively (a) S1, (b) S3 and (c)
S4. By considering priority based on scores, we are able to retrieve the correct match in
all cases.
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Figure 6.11: Plot of the recall of k-NN filters. Continuous lines consider a growing set of
k neighbors at matching time, and assess the impact of filtering strategies only. Dashed
lines represent methods from literature, with fixed set of matches at first neighbor only.

(largest), with keeping all matches whose score is above a fixed threshold (all)

• visibility filter for the score computation. We experiment with an alternative to the
approach proposed by [44], where points to project are selected through their dis-
tance from the 3D point of the match, and the consistency of direction and distance
from the estimated centre. As this approach forces the recalculation of the set of
projected points for every pose hypothesis and hence increases the computational
overhead, we test a faster version based on covisibility (cf. [35]). We project all
points that are covisible with the 3D point we are matching to. We experimentally
assess that projected points increase roughly of one magnitude order, thus enabling
to exploit further the potential of fine-grained segmentation

Figure 6.12 summarizes the outcome of the experiment on S1. We observe an improvement
on both recall and precision, with the exception of the 1-NN with ratio threshold of
0.7, which is extremely conservative and reaches a very high precision but also achieves
too little recall. The exploration of more than one neighbor seems beneficial for recall,
especially when passing from one to two nearest neighbors. The analysis shows a similar
trend for all our methods, with the methods considering all neighbors achieving a slightly
higher recall, and the covisibility filter locating in the middle. Methods employing the
ratio strategy have lower precision, perhaps due to the low threshold on these scores,
which was set to 0.001.
Overall, the analysed data is strongly in favor of our multi-neighbor matching strategy in
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Figure 6.12: Plot of the recall (left) and precision (right) of all considered methods. Our
methods span several design options for the semantic score. These include ratio or sum,
which either compute the semantic measure as the ratio of semantic inliers on all projected
points or as semantic inliers only as in the original version of [44], largest or all, which
consider respectively the match with largest score among k-NN or all matches with score
above some threshold, and covisibility ratio, which uses a covisibility-based filter to select
points to project in the semantic score computation.

presence of match scarcity, as both recall and precision keep improving without saturating
with higher k. This also confirms the shortcoming of filtering matches in disregard of the
broader context, as both the ratio test and simple semantic match consistency filter give
up on larger portions of matches than our context-based Semantic Matching even when
matching with k = 1.

6.2.5. Study of model variations

We test in this section the impact on pose estimation of varying the following: (i) the
use of one or k nearest neighbors, (ii) the width of the semantic check we perform before
computing the score (see the implementation details 6.1.2), (iii) whether to keep the best
among the k nearest matches or all those with score above some threshold, (iv) the use
of visibility or covisibility as a filter for points in the score. Tests are carried out with
k = 2, and we experiment with checking the semantic consistency of the 3D match with
5× 5- and 15× 15-large square windows of pixels around the 2D keypoint. We report in
table 6.1 the results of pose estimates evaluation.
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Percentages of correct localizations, S1

Fine Medium Coarse

experiment type covisibility 0.25m / 2° 0.5m / 5° 5m / 10°

1-NN, 15× 15 2.9 2.9 10.0

k-NN, largest, 5× 5 2.9 2.9 8.6
k-NN, all, 5× 5 0.0 1.4 5.7

k-NN, largest, 15× 15 7.1 8.6 17.1

k-NN, all, 15× 15 0.0 2.9 8.6

1-NN, 15× 15 ✓ 2.9 2.9 4.3

k-NN, largest, 5× 5 ✓ 2.9 4.3 5.7
k-NN, all, 5× 5 ✓ 0.0 2.9 4.3

k-NN, largest, 15× 15 ✓ 1.4 4.3 5.7
k-NN, all, 15× 15 ✓ 1.4 4.3 12.9

Table 6.1: Pose estimation results for model variations in the Park sequence with model
scarcity (S1).

The results show a clear dominance of the strategy employing k nearest neighbors, retain-
ing the match with largest score only and checking semantic consistency on a 15×15-large
window. Covisibility is observed to worsen localization performances, perhaps due to the
lack of any control on the match visibility.

Similar conclusions emerge in the easiest Park sequence (S3). We report in table 6.2 the
results, for the visibility configurations only. The overall very high localization percentages
make it evident that the sequence is easier than the previous one. Moreover, the additional
spanning of k nearest neighbors brings only marginal, although consistent, improvement
on matching on the first nearest neighbor only, while the choice of one neighbor rather
than keeping multiple ones appears quite important. We attribute this behavior to the
wider amount of available inliers for model fitting, where correct additional matches would
only refine the pose estimate, but a large amount of incorrect ones might prevent from
sampling the correct model.
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Percentages of correct localizations, S3

Fine Medium Coarse

experiment type covisibility 0.25m / 2° 0.5m / 5° 5m / 10°

1-NN, 15× 15 59.1 72.7 93.6

k-NN, largest, 5× 5 59.1 70.9 95.5

k-NN, all, 5× 5 33.6 59.9 84.5

k-NN, largest, 15× 15 60.0 73.6 92.7

k-NN, all, 15× 15 34.5 52.7 92.7

Table 6.2: Pose estimation results for model variations in the Park sequence with repeated
structures (S3).

Another important design choice regards the score computation. In contrast to the original
score from [44], we find it is important to weigh the score to the total amount of projected
points, so to penalize scores that miss the projection of several inliers.

For an example, consider Figure 6.13, which reports two high scores associated to matches
in the same query image from the Park slice of the CMU Seasons dataset. Top rows in the
pictures depict the matched keypoints in their original image, with the query image on
the left and its database correspondent on the right (note that we can identify a database
image for the matched 3D point since there is a one-to-one relation between database
descriptors we match to and database images, i.e. we search for nearest neighbors using
all descriptors from the reconstruction). At the bottom of the pictures, a representation
of the semantic projections on the query semantic mask is shown (right), and a qualita-
tive comparison of the predicted and ground truth camera reference is given (left). The
projected points are plotted in 3 dimensions, with the matched keypoint highlighted in
fuchsia, the real camera reference in red, and the predicted reference in blue, with ex-
plored locations in yellow. Analyzing the poses, we can observe that only the first match
(Figure 6.13a) is consistent with the camera pose, while the other is a mismatch (Figure
6.13b). Interestingly, when comparing these two cases of a success and a failure of the
score, the correct match has fewer correct projected points –118 out of 151, compared to
175 out of 233 of the wrong match– since fewer points are projected overall. The failure
seems to occur because a large portion of the scene is dominated by the red semantic
class, and therefore a high number of projected points from that class drive the majority
of the score.
We test the two options directly on pose estimation in table 6.3. Performances are overall
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(a) Success case

(b) Failure case

Figure 6.13: Example of a (a) success and (b) failure case of the fine-grained semantic
projection. The top row shows the correspondence in the query image and database
image. The bottom right picture represents the semantic projection of the point cloud.
The bottom left picture is a plot of the location of the estimated camera pose with respect
to the 3D scene. We plot: the 3D point that was matched to a query point (fuchsia),
the subset of points which were projected (with their RGB color), the centre locations
spanned to compute the semantic score (yellow), the estimated camera axes (blue), the
ground truth axes (red). Image (a) is observed to give a correct pose, while in image (b)-
it is incorrect, despite the high number of semantic inliers.
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better with the ratio strategy.

Percentages of correct localizations, S1

Fine Medium Coarse

experiment type 0.25m / 2° 0.5m / 5° 5m / 10°

k-NN, largest sum 4.3 10.0 11.4

k-NN, largest ratio 7.1 8.6 17.1

Table 6.3: Pose estimation results for sum and ratio score versions in the Park sequence
with model scarcity.

We finally validate the additional visibility check we add while computing the semantic
score, whose benefits on matching are computational savings and increased precision. As
we can see in table 6.4, the figures without visibility check, which retain more matches,
are overall worse than the ones achieved with the check. We will thus use this strategy
even in the computation of results of literature methods, so to yield a fair comparison of
the matching strategy.

Percentages of correct localizations, S1

Fine Medium Coarse

experiment type visibility check 0.25m / 2° 0.5m / 5° 5m / 10°

1-NN, 15× 15 ✓ 2.9 2.9 10.0

k-NN, largest, 5× 5 ✓ 2.9 2.9 8.6

k-NN, all, 5× 5 ✓ 0.0 1.4 5.7

k-NN, largest, 15× 15 ✓ 7.1 8.6 17.1

k-NN, all, 15× 15 ✓ 0.0 2.9 8.6

1-NN, 15× 15 2.9 4.3 4.3

k-NN, largest, 5× 5 2.9 4.3 8.6

k-NN, all, 5× 5 0.0 1.4 4.3

k-NN, largest, 15× 15 1.4 4.3 4.3

k-NN, all, 15× 15 0.0 4.3 11.4

Table 6.4: Pose estimation results for visibility check variations in the Park sequence with
model scarcity.
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6.2.6. Pose estimation

Finally, we compare our method to existing algorithms in literature on the task of local-
ization. Because no study includes results for the smaller sequences we choose to focus on,
we reproduce all localization algorithms from the state of the art. In particular, our focus
are the semantic-based algorithms presented in [22], hence Geometric-Semantic Match
consistency (GSMC) and Simple Semantic Match Cosistency (SSMC). We furthermore
add two baseline experiments whose matches are obtained with a ratio test (threshold
0.9) respectively on 1-NN and k-NN, and pose estimation is performed through RANSAC
on the so obtained matches.
On our side, we evaluate three versions of localization algorithms. We create matches
following the best performing matching strategy from the study of variations (see 6.2.5),
which considers k = 4 nearest neighbors and retrieves the match with highest score: The
score is computed with a semantic window of size 15× 15 pixels, and the same visibility
filter as [44] is used to select points to project in the score computation phase.
The first version we test consists on RANSAC pose estimation on the selected matches,
with uniform sampling of models (semantic matching - unbiased). Scores are therefore
only used to select matches and discarded afterwards.
A second version, directly inspired on the GSMC localization pipeline, employs scores
during RANSAC model sampling. Scores are used as a measure of the match fitness to
model estimation, with matches having higher scores being sampled with higher proba-
bility. For this method, we evaluate the version with and without Biased Consensus.
We summarize results of pose estimation on all four sequences in table 6.5.

Method / Setting Park hard(S1) Park medium (S2) Park easy (S3) Urban (S4)

m 0.25/0.5/5 0.25/0.5/5 0.25/0.5/5 0.25/0.5/5

deg 2/5/10 2/5/10 2/5/10 2/5/10

1-NN + ratio test 0.9 unbiased 0.0/0.0/0.0 30.7/42.0/49.3 32.7/36.4/44.5 70.0/75.5/88.2

k-NN + ratio test 0.9 unbiased 0.0/0.0/0.0 22.0/27.3/37.3 37.3/39.1/47.3 67.3/81.8/95.5

SSMC [22] 0.0/0.0/0.0 32.7/43.3/52.0 38.2/48.2/78.2 68.2/85.5/93.6

GSMC [22] 2.9/2.9/5.7 46.7/61.3/70.7 47.3/59.1/79.1 71.8/81.8/86.4

sem. matching unbiased 0.0/0.0/0.0 14.0/20.7/25.3 20.0/27.3/39.1 60.0/70.0/83.6

sem. matching biased sampling 2.9/4.3/8.6 50.0/63.3/72.0 60.0/73.6/92.7 81.8/89.1/91.8

sem. matching biased s. + c. 2.9/7.1/20.0 45.3/63.3/72.0 37.3/54.5/90.0 79.1/87.3/92.7

Table 6.5: Pose estimation results comparison on all sequences.
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Figure 6.14: Distribution plot of the number of matches with positive sampling probabil-
ities that are fed into RANSAC pose estimation for every algorithm.

Localization results confirm the validity of our matching strategy, which proves decisive in
all sequences for most accuracy levels. Moreover, the overall results in the Park sequence
with match scarcity (S1) reaffirm the sequence is particularly hard, with several methods
missing all localizations. Conversely, the other sequences gain overall high success, espe-
cially in the coarse localization level. The presence of vegetation always requires help of
semantics and biased sampling, as we may see in all Park sequences. Instead, methods
without semantics do not seem to be excessively penalized in urban scenarios.

Focusing on S1, we analyze further evidence to explain results more in depth.
Figure 6.14 reports the distribution of the number of matches with positive sampling
probabilities used by each pose estimation algorithm throughout the sequence. It is worth
noting that the Geometric-Semantic Match Consistency algorithm has the least amount
of matches. Although yielding some correct localizations, this method is thus excessively
reliant on the goodness of the filtered matches, which is not guaranteed with long-term
variations as previously seen. On the other end of the spectrum, the methods that do not
apply any filtering, have an excessively large pool of matches to sample from. Because of
the low ratio of inliers to outliers, the correct model is never found. Our method collocates
in between these extrema and can thus benefit from larger amounts of matches but still
reasonably few models to explore to sample the correct model with high probability.

Another interesting highlight of the pose estimation experiment on S1 is the success of
Biased Consensus. It increases the amount of correct coarse localizations of more than
10% from the baseline biased estimation method of [44]. The distribution plot of the pose
and estimation errors for all models support this result (see Figure 6.15). We note how
the pose error for the semantic biased sampling and consensus is much more likely to
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(a)

(b)

Figure 6.15: Plots of the distributions of (a) position and (b) orientation error on the
Park sequence S1.

yield smaller errors, whereas other methods have more spread distributions, with mode
on larger position and orientation errors.

This evidence clearly motivates the rationale behind Biased Consensus. In a context of
match scarcity, the correct model should not be evaluated uniquely on the cardinality of
its consensus set, since the probability that other models reach equal or higher consensus
is large. This fact was noted before in [49], in presence of repeated structures.
By weighting the consensus with semantics, we increment the probability of the correct
model to prevail, yet sometimes penalizing the absolute number of inliers. Indeed, as
shown in Figure 6.16, fewer inliers are found than without biased consensus.
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(a)

Figure 6.16: Plots of the distributions of inliers on the Park sequence with match scarcity.
The plot only considers queries that were correctly localized, at least at coarse level.
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7| Conclusions and future

developments

In this section we summarize the findings of this work and explore promising research
directions.

7.1. Findings

In this work we have presented a novel matching strategy for long-term visual localization
with severe match scarcity.

We have observed the similarities between the long-term setting and scenes dominated
by man-made repeated structures –i.e. repetitive patterns appearing across images– from
which we have learned the importance of global information to solve local ambiguities
directly at matching stage. We have noted how appearance variations cause some correct
matches to fall beyond the nearest neighbor, but several of these remain within the first
few neighbors.

We have found that previous traditional localization methods aimed at long-term visual
localization are unsuited to localize with severe match scarcity, because their aggressive
filtering can often discard matches valuable for pose estimation, worsening the scarcity
problem. While reaffirming the validity of using semantics as orthogonal information
to pinpoint correct matches from a large set of incorrect ones, we have demonstrated
the benefits of acting at an earlier stage than other methods, that is before forming
correspondences. Through ad-hoc experiments, we have shown our method can increase
the amount of retained correct matches (recall), while also improving the purity of the set
of matches (precision). When testing directly on pose estimation, our matching strategy
enabled us to achieve the highest percentage of correct localization in most precision levels
of all tested sequences.

Finally, we have proposed a variation of RANSAC pose estimation algorithm which em-
ploys semantics extensively, not only to sample models but also to evaluate consensus.
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The method has shown improved localization abilities of over 14% at coarse level on the
biased sampling method of [44], for a hard sequence of images with match scarcity.

7.2. Future work

7.2.1. Matching with visual attention masks

As emerges from our work, matching in long term scenarios is a key area to be improved
for robust localization.
The success of learning based methods, and especially HF-Net [31] (cf. Section 4.6.1),
shows that global information is crucial even when establishing local correspondences,
since it solves ambiguities and brings up matches that would not be formed in the first
place. Our approach uses the semantic content of the whole scene to inject context into the
matching process, and we demonstrated its effectiveness throughout the whole localization
pipeline.
As a future research direction, it would be interesting to explore alternative matching
strategies in this sense. Among these, we have particularly looked at visual attention,
a mechanism which learns to focus on parts of an image or scene, often in an input
dependent manner, while learning to perform another task.

According to [14], computer vision tasks mainly employ two types of attention: channel
and spatial. The first helps focusing on different concepts, as it places weights on the
network channels – which stand to represent concepts learned from the database. The
second allows to highlight spatial locations in the picture.
Channel and spatial attention have been successfully included in many state-of-the-art
methods for the tasks of place recognition and instance retrieval. Similar to visual local-
ization, in these tasks we look for a place within a database, but rather than outputting a
precise pose, we can consider a successful localization if we are able to identify the rough
location of the query, in the form of GPS coordinates, landmark tags or similar images.

Place recognition and image retrieval tasks are well suited to end-to-end learning. In fact,
these can be naturally cast as classification or ranking tasks, and a neural network can
be trained to them provided that a general enough database is collected. As in many
other vision tasks, the power of learning has soon made CNNs the standard for coarse
localization.
Two families of approaches are mainly adopted. The first consists in training a global
descriptor of the image and using it to perform the end task. Spatial attention has been
used to improve the impact of local features on the global representation, both in a learned
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[19, 48] and non-learned way [18, 30, 45]. A second group of methods, instead, defines
the similarity of images directly on local features, to improve robustness to occlusion and
clutter. These finer-grained spatial descriptions of the images can be obtained effortlessly
in the same pipeline as used in the first family of methods, by simply extracting the
features before pooling them into a global descriptor. Attention can then be used to
discard the least interesting local features, only retaining necessary information [29, 46].
Some further research has directed towards integrating these two forms of description [5],
or combining spatial and channel attention [41].

When it comes to pose estimation, learning-based methods are still lagging behind tradi-
tional methods [38]. Perhaps for this reason, the potential of visual attention for visual
localization remains largely unexplored.
In light of the several common points among coarse and fine localization, we ask the
following: Are attention maps indicative of the usefulness of regions or objects in the
long-term visual localization task? Future work would then aim at answering the above
question by experimenting with attention trained on retrieval tasks, for instance in the
global descriptor head of the HF-Net architecture.

7.2.2. Estimating a pose from semantic scores

The semantic score we have used throughout this work carries much more information
than an individual match does. We have often underlined its ability to measure the
consistence of the putative match to the broader context. One additional valuable data
point we can obtain is a rough estimate of the camera pose, as product of the geometry
of the match and the exploration of the remaining pose hypotheses through semantic
projection.
These poses are virtually valid estimates for the camera pose, although they might be
quite noisy. It would be interesting to understand whether (i) these poses can lead to
reaching the largest consensus set faster than RANSAC – or its improved versions such
as PROSAC [8] – if used in place of randomly sampled P3P models, (ii) the distribution
of poses from all matches can be used to infer the location of the real pose consistently.
Regarding the latter question, we recall that poses lay in 6-dimensional manifolds, whose
dimensions we can further reduce through the additional information required by the score
(known gravity direction and camera height). One should therefore study the distribution
of scores in this context. One possible instrument to do it is the mean shift clustering
algorithm [7], designed to find modes of a distribution. Each of those could be tested on
consensus, yielding a faster estimate than through RANSAC.
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List of Symbols

List of variables

Variable Description

xi image keypoint coordinates, point in R2

Xj world object coordinates, point in R3

x̃ homogeneous image coordinates, point in P2

X̃ homogeneous world coordinates, point in P3

(x,X) 2D-3D correspondence

I RGB image in RH×W×3

M semantic mask of an image I, in {1, ..., L}H×W

P camera matrix in R3×4

R rotation matrix in SO(3)

t translation vector in R3

C camera centre in R3

f descriptors of query keypoints, vectors in RD

d descriptors of database and point cloud keypoints, vectors in RD

d distance of reconstructed points in the Euclidean space

p outlier-ness probability of a match

m minimal sample size for pose estimation

θ RANSAC model
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List of sets

Set Description

X point cloud, set of points in R3

M set of matches in R2 × R3

Q query keypoint set in R2

I image set, set of RGB images in RH×W×3

F query descriptors set in RD

P point cloud descriptors set in RD
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