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Abstract

Hot-dip galvanization is an industrial process involving the application of a uniform coat-

ing of zinc to steel strips with the desired thickness. Disturbances from air knives and

external factors during the galvanization process can lead to deviations in the strip's

path, resulting in an uneven layer of zinc. To achieve a uniform coating, it is essential to

minimize the strip's vibrations by implementing e�ective stabilization measures.

The overarching aim of the research is to establish a user-friendly tool for e�ciently sim-

ulating and predicting the behavior of strips made from various materials, with di�erent

lengths and widths. In this thesis, a new mathematical model has been developed to

predict the vibrations of a steel strip during the hot-dip process.

The model is based on the Finite Element Method (FEM), and its validity has been

con�rmed through data acquired from an operational plant. Several alternative methods

were investigated in the pursuit of model development, such as Recursive Least Squares

(RLS), time series, and Di�erential Algebraic Equations (DAE) with an acausal approach.

Following the model development, a controller is designed to stabilize the vibrations of

the strip. Previous controllers utilized PID and PLC to control the position of steel strips.

The new controller utilizes a pole placement technique with a state observer, testing has

been con�ned to simulation. The control strategy is speci�cally crafted to operate on the

natural frequencies of the steel strip, leaving other frequencies una�ected.

The �ndings indicate that the model can e�ectively estimate natural frequencies for the

steel strip based on its mechanical parameters and dimensions, aligning with experimen-

tally identi�ed modes. The Finite Element Method is employed to calculate the Frequency

Response Function (FRF) of the strip on speci�c positions along the strip, and then sim-

ulate the process. Knowledge of the FRF Through simulation testing, the controller

demonstrates its e�cacy in stabilizing the strip's vibrations at speci�c frequencies. The

use of an observer is instrumental in this success, compensating for the unmeasurable

nature of the states.

Keywords: Hot Dip Galvanization, Pole Placement





Abstract in lingua italiana

La zincatura a caldo è un processo industriale che prevede l'applicazione di uno strato

uniforme di zinco su nastri di acciaio dello spessore desiderato. Durante il processo di

galvanizzazione, le perturbazioni causate dai coltelli d'aria e da fattori esterni possono

provocare deviazioni nel percorso del nastro, con il risultato di uno strato di zinco non

uniforme. Per ottenere un rivestimento uniforme, è essenziale ridurre al minimo le vi-

brazioni del nastro implementando misure di stabilizzazione e�caci.

L'obiettivo principale della ricerca è quello di creare uno strumento di facile utilizzo per

simulare e prevedere in modo e�ciente il comportamento di nastri realizzati con vari

materiali, di diverse lunghezze e larghezze. In questa tesi è stato sviluppato un nuovo

modello matematico per prevedere le vibrazioni di un nastro di acciaio durante il processo

di zincatura a caldo.

Il modello si basa sul metodo degli elementi �niti (FEM) e la sua validità è stata con-

fermata dai dati acquisiti da un impianto operativo. Per lo sviluppo del modello sono

stati studiati diversi metodi alternativi, come i minimi quadrati ricorsivi (RLS), le serie

temporali e le equazioni algebriche di�erenziali (DAE) con un approccio acausale.

Dopo lo sviluppo del modello, è stato progettato un controllore per stabilizzare le vi-

brazioni della striscia. Il controllore utilizza una tecnica di posizionamento dei poli con

un osservatore di stato. I test sono stati limitati alle simulazioni. La strategia di con-

trollo è stata studiata per operare sulle frequenze naturali del nastro d'acciaio, lasciando

inalterate le altre frequenze.

I risultati indicano che il modello è in grado di stimare e�cacemente le frequenze naturali

del nastro d'acciaio in base ai suoi parametri meccanici e alle sue dimensioni, allineandosi

con i modi identi�cati sperimentalmente. Il metodo degli elementi �niti viene impiegato

per calcolare la funzione di risposta in frequenza (FRF) del nastro in posizioni speci�che

lungo il nastro e successivamente simulare il processo. Attraverso test di simulazione, il

controllore dimostra la sua e�cacia nello stabilizzare le vibrazioni della striscia a frequenze

speci�che. L'uso di un osservatore è determinante per questo successo, in quanto compensa

la natura non misurabile degli stati.
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1| Introduction

In the industrial landscape, galvanized steel strips play a pivotal role, serving as a cor-

nerstone for a myriad of applications ranging from construction to automotive industries.

The galvanization process, involving the application of a protective zinc coating to steel,

enhances the material's corrosion resistance and durability, thus expanding its utility and

lifespan.

As demands for high-quality galvanized steel continue to grow, understanding and opti-

mizing the galvanization process is of paramount importance to meet stringent quality

standards and economic e�ciency. An important aspect of the galvanization process is

the zinc coating's uniformity, which is crucial for the material's performance and longevity

in any environment.

An excessive amount of zinc can lead to an uneven coating, resulting in a rough surface and

increased material usage. Conversely, insu�cient zinc can lead to corrosion and rusting,

compromising the material's integrity. Therefore, it is essential to achieve a uniform

coating of zinc to ensure the material's quality and durability.

In the past decades, numerous approaches have been proposed for the design of an e�cient

control of the galvanization process.

Recent technological advancements have introduced new types of sensors and actuators

into the galvanization process, enabling the exploration of innovative control strategies.

In the historical context, the control of steel strip vibrations relied exclusively on air knives

to avoid any direct physical contact with the strip, which could compromise its integrity.

This constraint imposed limitations on the types of actuators and sensors applicable to this

speci�c application. When relying solely on air knives, control over strip vibrations faced

several challenges: lack of strip positional information, the use of outdated sensors resulted

in insu�cient information regarding the positional state of the strip. Sudden changes in

strip speed introduced varying measurement time delays, complicating the control process.

Absence of air Knife position skew controllers and The lack of controllers for adjusting

the position of air knives led to non-uniform air �ow, contributing to irregularities in the
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deposited zinc layer.

These limitations underscored the need for advancements in sensor and actuator tech-

nologies, prompting the exploration of new control strategies to address these challenges

and enhance the galvanization process. The most promising of these technologies has

been the usage of a magnetic stabilization systems. This system is composed a series

of electromagnets positioned on both sides of the strip. Based on the fed current, they

apply an attractive force to the strip, pulling in the strip from one side or the other. This

system is capable of providing a more accurate control of the strip's vibrations, as it can

be adjusted to the strip's position and speed.

The prevailing literature and current methodologies for controlling the galvanization pro-

cess primarily rely on PID controllers implemented in both magnetic and air knife sta-

bilization systems. While PID systems excel in managing predominantly linear systems

and known dyanmics, as we will elucidate, steel strip vibrations at higher frequencies can

only be accurately described by a nonlinear model.

The analysis of PID controllers reveals their pro�ciency in tracking and controlling signals;

however, their e�cacy is challenged in the context of the galvanization process due to

its unpredictable system evolution. The inherent time delay between input and output

ampli�es these challenges, particularly when dealing with the nonlinear dynamics of steel

strip vibrations.

This thesis embarks on a comprehensive exploration of galvanization processes, with a spe-

ci�c focus on applications involving steel strips. The study aims to deeply investigate the

intricacies of the galvanization process, encompassing underlying principles, techniques,

and factors in�uencing the quality of the zinc coating. Furthermore, it seeks to integrate

advanced methodologies, including computational simulations and empirical analysis, to

optimize the galvanization process for steel strips.

The primary objective of this research is to enhance the production of galvanized steel

strips by gaining a comprehensive understanding of the dynamics governing the vibrations

and subsequently controlling them. The ultimate goal is to achieve a uniform, high-quality

zinc coating.

By unraveling the fundamental principles shaping the galvanization process and employing

state-of-the-art analytical tools, this study aspires to o�er valuable insights and recom-

mendations. These contributions are intended to advance galvanized steel strip produc-

tion, fostering sustainability and innovation within the industry.

In Chapter 1, we will provide a concise overview of the galvanization process, delving into
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its historical background and diverse sections. This chapter will also address the primary

challenges associated with the process, outlining the main actuators, disturbances, and

prevalent control strategies employed in the industry.

Moving on to Chapter 2, our focus will be on delineating the principal mathematical

models utilized in the literature to elucidate the vibrations of steel strips, elucidating

their key characteristics.

In Chapter 3, we will expound on the acquisition process of data from an actual plant

and detail the subsequent data processing procedures.

Chapter 4 will be dedicated to outlining the methodology employed in calculating the

Frequency Response Function (FRF), with a speci�c emphasis on the application of the

Finite Element Method (FEM) to compute the FRF of the steel strip.

Chapter 5 will delve into the description of the control scheme, featuring the adoption of

a pole placement technique in conjunction with a state observer. Notably, the testing of

this control strategy has been limited to simulations, and the approach is meticulously

designed to target the natural frequencies of the steel strip while leaving other frequencies

una�ected.
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2| Process Description

2.1. Hot Dip Galvanization

Figure 2.1: Steels strips - galvanized product

Hot-dip galvanization is an industrial process that entails immersing a speci�c product

into a pool of liquid zinc. The primary objective of this procedure is to safeguard the

product from corrosion caused by environmental factors. The end product are steel strip

plates which are used in a variety of applications, such as automotive, construction, and

manufacturing industries.

This chemical treatment ensures low maintenance or even maintenance-free corrosion

protection, e�ectively shielding against natural elements, preserving value, and improving

overall quality of life of the product.

Corrosion protection is achieved through the application of protective layers, e�ectively

isolating the metal material from corrosive agents. These protective layers can be applied

to steel products using various methods, such as wire galvanizing, tube galvanizing, or

wire spraying galvanizing.

There are several types of hot dip galvanization methods, such as batch galvanizing, tube

galvanizing, wire galvanizing, sheradizing and spraying galvanizing, each with its own

advantages and disadvantages. These vary from the size of the product, the thickness of
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the coating, the speed of the process, the cost of the process, the quality of the coating

and the di�erent shapes of the product to be galvanized.

Within the scope of this thesis, our emphasis is placed on continuous sheet galvanizing,

speci�cally continuous hot-dip strip galvanizing, as the preferred method. This choice

is motivated by our work with thin mild steel strips. This method ensures a consistent

and high-quality protective coating. Understanding the nuances of this process is vital

for comprehending the potential advantages and limitations it o�ers in terms of corrosion

protection and its implications for the industry.

2.1.1. Continuous Hot-Dip Galvanizing Line

Continuous hot-dip galvanization follows these main steps:

Figure 2.2: Continuous hot-dip galvanizing line general scheme

The inputs are rolls of steel sheets or plates which are unrolled and fed into the galva-

nization line. The steel strip is then processed through a series of steps, which are:

1. Pre-Cleaning: Steel or iron products are �rst thoroughly cleaned to remove any

dirt, grease, oil, or other contaminants. This step is crucial to ensure good adhesion

of the galvanized coating on the �nal product.

2. Degreasing: Products are immersed in a degreasing solution to remove any re-

maining grease or oils.

3. Pickling: The products are then immersed in an acidic solution (typically hy-

drochloric acid) to remove rust, mill scale, and other impurities from the surface.
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Pickling creates a clean and chemically active surface.

4. Fluxing: After pickling, the products are dipped in a �ux solution (usually a

mixture of zinc ammonium chloride) to promote uniform coating and enhance the

adhesion of the zinc during galvanizing.

5. Galvanizing Bath: The cleaned and �uxed products are immersed into a bath of

molten zinc at a high temperature (around 450° C to 460° C). The high temperature

allows the zinc to bond metallurgically with the steel or iron, forming a zinc-iron

alloy layer.

6. Cooling: After galvanizing, the products are slowly withdrawn from the zinc bath

and allowed to cool in the air or in a quenching bath to solidify the zinc coating.

7. Inspection and Quality Control: The galvanized products are inspected for

coating thickness, uniformity, adherence, and overall quality to ensure they meet

the speci�ed standards and requirements.

8. Drying and Curing: The galvanized products may undergo a drying process to

remove excess moisture and ensure the coating is properly cured and hardened.

9. Finishing and Packaging: Depending on the application and requirements, the

galvanized products may undergo additional processes such as passivation, chromat-

ing, or painting for enhanced corrosion resistance or improved aesthetics. After this,

the products are packaged and prepared for distribution or further use.

This thesis focuses around the coating segment of the process, which has equal im-

portance as many other segments now described, but little delays or excessive vibrations

in this segment can cause a bottleneck for the entire process.

2.1.2. Coating Segment

Let's describe into more detail the coating segment of the hot dip galvanization process.

The following picture shows it in a simpli�ed manner:

Concentrating on this speci�c segment of the process, the mild steel strip is projected

forward via motors through a series of rollers, which guide it into di�erent directions.

Several rollers place the strip into descending direction as seen in �gure (a), coming from

an annealing furnace. The strip is immersed into a pool of liquid zinc where it forms an

inter-metallic layer with the steel when they are in contact at high temperatures at around

450° C. Following that, the bottom roller guides the strip vertically, while the correction
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Figure 2.3: Coating Segment[2]

rollers ensure that the strip moves in the correct vertical direction. Its verticality allows

excess zinc to �ow into the pool uniformly without loss of material. Though the strip

is now covered in zinc, a speci�c thickness of said layer is an important parameter to

consider for an optimal result.

A minimum thickness is required by industrial standards to protect the steel from exter-

nal contagious elements, and a maximum thickness is a necessity not only for economic

purposes, since zinc is an expensive material in liquid form, but also for the weight of the

�nal product.

In this vertical section, the steel strip is moving at a certain speed and a series of air

knifes push a stream of pressured air on the strip in order to remove any liquid zinc in

excess. This also aim to shape a uniform layer of zinc on the strip, usually as thin as

60µm. This will be considered as our primary disturbance, which we will dwell deeper

later. The air knives shoot pressured air from both sides cycling in accordance with a

switching system. Here we are arriving to the main point of this thesis. While the strip

undergoes a vertical movement, it also undergoes a longitudinal movement due to the air

knifes and other minor factors which will be described afterwards.

The crucial factor is the longitudinal position of the strip in relation to its equilibrium

position. This stability not only constrains the speed at which the line can operate but
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Figure 2.4: Rollers[6]

Figure 2.5: Air knife, the main source of the vibrations

also signi�cantly impacts the quality of the �nal product. It's evident that a more stable

strip allows for a more uniform coating, contributing to an overall improvement in the

�nal product. Moreover, a faster production line translates to a higher output of �nished

products, thereby bolstering company pro�ts in the long run. Consequently, the task of

ensuring strip stability is of paramount importance.

Historically the air knifes were used both as actuators to stabilize the strip and to remove

excess zinc. However, this approach proved to e�ective, but with constraints on the

thickness of the zinc layer. To address this issue an emerging standard practice is to

utilize an electromagnetic strip stabilizer. Electromagnetic coils generate controlled

magnetic �elds which interact with the steel strip, exerting an attractive force, minimizing
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lateral movement, and counterbalancing external disturbances. Magnetic forces stand out

as the current solution, as they possess the capability to counteract vibrations at high

frequencies without physically contacting the strip, thereby avoiding any alteration to the

coating.

Figure 2.6: Electromagnetic Stabilizers using DC

Many inductive displacement sensors are used to measure the distance of the steel strip

from a �xed position, which is the sensor's position. It does so by generating an elec-

tromagnetic �eld, same in nature as the stabilizers, and detecting changes in inductance

caused by variations of the distance between the sensor and the target.

Figure 2.7: Inductive Sensors, magnetic �eld generated by the coil

Afterwards the strip undergoes controlled cooling, solidifying the zinc coating through

another series of cooling jet streams of air. While the cooling progresses, the galvanized

strip may be further treated to ensure an even surface. It's then inspected for coating

thickness, uniformity, and overall quality. Any necessary adjustments or corrections may

be made at this stage.
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2.2. Importance of the Electromagnetic Stabilizer

Figure 2.8: Electromagnetic Stabilizer structure - External view

The previous literature and the current standard of magnetic stabilizers had the main

purpose of controlling the system based on the known disturbances. These known dis-

turbances are associated to mechanical component, such as the rollers which direct and

correct the �ow of the strip. Previous controls in industry are able to handle this known

disturbances at low frequencies between 0 and 10 hertz with classic control algorithm.

Our scope is to tackle the unknown disturbances, whose source will be explained

later. The main concept to keep in mind is these disturbances have lower magnitude but

spread on a wider frequency spectrum. For these vibrations the sources magnitude and

frequencies are unknown, so we will use a white noise excitation to simulate this kind of

interfences. They are most likely impulses which then excite the resonance frequencies of

the strip, which cause the perturbations we observe.

2.2.1. Source of the Vibrations

The source of the vibrations are:

� Air knifes: known disturbance, but not controllable since they serve to uniform the

zinc layer

� Rotation of the mechanical parts, speci�cally the rollers: known frequencies since

mechanical properties and dimensions are known
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� External disturbances from environment: unknown frequencies, not controllable

Since the mechanical frequencies are known, a control action has already been devel-

oped and deployed to counteract vibrations of this kind. This control action is a PID

(Proportional-Integral-Derivative) controller, included in the galvanization line thorough

PLCs.

Danieli Automation has developed an architecture with electromagnets which is able to

counteract these vibrations at higher frequencies, but it is not able to control the strip at

a high frequency. The main reason is that the control action is based on a model which

is not able to explain accurately the behavior of the strip at a higher frequency. This

unique application has 2 di�erent distinguished components:

� Electromagnetic coils based on DC (Direct Current) component which can be used to

generate a magnetic �eld in order to control vibrations at a low frequency, targeted

an known inputs.

� Electromagnetic coils based on AC (Alternate Current) component which can be

used to generate a magnetic �eld in order to control vibrations at higher frequencies,

for unknown elements.

Figure 2.9: Danieli Electromagnetic Stabilizer

The emerging frontier lies in the control of vibrations at high frequencies, as these can be

elucidated using more intricate models. In the contemporary industry, steel sheets and

plates exhibit variations in width, thickness, length, and diverse chemical and physical

properties. Vibrations at higher frequencies, particularly those originating from unknown

sources, trigger resonance frequencies in steel strips based on their mechanical and physical

characteristics. The ability to create a simulated environment for developing a speci�c

control strategy tailored to any type of strip holds the potential to signi�cantly reduce

costs and production line time.
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In con�guring these industrial lines, numerous variables and elements must be considered

for a speci�c strip. Some parameters rely on experience, while others are �ne-tuned during

the initial production phase. Simulated environments prove invaluable in minimizing the

duration of initial production and cutting down on production line costs.

Presently, there are models capable of interpreting data acquired from high-frequency vi-

brations, employing nonlinear models. However, these models often sacri�ce simplicity in

application. Consequently, we will initially explore a linear approach, seeking a technique

that is more easily applicable.





15

3| Theory of Vibrations

3.1. Theory Vibration and Modal Analysis

3.1.1. Representations

There are di�erent ways to represent a mechanical vibrating system. We will treat and
use each of these representations in this thesis, since each of them has its own uses.
Spatial Representation

� M is the mass matrix

� K is the sti�ness matrix

� C is the damping matrix

Figure 3.1: Spatial representation of the system

The matrices are in the form of NxN, where N is the number of degrees of freedom of the
system, as well as the number of equations of motion. The representation sees the system
as a series of mass connected via dampers and springs.

Modal representation

Figure 3.2: Modal representation of the system

� [λ] .. spectral matrix, diagonal, eigenvalues are on the diagonal

� [Φ] .. mode shape matrix, columns are the modal shapes
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Frequency representation

� H(ω)..frequency response function matrix

Figure 3.3: Frequency representation of the system

Each of these will have its di�erent scopes:

� Spatial representation: for the computation and simulation of the system

� Modal representation: for the validation of the identi�ed model and the comparison
with the spatial representation

� Frequency representation: for the Identi�cation of the modal frequencies from data.

3.1.2. Vibrations and Modal approach

Our goal is to develop our mathematical model which explains how the steel strip vi-

brates longitudinally in response to a certain disturbance, and then simulate it via a

Finite Element Method. This method is a widespread in the industry to simulate com-

plex geometries with limited computational complexity, without requirements on complex

software and easily explainable to the engineers.

Firstly to understand the external disturbances we need to understand how vibrations

work and their sources. Vibration is a repetitive motion of an object around an equilibrium

point. For a general mechanical system composed of n body masses, it can be modelled

with n degrees of freedom in a linearized form in the following way:

[M ]ẍ+ [C]ẋ+ [K]x = F (t) (3.1)

� [M ] is the mass matrix N ×N

� [C] is the damping matrix N ×N

� [K] is the sti�ness matrix N ×N

� ẍ is the acceleration vector

� ẋ is the velocity vector

� x is the displacement vector

� F (t) is the external force vector
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If we know all the parameters of the system of these 3 matrices, we can simulate the

behavior of the system in any condition. This approach is easy to understand and rel-

atively easy to compute for low order systems, but as the degrees of liberty increases,

computations becomes exponentially complex since the state of a single degree of freedom

is dependent on the other states. To mitigate this issue, a commonly adopted method

is modal analysis. This technique translates the position and movement of the n de-

grees of freedom into a function of the modes of vibration rather than the position of a

point of mass. This approach, known as the Modal Superposition Approach, can be

interpreted as the superposition of n single degrees of freedom that are independent of

one another, this is a key concept. This innovative degree of freedom is termed nodal

modes, illustrating how a structure or material vibrates in simple terms:

[M ]ẍ+ [C]ẋ+ [K]x = F (t) (3.2)

1. M represents the mass matrix in its new representation as a function of modal nodes

N ×N .

2. C represents the damping matrix in its new representation as a function of modal

nodes N ×N .

3. K represents the sti�ness matrix in its new representation as a function of modal

nodes N ×N .

3.1.3. Modal approach and Frequency Response Function

When it comes to the steel strip, estimating the mass is straightforward, given the known

material and dimensions of the strip. While sti�ness and damping matrices can be com-

puted using properties of the material and the geometry of the strip, this approach tends

to be generalized.

Alternatively, utilizing data directly from the plant enables us to customize the model to

the speci�c steel strip under consideration. However, for other parameters related to C

and K, experimental data is essential to complement the theoretical approach.

Since the modal approach allows us to consider each resonance frequency independently,

we can use a superimposition approach. Consider the transfer function from a force

applied to physical coordinate k to the displacement of physical coordinate j:
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Gjk(iω) =
N∑

n=1

X
(i)
0j X

(i)
0k

−Ω2mii + iΩcii + kii

(3.3)

� X
(i)
0j is the modal displacement of the j-th coordinate

� X
(i)
0k is the modal displacement of the k-th coordinate

� M ii is the modal mass of the i-th coordinate

� Cii is the modal damping of the i-th coordinate

� Kii is the modal sti�ness of the i-th coordinate

� Ω is the discrete frequency considered

This explains how the resulting displacement on a speci�c K coordinate is the sum of all

the modal displacements of resonance frequencies on coordinate K. From this equation,

we can not only plot how the strip behaves at any frequency, but we would be able to

identify the parameters for the modal matrices C and K. Mechanical systems that vibrate

theoretically possess in�nite resonance frequencies and modes of vibration. The term

"natural frequency" denotes a speci�c frequency at which the system naturally vibrates,

while the concept of "mode" elucidates the particular manner in which the vibration

occurs.

So now we are considering a system which explains a structure of a massive mass based

not on the position of its point but on its resonance frequencies and its modal nodes. This

way of reasoning can be applied to simple structures and through wave equations we can

simulate the behavior of the structure.

3.1.4. Masses and Springs Model

An important simpli�cation we make to achieve a working model is to assume the steel

strip to be static, instead of being dynamic and moving along the rollers. We

will now show how, though we have di�erent modes of vibration, only one of them is

relevant for our analysis. The strip is under tension and the rollers are bending the strip

in di�erent ways.

In the �gure below, we show how the strip is being bent. Note the pass line is the

equilibrium point of the strip. Based on the following paper, The vibrations in hot dip

continuous galvanization systems are of 3 di�erent natures: [4]
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Figure 3.4: Coating segment bending

Figure 3.5: 3 di�erent types of vibrations

1. String Mode This has more transversal movement, and it is the one we are more

interested in

2. Twisting The extremes of the section are in counter-phase.

3. Flapping The extremes of the section are in phase.

Due to this consideration theoretically every steel strip owns three di�erent kind of in�nite

resident frequencies and modes of vibration. The papers authors concluded that in the

context of galvanization lines, the �apping e�ect is negligible, whereas the string mode

and twisting are of paramount signi�cance.

Consequently, in our current 1D model, we will only account for and explain the string

mode. The twisting mode, on the other hand, necessitates a 2D model, which could

provide a more accurate description of the system but demands increased complexity.

It's important to note that the twisting mode corresponds to a distinct type of vibration

occurring in a di�erent dimension. In the �nal analysis, our primary focus lies on the

string mode.

So, considering only a string as way of vibrating, a system in one dimension can be seen as

a series of masses and springs connected together, tied together and linked to extremities
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who are �xed. Utilizing classical de�nitions for both the mass and the sti�ness:

Mtot = ρ · w · h · l

Ktot =
σ·w·h·

l
+ σ·h3·E

12·l3

� w is the width of the strip [m]

� h is the thickness of the strip [m]

� l is the length of the strip [m]

� E is the Young's modulus of the strip [Pa]

� ρ is the density of the strip [kg/m3]

� σ is the tension of the strip [N ]

In this application, the steel strip is �xed in position from two rollers, one bottom roller

immersed in the bath of zinc, and one top roller at 20 meters from the bottom roller. The

steel strip stretches in length for 20 m, in width for 1 m and in thickness for 1.5 mm,

making it a very thin and long structure. In essence, a complex geometrical shape exhibits

various natural modes, representing di�erent ways in which it can undergo bending. As

we just saw, we will be considering only one. The sti�ness parameter Ktot is the sum of

the sti�ness of the material, physical propriety, and the sti�ness of the stress applied to

the strip from both sides along it's length. The strip is under tension and the rollers are

bending the strip.

Given that we are discussing thin strips or elements with a structure measuring just a few

millimeters (1.5 mm), it becomes evident that the element related to the tensioned string

is nearly negligible. This is because we are dealing with elements that are signi�cantly

wider in terms of length and width compared to their thickness.

As a result, we aren't committing a signi�cant error by disregarding the second element

of sti�ness. This conclusion leads us to assert that, in terms of oscillations, a stretched

tape behaves in practice much like a rope. Therefore, we can apply the same equations

used for ropes to calculate resonance frequencies and the modes shapes.

Resonance frequencies of a rope:

fn =
n

2l

√
σ

ρ
(3.4)

Where n is the mode of vibration, l is the length of the rope, σ is the tension of the rope

and ρ is the density of the rope. Thus we now have a theoretical model to determine the
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resonance frequencies of the steel strip.

⊛Mode 1 2 3 4 5 6 7 8 9

Hz 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45
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3.2. Finite Element Method

Now that we can compute the resonance frequencies of the steel strip, let's determine a

way to simulate the behavior of the strip.

Theoretically the masses are represented as points in the spatial representation, whereas

we are considering an expanded and �at steel strip, a di�erent and larger geometry. In

this case the normal theoretical approach isn't feasible, since we are considering a complex

geometry, and we need to represent it into matrices. Using the Finite Element Method we

discretize the long steel strip into smaller elements to analyze their mechanical behavior.

Imagine the steel strip as a continuous material, but for the sake of analysis, we divide

it into smaller elements. These elements can be linear or curved, approximating the

strip's geometry. The strip is essentially meshed, forming a �nite number of elements.

Next, we consider the behavior of each element using relevant equations and principles

of material mechanics. The FEM employs mathematical modeling, often using equations

derived from elasticity and stress-strain relationships, to simulate the deformation and

stress distribution within each element. The key is to establish how these individual

elements interact with each other at their boundaries, sharing forces, displacements, and

stresses. This interaction is represented through a system of equations based on the

physical properties of the material and the element's geometry, which will be represented

via the mass, spring and damper matrices mentioned above: M , K and C By solving these

equations for the entire mesh of elements, we obtain a comprehensive understanding of

how the steel strip responds to various set of external loads, boundary conditions, and

constraints.

When examining the steel strip along its length, even though we are dealing with a

segment that could be as long as 20 meters or more, with a thickness of 1.5 mm and a

width of 1 meter, we can simplify this segment as a beam. A beam is a structure longer

in one direction and shorter in the other two compared to the �rst. Consequently, we are

compressing the structure into one dimension, which is the length of the beam.

We are splitting the beam into smaller elements, which are the Finite Elements, with the

aim of simulating the behavior of the entire beam, once the resonance frequencies of beam

are known.

An important assumption for FEM materials would be to have each �nite element single

stand-alone system to have its own natural frequencies higher than the maximum forcing

e�ect frequency Ωmax applied on any point of the system
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Ωmax ≪ ωk1 (3.5)

being ωk1 the lowest natural frequency of the system of the k-th FE element.

We know that boundary conditions a�ect the natural frequencies of the system, but won't

change their magnitude of the vibrations, we can consider that:

ωk1 =
π

L

2
√

EIk
mk

≫ Ωmax (3.6)

This leads us to conclude the maximum length of the beam of the FEM element should

be:

Lk ≪ Lk,max =
π√

csΩmax

4

√
EIz
m

(3.7)

Where Ωmax is the maximum frequency of the excitation disturbance, E is the young

modulus of the material and Iz is the moment of inertia around the length axis, and m

the mass.

This limits the length of the FEM beam element, and we will need to consider a higher

number of elements to represent the entire length of the steel strip.

Lk,max =
π√

csΩmax

4

√
EIz
m

= 1.57meters (3.8)

� Ωmax is the maximum frequency of the excitation disturbance = 15[Hz]

� E is the young modulus of the material = 2.1e11[Pa]

� Iz is the moment of inertia around the width axis 1.3021e− 08[m4]

� Cs is the "safety coe�cient" = 2

� m the linear mass = 48.7500[Kg/m] = [ρ ·m2]

The theoretical maximum length of the beam element is 1.57 meters, but we will consider

a length of 1 meter for the beam element.
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3.2.1. Finite Element matrices

Let's establish the Finite Element matrices for the simulation. While we can theoretically

compute a Frequency Response Function (FRF) for any force and any point in the system,

the Finite Element Method enables the derivation of a more personalized FRF from any

point to any point. If we had a system with 20 degrees of freedom, we would need to

determine the mechanical equations for each degree of freedom. Additionally, we can

simulate the transformation of the system in the time domain, extending this approach

to a velocity and acceleration domain.

The steel strip will be simulated as a series of masses, springs and dampers connected

together. We are taking into consideration a sheet long 20 meters, and we are dividing it

into 20 elements, each element is 1 meter long Thickness and width are considered in the

mass constant m̃.

For each of the 20 elements, we will consider 3 degrees of freedom:

� Axial displacement ui

� Transverse displacement vi

� Rotation θi

Leading us to have 6x6 matrices for each element, and a total of 120x120 matrices for

the entire system. This is a very large system, but the length of the beam is within the

maximum length admitted from the FEM assumption we mentioned earlier. Mass matrix

for the local element

mL = m̃ · l



1
3

0 0 1
6

0 0
0 13

35
11l
210

0 9
70

− 13l
420

0 11l
210

l2

105
0 13l

420
− l2

140
1
6

0 0 1
3

0 0
0 9

70
13l
420

0 13
35

− 11l
210

0 − 13l
420

− l2

140
0 − 11l

210
l2

105

 (3.9)

Sti�ness matrix for the local element

kLax =
EA

l



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.10)
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Contribution of the longitudinal de�ection

kLfl = EJ



0 0 0 0 0 0
0 12

l3
6
l2

0 −12
l3

6
l2

0 6
l2

4
l

0 − 6
l2

2
l

0 0 0 0 0 0
0 −12

l3
− 6

l2
0 12

l3
− 6

l2

0 6
l2

2
l

0 − 6
l2

4
l

 (3.11)

Contribution of the axial de�ection due to the tension force

kLP = P · l
2

30



0 0 0 0 0 0
0 36

l3
3
l2

0 −36
l3

3
l2

0 3
l2

4
l

0 − 3
l2

−1
l

0 0 0 0 0 0
0 −36

l3
− 3

l2
0 36

l3
− 3

l2

0 3
l2

−1
l

0 − 3
l2

4
l

 (3.12)

Assmebly of the global sti�ness matrix

kL = kLax + kLfl + kLP (3.13)

For the damping matrix, we will consider a damping ratio of 0.001, which is a very

small damping ratio, but it provides a reasonable approximation for the steel strip. For

this �rst approach, we considered such a low damping ratio since metallic ma we used

a heuristic approach to identify the damping matrix, but we will later on use a more

accurate approach to identify the damping matrix.
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4.1. Identi�cation of a Steel Strip Modal nodes

The data raw data coming from the sensors is not usable, it needs to be preprocessed and

cleaned. The software IBAAnalyzer is used to clean the data and obtain a more usable

format. The data is then processed in Matlab to obtain the Frequency Response Function

(FRF) of the steel strip. In this segment is to identify the modal shapes and frequencies

of a steel strip, via measurements coming from the sensors of the line.

Let's �rst describe the actuators and sensors involved in out system:

Air Knifes

Figure 4.1: Air Knifes

The actuator are the air knifes which apply pressurized air along a thin and wide area

on the steel strip to both remove from the steel strip the excess of zinc and to cool down

the steel strip, after being immersed in a 450° C zinc bath. They act on both sides never

together, but always in an alternate way. In our control system, these air streams function
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as disturbances to the steel strip unpredictably. As their switching law is unknown, and

their magnitude is not constant, we will utilize white noise to simulate their e�ect on the

steel strip. The maximum amplitude of the white noise is set at 100 N.

Inductive Sensors

Figure 4.2: Magnetic Stabilizer dimensions (left) and Magnetic Field Generated (right)

Across the width of the air knives there are 8 of these sensors on both sides, for a total

of 16, which measure their distance from the steel strip. They have a standard range

of 25 mm, with a static resolution of 0.01 mm, so they are able to work reliably with a

high precision. They sense the variation of the magnetic �eld they generate caused by the

presence of the steel strip. Though these sensors work using magnetic �elds, thus applying

a force on the ferrous strip, the magnitude of such attractive force is trivial compared to

the actuators and other forces in play.

4.1.1. Vibrational Analysis

We need to identify experimentally the natural frequencies of the steel strip. We could

obtain them by using theoretical result by applying vibrational theory using the strip

proprieties, but reality usually never matches the theory. To have a more concrete and

practical approach we will be using data.

Through ammeter we can measure the current applied to the magnetic stabilizers. The
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values have been collected via several experiments.

The data collected is available in the following table:

� time: in seconds

� current: in Ampere applied to electromagnet i-th on the front.
∑8

i=1 currenti =

currentappliedtoelectromagneti− th

� current_back: in Ampere applied to electromagnet j-th on the back.
∑8

j=1 currenti =

currentappliedtoelectromagnetj − th

� position: in mm of the steel strip from the front.
∑8

i=1 positioni = positionofthesteelstripfromthefront

� position_back: in mm of the steel strip from the back.
∑8

j=1 positioni = positionofthesteelstripfromtheback

The data collected has been processed in order to obtain a simple format, coming from

both sides. It has been seen that the data coming from the front and back are very similar,

only reversed. This corroborates the accuracy of the data collected.

We can use data given by the induction sensors to perform a vibration analysis of the

steel strip. Vibration analysis is a technique used by analyzing signals which can have

two di�erent goals:

1. Signal Analysis: to assess the nature and origin of vibrations

2. System Analysis: in order to derive a mathematical model of the system

In our case, our primary interest lies in the system analysis. We can acquire signals

from the sensors during both operational and non-operational conditions. Operational

conditions refer to when the plant is actively running, while non-operational conditions

pertain to periods when the plant is not functioning. From a theoretical standpoint, it is

more prudent to collect data during non-operational conditions since the system is not in

operation and is not subjected to external stimuli.

Due to the nature of the system in study, only during operating conditions data was avail-

able. Any still time in the galvanization leads to thousands of lost pro�t and additional

cost, so they are rare.

4.1.2. Frequency Response Function

To extrapolate the desired resonance frequencies of the strip in order to obtain exper-

imental natural frequencies, we will be using the Frequency Response Function (FRF).

It's a function which describes the output spectrum of a system relative to a given input



30 4| Steel Strip Modes

spectrum. In our case, the output signal is the position detected by the induction position

sensor, while the input signal is explained in the following paragraph.

The input signal is derived by the electromagnetic stabilizer, a complex and re�ned system

of electromagnets. These electromagnets working some in AC and some in DC, the reason

has already been explained. There is a set working in AC on both sides of the strip.

Then each is positioned between di�erent 2 sets of electromagnets working in DC, for a

�nal count of 6. Each set is composed of 8 electromagnets who are able to generate an

attractive magnetic force, pulling the steel strip towards them, working independently of

one another. The hold the following structure:

Figure 4.3: Slow actuators (DC) and fast actuators (AC)

By working in synchronization the electromagnets from both sides can ideally maintain

the steel strip in a stable position, pulling it towards them, like a never ending tug of war.

An ideal conclusion would be to �nd the current required to generate a certain force to,

as if we were looking for a proportional relationship, but this is a monumental task to

undertake. As mentioned in the following article,

"the attractive force generated by the electromagnets it is a non-linear function which is

a function of the current applied to the electromagnet and the distance of the steel strip

from the electromagnets. The following plot from a paper describes better the following

concept":[5]

To add motives to this simpli�cation and address this challenge, we will use the force

applied to the strip as the input signal for our Frequency Response Func-
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Figure 4.4: Force generated by the electromagnets[5]

tion, rather than the current. This decision can be further justi�ed by the following

considerations:

1. We can create a high-frequency (hundreds of hertz) control loop for the current.

In this context, any changes in voltage V or current i can be viewed as a rapidly

varying disturbance, which any controller can e�ectively reject. From a mechanical

system perspective, the current loop operates so swiftly that we can assume current

changes occur instantaneously.

2. The potential transfer function between the input current and the output applied

force exhibits a very low time constant and a high bandwidth. As a result, it

changes rapidly, and its magnitude has minimal impact on the overall outcome. It

can e�ectively be considered a unitary gain. In contrast, the mechanical response

of the strip has a higher time constant and a lower bandwidth, causing it to change

more slowly.

3. The frequencies of interest are in the range of 1 to 100 Hz. The current loop operates

at a much higher frequency, and reaches steady state conditions way faster.
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Air Knifes

A basic FRF can be obtained by using the following formula:

H(ω) =
output

input
=

movement

force
=

response

excitation
(4.1)

The FRF has 3 di�erent basis: displacement, velocity and acceleration. A more precise

de�nition of the FRF is the following:

αjk =
xj

Fk

=
N∑

nr=1

Φr
jΦ

r
jk

λ2
r − ω2

(4.2)

� αjk is the receptance matrix

� λr is the eigenvalue of the rth mode (modal frequency + modal damping)

� Φr
j the jth component of the rth natural shape vector (modal shape). i.e: {Φ}

relative displacement at the jth degree of freedom of the rth shape

� N is the number of modes considered

There are several testing con�gurations available which can be compared: SISO, SIMO,

MISO, MIMO.

1. SISO: Single Input Single Output

2. SIMO: Single Input Multiple Output

3. MISO: Multiple Input Single Output

4. MIMO: Multiple Input Multiple Output

The signal is measured in time domain, but it is analyzed frequency domain using the

FFT (Fast Fourier Transform) algorithm. If we have a SISO representation, we can use

the following formula to obtain the FRF:

Xp =
Hpq

Fq

(4.3)

or in a MIMO representation:
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

X1

X2

..

..

Xn


p

=



H11 H12 .. .. H1n

H21 H22 .. .. H2n

.. .. .. .. ..

.. .. .. .. ..

Hn1 Hn2 .. .. Hnn





F1

F2

..

..

Fn


Where X represents the position of the steel strip, H represents the FRF and F represents

the force applied by the magnetic stabilizers. As an example, of the applied force of

application, we can show the following:

Figure 4.5: FRF Theoretical

We can apply an excitation to the strip in di�erent positions, but in case of the current

steel strip, sensor position and excitation position are �xed on the same distance, with

respect to the length of the steel strip.

Sensors and actuators are looked on certain coordinates along the length of the steel strip,

respectively:

� Sensors: 17 m

� Actuators (Electromagnets): 17.5 m

� Air knifes (Disturbance): 18.5 m

In our case we had a MIMO (multiple input multiple output) where the inputs are the

magnetic stabilizers and the outputs are the induction sensors From both sides.

For further research, a 2D model can be developed, which takes into consideration the

twisting of the steel strip. This can be more accurate, but it is also more complex and

requires further studying. The amount of data available makes it a feasible line of research.
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4.1.3. Excitation

Now we have explained why we are using a 1 dimensional approach, we can explain how

we are going to excite the system.

For vibration analysis, various excitation signals can be used, each one with its own

advantages and disadvantages.

� excitation by means of dynamic exciter

� by harmonic signal

� by random signal

� by other types of signals

� impulse excitation

� by means of impact hammer

� step release (from deformed position)

The excitation signal applied was a multi-sine signal, with spanning frequencies from 1

to 100 Hz. Its notable advantage lies in its ability to cover the entire frequency spectrum

of the mechanical system under study within a brief duration, e�ectively exciting all the

modal frequencies. This short testing window enables experiments to be conducted within

an industrial environment during periods of downtime. In the galvanization industry, even

a few minutes of downtime can result in substantial �nancial losses with no corresponding

bene�ts.

The excitation signal was applied to the magnetic stabilizer, using the following formula:

u(t) =
N∑
k=1

Aksin(ωkt+ ϕk)

where: Ak is the amplitude of the signal, ωk and ϕ is the phase of the signal. In a moment

where the plant was not in motion, with no disturbance from the air knifes, this signal was

applied to the magnetic stabilizers. The signal was applied in a single manner, meaning

that the signal was applied to all the magnetic stabilizers at the same time. By reading

the FRF response to an excitation signal, and then observing the peaks of the FRF, we

can identify the resonance frequencies of the steel strip.
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Figure 4.6: Multi-sine signal
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Element Method

5.1. Identi�cation of Modal Parameters

Given our utilization of the Frequency Response Function (FRF), the system is presumed

to be linear and time-invariant. Even though we applied a multi-sine excitation, our focus

will be on the portion of the dataset where the system is free from external excitation,

speci�cally the concluding section. This choice is in�uenced by the realization that the

system didn't have su�cient time during the experiment to reach an unexcited state, a

prerequisite for accurately detecting the natural frequencies.

For this reason, we will exclusively analyze the latter part of the dataset where the system

is devoid of external excitation. In this context, the �nal segment of the multi-sine

excitation can be treated akin to an impulse response. This impulse response concept is

analogous to using an instrumental hammer, and, as such, the concluding segment of the

dataset will be regarded as an impulse response.

So after the impulse response we are observing a free damped motion.

Using both an impulse and multi-sine excitation, we apply an H1 algorithm to obtain an

experimental FRF:

The peaks observed in the frequency domain from the multi-sine excitation are not as

distinct as those obtained from the impulse response. They appear closely spaced and

lack well-de�ned characteristics.

Contrastingly, the peaks derived from the impulse response are clear and exhibit a closer

resemblance to the theoretical results. Consequently, the peaks identi�ed through the

impulse response will be the focus of our analysis.
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Figure 5.1: Impulse Response in Time Domain

Figure 5.2: Receptance FRF obtained using multi-sine excitation
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Figure 5.3: Receptance FRF obtained using impulse response. ∗ corresponds to the peaks
identi�ed

5.1.1. Comparison

Comparing the theoretical modes of vibration to the modes of vibration obtained with

real data from the frequency response functions:

Figure 5.4: Theoretical vs Experimental modes of vibration of a steel strip

We can notice that the theoretical and experimental modes of vibration are very similar,
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but not identical. This is due to the fact that the theoretical model is a simpli�cation of the

real system, and that the real system is not a perfect system. This is very good the since

we are interested only in the �rst modes of vibration, since they are the most energy dense

and powerful. Generally, the higher (in order) is the frequency, the larger is the di�erence

between theoretical (computed) and measured values. We observe that beyond the 10th

mode, the disparity between theoretical and experimental results becomes increasingly

pronounced, indicating that the theoretical model is no longer a robust approximation

of the real system. Therefore, let's explore using only the �rst 10 modes of vibration to

simulate the system.

The table below are the resonant frequencies of the system, identi�ed from the FRF

theoretically and experimentally using the data provided by the multi-sine excitation, or

speci�cally the impulse response of the system.

Table 5.1: Experimental and Theoretical Vectors

Index Experimental Theoretical

1 0.1831 0.0670

2 0.3662 0.1840

3 0.5188 0.3600

4 0.7630 0.5950

5 1.1292 0.8880

6 1.5564 1.2400

7 1.6785 1.6510

8 2.0142 2.1210

9 2.2584 2.6490

10 2.4720 3.2370

11 2.7467 3.8830

12 3.1739 4.5880

13 3.5401 5.3520

To make comparison between modes is often done by a simple tabelation of both result

sets, but a more useful form is to draw the experimental value and the theoretical value.

This is done to see if and up to which natural frequencies the theoretical model is a good

approximation of the real system.

In the graph we can see that the theoretical and experimental modes of vibration are very

similar, but not identical. The di�erences should have the tendency that the theoretical

values of frequencies are higher than the measured ones, because usually damping is not

included in the theoretical values whereas measured frequencies are always damped and

thus of lower values. Realize that the more modes of vibration we consider, the more

complex the system becomes, and the more di�cult would become our system.
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It is necessary to choose those points from the theoretical model (which usually has much

more degrees-of-freedom than experimental model) that coincide with the experimental

model.

Figure 5.5: 4 modes of vibration of a steel strip

In this way, not only the degree of consistency between the two sets of results can be seen,

but also the nature and possible causes of the discrepancies.

The drawn points should lie on the line with the slope 1 or near this line. If they lie

near a line with the slope other than of 45°, the cause of this discrepancy is quite sure in

incorrect material properties used for computation. Further on for out control scheme we

will consider only the �rst 4 modes of vibration, for the sake of simplicity.

5.1.2. State Space Representation

In order to simulate the system, we can represent the system in state space form. The

total displacement of the system can be written as a linear combination of each of the

modal coordinates, which are function of the mass, sti�ness and damping of the system,

for each mode of vibration. The state space guarantees the independence of each mode

of vibration, and the linearity of the system.
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(5.1)

� Xi is the modal coordinate of the i-th mode of vibration

� ωi is the natural frequency of the i-th mode of vibration

� ζi is the damping ratio of the i-th mode of vibration

� Fi is the force acting on the i-th mode of vibration
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6.1. Control Scheme

This section is dedicated in explaining the control scheme used to control the steel strip

in simulation. As explained before, we are expressing the moving steel strip as a one di-

mensional system with �xed ends. We have computed the two following transfer functions

from the Finite Element Model:

� sys3638: this transfer function describes the relation between the input force from

the magnetic stabilizer to the output position of the steel strip.

� sys3538: this transfer function describes the relation between the input force from

the air knife to the output position of the steel strip.

The �rst one can be considered as our main actuator, while the second can be considered

as our known disturbance. Remembering, we are aiming to attenuate unknown external

impulses, which act mostly on resonance frequencies of the structure itself. If we applied

a white noise as an input to the transfer function associated to the air knife we are

simulating how the steel strip would react to an external impulse when the air knife is

active up to a magnitude of 100 Netwon.

As described by this following paper[1], we can use the pole placement method to place the

poles of the system in a way that we can achieve the desired response. Out main goal is

attenuate the magnitude in the resonance frequencies, without changing the modes. This

can be achieved by modifying the damping ratios of the natural frequencies.

These can be explained by the following equation:

XA(s) =
m∏
i=1

(s2 + 2ζiωnis+ ω2
ni) (6.1)

By applying the pole placement controller such as:

L(s) = −K(sI−A)−1B (6.2)
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our intention is to obtain the following dynamics:

XA(s) =
m∏
i=1

(s2 + 2ζ◦i ωnis+ ω2
ni) (6.3)

L(s) =

∏m
i=1(s

2 + 2ζ◦i ωnis+ ω2
ni)∏m

i=1(s
2 + 2ζiωnis+ ω2

ni)
− 1 =

β(s)∏m
i=1(s

2 + 2ζiωnis+ ω2
ni)

(6.4)

Figure 6.1: Block Diagram of the system

β(s) =
m∏
i=1

(s2 + 2ζ◦i ωnis+ ω2
ni)−

m∏
i=1

(s2 + 2ζiωnis+ ω2
ni) (6.5)

β(s) =
m∏
i=1

(s2 + 2(ζ◦i − ζi)ω
◦
nis+ ω2

ni) (6.6)

I have to show the di�erence between the two transfer functions, the one with

the pole placement and the one without.

The Control Scheme

The sum of the transfer functions sys3638 and sys3538 can be seen as the �nal longitudinal

position of the steel strip. Some further considerations are needed:

� Measurement noise: The inductive sensors employed for measuring the position

of the steel strip are inherently susceptible to noise, though are very accurate.

� Incomplete measurability of the system state: We rely on the positions of

various resonance frequencies as state space variables, rather than directly measuring

the position of the system itself. Consequently, an observer is necessary to generate

a state space estimation of the state variables, since each resonance frequencies is

not objectively observable.

� Incomplete controllability of the system: While we employ a magnetic sta-
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bilizer to control the system, we cannot exert control over the system across all

frequencies, only the resonance frequencies.

� Introduction of disturbance: A disturbance is intentionally introduced into the

system to account for additional external disturbances of unknown origin.

In case of the unmeasurable state variable, an observer is possible as mentioned by the

paper, as well as the state system associated to the modes being observable.

Output feedback with Observer (left) and Closed Loop System (b)

The resulting closed loop system is given is:

Null
Electromagnets

AirKnife

F Xreal +

Xairknife

Wn

Xdisturbed +

Xnoise

WAK

FAK

Observer
Xmeas

PoleP lacement

−

Fpole

X̂meas

F

� Xreal: real position of the steel strip, sum of all the modal shapes displacements

� F : force applied by the magnetic stabilizer in order to control the steel strip in

position, equivalent to the control signal

� FAK : force applied by the air knife in order to remove the excess zinc

� Xairknife: position of the steel strip caused by the disturbance of the air knife
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� Xdisturbed: position of the steel strip after the disturbance of the air knife

� Xmeas: position of the steel strip after the measurement noise

� Xnoise: white noise added to the system to simulate the measurement noise of the

sensors

� X̂meas: estimated position of the steel strip after the measurement noise on the

Kalman Observer

6.1.1. Control Scheme

The following plots will have on the y-axis the displacement of the steel strip and on

the x-axis the time. The show that our system works, we will apply via the air knifes a

disturbance to the system.

We will be summing the two transfer functions sys3638 and sys3538 to simulate the real

position of the steel strip, which will give us the �nal position of the steel strip, possibly

close to the equilibrium set at 0.

At time output, we will be adding the white noise related to the Measurement noise of

the inductive sensors. Though they are precise, we require to add some noise to simulate

the real world.

Since the position of the resonance frequencies are not measurable, an observer is required.

A Luenberger observer was insu�cient in predicting the state variables accurately, so we

used a Kalman Filter Observer. The Kalman Observer is able to predict to the position

of the longitudinal position of the steel strip based on the previous state and the current

state. This is possible since the Kalman integrates in the model an uncertainty matrix,

which is able to predict the state of the system based on the previous state and the current

state, while the Luenberger observer does not handle measurement noise as e�ciently.

The following system is being disturbed by the air knife. The air knife is a system which

uses a switching signal to stream air on one side only at the time. To simulate this, a

white noise is used. The result is the following:

The observer is able to follow the phase, but the magnitude is not the same, since there

is the added disturbance of the air knife and the measurement noise.

6.1.2. Result in the Pole Placement technique

To show the result of the pole placement technique, we will show the following plots to

compare the system in open Loop without the controller and in closed loop.
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Figure 6.2: Observer result - Real position of the steel strip | Estimated position of the

steel strip for Kalman Observer

Figure 6.3: Open Loop | Closed Loop

The di�erence may not sound so big, but a critical safety condition for the steel strip

would be to not exceed a certain threshold, which can be as tight as 2 cm. The e�cacy of

the system is contingent on the accuracy with which the observer can predict the position

of the steel strip, taking into account the impact of noise.

6.1.3. Sensitivity Function

To show how this system is isolated from other disturbances, we will show the sensitivity

function of the system.

These shown are the transfer Function which have as input a di�erent disturbance and

as output the position of the steel strip, after all disturbances.
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Figure 6.4: Sensitivity Function of the system

� SMeasurement is the sensitivity function of the system with the measurement noise as

input.

� SAirKnife is the sensitivity function of the system with the air knife as input.

� SControl is the sensitivity function of the system with controller signal as an input.

For SFairknife
and SFpole

we can see that the system is attenuated only along the natural

frequencies, while other frequencies are not attenuated or not much at all.

This shows that the disturbances from both the measurement and the air knife are cor-

rectly managed and kept within a certain threshold.

To show in example how this can work, let us consider the same system but with a di�erent

source, in this case a signal outside the natural frequencies of the system.

Figure 6.5: Open Loop | Closed Loop
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Peaks (Natural Frequencies) 1 2 3 4
Air Knife 0.36 0.595 0.889 1.24

Electromagnetic Actuators 0.184 0.36 0.595 0.889

Table 6.1: Natural Frequencies of the FRFs

6.2. Simulation

In the following �gure we can see the result of a simulation of the system with the

controller. The same system has been perturbed by 2 di�erent types of disturbances:

a white noise and a chirp signal. This last one is chosen to show how the system behaves

at di�erent frequencies: The chirp signal slowly increases in frequencies from 0 to 10 Hz

in 1000 seconds. We are showing only the �rst 200 since they are the more relevant for

the system.

First let us remember the transfer function of the sys3835, associated to the air knifes:

Figure 6.6: Transfer Function of the Air Knifes

And the transfer function of the sys3635, associated to the electromagnetic actuators:

Note that the peaks of the following transfer functions correspond to the natural frequen-

cies of the system:

The chirp signal slowly increases in frequencies from 0 to 10 Hz in 1000 seconds. We are

showing only the �rst 200 since they are the more relevant for the system. So at time 100

seconds the chirp signal is at 1 Hz, at time 200 seconds the chirp signal is at 2 Hz and so

on.
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Figure 6.7: Transfer Function of the Electromagnetic Actuators

Figure 6.8: White Noise | Chirp

� At the following frequencies: 0.595 Hz and 0.889 Hz both the air knife and the

electromagnetic actuators are acting on the strip, but the system in closed loop is

able to attenuate the displacement.

� At the following frequencies: 1.24 Hz only the air knife is acting on the strip.

Since the air knife is not controlled by the controller, the system is attenuate and

the system diverges.
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Figure 6.9: Chirp signal

� At the following frequencies: 0.184 Hz only the electromagnetic system is acting

on the strip. The resulting displacement is the e�ect of a high proportional value

of the controller. This suggests to use a lower proportional value for the controller

outside the natural frequencies.

� At the following frequencies: 0.229 Hz, 0.456 Hz, and 0.776 Hz the system is

almost not disturbed since these frequencies are outside the natural frequencies of

the strip, showing how this control system is designed to work on them. These

frequencies correspond to the valleys of the sensitivity function associated to the

control action.

In conclusion, this Simulation shows how the system is able to attenuate the displacement

of the strip at the natural frequencies, while not attenuating the displacement at other

frequencies. This is possible thanks to the pole placement controller, which modi�es the

damping ratio of the natural frequencies, while leaving the other frequencies unchanged.
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7| Conclusions and future

developments

7.1. Conclusions

The overarching aim of this work was to establish a user-friendly tool for e�ciently sim-

ulating and predicting the behavior of strips made from various materials, with di�erent

lengths and widths. In this thesis, a new mathematical model has been developed to

predict the vibrations of a steel strip during the hot-dip process. The primary goal of this

work was to devise a system for simulating the transverse position of the steel strip and

to formulate a control scheme for the steel strip system.

The control scheme, implemented using the pole placement algorithm, yielded satisfactory

results. It e�ectively dampened vibrations in the steel strip at speci�c frequencies while

leaving the others largely una�ected. Simulations demonstrated that the closed-loop

system signi�cantly reduce vibrations compared to an open-loop system with no controller.

Additionally, the system exhibited the ability to act selectively when disturbances match

the identi�ed natural frequencies of the steel strip.

We introduced a novel approach for modeling and obtaining the Frequency Response

Function of the steel strip. This method, grounded in the Finite Element Method, enabled

the acquisition of the FRF at various positions across the width of the steel strip. The

e�ectiveness of this method was validated using data from an industrial plant, and the

simulation results were deemed satisfactory.

7.2. Future Work

Potential future work in this research domain will involve the development of a more

complex model intended to simulate the behavior of the steel strip more accurately. A

two-dimensional Frequency Response Function model will be explored, accounting for
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the width and the thickness of the steel strip. This enhanced model will also consider

other modes of strip vibrations, such as twisting and �apping, which were not explicitly

addressed in this thesis but are present in the steel strip. The proposed system could

leverage data from all eight sensors across the width of the strip, providing a more com-

prehensive understanding of the strip's dynamics.

Another future direction could be using the Virtual Reference Feedback Tuning to es-

timate a nonlinear system for steel strips. This approach was not considered initially

because the data provided did not meet the assumptions necessary for employing this

technique.

Given the substantial amount of data available, one natural step will to use all the data

available to estimate the system. By employing a data-driven control method to estimate

a control model using the u-RLS-3 method, to predict the strip's future position.

A data-driven approach proves to be particularly e�ective in more accurately predicting

nonlinear systems when abundant data is available, as is the case here. Moreover, this

approach o�ers the advantage of estimating the system without relying on a complete

mathematical model, which is advantageous in scenarios where the mathematical model

of the steel strip is either unknown or incompletely known.

Another promising future direction in the realm of simulating mechanical systems with a

plug-and-play approach is the system developed by Professor Gianni Ferretti and Bruno

Scaglioni, as outlined in [3]. This system utilizes Modelica or also Dymola using an acausal

approach, making modi�cations and setups easy without the need to compute equations

or transfer functions for each modi�cation. This system excels in handling open-chain

mechanical systems with ease.
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A| Appendix Beam Theory

A.1. Beam Theoretical FRF

If we take a homogenous beam, with a constant cross-section A, bending sti�ness EI

and density ρ all constant along the length of the beam, and we assume the absence of

axial loads. This condition is particular since steel strip are under tension in the real

world, but from a vibrational point of view it has been seen that the tension is negligible

to compute the resonance frequencies. Also even under dynamic conditions, the beam

undergoes always to bending in a plane of symmetry and the sections perpendicular to

the axis remain plane.

The bending is assumed to progress on a transverse direction z:

Figure A.1: Transverse Vibrations

The beam, along its length, experiences both internal forces and moments that seek to

deform it. These internal forces and moments are contingent upon the deformation of the

beam, while external forces and moments are in�uenced by the position of the beam.

Through some consideration and reasoning, explained more in detail in [7] the following

equation represents the motion of a beam under pure bending conditions. It is described

via a partial di�erential equation (PDE). The equation is a fourth-order linear PDE, which

is a function of the transverse displacement w(x, t) of the beam:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= 0 (A.1)

which transformed and expanded becomes:
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Figure A.2: Internal Forces and Moments which act on a section ξ of the beam

w(x, t) = [A cos(γx) +B sin(γx) + C cosh(ωx) +D sinh(ωx)] · cos(ωt+ φ) (A.2)

with γ = n

√
ρAω2

EIz

This equation needs to be speci�ed for each di�erent boundary condition. The boundary

conditions will a�ect the natural equations ω for the system and the corresponding mode

shapes, while only the initial con�gurations. Each of the coe�cients A,B,C,D can be

determined by the initial conditions of the system and how it is excited. We need two

conditions for each of the two boundary conditions. Since we are working on a long beam

with individual elements limited by 1 meter length the actual beam as a series of smaller

elements, which are connected to each other via various conditions.

We will consider the beam to be �xed at the extremities, since the endpoints of the steel

strip can't move and are located on rollers which are immobile in their position or can

move slightly, while the interconnections between the elements are free to move.

While this explains the position of any point along the beam given an input force, we

need to consider the modal approach to compute the resonance frequencies of the system.

So the displacement of every point of the beam is computed for each mode of vibration,

and the total displacement is the sum of the modal displacements.

wn(x, t) =
∞∑
k=1

Bnk sin(
kπ

L
x) · cos(ωnt+ φn) (A.3)
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A.2. Plotting and Computing FRF

Input: Force Fce
iΩt applied on the steel strip at applied in C, a point along the beam.

Output: W in D, a point along the beam.

Let's express the transverse displacement and the force applied on the as complex variables

as a function of time and modal coordinates.

∂W = ∂W T (xc, t) (A.4)

F (t) = ∂qT (A.5)

Φ(xc) = ∂qTFce
iΩt (A.6)

mq̈i + cq̇i + kqi = Φi(xc)Fce
iΩt (A.7)

Resulting in the complex amplitude of the ith mode modal coordinate:

qi0 =
Φi(xc)Fc

−Ω2mii + iΩcii + kii

(A.8)

The current mode displacement:

Wi0 = Φi(x0)qi(0) (A.9)

Summing all the modes of the system, we can compute the displacement of the steel strip

at any point in time.

WD =
∞∑
i=1

Wi0 =
∞∑
i=1

Φi(x0)qi(0) (A.10)

This Frequency Response Function was obtained by applying 1 Newton of force on the

steel strip at point C, and measuring the displacement at point D.



60 A| Appendix Beam Theory

Figure A.3: Theoretical Frequency Response Function of a beam
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