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Abstract 

This thesis aims at the implementation and comparison of machine 

vision algorithms based on deep learning for the quality control of tomatoes. 

Currently the partner of this thesis, which operates in the field of automated 

industrial food sorting, was not able to build a properly functioning machine, 

since the existing defects pose some specific issues that traditional machines 

are not capable to overcome. Therefore, the partner is interested in the recent 

developments of AI based computer vision and wants to implement such a 

method in a new machine. In this way a system able to substitute cumbersome, 

human labour-based, quality control for tomatoes is created. The goal of this 

thesis is to identify some open-source state of the art machine learning models 

for these needs, adapt them to the specific case, construct a common pipeline 

to handle and optimize them in a standardized way and finally identify the best 

one for the given application. Three classification algorithms and three 

anomaly detection algorithms based on deep learning are applied and 

optimized to this purpose in a python environment. Those optimized models 

are then compared. Comparisons are performed with statistically relevant 

tools to identify the best model for the given application in a robust way. Also, 

some insights on strengths and weaknesses of the different models are given. 

These characteristics could be exploited in other applications similar to the one 

presented. The best model for the case in exam is so identified. This model 

shows high performances, with a mean accuracy of 98.61%, an AUROC of 

99.94% and elaboration times for single image low enough to be integrated 

with the already existing sorting machines. This optimized model is then 

additionally tested on in-field acquired images of the same vegetable obtaining 

an accuracy of 98.56%, proving the robustness of the proposed solution. 

 

Keywords: Food Sorting; Machine Vision; Deep Learning; Python; Keras; 

Tensorflow; Anomaly Detection; Image Classification.
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Sommario 

Questa tesi ha come scopo l’implementazione e il confronto tra 

algoritmi di visione artificiale basati sul deep learning per il controllo qualità 

di pomodori. Attualmente il partner industriale di questa tesi, che opera nel 

settore delle macchine selezionatrici automatiche, non riesce a fornire i propri 

servizi in questo campo perché i particolari difetti presenti nei pomodori 

freschi pongono delle problematiche che i sistemi tradizionali da loro adottati 

non sono in grado di superare. Per questo motivo il partner industriale è 

interessato ai recenti sviluppi dell’intelligenza artificiale nei sistemi di visione 

automatica e vuole sviluppare una nuova macchina usando questi metodi. In 

questa maniera si rende possibile un dispositivo in grado di sostituire il lavoro 

umano in questa gravosa operazione di controllo qualità nella filiera del 

pomodoro fresco. L’obbiettivo di questa tesi è di identificare dei modelli di 

machine learning sorgente aperti per questo scopo, adattarli all’applicazione 

specifica, costruire un architettura comune per gestirli e ottimizzarli in 

maniera standardizzata e infine identificare il modello migliore per 

l’applicazione di interesse. Con questo fine vengono identificati, implementati 

e ottimizzati tre algoritmi di classificazione e tre di rilevamento di anomalie in 

un ambiente Python. Questi modelli ottimizzati sono poi confrontati tra loro. 

Le comparazioni vengono fatte con strumenti statisticamente rilevanti per 

individuare il modello migliore in maniera robusta. Allo stesso tempo in questo 

processo vengono messi in luce i punti di forza dei singoli algoritmi, 

caratteristiche che potrebbero essere sfruttate in altre applicazioni simili a 

quella qui presentata ma con priorità diverse. Viene quindi identificato il 

modello migliore per l’applicazione. Questo restituisce delle prestazioni 

elevate, con un’accuratezza media del 98.61%, AUROC di 99.94% e tempi di 

elaborazione sulla singola immagine abbastanza bassi da poter essere integrati 

con le macchine selezionatrici già esistenti. Questo modello ottimizzato viene 

poi ulteriormente collaudato su immagini di pomodori acquisite in loco con un 

normale smartphone ottenendo un’accuratezza del 98.56%, il che dimostra la 

robustezza della soluzione qui proposta. 

Parole chiave: Visione Artificiale; Controllo Qualità; Deep Learning; 

Python; Keras; Tensorflow; Classificazione di Immagini, Rilevamento di 

Anomalie.
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1 Introduction 

This introduction section is divided in 5 parts. In the first the 

motivations and objectives of the work are stated, after that the literature 

research is given to introduce and briefly describe the working principle of the 

models used. In part three, the datasets used are described and in part four, 

the hardware settings for the experiments are illustrated. In the fifth and last 

paragraph a short outline of the thesis is reported to better understand the 

workflow of the experiments and the structure of the document. 

1.1 Project Objectives 

Quality control in the food industry is extremely important. Since it is one 

of the biggest markets on earth, this process often includes controlling millions 

of items in the production line while maintaining a high quality standard. In 

many cases using human labour to perform this task is very costly and 

represents a strenuous work for the operators. Automated solutions for quality 

check are therefore strongly requested in the food industry. 

However, this sorting procedure is particularly difficult in the case of 

vegetables since each element has a slightly different shape, weight, colour 

and, when it comes to quality control, also the defects can be various. Because 

of that, it is not easy to identify a single simple feature able to distinguish good 

units from bad ones. This means that in some cases it becomes impossible to 

model characteristics of the different classes in strict terms. Because of that, 

classical algorithms based on telling the computer what to do one step after 

another, splitting the problem in smaller simpler tasks is not achievable. Deep 

learning algorithms, on the other hand, seem to be able to handle the problem. 

Deep learning is a subsection of machine learning in which so-called 

artificial neurons are used. These neurons are mathematical functions 

connected one another. By constructing a neural network of these functions, it 

is possible to extract features from complex data. In particular stacking many 

layers of them has shown to be the most effective way to use them in practical 

applications [1]. This layout which resembles the structure and function of 

biological brain cells is the reason why these new machine learning algorithms 

are known as a whole with the name “Deep learning algorithms” based on 



 

 

 

“neural networks”. In fact, these algorithms learn from observational data, 

figuring out their own solution to the problem at hand.  

These features make them achieve outstanding performances on many 

important problems in computer vision, speech recognition, and natural 

language processing [2]. This is because deep learning has shown tremendous 

capabilities in learning expressive representations of complex data. In the food 

industry in particular, Deep Learning applications for computer vision are 

raising attention for the reason cited above: many quality control procedures 

in the industry are still not automated since standard algorithms fail to 

recognize the good product from the bad one.    

 Automatizing these systems brings strong advantages. Therefore, it is 

an industrial need to understand which among those deep learning algorithms 

performs the quality control task the best and whether such a system has 

market-ready performances. This thesis work reaches in this direction. It is 

part of the project ”Studio e sviluppo di TEcnologie avanzate per il 

SORting automaticO nei processi di produzione alimentari – 

TESORO” issued by the Italian Ministry of Economic Development and 

developed in collaboration with various industrial partners among which 

Raytec Vision S.P.A. . Raytec Vision S.P.A. is a big player in the machine vision 

industry for fruit and vegetables quality control. Their core business consists 

in developing sorting machines which are able to discard waste product basing 

on specific information coming from optical sensors. Their machines put them 

among the world leaders in this field. Still, they struggle to perform effective 

quality control with those techniques on food categories in which specific 

information aren’t identifiable in a rigorous way. In those cases, the human eye 

still outperforms their classical machine vision systems, and the company 

could not enter the corresponding market sections. For example, and this is 

the application studied in detail here, when dealing with tomatoes their 

traditional methods are not able to bring the needed performances. The study 

reported in the following focuses on tomatoes, but other vegetables are still not 

handled with automated systems for the same motivations. This is the reason 

why deep learning represent a big opportunity for Raytec Vision S.P.A. to 

expand its market. This thesis reaches in that direction. Essentially the goal is 

to implement, analyse peculiar characteristics, and compare methods based on 

neural networks able to divide images of tomatoes into good and bad samples.

 Among models in the deep learning field suitable for this task, two 

major families are identified [3]: Images Classification (IC) algorithms based 

on deep learning and deep learning approaches for Anomaly Detection (AD) 

(deep anomaly detection for short).  
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The first ones try to learn the characteristics of the different families in 

the dataset and are so able to identify the two families of good and bad data. 

For image classification tasks many very strong performing neural networks 

are available. Most of them were developed to participate into the ImageNet 

large scale visual recognition challenge (ILSVRC) competition and show 

astonishing results [1], [4]. 

Anomaly detection, on the other hand, is referred to as the process of 

detecting images that deviate from the majority of data instances [5]. In other 

words, they operate based on the idea that a family of good images exist and 

therefore classifying everything else as bad. Due to the afore-mentioned ability 

of deep neural networks to extract features in complex structured data like 

images, the advancements of deep learning brought also significant steps 

forward in anomaly detection [3] and has emerged as a critical direction in this 

field. With respect to classification, anomaly detection algorithms do not suffer 

from insufficient representative samples in the anomalous class. In fact, in this 

case the model does not try to represent the good and bad samples in two 

classes but simply labels as bad everything which is not coherent with the good 

class.            

 It must be noticed that in this master thesis, classification and anomaly 

detection algorithms were compared with the aim of understanding which of 

these two types of paradigm is the best one for the partner’s industrial needs. 

This means that the experiments had as objective to answer the question: 

“Which is the best way to discern vegetables I would like to keep in my 

production line from vegetables I would like to remove?” In this way the usage 

of anomaly detection and classification algorithms satisfy the same need. In 

fact in the following, it should be remembered and noticed that even if here 

they are used to perform the same task each of these two methods has specific 

peculiarities that result in evident advantages in other situations. In fact, as the 

name states, anomaly detection, which is also in some case know as novelty 

detection, is generally meant to be trained only on good data or with few bad 

samples. This means that almost only the good part of the dataset is needed to 

use it. This is a big advantage in some cases. Indeed, if for example a new type 

of unknown disease appears in the vegetables after the system has been trained 

and installed, anomaly detection methods should be able to continue operating 

since any type of anomaly is recognized as such by the algorithm.  

In classification methods on the other side also many examples of the 

bad dataset need to be seen by the system during training to be able to learn 

its characteristics. In the specific case of this thesis work, all possible anomalies 

were present in the dataset so that after the training, the systems will not have 



 

 

 

problems encountering unseen data. Anyway, in some applications, it may be 

difficult to always have a robust dataset representing all possible combinations 

of bad samples that could rise during the operative life of the machine. For this 

reason, the peculiar advantage given anomaly detection in that kind of 

situation is clear.         

 On the other hand, IC-based models have some other type of strength 

with respect to anomaly detection. In fact, as the name suggest they can be 

used to classify data. In this specific case the industrial need was to divide the 

data into two categories: good and bad. However, classification can also be 

performed with more than two classes. In many other industrial applications 

this property is surely needed. It is easy to understand that anomaly detection 

would not be applicable in such cases. For this reason, in the final part of this 

thesis, precisely in the results section, also some additional experiments done 

with the classification methods are reported to understand how they would 

perform if they had to divide the incoming tomato images not only in good and 

bad, but also based on their specific defect. This is also helpful to understand 

which type of fault is the most difficult to be identified by the net. These 

considerations about the peculiar advantages of each system will be repeated 

and better elaborated in the following. In short, it must be remembered that 

those two families of methods are used for the same task here to understand 

which is the best one in the specific application, but it is generally not possible 

to confront anomaly detection and classification models since they often 

perform different tasks. 
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1.2 Literature Research 

The first step towards the development of this thesis is the research on 

academic and commercial publications to identify the most suitable algorithms 

for our application, keeping in mind the needs of the industrial partner, Raytec 

Vision S.P.A. To start this research some keywords are identified: python, deep 

learning, image classification, anomaly detection. Python is chosen among 

those keywords since it is the most used open-source programming language 

for machine learning [6]. Indeed, the following work is implemented in 

Python. In particular, the procedure for choosing classification algorithms is 

the following. Firstly, a cross-reference with the Raytec Vision S.P.A. engineers 

about what algorithms are implemented in their property software (i.e., 

MVTec Halcon ®) is made. After that, the equivalent of these algorithm in the 

form of Python open-source software is found.  

Following the afore-mentioned rules, three algorithms were identified 

for classification: 

• Mobilenet [7] 

• Resnet50 [1] 

• GoogLeNet [8] 

Raytec Vision S.P.A. has not yet approached anomaly detection at all but 

is interested in having a comparison with classification algorithms. As for the 

choice of the anomaly detection algorithms to test, some state-of-the-art 

models are identified, which are: 

• CFLOW-AD [9] 

• PatchCore [10] 

• DFKDE  [11] 

In the next sub-sections, a brief introduction to each of them is given. 

  



 

 

 

1.2.1 Classification 

For what concerns classification with deep neural networks the 

literature research shows that most of the improvements in recent years came 

from the ImageNet large scale visual recognition challenge competition [12]. 

This is an annual software contest where software programs compete to 

correctly classify from the ImageNet database. ImageNet is a large visual 

collection of more than fourteen million images, hand annotated with labels of 

the respective category [12]. In other words, many of the state-of-the-art 

algorithms for IC were built to compete and won this competition. This is 

interesting because also the selected models are deeply integrated with 

ImageNet and participated in this contest. In fact, in the following this 

database will be reused to pretrain the models. Before entering in the details 

of the algorithms analysed in the following, a brief introduction is given. 

 A classical IC deep learning algorithm receives images as input and gives 

the class to which each image belongs as output. In particular, among the 

possible deep learning algorithms, Convolutional Neural Networks (CNNs) are 

analysed. Typical CNN architectures stack a few convolutional layers then a 

pooling layer, then another few convolutional layers then another pooling 

layer, and so on. The image gets smaller and smaller as it progresses through 

the network, but it also typically gets deeper and deeper. 

 

Figure 1 Typical CNN architecture 

To be more precise, some definitions should be given. A convolutional 

layer converts all the pixels in its receptive field into a single value. In the case 

of an image, you will be decreasing the image size as well as bringing all the 

information in the field together into a single pixel. The result of the 

convolution is a series of feature map. This discussion can be appreciated 

looking at Figure 2. The function of a pooling layer is to reduce the spatial 

size of the representation in order to decrease the number of parameters and 

computation in the network. Moreover, it operates on each feature map 
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obtained from the convolution independently. There are two types of pooling 

layers, which are max pooling and average pooling. In particular, max pooling 

is the most widely used. The reason why max pooling layers work so well in 

convolutional networks is that it helps the networks detect the features more 

efficiently after down sampling an input representation and it helps over-

fitting by providing an abstracted form of the representation. 

 

Figure 2 Details of the Convolutional and Pooling layers 

1.2.1.1 ResNet50 

The name ResNet stands for residual networks. What the name 

“residual networks” stands for is explained in the following. 

As well-known the depth of the neural network is of crucial importance. 

Anyway, deep neural networks have a degradation problem: with the network 

depth increasing, accuracy gets saturated (which might be unsurprising) and 

then degrades rapidly [1]. As explained in the paper, this degradation problem 

is not caused by the well-known overfitting, and it leads to a higher training 

error. The problem has been solved by means of the introduction of a deep 

residual learning framework [1]. Briefly, a feedforward neural network with 

shortcut connections was added. The latter skips one or more layers, and they 

perform identity mapping, as reported in Figure 3. 



 

 

 

 

Figure 3 Residual learning: a building block with a shortcut connection 

One important remark is that identity shortcut connections add neither extra 

parameter nor computational complexity [1]. This is quite important since it is 

possible to compare residual networks and plain networks (counterpart of 

residual ones that simply stack layers) that have the same number of 

parameters, depth, width and computational cost. The results reported are 

mainly two: 

1. Extremely deep residual networks are easier to optimize. Moreover, 

they show a lower training error as the depth increases. 

2. Deep residual networks can enjoy accuracy gains from greatly increased 

deepth 

Thanks to these improvements, the 152-layer ResNet50 is able to reach 

a single-model top-5 validation error of 4.49%. Moreover, as reported in [1], 

an ensemble (i.e., a combination) of these residual networks achieves 3.57% 

error on the ImageNet test set. This result was sufficient to win the competition 

in 2015. 

1.2.1.2 GoogLeNet 

As well-known the most straightforward way of improving the 

performance of deep neural networks is by increasing their size [8]. It must be 

remembered that increasing the size of deep neural networks means increasing 

both width and size. This procedure leads to two main drawbacks: 

1. Bigger number of parameters and so a network more prone to 

overfitting. 

2. Bigger networks require to use more computational resources. 

Here the idea behind the creation of the GoogLeNet’s architecture 

arises, replacing the fully connected layers with sparse ones. 
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It is assumed that each unit from an earlier layer corresponds to some 

region of the input image and these units are grouped into filter banks. In the 

lower layers (the ones close to the input) correlated units would concentrate in 

local regions [8]. Thanks to this assumption, we would end up with a 

significant number of clusters concentrated in a single region. This region can 

be covered by a single layer of 1x1 convolutions in the next one. To avoid patch-

alignment issues, filter sizes are restricted to 1x1, 3x3 and 5x5. Additionally, it 

is well-known that pooling operations are of fundamental importance for the 

success of convolutional networks. It suggests that adding a pooling path in 

each module should have an additional beneficial effect, too. One big problem 

with the above-mentioned modules, is that even a modest number of 5x5 

convolutions can be prohibitively expensive on top of a convolutional layer 

with a large number of filters. This problem becomes even more pronounced 

once pooling units are added to the mix. To assess this problem, 1x1 

convolutions are used to compute reductions before the expensive 3x3 and 5x5 

convolutions as can be seen in Figure 4. 

 

 

Figure 4 Inception module with dimensionality reduction 

In general, an Inception network is a network consisting of modules of 

the above type stacked upon each other, with occasional max-pooling layers 

with stride two to halve the resolution of the grid.    

 By the “GoogLeNet” name we refer to the particular incarnation of the 

Inception architecture used in the submission for the ILSVRC 2014 

competition [8]. 



 

 

 

1.2.1.3 Mobilenet 

The general trend of making deeper and more complicated networks in 

order to achieve higher accuracy is not always the best solution. Indeed, if you 

think about many real-word application, such as robotics or self-driving cars, 

the recognition task needs to be carried out in a computationally limited 

platform. With this idea in mind, the specifics of the last classification 

algorithm are presented. MobileNet is based on depth wise separable 

convolutions which is a form of factorized convolutions which factorize a 

standard convolution into a depth wise convolution and a 1x1 convolution 

called a pointwise convolution. This factorization has the effect of drastically 

reducing computations and model size [7]. The above-mentioned depth wise 

separable convolution consists of two layers: 

1. Depth wise convolutions, used to apply a single filter per each input 

channel. 

2. Pointwise convolutions, simple 1x1 convolution, used to create a linear 

combination of the output of the previously explained layer.  

The MobileNet structure is built on module as explained before except 

for the first layer which is a full convolution. In Figure 5 it is reported the 

comparison between a layer with regular convolutions, batch norm (BN) and 

rectified linear units (ReLU) nonlinearity and the factorized layer with depth 

wise convolution, 1x1 pointwise convolution as well as batch norm and ReLU 

after each convolutional layer.  

 

Figure 5 Left: Standard convolutional layer with batch norm and ReLU. 
Right: Depth wise Separable convolutions with Depth wise and Pointwise 

layers followed by batch norm and ReLU 
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Counting depth wise and pointwise convolutions as separate layers, 

MobileNet has 28 layers [7].       

 Although the previously explained architecture is already small and 

offers low latency, many times a specific application requires a smaller and 

faster model. In order to achieve these models, two parameters are introduced. 

The first one, α is called width multiplier. The role of the width multiplier α is 

to thin a network uniformly at each layer. The computational cost of a depth 

wise separable convolution with width multiplier α is: 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹     [ 1 ] 

Where α ∈ (0, 1] . Width multiplier has the effect of reducing 

computational cost and the number of parameters quadratically by roughly 𝛼2. 

The other parameters of equation [1] are: 

• M, number of input channels. 

• N, number of output channels. 

• DF ∙ DF, feature map size. 

• DK ∙ DK, kernel size. 

The second hyper-parameter introduced to reduce the computational 

cost is the resolution multiplier ρ. It is applied to the input image and the 

internal representation of every layer is subsequentially reduced by the same 

amount. The computational cost can be finally rewritten as  

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹    [ 2 ] 

Where ρ ∈ (0, 1] . Resolution multiplier has the effect of reducing 

computational cost by ρ2.        

 To conclude our discussion, here are a few results of interest obtained 

in the original paper using ImageNet. MobileNet is nearly as accurate as 

VGG16 while being 32 times smaller and 27 times less compute intensive. It is 

more accurate than GoogLeNet while being smaller and more than 2.5 times 

less computationally heavy [7]. Other impressive results are achieved in tasks 

such as face attributes, object detection and face embeddings. 

  



 

 

 

1.2.2 Anomaly Detection 

To introduce this paragraph about anomaly detection with neural 

networks, it must first be remembered that, unlike the classification task, here 

the neural network is only one part of the systems and does not directly give 

the verdict on if data are good or bad, as in the case with classification. In 

particular, it is known that neural networks have the ability to extract features 

from the images they receive. This property which the human eye has naturally 

can be visualized for example in Figure 6. In this image one of the filters of the 

first convolutional layer of ResNet50 is visualized. In practice Figure 6 shows 

which parts of the images the network is more focused on at that level of 

abstraction. 

 

Figure 6 Visualization of a filter of the first convolutional layer of ResNet50 
for the reported image. This shows the ability of neural network to extract 

features from images. 

This images clearly reveals that there are some parts of the figure which 

represent a pattern for the network. In other words, this indicates that the 

algorithm is extracting features. The more we go down in the network the more 

this type of features become abstract so that their visualization on the starting 

image is not graphically satisfactory for the human eye. But it is evident that 

some kind of information is being squeezed.  

A lot of anomaly detection algorithms work using this principle [13]. In 

fact, they squeeze the information using a network which in this case is called 

encoder. After that, starting from the squeezed information, another network 

doing the opposite job reconstructs the image from this vector of information. 

This is called a decoder.  This kind of system is reported Figure 7. This structure 

is than trained with a loss function and many images so that the starting image 

and the reconstructed one become as similar as possible. This implicitly means 
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that in the bottleneck of the system, also called latent space, only the valuable 

information, describing the family of images used in training, is stored [14]. 

 

Figure 7 Structure of an autoencoder system. This kind of architecture is 
often used for anomaly detection 

This consequently means that if a so trained system gets a new image in 

input, and that image is anomalous, the encoder does not have the tools to 

describe that anomaly in simple terms, since among the features it learned to 

extract the anomaly never appeared. Consequentially in the bottleneck the 

information about the anomaly is lost and so the reconstructed image will be 

similar to the starting one but without the anomaly. At that point it is needed 

to compare the original and reconstructed images and to score their 

differences to perform anomaly detection. In practice a threshold is put on this 

score and so any test image which has a score above that value is labelled as 

anomalous. 

This simple architecture, and specifically the use of encoder and 

decoder, is recurrent also in many state-of-the-art algorithms of this class. Of 

course, each algorithm features some additional ideas, but it is important to 

keep in mind this scheme when describing the models that will be introduced 

in the following. 

1.2.2.1 CFLOW-AD 

CFLOW-AD consists of a pretrained encoder, for example ResNet18 

pretrained on ImageNet, followed by a multi-scale decoder [9]. The encoder 

extracts features with multi-scale pooling to capture both global and local 

semantic information. These features are then processed by a set of decoders 

to estimate likelihood of the encoded features. The estimated likelihoods are 

up sampled to input size and added up to produce the anomaly map. The 

anomaly map is used to decide if an anomaly is present or not. This structure 

is represented in Figure 8. 



 

 

 

 

Figure 8 Structure of the CFLOW-AD model. In this case we still have the 
decoder-encoder logic but they work not only globally but also locally on 

some pixels regions 

It is in fact very similar to the basic one described above. The main 

developments are that multiple positional encoders are used instead of a single 

one. These squeeze the information into a vector but work on different parts of 

the images [9]. Each of these vectors contains also harmonics specifying it 

spatial location and we have multiple encoders working on overlapping 

regions. Another difference is given by the way the decoders work. In fact, here 

conditional normalizing flow networks are used, and this is why the method is 

called CFLOW-AD. The conditional flow network is a statistical method used 

to model probability distributions which offers some mathematical advantages 

reported in [9]. In our application this method was chosen because it is one of 

the best performing for anomaly detection on the MVTec AD dataset [15] 

MVTec AD is the main dataset for benchmarking anomaly detection methods 

with a focus on industrial inspection [16]. 

1.2.2.2 PatchCore 

This algorithm works on the principle that as soon as a single patch of 

the image is anomalous the entire image can be classified as anomalous. That’s 

the reason it is called PatchCore. In practice, in a similar way to CFLOW-AD, 

you don’t have and encoder working on the entire image at once, but the image 

is tiled and each of these sections is encoded separately with information about 

the position of the patch so to obtain locally aware patch features. These 

features are not squeezed as strongly as in classical encoders.   

 The authors of the paper state that this is helpful since lower-level 

features are generally too specific to ImageNet and therefore biased while too 

high-level features are too generic [10]. So the features are extracted from a 

mid-level of the backbone network used as encoder. This big quantity of data 

is down sampled trying to retain the information content.  This operation is 

performed with a technique introduced in [17] called coreset subsampling. The 
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data remaining at this point are to be found in what the authors call a memory 

bank. 

 

Figure 9 Examples of coreset subsampling (top) vs random subsampling 
(bottom). It can be seen that coreset better preserves the information 

At this point another big difference with respect to the classical 

autoencoder algorithm appears. In fact here the features are not up-sampled 

anymore to get an artificial image to compare to the original one. In this 

algorithm the opposite happens. Indeed, an image to be tested gets treated 

with this same procedure so to obtain an information vector similar to the ones 

contained inside the memory bank. After that the anomaly score is simply 

given by a distance measured to the nearest neighbour in the bank.  

In other words, here the image to be tested is squeezed to feature vectors 

and then the anomaly is obtained on these vectors instead of obtaining it at the 

pixel level. This procedure makes PatchCore able to achieve state of the art 

anomaly detection while considerably reducing the computational cost as 

reported in the original paper [10]. The structure is resumed in Figure 10. 

 

Figure 10 Structure of the PatchCore model. It can be seen that here the 
anomaly is calculated at vector level in the memory bank and not at image 

level 



 

 

 

In our industrial application this method is chosen because it is the 

state-of-the-art method for anomaly detection on MVTec AD dataset1.  

1.2.2.3 Deep Feature Kernel Density Estimation (DFKDE) 

This algorithm is made of two stages. The first one is very similar to the 

encoder part of an autoencoder. It consists of a deep feature extraction stage 

through a backbone like ResNet50 pretrained with ImageNet. In the second 

stage a probability density of these features is obtained. In fact, by fitting 

distributions to the deep features obtained during training, a generative model 

over the feature space is obtained [11]. Test images are then evaluated by 

simply comparing their extracted feature to the so obtained distribution. The 

characteristic of this model with respect to others is its use of gaussian kernel 

density estimation.  This is a method to estimate probability density functions 

based on simple functions as weights. In that case these weight functions are 

called kernels. In Figure 11 we report a simple example of kernel density 

estimation with a symmetric kernel function on a four elements sample. 

 

Figure 11 Example of kernel density estimation on a four elements sample. 
The blue areas are the kernels that are used as weights for the samples, 

while the blue continuous line is the overall estimation obtained with this 
kernel density estimation. 

 

1 https://paperswithcode.com/task/anomaly-detection 
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In our industrial application this method is chosen because it is one of 

the state-of-the-art methods encountered in the literature research and 

showed good results on the additional dataset that will be introduced in the 

following. 

1.3 Dataset 

After briefly presenting the models and their functioning, it is clear how 

a robust dataset in essential for the assessments. In fact, it is known that a 

sufficient quantity of data is fundamental when training a deep learning 

system [18]. To be precise, two datasets were provided by Raytec Vision S.P.A. 

These will be analysed as they differ in terms of number of images, image size 

and acquisition accuracy. Going deeper in the discussion some information 

about the main dataset among the two is given. In this first dataset the images 

of the tomatoes were acquired with a 5MP matrix-scan camera. The setup also 

consisted of a dome illuminator developed by the industrial partner which can 

be seen in Figure 12. 

 

Figure 12 Dome illuminator used to acquire the dataset. It was developed by 
Raytec Vision S.P.A. 

This Dome works emitting strobe light pulsing at 150 us and with 12 A 

of current. The integration time of the camera is kept at 180 us. The functioning 

of the acquisition system is the following. A RGB image of the tomatoes 

running on the tape is captured, see Figure 13. At this point, an algorithm of 

image detection is able to identify each tomato, as reported in Figure 14.  



 

 

 

 

Figure 13 RGB image of tomatoes on the tape 

 

Figure 14 Image detection of the tomatoes 

Once the tomato is captured, a mask is applied so that the background 

is automatically removed. The final result of the acquisition system is reported 

in Figure 15.  
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Figure 15 Top: binary mask used to remove the background.   
 Bottom: final result of the process 

The dataset is composed of 3370 images with the following distribution: 

• 974 good samples of peeled tomatoes 

• 1000 yellow samples 

• 1000 green samples 

• 396 samples with anthracnose or not correctly peeled.  

The yellow and green samples also contain some images presenting 

anthracnose in addition, so that for example there are some tomatoes that 

should be sorted out both because they are not ripe (they are yellow or green) 

and because they have anthracnose. In Figure 16 we report an example for each 

category. As we are going to explain more in the detail in the following, some 

results are obtained working on the so structured dataset. But the main 

objective of the thesis is to obtain some software able to distinguish between 

good and bad data. Therefore, yellow, green and diseased tomatoes are 

grouped in one category named bad. The bad family contains 2396 images and 

a good samples folder containing 974 images. In the following, if not specified 



 

 

 

otherwise, the results reported will refer to experiments performed with this 

dataset in the specified configuration explained above. 

 

Figure 16 Examples from each category. Upper left: good peeled tomato; 
Upper right: green tomato; Lower left: diseased and not correctly peeled 

tomato; Lower right: yellow tomato. 

The last thing to be noticed about this dataset, concerns the image size. 

Indeed, because of the image detection step, not all the images have the same 

dimensions. In particular, the resolution is in the range between 157*193 and 

369*369 pixels. As we will see in the methods chapter, to work with our 

models, some modifications on the image size are needed.  

 Some examples of tomato images obtained with this configuration are 

reported in Figure 17. 

 

Figure 17 Example of a good and a bad tomato sample acquired with the 
here described setup 

In addition to this dataset Raytec Vision S.P.A. provided also a second 

dataset. This was acquired in not so strict way. These images have a resolution 
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of 12 MP and they were taken with a smartphone. In this case the background 

is not standardized and black, but it consists of a white table on which the 

photos were taken. Moreover, the lighting is not controlled. This dataset is 

composed by 252 good images and 228 bad ones. In this case the bad ones 

were just unpeeled samples so that the classification was just possible in the 

categories peeled vs unpeeled. In Figure 18 an example of these images is given. 

 

Figure 18 Examples of images from the second dataset: we notice these 
photos are taken without controlling the lighting and are just standard 

smartphone images 

In the final part of the experiments section the possible effects of the 

presence or not of the background will be investigated through the application 

of a software able to simulate random backgrounds. Moreover, in this thesis 

work, driven by the small number of images in this dataset, also the effect and 

advantages of data augmentation will be handled. 

1.4 Hardware and software settings  

The training and in general the use and optimization of deep neural 

networks is a very computationally heavy procedure. This practically means 

that the experiments reported in the following are very time consuming even 

if Python (i.e., the open-source platform used for writing the software) is 

compatible with GPU calculations. For example, a single training run with 

ResNet50 on the main dataset can take up to days on a standard laptop 

computer, that has: 

• 16 GB ram.  

• Processor 11th generation Intel Core i7. 

• NVIDIA T1200 laptop GPU. 



 

 

 

 

Figure 19 The use of Google Colab and Drive is fundamental to perform 
some of the experiments which wouldn’t run on personal computers because 

of the high computational request 

Moreover, the experiments reported in the following feature hundreds 

of training runs. For this reason, the use of a powerful hardware is of crucial 

importance. Said that, the hardware chosen is a cloud computing platform. In 

particular, Google Colab is chosen for this purpose. This platform permits to 

access computationally strong resources trough cloud. It must be remembered 

that also the RAM requirements for the work here presented are quite high 

meaning that some experiments could not run without the support of the 64 

GB of ram given by the cloud. Anyway, the most important support is given by 

the GPU acceleration. In particular as reported in Figure 20 the use of Google 

Colab permitted to take advantage of a Nvidia A-100 GPU.    

 To use TensorFlow® [19], needed for the classification, with this kind 

of support the CUDA® [20] Deep Neural Network library (cuDNN) [21] is 

installed. For what concerns anomaly detection, Pytorch® [22] is additionally 

configured to run the training instances on GPU.  

 

Figure 20 Hardware settings of the cloud computation used. Notice the 
Nvidia A100 GPU. 
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In the possible future industrial application installing a GPU with 

performances similar to this one can be imagined. This is useful since in the 

following also some considerations on the possible applications of the models 

and their integration with existing machinery will be reported and having such 

a strong hardware which could resemble the industrial one in the final machine 

permits to make some considerations in this direction. 

1.5 Thesis Outline 

In this section the main points analyzed in this thesis document are 

explained. The work is divided essentially in five main chapters. In the second 

chapter (i.e., Methods) it is shown how the models adapted for the specific 

application were obtained starting from the algorithms in general form. The 

general framework adopted to implement, optimize and compare the models 

is reported. Even if each of them has peculiar differences in the 

implementation, which are reported in detail in the methods chapter, a black 

box scheme that was then followed to standardize their use as much as possible 

is introduced.         

 The third chapter reports the results. The numerical outcomes of the 

optimization and of the experiments performed to compare models are shown. 

These results are also briefly commented. This is done to help the reader follow 

the logical scheme they were produced with. In the second part of this section, 

there are additionally reported some results obtained for multiclass 

classification and on a different dataset or with different backgrounds to show 

the robustness of the obtained system and to give some insights on possible 

different applications of the classification algorithms.   

 Finally, there is a conclusions chapter. Here a summary of the bullet 

points of this works is reported. The main insights are summarized, and the 

results are commented in a broader way, offering some suggestions for future 

developments. 

 

 

  



 

 

 

2 Method 

In this section the workflow followed to reach the final software 

configurations and the experimental procedures used to optimize and compare 

the different models are explained.  This method chapter is composed of six 

main parts that can be briefly summarized as follows. Firstly, the general 

framework that was set up to handle the different experiments in a common 

way is described. Then, in the second subsection, it is described how the 

classification architectures were implemented in this framework. In the third 

section the same is done for the anomaly detection models. Then, in the fourth 

subsection, the metrics considered to evaluate the performances of the 

algorithms are illustrated. These are mandatory to be able to evaluate and 

compare the results gathered from the different techniques and models. In the 

fifth subsection, the models’ optimization method is reported. Indeed, once the 

workflow as well as the metrics are identified, the need to obtain the best 

possible algorithms must be fulfilled. In the last section of this methods 

chapter, the procedure used to compare the models is explained. For this 

reason, K-Fold cross validation, Almost Stochastic Order and bootstrap power 

analysis are introduced and described. 

2.1.1 Black box scheme 

As stated above the first step to describe the following experiments is to 

introduce the logical pattern they were performed with. In particular, the 

objective was to take the six models described in chapter one, to adapt them so 

that they could work on the dataset presented, and to implement a software 

that could run the models in a common framework.    

 In other words, the objective is to have one black box architecture able 

to handle all the different models. In that kind of structure, each black box 

represents the adapted model that will be applied on the dataset. In this 

framework, there are images coming into the black box and sorting results 

coming out. This also means that the objective is to write code strongly based 

on function calls and in which all the variable parts are contained in external 

configuration YAML files. The different models are in the end implemented by 

solely changing the configuration files. 

With this standardised way of proceeding clearly in mind, it becomes 

easier  to optimize the models with a common method. This initial work of 
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standardization also helps in comparing the models, speeds up the 

experiments and facilitates the readability of the following sections of this 

thesis. 

 

Figure 21 General framework of the adopted method: Images are the input 
to the specific model used which acts as a black box and gives the sorting 

result as output 

  



 

 

 

2.2 Models  

From now on it is necessary to split the discussion, distinguishing 

between anomaly detection and classification algorithms. From chapter 2.3 on, 

methods of both families will be treated as black boxes.  Here, in subsections 

2.2.1 and 2.2.2, some information about the work done to obtain this 

framework starting from the different models is given. 

2.2.1 Classification  

The main library used for the classification task is TensorFlow which, 

since the release of its second version (i.e., TensorFlow 2), is perfectly 

integrated with Keras. TensorFlow 2 is an end-to-end, open-source machine 

learning platform, while Keras is the high-level Application Programming 

Interface API for TensorFlow 2. Keras is a deep learning API written in Python, 

running on top of the machine learning platform Tensorflow. 

This setup is chosen for two main reasons. The first reason is that in 

Keras all the algorithms considered are built-in functions. The second reason 

is that, using Tensorflow, those neural networks can be downloaded in their 

own ImageNet pretrained version. This is good for two main reasons: 

1. There is no need to train the neural networks from scratch. This is time 

and computational effort saving. 

2. Using ImageNet pre-trained CNN features, impressive results have 

been obtained on several image classification datasets [23] by means of 

the so-called Transfer Learning (TL) process. 

From now on, all the necessary steps to do image classification are 

explained in detail. The first one is to upload the dataset. The whole dataset is 

divided into three sub-folders named “training”, “validation” and “test”. This 

procedure is done by means of simple code able to split the dataset according 

to the percentage of images to be used for training, validation and test. This 

percentages are 70, 15 and 15 respectively. The first two folders will be used 

during the training phase, while the third one, consisting of images never seen 

by the model, will be used to evaluate the model’s performance in making 

predictions. This is a common practice in data science. The following step is to 

upload those folders into the program. In this passage an image size must be 

set because each model expects a well-defined input image dimension. For all 

the models, the image size is set to 224*224 pixels. Such an image size is 

chosen as standard value as this specific value is commonly used and the 

images given by Ratech Vision S.P.A. have a similar resolution.  
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After uploading the dataset, the construction of the model should be 

discussed. Since all the models to be compared are given in their pretrained 

version, the procedure here performed is commonly known as TL. This 

consists of taking features learned on one problem and leveraging them on a 

new, similar problem. Transfer learning in the context of deep learning follows 

a common workflow2: 

1. Take layers from a previously trained model. 

2. Freeze them, to avoid destroying any of the information they contain 

during future training rounds. 

3. Add some new, trainable layers on top of the frozen layers. They will 

learn to turn the old features into predictions on a new dataset. 

4. Train the new layers on your dataset. 

That said, for the specific case analyzed, it is not possible to import the 

pre-trained models and directly pass to the training phase, but some 

modifications are needed. As explained in points 1 and 2, it is needed to import 

most of the layers of the pretrained models, freezing them. In particular, both 

first and last layer, which are fully connected layers, are not imported. 

Following the bullet point list, it is needed to replace some of the layers: 

the first one is substituted with an input layer where dimensions of the images 

(i.e., 224*224 pixels) and number of channels (i.e., 3 channels since we work 

with RGB images) are specified. A so called “preprocessing layer” is added to 

follow the previously mentioned one. Its function is to apply a series of 

transformations to make the images’ format equal to the one used during the 

pre-training procedure with ImageNet dataset. For the last layer the discussion 

is a bit more complicated. In fact, it is not sufficient to replace one layer with 

another one, but it is needed to add: 

• A flatten layer. It takes the pooled feature map and flattens it into a 

column, as shown in Figure 22. After the flattening step, a long vector 

of input data is obtained and passed to the artificial neural network for 

further processing. 

 

2 Transfer learning & fine-tuning (keras.io) 

https://keras.io/guides/transfer_learning/


 

 

 

 

Figure 22 How the flatten layer works 

• A dense layer composed by units in the form of Rectified Linear Units 

(ReLU), as the one reported in Figure 23. The dense layer’s neuron in a 

model receives the output from every neuron of its preceding layer. This 

layer is the one responsible to learn new weights. 

 

Figure 23 ReLU activation function 

• Finally, the last layer, which must have the number of units equal to the 

number of predictions classes (i.e., two units in the case of binary 

classification). For this purpose, Sigmoid activation functions are 

chosen.  But how do these functions work? Let’s image that we have two 

classes a and b for example. The two classes are associated with the 

values 0 and 1 (for illustration purpose, a is associated to 1 and b is 

associated to 0). The sigmoid, relying on a threshold, converges the 

probability at one of its extremes. Therefore, if the probability that a 
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specific image belongs to class a is greater than the threshold the value 

1 will be assigned. 

 

Figure 24 Sigmoid activation function 

To make what has just been described regarding the model’s 

construction clearer Figure 25 is reported. By looking at the figure it is possible 

to appreciate: 

• Input layer. 

• Preprocessing layer, composed by the union of ‘tf.math.truediv’ and 

‘tf.math.subtract’. 

• The pre-trained model (MobileNet in the picture). 

• The flatten layer. 

• The dense layer composed by ReLU activation function. 

• The dense layer composed by Sigmoid activation function. 



 

 

 

 

Figure 25 Visualization of the here presented architecture using Mobilenet 
as pretrained model for the example 

Once the model is built, the next step is the ‘compilation’. In this step 

some parameters that characterize the network must be defined. As it is 

reported in detail in the dedicated chapter, these parameters will be subjected 

to the so-called hyper-parameters’ optimization procedure (see chapter 2.4 on 

hyper-parameters optimization). In particular, both optimizer and learning 

rate need to be defined. For this purpose, the Stochastic Gradient Descent SGD 

algorithm was chosen as the optimizer. The momentum is fixed to be equal to 

0.9, while the value of the learning rate will be decided by means of the 

optimization procedure. After that the categorical cross-entropy is defined as 
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loss function. Without going into too much detail, it is important to give at least 

a definition of the above-mentioned parameters.  

The purpose of training a neural network is finding weights and biases 

so that the output from the neural network approximates the desired output 

y(x) for any training input x. The loss (or cost) function quantifies the degree 

to which the objective is achieved. When the loss function is large, y(x) is not 

close to the output for a large number of inputs. Therefore, the aim of the 

optimizer is to minimize the loss function. In other words, we want to find a 

set of weights and biases which make the cost as small as possible [2]. What 

does the optimizer do? To explain the concept in a simple way, it is useful to 

imagine the function as a kind of valley and a ball rolling down the slope of the 

valley. Now, some sort of law of motion must be found that makes the ball 

always roll towards the bottom of the valley.  

In a nutshell, the gradient descent works by repeatedly calculating the 

gradient of the cost function and then moving in the opposite direction, “falling 

down” the slope of the valley, as shown in Figure 26. 

 

Figure 26 Cost function C as a function of 2 variables v1 and v2  

In particular, the SGD estimates the gradient of the loss function by 

computing the gradient for a small sample of randomly chosen training inputs. 

By averaging over this small sample, it turns out that it is possible to quickly 

obtain a good estimate of the true gradient. This helps speed up the learning. 

The learning rate governs the size of the steps to reach the minimum. 

There are two main points to consider when choosing the value of the learning 

rate: 



 

 

 

1. If the learning rate is too large, then the steps will be so large that they 

may overshoot the minimum. 

2. Choosing the learning rate too small slows down the SGD algorithm. 

As reported by Nielsen et al. [2] the momentum method introduces a 

kind of inertia term. To understand the way the momentum influences the 

SGD, it is useful to take a look at Figure 27. 

 

Figure 27 SGD without momentum 

 The noise and random fluctuations reported in the picture are due to 

the small batches used by the SGD to compute the derivative of the cost 

function. The goal of the momentum is to give a more stable direction to the 

convergence of the SGD. The momentum is used to weight the gradient of the 

next iteration by introducing the gradients of past iterations into the update 

function of weights and biases. Thus, improvised variations do not affect the 

gradient so much. It is possible to appreciate the result in Figure 28. 

 

Figure 28 SGD with momentum. The momentum is reducing the 
fluctuations in the weight updates 
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Figure 29 Comparison of SGD algorithms. Left: SGD without momentum. 
Right: SGD with momentum 

In the end, there are two main advantages in using the momentum technique3: 

1. SGD with momentum is faster than standard SGD. Therefore, the training will 

be faster. 

2. Global minima can be reached without stopping at local minima due to the 

momentum involved. 

Now that those parameters are clearer, it is possible to continue with 

the explanation of the model. One important drawback during the training 

phase of CNNs is the overfitting problem. To avoid that a call-back is defined. 

Thanks to the this function, it is possible to follow the trend of an arbitrarily 

chosen parameter during the training of the model. If the monitored parameter 

does not improve for a number of epochs set by the programmer, the training 

is stopped and the model with the best parameter value is saved (the same can 

be done whether the parameter remains constant or decreases). In the end, 

this procedure allows to avoid overfitting problems. For the case analyzed here, 

it is decided to follow the trend of the validation accuracy and stop training if 

it does not increase by 0.001 for a number of epochs equal to 10% of the total 

number of training epochs. Moreover, thanks to this function, the best model 

(i.e., the model with the best classification accuracy in this case) of the training 

procedure is automatically saved. In this way the best model among the ones 

achieved in training is certainly used, during the test procedure.  

 To summarize what has been said above, the so developed software is 

able to upload the dataset, pick up the starting model to be used, modify it as 

it is needed, compile it and train it. When the training procedure is complete, 

it saves the best model so that it is possible to test the latter on a new folder of 

images. The entire procedure can be implemented simply by acting on the 

 

3 SGD with Momentum Explained | Papers With Code 

https://paperswithcode.com/method/sgd-with-momentum


 

 

 

configuration file previously mentioned. One example of configuration file is 

reported in Figure 30. 

 

Figure 30 Example of configuration file in YAML format. Trough the black 
box scheme implemented the entire construction and deployment of the 

model depends only on this file 

 

2.2.1.1 Gradient-weighted Class Activation Mapping (Grad-CAM) 

visualization 

In order to ensure every IC-based model works correctly, the Grad-CAM 

method was applied to each of them at the end of the training, as proposed in 

the original paper [24]. The outcomes of this method are reported in the results 

section. In this paragraph, only the method with which Grad-CAM was 

implemented is discussed. 

Grad-CAM is a technique used to visualize which regions of the input 

are “relevant” to perform the prediction. In practice with this method, the 

different regions of an image are coloured depending on how much the 

network focuses on them to classify the image. An example of this is reported 

in        Figure 31. It is clearly possible to see that the neural network gives more 

weight to the tomato when taking the decision than to the background. This 

indicates the algorithm is focusing on the correct part of the image showing 

that it is working in the correct way.  
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       Figure 31 Example of heatmap obtained with ResNet50 applying 
  Grad-CAM 

The working principle is illustrated below. The last convolutional layer 

of the selected model is identified.  Then the model is fed with an input image 

and the prediction is returned. After that, the gradient of this prediction with 

respect to the output of the selected layer is taken. This is the information to 

be obtained. As the next step, the information contained in the gradient is 

simply scaled with respect to the size of the input image, displayed in terms of 

different colours and superimposed on it. In the following, this tool will be used 

for each model to check that it is looking in the correct areas of the image and 

therefore that it functions correctly. 

  



 

 

 

2.2.2  Anomaly detection 

For anomaly detection with deep neural networks the main tool used is 

a GitHub repository called Anomalib [11]. This is an open-source library 

developed by Intel that provides implementations of many state-of-the-art 

anomaly detection algorithms. The library is particularly suited for image-

based anomaly detection, where the goal of the algorithm is to identify 

anomalous images.  It is the largest open-source library of this type, and the 

authors suggest that in future it could also contain algorithms for the audio or 

video domain [11]. In particular, it contains all models mentioned above.  

 

Figure 32 ANOMALIB is the most important library used in this thesis for 
deep learning anomaly detection 

The repository is already based on the use of a single configuration file 

operating with a huge number of function calls. As a result, the creation of the 

common pipeline is straightforward in these cases. It is just needed to modify 

the configuration file so to adapt to the custom dataset. After that the anomaly 

detection case can be treated in the same black box manner developed for the 

classification algorithms. An example of such configuration files modified for 

the task of this thesis work is reported in Figure 33. 

 

Figure 33 Example of custom configuration file for anomaly detection 
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In the introduced way of operating with black boxes also the use of the 

Torchmetrics® [25] module was very useful. Through this library it is possible 

to extract the necessary metrics by slightly modifying the code contained in the 

repository without the need to hard code their calculations from scratch, as 

done for the classification. 

2.3 Metrics 

In the previous section, it was described how all the different models were 

fitted in a common framework. This is useful since a big part of the thesis 

objectives’ is to compare the various models implemented so to extract some 

insights and identify the best one for the required industrial application. 

In order to find the best model, it is necessary to identify some common 

metrics to measure the performance of the different models. The objective is 

to obtain a robust classifier which must be integrated with already existing 

industrial tools such as conveyors. In that sense not only the quality of the 

decision about a single item passing under the computer vision system is 

important. Indeed, other factors play a considerable role as well. This chapter 

summarises the chosen metrics and the reasoning behind the choices. 

 

2.3.1 Inference Time 

In the industrial application here presented, a possible limitation is 

given by the decision-making speed of the model. As already seen in the dataset 

description, the images are acquired by the pipeline in a small resolution, not 

exceeding 369*369 pixels, mainly for computational reasons. Still the speed of 

elaboration plays a huge role in the industrial reality and customers are often 

willing to sacrifice some quality in the picking process to gain speed. In the 

industrial scenario these models are working, GPU usage is given for granted. 

A hardware setup similar to the one used here is realistic, as confirmed by the 

industrial partner.  It is very important to consider that, choosing a model over 

another just basing on correct picks could result in drastically reducing the 

quality control output rates. In fact, time is a limiting resource even using 

strong and modern hardware in this and similar applications. For this reason, 

a metric which is used in the following to evaluate and compare the models is 

the inference time. The inference time was computed with respect to a single 

image, to understand how long each model takes to classify a given picture. At 

the end, a comparison of each model according to inference time will be made. 



 

 

 

Apart from that there are no big limitations, and the performances of 

the various models can be evaluated by looking at the quality of the choices. 

To evaluate that, two metrics are used: 

• Accuracy 

• Area Under the ROC curve (AUROC) 

Training time, for example, is not a limiting resource for the industrial 

partner, since even in the worst scenario the training phase of the heaviest 

among the models considered takes up to 10 hours, which is not a problem 

when selling the machine, considering the total set-up time of it. 

 

 

Figure 34 Inference time is chosen as a metric to compare models since it is 
an industrial application integrated with conveyors 

2.3.2 Accuracy 

Accuracy is the most used metric in classification problems. It is a very 

intuitive and easy to extrapolate metric. It is the number of correct predictions 

divided by the total number of predictions. Accuracy is the universally most 

cited and widespread metric [26]. Anyway, it has some disadvantages. The 

main one is that it hides the issue of class imbalance. For example, if the data 

contains only 3% of negative instances, a classifier which always assigns the 

positive label would reach 97% accuracy. 
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2.3.3  Area Under the Receiver-Operating Curve (AUROC) 

and Confusion Matrix 

It has been rigorously stated [27] that AUROC should replace accuracy 

when measuring and comparing classification models. For this reason this 

more technical metric which is not as intuitive as accuracy should be 

introduced. 

For the binary classification problem this thesis focuses on, it is possible 

to visualize the results in a so-called Confusion Matrix (CM), like the one 

reported in Table 1. A CM is a table that allows the visualization of the 

performance of an algorithm.  The matrix is organized in such a way that each 

row represents the instances in the actual class, while each column represents 

the instances in a predicted class. For the case in point here, a high value of 

false positives means that many bad tomatoes were classified as good. 

Conversely, a high value of false negatives means that many good tomatoes 

were discarded.  

 

Table 1 Example of confusion matrix to introduce the AUROC 

 
Predicted class 

Class 1 Class 0 

Actual class 

Class 1 
10 True Positive 

(TP) 

2 False Negative 

(FN) 

Class 0 
3 False Positive 

(FP) 

35 True Negative 

(TN) 

 

In this kind of matrixes, the True Positive Rate (TPR) is defined as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   [ 3 ] 

 

While the False Positive Rate (FPR) is defined as: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 [ 4 ] 

As this thesis focuses on binary classification, the algorithms predict an 

image as class 1 or 0 based on a threshold (i.e., if the prediction is higher than 

the threshold the algorithm assigns class 1 to the image and the contrary if the 

prediction turns out to be lower than the threshold). With this fixed in mind, 

changing the numerical value of this threshold causes a change in both TPR 



 

 

 

and FPR. The next step is to introduce the Receiver Operating Curve ROC. The 

ROC is built changing the value of the threshold, in the range 0-1 for the 

specific case analysed. More in detail, TPR and FPR are computed for any 

threshold’s value and each couple of values (FPR, TPR) represent a point of the 

ROC. Since the models output a probability and since the classification is 

binary, this probability will be in the range 0-1, as explained above. By drawing 

these points in a graph that has FPR on the x axis and TPR on the y axis it is 

possible to obtain the ROC curve.  

In the ROC curve the threshold value is implicit and once constructed 

there is no way to extrapolate the threshold value corresponding to each couple 

(FPR, TPR) just by looking at the graph.  As can be observed in Figure 35, the 

better the classifier the more ROC tends to a graph with a 90 degrees angle in 

the point of coordinates (0,1). This qualitative observation of the behaviour of 

the ROC can be exploited in a more mathematical form by using the so-called 

AUROC parameter. 

 

Figure 35 How to qualitatively evaluate ROC curves 

In fact, the AUROC is just the integral of the ROC curve (i.e., it is just 

the area in blue in the example reported in Figure 36). In other words, the 

higher the value of the AUROC the better the classifier. In particular: 

1. A perfect classifier has an AUROC equal to 1  

2. A random one has an AUROC equal to 0.5.  
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3. Any value above 0.9 is considered excellent [28]. 

 

Figure 36 Example of ROC curve with area under the curve in blue  



 

 

 

2.4 Hyperparameters Optimization 

Hyperparameters are those parameters which are set before the training 

process of a machine learning algorithm. They cannot be learned by fitting the 

model to the data. They can be involved in building the structure of the model, 

such as the number of hidden layers and the activation function, or in 

determining the modalities in which the training phase happens, such as the 

learning rate (LR), the stochastic gradient descent (SGD), batch size, and 

optimizer [29].  Their values clearly have a strong influence on the learning 

process and thus they have an impact on the overall performance of the model, 

therefore they should be treated carefully. Choosing them is a key factor for 

this work. The first approach which is widely used consists in: review of values 

chosen by others in literature, consultation of dedicated forums and a trial-

and-error procedure. This is also the path here followed to identify a first range 

of possible hyperparameters’ values. However, these are not necessarily 

optimal and therefore a tuning procedure is required. In this section, the 

method followed to perform the hyperparameters optimization (HPO) is 

reported. To this end, WandB® website is used. This is an online tool that 

allows to run training and validation automatically a pre-defined number of 

times on the chosen model, with the aim of finding the best possible 

combination of hyperparameters. This is done as follows: after every run the 

program changes the value of each hyper-parameter in a range priorly defined 

by the user. This change is performed following a Bayesian scheme in order to 

optimize a certain metric that has to be chosen before the process starts. In the 

following the accuracy is used as objective function and the goal is to maximize 

it. As reported in [30], Bayesian optimization is a sequential model-based 

method aimed at finding the global optimum with the minimum number of 

trials. So, compared to other search methods such as Grid or Random, 

Bayesian optimization can find the best hyper-parameters set with fewer 

attempts. 

 

Figure 37 Software used for hyperparameters optimization 

Again, a black box architecture is followed in this HPO. In this case, the 

input is a configuration file containing the range of values in which the search 
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for optimal hyperparameters has to be performed, while as output we get the 

optimized value for each of them.  

 

Figure 38 Black box architecture for the HPO procedure 

As for the black box scheme introduced for training, validation and 

testing, also this procedure for HPO is strongly based on function calls. Again, 

it shows its strongest advantages when working with different models. Indeed, 

thanks to the fact that all the variables are contained in a configuration file, it 

is only needed to change this file to perform HPO with the same procedure on 

all models. This initial work of standardization speeds up the experiments and 

helps the readability of the following sections of this thesis.    

 As done for some previous sections, following this introduction about 

the hyperparameters tuning method used in general we split the discussion. 

Firstly, the details for the image classification HPO are reported and after that 

the ones for the anomaly detection case.   

Configuration file Optimized hyper-parameters 



 

 

 

2.4.1 Classification  

For the classification task the most interesting hyperparameters are 

number of training epochs, learning rate, batch size and the number of ReLU 

in the dense layer. To be more consistent with the results, all the classification 

models are optimized starting from the same hyperparameters ranges of value. 

Those ranges are summarized in Table 2. 

Table 2 Hyperparameters along with their values used during the 
optimization 

Parameters Values 

Training epochs 30, 40, 50 

Learning rate 0.001, 0.0001, 0.00001 

Batch size 32, 64, 128 

ReLU in the dense layer 256, 512 

 

The black box framework is followed further in this proceeding. As 

mentioned above, the input of the process is a configuration file containing the 

information resumed in Table 2 and reported in Figure 39. To keep the 

procedure as standard as possible, the model to optimize is an input that the 

program gets from the configuration file used for the model creation. As 

output, the results of the runs for each hyper-parameter combination in the 

form of parallel coordinate graph is obtained. An example is reported in Figure 

39.  

 

Figure 39 Configuration file used for the HPO of classification models 
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The actual black box is the code responsible for the optimization. This 

works as follows. First, the function called “sweep identity” must be defined. 

This function is responsible for loading the configuration file reported in 

Figure 39. In this way the code can read the hyper-parameters along with their 

values. In the second step, the main function must be properly coded. Inside 

the latter two built-in methods are called. These methods are: 

1. Configurator. The configurator is the function responsible for pairing 

the hyperparameters of the model with their values written in the 

configuration file. 

2. Logger. The logger, instead, is the one responsible for uploading the 

metrics to be monitored in the online dashboard at the end of each 

training session. 

Between these two built-in methods, the piece of code in charge of 

uploading the dataset, building the model, training it and computing the 

metrics needed must be defined. This part is similar to the one explained in 

chapter 2. Therefore, there is no need to illustrate the concept again. 

 To start the actual procedure, the built-in function named “agent” must 

be called by the user. Inside this agent function it is needed to specify the sweep 

identity and the main function previously explained. In addition, the number 

of times this procedure is going to be repeated is required.   

 The sequence is automatically repeated by the software. Each time a 

new run starts the value of the different parameters is changed according to 

the Bayesian optimization, trying to maximize the accuracy. At the end of the 

procedure, as said, is it possible to appreciate the results in form of parallel 

coordinates graph like the one reported in Figure 40. This type of chart is very 

useful in order to visually understand which are the best hyper-parameters’ 

value to maximize the accuracy. From these graphs we obtain the optimized 

hyperparameters’ values. 



 

 

 

 

Figure 40 Example of parallel line visualization of the results of the 
hyperparameters optimization 

 

2.4.2  Anomaly Detection 

Switching to the anomaly detection models, WandB® is used again for 

the HPO procedure. The black-box framework is also used for the anomaly 

detection case. This architecture is very useful to standardize the different 

procedures through the usage of a configuration file. In Figure 41 an example 

of one of these YAML file is reported.  

 

 

Figure 41 Example of a configuration file for hyperparameters 
optimization, specifically for CFLOW-AD 
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Now it is necessary to spend some time talking about the 

hyperparameters to be optimized. Differently from the HPO for the 

classification models, each of the anomaly detection algorithms has its own 

hyperparameters. In the remaining part of this paragraph, the details about 

model and hyperparameters chosen are given. Starting from CFLOW-AD the 

hyperparameters are:  

• Backbone. 

• Learning rate. 

• Number of coupling blocks.  

The backbone is the network used to encode the starting images. In this 

case, as in the original paper [31], two types of ResNets (ResNet18 and Wide 

ResNet-50-2) were proposed. Both are pretrained on ImageNet and this is 

good because, as already said in the classification’s chapter, impressive results 

have been obtained in literature by pre-training an image-based model on this 

dataset. The second hyperparameter is the well-known learning rate. For both 

classification and anomaly detection models the learning rate has the same 

role. The range in which its optimal value has to be searched is determined by 

literature research of similar cases. Finally, the last hyperparameter used for 

CFLOW-AD, is the number of “coupling layers” each of the decoders has. A 

coupling layer is a particular type of layer that for its physical structure 

implements a normalizing flow on the information running through it. As 

stated in the beginning, a normalizing flow is a method used to model 

probability distributions which offers some mathematical advantages. For 

these characteristics, to be found in [32], changing the number of these layers 

in each decoder, slightly changes the modelling performed by the decoder or 

in other words changes the decoding.   

For what concerns PatchCore the hyperparameters used are [10].  

• Backbone.  

• Number of neighbours.  

Starting from the backbone, the option available for PatchCore are the 

same two types of ResNets previously proposed for CFLOW-AD. The number 

of neighbours, on the other hand, is a characteristic hyperparameter of this 

model. Since PatchCore tiles the starting images, it operates on the so obtained 

patches and the information contained in a patch is often not operating on a 

large enough receptive field size. This means that it sometimes does not 

account for meaningful anomalous context, robust to local spatial variations. 

This problem, that rises from the way the model operates, is tackled by the 



 

 

 

authors by aggregating the information coming from a number of 

neighbouring patches, after the features in each of them has been extracted. 

The number of elements to aggregate in this operation is the hyperparameter 

to be optimized.  

Finally, the hyperparameters used for DFKDE are:  

• Backbone.  

• Confidence threshold.  

• Maximum number of training points.  

Again, the backbone has the same role already explained for CFLOW-

AD and PatchCore. The confidence threshold is used for the density estimation 

step of DFKDE and so changing it changes how the probability function is 

modelled. Finally, the maximum number of training points is a limit to how 

many points are used for kernel density estimation [11].  

In Table 3, Table 4 and  

 

Table 5 the hyperparameters used for HPO on each anomaly detection 

model are resumed. 

Table 3 Hyperparameters used to optimize CFLOW-AD 

Parameters Values 

Backbone ResNet18, Wide-ResNet-50-2 

Number of coupling blocks 4,6,8 

Learning rate [0.001, 0.1] 

 

Table 4 Hyperparameters used to optimize PatchCore 

Parameters Values 

Backbone ResNet18, Wide-ResNet-50-2 

Number of neighbors 7,8,9,10 
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Table 5 Hyperparameters used to optimize DFKDE 

Parameters Values 

Backbone ResNet18, Wide-ResNet-50-2 

Confidence threshold 0.3, 0.6 

Maximum number of training 

points 
15000, 40000, 60000 

 

For each model the optimized values of the chosen parameters are 

reported in the results section. In particular, also the image size is put among 

the parameters to be tested in these cases, trying to understand if a greater 

resolution gives better results. 

2.5 Comparing models: K-fold, bootstrap, deep 

dominance 

Once all models have been optimised for specific task and dataset of this 

thesis, they must be applied (i.e. tested) and compared. The goal is to identify 

the best model for the industrial application. For this reason, a first step is to 

use techniques able to generalize the result. This means that it is necessary to 

understand how the system will behave on independent data such as those with 

which it will then work in the real application. 

One of the most used techniques to analyse the system’s performances in 

this sense is K-Fold cross validation [33]. This technique, that is graphically 

resumed in Figure 42, consists in: 

• Dividing the entire dataset into K parts 

• For each part performing the following tasks once: 

o Keep that part as test set 

o Keep the other K-1 parts as training set 

o Train the model on the so obtained training set 

o Test the model on the corresponding test set 



 

 

 

 

Figure 42 How K-Fold validation works 

Generally, these results are then summarized by taking mean and 

standard deviation of the K performances. On the other hand, recent literature 

also concluded that since neural networks have non-convex loss surfaces this 

procedure is not rigorous.  As stated by [34]: “These models have a large 

number of hyper-parameters and being non-convex, their convergence point 

depends on the random values chosen at initialization and during training”. 

Therefore, to compare different models a further analysis on the K 

performances values obtained is needed. In particular, the GitHub repository 

called Deep-Significance [35] developed by the university of Copenhagen is 

used to this end. This repository contains a series of tools to perform statistical 

significance tests on neural networks. In this thesis work, two of them were 

chosen to compare the models: 

• Almost Stochastic Order 

• Bootstrap power analysis 

Almost stochastic order (ASO), as stated in the [36] is a statistical 

tool that is: 

• SIGNIFICANT: this assures that future runs of the superior model are 

likely to get higher scores than future runs of the inferior model 

• POWERFUL: this means it is able to make decisions in most possible 

decision tasks 

• GIVES A CONFIDENCE SCORE 
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The operating principle is reported in the following. A Probability 

Density Function (PDF) is constructed from samples. In this specific case these 

samples are the metric scores extracted with the K-Fold method. After that, 

from the PDF, the Cumulative Density Function (CFD) is taken as reported in 

the example in Figure 43. 

 

 

Figure 43 Left:example of PDF. Reft: example of CDF 

From the definition of CFD, the stochastic dominance of one 

distribution over the other can be defined if: 

 

𝐹(𝑎) ≤ 𝐺(𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎   [ 5 ] 

 

As an example, is it possible to refer to Figure 44. In the figure, the green 

curve can be associated to G(a) while the red curve represents F(a). Just by 

looking at the picture, it is clear that the green curve is dominant with respect 

to the red one. 

 

Figure 44 Example of stochastic dominance of a CFD over another 



 

 

 

Unfortunately, as noted by [36]: “It often happens in Statistics, that the 

concept of stochastic dominance is excessively rigid”. ”Stochastic order is a 0-

1 relation. It is either true or false”. 

Indeed, in many applications, situations like the ones shown in Figure 

45 could rise. For example, let F(a) be the red curve and let G(a) be the green 

curve. In that case it is not possible to say which one is dominant, because the 

two curves intersect. 

 

Figure 45 Examples of situations in which a predominant distribution is 
present but stochastic order is not satisfied 

ASO, as proposed in the original paper by Dror et al. [34] Dror et al., is 

able to identify the better model in such situations with statistical meaning. 

Starting from two random variables X and Y with CDF’s F and G, an index 𝜀𝑊2 

is calculated (the exact formula can be in found [34]). This index satisfies the 

formula 

0 ≤ 𝜀𝑊2(𝐹, 𝐺) ≤ 1       [ 6 ] 

Where: 

• 0 corresponds to perfect stochastic dominance of X over Y.  

• 1 corresponds to perfect stochastic dominance of Y over X.  

It also holds that: 𝜀𝑊2(𝐹, 𝐺) = 1 − 𝜀𝑊2(𝐺, 𝐹).  

In other words, this index could be visualized as the quantification of 

the extent to which stochastic order is being violated like in Figure 46. 
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Figure 46 Example of how the index introduced in ASO could be visualized 

Based on this quantity a test is formulated with the following 

hypotheses: 

𝐻0 ∶  𝜀𝑊2(𝐹, 𝐺) ≥  𝜏    [ 7 ] 

𝐻1 ∶  𝜀𝑊2(𝐹, 𝐺) < 𝜏     [ 8 ] 

Where 𝜏 is a pre-defined quantity (generally it is 𝜏 = 0.5). In this test 

refusing the H0 hypothesis means accepting that 𝜀𝑊2 <  𝜏  and so that F is 

almost stochastic dominant over G. Starting from this the authors further find 

a minimal index for which we can reject the null hypothesis with a given 

confidence [35]. This is the value we are interested and that the given tool in 

the repository calculates. 

In other words, given the observed scores and a confidence value, the 

ASO algorithm returns a value which expresses an upper bound to the amount 

of violation of stochastic order. For this thesis work, a confidence level 0f 95% 

is chosen. Such a value is suggested in [37] and it is commonly used in other 

tests of this type. In the following paragraph it is reported how this tool is used 

in the specific case analysed.      

 When comparing two vectors A and B of samples of a specific metric 

(i.e., accuracy) and obtaining 𝐴𝑆𝑂(𝐴, 𝐵) = 0.2, the following information is 

given: B is almost stochastic dominant over A for less than 0.2. This is useful 



 

 

 

to conclude that model A is dominant over B for what regards accuracy. On the 

other hand, a result like 𝐴𝑆𝑂(𝐴, 𝐵) = 0.86  is not returning any useful 

information since it tells that B is almost stochastic dominant over A for less 

than 0.86, which could be any value between 0 and 0.86. In simple terms, to 

state that a specific model is better than another with regards to a certain 

metric, it is useful to look for values of ASO below 0.5.    

 It is interesting to notice that no assumption about the distribution of 

the scores is made in this procedure. On the other hand, it is evident that the 

number of scores allowing for reliable significance testing is arbitrary in this 

method. Due to this, also the bootstrap power analysis is used. 

 

Bootstrap power analysis [38] is used to understand if the number 

of samples used is sufficient or not to model a PDF and run significance tests 

on it. In the specific case analysed, this helps to understand if the number of 

folds with which K-Fold is performed is high enough. 

This power analysis works as follows. It takes the sample vector and 

normalizes it. Then, it gives to all the elements present in the vector a uniform 

lift to create an second artificial sample. Multiple versions of both samples are 

then obtained through bootstrapping. This means similar samples are 

produced with random sampling and replacement from the two initial 

samples. 

The ones coming from the original samples and the ones obtained from 

the incremented one are then compared with a significance test to see if they 

belong to the same distribution or not. In practice, the percentage of 

comparisons that yield significant results is returned. The authors state that a 

uniform lift of 1.25 should result in statistically significant differences. If this 

is not the case this means that the starting distribution has such a big variance 

that the system is not able to identify the difference between the two 

distributions. In other words, the variance is too high, and more samples 

should be collected. 

The authors conclude that values of the significance test above 0.8 can 

be considered acceptable. A schematic representation of this proceedings is 

reported in Figure 47. 
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Figure 47 Schematic representation of how power analysis works. 
Condition B is just condition A incremented by a constant. The here 
presented procedure is repeated many times and the percentage of 

significant results is returned. 

It must now be noticed that when choosing the K factor for K-Fold, two 

different needs must be balanced out:  

1. High K for good power analysis values.  

2. Low K to not have unreliable test sets with low number of samples.  

K equal to five, which is a commonly adopted value, was found to be a 

good choice as will be justified in the results section. 

  



 

 

 

3 Results 

In this chapter, the main results of each model will be presented 

sequentially, starting from the classification algorithms and ending with 

anomaly detection ones. These results are the direct consequences of the 

methods described in chapter 2. 

In the first part of this section each model’s experimental outcome is 

described independently, mainly relying on tables and figures. In this way, 

results can be listed in a standardized way, making the following comparisons 

more readable. 

In the second part of this chapter, the results of the comparison among 

all the models are reported. This comparison was done with the tools 

introduced in the previous chapter.  

 

3.1 Classification 

In the following sub sections the main results for each classification 

model are reported, using a standardized structure. This chapter is organized 

in the following way for each model: first,  the parallel coordinates plot 

obtained as result of the hyper-parameters optimization is reported and 

commented. From this chart, the optimized value of each hyper-parameter is 

taken and summarized in a table. Then, the main code is executed with the 

optimized hyper-parameters, and the training procedure can begin. From this, 

two curves are extrapolated: training accuracy vs validation accuracy and 

training loss vs validation loss. These curves are of fundamental importance. 

Indeed, by analysing them, it is possible to understand whether the algorithm 

is generalising well (i.e., no divergency is presented) as well as if the call-back 

procedure is working, avoiding any overfitting.  After training has been 

completed, the test phase can be carried out. In this phase, a new set of images 

is given to the model and on this, the model’s performance can be evaluated. 

In particular, accuracy, AUROC and inference time are considered. 

3.1.1 Resnet50 

As explained, the first step to get the final model is the identification of 

the best value for each hyper-parameter. This is achieved by using WandB® 
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as explained above. The result of the HPO procedure is shown in Figure 48. 

The optimal value for each parameter is extracted from this graph. For the sake 

of clarity these values are summarized in Table 6. 

 

Figure 48 HPO results for ResNet50 

Table 6 Optimal values of the hyper-parameters for ResNet50 

Parameters Values 

Batch size 32 

Training epochs 50 

 Learning rate  0.001 

Fully connected units 512 

 

Now, it is possible to compile the model with the so found values (by 

editing only the configuration files) and to proceed with the training. The 

results of this procedure in terms of training versus validation accuracy and 

training versus validation loss are reported in Figure 49. 



 

 

 

 

Figure 49 Training and validation curves for accuracy and loss obtained 
with ResNet50 

Just by looking at the graph it is possible to say that the training phase 

was successfully completed. Indeed, the call-back stops the training at 16 

epochs instead of the 40 proposed by the HPO, avoiding the overfitting 

problem. Furthermore, as can be seen, there is no divergency between training 

and validation accuracy curves and the same can be also noticed for training 

and validation loss curves.  The last passage consists in testing the model. The 

value of each metric obtained is summarised in Table 7. Confusion matrix and 

AUROC are reported in Figure 50 and Figure 51, respectively. 

Table 7 Accuracy, AUROC and inference time values for ResNet50 on the 
test dataset 

 Accuracy [%] 
Inference time 

[ms] 
AUROC  

Values 98.62 3  99.03  
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Figure 50 Confusion matrix for ResNet50 

According to Raytech Vision S.P.A., among the wrongly classified 

tomatoes, the worst are those that are classified as good but are actually bad. 

Raytech Vision S.P.A. has expressly stated that consumers prefer to have a 

higher product waste in order to keep the quality standard high. Referring to 

what has just been said and taking Figure 50 as an example, the ideal situation 

would be the opposite of the confusion matrix. In any case, the number of 

wrongly cassified tomatoes is very low (7 on a total of 507 images) and and the 

end result in terms of accuracy is very satisfactory. This consideration is 

confirmed by the ROC reported in Figure 51. 



 

 

 

 

Figure 51 ROC curve for ResNet50 

So far, the results of the classical training, validation and testing 

approach have been reported and briefly discussed. In Table 8, instead, the 

results of the K-Fold procedure done on the entire dataset are reported. It is 

useful to remember that K=5 is chosen to apply the K-Fold. 

Table 8 Results of cross validation for ResNet50 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean Std. deviation 

Accuracy 

[%] 
99.55 98.81 99.41 98.37 99.55 99.14 4.7*10-1 

AUROC [%] 100 100 100 100 99.99 99.99 1.69*10-3 

Inference 

time per 

image [ms] 

3.5 3.7 3.6 3.6 3.8 3.6 5.7*10-1 
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On these values, the bootstrap power analysis is performed. That gives 

the results reported in Table 9 which are satisfying. As can be seen, K=5 was 

sufficient to performing reliable significance testing. 

Table 9 Power analysis for the metric values from ResNet50 

 

 

 

 

 

 

Lastly, applying the Grad-CAM on some of the images (see Figure 52) 

the correct functioning of the algorithm is confirmed. In fact, it can be seen 

that the algorithm focuses on the most interesting part of each picture (i.e., the 

defects present on the tomato’s skin) to perform classification. 

 

Figure 52 Outcome of the Grad-CAM applied to ResNet50. We see that the 
model is working correctly since it focuses on the defects. In the bottom, as 

the defect is the green colour, it focuses on the entire tomato. 

 Power 

Accuracy 1 

AUROC 1 

Inference time 1 



 

 

 

3.1.2 Mobilenet 

As before, the first step is the HPO procedure. The best way to analyse 

the result is to look at the parallel coordinate graph, shown in  

Figure 53. 

 

Figure 53 Parallel coordinates plot for the HPO of MobileNet 

From the chart, the value of each hyper-parameter is extrapolated to 

ensure the best possible accuracy. For the sake of clarity, these values are 

reported in Table 10. 

Table 10 Optimal values of the hyper-parameters for MobileNet 

Parameters Values 

Batch size 64 

Training epochs 40 

Learning rate 0.0001 

Fully connected units 512 

 

As explained, these values must be entered manually in the software 

through the modification of the configuration file. After that, the training 

procedure can be started. The result of the training and validation, in terms of 

accuracy and loss curves, is reported in Figure 54. 



 

65 

 

 

Figure 54 Training and validation curves for accuracy and loss for 
MobileNet 

By analysing the behaviour of these curves two main points can be 

highlighted: 

1. As for ResNet50 case, the call-back stops the training before the 40 

epochs suggested by the HPO. Anyway, MobileNet requires more 

training epochs than ResNet50 that means more training time is 

needed. 

2. Fortunately, the algorithm generalises well, because, comparing 

training and validation curves for both accuracy and loss, no divergency 

is presented. 

The test phase followed the training one. The classification accuracy on 

the test dataset of MobileNet along with inference time and AUROC are 

reported in Table 11. This table is followed by the plots of Confusion matrix and 

ROC curve. It should be noted that, the inference time achieved by MobileNet 

is very low. According to Raytec Vision S.p.A., this inference time is good 

enough to be integrated in already existing sorting hardware. 

 



 

 

 

Table 11 Accuracy, AUROC and inference time values for MobileNet on the 
test dataset 

 Accuracy [%] 
Inference time 

per image [ms] 
AUROC [%] 

Values 98.82 2 98.16 

 

 

Figure 55 Confusion matrix for Mobile Net 

Unlike the previous case (i.e. Figure 51), Figure 55 reflects the ideal case 

that Raytech Vision S.P.A. would like to achieve. In this case, in fact, the model 

discards more good tomatoes bad ones which it 'does not see'. The excellent 

functioning of this model can be confirmed by looking at Figure 56. Indeed, an 

AUROC above to 0.98 is considered excellent, as explained previously. 
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Figure 56 ROC curve for MobileNet 

Once training, validation and testing are concluded, K-fold cross 

validation on the entire dataset can be done. In Table 12 are shown the results 

of the cross validation using K=5. 

Table 12 K-fold results for MobileNet 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

Accuracy [%] 98.22 98.51 98.66 98.52 99.11 98.61 2.9*10-1 

AUROC [%] 99.99 99.98 99.99 99.99 99.73 99.94 1.15*10-1 

Inference 

time per 

image [ms] 

1.7 1.3 1.3 1.3 1.4 1.4 1.73*10-1 

 

To briefly comment the reported charts, it should be said that 

MobileNet is far faster than ResNet50, still preserving a pretty high accuracy 

and AUROC.  



 

 

 

In Table 13 are reported the results of the power analysis done on the 

values obtained using the K-Fold cross validation. 

Table 13 Power analysis for MobileNet 

 

These results show that K=5 is a satisfactory value for the following 

comparison.  

Finally, the Grad-CAM was used with the aim of understanding where 

the model is looking to classify the images. The result is shown in Figure 57. 

The tomato is green but without punctual defects. In fact, as expected, the 

model shows an even heatmap on the entire tomato skin and does not colour 

the background. 

 

Figure 57 Example of Grad-CAM for MobileNet. The model evenly focuses 
on the entire tomato since it is green, but no punctual defects are present 

3.1.3 GoogLeNet  

For the last classification algorithm, the starting point is again the HPO 

thanks to the WandB® support. The results of the latter are reported in the 

parallel coordinates graph in Figure 58 and summarized in Table 14. 

 Power 

Accuracy 1 

AUROC 1 

Inference Time 0.84 
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Figure 58 Parallel coordinates plot for the HPO of GoogLeNet 

Table 14 Optimal values of the hyper-parameters for GoogLeNet 

Parameters Values 

Batch size 32 

Training epochs 40 

Learning rate 0.001 

Fully connected units 512 

 

Following the same structure used for the previous models, the results 

of the training are reported in Figure 59. Clearly, before starting the training, 

the optimized value for each hyper-parameter must be manually entered in the 

code through the YAML file. 



 

 

 

 

Figure 59 Training and validation curves for accuracy and loss for 
GoogleNet 

From the training curves, two main points can highlighted: 

1. The correct functioning of the call-back should be noticed. Indeed, the 

training is stopped much sooner than what is expected from the HPO. 

2. Moreover, there is no divergence, a sign that the algorithm is 

generalising well.  

As last passage, the testing phase can be accomplished. The results of 

the latter are reported in Table 15. The plots of confusion matrix and ROC 

curve for GoogLeNet are shown in Figure 60 and Figure 61, respectively. 

Table 15 Accuracy, AUROC and inference time values for GoogLeNet on the 
test dataset 

 Accuracy [%] 
Inference Time 

per image [ms] 
AUROC [%] 

Values 97.63  4  96.00 
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Figure 60 Confusion matrix for GoogLeNet on the test set 

For GoogLenet as well as for MobileNet, the Confusion Matrix shown in 

Figure 60 gives an idea of the number of bad tomatoes classified as good. As 

already stated previously, this index is really important for the industrial 

partner Raytech Vision S.P.A. In this case, of the thirteen wrongly classified, 

less than half are actually bad. The accuracy achieved by the classifier is 

satisfactory. This conclusion is further confirmed by the ROC shown in Figure 

61. Indeed, although the AUROC value is the lowest of those found so far, as 

specified in the previous chapter, an AUROC equal to 0.96 is considered 

excellent. 



 

 

 

 

Figure 61 ROC for GoogLeNet on the test set 

Finally, it is possible to perform the K-Fold cross validation on the entire 

dataset. The results of this procedure are summarized in Table 16. 

Table 16 K-Fold results for GoogLeNet 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

Accuracy 

[%] 
98.48 96.59 97.92 97.33 97.92 97.64 7.18*10-1 

AUROC 

[%] 
100 100 100 100 99.64 99.93 1.42*10-3 

Inference 

time per 

image 

[ms] 

2.6 2.0 2.0 2.3 2.3 2.24 2.51*10-1 

 

On these values it is possible to perform bootstrap power analysis (Table 

17). The results obtained from the latter are, once again, satisfactory. In fact, 
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the different values of the power found confirm that K=5 is a sufficiently high 

value. 

Table 17 Power analysis for GoogLeNet 

 Power 

Accuracy 1 

AUROC 1 

Inference time 0.90 

 

As usual, the last operation consists in using the GRAD-CAM method to 

understand if the model is operating properly. From Figure 62, it is possible to 

appreciate where GoogLeNet is looking to classify the specific image analysed. 

In particular, the algorithm focuses on the defect presents on the skin and 

therefore we conclude that the last classification model also works properly. 

 

 

Figure 62 Grad-CAM result using GoogLeNet. The model is correctly 
focusing on the defect to classify the image. In this case the defect is the 

remaining unpeeled part of the tomato.  



 

 

 

3.2 Anomaly Detection 

This section describes the scheme followed to report the experimental 

results of the three anomaly detection models. First, the HPO results are 

shown, summarising the values of the chosen hyper-parameters in a table and 

presenting the increase in model performance after this step. Then the results 

of the K-Fold procedure are shown through a table. Lastly, the bootstrap power 

analysis is performed on the k values. Again, bootstrap results are shown in a 

table. 

3.2.1 CFLOW-AD 

Applying the standard CFLOW-AD algorithm as contained in the 

GitHub repository on the main dataset, the following performance for what 

concerns AUROC on the validation set are obtained. See Figure 63 for the 

details. 

 

             Figure 63 AUROC on validation dataset with default settings of 
CFLOW-AD 



 

75 

 

Using the WandB®  support it is explored how the accuracy of the 

model on the specific dataset changes with the different settings introduced in 

the methods section. The results can be appreciated by looking at Figure 64. 

 

Figure 64 Hyperparameters optimization visualization for CFLOW-AD 

With the graphical aid given by the dashboard the best combination of 

values for the hyper-parameters was identified to obtain the highest accuracy 

value. The values found for each hyper-parameter are reported in Table 18. 

Table 18 CFLOW-AD hyperparameter chosen for the dataset after 
optimization 

Parameters Values 

Image size 224 

Model backbone Wide_resnet50_2 

Learning rate 0.01122 

Coupling blocks 8 

 

By training the model with the values for the hyper-parameters just 

found, the ROC curve obtained on the validation set shows an increment in the 

AUROC value, as can be seen graphically seen in Figure 65. 



 

 

 

 

Figure 65 Increase of performance after hyperparameters optimization for 
the CFLOW-AD model 

As said at the beginning, CFLOW-AD defines the anomaly score at 

image level. In other words, in the case of CFLOW-AD it is possible to visualize 

the anomaly score in a graphical way. This is done following a logic similar to 

the one used with Grad-CAM for the classification case. In fact, by visualizing 

the anomaly score heatmap it is possible to understand where the model 

“thinks” the anomaly is located. In a nutshell, the algorithm is expected to 

focus on the specific anomalies present. This trend is confirmed, and some 

examples are reported in Figure 66. The meaning of this type of visualization 

is similar to the Grad-CAM. Indeed, it helps in understanding if the model is 

operating correctly. 
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Figure 66 Examples of anomaly maps produced by CFLOW-AD: it can be 
noticed that the model identifies the anomalies, this indicates that it is 

working correctly 

As can be seen in the two bottom images of Figure 66, the anomaly is 

given by the overall skin of the tomato that is unripe and in fact the model gives 

a weak anomaly (i.e., light yellow colour) on the entire tomato. On the other 

hand, for what concerns the other four images, it should be noticed that the 

model is detecting the anomaly weakly on the entire tomato (and this is good 

because they are not correctly peeled), but it focuses mainly on the localized 

defects. This is the expected behaviour. With the so optimized model, K-Fold 

cross validation with 5-folds is performed. Table 19 contains a resume of the 

so obtained performances. 

 

 

 



 

 

 

Table 19 K-Fold results for CFLOW-AD 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

Accuracy 

[%] 
95.34 94.94 95.62 95.22 95.45 95.31 2.56*10-1 

AUROC 

[%] 
95.70 94.22 95.93 94.97 94.81  95.13 

 

6.93*10-1 

Inference 

time per 

image 

[ms] 

28.5  30.3 25.6 32.2 27.7  28.86 
 

2.3 

 

With these values it is now possible to apply the bootstrap power 

analysis. The results are reported in Table 20 and show that K equal to five is 

a sufficiently large number of samples. 

Table 20 Bootstrap power analysis results on CFLOW-AD output 

 Power 

Accuracy 1 

AUROC 1 

Inference time 0.98 
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3.2.2  PatchCore 

Figure 67 shows the AUROC of the standard PatchCore algorithm on 

the validation dataset. 

 

Figure 67 AUROC of the standard PatchCore algorithm on the validation 
dataset 

This result was obtained with the hyperparameters configuration 

reported in the original paper. In fact PatchCore, as specified in the 

introduction, is the state of the art method for anomaly detection on the MVtec 

AD4 dataset. In other words it is extremely good in industrial applications as 

this one and in fact it can be noticed that the starting performance is already 

quite good. 

HPO is then applied on this model logging the results on WandB® 

website. Figure 68 shows the results of this process in terms of the usual 

parallel coordinates plot. 

 

4 MVTec AD Benchmark (Anomaly Detection) | Papers With Code 

https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad


 

 

 

 

Figure 68 Hyperparameters optimization on PatchCore 

Again, the configuration giving the highest accuracy is selected, whose 

parameters and respective values are reported in Table 21. 

Table 21 Optimized valued of the hyperparameters for PatchCore 

Parameters Values 

Image size 224 

Model backbone Wide_resnet50_2 

Number of neighbors 9 

 

Training again PatchCore with these hyperparameters on the specific 

dataset, gives an increment in the quality of the model that can be visualized 

in Figure 69 in terms of ROC curve. 
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Figure 69 AUROC of PatchCore before and after optimization, the increment 
is evident 

This modified PatchCore model is used to perform K-Fold and in Table 

22 the results of the cross validation are listed. 

Table 22 Results of cross validation for PatchCore 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean Std.deviation 

Accuracy [%] 92.12 95.27 95.11 93.53 96.32 94.47 1.65 

AUROC [%] 97.40 98.43 98.77 96.62 99.01 98.04 1.02 

Inference 

time per 

image [ms] 

17.5 15.8 15.6 16.6 14.7 16.04 1.06 

 

On these values the bootstrap power analysis is applied. The result of 

this operation are reported in Table 23. Again we expect these values to be 

above 0.8 to be able to conclude that we have a sufficiently high number of 

cross validations. As can be concluded by observing those values we again find 

that also in this case K=5 is enough. 

 

 

 

 



 

 

 

 

 

Table 23 Power analysis on cross validation results for PatchCore 

 Power 

Accuracy 1 

AUROC 1 

Inference time 1 

 

3.2.3 DFKDE 

The DFKDE algorithm trained and validated on the main dataset, 

without modification from the version available on GitHub, gives the AUROC 

reported in Figure 70. 

 

Figure 70 AUROC of DFKDE on validation set with default settings 
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Again, HPO was applied to obtain the best possible accuracy for the 

specific case. In Figure 71 the result of the HPO is shown.  

 

Figure 71 HPO visualization for DFKDE 

The best combination of the hyper-parameters values which allow to 

obtain the highest accuracy is reported in Table 24. 

Table 24 Optimized values of hyperparameters for DFKDE 

Parameters Values 

Image size 224 

Model backbone Wide_resnet50_2 

Confidence threshold 0.6 

Maximum number of training 

points 
60000 

 

In Figure 72 the comparison between the original AUROC and the one 

obtained after the HPO is reported. Both were done on the validation dataset. 



 

 

 

 

Figure 72 AUROC of DFKDE before and after optimization, the increment is 
evident 

K-Fold cross validation with five folds is performed on the so optimized 

model. The results are reported in Table 25 and Table 26. Again, the power 

analysis shows that K equal to five in a sufficient number of splits. 

Table 25 Cross validation results 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

Accuracy [%] 84.09 82.51 82.51 83.91 83.39 83.28 7.5*10-1 

AUROC [%] 93.09 90.25 89.97 91.41 91.08  91.16 
 

1.23 

Inference 

time per 

image [ms] 

11.7 13.1 14.9 13.5 14.08 13.46 1.19 

 

Table 26 Power analysis on cross validation results 

 Power 

Accuracy 1 

AUROC 1 

Inference time 0.97 
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3.3 Comparing the models  

Having optimized and cross validated all the models, the results of the 

comparisons performed among them is reported in this section. In Table 27, 

Table 28 and Table 29 the performances of all the models are reported in 

synthetic form. 

Table 27 Accuracy results in synthetic form for all models 

Accuracy 

[%] 

Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

ResNet50 99.55 98.81 99.41 98.37 99.55 99.14 4.7*10-1 

MobileNet 98.22 98.51 98.66 98.52 99.11 98.61 2.9*10-1 

GoogLeNet 98.48 96.59 97.92 97.33 97.92 97.64 7.18*10-1 

CFLOW-AD 95.34 94.94 95.62 95.22 95.45 95.31 2.56*10-1 

PatchCore 92.12 95.27 95.11 93.53 96.32 94.47 1.65 

DFKDE 84.09 82.51 82.51 83.91 83.39 83.28 7.5*10-1 

 



 

 

 

Table 28 AUROC results in synthetic form for all models 

AUROC 

[%] 

Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

ResNet50 100.0 100.0 100.0 100.0 99.99 99.99 1.69*10-3 

MobileNet 99.99 99.98 99.99 99.99 99.73 99.94 1.15*10-1 

GoogLeNet 100.0 100.0 100.0 100.0 99.64 99.93 1.42*10-3 

CFLOW-AD 95.70 94.22 95.93 94.97 94.81 95.13 6.93*10-1 

PatchCore 97.40 98.43 98.77 96.62 99.01 98.04 1.02 

DFKDE 93.09 90.25 89.97 91,41 91.08 91.16 1.23 

 

Table 29 Inference time results in synthetic form for all models 

Inference time 

per image [ms] 

Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

ResNet50 3.5 3.7 3.6 3.6 3.8 3.6 5.7*10-1 

MobileNet 1.7 1.3 1.3 1.3 1.4 1.4 1.73*10-1 

GoogLeNet 2.6 2.0 2.0 2.3 2.3 2.2 2.51*10-1 

CFLOW-AD 28.5 30.3 25.6 32.2 27.7 28.9  2.3 

PatchCore 17.5 15.8 15.6 16.6 14.7 16.0 1.06 

DFKDE 11.7  13.1 14.9 13.5 14.0 13.4 1.19 

 

On these results it is now possible to apply the Almost Stochastic Order 

algorithm to find the best model. As said, since the power analysis’ results are 

good enough for all the models, it is possible to treat every vector of 5 metric 

values coming from the cross validation as a significant distribution. For what 

concerns inference times there is no need to report this analysis since there is 
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a clear hierarchy of stochastic order among models. Indeed, MobileNet is for 

sure the fastest algorithm among the ones analysed.  

In Table 30 and Table 31 the results of the ASO applied to accuracy and 

AUROC respectively are reported. These matrixes are to be read as: 

𝐴𝑆𝑂(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛)  [ 9 ] 

On the diagonal the value 1 is set as default. The confidence level is set to 95%. 

Table 30 Result of comparison among models' accuracy with ASO. As 
introduced in the beginning only in values below 0.5 are interesting 

Accuracy Resnet50 MobileNet GoogLeNet CFLOW-AD Patchcore DFKDE 

Resnet50 1 0.18 0.00083 0 0 0 

MobileNet 1 1 0.028 0 0 0 

GoogLeNet 0.99 1 1 0 0 0 

CFLOW-AD 0.99 0.99 0.99 1 0.43 0 

Patchcore 0.99 0.99 0.99 1 1 0 

DFKDE 1 1 1 1 1 1 

 

Table 31 result of comparison among models' AUROC with ASO. As 
introduced in the beginning only in values below 0.5 are interesting 

AUROC Resnet50 MobileNet GoogLeNet CFLOW-AD Patchcore DFKDE 

Resnet50 1 0.85 0.83 0 0 0 

MobileNet 1 1 0.85 0 0 0 

GoogLeNet 1 1 1 0 0 0 

CFLOW-AD 0.99 0.99 0.99 1 0.99 0 

Patchcore 0.99 0.99 0.99 0 1 0 

DFKDE 0.99 0.99 0.99 0.99 0.99 1 



 

 

 

 

As explained when introducing Almost Stochastic Order, among all the 

values reported in these matrixes, the most interesting ones are the values 

below 0.5 . In this way it is possible to conclude that algorithm A (row) is better 

than algorithm B (column). Moreover, when comparing models in terms of 

sorting quality, AUROC has greater importance than the accuracy for the 

reason explained in the metrics’ paragraph. From these results, some 

considerations can be extracted. In particular, it is possible to conclude that: 

o Classification algorithms have overall better performances than 

anomaly detection ones both in terms of sorting quality and in terms of 

inference time. 

o The ASO of the AUROC isn’t helpful to conclude which among the 

classification models is the best in terms of sorting quality. Still, looking 

at the ASO of accuracies ResNet50 is better than both MobileNet and 

GoogLeNet is worse than MobileNet.  

o In terms of inference speed, on the other hand, the fastest model is 

clearly MobileNet while ResNet50 is the slowest among the 

classification models. 

o GoogLeNet is worse than MobileNet in terms of both sorting quality and 

inference time. 

o Anomaly detection models are overall far slower than classification 

models. 

o Among anomaly detection models DFKDE is the fastest but also the one 

with the lowest AUROC. 

o In terms of AUROC, PatchCore is the best anomaly detection model. 

Therefore, it is possible to conclude that PatchCore is the best anomaly 

detection model in terms of sorting quality.  

o CFLOW-AD is slower and has lower AUROC than PatchCore. 

These observations bring the following conclusions: 

o In terms of sorting quality, it is possible to list the models from the best 

to the worst as follows: 

1. ResNet50 

2. MobileNet 

3. GoogLeNet 

4. PatchCore 

5. CFLOW-AD 

6. DFKDE 
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o In terms of sorting speed, the same is done as follows: 

1. MobileNet 

2. ResNet50 

3. GoogLeNet 

4. DFKDE 

5. PatchCore 

6. CFLOW-AD 

So that it can be observed that: 

o Classification models are better than anomaly detection models for this 

application  

o Among anomaly detection models PatchCore is the best choice since it 

is almost as fast as DFKDE but by far the best in terms of sorting quality. 

o Among classification models both MobileNet and ResNet50 have 

strengths while GoogLeNet is the worst choice. MobileNet is faster 

while ResNet50 gives higher quality choices. Still, it must be noticed 

that for both the performances in terms of AUROC and accuracy are 

very good even for MobileNet. It achieves average AUROC and Accuracy 

values above 98.5% while being the worse model among the two from 

this point of view. 

Given the need to integrate the here presented algorithms on existing 

machinery, the Raytec Vision S.P.A. suggested that the doubled classification 

speed achieved by MobileNet compared to ResNet50 represents a big 

advantage for which it is permissible to sacrifice a few percentage points in 

classification accuracy and AUROC. In fact, the inference speed result of 

MobileNet is the only one low enough to be integrated on the already existing 

machinery without the need to develop new hardware or reduce the 

throughput of the existing one. Following this reasoning MobileNet is chosen 

as the best model. From now on if not specified otherwise we will report some 

additional experiments performed with MobileNet. 

  



 

 

 

4 Additional results 

Chapter 4 is dedicated to some insights. In particular, to have a clear 

understanding of the work behind this master thesis work, two main topics are 

analysed and discussed. Firstly, a multi-class classification experiment is 

performed on the dataset composed by four classes. Then, something about 

the second dataset is reported. It contains only two classes with about 200 

images per class and the acquisition is not good as it is the one of the main 

dataset. In fact, those are just normal smartphone images. Greater details 

about it are to be found in the dataset chapter in the introduction. Here the 

aim is to understand how robust the developed system is with respect to this 

different dataset. 

 

4.1 MobileNet multi-class classification 

In the introduction the fundamental difference in characteristic 

between IC and AD algorithms is reported. At that stage, it was stated that a 

fundamental advantage of classification models over anomaly detection ones 

is that, as the name suggest, IC-based models are able to classify the data in 

even more than two classes. This property, that is not useful in the industrial 

application discussed in this thesis, is surely interesting for some other 

application cases. In fact, it can be used to analyse which type of diseases the 

classification identifies the hardest. That type of information could be useful 

in future developments. Because of this, a multi-class classification was 

performed.  

Of course, as written in the introduction, to perform this task a very 

good dataset with numerous samples from each of the anomalous classes is 

needed. Luckily the dataset is robust enough and offers three different diseases 

already divided in folders. Moreover, for each class there is a sufficiently high 

number of samples to perform this operation.  

The framework used for this purpose is identical to what is described 

above. Just a small number of adjustments need to be done. First, as explained 

in the introduction, the number of neurons in the final layer needs to be equal 

to the number of classes we are interested in. To this end, four units were 

placed in the last layer. Second, as activation function you need to use SoftMax 
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instead of sigmoid. Indeed, the SoftMax function is able to choose which is the 

higher probability in the case of ranking with more than two. SoftMax applies 

a standard exponential function to each element of the output layer and then 

normalises these values by dividing them by the sum of all exponentials. In this 

way, the sum of all exponential values is equal to 1. To make this passage cleare 

it is useful to look at the example reported in Figure 73. First, exponentiate 

each element of the output level and sum the results. It then takes each element 

of the output layer, exponentiates it and divides it by the sum calculated in the 

previous step. Clearly, the class given in the output is the one with the highest 

probability. 

 

Figure 73 Example of how the softmax activation function works. In this 
case the number of classes is equal to 5 

The change from Sigmoid to Softmax is done autonomously thanks to 

Python. Moreover, thanks to the black-box scheme and configuration files, 

implementing these changes becomes quick and easy. 

For the multi-class classification, thanks to the low required running 

time during training associated with good values for both classification 

accuracy and inference time, MobileNet was chosen as the model to be used. 

This choice makes it possible not to spend as much time performing this task 

in the hope of obtaining satisfactory results as in the case of binary 

classification. HPO was not repeated for this case. Consequently, the values of 

the hyper-parameters are unchanged from those previously reported. On the 

so obtained system only training, validation and test procedures are 

performed. AUROC cannot be used to evaluate the performance in this case. 

We use accuracy and confusion matrix. In Figure 74 training vs validation 

accuracy and training vs validation loss can be appreciated. It is possible to 

state that, even if the hyper-parameters are not the optimal ones, MobileNet 



 

 

 

generalises pretty well, and the overfitting is not a problem. Indeed, in both 

accuracy and loss plots there is no sign of divergency. Moreover, the call-back 

stops the training after just 12 epochs, avoiding a waste of time and ensuring 

the model does not over-fit. 

 

Figure 74 Training vs Loss curves for validation and loss. These curves are 
obtained in the multi-class class classification task using MobileNet as 

model. 

Identically to what was done for the binary classification problem, the 

following phase consist in testing the algorithm. The most interesting results 

are classification accuracy and inference time. The numerical values of these 

are reported in Table 32. 

Table 32 Numerical results in terms of classification accuracy and inference 
time for MobileNet during multi-class classification 

 Accuracy [%] 
Inference time per 

image [ms] 

Values 97.04 18.4 
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Clearly, even for the multi-class classification problem, the best way to 

understand the result is to plot the confusion matrix. The latter is reported in 

Figure 75. 

 

Figure 75 Confusion Matrix for MobileNet during the multi-class 
classification problem 

It can be seen how the algorithm is capable of classifying both good 

tomatoes and the ones with anthracnose. On the other hand, it still has some 

trouble in distinguishing green tomatoes as well as yellow ones. Anyway, it is 

straightforward to conclude that, even without optimizing the algorithm the 

results are pretty good. In addition, with further improvements in terms of 

hyper-parameters, a higher accuracy could be achieved. 

 

4.2 Additional Dataset 

The additional dataset provided by Raytec Vision S.p.A. was acquired 

with a normal smartphone and as explained in detail in the dataset section 

shows the tomatoes on a table so that the background is not standardized and 

neither the lighting. In addition, in some images, the presence of external 



 

 

 

elements can be seen (Figure 76). It is composed by only two classes of tomato, 

peeled and unpeeled. Here this dataset is used to verify how robust the system 

proposed above is and how much the presence of an uncontrolled background  

influences the output. It was also useful to conduct some preliminary 

experiments. 

 

Figure 76 Example of picture taken from the additional dataset 

Testing the robustness means to find out if the system, without any 

optimization and change with respect to what was used above, would still be 

able to operate in a satisfactory manner on different types of images of the 

same type of vegetables.  This could be useful also when installing the same 

software with a different acquisition system. 

The following models, metrics and result do not need to be explained 

again because the only change with respect to the binary classification reported 

above is the dataset. So, in order to not be repetitive, the main results are 

directly reported. For the same reasons explained in the multi-class 

classification section (i.e., running time during training and good values for 

both accuracy and inference time) we chose to use MobileNet for this purpose. 

This choice is made also since the final machine as said can be imagined 

working with MobileNet so that the robustness of that model is especially 

interesting. 

About the results, following the same pattern as for the other tasks, we 

report in Figure 77 training vs validation accuracy and training vs validation 
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loss respectively. Once again, both in accuracy and loss plots there is no sign 

of divergency. Therefore, the over-fitting does not affect the algorithm. 

Once the algorithm is correctly trained, it is possible pass to the test 

phase, ending with the values for accuracy and inference time reported in 

Table 33. The confusion matrix is reported in Figure 78. 

 

Figure 77 Training vs Validation Accuracy and Training vs Validation Loss 
for MobileNet on the preliminary dataset 



 

 

 

 

Figure 78 Confusion Matrix for MobileNet on the preliminary dataset 

For this testing task, the test dataset is composed by 75 images divided 

in 35 images of unpeeled tomatoes, labelled as “Bad”, and 40 images of peeled 

tomatoes, labelled as “Good”. From the confusion matrix, it is possible to see 

that the algorithm classifies perfectly all the good tomatoes, while it 

misclassifies one “Bad” tomato. The ROC (Figure 79) follows the confusion 

matrix plot. As in the previous cases where MobileNet was used, here again the 

curve identified by the perfect classifier is almost reached. 
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Figure 79 ROC curve for MobileNet on the preliminary dataset 

Table 33 Final values of accuracy and inference time for MobileNet on the 
preliminary dataset 

 Accuracy [%] Inference time per image [ms] AUROC [%] 

Values 98.67 1.9  98.57 

 

As done before, the results obtained in the test phase were validated 

using K-Fold cross validation, setting five as number of folds. The outcome of 

the K-Fold procedure is summarized in Table 34. 



 

 

 

Table 34 Result of the K-Fold cross validation on the preliminary dataset 

 
Fold 

n°1 

Fold 

n°2 

Fold 

n°3 

Fold 

n°4 

Fold 

n°5 
Mean 

Std. 

deviation 

Accuracy 

[%] 
100 98.97 97.94 100 100 99.38 8.3*10-1 

AUROC 

[%] 
100 100 100 100 100 100 0 

Inference 

time per 

image 

[ms] 

6.01 1.38 1.38 1.38 1.45 2.33 1.87 

 

4.2.1  Data Augmentation  

Continuing the discussion on the secondary dataset, other procedures 

need to be reported to make this thesis work complete. 

The first procedure that needs to be cited is the well-known data 

augmentation. Indeed, training a CNN on small datasets makes it prone to 

over-fitting, inhibiting the CNNs capability to generalize to unseen invariant 

data. A potential solution is to use Data Augmentation [39]. Data 

Augmentation consists in creating new data based on modifications of your 

existing data. Since in our case data are images, data augmentation would 

include transformations like5: 

• Flipping the image, either horizontally or vertically. 

• Rotating the image. 

• Zooming in or out the images. 

• Cropping the image. 

• Varying the colour of the image. 

Following this idea, a series of layers in the model are implemented. 

Those layers have the task of doing data augmentation directly during training. 

In this way, the augmented data are not saved, saving space and time. The 

result of data augmentation starting from a single picture is reported in Figure 

80. 

 

5 Aumento dei dati  |  TensorFlow Core 

https://www.tensorflow.org/tutorials/images/data_augmentation
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Figure 80 Result of Data Augmentation on the preliminary dataset 

Once the piece of code responsible for doing augmentation is robust, it is 

possible to switch to the usual training phase. The result of the training is 

reported in Figure 81. 

 

Figure 81 Training vs Validation accuracy and Training vs Validation loss 
for MobileNet using data augmentation 

This time both accuracy and loss plots are not as good as usual. In 

particular, some oscillations as well as a little bit of divergency can be seen. It 

is important to remember that hyper-parameters have not been optimised, so 

expecting perfect curves is not realistic. Once the training is done, the test 

phase starts. To avoid falsifying test results, you must not apply data 

augmentation on the test dataset. The results of these procedures are reported 

in Figure 82, Figure 83 and Table 35. 



 

 

 

 

Figure 82 Confusion Matrix for Mobilenet after data augmentation 

 

Figure 83 ROC curve for MobileNet after data augmentation 
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Table 35 Metric values for MobileNet after Data Augmentation 

 Accuracy [%] 
Inference time 

[ms] 
AUROC [%] 

Values 97.33 6.4 98.57 

 

We notice that data augmentation doesn’t give a strong increase in 

performance meaning that the secondary dataset with about 500 images is 

already large enough. 

 

4.2.2  Random Background Generation  

As said the images in the additional dataset did not have controlled 

lighting and background. For this reason, the influence of the background on 

the classification results is briefly studied. The background is removed using 

so-called masks which operate to eliminate everything that is out the range of 

red and with some morphological transformations. The result of these 

operations can be seen in the example in Figure 84. 

 

 

Figure 84 Left: original image. Right: image without background 

Another possible step consists in taking the images without background 

and applying random backgrounds, as in the examples reported in Figure 85 

and Figure 86. In this way it is studied if the algorithm is able to work in these 

conditions and if it is able to generalize the results. 



 

 

 

 

Figure 85 Example of random background application 

 

 

Figure 86 Another example of random background application. In this case 
is chosen a background that could be similar to the real one. 

To avoid being too long in the discussion of this topic, we chose to not 

report the result in terms of accuracy, Area Under the ROC curve and inference 

time for this dataset. The reason is that results are similar to ones reported in 

the base case. In other words, it is possible to conclude that the system is robust 

with respect to the change of background and that the performances remain 

high also in these conditions. On the other hand, also no significant increase 

in performance was observed by simply removing the background and 

substituting it with a standardized black one. Summarizing, it is concluded that 

both data augmentation and background removal or substitution did not affect 

the classification results significantly. This means that about 600 images are 

enough to train the system in a satisfactory manner and that the system is 

robust to variable backgrounds.  
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5 Discussion and Conclusion 

This thesis was developed within the context of the project ”Studio e 

sviluppo di TEcnologie avanzate per il SORting automaticO nei processi di 

produzione alimentari - TESORO” funded by the Italian Ministry of Economic 

Development (MISE). The aim was to show the implementation and 

comparison of different deep learning-based algorithms for quality control on 

tomatoes to tackle the specific industrial need issued by Raytec Vision S.P.A.  

In particular, both IC and AD-based models were studied to find the 

best performing solution for operating the quality inspection of the peeling 

process of the tomatoes. In this manner, an automated solution able to 

substitute human labour in that procedure was made possible and 

implemented in the partner’s machines. 

Starting with the literature search, three anomaly detection and three 

classification algorithms are identified. State-of-the-art anomaly detection 

algorithms and image classification algorithms based on neural networks were 

constructed and compared in a statistically significant manner to identify the 

most suited one. Each model was adapted to the specific case by means of a 

black box architecture (i.e., an image is given as input and a classification 

probability is received as output). By relying on such a scheme, which was 

easily integrated in the WandB® website, the optimisation of the hyper 

parameters for maximum accuracy was performed in a standardized manner. 

The inference time, classification/detection accuracy and AUROC were chosen 

to measure the performance of the models and optimized. Once the metrics 

were identified, training and testing of every model were accomplished. 

The results of the test phase were analysed by means of the K-fold cross 

validation scheme. The K-fold results were summarised by reporting the mean 

and standard deviation. To obtain statistical significance, two statistical 

methods were identified and applied (i.e., almost stochastic order and 

bootstrap power analysis). Finally, it was possible to make a comparison of the 

different models to find the most suitable one for the industrial need. The 

model chosen, as discussed below, was identified as having the best trade-off 

among the proposed metrics. 



 

 

 

5.1 Milestones 

The most important results emerging from this work are: 

• For the industrial task analysed both anomaly detection and 

classification algorithms reach satisfactory results working on simple 

RGB images. In fact: 

o All models are able to divide faulty images from good ones with 

an average accuracy on a 5-fold cross validation ranging from 

83.2% for the worst model to over 99% of the best one. This 

suggests two main consequences: 

▪ The possibility to substitute cumbersome human labour 

in quality control with automated systems basing on 

machine vision with one of these models. 

▪ For the specific task analyses, the use of RGB images is 

sufficient to perform quality control. There is no need to 

use hyperspectral or multispectral equipment to obtain 

satisfactory results on tomatoes. Even the resolution of 

the RGB images does not need to be high (in this case, a 

resolution of 224*224 pixels or lower was used) and 

satisfactory results are still achieved when using the 

implemented models on simple images taken from a 

smartphone in uncontrolled light conditions. This 

demonstrates the robustness of the system. 

• The overall performances of classification algorithms are superior to the 

ones of anomaly detection algorithms for the task analysed. They are 

both faster and better in terms of AUROC and accuracy. This result was 

concluded through a significance test with a 95% confidence level. 

Therefore, the results are statistically significant. For the industrial 

application studied, the best solution is the implementation of an IC-

based model. 

• For the needs of Raytec Vision S.P.A., the best model is the MobileNet 

here implemented. It operates with an accuracy of 98.61% and has an 

inference time of 0.0015s per image with a realistic GPU setting. With 

this inference time, it can be integrated with machines like conveyors 

and existing sorting hardware, which is the core business of Raytec 

Vision S.P.A. 
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The here found results could also be interesting for many similar industrial 

cases that could be automated using one of the presented models. To this 

end it must be remembered that: 

o Anomaly detection algorithms also operate in cases in which a 

robust dataset of anomalous samples is difficult or even impossible 

to achieve. In such situations, the performances of the best anomaly 

detection model studied can be eye-catching. In fact, PatchCore 

achieved an average accuracy of 94.47 % on a 5-fold cross validation. 

The average AUROC is of 98.04% and the average inference time of 

0.016s per image. 

o Classification algorithms can also be used in numerous similar 

industrial applications in which the need is not only to divide the 

object in good and bad samples, but also multiclass classification is 

requested. This is demonstrated by trying to identify 4 different 

tomato classes in the dataset (good, tomatoes with anthracnose, 

green, yellow) with the chosen MobileNet model and obtaining a 

97.04% accuracy. 

 

5.2 Future developments 

In future research on this thesis’ topics focus could focus on:  

• Using the information obtained from the multiclass classification 

results. These helps in understanding which family of faults creates the 

biggest problems for the system. Knowing this, it is possible to modify 

the architecture or the training dataset composition so to be more 

effective on those specific cases. 

• Increasing the anomaly detection’s models speed. This could for 

example be achieved by implementing them in C++. This is useful since 

with the here achieved inference times it is not possible to integrate 

those system with already existing sorting hardware. 

• Reusing the type of pipeline presented above to implement newer 

models which may rise in the future. Both IC and AD are active fields of 

research nowadays in the deep learning field. New architecture and 

models will be proposed, so that the here proposed models could be 

overcome by newer ones in a matter of months. 

• Using proprietary software which may exhibit some kind of optimized 

performances with respect to the here presented open-source versions. 



 

 

 

 

 



 

107 

List of Figures 

Figure 1 Typical CNN architecture .............................................................................. 8 

Figure 2 Details of the Convolutional and Pooling layers ............................................ 9 

Figure 3 Residual learning: a building block with a shortcut connection .................. 10 

Figure 4 Inception module with dimensionality reduction ........................................ 11 

Figure 5 Left: Standard convolutional layer with batch norm and ReLU. Right: Depth 

wise Separable convolutions with Depth wise and Pointwise layers followed by batch 

norm and ReLU .......................................................................................................... 12 

Figure 6 Visualization of a filter of the first convolutional layer of ResNet50 for the 

reported image. This shows the ability of neural network to extract features from 

images. ........................................................................................................................ 14 

Figure 7 Structure of an autoencoder system. This kind of architecture is often used 

for anomaly detection ................................................................................................. 15 

Figure 8 Structure of the CFLOW-AD model. In this case we still have the decoder-

encoder logic but they work not only globally but also locally on some pixels regions

 .................................................................................................................................... 16 

Figure 9 Examples of coreset subsampling (top) vs random subsampling (bottom). It 

can be seen that coreset better preserves the information ......................................... 17 

Figure 10 Structure of the PatchCore model. It can be seen that here the anomaly is 

calculated at vector level in the memory bank and not at image level ....................... 17 

Figure 11 Example of kernel density estimation on a four elements sample. The blue 

areas are the kernels that are used as weights for the samples, while the blue 

continuous line is the overall estimation obtained with this kernel density estimation.

 .................................................................................................................................... 18 

Figure 12 Dome illuminator used to acquire the dataset. It was developed by Raytec 

Vision S.P.A................................................................................................................. 19 

Figure 13 RGB image of tomatoes on the tape .......................................................... 20 

Figure 14 Image detection of the tomatoes ............................................................... 20 



 

 

Figure 15 Top: binary mask used to remove the background.    Bottom: final result 

of the process……………………………………………………………………….. ............................ 21 

Figure 16 Examples from each category. Upper left: good peeled tomato; Upper right: 

green tomato; Lower left: diseased and not correctly peeled tomato; Lower right: 

yellow tomato. ............................................................................................................ 22 

Figure 17 Example of a good and a bad tomato sample acquired with the here 

described setup ........................................................................................................... 22 

Figure 18 Examples of images from the second dataset: we notice these photos are 

taken without controlling the lighting and are just standard smartphone images .... 23 

Figure 19 The use of Google Colab and Drive is fundamental to perform some of the 

experiments which wouldn’t run on personal computers because of the high 

computational request ................................................................................................ 24 

Figure 20 Hardware settings of the cloud computation used. Notice the Nvidia A100 

GPU............................................................................................................................. 24 

Figure 21 General framework of the adopted method: Images are the input to the 

specific model used which acts as a black box and gives the sorting result as output

 .................................................................................................................................... 27 

Figure 22 How the flatten layer works ....................................................................... 30 

Figure 23 ReLU activation function ........................................................................... 30 

Figure 24 Sigmoid activation function ....................................................................... 31 

Figure 25 Visualization of the here presented architecture using Mobilenet as 

pretrained model for the example .............................................................................. 32 

Figure 26 Cost function C as a function of 2 variables v1 and v2 ................................ 33 

Figure 27 SGD without momentum ........................................................................... 34 

Figure 28 SGD with momentum. The momentum is reducing the fluctuations in the 

weight updates ............................................................................................................ 34 

Figure 29 Comparison of SGD algorithms. Left: SGD without momentum. Right: SGD 

with momentum ......................................................................................................... 35 

Figure 30 Example of configuration file in YAML format. Trough the black box scheme 

implemented the entire construction and deployment of the model depends only on 

this file ........................................................................................................................ 36 

Figure 31 Example of heatmap obtained with ResNet50 applying   Grad-CAM ..... 37 



 

109 

 

Figure 32 ANOMALIB is the most important library used in this thesis for deep 

learning anomaly detection ....................................................................................... 38 

Figure 33 Example of custom configuration file for anomaly detection ................... 38 

Figure 34 Inference time is chosen as a metric to compare models since it is an 

industrial application integrated with conveyors ...................................................... 40 

Figure 35 How to qualitatively evaluate ROC curves .................................................42 

Figure 36 Example of ROC curve with area under the curve in blue ......................... 43 

Figure 37 Software used for hyperparameters optimization ..................................... 44 

Figure 38 Black box architecture for the HPO procedure .......................................... 45 

Figure 39 Configuration file used for the HPO of classification models ................... 46 

Figure 40 Example of parallel line visualization of the results of the hyperparameters 

optimization ............................................................................................................... 48 

Figure 41 Example of a configuration file for hyperparameters optimization, 

specifically for CFLOW-AD ....................................................................................... 48 

Figure 42 How K-Fold validation works..................................................................... 52 

Figure 43 Left:example of PDF. Reft: example of CDF .............................................. 53 

Figure 44 Example of stochastic dominance of a CFD over another ......................... 53 

Figure 45 Examples of situations in which a predominant distribution is present but 

stochastic order is not satisfied .................................................................................. 54 

Figure 46 Example of how the index introduced in ASO could be visualized ............ 55 

Figure 47 Schematic representation of how power analysis works. Condition B is just 

condition A incremented by a constant. The here presented procedure is repeated 

many times and the percentage of significant results is returned. ............................. 57 

Figure 48 HPO results for ResNet50 .......................................................................... 59 

Figure 49 Training and validation curves for accuracy and loss obtained with 

ResNet50 ................................................................................................................... 60 

Figure 50 Confusion matrix for ResNet50 ................................................................. 61 

Figure 51 ROC curve for ResNet50 .............................................................................62 

Figure 52 Outcome of the Grad-CAM applied to ResNet50. We see that the model is 

working correctly since it focuses on the defects. In the bottom, as the defect is the 

green colour, it focuses on the entire tomato. ............................................................ 63 



 

 

Figure 53 Parallel coordinates plot for the HPO of MobileNet .................................. 64 

Figure 54 Training and validation curves for accuracy and loss for MobileNet ........ 65 

Figure 55 Confusion matrix for Mobile Net ............................................................... 66 

Figure 56 ROC curve for MobileNet ........................................................................... 67 

Figure 57 Example of Grad-CAM for MobileNet. The model evenly focuses on the 

entire tomato since it is green, but no punctual defects are present ......................... 68 

Figure 58 Parallel coordinates plot for the HPO of GoogLeNet ................................. 69 

Figure 59 Training and validation curves for accuracy and loss for GoogleNet ........ 70 

Figure 60 Confusion matrix for GoogLeNet on the test set ........................................71 

Figure 61 ROC for GoogLeNet on the test set ............................................................ 72 

Figure 62 Grad-CAM result using GoogLeNet. The model is correctly focusing on the 

defect to classify the image. In this case the defect is the remaining unpeeled part of 

the tomato. .................................................................................................................. 73 

Figure 63 AUROC on validation dataset with default settings of CFLOW-AD .......... 74 

Figure 64 Hyperparameters optimization visualization for CFLOW-AD .................. 75 

Figure 65 Increase of performance after hyperparameters optimization for the 

CFLOW-AD model ..................................................................................................... 76 

Figure 66 Examples of anomaly maps produced by CFLOW-AD: it can be noticed that 

the model identifies the anomalies, this indicates that it is working correctly .......... 77 

Figure 67 AUROC of the standard PatchCore algorithm on the validation dataset .. 79 

Figure 68 Hyperparameters optimization on PatchCore .......................................... 80 

Figure 69 AUROC of PatchCore before and after optimization, the increment is 

evident ........................................................................................................................ 81 

Figure 70 AUROC of DFKDE on validation set with default settings ........................ 82 

Figure 71 HPO visualization for DFKDE .................................................................... 83 

Figure 72 AUROC of DFKDE before and after optimization, the increment is evident

 .................................................................................................................................... 84 

Figure 73 Example of how the softmax activation function works. In this case the 

number of classes is equal to 5 ................................................................................... 91 

Figure 74 Training vs Loss curves for validation and loss. These curves are obtained 

in the multi-class class classification task using MobileNet as model. ...................... 92 



 

111 

 

Figure 75 Confusion Matrix for MobileNet during the multi-class classification 

problem ....................................................................................................................... 93 

Figure 76 Example of picture taken from the additional dataset .............................. 94 

Figure 77 Training vs Validation Accuracy and Training vs Validation Loss for 

MobileNet on the preliminary dataset ........................................................................ 95 

Figure 78 Confusion Matrix for MobileNet on the preliminary dataset ................... 96 

Figure 79 ROC curve for MobileNet on the preliminary dataset................................ 97 

Figure 80 Result of Data Augmentation on the preliminary dataset ........................ 99 

Figure 81 Training vs Validation accuracy and Training vs Validation loss for 

MobileNet using data augmentation ......................................................................... 99 

Figure 82 Confusion Matrix for Mobilenet after data augmentation ....................... 100 

Figure 83 ROC curve for MobileNet after data augmentation ................................. 100 

Figure 84 Left: original image. Right: image without background .......................... 101 

Figure 85 Example of random background application ........................................... 102 

Figure 86 Another example of random background application. In this case is chosen 

a background that could be similar to the real one. ................................................. 102 

 

 

 

 



 

 

 

 

List of equations 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹     [ 1 ] ...................................................... 13 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹    [ 2 ] .............................................. 13 

𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁   [ 3 ] ............................................................................................. 41 

𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 [ 4 ]............................................................................................... 41 

𝐹𝑎 ≤ 𝐺𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎   [ 5 ] ............................................................................................... 53 

0 ≤ 𝜀𝑊2𝐹, 𝐺 ≤ 1       [ 6 ] ............................................................................................. 54 

𝐻0 ∶  𝜀𝑊2𝐹, 𝐺 ≥  𝜏    [ 7 ] ............................................................................................. 55 

𝐻1 ∶  𝜀𝑊2𝐹, 𝐺 < 𝜏     [ 8 ] ............................................................................................. 55 

𝐴𝑆𝑂𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛  [ 9 ] ................................................................................................. 87 

 

 

  



 

113 

 

List of tables  

Table 1 Example of confusion matrix to introduce the AUROC ................................. 41 

Table 2 Hyperparameters along with their values used during the optimization ..... 46 

Table 3 Hyperparameters used to optimize CFLOW-AD .......................................... 50 

Table 4 Hyperparameters used to optimize PatchCore ............................................. 50 

Table 5 Hyperparameters used to optimize DFKDE .................................................. 51 

Table 6 Optimal values of the hyper-parameters for ResNet50 ................................. 59 

Table 7 Accuracy, AUROC and inference time values for ResNet50 on the test dataset

 ................................................................................................................................... 60 

Table 8 Results of cross validation for ResNet50 .......................................................62 

Table 9 Power analysis for the metric values from ResNet50 .................................... 63 

Table 10 Optimal values of the hyper-parameters for MobileNet ............................. 64 

Table 11 Accuracy, AUROC and inference time values for MobileNet on the test dataset

 ................................................................................................................................... 66 

Table 12 K-fold results for MobileNet ........................................................................ 67 

Table 13 Power analysis for MobileNet ..................................................................... 68 

Table 14 Optimal values of the hyper-parameters for GoogLeNet ............................ 69 

Table 15 Accuracy, AUROC and inference time values for GoogLeNet on the test 

dataset ......................................................................................................................... 70 

Table 16 K-Fold results for GoogLeNet ...................................................................... 72 

Table 17 Power analysis for GoogLeNet ..................................................................... 73 

Table 18 CFLOW-AD hyperparameter chosen for the dataset after optimization ..... 75 

Table 19 K-Fold results for CFLOW-AD ..................................................................... 78 

Table 20 Bootstrap power analysis results on CFLOW-AD output ............................ 78 

Table 21 Optimized valued of the hyperparameters for PatchCore ........................... 80 

Table 22 Results of cross validation for PatchCore .................................................... 81 



 

 

Table 23 Power analysis on cross validation results for PatchCore ........................... 82 

Table 24 Optimized values of hyperparameters for DFKDE...................................... 83 

Table 25 Cross validation results................................................................................ 84 

Table 26 Power analysis on cross validation results .................................................. 84 

Table 27 Accuracy results in synthetic form for all models........................................ 85 

Table 28 AUROC results in synthetic form for all models ......................................... 86 

Table 29 Inference time results in synthetic form for all models .............................. 86 

Table 30 Result of comparison among models' accuracy with ASO. As introduced in 

the beginning only in values below 0.5 are interesting .............................................. 87 

Table 31 result of comparison among models' AUROC with ASO. As introduced in the 

beginning only in values below 0.5 are interesting .................................................... 87 

Table 32 Numerical results in terms of classification accuracy and inference time for 

MobileNet during multi-class classification ............................................................... 92 

Table 33 Final values of accuracy and inference time for MobileNet on the preliminary 

dataset ........................................................................................................................ 97 

Table 34 Result of the K-Fold cross validation on the preliminary dataset ............... 98 

Table 35 Metric values for MobileNet after Data Augmentation ..............................101 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

 

 

 



 

 

References 

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition,” 2016. [Online]. Available: http://image-

net.org/challenges/LSVRC/2015/ 

[2] M. Nielsen, “Neural Networks and Deep Learning.” [Online]. Available: 

http://neuralnetworksanddeeplearning.com 

[3] G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep Learning for Anomaly 

Detection: A Review,” ACM Computing Surveys, vol. 54, no. 2. Association for 

Computing Machinery, Apr. 01, 2021. doi: 10.1145/3439950. 

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with 

Deep Convolutional Neural Networks.” [Online]. Available: 

http://code.google.com/p/cuda-convnet/ 

[5] N. R. Prasad, S. Almanza-Garcia, and T. T. Lu, “Anomaly detection,” 

Computers, Materials and Continua, vol. 14, no. 1, pp. 1–22, 2009, doi: 

10.1145/1541880.1541882. 

[6] V. Lakshmanan, M. Görner, and R. Gillard, “Practical Machine Learning for 

Computer Vision End-to-End Machine Learning for Images.” 

[7] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for 

Mobile Vision Applications,” Apr. 2017, [Online]. Available: 

http://arxiv.org/abs/1704.04861 

[8] C. Szegedy et al., “Going Deeper with Convolutions,” 2015. 

[9] D. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: Real-Time 

Unsupervised Anomaly Detection with Localization via Conditional 

Normalizing Flows,” Jul. 2021, [Online]. Available: 

http://arxiv.org/abs/2107.12571 

[10] Karsten Roth et al., “Patchcore: Towards total recall in industrial anomaly 

detection”. 



 

117 

 

[11] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N. Ahuja, and U. Genc, 

“Anomalib: A Deep Learning Library for Anomaly Detection,” Feb. 2022, 

[Online]. Available: http://arxiv.org/abs/2202.08341 

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” Mar. 2010, pp. 248–255. doi: 

10.1109/cvpr.2009.5206848. 

[13] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep 

autoencoders,” in Proceedings of the ACM SIGKDD International Conference 

on Knowledge Discovery and Data Mining, Aug. 2017, vol. Part F129685, pp. 

665–674. doi: 10.1145/3097983.3098052. 

[14] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” Mar. 2020, [Online]. 

Available: http://arxiv.org/abs/2003.05991 

[15] S. Jezek, M. Jonak, R. Burget, P. Dvorak, and M. Skotak, “Deep learning-based 

defect detection of metal parts: Evaluating current methods in complex 

conditions,” in International Congress on Ultra Modern Telecommunications 

and Control Systems and Workshops, 2021, vol. 2021-October, pp. 66–71. doi: 

10.1109/ICUMT54235.2021.9631567. 

[16] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, “The MVTec 

Anomaly Detection Dataset: A Comprehensive Real-World Dataset for 

Unsupervised Anomaly Detection,” Int J Comput Vis, vol. 129, no. 4, pp. 1038–

1059, Apr. 2021, doi: 10.1007/s11263-020-01400-4. 

[17] B. Mussay, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman, “Data-

Independent Neural Pruning via Coresets,” Jul. 2019, [Online]. Available: 

http://arxiv.org/abs/1907.04018 

[18] B. Farnham, S. Tokyo, B. Boston, F. Sebastopol, and T. Beijing, “Hands-on 

Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, 

and Techniques to Build Intelligent Systems SECOND EDITION.” 

[19] USENIX Association., ACM SIGMOBILE., ACM Special Interest Group in 

Operating Systems., and ACM Digital Library., Papers presented at the 

Workshop on Wireless Traffic Measurements and Modeling : June 5, 2005, 

Seattle, WA, USA. USENIX Association, 2005. 



 

 

[20] J. Ghorpade, “GPGPU Processing in CUDA Architecture,” Advanced 

Computing: An International Journal, vol. 3, no. 1, pp. 105–120, Jan. 2012, 

doi: 10.5121/acij.2012.3109. 

[21] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” Oct. 2014, 

[Online]. Available: http://arxiv.org/abs/1410.0759 

[22] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep 

Learning Library,” Dec. 2019, [Online]. Available: 

http://arxiv.org/abs/1912.01703 

[23] M. Huh, P. Agrawal, and A. A. Efros, “What makes ImageNet good for transfer 

learning?,” Aug. 2016, [Online]. Available: http://arxiv.org/abs/1608.08614 

[24] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, 

“Grad-CAM: Why did you say that?,” Nov. 2016, [Online]. Available: 

http://arxiv.org/abs/1611.07450 

[25] N. Detlefsen et al., “TorchMetrics - Measuring Reproducibility in PyTorch,” J 

Open Source Softw, vol. 7, no. 70, p. 4101, Feb. 2022, doi: 10.21105/joss.04101. 

[26] L. Ferrer, “Analysis and Comparison of Classification Metrics,” Sep. 2022, 

[Online]. Available: http://arxiv.org/abs/2209.05355 

[27] “Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer 

Science.” 

[28] J. N. Mandrekar, “Receiver operating characteristic curve in diagnostic test 

assessment,” Journal of Thoracic Oncology, vol. 5, no. 9, pp. 1315–1316, 2010, 

doi: 10.1097/JTO.0b013e3181ec173d. 

[29] P. Probst and B. Bischl, “Tunability: Importance of Hyperparameters of 

Machine Learning Algorithms,” 2019. [Online]. Available: 

http://jmlr.org/papers/v20/18-444.html. 

[30] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms 

and Applications,” Mar. 2020, [Online]. Available: 

http://arxiv.org/abs/2003.05689 

[31] D. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: Real-Time 

Unsupervised Anomaly Detection with Localization via Conditional 



 

119 

 

Normalizing Flows,” Jul. 2021, [Online]. Available: 

http://arxiv.org/abs/2107.12571 

[32] A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C.-N. Straehle, 

“Conditional Flow Variational Autoencoders for Structured Sequence 

Prediction,” Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.09008 

[33] D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and 

Computational Biology: ABC of Bioinformatics, vol. 1–3, Elsevier, 2018, pp. 

542–545. doi: 10.1016/B978-0-12-809633-8.20349-X. 

[34] R. Dror, S. Shlomov, and R. Reichart, “Deep Dominance-How to Properly 

Compare Deep Neural Models,” Association for Computational Linguistics. 

[Online]. Available: https://github.com/ 

[35] D. Ulmer, C. Hardmeier, and J. Frellsen, “deep-significance - Easy and 

Meaningful Statistical Significance Testing in the Age of Neural Networks,” 

Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.06815 

[36] P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán, 

“Models for the assessment of treatment improvement: the ideal and the 

feasible,” Dec. 2016, doi: 10.1214/17-STS616. 

[37] A. Hazra, “Using the confidence interval confidently,” J Thorac Dis, vol. 9, no. 

10, pp. 4125–4130, Oct. 2017, doi: 10.21037/jtd.2017.09.14. 

[38] K.-H. Yuan and K. Hayashi, “Bootstrap approach to inference and power 

analysis based on three test statistics for covariance structure models,” 2003. 

[Online]. Available: www.bps.org.uk 

[39] S. Sundaram, IEEE Computational Intelligence Society, and Institute of 

Electrical and Electronics Engineers, Proceedings of the 2018 IEEE 

Symposium Series on Computational Intelligence (SSCI 2018) : 18-21 

November 2018, Bengaluru.  

  

 

 


