
Academic Year 2021 – 2022

School of Industrial and Information Engineering

 Master of Science – Mechanical Engineering

Artificial Intelligence for Image Classification and

Anomaly Detection in the Food Sorting industry

A Comparative Study

Supervisor:

Prof. Marco Tarabini

Co-supervisors:

Prof. Marco Bocciolone

Ing. Davide Maria Fabris

MSc Thesis of:

Pietro Oppici 971543

Jacob Niccolai 963162

II

III

Acknowledgements

I would like to express my gratitude to prof. Tarabini and Dr. Fabris, for

the opportunity to carry out this thesis and the guidance in pursuing it. I would

also like to show my appreciation to my colleague Pietro Oppici for the great

teamwork.

Thanks to my parents, Marco and Petra, for guiding me over the years towards

the person I am.

Thanks to Daria, for standing by me with your strength, your care and your

smile.

Thanks to my friends, for always being there.

--Jacob Niccolai

I would like to express my gratitude to prof. Tarabini and Dr. Fabris, for

the opportunity to carry out this thesis and the guidance in pursuing it. I would

also like to show my appreciation to my colleague Jacob Niccolai for the great

teamwork.

I would like to thank my parents, Carlo and Cristina, and my brother, Filippo,

for giving me the opportunity to embark on this journey and for being there for

me, especially in difficult times.

Thanks to my partner, Valentina, for always being by my side.

Thanks to all my friends for the fantastic times we spent together.

 --Pietro Oppici

IV

Abstract

This thesis aims at the implementation and comparison of machine

vision algorithms based on deep learning for the quality control of tomatoes.

Currently the partner of this thesis, which operates in the field of automated

industrial food sorting, was not able to build a properly functioning machine,

since the existing defects pose some specific issues that traditional machines

are not capable to overcome. Therefore, the partner is interested in the recent

developments of AI based computer vision and wants to implement such a

method in a new machine. In this way a system able to substitute cumbersome,

human labour-based, quality control for tomatoes is created. The goal of this

thesis is to identify some open-source state of the art machine learning models

for these needs, adapt them to the specific case, construct a common pipeline

to handle and optimize them in a standardized way and finally identify the best

one for the given application. Three classification algorithms and three

anomaly detection algorithms based on deep learning are applied and

optimized to this purpose in a python environment. Those optimized models

are then compared. Comparisons are performed with statistically relevant

tools to identify the best model for the given application in a robust way. Also,

some insights on strengths and weaknesses of the different models are given.

These characteristics could be exploited in other applications similar to the one

presented. The best model for the case in exam is so identified. This model

shows high performances, with a mean accuracy of 98.61%, an AUROC of

99.94% and elaboration times for single image low enough to be integrated

with the already existing sorting machines. This optimized model is then

additionally tested on in-field acquired images of the same vegetable obtaining

an accuracy of 98.56%, proving the robustness of the proposed solution.

Keywords: Food Sorting; Machine Vision; Deep Learning; Python; Keras;

Tensorflow; Anomaly Detection; Image Classification.

V

Sommario

Questa tesi ha come scopo l’implementazione e il confronto tra

algoritmi di visione artificiale basati sul deep learning per il controllo qualità

di pomodori. Attualmente il partner industriale di questa tesi, che opera nel

settore delle macchine selezionatrici automatiche, non riesce a fornire i propri

servizi in questo campo perché i particolari difetti presenti nei pomodori

freschi pongono delle problematiche che i sistemi tradizionali da loro adottati

non sono in grado di superare. Per questo motivo il partner industriale è

interessato ai recenti sviluppi dell’intelligenza artificiale nei sistemi di visione

automatica e vuole sviluppare una nuova macchina usando questi metodi. In

questa maniera si rende possibile un dispositivo in grado di sostituire il lavoro

umano in questa gravosa operazione di controllo qualità nella filiera del

pomodoro fresco. L’obbiettivo di questa tesi è di identificare dei modelli di

machine learning sorgente aperti per questo scopo, adattarli all’applicazione

specifica, costruire un architettura comune per gestirli e ottimizzarli in

maniera standardizzata e infine identificare il modello migliore per

l’applicazione di interesse. Con questo fine vengono identificati, implementati

e ottimizzati tre algoritmi di classificazione e tre di rilevamento di anomalie in

un ambiente Python. Questi modelli ottimizzati sono poi confrontati tra loro.

Le comparazioni vengono fatte con strumenti statisticamente rilevanti per

individuare il modello migliore in maniera robusta. Allo stesso tempo in questo

processo vengono messi in luce i punti di forza dei singoli algoritmi,

caratteristiche che potrebbero essere sfruttate in altre applicazioni simili a

quella qui presentata ma con priorità diverse. Viene quindi identificato il

modello migliore per l’applicazione. Questo restituisce delle prestazioni

elevate, con un’accuratezza media del 98.61%, AUROC di 99.94% e tempi di

elaborazione sulla singola immagine abbastanza bassi da poter essere integrati

con le macchine selezionatrici già esistenti. Questo modello ottimizzato viene

poi ulteriormente collaudato su immagini di pomodori acquisite in loco con un

normale smartphone ottenendo un’accuratezza del 98.56%, il che dimostra la

robustezza della soluzione qui proposta.

Parole chiave: Visione Artificiale; Controllo Qualità; Deep Learning;

Python; Keras; Tensorflow; Classificazione di Immagini, Rilevamento di

Anomalie.

1

Table of Contents

ACKNOWLEDGEMENTS ... III

ABSTRACT .. IV

SOMMARIO ... V

1 INTRODUCTION ... 3

1.1 PROJECT OBJECTIVES ... 3

1.2 LITERATURE RESEARCH ... 7

1.2.1 Classification .. 8

1.2.2 Anomaly Detection .. 14

1.3 DATASET .. 19

1.4 HARDWARE AND SOFTWARE SETTINGS .. 23

1.5 THESIS OUTLINE ... 25

2 METHOD .. 26

2.1.1 Black box scheme ... 26

2.2 MODELS ... 28

2.2.1 Classification .. 28

2.2.2 Anomaly detection ... 38

2.3 METRICS .. 39

2.3.1 Inference Time ... 39

2.3.2 Accuracy .. 40

2.3.3 Area Under the Receiver-Operating Curve (AUROC) and Confusion

Matrix… ... 41

2.4 HYPERPARAMETERS OPTIMIZATION .. 44

2.4.1 Classification .. 46

2.4.2 Anomaly Detection .. 48

2.5 COMPARING MODELS: K-FOLD, BOOTSTRAP, DEEP DOMINANCE 51

3 RESULTS .. 58

3.1 CLASSIFICATION .. 58

3.1.1 Resnet50 ... 58

3.1.2 Mobilenet .. 64

3.1.3 GoogLeNet .. 68

3.2 ANOMALY DETECTION .. 74

3.2.1 CFLOW-AD ... 74

3.2.2 PatchCore .. 79

3.2.3 DFKDE .. 82

3.3 COMPARING THE MODELS .. 85

4 ADDITIONAL RESULTS .. 90

4.1 MOBILENET MULTI-CLASS CLASSIFICATION .. 90

4.2 ADDITIONAL DATASET .. 93

4.2.1 Data Augmentation ... 98

4.2.2 Random Background Generation .. 101

5 DISCUSSION AND CONCLUSION .. 103

5.1 MILESTONES ... 104

5.2 FUTURE DEVELOPMENTS .. 105

LIST OF FIGURES .. 107

LIST OF EQUATIONS .. 112

LIST OF TABLES .. 113

REFERENCES ... 116

3

1 Introduction

This introduction section is divided in 5 parts. In the first the

motivations and objectives of the work are stated, after that the literature

research is given to introduce and briefly describe the working principle of the

models used. In part three, the datasets used are described and in part four,

the hardware settings for the experiments are illustrated. In the fifth and last

paragraph a short outline of the thesis is reported to better understand the

workflow of the experiments and the structure of the document.

1.1 Project Objectives

Quality control in the food industry is extremely important. Since it is one

of the biggest markets on earth, this process often includes controlling millions

of items in the production line while maintaining a high quality standard. In

many cases using human labour to perform this task is very costly and

represents a strenuous work for the operators. Automated solutions for quality

check are therefore strongly requested in the food industry.

However, this sorting procedure is particularly difficult in the case of

vegetables since each element has a slightly different shape, weight, colour

and, when it comes to quality control, also the defects can be various. Because

of that, it is not easy to identify a single simple feature able to distinguish good

units from bad ones. This means that in some cases it becomes impossible to

model characteristics of the different classes in strict terms. Because of that,

classical algorithms based on telling the computer what to do one step after

another, splitting the problem in smaller simpler tasks is not achievable. Deep

learning algorithms, on the other hand, seem to be able to handle the problem.

Deep learning is a subsection of machine learning in which so-called

artificial neurons are used. These neurons are mathematical functions

connected one another. By constructing a neural network of these functions, it

is possible to extract features from complex data. In particular stacking many

layers of them has shown to be the most effective way to use them in practical

applications [1]. This layout which resembles the structure and function of

biological brain cells is the reason why these new machine learning algorithms

are known as a whole with the name “Deep learning algorithms” based on

“neural networks”. In fact, these algorithms learn from observational data,

figuring out their own solution to the problem at hand.

These features make them achieve outstanding performances on many

important problems in computer vision, speech recognition, and natural

language processing [2]. This is because deep learning has shown tremendous

capabilities in learning expressive representations of complex data. In the food

industry in particular, Deep Learning applications for computer vision are

raising attention for the reason cited above: many quality control procedures

in the industry are still not automated since standard algorithms fail to

recognize the good product from the bad one.

 Automatizing these systems brings strong advantages. Therefore, it is

an industrial need to understand which among those deep learning algorithms

performs the quality control task the best and whether such a system has

market-ready performances. This thesis work reaches in this direction. It is

part of the project ”Studio e sviluppo di TEcnologie avanzate per il

SORting automaticO nei processi di produzione alimentari –

TESORO” issued by the Italian Ministry of Economic Development and

developed in collaboration with various industrial partners among which

Raytec Vision S.P.A. . Raytec Vision S.P.A. is a big player in the machine vision

industry for fruit and vegetables quality control. Their core business consists

in developing sorting machines which are able to discard waste product basing

on specific information coming from optical sensors. Their machines put them

among the world leaders in this field. Still, they struggle to perform effective

quality control with those techniques on food categories in which specific

information aren’t identifiable in a rigorous way. In those cases, the human eye

still outperforms their classical machine vision systems, and the company

could not enter the corresponding market sections. For example, and this is

the application studied in detail here, when dealing with tomatoes their

traditional methods are not able to bring the needed performances. The study

reported in the following focuses on tomatoes, but other vegetables are still not

handled with automated systems for the same motivations. This is the reason

why deep learning represent a big opportunity for Raytec Vision S.P.A. to

expand its market. This thesis reaches in that direction. Essentially the goal is

to implement, analyse peculiar characteristics, and compare methods based on

neural networks able to divide images of tomatoes into good and bad samples.

 Among models in the deep learning field suitable for this task, two

major families are identified [3]: Images Classification (IC) algorithms based

on deep learning and deep learning approaches for Anomaly Detection (AD)

(deep anomaly detection for short).

5

The first ones try to learn the characteristics of the different families in

the dataset and are so able to identify the two families of good and bad data.

For image classification tasks many very strong performing neural networks

are available. Most of them were developed to participate into the ImageNet

large scale visual recognition challenge (ILSVRC) competition and show

astonishing results [1], [4].

Anomaly detection, on the other hand, is referred to as the process of

detecting images that deviate from the majority of data instances [5]. In other

words, they operate based on the idea that a family of good images exist and

therefore classifying everything else as bad. Due to the afore-mentioned ability

of deep neural networks to extract features in complex structured data like

images, the advancements of deep learning brought also significant steps

forward in anomaly detection [3] and has emerged as a critical direction in this

field. With respect to classification, anomaly detection algorithms do not suffer

from insufficient representative samples in the anomalous class. In fact, in this

case the model does not try to represent the good and bad samples in two

classes but simply labels as bad everything which is not coherent with the good

class.

 It must be noticed that in this master thesis, classification and anomaly

detection algorithms were compared with the aim of understanding which of

these two types of paradigm is the best one for the partner’s industrial needs.

This means that the experiments had as objective to answer the question:

“Which is the best way to discern vegetables I would like to keep in my

production line from vegetables I would like to remove?” In this way the usage

of anomaly detection and classification algorithms satisfy the same need. In

fact in the following, it should be remembered and noticed that even if here

they are used to perform the same task each of these two methods has specific

peculiarities that result in evident advantages in other situations. In fact, as the

name states, anomaly detection, which is also in some case know as novelty

detection, is generally meant to be trained only on good data or with few bad

samples. This means that almost only the good part of the dataset is needed to

use it. This is a big advantage in some cases. Indeed, if for example a new type

of unknown disease appears in the vegetables after the system has been trained

and installed, anomaly detection methods should be able to continue operating

since any type of anomaly is recognized as such by the algorithm.

In classification methods on the other side also many examples of the

bad dataset need to be seen by the system during training to be able to learn

its characteristics. In the specific case of this thesis work, all possible anomalies

were present in the dataset so that after the training, the systems will not have

problems encountering unseen data. Anyway, in some applications, it may be

difficult to always have a robust dataset representing all possible combinations

of bad samples that could rise during the operative life of the machine. For this

reason, the peculiar advantage given anomaly detection in that kind of

situation is clear.

 On the other hand, IC-based models have some other type of strength

with respect to anomaly detection. In fact, as the name suggest they can be

used to classify data. In this specific case the industrial need was to divide the

data into two categories: good and bad. However, classification can also be

performed with more than two classes. In many other industrial applications

this property is surely needed. It is easy to understand that anomaly detection

would not be applicable in such cases. For this reason, in the final part of this

thesis, precisely in the results section, also some additional experiments done

with the classification methods are reported to understand how they would

perform if they had to divide the incoming tomato images not only in good and

bad, but also based on their specific defect. This is also helpful to understand

which type of fault is the most difficult to be identified by the net. These

considerations about the peculiar advantages of each system will be repeated

and better elaborated in the following. In short, it must be remembered that

those two families of methods are used for the same task here to understand

which is the best one in the specific application, but it is generally not possible

to confront anomaly detection and classification models since they often

perform different tasks.

7

1.2 Literature Research

The first step towards the development of this thesis is the research on

academic and commercial publications to identify the most suitable algorithms

for our application, keeping in mind the needs of the industrial partner, Raytec

Vision S.P.A. To start this research some keywords are identified: python, deep

learning, image classification, anomaly detection. Python is chosen among

those keywords since it is the most used open-source programming language

for machine learning [6]. Indeed, the following work is implemented in

Python. In particular, the procedure for choosing classification algorithms is

the following. Firstly, a cross-reference with the Raytec Vision S.P.A. engineers

about what algorithms are implemented in their property software (i.e.,

MVTec Halcon ®) is made. After that, the equivalent of these algorithm in the

form of Python open-source software is found.

Following the afore-mentioned rules, three algorithms were identified

for classification:

• Mobilenet [7]

• Resnet50 [1]

• GoogLeNet [8]

Raytec Vision S.P.A. has not yet approached anomaly detection at all but

is interested in having a comparison with classification algorithms. As for the

choice of the anomaly detection algorithms to test, some state-of-the-art

models are identified, which are:

• CFLOW-AD [9]

• PatchCore [10]

• DFKDE [11]

In the next sub-sections, a brief introduction to each of them is given.

1.2.1 Classification

For what concerns classification with deep neural networks the

literature research shows that most of the improvements in recent years came

from the ImageNet large scale visual recognition challenge competition [12].

This is an annual software contest where software programs compete to

correctly classify from the ImageNet database. ImageNet is a large visual

collection of more than fourteen million images, hand annotated with labels of

the respective category [12]. In other words, many of the state-of-the-art

algorithms for IC were built to compete and won this competition. This is

interesting because also the selected models are deeply integrated with

ImageNet and participated in this contest. In fact, in the following this

database will be reused to pretrain the models. Before entering in the details

of the algorithms analysed in the following, a brief introduction is given.

 A classical IC deep learning algorithm receives images as input and gives

the class to which each image belongs as output. In particular, among the

possible deep learning algorithms, Convolutional Neural Networks (CNNs) are

analysed. Typical CNN architectures stack a few convolutional layers then a

pooling layer, then another few convolutional layers then another pooling

layer, and so on. The image gets smaller and smaller as it progresses through

the network, but it also typically gets deeper and deeper.

Figure 1 Typical CNN architecture

To be more precise, some definitions should be given. A convolutional

layer converts all the pixels in its receptive field into a single value. In the case

of an image, you will be decreasing the image size as well as bringing all the

information in the field together into a single pixel. The result of the

convolution is a series of feature map. This discussion can be appreciated

looking at Figure 2. The function of a pooling layer is to reduce the spatial

size of the representation in order to decrease the number of parameters and

computation in the network. Moreover, it operates on each feature map

9

obtained from the convolution independently. There are two types of pooling

layers, which are max pooling and average pooling. In particular, max pooling

is the most widely used. The reason why max pooling layers work so well in

convolutional networks is that it helps the networks detect the features more

efficiently after down sampling an input representation and it helps over-

fitting by providing an abstracted form of the representation.

Figure 2 Details of the Convolutional and Pooling layers

1.2.1.1 ResNet50

The name ResNet stands for residual networks. What the name

“residual networks” stands for is explained in the following.

As well-known the depth of the neural network is of crucial importance.

Anyway, deep neural networks have a degradation problem: with the network

depth increasing, accuracy gets saturated (which might be unsurprising) and

then degrades rapidly [1]. As explained in the paper, this degradation problem

is not caused by the well-known overfitting, and it leads to a higher training

error. The problem has been solved by means of the introduction of a deep

residual learning framework [1]. Briefly, a feedforward neural network with

shortcut connections was added. The latter skips one or more layers, and they

perform identity mapping, as reported in Figure 3.

Figure 3 Residual learning: a building block with a shortcut connection

One important remark is that identity shortcut connections add neither extra

parameter nor computational complexity [1]. This is quite important since it is

possible to compare residual networks and plain networks (counterpart of

residual ones that simply stack layers) that have the same number of

parameters, depth, width and computational cost. The results reported are

mainly two:

1. Extremely deep residual networks are easier to optimize. Moreover,

they show a lower training error as the depth increases.

2. Deep residual networks can enjoy accuracy gains from greatly increased

deepth

Thanks to these improvements, the 152-layer ResNet50 is able to reach

a single-model top-5 validation error of 4.49%. Moreover, as reported in [1],

an ensemble (i.e., a combination) of these residual networks achieves 3.57%

error on the ImageNet test set. This result was sufficient to win the competition

in 2015.

1.2.1.2 GoogLeNet

As well-known the most straightforward way of improving the

performance of deep neural networks is by increasing their size [8]. It must be

remembered that increasing the size of deep neural networks means increasing

both width and size. This procedure leads to two main drawbacks:

1. Bigger number of parameters and so a network more prone to

overfitting.

2. Bigger networks require to use more computational resources.

Here the idea behind the creation of the GoogLeNet’s architecture

arises, replacing the fully connected layers with sparse ones.

11

It is assumed that each unit from an earlier layer corresponds to some

region of the input image and these units are grouped into filter banks. In the

lower layers (the ones close to the input) correlated units would concentrate in

local regions [8]. Thanks to this assumption, we would end up with a

significant number of clusters concentrated in a single region. This region can

be covered by a single layer of 1x1 convolutions in the next one. To avoid patch-

alignment issues, filter sizes are restricted to 1x1, 3x3 and 5x5. Additionally, it

is well-known that pooling operations are of fundamental importance for the

success of convolutional networks. It suggests that adding a pooling path in

each module should have an additional beneficial effect, too. One big problem

with the above-mentioned modules, is that even a modest number of 5x5

convolutions can be prohibitively expensive on top of a convolutional layer

with a large number of filters. This problem becomes even more pronounced

once pooling units are added to the mix. To assess this problem, 1x1

convolutions are used to compute reductions before the expensive 3x3 and 5x5

convolutions as can be seen in Figure 4.

Figure 4 Inception module with dimensionality reduction

In general, an Inception network is a network consisting of modules of

the above type stacked upon each other, with occasional max-pooling layers

with stride two to halve the resolution of the grid.

 By the “GoogLeNet” name we refer to the particular incarnation of the

Inception architecture used in the submission for the ILSVRC 2014

competition [8].

1.2.1.3 Mobilenet

The general trend of making deeper and more complicated networks in

order to achieve higher accuracy is not always the best solution. Indeed, if you

think about many real-word application, such as robotics or self-driving cars,

the recognition task needs to be carried out in a computationally limited

platform. With this idea in mind, the specifics of the last classification

algorithm are presented. MobileNet is based on depth wise separable

convolutions which is a form of factorized convolutions which factorize a

standard convolution into a depth wise convolution and a 1x1 convolution

called a pointwise convolution. This factorization has the effect of drastically

reducing computations and model size [7]. The above-mentioned depth wise

separable convolution consists of two layers:

1. Depth wise convolutions, used to apply a single filter per each input

channel.

2. Pointwise convolutions, simple 1x1 convolution, used to create a linear

combination of the output of the previously explained layer.

The MobileNet structure is built on module as explained before except

for the first layer which is a full convolution. In Figure 5 it is reported the

comparison between a layer with regular convolutions, batch norm (BN) and

rectified linear units (ReLU) nonlinearity and the factorized layer with depth

wise convolution, 1x1 pointwise convolution as well as batch norm and ReLU

after each convolutional layer.

Figure 5 Left: Standard convolutional layer with batch norm and ReLU.
Right: Depth wise Separable convolutions with Depth wise and Pointwise

layers followed by batch norm and ReLU

13

Counting depth wise and pointwise convolutions as separate layers,

MobileNet has 28 layers [7].

 Although the previously explained architecture is already small and

offers low latency, many times a specific application requires a smaller and

faster model. In order to achieve these models, two parameters are introduced.

The first one, α is called width multiplier. The role of the width multiplier α is

to thin a network uniformly at each layer. The computational cost of a depth

wise separable convolution with width multiplier α is:

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹 [1]

Where α ∈ (0, 1] . Width multiplier has the effect of reducing

computational cost and the number of parameters quadratically by roughly 𝛼2.

The other parameters of equation [1] are:

• M, number of input channels.

• N, number of output channels.

• DF ∙ DF, feature map size.

• DK ∙ DK, kernel size.

The second hyper-parameter introduced to reduce the computational

cost is the resolution multiplier ρ. It is applied to the input image and the

internal representation of every layer is subsequentially reduced by the same

amount. The computational cost can be finally rewritten as

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 [2]

Where ρ ∈ (0, 1] . Resolution multiplier has the effect of reducing

computational cost by ρ2.

 To conclude our discussion, here are a few results of interest obtained

in the original paper using ImageNet. MobileNet is nearly as accurate as

VGG16 while being 32 times smaller and 27 times less compute intensive. It is

more accurate than GoogLeNet while being smaller and more than 2.5 times

less computationally heavy [7]. Other impressive results are achieved in tasks

such as face attributes, object detection and face embeddings.

1.2.2 Anomaly Detection

To introduce this paragraph about anomaly detection with neural

networks, it must first be remembered that, unlike the classification task, here

the neural network is only one part of the systems and does not directly give

the verdict on if data are good or bad, as in the case with classification. In

particular, it is known that neural networks have the ability to extract features

from the images they receive. This property which the human eye has naturally

can be visualized for example in Figure 6. In this image one of the filters of the

first convolutional layer of ResNet50 is visualized. In practice Figure 6 shows

which parts of the images the network is more focused on at that level of

abstraction.

Figure 6 Visualization of a filter of the first convolutional layer of ResNet50
for the reported image. This shows the ability of neural network to extract

features from images.

This images clearly reveals that there are some parts of the figure which

represent a pattern for the network. In other words, this indicates that the

algorithm is extracting features. The more we go down in the network the more

this type of features become abstract so that their visualization on the starting

image is not graphically satisfactory for the human eye. But it is evident that

some kind of information is being squeezed.

A lot of anomaly detection algorithms work using this principle [13]. In

fact, they squeeze the information using a network which in this case is called

encoder. After that, starting from the squeezed information, another network

doing the opposite job reconstructs the image from this vector of information.

This is called a decoder. This kind of system is reported Figure 7. This structure

is than trained with a loss function and many images so that the starting image

and the reconstructed one become as similar as possible. This implicitly means

15

that in the bottleneck of the system, also called latent space, only the valuable

information, describing the family of images used in training, is stored [14].

Figure 7 Structure of an autoencoder system. This kind of architecture is
often used for anomaly detection

This consequently means that if a so trained system gets a new image in

input, and that image is anomalous, the encoder does not have the tools to

describe that anomaly in simple terms, since among the features it learned to

extract the anomaly never appeared. Consequentially in the bottleneck the

information about the anomaly is lost and so the reconstructed image will be

similar to the starting one but without the anomaly. At that point it is needed

to compare the original and reconstructed images and to score their

differences to perform anomaly detection. In practice a threshold is put on this

score and so any test image which has a score above that value is labelled as

anomalous.

This simple architecture, and specifically the use of encoder and

decoder, is recurrent also in many state-of-the-art algorithms of this class. Of

course, each algorithm features some additional ideas, but it is important to

keep in mind this scheme when describing the models that will be introduced

in the following.

1.2.2.1 CFLOW-AD

CFLOW-AD consists of a pretrained encoder, for example ResNet18

pretrained on ImageNet, followed by a multi-scale decoder [9]. The encoder

extracts features with multi-scale pooling to capture both global and local

semantic information. These features are then processed by a set of decoders

to estimate likelihood of the encoded features. The estimated likelihoods are

up sampled to input size and added up to produce the anomaly map. The

anomaly map is used to decide if an anomaly is present or not. This structure

is represented in Figure 8.

Figure 8 Structure of the CFLOW-AD model. In this case we still have the
decoder-encoder logic but they work not only globally but also locally on

some pixels regions

It is in fact very similar to the basic one described above. The main

developments are that multiple positional encoders are used instead of a single

one. These squeeze the information into a vector but work on different parts of

the images [9]. Each of these vectors contains also harmonics specifying it

spatial location and we have multiple encoders working on overlapping

regions. Another difference is given by the way the decoders work. In fact, here

conditional normalizing flow networks are used, and this is why the method is

called CFLOW-AD. The conditional flow network is a statistical method used

to model probability distributions which offers some mathematical advantages

reported in [9]. In our application this method was chosen because it is one of

the best performing for anomaly detection on the MVTec AD dataset [15]

MVTec AD is the main dataset for benchmarking anomaly detection methods

with a focus on industrial inspection [16].

1.2.2.2 PatchCore

This algorithm works on the principle that as soon as a single patch of

the image is anomalous the entire image can be classified as anomalous. That’s

the reason it is called PatchCore. In practice, in a similar way to CFLOW-AD,

you don’t have and encoder working on the entire image at once, but the image

is tiled and each of these sections is encoded separately with information about

the position of the patch so to obtain locally aware patch features. These

features are not squeezed as strongly as in classical encoders.

 The authors of the paper state that this is helpful since lower-level

features are generally too specific to ImageNet and therefore biased while too

high-level features are too generic [10]. So the features are extracted from a

mid-level of the backbone network used as encoder. This big quantity of data

is down sampled trying to retain the information content. This operation is

performed with a technique introduced in [17] called coreset subsampling. The

17

data remaining at this point are to be found in what the authors call a memory

bank.

Figure 9 Examples of coreset subsampling (top) vs random subsampling
(bottom). It can be seen that coreset better preserves the information

At this point another big difference with respect to the classical

autoencoder algorithm appears. In fact here the features are not up-sampled

anymore to get an artificial image to compare to the original one. In this

algorithm the opposite happens. Indeed, an image to be tested gets treated

with this same procedure so to obtain an information vector similar to the ones

contained inside the memory bank. After that the anomaly score is simply

given by a distance measured to the nearest neighbour in the bank.

In other words, here the image to be tested is squeezed to feature vectors

and then the anomaly is obtained on these vectors instead of obtaining it at the

pixel level. This procedure makes PatchCore able to achieve state of the art

anomaly detection while considerably reducing the computational cost as

reported in the original paper [10]. The structure is resumed in Figure 10.

Figure 10 Structure of the PatchCore model. It can be seen that here the
anomaly is calculated at vector level in the memory bank and not at image

level

In our industrial application this method is chosen because it is the

state-of-the-art method for anomaly detection on MVTec AD dataset1.

1.2.2.3 Deep Feature Kernel Density Estimation (DFKDE)

This algorithm is made of two stages. The first one is very similar to the

encoder part of an autoencoder. It consists of a deep feature extraction stage

through a backbone like ResNet50 pretrained with ImageNet. In the second

stage a probability density of these features is obtained. In fact, by fitting

distributions to the deep features obtained during training, a generative model

over the feature space is obtained [11]. Test images are then evaluated by

simply comparing their extracted feature to the so obtained distribution. The

characteristic of this model with respect to others is its use of gaussian kernel

density estimation. This is a method to estimate probability density functions

based on simple functions as weights. In that case these weight functions are

called kernels. In Figure 11 we report a simple example of kernel density

estimation with a symmetric kernel function on a four elements sample.

Figure 11 Example of kernel density estimation on a four elements sample.
The blue areas are the kernels that are used as weights for the samples,

while the blue continuous line is the overall estimation obtained with this
kernel density estimation.

1 https://paperswithcode.com/task/anomaly-detection

19

In our industrial application this method is chosen because it is one of

the state-of-the-art methods encountered in the literature research and

showed good results on the additional dataset that will be introduced in the

following.

1.3 Dataset

After briefly presenting the models and their functioning, it is clear how

a robust dataset in essential for the assessments. In fact, it is known that a

sufficient quantity of data is fundamental when training a deep learning

system [18]. To be precise, two datasets were provided by Raytec Vision S.P.A.

These will be analysed as they differ in terms of number of images, image size

and acquisition accuracy. Going deeper in the discussion some information

about the main dataset among the two is given. In this first dataset the images

of the tomatoes were acquired with a 5MP matrix-scan camera. The setup also

consisted of a dome illuminator developed by the industrial partner which can

be seen in Figure 12.

Figure 12 Dome illuminator used to acquire the dataset. It was developed by
Raytec Vision S.P.A.

This Dome works emitting strobe light pulsing at 150 us and with 12 A

of current. The integration time of the camera is kept at 180 us. The functioning

of the acquisition system is the following. A RGB image of the tomatoes

running on the tape is captured, see Figure 13. At this point, an algorithm of

image detection is able to identify each tomato, as reported in Figure 14.

Figure 13 RGB image of tomatoes on the tape

Figure 14 Image detection of the tomatoes

Once the tomato is captured, a mask is applied so that the background

is automatically removed. The final result of the acquisition system is reported

in Figure 15.

21

Figure 15 Top: binary mask used to remove the background.
 Bottom: final result of the process

The dataset is composed of 3370 images with the following distribution:

• 974 good samples of peeled tomatoes

• 1000 yellow samples

• 1000 green samples

• 396 samples with anthracnose or not correctly peeled.

The yellow and green samples also contain some images presenting

anthracnose in addition, so that for example there are some tomatoes that

should be sorted out both because they are not ripe (they are yellow or green)

and because they have anthracnose. In Figure 16 we report an example for each

category. As we are going to explain more in the detail in the following, some

results are obtained working on the so structured dataset. But the main

objective of the thesis is to obtain some software able to distinguish between

good and bad data. Therefore, yellow, green and diseased tomatoes are

grouped in one category named bad. The bad family contains 2396 images and

a good samples folder containing 974 images. In the following, if not specified

otherwise, the results reported will refer to experiments performed with this

dataset in the specified configuration explained above.

Figure 16 Examples from each category. Upper left: good peeled tomato;
Upper right: green tomato; Lower left: diseased and not correctly peeled

tomato; Lower right: yellow tomato.

The last thing to be noticed about this dataset, concerns the image size.

Indeed, because of the image detection step, not all the images have the same

dimensions. In particular, the resolution is in the range between 157*193 and

369*369 pixels. As we will see in the methods chapter, to work with our

models, some modifications on the image size are needed.

 Some examples of tomato images obtained with this configuration are

reported in Figure 17.

Figure 17 Example of a good and a bad tomato sample acquired with the
here described setup

In addition to this dataset Raytec Vision S.P.A. provided also a second

dataset. This was acquired in not so strict way. These images have a resolution

23

of 12 MP and they were taken with a smartphone. In this case the background

is not standardized and black, but it consists of a white table on which the

photos were taken. Moreover, the lighting is not controlled. This dataset is

composed by 252 good images and 228 bad ones. In this case the bad ones

were just unpeeled samples so that the classification was just possible in the

categories peeled vs unpeeled. In Figure 18 an example of these images is given.

Figure 18 Examples of images from the second dataset: we notice these
photos are taken without controlling the lighting and are just standard

smartphone images

In the final part of the experiments section the possible effects of the

presence or not of the background will be investigated through the application

of a software able to simulate random backgrounds. Moreover, in this thesis

work, driven by the small number of images in this dataset, also the effect and

advantages of data augmentation will be handled.

1.4 Hardware and software settings

The training and in general the use and optimization of deep neural

networks is a very computationally heavy procedure. This practically means

that the experiments reported in the following are very time consuming even

if Python (i.e., the open-source platform used for writing the software) is

compatible with GPU calculations. For example, a single training run with

ResNet50 on the main dataset can take up to days on a standard laptop

computer, that has:

• 16 GB ram.

• Processor 11th generation Intel Core i7.

• NVIDIA T1200 laptop GPU.

Figure 19 The use of Google Colab and Drive is fundamental to perform
some of the experiments which wouldn’t run on personal computers because

of the high computational request

Moreover, the experiments reported in the following feature hundreds

of training runs. For this reason, the use of a powerful hardware is of crucial

importance. Said that, the hardware chosen is a cloud computing platform. In

particular, Google Colab is chosen for this purpose. This platform permits to

access computationally strong resources trough cloud. It must be remembered

that also the RAM requirements for the work here presented are quite high

meaning that some experiments could not run without the support of the 64

GB of ram given by the cloud. Anyway, the most important support is given by

the GPU acceleration. In particular as reported in Figure 20 the use of Google

Colab permitted to take advantage of a Nvidia A-100 GPU.

 To use TensorFlow® [19], needed for the classification, with this kind

of support the CUDA® [20] Deep Neural Network library (cuDNN) [21] is

installed. For what concerns anomaly detection, Pytorch® [22] is additionally

configured to run the training instances on GPU.

Figure 20 Hardware settings of the cloud computation used. Notice the
Nvidia A100 GPU.

25

In the possible future industrial application installing a GPU with

performances similar to this one can be imagined. This is useful since in the

following also some considerations on the possible applications of the models

and their integration with existing machinery will be reported and having such

a strong hardware which could resemble the industrial one in the final machine

permits to make some considerations in this direction.

1.5 Thesis Outline

In this section the main points analyzed in this thesis document are

explained. The work is divided essentially in five main chapters. In the second

chapter (i.e., Methods) it is shown how the models adapted for the specific

application were obtained starting from the algorithms in general form. The

general framework adopted to implement, optimize and compare the models

is reported. Even if each of them has peculiar differences in the

implementation, which are reported in detail in the methods chapter, a black

box scheme that was then followed to standardize their use as much as possible

is introduced.

 The third chapter reports the results. The numerical outcomes of the

optimization and of the experiments performed to compare models are shown.

These results are also briefly commented. This is done to help the reader follow

the logical scheme they were produced with. In the second part of this section,

there are additionally reported some results obtained for multiclass

classification and on a different dataset or with different backgrounds to show

the robustness of the obtained system and to give some insights on possible

different applications of the classification algorithms.

 Finally, there is a conclusions chapter. Here a summary of the bullet

points of this works is reported. The main insights are summarized, and the

results are commented in a broader way, offering some suggestions for future

developments.

2 Method

In this section the workflow followed to reach the final software

configurations and the experimental procedures used to optimize and compare

the different models are explained. This method chapter is composed of six

main parts that can be briefly summarized as follows. Firstly, the general

framework that was set up to handle the different experiments in a common

way is described. Then, in the second subsection, it is described how the

classification architectures were implemented in this framework. In the third

section the same is done for the anomaly detection models. Then, in the fourth

subsection, the metrics considered to evaluate the performances of the

algorithms are illustrated. These are mandatory to be able to evaluate and

compare the results gathered from the different techniques and models. In the

fifth subsection, the models’ optimization method is reported. Indeed, once the

workflow as well as the metrics are identified, the need to obtain the best

possible algorithms must be fulfilled. In the last section of this methods

chapter, the procedure used to compare the models is explained. For this

reason, K-Fold cross validation, Almost Stochastic Order and bootstrap power

analysis are introduced and described.

2.1.1 Black box scheme

As stated above the first step to describe the following experiments is to

introduce the logical pattern they were performed with. In particular, the

objective was to take the six models described in chapter one, to adapt them so

that they could work on the dataset presented, and to implement a software

that could run the models in a common framework.

 In other words, the objective is to have one black box architecture able

to handle all the different models. In that kind of structure, each black box

represents the adapted model that will be applied on the dataset. In this

framework, there are images coming into the black box and sorting results

coming out. This also means that the objective is to write code strongly based

on function calls and in which all the variable parts are contained in external

configuration YAML files. The different models are in the end implemented by

solely changing the configuration files.

With this standardised way of proceeding clearly in mind, it becomes

easier to optimize the models with a common method. This initial work of

27

standardization also helps in comparing the models, speeds up the

experiments and facilitates the readability of the following sections of this

thesis.

Figure 21 General framework of the adopted method: Images are the input
to the specific model used which acts as a black box and gives the sorting

result as output

2.2 Models

From now on it is necessary to split the discussion, distinguishing

between anomaly detection and classification algorithms. From chapter 2.3 on,

methods of both families will be treated as black boxes. Here, in subsections

2.2.1 and 2.2.2, some information about the work done to obtain this

framework starting from the different models is given.

2.2.1 Classification

The main library used for the classification task is TensorFlow which,

since the release of its second version (i.e., TensorFlow 2), is perfectly

integrated with Keras. TensorFlow 2 is an end-to-end, open-source machine

learning platform, while Keras is the high-level Application Programming

Interface API for TensorFlow 2. Keras is a deep learning API written in Python,

running on top of the machine learning platform Tensorflow.

This setup is chosen for two main reasons. The first reason is that in

Keras all the algorithms considered are built-in functions. The second reason

is that, using Tensorflow, those neural networks can be downloaded in their

own ImageNet pretrained version. This is good for two main reasons:

1. There is no need to train the neural networks from scratch. This is time

and computational effort saving.

2. Using ImageNet pre-trained CNN features, impressive results have

been obtained on several image classification datasets [23] by means of

the so-called Transfer Learning (TL) process.

From now on, all the necessary steps to do image classification are

explained in detail. The first one is to upload the dataset. The whole dataset is

divided into three sub-folders named “training”, “validation” and “test”. This

procedure is done by means of simple code able to split the dataset according

to the percentage of images to be used for training, validation and test. This

percentages are 70, 15 and 15 respectively. The first two folders will be used

during the training phase, while the third one, consisting of images never seen

by the model, will be used to evaluate the model’s performance in making

predictions. This is a common practice in data science. The following step is to

upload those folders into the program. In this passage an image size must be

set because each model expects a well-defined input image dimension. For all

the models, the image size is set to 224*224 pixels. Such an image size is

chosen as standard value as this specific value is commonly used and the

images given by Ratech Vision S.P.A. have a similar resolution.

29

After uploading the dataset, the construction of the model should be

discussed. Since all the models to be compared are given in their pretrained

version, the procedure here performed is commonly known as TL. This

consists of taking features learned on one problem and leveraging them on a

new, similar problem. Transfer learning in the context of deep learning follows

a common workflow2:

1. Take layers from a previously trained model.

2. Freeze them, to avoid destroying any of the information they contain

during future training rounds.

3. Add some new, trainable layers on top of the frozen layers. They will

learn to turn the old features into predictions on a new dataset.

4. Train the new layers on your dataset.

That said, for the specific case analyzed, it is not possible to import the

pre-trained models and directly pass to the training phase, but some

modifications are needed. As explained in points 1 and 2, it is needed to import

most of the layers of the pretrained models, freezing them. In particular, both

first and last layer, which are fully connected layers, are not imported.

Following the bullet point list, it is needed to replace some of the layers:

the first one is substituted with an input layer where dimensions of the images

(i.e., 224*224 pixels) and number of channels (i.e., 3 channels since we work

with RGB images) are specified. A so called “preprocessing layer” is added to

follow the previously mentioned one. Its function is to apply a series of

transformations to make the images’ format equal to the one used during the

pre-training procedure with ImageNet dataset. For the last layer the discussion

is a bit more complicated. In fact, it is not sufficient to replace one layer with

another one, but it is needed to add:

• A flatten layer. It takes the pooled feature map and flattens it into a

column, as shown in Figure 22. After the flattening step, a long vector

of input data is obtained and passed to the artificial neural network for

further processing.

2 Transfer learning & fine-tuning (keras.io)

https://keras.io/guides/transfer_learning/

Figure 22 How the flatten layer works

• A dense layer composed by units in the form of Rectified Linear Units

(ReLU), as the one reported in Figure 23. The dense layer’s neuron in a

model receives the output from every neuron of its preceding layer. This

layer is the one responsible to learn new weights.

Figure 23 ReLU activation function

• Finally, the last layer, which must have the number of units equal to the

number of predictions classes (i.e., two units in the case of binary

classification). For this purpose, Sigmoid activation functions are

chosen. But how do these functions work? Let’s image that we have two

classes a and b for example. The two classes are associated with the

values 0 and 1 (for illustration purpose, a is associated to 1 and b is

associated to 0). The sigmoid, relying on a threshold, converges the

probability at one of its extremes. Therefore, if the probability that a

31

specific image belongs to class a is greater than the threshold the value

1 will be assigned.

Figure 24 Sigmoid activation function

To make what has just been described regarding the model’s

construction clearer Figure 25 is reported. By looking at the figure it is possible

to appreciate:

• Input layer.

• Preprocessing layer, composed by the union of ‘tf.math.truediv’ and

‘tf.math.subtract’.

• The pre-trained model (MobileNet in the picture).

• The flatten layer.

• The dense layer composed by ReLU activation function.

• The dense layer composed by Sigmoid activation function.

Figure 25 Visualization of the here presented architecture using Mobilenet
as pretrained model for the example

Once the model is built, the next step is the ‘compilation’. In this step

some parameters that characterize the network must be defined. As it is

reported in detail in the dedicated chapter, these parameters will be subjected

to the so-called hyper-parameters’ optimization procedure (see chapter 2.4 on

hyper-parameters optimization). In particular, both optimizer and learning

rate need to be defined. For this purpose, the Stochastic Gradient Descent SGD

algorithm was chosen as the optimizer. The momentum is fixed to be equal to

0.9, while the value of the learning rate will be decided by means of the

optimization procedure. After that the categorical cross-entropy is defined as

33

loss function. Without going into too much detail, it is important to give at least

a definition of the above-mentioned parameters.

The purpose of training a neural network is finding weights and biases

so that the output from the neural network approximates the desired output

y(x) for any training input x. The loss (or cost) function quantifies the degree

to which the objective is achieved. When the loss function is large, y(x) is not

close to the output for a large number of inputs. Therefore, the aim of the

optimizer is to minimize the loss function. In other words, we want to find a

set of weights and biases which make the cost as small as possible [2]. What

does the optimizer do? To explain the concept in a simple way, it is useful to

imagine the function as a kind of valley and a ball rolling down the slope of the

valley. Now, some sort of law of motion must be found that makes the ball

always roll towards the bottom of the valley.

In a nutshell, the gradient descent works by repeatedly calculating the

gradient of the cost function and then moving in the opposite direction, “falling

down” the slope of the valley, as shown in Figure 26.

Figure 26 Cost function C as a function of 2 variables v1 and v2

In particular, the SGD estimates the gradient of the loss function by

computing the gradient for a small sample of randomly chosen training inputs.

By averaging over this small sample, it turns out that it is possible to quickly

obtain a good estimate of the true gradient. This helps speed up the learning.

The learning rate governs the size of the steps to reach the minimum.

There are two main points to consider when choosing the value of the learning

rate:

1. If the learning rate is too large, then the steps will be so large that they

may overshoot the minimum.

2. Choosing the learning rate too small slows down the SGD algorithm.

As reported by Nielsen et al. [2] the momentum method introduces a

kind of inertia term. To understand the way the momentum influences the

SGD, it is useful to take a look at Figure 27.

Figure 27 SGD without momentum

 The noise and random fluctuations reported in the picture are due to

the small batches used by the SGD to compute the derivative of the cost

function. The goal of the momentum is to give a more stable direction to the

convergence of the SGD. The momentum is used to weight the gradient of the

next iteration by introducing the gradients of past iterations into the update

function of weights and biases. Thus, improvised variations do not affect the

gradient so much. It is possible to appreciate the result in Figure 28.

Figure 28 SGD with momentum. The momentum is reducing the
fluctuations in the weight updates

35

Figure 29 Comparison of SGD algorithms. Left: SGD without momentum.
Right: SGD with momentum

In the end, there are two main advantages in using the momentum technique3:

1. SGD with momentum is faster than standard SGD. Therefore, the training will

be faster.

2. Global minima can be reached without stopping at local minima due to the

momentum involved.

Now that those parameters are clearer, it is possible to continue with

the explanation of the model. One important drawback during the training

phase of CNNs is the overfitting problem. To avoid that a call-back is defined.

Thanks to the this function, it is possible to follow the trend of an arbitrarily

chosen parameter during the training of the model. If the monitored parameter

does not improve for a number of epochs set by the programmer, the training

is stopped and the model with the best parameter value is saved (the same can

be done whether the parameter remains constant or decreases). In the end,

this procedure allows to avoid overfitting problems. For the case analyzed here,

it is decided to follow the trend of the validation accuracy and stop training if

it does not increase by 0.001 for a number of epochs equal to 10% of the total

number of training epochs. Moreover, thanks to this function, the best model

(i.e., the model with the best classification accuracy in this case) of the training

procedure is automatically saved. In this way the best model among the ones

achieved in training is certainly used, during the test procedure.

 To summarize what has been said above, the so developed software is

able to upload the dataset, pick up the starting model to be used, modify it as

it is needed, compile it and train it. When the training procedure is complete,

it saves the best model so that it is possible to test the latter on a new folder of

images. The entire procedure can be implemented simply by acting on the

3 SGD with Momentum Explained | Papers With Code

https://paperswithcode.com/method/sgd-with-momentum

configuration file previously mentioned. One example of configuration file is

reported in Figure 30.

Figure 30 Example of configuration file in YAML format. Trough the black
box scheme implemented the entire construction and deployment of the

model depends only on this file

2.2.1.1 Gradient-weighted Class Activation Mapping (Grad-CAM)

visualization

In order to ensure every IC-based model works correctly, the Grad-CAM

method was applied to each of them at the end of the training, as proposed in

the original paper [24]. The outcomes of this method are reported in the results

section. In this paragraph, only the method with which Grad-CAM was

implemented is discussed.

Grad-CAM is a technique used to visualize which regions of the input

are “relevant” to perform the prediction. In practice with this method, the

different regions of an image are coloured depending on how much the

network focuses on them to classify the image. An example of this is reported

in Figure 31. It is clearly possible to see that the neural network gives more

weight to the tomato when taking the decision than to the background. This

indicates the algorithm is focusing on the correct part of the image showing

that it is working in the correct way.

37

 Figure 31 Example of heatmap obtained with ResNet50 applying
 Grad-CAM

The working principle is illustrated below. The last convolutional layer

of the selected model is identified. Then the model is fed with an input image

and the prediction is returned. After that, the gradient of this prediction with

respect to the output of the selected layer is taken. This is the information to

be obtained. As the next step, the information contained in the gradient is

simply scaled with respect to the size of the input image, displayed in terms of

different colours and superimposed on it. In the following, this tool will be used

for each model to check that it is looking in the correct areas of the image and

therefore that it functions correctly.

2.2.2 Anomaly detection

For anomaly detection with deep neural networks the main tool used is

a GitHub repository called Anomalib [11]. This is an open-source library

developed by Intel that provides implementations of many state-of-the-art

anomaly detection algorithms. The library is particularly suited for image-

based anomaly detection, where the goal of the algorithm is to identify

anomalous images. It is the largest open-source library of this type, and the

authors suggest that in future it could also contain algorithms for the audio or

video domain [11]. In particular, it contains all models mentioned above.

Figure 32 ANOMALIB is the most important library used in this thesis for
deep learning anomaly detection

The repository is already based on the use of a single configuration file

operating with a huge number of function calls. As a result, the creation of the

common pipeline is straightforward in these cases. It is just needed to modify

the configuration file so to adapt to the custom dataset. After that the anomaly

detection case can be treated in the same black box manner developed for the

classification algorithms. An example of such configuration files modified for

the task of this thesis work is reported in Figure 33.

Figure 33 Example of custom configuration file for anomaly detection

39

In the introduced way of operating with black boxes also the use of the

Torchmetrics® [25] module was very useful. Through this library it is possible

to extract the necessary metrics by slightly modifying the code contained in the

repository without the need to hard code their calculations from scratch, as

done for the classification.

2.3 Metrics

In the previous section, it was described how all the different models were

fitted in a common framework. This is useful since a big part of the thesis

objectives’ is to compare the various models implemented so to extract some

insights and identify the best one for the required industrial application.

In order to find the best model, it is necessary to identify some common

metrics to measure the performance of the different models. The objective is

to obtain a robust classifier which must be integrated with already existing

industrial tools such as conveyors. In that sense not only the quality of the

decision about a single item passing under the computer vision system is

important. Indeed, other factors play a considerable role as well. This chapter

summarises the chosen metrics and the reasoning behind the choices.

2.3.1 Inference Time

In the industrial application here presented, a possible limitation is

given by the decision-making speed of the model. As already seen in the dataset

description, the images are acquired by the pipeline in a small resolution, not

exceeding 369*369 pixels, mainly for computational reasons. Still the speed of

elaboration plays a huge role in the industrial reality and customers are often

willing to sacrifice some quality in the picking process to gain speed. In the

industrial scenario these models are working, GPU usage is given for granted.

A hardware setup similar to the one used here is realistic, as confirmed by the

industrial partner. It is very important to consider that, choosing a model over

another just basing on correct picks could result in drastically reducing the

quality control output rates. In fact, time is a limiting resource even using

strong and modern hardware in this and similar applications. For this reason,

a metric which is used in the following to evaluate and compare the models is

the inference time. The inference time was computed with respect to a single

image, to understand how long each model takes to classify a given picture. At

the end, a comparison of each model according to inference time will be made.

Apart from that there are no big limitations, and the performances of

the various models can be evaluated by looking at the quality of the choices.

To evaluate that, two metrics are used:

• Accuracy

• Area Under the ROC curve (AUROC)

Training time, for example, is not a limiting resource for the industrial

partner, since even in the worst scenario the training phase of the heaviest

among the models considered takes up to 10 hours, which is not a problem

when selling the machine, considering the total set-up time of it.

Figure 34 Inference time is chosen as a metric to compare models since it is
an industrial application integrated with conveyors

2.3.2 Accuracy

Accuracy is the most used metric in classification problems. It is a very

intuitive and easy to extrapolate metric. It is the number of correct predictions

divided by the total number of predictions. Accuracy is the universally most

cited and widespread metric [26]. Anyway, it has some disadvantages. The

main one is that it hides the issue of class imbalance. For example, if the data

contains only 3% of negative instances, a classifier which always assigns the

positive label would reach 97% accuracy.

41

2.3.3 Area Under the Receiver-Operating Curve (AUROC)

and Confusion Matrix

It has been rigorously stated [27] that AUROC should replace accuracy

when measuring and comparing classification models. For this reason this

more technical metric which is not as intuitive as accuracy should be

introduced.

For the binary classification problem this thesis focuses on, it is possible

to visualize the results in a so-called Confusion Matrix (CM), like the one

reported in Table 1. A CM is a table that allows the visualization of the

performance of an algorithm. The matrix is organized in such a way that each

row represents the instances in the actual class, while each column represents

the instances in a predicted class. For the case in point here, a high value of

false positives means that many bad tomatoes were classified as good.

Conversely, a high value of false negatives means that many good tomatoes

were discarded.

Table 1 Example of confusion matrix to introduce the AUROC

Predicted class

Class 1 Class 0

Actual class

Class 1
10 True Positive

(TP)

2 False Negative

(FN)

Class 0
3 False Positive

(FP)

35 True Negative

(TN)

In this kind of matrixes, the True Positive Rate (TPR) is defined as:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 [3]

While the False Positive Rate (FPR) is defined as:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 [4]

As this thesis focuses on binary classification, the algorithms predict an

image as class 1 or 0 based on a threshold (i.e., if the prediction is higher than

the threshold the algorithm assigns class 1 to the image and the contrary if the

prediction turns out to be lower than the threshold). With this fixed in mind,

changing the numerical value of this threshold causes a change in both TPR

and FPR. The next step is to introduce the Receiver Operating Curve ROC. The

ROC is built changing the value of the threshold, in the range 0-1 for the

specific case analysed. More in detail, TPR and FPR are computed for any

threshold’s value and each couple of values (FPR, TPR) represent a point of the

ROC. Since the models output a probability and since the classification is

binary, this probability will be in the range 0-1, as explained above. By drawing

these points in a graph that has FPR on the x axis and TPR on the y axis it is

possible to obtain the ROC curve.

In the ROC curve the threshold value is implicit and once constructed

there is no way to extrapolate the threshold value corresponding to each couple

(FPR, TPR) just by looking at the graph. As can be observed in Figure 35, the

better the classifier the more ROC tends to a graph with a 90 degrees angle in

the point of coordinates (0,1). This qualitative observation of the behaviour of

the ROC can be exploited in a more mathematical form by using the so-called

AUROC parameter.

Figure 35 How to qualitatively evaluate ROC curves

In fact, the AUROC is just the integral of the ROC curve (i.e., it is just

the area in blue in the example reported in Figure 36). In other words, the

higher the value of the AUROC the better the classifier. In particular:

1. A perfect classifier has an AUROC equal to 1

2. A random one has an AUROC equal to 0.5.

43

3. Any value above 0.9 is considered excellent [28].

Figure 36 Example of ROC curve with area under the curve in blue

2.4 Hyperparameters Optimization

Hyperparameters are those parameters which are set before the training

process of a machine learning algorithm. They cannot be learned by fitting the

model to the data. They can be involved in building the structure of the model,

such as the number of hidden layers and the activation function, or in

determining the modalities in which the training phase happens, such as the

learning rate (LR), the stochastic gradient descent (SGD), batch size, and

optimizer [29]. Their values clearly have a strong influence on the learning

process and thus they have an impact on the overall performance of the model,

therefore they should be treated carefully. Choosing them is a key factor for

this work. The first approach which is widely used consists in: review of values

chosen by others in literature, consultation of dedicated forums and a trial-

and-error procedure. This is also the path here followed to identify a first range

of possible hyperparameters’ values. However, these are not necessarily

optimal and therefore a tuning procedure is required. In this section, the

method followed to perform the hyperparameters optimization (HPO) is

reported. To this end, WandB® website is used. This is an online tool that

allows to run training and validation automatically a pre-defined number of

times on the chosen model, with the aim of finding the best possible

combination of hyperparameters. This is done as follows: after every run the

program changes the value of each hyper-parameter in a range priorly defined

by the user. This change is performed following a Bayesian scheme in order to

optimize a certain metric that has to be chosen before the process starts. In the

following the accuracy is used as objective function and the goal is to maximize

it. As reported in [30], Bayesian optimization is a sequential model-based

method aimed at finding the global optimum with the minimum number of

trials. So, compared to other search methods such as Grid or Random,

Bayesian optimization can find the best hyper-parameters set with fewer

attempts.

Figure 37 Software used for hyperparameters optimization

Again, a black box architecture is followed in this HPO. In this case, the

input is a configuration file containing the range of values in which the search

45

for optimal hyperparameters has to be performed, while as output we get the

optimized value for each of them.

Figure 38 Black box architecture for the HPO procedure

As for the black box scheme introduced for training, validation and

testing, also this procedure for HPO is strongly based on function calls. Again,

it shows its strongest advantages when working with different models. Indeed,

thanks to the fact that all the variables are contained in a configuration file, it

is only needed to change this file to perform HPO with the same procedure on

all models. This initial work of standardization speeds up the experiments and

helps the readability of the following sections of this thesis.

 As done for some previous sections, following this introduction about

the hyperparameters tuning method used in general we split the discussion.

Firstly, the details for the image classification HPO are reported and after that

the ones for the anomaly detection case.

Configuration file Optimized hyper-parameters

2.4.1 Classification

For the classification task the most interesting hyperparameters are

number of training epochs, learning rate, batch size and the number of ReLU

in the dense layer. To be more consistent with the results, all the classification

models are optimized starting from the same hyperparameters ranges of value.

Those ranges are summarized in Table 2.

Table 2 Hyperparameters along with their values used during the
optimization

Parameters Values

Training epochs 30, 40, 50

Learning rate 0.001, 0.0001, 0.00001

Batch size 32, 64, 128

ReLU in the dense layer 256, 512

The black box framework is followed further in this proceeding. As

mentioned above, the input of the process is a configuration file containing the

information resumed in Table 2 and reported in Figure 39. To keep the

procedure as standard as possible, the model to optimize is an input that the

program gets from the configuration file used for the model creation. As

output, the results of the runs for each hyper-parameter combination in the

form of parallel coordinate graph is obtained. An example is reported in Figure

39.

Figure 39 Configuration file used for the HPO of classification models

47

The actual black box is the code responsible for the optimization. This

works as follows. First, the function called “sweep identity” must be defined.

This function is responsible for loading the configuration file reported in

Figure 39. In this way the code can read the hyper-parameters along with their

values. In the second step, the main function must be properly coded. Inside

the latter two built-in methods are called. These methods are:

1. Configurator. The configurator is the function responsible for pairing

the hyperparameters of the model with their values written in the

configuration file.

2. Logger. The logger, instead, is the one responsible for uploading the

metrics to be monitored in the online dashboard at the end of each

training session.

Between these two built-in methods, the piece of code in charge of

uploading the dataset, building the model, training it and computing the

metrics needed must be defined. This part is similar to the one explained in

chapter 2. Therefore, there is no need to illustrate the concept again.

 To start the actual procedure, the built-in function named “agent” must

be called by the user. Inside this agent function it is needed to specify the sweep

identity and the main function previously explained. In addition, the number

of times this procedure is going to be repeated is required.

 The sequence is automatically repeated by the software. Each time a

new run starts the value of the different parameters is changed according to

the Bayesian optimization, trying to maximize the accuracy. At the end of the

procedure, as said, is it possible to appreciate the results in form of parallel

coordinates graph like the one reported in Figure 40. This type of chart is very

useful in order to visually understand which are the best hyper-parameters’

value to maximize the accuracy. From these graphs we obtain the optimized

hyperparameters’ values.

Figure 40 Example of parallel line visualization of the results of the
hyperparameters optimization

2.4.2 Anomaly Detection

Switching to the anomaly detection models, WandB® is used again for

the HPO procedure. The black-box framework is also used for the anomaly

detection case. This architecture is very useful to standardize the different

procedures through the usage of a configuration file. In Figure 41 an example

of one of these YAML file is reported.

Figure 41 Example of a configuration file for hyperparameters
optimization, specifically for CFLOW-AD

49

Now it is necessary to spend some time talking about the

hyperparameters to be optimized. Differently from the HPO for the

classification models, each of the anomaly detection algorithms has its own

hyperparameters. In the remaining part of this paragraph, the details about

model and hyperparameters chosen are given. Starting from CFLOW-AD the

hyperparameters are:

• Backbone.

• Learning rate.

• Number of coupling blocks.

The backbone is the network used to encode the starting images. In this

case, as in the original paper [31], two types of ResNets (ResNet18 and Wide

ResNet-50-2) were proposed. Both are pretrained on ImageNet and this is

good because, as already said in the classification’s chapter, impressive results

have been obtained in literature by pre-training an image-based model on this

dataset. The second hyperparameter is the well-known learning rate. For both

classification and anomaly detection models the learning rate has the same

role. The range in which its optimal value has to be searched is determined by

literature research of similar cases. Finally, the last hyperparameter used for

CFLOW-AD, is the number of “coupling layers” each of the decoders has. A

coupling layer is a particular type of layer that for its physical structure

implements a normalizing flow on the information running through it. As

stated in the beginning, a normalizing flow is a method used to model

probability distributions which offers some mathematical advantages. For

these characteristics, to be found in [32], changing the number of these layers

in each decoder, slightly changes the modelling performed by the decoder or

in other words changes the decoding.

For what concerns PatchCore the hyperparameters used are [10].

• Backbone.

• Number of neighbours.

Starting from the backbone, the option available for PatchCore are the

same two types of ResNets previously proposed for CFLOW-AD. The number

of neighbours, on the other hand, is a characteristic hyperparameter of this

model. Since PatchCore tiles the starting images, it operates on the so obtained

patches and the information contained in a patch is often not operating on a

large enough receptive field size. This means that it sometimes does not

account for meaningful anomalous context, robust to local spatial variations.

This problem, that rises from the way the model operates, is tackled by the

authors by aggregating the information coming from a number of

neighbouring patches, after the features in each of them has been extracted.

The number of elements to aggregate in this operation is the hyperparameter

to be optimized.

Finally, the hyperparameters used for DFKDE are:

• Backbone.

• Confidence threshold.

• Maximum number of training points.

Again, the backbone has the same role already explained for CFLOW-

AD and PatchCore. The confidence threshold is used for the density estimation

step of DFKDE and so changing it changes how the probability function is

modelled. Finally, the maximum number of training points is a limit to how

many points are used for kernel density estimation [11].

In Table 3, Table 4 and

Table 5 the hyperparameters used for HPO on each anomaly detection

model are resumed.

Table 3 Hyperparameters used to optimize CFLOW-AD

Parameters Values

Backbone ResNet18, Wide-ResNet-50-2

Number of coupling blocks 4,6,8

Learning rate [0.001, 0.1]

Table 4 Hyperparameters used to optimize PatchCore

Parameters Values

Backbone ResNet18, Wide-ResNet-50-2

Number of neighbors 7,8,9,10

51

Table 5 Hyperparameters used to optimize DFKDE

Parameters Values

Backbone ResNet18, Wide-ResNet-50-2

Confidence threshold 0.3, 0.6

Maximum number of training

points
15000, 40000, 60000

For each model the optimized values of the chosen parameters are

reported in the results section. In particular, also the image size is put among

the parameters to be tested in these cases, trying to understand if a greater

resolution gives better results.

2.5 Comparing models: K-fold, bootstrap, deep

dominance

Once all models have been optimised for specific task and dataset of this

thesis, they must be applied (i.e. tested) and compared. The goal is to identify

the best model for the industrial application. For this reason, a first step is to

use techniques able to generalize the result. This means that it is necessary to

understand how the system will behave on independent data such as those with

which it will then work in the real application.

One of the most used techniques to analyse the system’s performances in

this sense is K-Fold cross validation [33]. This technique, that is graphically

resumed in Figure 42, consists in:

• Dividing the entire dataset into K parts

• For each part performing the following tasks once:

o Keep that part as test set

o Keep the other K-1 parts as training set

o Train the model on the so obtained training set

o Test the model on the corresponding test set

Figure 42 How K-Fold validation works

Generally, these results are then summarized by taking mean and

standard deviation of the K performances. On the other hand, recent literature

also concluded that since neural networks have non-convex loss surfaces this

procedure is not rigorous. As stated by [34]: “These models have a large

number of hyper-parameters and being non-convex, their convergence point

depends on the random values chosen at initialization and during training”.

Therefore, to compare different models a further analysis on the K

performances values obtained is needed. In particular, the GitHub repository

called Deep-Significance [35] developed by the university of Copenhagen is

used to this end. This repository contains a series of tools to perform statistical

significance tests on neural networks. In this thesis work, two of them were

chosen to compare the models:

• Almost Stochastic Order

• Bootstrap power analysis

Almost stochastic order (ASO), as stated in the [36] is a statistical

tool that is:

• SIGNIFICANT: this assures that future runs of the superior model are

likely to get higher scores than future runs of the inferior model

• POWERFUL: this means it is able to make decisions in most possible

decision tasks

• GIVES A CONFIDENCE SCORE

53

The operating principle is reported in the following. A Probability

Density Function (PDF) is constructed from samples. In this specific case these

samples are the metric scores extracted with the K-Fold method. After that,

from the PDF, the Cumulative Density Function (CFD) is taken as reported in

the example in Figure 43.

Figure 43 Left:example of PDF. Reft: example of CDF

From the definition of CFD, the stochastic dominance of one

distribution over the other can be defined if:

𝐹(𝑎) ≤ 𝐺(𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 [5]

As an example, is it possible to refer to Figure 44. In the figure, the green

curve can be associated to G(a) while the red curve represents F(a). Just by

looking at the picture, it is clear that the green curve is dominant with respect

to the red one.

Figure 44 Example of stochastic dominance of a CFD over another

Unfortunately, as noted by [36]: “It often happens in Statistics, that the

concept of stochastic dominance is excessively rigid”. ”Stochastic order is a 0-

1 relation. It is either true or false”.

Indeed, in many applications, situations like the ones shown in Figure

45 could rise. For example, let F(a) be the red curve and let G(a) be the green

curve. In that case it is not possible to say which one is dominant, because the

two curves intersect.

Figure 45 Examples of situations in which a predominant distribution is
present but stochastic order is not satisfied

ASO, as proposed in the original paper by Dror et al. [34] Dror et al., is

able to identify the better model in such situations with statistical meaning.

Starting from two random variables X and Y with CDF’s F and G, an index 𝜀𝑊2

is calculated (the exact formula can be in found [34]). This index satisfies the

formula

0 ≤ 𝜀𝑊2(𝐹, 𝐺) ≤ 1 [6]

Where:

• 0 corresponds to perfect stochastic dominance of X over Y.

• 1 corresponds to perfect stochastic dominance of Y over X.

It also holds that: 𝜀𝑊2(𝐹, 𝐺) = 1 − 𝜀𝑊2(𝐺, 𝐹).

In other words, this index could be visualized as the quantification of

the extent to which stochastic order is being violated like in Figure 46.

55

Figure 46 Example of how the index introduced in ASO could be visualized

Based on this quantity a test is formulated with the following

hypotheses:

𝐻0 ∶ 𝜀𝑊2(𝐹, 𝐺) ≥ 𝜏 [7]

𝐻1 ∶ 𝜀𝑊2(𝐹, 𝐺) < 𝜏 [8]

Where 𝜏 is a pre-defined quantity (generally it is 𝜏 = 0.5). In this test

refusing the H0 hypothesis means accepting that 𝜀𝑊2 < 𝜏 and so that F is

almost stochastic dominant over G. Starting from this the authors further find

a minimal index for which we can reject the null hypothesis with a given

confidence [35]. This is the value we are interested and that the given tool in

the repository calculates.

In other words, given the observed scores and a confidence value, the

ASO algorithm returns a value which expresses an upper bound to the amount

of violation of stochastic order. For this thesis work, a confidence level 0f 95%

is chosen. Such a value is suggested in [37] and it is commonly used in other

tests of this type. In the following paragraph it is reported how this tool is used

in the specific case analysed.

 When comparing two vectors A and B of samples of a specific metric

(i.e., accuracy) and obtaining 𝐴𝑆𝑂(𝐴, 𝐵) = 0.2, the following information is

given: B is almost stochastic dominant over A for less than 0.2. This is useful

to conclude that model A is dominant over B for what regards accuracy. On the

other hand, a result like 𝐴𝑆𝑂(𝐴, 𝐵) = 0.86 is not returning any useful

information since it tells that B is almost stochastic dominant over A for less

than 0.86, which could be any value between 0 and 0.86. In simple terms, to

state that a specific model is better than another with regards to a certain

metric, it is useful to look for values of ASO below 0.5.

 It is interesting to notice that no assumption about the distribution of

the scores is made in this procedure. On the other hand, it is evident that the

number of scores allowing for reliable significance testing is arbitrary in this

method. Due to this, also the bootstrap power analysis is used.

Bootstrap power analysis [38] is used to understand if the number

of samples used is sufficient or not to model a PDF and run significance tests

on it. In the specific case analysed, this helps to understand if the number of

folds with which K-Fold is performed is high enough.

This power analysis works as follows. It takes the sample vector and

normalizes it. Then, it gives to all the elements present in the vector a uniform

lift to create an second artificial sample. Multiple versions of both samples are

then obtained through bootstrapping. This means similar samples are

produced with random sampling and replacement from the two initial

samples.

The ones coming from the original samples and the ones obtained from

the incremented one are then compared with a significance test to see if they

belong to the same distribution or not. In practice, the percentage of

comparisons that yield significant results is returned. The authors state that a

uniform lift of 1.25 should result in statistically significant differences. If this

is not the case this means that the starting distribution has such a big variance

that the system is not able to identify the difference between the two

distributions. In other words, the variance is too high, and more samples

should be collected.

The authors conclude that values of the significance test above 0.8 can

be considered acceptable. A schematic representation of this proceedings is

reported in Figure 47.

57

Figure 47 Schematic representation of how power analysis works.
Condition B is just condition A incremented by a constant. The here
presented procedure is repeated many times and the percentage of

significant results is returned.

It must now be noticed that when choosing the K factor for K-Fold, two

different needs must be balanced out:

1. High K for good power analysis values.

2. Low K to not have unreliable test sets with low number of samples.

K equal to five, which is a commonly adopted value, was found to be a

good choice as will be justified in the results section.

3 Results

In this chapter, the main results of each model will be presented

sequentially, starting from the classification algorithms and ending with

anomaly detection ones. These results are the direct consequences of the

methods described in chapter 2.

In the first part of this section each model’s experimental outcome is

described independently, mainly relying on tables and figures. In this way,

results can be listed in a standardized way, making the following comparisons

more readable.

In the second part of this chapter, the results of the comparison among

all the models are reported. This comparison was done with the tools

introduced in the previous chapter.

3.1 Classification

In the following sub sections the main results for each classification

model are reported, using a standardized structure. This chapter is organized

in the following way for each model: first, the parallel coordinates plot

obtained as result of the hyper-parameters optimization is reported and

commented. From this chart, the optimized value of each hyper-parameter is

taken and summarized in a table. Then, the main code is executed with the

optimized hyper-parameters, and the training procedure can begin. From this,

two curves are extrapolated: training accuracy vs validation accuracy and

training loss vs validation loss. These curves are of fundamental importance.

Indeed, by analysing them, it is possible to understand whether the algorithm

is generalising well (i.e., no divergency is presented) as well as if the call-back

procedure is working, avoiding any overfitting. After training has been

completed, the test phase can be carried out. In this phase, a new set of images

is given to the model and on this, the model’s performance can be evaluated.

In particular, accuracy, AUROC and inference time are considered.

3.1.1 Resnet50

As explained, the first step to get the final model is the identification of

the best value for each hyper-parameter. This is achieved by using WandB®

59

as explained above. The result of the HPO procedure is shown in Figure 48.

The optimal value for each parameter is extracted from this graph. For the sake

of clarity these values are summarized in Table 6.

Figure 48 HPO results for ResNet50

Table 6 Optimal values of the hyper-parameters for ResNet50

Parameters Values

Batch size 32

Training epochs 50

 Learning rate 0.001

Fully connected units 512

Now, it is possible to compile the model with the so found values (by

editing only the configuration files) and to proceed with the training. The

results of this procedure in terms of training versus validation accuracy and

training versus validation loss are reported in Figure 49.

Figure 49 Training and validation curves for accuracy and loss obtained
with ResNet50

Just by looking at the graph it is possible to say that the training phase

was successfully completed. Indeed, the call-back stops the training at 16

epochs instead of the 40 proposed by the HPO, avoiding the overfitting

problem. Furthermore, as can be seen, there is no divergency between training

and validation accuracy curves and the same can be also noticed for training

and validation loss curves. The last passage consists in testing the model. The

value of each metric obtained is summarised in Table 7. Confusion matrix and

AUROC are reported in Figure 50 and Figure 51, respectively.

Table 7 Accuracy, AUROC and inference time values for ResNet50 on the
test dataset

 Accuracy [%]
Inference time

[ms]
AUROC

Values 98.62 3 99.03

61

Figure 50 Confusion matrix for ResNet50

According to Raytech Vision S.P.A., among the wrongly classified

tomatoes, the worst are those that are classified as good but are actually bad.

Raytech Vision S.P.A. has expressly stated that consumers prefer to have a

higher product waste in order to keep the quality standard high. Referring to

what has just been said and taking Figure 50 as an example, the ideal situation

would be the opposite of the confusion matrix. In any case, the number of

wrongly cassified tomatoes is very low (7 on a total of 507 images) and and the

end result in terms of accuracy is very satisfactory. This consideration is

confirmed by the ROC reported in Figure 51.

Figure 51 ROC curve for ResNet50

So far, the results of the classical training, validation and testing

approach have been reported and briefly discussed. In Table 8, instead, the

results of the K-Fold procedure done on the entire dataset are reported. It is

useful to remember that K=5 is chosen to apply the K-Fold.

Table 8 Results of cross validation for ResNet50

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean Std. deviation

Accuracy

[%]
99.55 98.81 99.41 98.37 99.55 99.14 4.7*10-1

AUROC [%] 100 100 100 100 99.99 99.99 1.69*10-3

Inference

time per

image [ms]

3.5 3.7 3.6 3.6 3.8 3.6 5.7*10-1

63

On these values, the bootstrap power analysis is performed. That gives

the results reported in Table 9 which are satisfying. As can be seen, K=5 was

sufficient to performing reliable significance testing.

Table 9 Power analysis for the metric values from ResNet50

Lastly, applying the Grad-CAM on some of the images (see Figure 52)

the correct functioning of the algorithm is confirmed. In fact, it can be seen

that the algorithm focuses on the most interesting part of each picture (i.e., the

defects present on the tomato’s skin) to perform classification.

Figure 52 Outcome of the Grad-CAM applied to ResNet50. We see that the
model is working correctly since it focuses on the defects. In the bottom, as

the defect is the green colour, it focuses on the entire tomato.

 Power

Accuracy 1

AUROC 1

Inference time 1

3.1.2 Mobilenet

As before, the first step is the HPO procedure. The best way to analyse

the result is to look at the parallel coordinate graph, shown in

Figure 53.

Figure 53 Parallel coordinates plot for the HPO of MobileNet

From the chart, the value of each hyper-parameter is extrapolated to

ensure the best possible accuracy. For the sake of clarity, these values are

reported in Table 10.

Table 10 Optimal values of the hyper-parameters for MobileNet

Parameters Values

Batch size 64

Training epochs 40

Learning rate 0.0001

Fully connected units 512

As explained, these values must be entered manually in the software

through the modification of the configuration file. After that, the training

procedure can be started. The result of the training and validation, in terms of

accuracy and loss curves, is reported in Figure 54.

65

Figure 54 Training and validation curves for accuracy and loss for
MobileNet

By analysing the behaviour of these curves two main points can be

highlighted:

1. As for ResNet50 case, the call-back stops the training before the 40

epochs suggested by the HPO. Anyway, MobileNet requires more

training epochs than ResNet50 that means more training time is

needed.

2. Fortunately, the algorithm generalises well, because, comparing

training and validation curves for both accuracy and loss, no divergency

is presented.

The test phase followed the training one. The classification accuracy on

the test dataset of MobileNet along with inference time and AUROC are

reported in Table 11. This table is followed by the plots of Confusion matrix and

ROC curve. It should be noted that, the inference time achieved by MobileNet

is very low. According to Raytec Vision S.p.A., this inference time is good

enough to be integrated in already existing sorting hardware.

Table 11 Accuracy, AUROC and inference time values for MobileNet on the
test dataset

 Accuracy [%]
Inference time

per image [ms]
AUROC [%]

Values 98.82 2 98.16

Figure 55 Confusion matrix for Mobile Net

Unlike the previous case (i.e. Figure 51), Figure 55 reflects the ideal case

that Raytech Vision S.P.A. would like to achieve. In this case, in fact, the model

discards more good tomatoes bad ones which it 'does not see'. The excellent

functioning of this model can be confirmed by looking at Figure 56. Indeed, an

AUROC above to 0.98 is considered excellent, as explained previously.

67

Figure 56 ROC curve for MobileNet

Once training, validation and testing are concluded, K-fold cross

validation on the entire dataset can be done. In Table 12 are shown the results

of the cross validation using K=5.

Table 12 K-fold results for MobileNet

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

Accuracy [%] 98.22 98.51 98.66 98.52 99.11 98.61 2.9*10-1

AUROC [%] 99.99 99.98 99.99 99.99 99.73 99.94 1.15*10-1

Inference

time per

image [ms]

1.7 1.3 1.3 1.3 1.4 1.4 1.73*10-1

To briefly comment the reported charts, it should be said that

MobileNet is far faster than ResNet50, still preserving a pretty high accuracy

and AUROC.

In Table 13 are reported the results of the power analysis done on the

values obtained using the K-Fold cross validation.

Table 13 Power analysis for MobileNet

These results show that K=5 is a satisfactory value for the following

comparison.

Finally, the Grad-CAM was used with the aim of understanding where

the model is looking to classify the images. The result is shown in Figure 57.

The tomato is green but without punctual defects. In fact, as expected, the

model shows an even heatmap on the entire tomato skin and does not colour

the background.

Figure 57 Example of Grad-CAM for MobileNet. The model evenly focuses
on the entire tomato since it is green, but no punctual defects are present

3.1.3 GoogLeNet

For the last classification algorithm, the starting point is again the HPO

thanks to the WandB® support. The results of the latter are reported in the

parallel coordinates graph in Figure 58 and summarized in Table 14.

 Power

Accuracy 1

AUROC 1

Inference Time 0.84

69

Figure 58 Parallel coordinates plot for the HPO of GoogLeNet

Table 14 Optimal values of the hyper-parameters for GoogLeNet

Parameters Values

Batch size 32

Training epochs 40

Learning rate 0.001

Fully connected units 512

Following the same structure used for the previous models, the results

of the training are reported in Figure 59. Clearly, before starting the training,

the optimized value for each hyper-parameter must be manually entered in the

code through the YAML file.

Figure 59 Training and validation curves for accuracy and loss for
GoogleNet

From the training curves, two main points can highlighted:

1. The correct functioning of the call-back should be noticed. Indeed, the

training is stopped much sooner than what is expected from the HPO.

2. Moreover, there is no divergence, a sign that the algorithm is

generalising well.

As last passage, the testing phase can be accomplished. The results of

the latter are reported in Table 15. The plots of confusion matrix and ROC

curve for GoogLeNet are shown in Figure 60 and Figure 61, respectively.

Table 15 Accuracy, AUROC and inference time values for GoogLeNet on the
test dataset

 Accuracy [%]
Inference Time

per image [ms]
AUROC [%]

Values 97.63 4 96.00

71

Figure 60 Confusion matrix for GoogLeNet on the test set

For GoogLenet as well as for MobileNet, the Confusion Matrix shown in

Figure 60 gives an idea of the number of bad tomatoes classified as good. As

already stated previously, this index is really important for the industrial

partner Raytech Vision S.P.A. In this case, of the thirteen wrongly classified,

less than half are actually bad. The accuracy achieved by the classifier is

satisfactory. This conclusion is further confirmed by the ROC shown in Figure

61. Indeed, although the AUROC value is the lowest of those found so far, as

specified in the previous chapter, an AUROC equal to 0.96 is considered

excellent.

Figure 61 ROC for GoogLeNet on the test set

Finally, it is possible to perform the K-Fold cross validation on the entire

dataset. The results of this procedure are summarized in Table 16.

Table 16 K-Fold results for GoogLeNet

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

Accuracy

[%]
98.48 96.59 97.92 97.33 97.92 97.64 7.18*10-1

AUROC

[%]
100 100 100 100 99.64 99.93 1.42*10-3

Inference

time per

image

[ms]

2.6 2.0 2.0 2.3 2.3 2.24 2.51*10-1

On these values it is possible to perform bootstrap power analysis (Table

17). The results obtained from the latter are, once again, satisfactory. In fact,

73

the different values of the power found confirm that K=5 is a sufficiently high

value.

Table 17 Power analysis for GoogLeNet

 Power

Accuracy 1

AUROC 1

Inference time 0.90

As usual, the last operation consists in using the GRAD-CAM method to

understand if the model is operating properly. From Figure 62, it is possible to

appreciate where GoogLeNet is looking to classify the specific image analysed.

In particular, the algorithm focuses on the defect presents on the skin and

therefore we conclude that the last classification model also works properly.

Figure 62 Grad-CAM result using GoogLeNet. The model is correctly
focusing on the defect to classify the image. In this case the defect is the

remaining unpeeled part of the tomato.

3.2 Anomaly Detection

This section describes the scheme followed to report the experimental

results of the three anomaly detection models. First, the HPO results are

shown, summarising the values of the chosen hyper-parameters in a table and

presenting the increase in model performance after this step. Then the results

of the K-Fold procedure are shown through a table. Lastly, the bootstrap power

analysis is performed on the k values. Again, bootstrap results are shown in a

table.

3.2.1 CFLOW-AD

Applying the standard CFLOW-AD algorithm as contained in the

GitHub repository on the main dataset, the following performance for what

concerns AUROC on the validation set are obtained. See Figure 63 for the

details.

 Figure 63 AUROC on validation dataset with default settings of
CFLOW-AD

75

Using the WandB® support it is explored how the accuracy of the

model on the specific dataset changes with the different settings introduced in

the methods section. The results can be appreciated by looking at Figure 64.

Figure 64 Hyperparameters optimization visualization for CFLOW-AD

With the graphical aid given by the dashboard the best combination of

values for the hyper-parameters was identified to obtain the highest accuracy

value. The values found for each hyper-parameter are reported in Table 18.

Table 18 CFLOW-AD hyperparameter chosen for the dataset after
optimization

Parameters Values

Image size 224

Model backbone Wide_resnet50_2

Learning rate 0.01122

Coupling blocks 8

By training the model with the values for the hyper-parameters just

found, the ROC curve obtained on the validation set shows an increment in the

AUROC value, as can be seen graphically seen in Figure 65.

Figure 65 Increase of performance after hyperparameters optimization for
the CFLOW-AD model

As said at the beginning, CFLOW-AD defines the anomaly score at

image level. In other words, in the case of CFLOW-AD it is possible to visualize

the anomaly score in a graphical way. This is done following a logic similar to

the one used with Grad-CAM for the classification case. In fact, by visualizing

the anomaly score heatmap it is possible to understand where the model

“thinks” the anomaly is located. In a nutshell, the algorithm is expected to

focus on the specific anomalies present. This trend is confirmed, and some

examples are reported in Figure 66. The meaning of this type of visualization

is similar to the Grad-CAM. Indeed, it helps in understanding if the model is

operating correctly.

77

Figure 66 Examples of anomaly maps produced by CFLOW-AD: it can be
noticed that the model identifies the anomalies, this indicates that it is

working correctly

As can be seen in the two bottom images of Figure 66, the anomaly is

given by the overall skin of the tomato that is unripe and in fact the model gives

a weak anomaly (i.e., light yellow colour) on the entire tomato. On the other

hand, for what concerns the other four images, it should be noticed that the

model is detecting the anomaly weakly on the entire tomato (and this is good

because they are not correctly peeled), but it focuses mainly on the localized

defects. This is the expected behaviour. With the so optimized model, K-Fold

cross validation with 5-folds is performed. Table 19 contains a resume of the

so obtained performances.

Table 19 K-Fold results for CFLOW-AD

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

Accuracy

[%]
95.34 94.94 95.62 95.22 95.45 95.31 2.56*10-1

AUROC

[%]
95.70 94.22 95.93 94.97 94.81 95.13

6.93*10-1

Inference

time per

image

[ms]

28.5 30.3 25.6 32.2 27.7 28.86

2.3

With these values it is now possible to apply the bootstrap power

analysis. The results are reported in Table 20 and show that K equal to five is

a sufficiently large number of samples.

Table 20 Bootstrap power analysis results on CFLOW-AD output

 Power

Accuracy 1

AUROC 1

Inference time 0.98

79

3.2.2 PatchCore

Figure 67 shows the AUROC of the standard PatchCore algorithm on

the validation dataset.

Figure 67 AUROC of the standard PatchCore algorithm on the validation
dataset

This result was obtained with the hyperparameters configuration

reported in the original paper. In fact PatchCore, as specified in the

introduction, is the state of the art method for anomaly detection on the MVtec

AD4 dataset. In other words it is extremely good in industrial applications as

this one and in fact it can be noticed that the starting performance is already

quite good.

HPO is then applied on this model logging the results on WandB®

website. Figure 68 shows the results of this process in terms of the usual

parallel coordinates plot.

4 MVTec AD Benchmark (Anomaly Detection) | Papers With Code

https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad

Figure 68 Hyperparameters optimization on PatchCore

Again, the configuration giving the highest accuracy is selected, whose

parameters and respective values are reported in Table 21.

Table 21 Optimized valued of the hyperparameters for PatchCore

Parameters Values

Image size 224

Model backbone Wide_resnet50_2

Number of neighbors 9

Training again PatchCore with these hyperparameters on the specific

dataset, gives an increment in the quality of the model that can be visualized

in Figure 69 in terms of ROC curve.

81

Figure 69 AUROC of PatchCore before and after optimization, the increment
is evident

This modified PatchCore model is used to perform K-Fold and in Table

22 the results of the cross validation are listed.

Table 22 Results of cross validation for PatchCore

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean Std.deviation

Accuracy [%] 92.12 95.27 95.11 93.53 96.32 94.47 1.65

AUROC [%] 97.40 98.43 98.77 96.62 99.01 98.04 1.02

Inference

time per

image [ms]

17.5 15.8 15.6 16.6 14.7 16.04 1.06

On these values the bootstrap power analysis is applied. The result of

this operation are reported in Table 23. Again we expect these values to be

above 0.8 to be able to conclude that we have a sufficiently high number of

cross validations. As can be concluded by observing those values we again find

that also in this case K=5 is enough.

Table 23 Power analysis on cross validation results for PatchCore

 Power

Accuracy 1

AUROC 1

Inference time 1

3.2.3 DFKDE

The DFKDE algorithm trained and validated on the main dataset,

without modification from the version available on GitHub, gives the AUROC

reported in Figure 70.

Figure 70 AUROC of DFKDE on validation set with default settings

83

Again, HPO was applied to obtain the best possible accuracy for the

specific case. In Figure 71 the result of the HPO is shown.

Figure 71 HPO visualization for DFKDE

The best combination of the hyper-parameters values which allow to

obtain the highest accuracy is reported in Table 24.

Table 24 Optimized values of hyperparameters for DFKDE

Parameters Values

Image size 224

Model backbone Wide_resnet50_2

Confidence threshold 0.6

Maximum number of training

points
60000

In Figure 72 the comparison between the original AUROC and the one

obtained after the HPO is reported. Both were done on the validation dataset.

Figure 72 AUROC of DFKDE before and after optimization, the increment is
evident

K-Fold cross validation with five folds is performed on the so optimized

model. The results are reported in Table 25 and Table 26. Again, the power

analysis shows that K equal to five in a sufficient number of splits.

Table 25 Cross validation results

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

Accuracy [%] 84.09 82.51 82.51 83.91 83.39 83.28 7.5*10-1

AUROC [%] 93.09 90.25 89.97 91.41 91.08 91.16

1.23

Inference

time per

image [ms]

11.7 13.1 14.9 13.5 14.08 13.46 1.19

Table 26 Power analysis on cross validation results

 Power

Accuracy 1

AUROC 1

Inference time 0.97

85

3.3 Comparing the models

Having optimized and cross validated all the models, the results of the

comparisons performed among them is reported in this section. In Table 27,

Table 28 and Table 29 the performances of all the models are reported in

synthetic form.

Table 27 Accuracy results in synthetic form for all models

Accuracy

[%]

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

ResNet50 99.55 98.81 99.41 98.37 99.55 99.14 4.7*10-1

MobileNet 98.22 98.51 98.66 98.52 99.11 98.61 2.9*10-1

GoogLeNet 98.48 96.59 97.92 97.33 97.92 97.64 7.18*10-1

CFLOW-AD 95.34 94.94 95.62 95.22 95.45 95.31 2.56*10-1

PatchCore 92.12 95.27 95.11 93.53 96.32 94.47 1.65

DFKDE 84.09 82.51 82.51 83.91 83.39 83.28 7.5*10-1

Table 28 AUROC results in synthetic form for all models

AUROC

[%]

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

ResNet50 100.0 100.0 100.0 100.0 99.99 99.99 1.69*10-3

MobileNet 99.99 99.98 99.99 99.99 99.73 99.94 1.15*10-1

GoogLeNet 100.0 100.0 100.0 100.0 99.64 99.93 1.42*10-3

CFLOW-AD 95.70 94.22 95.93 94.97 94.81 95.13 6.93*10-1

PatchCore 97.40 98.43 98.77 96.62 99.01 98.04 1.02

DFKDE 93.09 90.25 89.97 91,41 91.08 91.16 1.23

Table 29 Inference time results in synthetic form for all models

Inference time

per image [ms]

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

ResNet50 3.5 3.7 3.6 3.6 3.8 3.6 5.7*10-1

MobileNet 1.7 1.3 1.3 1.3 1.4 1.4 1.73*10-1

GoogLeNet 2.6 2.0 2.0 2.3 2.3 2.2 2.51*10-1

CFLOW-AD 28.5 30.3 25.6 32.2 27.7 28.9 2.3

PatchCore 17.5 15.8 15.6 16.6 14.7 16.0 1.06

DFKDE 11.7 13.1 14.9 13.5 14.0 13.4 1.19

On these results it is now possible to apply the Almost Stochastic Order

algorithm to find the best model. As said, since the power analysis’ results are

good enough for all the models, it is possible to treat every vector of 5 metric

values coming from the cross validation as a significant distribution. For what

concerns inference times there is no need to report this analysis since there is

87

a clear hierarchy of stochastic order among models. Indeed, MobileNet is for

sure the fastest algorithm among the ones analysed.

In Table 30 and Table 31 the results of the ASO applied to accuracy and

AUROC respectively are reported. These matrixes are to be read as:

𝐴𝑆𝑂(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛) [9]

On the diagonal the value 1 is set as default. The confidence level is set to 95%.

Table 30 Result of comparison among models' accuracy with ASO. As
introduced in the beginning only in values below 0.5 are interesting

Accuracy Resnet50 MobileNet GoogLeNet CFLOW-AD Patchcore DFKDE

Resnet50 1 0.18 0.00083 0 0 0

MobileNet 1 1 0.028 0 0 0

GoogLeNet 0.99 1 1 0 0 0

CFLOW-AD 0.99 0.99 0.99 1 0.43 0

Patchcore 0.99 0.99 0.99 1 1 0

DFKDE 1 1 1 1 1 1

Table 31 result of comparison among models' AUROC with ASO. As
introduced in the beginning only in values below 0.5 are interesting

AUROC Resnet50 MobileNet GoogLeNet CFLOW-AD Patchcore DFKDE

Resnet50 1 0.85 0.83 0 0 0

MobileNet 1 1 0.85 0 0 0

GoogLeNet 1 1 1 0 0 0

CFLOW-AD 0.99 0.99 0.99 1 0.99 0

Patchcore 0.99 0.99 0.99 0 1 0

DFKDE 0.99 0.99 0.99 0.99 0.99 1

As explained when introducing Almost Stochastic Order, among all the

values reported in these matrixes, the most interesting ones are the values

below 0.5 . In this way it is possible to conclude that algorithm A (row) is better

than algorithm B (column). Moreover, when comparing models in terms of

sorting quality, AUROC has greater importance than the accuracy for the

reason explained in the metrics’ paragraph. From these results, some

considerations can be extracted. In particular, it is possible to conclude that:

o Classification algorithms have overall better performances than

anomaly detection ones both in terms of sorting quality and in terms of

inference time.

o The ASO of the AUROC isn’t helpful to conclude which among the

classification models is the best in terms of sorting quality. Still, looking

at the ASO of accuracies ResNet50 is better than both MobileNet and

GoogLeNet is worse than MobileNet.

o In terms of inference speed, on the other hand, the fastest model is

clearly MobileNet while ResNet50 is the slowest among the

classification models.

o GoogLeNet is worse than MobileNet in terms of both sorting quality and

inference time.

o Anomaly detection models are overall far slower than classification

models.

o Among anomaly detection models DFKDE is the fastest but also the one

with the lowest AUROC.

o In terms of AUROC, PatchCore is the best anomaly detection model.

Therefore, it is possible to conclude that PatchCore is the best anomaly

detection model in terms of sorting quality.

o CFLOW-AD is slower and has lower AUROC than PatchCore.

These observations bring the following conclusions:

o In terms of sorting quality, it is possible to list the models from the best

to the worst as follows:

1. ResNet50

2. MobileNet

3. GoogLeNet

4. PatchCore

5. CFLOW-AD

6. DFKDE

89

o In terms of sorting speed, the same is done as follows:

1. MobileNet

2. ResNet50

3. GoogLeNet

4. DFKDE

5. PatchCore

6. CFLOW-AD

So that it can be observed that:

o Classification models are better than anomaly detection models for this

application

o Among anomaly detection models PatchCore is the best choice since it

is almost as fast as DFKDE but by far the best in terms of sorting quality.

o Among classification models both MobileNet and ResNet50 have

strengths while GoogLeNet is the worst choice. MobileNet is faster

while ResNet50 gives higher quality choices. Still, it must be noticed

that for both the performances in terms of AUROC and accuracy are

very good even for MobileNet. It achieves average AUROC and Accuracy

values above 98.5% while being the worse model among the two from

this point of view.

Given the need to integrate the here presented algorithms on existing

machinery, the Raytec Vision S.P.A. suggested that the doubled classification

speed achieved by MobileNet compared to ResNet50 represents a big

advantage for which it is permissible to sacrifice a few percentage points in

classification accuracy and AUROC. In fact, the inference speed result of

MobileNet is the only one low enough to be integrated on the already existing

machinery without the need to develop new hardware or reduce the

throughput of the existing one. Following this reasoning MobileNet is chosen

as the best model. From now on if not specified otherwise we will report some

additional experiments performed with MobileNet.

4 Additional results

Chapter 4 is dedicated to some insights. In particular, to have a clear

understanding of the work behind this master thesis work, two main topics are

analysed and discussed. Firstly, a multi-class classification experiment is

performed on the dataset composed by four classes. Then, something about

the second dataset is reported. It contains only two classes with about 200

images per class and the acquisition is not good as it is the one of the main

dataset. In fact, those are just normal smartphone images. Greater details

about it are to be found in the dataset chapter in the introduction. Here the

aim is to understand how robust the developed system is with respect to this

different dataset.

4.1 MobileNet multi-class classification

In the introduction the fundamental difference in characteristic

between IC and AD algorithms is reported. At that stage, it was stated that a

fundamental advantage of classification models over anomaly detection ones

is that, as the name suggest, IC-based models are able to classify the data in

even more than two classes. This property, that is not useful in the industrial

application discussed in this thesis, is surely interesting for some other

application cases. In fact, it can be used to analyse which type of diseases the

classification identifies the hardest. That type of information could be useful

in future developments. Because of this, a multi-class classification was

performed.

Of course, as written in the introduction, to perform this task a very

good dataset with numerous samples from each of the anomalous classes is

needed. Luckily the dataset is robust enough and offers three different diseases

already divided in folders. Moreover, for each class there is a sufficiently high

number of samples to perform this operation.

The framework used for this purpose is identical to what is described

above. Just a small number of adjustments need to be done. First, as explained

in the introduction, the number of neurons in the final layer needs to be equal

to the number of classes we are interested in. To this end, four units were

placed in the last layer. Second, as activation function you need to use SoftMax

91

instead of sigmoid. Indeed, the SoftMax function is able to choose which is the

higher probability in the case of ranking with more than two. SoftMax applies

a standard exponential function to each element of the output layer and then

normalises these values by dividing them by the sum of all exponentials. In this

way, the sum of all exponential values is equal to 1. To make this passage cleare

it is useful to look at the example reported in Figure 73. First, exponentiate

each element of the output level and sum the results. It then takes each element

of the output layer, exponentiates it and divides it by the sum calculated in the

previous step. Clearly, the class given in the output is the one with the highest

probability.

Figure 73 Example of how the softmax activation function works. In this
case the number of classes is equal to 5

The change from Sigmoid to Softmax is done autonomously thanks to

Python. Moreover, thanks to the black-box scheme and configuration files,

implementing these changes becomes quick and easy.

For the multi-class classification, thanks to the low required running

time during training associated with good values for both classification

accuracy and inference time, MobileNet was chosen as the model to be used.

This choice makes it possible not to spend as much time performing this task

in the hope of obtaining satisfactory results as in the case of binary

classification. HPO was not repeated for this case. Consequently, the values of

the hyper-parameters are unchanged from those previously reported. On the

so obtained system only training, validation and test procedures are

performed. AUROC cannot be used to evaluate the performance in this case.

We use accuracy and confusion matrix. In Figure 74 training vs validation

accuracy and training vs validation loss can be appreciated. It is possible to

state that, even if the hyper-parameters are not the optimal ones, MobileNet

generalises pretty well, and the overfitting is not a problem. Indeed, in both

accuracy and loss plots there is no sign of divergency. Moreover, the call-back

stops the training after just 12 epochs, avoiding a waste of time and ensuring

the model does not over-fit.

Figure 74 Training vs Loss curves for validation and loss. These curves are
obtained in the multi-class class classification task using MobileNet as

model.

Identically to what was done for the binary classification problem, the

following phase consist in testing the algorithm. The most interesting results

are classification accuracy and inference time. The numerical values of these

are reported in Table 32.

Table 32 Numerical results in terms of classification accuracy and inference
time for MobileNet during multi-class classification

 Accuracy [%]
Inference time per

image [ms]

Values 97.04 18.4

93

Clearly, even for the multi-class classification problem, the best way to

understand the result is to plot the confusion matrix. The latter is reported in

Figure 75.

Figure 75 Confusion Matrix for MobileNet during the multi-class
classification problem

It can be seen how the algorithm is capable of classifying both good

tomatoes and the ones with anthracnose. On the other hand, it still has some

trouble in distinguishing green tomatoes as well as yellow ones. Anyway, it is

straightforward to conclude that, even without optimizing the algorithm the

results are pretty good. In addition, with further improvements in terms of

hyper-parameters, a higher accuracy could be achieved.

4.2 Additional Dataset

The additional dataset provided by Raytec Vision S.p.A. was acquired

with a normal smartphone and as explained in detail in the dataset section

shows the tomatoes on a table so that the background is not standardized and

neither the lighting. In addition, in some images, the presence of external

elements can be seen (Figure 76). It is composed by only two classes of tomato,

peeled and unpeeled. Here this dataset is used to verify how robust the system

proposed above is and how much the presence of an uncontrolled background

influences the output. It was also useful to conduct some preliminary

experiments.

Figure 76 Example of picture taken from the additional dataset

Testing the robustness means to find out if the system, without any

optimization and change with respect to what was used above, would still be

able to operate in a satisfactory manner on different types of images of the

same type of vegetables. This could be useful also when installing the same

software with a different acquisition system.

The following models, metrics and result do not need to be explained

again because the only change with respect to the binary classification reported

above is the dataset. So, in order to not be repetitive, the main results are

directly reported. For the same reasons explained in the multi-class

classification section (i.e., running time during training and good values for

both accuracy and inference time) we chose to use MobileNet for this purpose.

This choice is made also since the final machine as said can be imagined

working with MobileNet so that the robustness of that model is especially

interesting.

About the results, following the same pattern as for the other tasks, we

report in Figure 77 training vs validation accuracy and training vs validation

95

loss respectively. Once again, both in accuracy and loss plots there is no sign

of divergency. Therefore, the over-fitting does not affect the algorithm.

Once the algorithm is correctly trained, it is possible pass to the test

phase, ending with the values for accuracy and inference time reported in

Table 33. The confusion matrix is reported in Figure 78.

Figure 77 Training vs Validation Accuracy and Training vs Validation Loss
for MobileNet on the preliminary dataset

Figure 78 Confusion Matrix for MobileNet on the preliminary dataset

For this testing task, the test dataset is composed by 75 images divided

in 35 images of unpeeled tomatoes, labelled as “Bad”, and 40 images of peeled

tomatoes, labelled as “Good”. From the confusion matrix, it is possible to see

that the algorithm classifies perfectly all the good tomatoes, while it

misclassifies one “Bad” tomato. The ROC (Figure 79) follows the confusion

matrix plot. As in the previous cases where MobileNet was used, here again the

curve identified by the perfect classifier is almost reached.

97

Figure 79 ROC curve for MobileNet on the preliminary dataset

Table 33 Final values of accuracy and inference time for MobileNet on the
preliminary dataset

 Accuracy [%] Inference time per image [ms] AUROC [%]

Values 98.67 1.9 98.57

As done before, the results obtained in the test phase were validated

using K-Fold cross validation, setting five as number of folds. The outcome of

the K-Fold procedure is summarized in Table 34.

Table 34 Result of the K-Fold cross validation on the preliminary dataset

Fold

n°1

Fold

n°2

Fold

n°3

Fold

n°4

Fold

n°5
Mean

Std.

deviation

Accuracy

[%]
100 98.97 97.94 100 100 99.38 8.3*10-1

AUROC

[%]
100 100 100 100 100 100 0

Inference

time per

image

[ms]

6.01 1.38 1.38 1.38 1.45 2.33 1.87

4.2.1 Data Augmentation

Continuing the discussion on the secondary dataset, other procedures

need to be reported to make this thesis work complete.

The first procedure that needs to be cited is the well-known data

augmentation. Indeed, training a CNN on small datasets makes it prone to

over-fitting, inhibiting the CNNs capability to generalize to unseen invariant

data. A potential solution is to use Data Augmentation [39]. Data

Augmentation consists in creating new data based on modifications of your

existing data. Since in our case data are images, data augmentation would

include transformations like5:

• Flipping the image, either horizontally or vertically.

• Rotating the image.

• Zooming in or out the images.

• Cropping the image.

• Varying the colour of the image.

Following this idea, a series of layers in the model are implemented.

Those layers have the task of doing data augmentation directly during training.

In this way, the augmented data are not saved, saving space and time. The

result of data augmentation starting from a single picture is reported in Figure

80.

5 Aumento dei dati | TensorFlow Core

https://www.tensorflow.org/tutorials/images/data_augmentation

99

Figure 80 Result of Data Augmentation on the preliminary dataset

Once the piece of code responsible for doing augmentation is robust, it is

possible to switch to the usual training phase. The result of the training is

reported in Figure 81.

Figure 81 Training vs Validation accuracy and Training vs Validation loss
for MobileNet using data augmentation

This time both accuracy and loss plots are not as good as usual. In

particular, some oscillations as well as a little bit of divergency can be seen. It

is important to remember that hyper-parameters have not been optimised, so

expecting perfect curves is not realistic. Once the training is done, the test

phase starts. To avoid falsifying test results, you must not apply data

augmentation on the test dataset. The results of these procedures are reported

in Figure 82, Figure 83 and Table 35.

Figure 82 Confusion Matrix for Mobilenet after data augmentation

Figure 83 ROC curve for MobileNet after data augmentation

101

Table 35 Metric values for MobileNet after Data Augmentation

 Accuracy [%]
Inference time

[ms]
AUROC [%]

Values 97.33 6.4 98.57

We notice that data augmentation doesn’t give a strong increase in

performance meaning that the secondary dataset with about 500 images is

already large enough.

4.2.2 Random Background Generation

As said the images in the additional dataset did not have controlled

lighting and background. For this reason, the influence of the background on

the classification results is briefly studied. The background is removed using

so-called masks which operate to eliminate everything that is out the range of

red and with some morphological transformations. The result of these

operations can be seen in the example in Figure 84.

Figure 84 Left: original image. Right: image without background

Another possible step consists in taking the images without background

and applying random backgrounds, as in the examples reported in Figure 85

and Figure 86. In this way it is studied if the algorithm is able to work in these

conditions and if it is able to generalize the results.

Figure 85 Example of random background application

Figure 86 Another example of random background application. In this case
is chosen a background that could be similar to the real one.

To avoid being too long in the discussion of this topic, we chose to not

report the result in terms of accuracy, Area Under the ROC curve and inference

time for this dataset. The reason is that results are similar to ones reported in

the base case. In other words, it is possible to conclude that the system is robust

with respect to the change of background and that the performances remain

high also in these conditions. On the other hand, also no significant increase

in performance was observed by simply removing the background and

substituting it with a standardized black one. Summarizing, it is concluded that

both data augmentation and background removal or substitution did not affect

the classification results significantly. This means that about 600 images are

enough to train the system in a satisfactory manner and that the system is

robust to variable backgrounds.

103

5 Discussion and Conclusion

This thesis was developed within the context of the project ”Studio e

sviluppo di TEcnologie avanzate per il SORting automaticO nei processi di

produzione alimentari - TESORO” funded by the Italian Ministry of Economic

Development (MISE). The aim was to show the implementation and

comparison of different deep learning-based algorithms for quality control on

tomatoes to tackle the specific industrial need issued by Raytec Vision S.P.A.

In particular, both IC and AD-based models were studied to find the

best performing solution for operating the quality inspection of the peeling

process of the tomatoes. In this manner, an automated solution able to

substitute human labour in that procedure was made possible and

implemented in the partner’s machines.

Starting with the literature search, three anomaly detection and three

classification algorithms are identified. State-of-the-art anomaly detection

algorithms and image classification algorithms based on neural networks were

constructed and compared in a statistically significant manner to identify the

most suited one. Each model was adapted to the specific case by means of a

black box architecture (i.e., an image is given as input and a classification

probability is received as output). By relying on such a scheme, which was

easily integrated in the WandB® website, the optimisation of the hyper

parameters for maximum accuracy was performed in a standardized manner.

The inference time, classification/detection accuracy and AUROC were chosen

to measure the performance of the models and optimized. Once the metrics

were identified, training and testing of every model were accomplished.

The results of the test phase were analysed by means of the K-fold cross

validation scheme. The K-fold results were summarised by reporting the mean

and standard deviation. To obtain statistical significance, two statistical

methods were identified and applied (i.e., almost stochastic order and

bootstrap power analysis). Finally, it was possible to make a comparison of the

different models to find the most suitable one for the industrial need. The

model chosen, as discussed below, was identified as having the best trade-off

among the proposed metrics.

5.1 Milestones

The most important results emerging from this work are:

• For the industrial task analysed both anomaly detection and

classification algorithms reach satisfactory results working on simple

RGB images. In fact:

o All models are able to divide faulty images from good ones with

an average accuracy on a 5-fold cross validation ranging from

83.2% for the worst model to over 99% of the best one. This

suggests two main consequences:

▪ The possibility to substitute cumbersome human labour

in quality control with automated systems basing on

machine vision with one of these models.

▪ For the specific task analyses, the use of RGB images is

sufficient to perform quality control. There is no need to

use hyperspectral or multispectral equipment to obtain

satisfactory results on tomatoes. Even the resolution of

the RGB images does not need to be high (in this case, a

resolution of 224*224 pixels or lower was used) and

satisfactory results are still achieved when using the

implemented models on simple images taken from a

smartphone in uncontrolled light conditions. This

demonstrates the robustness of the system.

• The overall performances of classification algorithms are superior to the

ones of anomaly detection algorithms for the task analysed. They are

both faster and better in terms of AUROC and accuracy. This result was

concluded through a significance test with a 95% confidence level.

Therefore, the results are statistically significant. For the industrial

application studied, the best solution is the implementation of an IC-

based model.

• For the needs of Raytec Vision S.P.A., the best model is the MobileNet

here implemented. It operates with an accuracy of 98.61% and has an

inference time of 0.0015s per image with a realistic GPU setting. With

this inference time, it can be integrated with machines like conveyors

and existing sorting hardware, which is the core business of Raytec

Vision S.P.A.

105

The here found results could also be interesting for many similar industrial

cases that could be automated using one of the presented models. To this

end it must be remembered that:

o Anomaly detection algorithms also operate in cases in which a

robust dataset of anomalous samples is difficult or even impossible

to achieve. In such situations, the performances of the best anomaly

detection model studied can be eye-catching. In fact, PatchCore

achieved an average accuracy of 94.47 % on a 5-fold cross validation.

The average AUROC is of 98.04% and the average inference time of

0.016s per image.

o Classification algorithms can also be used in numerous similar

industrial applications in which the need is not only to divide the

object in good and bad samples, but also multiclass classification is

requested. This is demonstrated by trying to identify 4 different

tomato classes in the dataset (good, tomatoes with anthracnose,

green, yellow) with the chosen MobileNet model and obtaining a

97.04% accuracy.

5.2 Future developments

In future research on this thesis’ topics focus could focus on:

• Using the information obtained from the multiclass classification

results. These helps in understanding which family of faults creates the

biggest problems for the system. Knowing this, it is possible to modify

the architecture or the training dataset composition so to be more

effective on those specific cases.

• Increasing the anomaly detection’s models speed. This could for

example be achieved by implementing them in C++. This is useful since

with the here achieved inference times it is not possible to integrate

those system with already existing sorting hardware.

• Reusing the type of pipeline presented above to implement newer

models which may rise in the future. Both IC and AD are active fields of

research nowadays in the deep learning field. New architecture and

models will be proposed, so that the here proposed models could be

overcome by newer ones in a matter of months.

• Using proprietary software which may exhibit some kind of optimized

performances with respect to the here presented open-source versions.

107

List of Figures

Figure 1 Typical CNN architecture .. 8

Figure 2 Details of the Convolutional and Pooling layers .. 9

Figure 3 Residual learning: a building block with a shortcut connection 10

Figure 4 Inception module with dimensionality reduction .. 11

Figure 5 Left: Standard convolutional layer with batch norm and ReLU. Right: Depth

wise Separable convolutions with Depth wise and Pointwise layers followed by batch

norm and ReLU .. 12

Figure 6 Visualization of a filter of the first convolutional layer of ResNet50 for the

reported image. This shows the ability of neural network to extract features from

images. .. 14

Figure 7 Structure of an autoencoder system. This kind of architecture is often used

for anomaly detection ... 15

Figure 8 Structure of the CFLOW-AD model. In this case we still have the decoder-

encoder logic but they work not only globally but also locally on some pixels regions

 .. 16

Figure 9 Examples of coreset subsampling (top) vs random subsampling (bottom). It

can be seen that coreset better preserves the information ... 17

Figure 10 Structure of the PatchCore model. It can be seen that here the anomaly is

calculated at vector level in the memory bank and not at image level 17

Figure 11 Example of kernel density estimation on a four elements sample. The blue

areas are the kernels that are used as weights for the samples, while the blue

continuous line is the overall estimation obtained with this kernel density estimation.

 .. 18

Figure 12 Dome illuminator used to acquire the dataset. It was developed by Raytec

Vision S.P.A... 19

Figure 13 RGB image of tomatoes on the tape .. 20

Figure 14 Image detection of the tomatoes ... 20

Figure 15 Top: binary mask used to remove the background. Bottom: final result

of the process……………………………………………………………………….. 21

Figure 16 Examples from each category. Upper left: good peeled tomato; Upper right:

green tomato; Lower left: diseased and not correctly peeled tomato; Lower right:

yellow tomato. .. 22

Figure 17 Example of a good and a bad tomato sample acquired with the here

described setup ... 22

Figure 18 Examples of images from the second dataset: we notice these photos are

taken without controlling the lighting and are just standard smartphone images 23

Figure 19 The use of Google Colab and Drive is fundamental to perform some of the

experiments which wouldn’t run on personal computers because of the high

computational request .. 24

Figure 20 Hardware settings of the cloud computation used. Notice the Nvidia A100

GPU... 24

Figure 21 General framework of the adopted method: Images are the input to the

specific model used which acts as a black box and gives the sorting result as output

 .. 27

Figure 22 How the flatten layer works ... 30

Figure 23 ReLU activation function ... 30

Figure 24 Sigmoid activation function ... 31

Figure 25 Visualization of the here presented architecture using Mobilenet as

pretrained model for the example .. 32

Figure 26 Cost function C as a function of 2 variables v1 and v2 33

Figure 27 SGD without momentum ... 34

Figure 28 SGD with momentum. The momentum is reducing the fluctuations in the

weight updates .. 34

Figure 29 Comparison of SGD algorithms. Left: SGD without momentum. Right: SGD

with momentum ... 35

Figure 30 Example of configuration file in YAML format. Trough the black box scheme

implemented the entire construction and deployment of the model depends only on

this file .. 36

Figure 31 Example of heatmap obtained with ResNet50 applying Grad-CAM 37

109

Figure 32 ANOMALIB is the most important library used in this thesis for deep

learning anomaly detection ... 38

Figure 33 Example of custom configuration file for anomaly detection 38

Figure 34 Inference time is chosen as a metric to compare models since it is an

industrial application integrated with conveyors .. 40

Figure 35 How to qualitatively evaluate ROC curves ...42

Figure 36 Example of ROC curve with area under the curve in blue 43

Figure 37 Software used for hyperparameters optimization 44

Figure 38 Black box architecture for the HPO procedure .. 45

Figure 39 Configuration file used for the HPO of classification models 46

Figure 40 Example of parallel line visualization of the results of the hyperparameters

optimization ... 48

Figure 41 Example of a configuration file for hyperparameters optimization,

specifically for CFLOW-AD ... 48

Figure 42 How K-Fold validation works... 52

Figure 43 Left:example of PDF. Reft: example of CDF .. 53

Figure 44 Example of stochastic dominance of a CFD over another 53

Figure 45 Examples of situations in which a predominant distribution is present but

stochastic order is not satisfied .. 54

Figure 46 Example of how the index introduced in ASO could be visualized 55

Figure 47 Schematic representation of how power analysis works. Condition B is just

condition A incremented by a constant. The here presented procedure is repeated

many times and the percentage of significant results is returned. 57

Figure 48 HPO results for ResNet50 .. 59

Figure 49 Training and validation curves for accuracy and loss obtained with

ResNet50 ... 60

Figure 50 Confusion matrix for ResNet50 ... 61

Figure 51 ROC curve for ResNet50 ...62

Figure 52 Outcome of the Grad-CAM applied to ResNet50. We see that the model is

working correctly since it focuses on the defects. In the bottom, as the defect is the

green colour, it focuses on the entire tomato. .. 63

Figure 53 Parallel coordinates plot for the HPO of MobileNet 64

Figure 54 Training and validation curves for accuracy and loss for MobileNet 65

Figure 55 Confusion matrix for Mobile Net ... 66

Figure 56 ROC curve for MobileNet ... 67

Figure 57 Example of Grad-CAM for MobileNet. The model evenly focuses on the

entire tomato since it is green, but no punctual defects are present 68

Figure 58 Parallel coordinates plot for the HPO of GoogLeNet 69

Figure 59 Training and validation curves for accuracy and loss for GoogleNet 70

Figure 60 Confusion matrix for GoogLeNet on the test set ..71

Figure 61 ROC for GoogLeNet on the test set .. 72

Figure 62 Grad-CAM result using GoogLeNet. The model is correctly focusing on the

defect to classify the image. In this case the defect is the remaining unpeeled part of

the tomato. .. 73

Figure 63 AUROC on validation dataset with default settings of CFLOW-AD 74

Figure 64 Hyperparameters optimization visualization for CFLOW-AD 75

Figure 65 Increase of performance after hyperparameters optimization for the

CFLOW-AD model ... 76

Figure 66 Examples of anomaly maps produced by CFLOW-AD: it can be noticed that

the model identifies the anomalies, this indicates that it is working correctly 77

Figure 67 AUROC of the standard PatchCore algorithm on the validation dataset .. 79

Figure 68 Hyperparameters optimization on PatchCore .. 80

Figure 69 AUROC of PatchCore before and after optimization, the increment is

evident .. 81

Figure 70 AUROC of DFKDE on validation set with default settings 82

Figure 71 HPO visualization for DFKDE .. 83

Figure 72 AUROC of DFKDE before and after optimization, the increment is evident

 .. 84

Figure 73 Example of how the softmax activation function works. In this case the

number of classes is equal to 5 ... 91

Figure 74 Training vs Loss curves for validation and loss. These curves are obtained

in the multi-class class classification task using MobileNet as model. 92

111

Figure 75 Confusion Matrix for MobileNet during the multi-class classification

problem ... 93

Figure 76 Example of picture taken from the additional dataset 94

Figure 77 Training vs Validation Accuracy and Training vs Validation Loss for

MobileNet on the preliminary dataset .. 95

Figure 78 Confusion Matrix for MobileNet on the preliminary dataset 96

Figure 79 ROC curve for MobileNet on the preliminary dataset................................ 97

Figure 80 Result of Data Augmentation on the preliminary dataset 99

Figure 81 Training vs Validation accuracy and Training vs Validation loss for

MobileNet using data augmentation ... 99

Figure 82 Confusion Matrix for Mobilenet after data augmentation 100

Figure 83 ROC curve for MobileNet after data augmentation 100

Figure 84 Left: original image. Right: image without background 101

Figure 85 Example of random background application ... 102

Figure 86 Another example of random background application. In this case is chosen

a background that could be similar to the real one. ... 102

List of equations

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹 [1] .. 13

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝛼𝑀 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 + 𝛼𝑀 ∙ 𝛼𝑁 ∙ 𝜌𝐷𝐹 ∙ 𝜌𝐷𝐹 [2] .. 13

𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 [3] ... 41

𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 [4]... 41

𝐹𝑎 ≤ 𝐺𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 [5] ... 53

0 ≤ 𝜀𝑊2𝐹, 𝐺 ≤ 1 [6] ... 54

𝐻0 ∶ 𝜀𝑊2𝐹, 𝐺 ≥ 𝜏 [7] ... 55

𝐻1 ∶ 𝜀𝑊2𝐹, 𝐺 < 𝜏 [8] ... 55

𝐴𝑆𝑂𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 [9] ... 87

113

List of tables

Table 1 Example of confusion matrix to introduce the AUROC 41

Table 2 Hyperparameters along with their values used during the optimization 46

Table 3 Hyperparameters used to optimize CFLOW-AD .. 50

Table 4 Hyperparameters used to optimize PatchCore ... 50

Table 5 Hyperparameters used to optimize DFKDE .. 51

Table 6 Optimal values of the hyper-parameters for ResNet50 59

Table 7 Accuracy, AUROC and inference time values for ResNet50 on the test dataset

 ... 60

Table 8 Results of cross validation for ResNet50 ...62

Table 9 Power analysis for the metric values from ResNet50 63

Table 10 Optimal values of the hyper-parameters for MobileNet 64

Table 11 Accuracy, AUROC and inference time values for MobileNet on the test dataset

 ... 66

Table 12 K-fold results for MobileNet .. 67

Table 13 Power analysis for MobileNet ... 68

Table 14 Optimal values of the hyper-parameters for GoogLeNet 69

Table 15 Accuracy, AUROC and inference time values for GoogLeNet on the test

dataset ... 70

Table 16 K-Fold results for GoogLeNet .. 72

Table 17 Power analysis for GoogLeNet ... 73

Table 18 CFLOW-AD hyperparameter chosen for the dataset after optimization 75

Table 19 K-Fold results for CFLOW-AD ... 78

Table 20 Bootstrap power analysis results on CFLOW-AD output 78

Table 21 Optimized valued of the hyperparameters for PatchCore 80

Table 22 Results of cross validation for PatchCore .. 81

Table 23 Power analysis on cross validation results for PatchCore 82

Table 24 Optimized values of hyperparameters for DFKDE...................................... 83

Table 25 Cross validation results.. 84

Table 26 Power analysis on cross validation results .. 84

Table 27 Accuracy results in synthetic form for all models.. 85

Table 28 AUROC results in synthetic form for all models ... 86

Table 29 Inference time results in synthetic form for all models 86

Table 30 Result of comparison among models' accuracy with ASO. As introduced in

the beginning only in values below 0.5 are interesting .. 87

Table 31 result of comparison among models' AUROC with ASO. As introduced in the

beginning only in values below 0.5 are interesting .. 87

Table 32 Numerical results in terms of classification accuracy and inference time for

MobileNet during multi-class classification ... 92

Table 33 Final values of accuracy and inference time for MobileNet on the preliminary

dataset .. 97

Table 34 Result of the K-Fold cross validation on the preliminary dataset 98

Table 35 Metric values for MobileNet after Data Augmentation101

115

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” 2016. [Online]. Available: http://image-

net.org/challenges/LSVRC/2015/

[2] M. Nielsen, “Neural Networks and Deep Learning.” [Online]. Available:

http://neuralnetworksanddeeplearning.com

[3] G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep Learning for Anomaly

Detection: A Review,” ACM Computing Surveys, vol. 54, no. 2. Association for

Computing Machinery, Apr. 01, 2021. doi: 10.1145/3439950.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks.” [Online]. Available:

http://code.google.com/p/cuda-convnet/

[5] N. R. Prasad, S. Almanza-Garcia, and T. T. Lu, “Anomaly detection,”

Computers, Materials and Continua, vol. 14, no. 1, pp. 1–22, 2009, doi:

10.1145/1541880.1541882.

[6] V. Lakshmanan, M. Görner, and R. Gillard, “Practical Machine Learning for

Computer Vision End-to-End Machine Learning for Images.”

[7] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications,” Apr. 2017, [Online]. Available:

http://arxiv.org/abs/1704.04861

[8] C. Szegedy et al., “Going Deeper with Convolutions,” 2015.

[9] D. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: Real-Time

Unsupervised Anomaly Detection with Localization via Conditional

Normalizing Flows,” Jul. 2021, [Online]. Available:

http://arxiv.org/abs/2107.12571

[10] Karsten Roth et al., “Patchcore: Towards total recall in industrial anomaly

detection”.

117

[11] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N. Ahuja, and U. Genc,

“Anomalib: A Deep Learning Library for Anomaly Detection,” Feb. 2022,

[Online]. Available: http://arxiv.org/abs/2202.08341

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” Mar. 2010, pp. 248–255. doi:

10.1109/cvpr.2009.5206848.

[13] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep

autoencoders,” in Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Aug. 2017, vol. Part F129685, pp.

665–674. doi: 10.1145/3097983.3098052.

[14] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” Mar. 2020, [Online].

Available: http://arxiv.org/abs/2003.05991

[15] S. Jezek, M. Jonak, R. Burget, P. Dvorak, and M. Skotak, “Deep learning-based

defect detection of metal parts: Evaluating current methods in complex

conditions,” in International Congress on Ultra Modern Telecommunications

and Control Systems and Workshops, 2021, vol. 2021-October, pp. 66–71. doi:

10.1109/ICUMT54235.2021.9631567.

[16] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, “The MVTec

Anomaly Detection Dataset: A Comprehensive Real-World Dataset for

Unsupervised Anomaly Detection,” Int J Comput Vis, vol. 129, no. 4, pp. 1038–

1059, Apr. 2021, doi: 10.1007/s11263-020-01400-4.

[17] B. Mussay, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman, “Data-

Independent Neural Pruning via Coresets,” Jul. 2019, [Online]. Available:

http://arxiv.org/abs/1907.04018

[18] B. Farnham, S. Tokyo, B. Boston, F. Sebastopol, and T. Beijing, “Hands-on

Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools,

and Techniques to Build Intelligent Systems SECOND EDITION.”

[19] USENIX Association., ACM SIGMOBILE., ACM Special Interest Group in

Operating Systems., and ACM Digital Library., Papers presented at the

Workshop on Wireless Traffic Measurements and Modeling : June 5, 2005,

Seattle, WA, USA. USENIX Association, 2005.

[20] J. Ghorpade, “GPGPU Processing in CUDA Architecture,” Advanced

Computing: An International Journal, vol. 3, no. 1, pp. 105–120, Jan. 2012,

doi: 10.5121/acij.2012.3109.

[21] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” Oct. 2014,

[Online]. Available: http://arxiv.org/abs/1410.0759

[22] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” Dec. 2019, [Online]. Available:

http://arxiv.org/abs/1912.01703

[23] M. Huh, P. Agrawal, and A. A. Efros, “What makes ImageNet good for transfer

learning?,” Aug. 2016, [Online]. Available: http://arxiv.org/abs/1608.08614

[24] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra,

“Grad-CAM: Why did you say that?,” Nov. 2016, [Online]. Available:

http://arxiv.org/abs/1611.07450

[25] N. Detlefsen et al., “TorchMetrics - Measuring Reproducibility in PyTorch,” J

Open Source Softw, vol. 7, no. 70, p. 4101, Feb. 2022, doi: 10.21105/joss.04101.

[26] L. Ferrer, “Analysis and Comparison of Classification Metrics,” Sep. 2022,

[Online]. Available: http://arxiv.org/abs/2209.05355

[27] “Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer

Science.”

[28] J. N. Mandrekar, “Receiver operating characteristic curve in diagnostic test

assessment,” Journal of Thoracic Oncology, vol. 5, no. 9, pp. 1315–1316, 2010,

doi: 10.1097/JTO.0b013e3181ec173d.

[29] P. Probst and B. Bischl, “Tunability: Importance of Hyperparameters of

Machine Learning Algorithms,” 2019. [Online]. Available:

http://jmlr.org/papers/v20/18-444.html.

[30] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms

and Applications,” Mar. 2020, [Online]. Available:

http://arxiv.org/abs/2003.05689

[31] D. Gudovskiy, S. Ishizaka, and K. Kozuka, “CFLOW-AD: Real-Time

Unsupervised Anomaly Detection with Localization via Conditional

119

Normalizing Flows,” Jul. 2021, [Online]. Available:

http://arxiv.org/abs/2107.12571

[32] A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C.-N. Straehle,

“Conditional Flow Variational Autoencoders for Structured Sequence

Prediction,” Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.09008

[33] D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and

Computational Biology: ABC of Bioinformatics, vol. 1–3, Elsevier, 2018, pp.

542–545. doi: 10.1016/B978-0-12-809633-8.20349-X.

[34] R. Dror, S. Shlomov, and R. Reichart, “Deep Dominance-How to Properly

Compare Deep Neural Models,” Association for Computational Linguistics.

[Online]. Available: https://github.com/

[35] D. Ulmer, C. Hardmeier, and J. Frellsen, “deep-significance - Easy and

Meaningful Statistical Significance Testing in the Age of Neural Networks,”

Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.06815

[36] P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán,

“Models for the assessment of treatment improvement: the ideal and the

feasible,” Dec. 2016, doi: 10.1214/17-STS616.

[37] A. Hazra, “Using the confidence interval confidently,” J Thorac Dis, vol. 9, no.

10, pp. 4125–4130, Oct. 2017, doi: 10.21037/jtd.2017.09.14.

[38] K.-H. Yuan and K. Hayashi, “Bootstrap approach to inference and power

analysis based on three test statistics for covariance structure models,” 2003.

[Online]. Available: www.bps.org.uk

[39] S. Sundaram, IEEE Computational Intelligence Society, and Institute of

Electrical and Electronics Engineers, Proceedings of the 2018 IEEE

Symposium Series on Computational Intelligence (SSCI 2018) : 18-21

November 2018, Bengaluru.

