
Option pricing with Artificial Neu-
ral Networks and Wiener-Itô Chaos
expansion approximation formulae

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Valentina Buccioni

Student ID: 969816
Advisor: Prof. Daniele Marazzina
Academic Year: 2021-22

i

Abstract

This study examines the option pricing method which employs Artificial Neural Networks
and Wiener-Itô Chaos asymptotic expansion. In particular, the machine learning model is
trained on the difference between the exact option price and its approximation, obtained
through the Wiener-Itô Chaos expansion of the underlying. This examination compares
this method with the one that applies the Artificial Neural Networks directly on the
exact price. Unlike previous research, this study quantifies their prediction accuracy with
root mean squared error and mean absolute error measures. In addition to previously
examined derivatives, this option pricing procedure is applied to two new ones, i.e. two
Down-and-In single barrier options: the first under the Costant Elasticity of Variance and
the second under a non linear volatility model. Moreover, the two methods are compared
in their best performing scenario, i.e. when the hyper-parameters of the Artificial Neural
Networks are tuned. In every case examined, the method that trains on the specified
residual term offers more accurate and stable predictions than the one whose Artificial
Neural Network trains directly on the option price.

Keywords: Option pricing, Artificial Neural Networks, Wiener-Itô Chaos ex-
pansion, Hyper-parameters tuning

Abstract in lingua italiana

Questo studio esamina un metodo di valutazione di opzioni finanziarie che si serve di reti
neurali e dello sviluppo in caos di Wiener-Itô. In particolare, il modello di machine learning
utilizza la differenza tra il prezzo esatto del derivato e la sua approssimazione, ottenuta
attraverso lo sviluppo asintotico in caos di Wiener Itô del sottostante. Questa valutazione
mette a confronto questo metodo con quello che applica la rete neurale direttamente al
prezzo esatto. Rispetto a studi precedenti, questa trattazione quantifica l’accuratezza delle
previsioni attraverso la radice dell’errore quadratico medio e l’errore assoluto medio. Oltre
ai derivati già esaminati in precedenza, questa procedura di prezzatura è applicata a due
nuovi casi, ovvero due opzioni barriera Down-and-In, il cui sottostante evolve secondo due
modelli: uno, a elasticità di variazione costante, l’altro, a volatilità non lineare. Inoltre, i
due metodi sono confrontati nel loro scenario migliore, ossia quando gli iperparametri della
rete neurale sono ottimizzati. In ogni caso esaminato, il metodo che si serve della differenza
tra prezzo esatto e approssimazione offre previsioni più accurate e stabili rispetto a quello
la cui rete neurale è applicata direttamente al prezzo esatto.

Parole chiave: Valutazione delle opzioni, Reti Neurali, Sviluppo in caos di
Wiener-Itô, Ottimizzazione degli iperparametri

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Chapter 1: Financial Background 5
1.1 Black and Scholes . 5
1.2 Heston . 6
1.3 Constant Elasticity of Variance . 6
1.4 Non linear volatility model . 7
1.5 European vanilla Call . 7
1.6 Barrier options . 8
1.7 Greeks . 8

2 Chapter 2: Asymptotic Expansion 11
2.1 Derivation of the EU Call asymptotic formula 11
2.2 Numerical examples . 20
2.3 The approximation formula for single barrier options 25

3 Chapter 3: Artificial Neural Networks 27
3.1 Back-propagation algorithm . 28

3.1.1 Forward phase . 29
3.1.2 Backward phase . 29

vi | Contents

3.1.3 Evaluation of the total gradient . 31
3.1.4 Update of the weights . 31

3.2 Designing an Artificial Neural Network . 31
3.3 Optimizing an Artificial Neural Network 33

4 Chapter 4: Numerical Procedure 35
4.1 Creation of the data sets . 35

4.1.1 Simulation of the parameters . 35
4.1.2 Evaluation of the option price with the analytic or semi-analytic

formula . 41
4.1.3 Evaluation of the option price with the asymptotic expansion formula 42
4.1.4 Setting the neural network input features and labels 43

4.2 Building the artificial neural networks . 44
4.3 Tuning the artificial neural network . 45
4.4 Comparison of the methods . 46

5 Chapter 5: Results Discussion 49
5.1 Results of the EU Call under Black & Scholes 49

5.1.1 Using the same hyper-parameters: Black & Scholes 49
5.1.2 Tuning the hyper-parameters: Black & Scholes 55

5.2 Results of the Greeks . 60
5.2.1 Using the same hyper-parameters: Greeks 60
5.2.2 Tuning the hyper-parameters: Greeks 65

5.3 Results of the Up-and-In barrier under Heston 69
5.3.1 Using the same hyper-parameters: Heston 70
5.3.2 Tuning the hyper-parameters: Heston 71

5.4 Results of the Down-and-In barrier under CEV 74
5.4.1 Using the same hyper-parameters: CEV 74
5.4.2 Tuning the hyper-parameters: CEV 76

5.5 Results of the Down-and-In barrier under the non linear volatility model . 78
5.5.1 Using the same hyper-parameters: NLV 78
5.5.2 Tuning the hyper-parameters: NLV 80

6 Conclusions and future developments 83

Bibliography 85

A Appendix A 91

B Appendix B 95

List of Figures 99

List of Tables 101

List of Symbols 103

Acknowledgements 105

1

Introduction

Assessing the fair value of a derivative is a key aspect for option trading. For this reason
the theory of option pricing has a long history of contributions which aim to estimate
the correct derivative price. Even though Bachelier proposed the first financial model [7],
option pricing theory remained dormant until the proposal of the Black-Scholes-Merton
model [13] to price European vanilla options. However, this model has the great downside
of neglecting the volatility skew and smile shape, so it is not consistent to price options
in the market. Many alternatives have been proposed. Usually they fall into the cate-
gory of local volatility models or stochastic volatility models. The first typology assumes
that volatility is a deterministic function of time and the asset price. Some examples are
Constant Elasticity of Variance [19] and the Displaced Diffusion model [49]. The second
typology assumes that volatility is a random variable. Some examples are the Hull and
White [40] and the Heston model [36]. Moreover, there are model variations which com-
bine the characteristics of both. Those are referred as stochastic local volatility models.
Beyond Black & Scholes setting, the model complexity is greater and often there are no
closed analytic formulae to calculate the option price. Instead, practitioners adopt nu-
merical techniques such as Monte Carlo and Finite Difference methods. However, they
are known to be computationally expensive, especially when the derivative and/or the
model of the underlying asset are quite complex.
To overcome this shortcoming, many researchers have focused on the study of approxi-
mation formulae of derivative prices. Among these, many adopt an asymptotic expansion
approach. Some remarkable examples are Hagan et al. [34], and Fouque et al. [24], who
have studied the singular perturbation technique to obtain European option prices under
the SABR and SVMs, respectively. Moreover, Takahashi [62] and Takahashi and Take-
hara [63] proposed approximated formulae in closed form based on the small volatility
asymptotic expansion method for European options when the underlying asset follows
SVMs and LVMs.
The asymptotic expansion approximation formulae that are mentioned in this thesis are
part of the decennial study of Funahashi and his peers. He has derived closed formulae
to approximate the option price where the Wiener-Itô Chaos expansion is applied on the

2 | Introduction

underlying. In his early contributions [30, 31] he has proposed closed formulae for Eu-
ropean derivatives under LVMs and SVMs. Later, Funahashi and Kijima [25] and [58]
have extended the method to Asian options. Then, Funahashi and Higuchi [29] and Shi-
raya [57] have derived approximation formulae for barrier options. In addition, [65] have
adopted the Wiener-Itô Chaos expansion approach for American options.
Another solution to ease the computation of derivative prices is the adoption of machine
learning techniques. Indeed, in recent years they have become very popular in the finan-
cial field to price and calibrate asset pricing models.
Spiegeleer et al. [61] proposed the Gaussian process regression, a Bayesian non-parametric
technique, as a method to train ANNs to predict American and barrier option prices. This
approach allows to obtain prices much faster than conventional pricing methods. How-
ever, the offline computation costs for the creation of the training set are quite relevant
and the application of this method may be unfeasible in practice.
Other relevant contributions are the one of Horvath et al. [39], who have developed a
calibration procedure that employs an approximation neural network with implicit train-
ing and a calibration layer on top of the network, and the one of Liu et al. [46], who
have showed that the differential evolution optimizer prevents the calibration model to
get stuck on a local minimum. Itkin [41] has described some pitfalls of existing tech-
niques to improve the calibration accuracy and has developed the no-arbitrage condition
suitable for the ANNs training. Hernandez [35] has used ANNs to calibrate market data
using an inverse mapping method, that speeds-up the procedure compared to alterna-
tives. However, even this promising method has some downsides. Horvath et al. [39]
have noticed that the inversion function lacks of control, while Itkin [41] has pointed out
that the exploding gradient issue occurs when training. Indeed, he explored this concept
investigating European Call options under the Black&Scholes setting. Since the option
price is an input parameter and the volatility is a target value, during the training is
computed the derivative of the volatility with respect to the option price. This quantity
is inversely proportional to the Vega, which is a bell-shaped function. This leads to a
very high gradient at small and high moneyness and a small gradient in a at-the-money
scenario. This is referred as the exploding gradient or vanishing problem.
Funahashi [26] combined the application of Artificial Neural Networks and the Wiener-Itô
expansion approach to overcome the disadvantages found in previous research. Indeed,
the method proposed by Funahashi is based on the employment of the difference between
the true price and the asymptotic expansion approximated price as target value. This
solves the exploding gradients problem, since the derivative of the residual term with re-
spect to the volatility is no longer bell-shaped, and reduces the computational costs, since
accurate results are achieved even with small training sets and simple ANN architectures.

| Introduction 3

Moreover, Hornik et al. [38] have proved that this difference is a smooth and differentiable
function: this fact guarantees the application of this method to compute the Greeks.
In [26], Funahashi has compared his proposed method with the one that employs the true
price as the ANN label. He provided the results of their application on European Calls
and their Delta and Vega under Black&Scholes, on a Up-and-In barrier call option under
Heston and on a JPN/USD currency call option under Displaced Diffusion. The results
of the proposed method establish that it is accurate and robust. It requires less training
data, less layers and less nodes per layer than the method that adopts only the true price
as target. This leads to a decrease in the computational costs of offline procedures. Fur-
thermore, it shows that the training behaviour of the Vega in a at-the-money scenario is
stable, proving that the exploding gradient problem does not occur when applying this
method. Moreover, he showed that it correctly reduces the residual term and performs
best among its alternatives (i.e. when the approximated price is evaluated with an intrin-
sic formula, different from the WIC one).
Recently, in [28], Funahashi applied the same method to price options under the SABR
model. In this case he employed the difference of the exact implied volatilities and the
approximated ones as ANN label value. In this application the training is more robust,
predictions are more accurate and the residual term is reduced correctly even in deep
in-the-money and out-of-the-money scenarios, where the approximation closed formula
fails to provide precise results.
In this thesis, the work of Funahashi in [26] is investigated in-depth. Firstly, the compar-
ison of the two methods is executed with minor differences to what is done in [26]. The
most relevant change resides in the measure choice to assess the predictive accuracy of
the models. In [26], Funahashi compares the mean and the variance of the error distribu-
tions to have insight on the performances of the methods. In addition to these quantities,
this work takes into account the mean absolute error and the root mean squared error.
They are metrics used in standard practice to assess the accuracy of ANNs for regression
problems.
Then, the two methods have been applied to two options that have been neglected in Fu-
nahashi’s study: the Down-and-In barrier call under the Constant Elasticity of Variance
model and under a non linear volatility model discussed in [21]. In this thesis we answer
the question on whether Funahashi’s proposed method performs well even in these new
cases.
Another novelty proposed in this thesis is the introduction of the hyper-parameters tuning
phase. This procedure aims to determine the hyper-parameters for which the validation
loss function of the ANN model is minimised [2, 18]. Funahashi does not take into account
hyper-parameters such as the learning rate and the batch size, but focuses only on the

4 | Introduction

ANN architecture. In his research he neglects completely the performance evaluation of
the ANN, since he does not adopt a validation set. Moreover, both methods have ANN
models with the same set of hyper-parameters. While this type of comparison seems to
give equal possibilities to both networks, it may favour the model that performs best
with the selected hyper-parameter set. This might lead to erroneous conclusions on the
goodness of the methods if one of the ANN models performs much better than the other
one [11, 55].
In this thesis the hyper-parameters are tuned so that each model achieves its best per-
formance by minimising its validation loss. Afterwards, the two methods are compared
when both networks offer optimal results, producing a fair and more rigorous comparison.
This thesis is organised as follows. In Chapter 1 the financial models used for the un-
derlying and the derivatives priced are described. In Chapter 2 the closed approximation
formulae for European Calls and barrier options obtained with the Wiener-Itô Chaos ex-
pansion are listed. Additionally, the proof of the closed formulae for the European Call
and its numerical results, which have been previously derived in [30, 31], are reported.
Chapter 3 deals with a brief explanation of the Artificial Neural Network concepts which
are employed in this study. Chapter 4 illustrates the methodology adopted to obtain the
fairest comparison of the two methods. Eventually, in Chapter 5 the results are discussed
in detail.

5

1| Chapter 1: Financial

Background

The usual setting to model financial assets and derivatives is considered [26]. Let (Ω,F ,P,
{Ft}0≤t≤T) be the filtered probability space, with T finite and the filtration {Ft}0≤t≤T

which satisfies the usual conditions: it is complete (i.e F0 contains all P-null sets) and
right-continuous (i.e. Ft = Ft+ := ∩s>tFs). Let P be the physical measure and Q the
martingale measure. Let E be the expectation under the Q martingale measure. In the
general setting, the stochastic differential equations of the underlying dynamics and its
variance are [26]:

dSt

St

= r(t)dt+ σ(St, νt;p)dW
S
t

dνt = (θ(t)− κ(t)νt)dt+ γ(νt)dW
ν
t .

(1.1)

(1.2)

By assumption, it has been considered that the parameters r, θ and κ are deterministic
functions of time t , that S0 > 0 and that ν0 = σ2

0 > 0. In addition, dW S
t and dW ν

t are
Q-Brownian motions such that dW S

t dW
ν
t = ρdt. σ(St, νt;p) is a deterministic function of

the asset price St, the variance ν and the model parameters vector p.
This thesis deals with five particular cases of the above model. They are the Black and
Scholes model [13], the Heston model [36], the Constant Elasticity of Variance model [19]
and a non linear volatility model described in [21]. Moreover, the derivatives which are
priced are the European vanilla Call, the Up-and-In and the Down-and-In single barrier
Call. Additionally, this study focuses on the Greeks, in the specific case of the European
vanilla Call under Black & Scholes.

1.1. Black and Scholes

In addition to previous assumptions, this model assumes that the short rate of interest r
is constant and that the volatility σ is a strictly positive constant. Therefore, the shapes
of the volatility skew and smile are neglected.

6 1| Chapter 1: Financial Background

The price dynamics of the underlying follows the geometric Brownian motion [13]:

dSt

St

= rdt+ σdWt. (1.3)

1.2. Heston

In addition to the assumptions of the general case (Eqs. (1.1) and (1.2)), this stochastic
volatility model (SVM) is characterized by the following volatility equations [26]:

σH(St, νt) =
√
νt

γH(νt; ϵ) = ϵ
√
νt.

(1.4)

(1.5)

This results in the following underlying and variance dynamics:

dSt

St

= rdt+ σH(St, νt)dW
S
t

dνt = (θ − κνt)dt+ γH(νt; ϵ)dW
ν
t .

(1.6)

(1.7)

Further assumptions on the parameters are that r is constant, that θ, κ and ϵ are strictly
positive constants and that ρ ∈ [−1, 1]. Moreover, according to the Feller condition,
when 2θ > ϵ2 holds then the process ν is strictly positive [4]. There are no analytic option
pricing formulae. Therefore, a Monte Carlo approach will be adopted to evaluate any
option price.

1.3. Constant Elasticity of Variance

This local volatility model assumes that its volatility is defined as [19]:

σCEV (St, t;p) = ϵS
(β−1)
t , (1.8)

where p = [ϵ, β] is the vector of the model parameters and β ∈ [0, 1] is the elasticity factor.
Moreover, given σ as the Black & Scholes volatility, it is assumed that ϵ = ϵβ = σS

(1−β)
0 .

With this assumption, the CEV model represents a generalization of the Black & Scholes
model as defined in Eq. (1.3) [47]. Indeed, if β = 1, then the CEV model is the geometric
Brownian motion. Another special case occurs when β = 0 and the underlying is normally
distributed.

1| Chapter 1: Financial Background 7

In the end, the underlying dynamics is summarised as:

dSt

St

= rdt+ σCEV (St, t;p)dW
S
t , (1.9)

where r is the constant short interest rate and W S
t the Wiener process as defined above.

Since the CEV model is adopted to price a Down-and-In barrier option, then the compu-
tation is done with a Brownian Bridge Monte Carlo approach [33].

1.4. Non linear volatility model

This local volatility model assumes that the volatility is non linear with respect to the
asset price St. It is defined as [21]:

σNLV (St, t;p) =

(
α + β

St

S0

)
e
−µ

St
S0 , (1.10)

where p = [α, β, µ] is the vector of the model parameters. α, β are positive constants,
while µ is a negative one. Then, the underlying dynamics is described by the equation:

dSt

St

= rdt+ σNLV (St, t;p)dW
S
t , (1.11)

where r is the constant short interest rate and W S
t the Wiener process as defined above.

Similarly to the CEV model, the computation of the Down-and-In barrier option price is
done with the Brownian Bridge Monte Carlo method [33].

1.5. European vanilla Call

A European Call option on a specific underlying asset, with strike K and maturity date T ,
is a contract written at time t = 0 where the holder has the right, but not the obligation,
to buy at time t = T the underlying asset at the price K [12]. The term "European"
refers to the fact that this contract can be exercised only at expiration date.
The price of the European Call under Black & Scholes is given by the Black & Scholes
formula [13]:

C(St, t) = e−r(T−t)(StN (d1)−KN (d2)), (1.12)

where N (·) is the cumulative distribution function of a standard normal variable, K the
option strike, St is the spot price at time t, r is the short interest rate, σ is the volatility

8 1| Chapter 1: Financial Background

and d1 and d2 are equal to [13]:

d1 =
log St

K
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

(1.13)

(1.14)

1.6. Barrier options

Barrier options are financial derivatives whose payoffs depend on the crossing of a certain
predefined barrier level (B) by the underlying asset price process (St, with t ∈ [0, T]).
They are of four types: Down-and-Out, Up-and-Out, Down-and-In and Up-and-In. The
first two are knock-out options, i.e. the derivative is active and becomes null if the
underlying price process touches or crosses the barrier level. The other two are the
knock-in options, i.e. become active as soon as the underlying price process touches or
crosses the barrier level. Moreover, the Down typology indicates that the initial spot price
S0 is assumed to be above the barrier level B. Conversely, the Up type assumes that it is
below.
In this thesis we consider only the knock-in derivatives. Specifically, we evaluate a Up-
and-In and a Down-and-In Call, in European exercise style.
Assuming the underlying is based on the geometric Brownian motion, closed formulae
for barrier options pricing are the ones stated by Rubinstein et al. [53] or, alternatively,
through the static replication of a portfolio of vanilla options, a method pioneered by Carr
[16].
However, when the underlying does not follow a geometric Brownian motion, such as in
this study, a viable approach is Monte Carlo or the Brownian-Bridge Monte Carlo [33],
which is specific for path-dependent options.

1.7. Greeks

The Greeks represent the sensitivity measures of the portfolio of derivatives based on a
single underlying. These measures are useful for two main reasons: they quantify the risk
exposure of the portfolio due to the changes in the underlying process; they reflect the
sensitivity of the portfolio to misspecifications of the model parameters [12].
However, in this particular case where the portfolio consists of a single derivative, the
Greeks indicate the changes of the option price with respect to the variations of the
underlying price or the model parameters. Given C(t, s) the option price at time t based

1| Chapter 1: Financial Background 9

on the underlying price process St [12]:

∆ =
∂C(t, s)

∂s
,

Γ =
∂2C(t, s)

∂s2
,

ρ =
∂C(t, s)

∂r
,

Θ =
∂C(t, s)

∂t

υ =
∂C(t, s)

∂σ
.

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

Moreover, for the European Call under Black & Scholes scenario there are analytic for-
mulae for its Greeks. In this thesis, only Delta and Vega are taken into account: here are
reported the formulae only for those two sensitivity measures [13]:

∆(t) = N (d1)

υ(t) = ψ(d1)St

√
T − t,

(1.20)

(1.21)

where ψ(d1) is the probability density function of a standard normal evaluated in d1

(Eq.(1.13)). In particular, Delta and Vega indicate changes of the derivative price with
respect to the variations of the underlying price and of the volatility parameter, respec-
tively.

11

2| Chapter 2: Asymptotic

Expansion

In this thesis, the asymptotic expansion described in detail by Funahashi et al. in [29–32]
has been considered. This chapter is structured as follows: first, the proof of the European
Call asymptotic formula is developed in depth; second, some numerical examples are
presented, which verify the accuracy of the asymptotic formula; third, the asymptotic
formulae for single barrier options are stated.

2.1. Derivation of the EU Call asymptotic formula

In brief, the Wiener-Itô chaos (WIC) expansion procedure adopted to obtain the asymp-
totic formula to price European Call options is the following:

1. writing the underlying dynamics using Hermite polynomials;

2. building the expansion of the underlying dynamics through successive substitutions;

3. approximating this expansion by a truncated sum of Itô integrals - in this case until
the third order of the WIC expansion;

4. deriving the probability density function of the approximated underlying variable;

5. elaborating the closed formula of the financial option on the underlying considered,
by means of its probability density function.

It assumed that the underlying asset follows the dynamics given by the SDE:

dSt

St

= r(t)dt+ σ(St, t)dWt, (2.1)

where the short rate of interest r(t) is a deterministic function of time, the volatility σ(s, t)
is a deterministic function of the asset price and time and {Wt}t≥0 is a standard Brownian
motion under Q risk-neutral measure. Despite the fact that Eq.(2.1) indicates a simpler

12 2| Chapter 2: Asymptotic Expansion

dynamics than the one in Eq.(1.1), there is no loss of generality in the following proof.
However, in Lemma 3 and the Appendices A and B, the formulae are stated assuming the
most general dynamics of Eq.(1.1) for completeness.
Applying Itô’s formula and substituting the forward price F (0, t) = S0e

∫ t
0 r(s) ds, we obtain:

St = S0 exp

[∫ t

0

(r(u)− 1

2
σ2(Su, u)) du+

∫ t

0

σ(Su, u) dWu

]
= F (0, t) exp

[∫ t

0

σ(Su, u) dWu −
∫ t

0

1

2
σ2(Su, u) du

]
= F (0, t) exp

[
Jt(σ)−

1

2
∥σ∥2t

]
, (2.2)

where Jt(g) =
∫ t

0
g(u) dWu and ∥g∥2t =

∫ t

0
g2(u) du.

Let’s consider the definition of probabilists’ Hermite polynomials [3]:

hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 , n = 1, 2, 3... (2.3)

with h0 = 1.
Given this definition, it is possible to state this useful Hermite expansion Lemma, which
detailed proof is at page 16 of Di Nunno et al. [20]:

Lemma 1. For any x ∈ R and λ > 0, we have:

exp

[
tx− (t

√
λ)2

2

]
=

∞∑
n=0

(t
√
λ)n

n!
hn

(
x√
λ

)
. (2.4)

The expansion (2.4) is valid for a random variable too. Indeed, according to [20], imposing
σ ∈ L2([0, T]), t = 1, x = Jt(σ) and λ = ||σ||2t :

exp

[
Jt(σ)−

1

2
∥σ∥2t

]
=

∞∑
n=0

∥σ∥nt
n!

hn

(
Jt(σ)

∥σ∥t

)
. (2.5)

In [31] it is observed that the truncation of the right hand side of Eq.(2.5) always provides
a better approximation of its left hand side than, for example, the Maclaurin expansion
truncation. The former has lower mean squared errors than the latter for the volatility
levels observed in the market. Moreover, its superiority increases as the volatility and the
maturity are higher. This justifies the writing of the expression in Eq.(2.2) using Hermite
polynomials expansion.

2| Chapter 2: Asymptotic Expansion 13

Furthermore, according to (1.14) in [67] and in [42], it is known that:

∥σ∥nt
n!

hn

(
Jt(σ)

∥σ∥t

)
=

∫ t

0

∫ tn

0

...

∫ t2

0

σ(t1)σ(t2)...σ(tn) dWt1 ... dWtn , (2.6)

where {Wt}t≥0 is a one-dimensional Brownian motion under Q risk-neutral measure.
An additional useful property is that the right hand side of Eq.(2.6) converges rapidly to
0 as n increases under specific conditions. This is stated in Proposition 2.1 below, whose
proof is in Appendix B of [31]:

Proposition 2.1. Consider the iterated integral

In =

∫ t

0

∫ tn

0

...

∫ t2

0

σ1(t1)σ2(t2)...σn(tn) dWt1 ... dWtn .

If the volatilities σk(t) are deterministic functions and σ(t) = maxkσk(t) ∈ L2([0, t]) ∀t,
then we have E[I2n] ≤

∥σ∥2nt
n!

.

For this reason, if ∥σ∥ is small enough, then the sum of iterated integrals of order greater
than n can be considered zero in the L2 sense for large n. Thus, rewriting Eq.(2.2) as:

St

F (0, t)
= exp

[
Jt(σ)−

1

2
∥σ∥2t

]
= 1 +

∞∑
n=1

∫ t

0

∫ tn

0

...

∫ t2

0

σ(t1)σ(t2)...σ(tn) dWt1 ... dWtn (2.7)

and applying Proposition 2.1, the iterated integrals higher than the third order are ne-
glected in this proof.

Before proceeding with the proof, we notice that under some particular conditions, the
stochastic process {Xt; 0 ≤ t ≤ T} that satisfies the stochastic integral equation

Xt = X0 exp

[∫ t

0

a(s) ds− 1

2

∫ t

0

b2(Xs, s) ds+

∫ t

0

b(Xs, s) dWs

]
(2.8)

can be constructed by successive substitution. Indeed, given X(0)
t = X0e

∫ t
0 a(s) ds and

X
(k+1)
t = X0 exp

[∫ t

0

a(s) ds− 1

2

∫ t

0

b2(X(k)
s , s) ds+

∫ t

0

b(X(k)
s , s) dWs

]
, (2.9)

14 2| Chapter 2: Asymptotic Expansion

with a(s) and b(X(k)
s , s) that follow some regularity conditions, then X(k)

t converges almost
surely to the solution Xt.
A sufficient condition on a(s) and b(X

(k)
s , s) is given for the convergence and it is stated

below for completeness. Its proof is omitted in this thesis, since it is similar to the proof
of the existence of the strong solution of the Eq. (2.1). See [66] for the detailed proof.

Proposition 2.2. Let T>0 and suppose that a(t) and b(t,x) satisfy

|b(t, x)2|+ |b(t, x)| ≤ C(1 + |log(x)|), x ∈ R, t ∈ [0, T],

|b(t, x)2 − b(t, y)2|+ |b(t, x)− b(t, y)| ≤ D

∣∣∣∣∣log
(
x

y

) ∣∣∣∣∣, x ∈ R, t ∈ [0, T],

for some constant C and D. Then X
(k)
t converges to the solution Xt almost surely.

As stated in [31], this condition is usually too strong for practical purposes. Therefore,
in this thesis it is assumed that successive substitution produces the stochastic integral
equation solution without checking the above condition.
Thus, the successive substitution construction of the solution can be applied to this specific
case too. The solution of Eq.(2.1), that is:

St = F (0, t) exp

[∫ t

0

σ(Su, u) dWu −
1

2

∫ t

0

σ2(Su, u) du

]
, (2.10)

can be constructed by successive substitution. Let S(0)
t = F (0, t) and:

S
(m+1)
t = F (0, t) exp

[
Jt(σm)−

1

2
∥σm∥2t

]
, (2.11)

where σm = σ(S
(m)
t , t). By assumption, S(m)

t converges to St as m→ ∞. Hence:

St = S
(1)
t +

∞∑
m=1

{S(m+1)
t − S

(m)
t }. (2.12)

Using Eqs. (2.11) and (2.5), it is possible to express S(m)
t with the Hermite polynomials

expansion:

S
(m+1)
t

F (0, t)
= 1 +

∞∑
n=1

∥σm∥nt
n!

hn

(
Jt(σm)

∥σm∥t

)
(2.13)

2| Chapter 2: Asymptotic Expansion 15

and, thus, define:

Im,n(t) =
1

n!

[
∥σm∥nt
n!

hn

(
Jt(σm)

∥σm∥t

)
− ∥σm−1∥nt

n!
hn

(
Jt(σm−1)

∥σm−1∥t

)]
. (2.14)

Therefore, Eq.(2.12) can be written as:

St = S
(1)
t + F (0, t)

∞∑
m,n=1

Im,n(t). (2.15)

The objective is to truncate the sum of iterated integrals at the third order, i.e. for
m+ n ≤ 3. First, the term S

(1)
t can be approximated as:

S̃
(1)
t = F (0, t)

[
1 +

∫ t

0

σ0(t1) dWt1 +

∫ t

0

∫ t2

0

σ0(t1)σ0(t2) dWt1 dWt2

+

∫ t

0

∫ t3

0

∫ t2

0

σ0(t1)σ0(t2)σ0(t3) dWt1 dWt2 dWt3

]
. (2.16)

Indeed, σ0(t) = σ(F (0, t), t) is a deterministic function, so Eq.(2.7) can be applied and its
sum can be truncated to the third iterated integral, resulting in Eq.(2.16).

Next, the terms Im,n(t) are approximated with an iterated integral with deterministic
volatilities. To accomplish this, Taylor’s expansion around S

(m)
t of Jt(σm) is employed.

Recalling that Jt(σm) =
∫ t

0
σm(u) dWu =

∫ t

0
σ(S

(m)
u , u) dWu, it results in:

Jt(σm) ≈ Jt(σm−1) +

∫ t

0

σ
′

m−1(u){S(m)
u − S(m−1)

u } dWu

+
1

2

∫ t

0

σ
′′

m−1(u){S(m)
u − S(m−1)

u }2 dWu (2.17)

and

J2
t (σm) ≈ J2

t (σm−1) + 2Jt(σm−1)

∫ t

0

σ
′

m−1(u){S(m)
u − S(m−1)

u } dWu, (2.18)

where σ
′
m(t) = ∂xσ(x, t)|x=S

(m)
t

, and σ
′′
m(t) = ∂xxσ(x, t)|x=S

(m)
t

. The following Lemma
states the iterated integrals required up to the third order. The detailed proof is in [31].

16 2| Chapter 2: Asymptotic Expansion

Lemma 2. Each iterated integral Im,n(t) defined in Eq.(2.14) is approximated as follows:

I1,1(t) ≈
∫ t

0

σ
′

0(s)F (0, s)

(∫ s

0

σ0(u) dWu

)
dWs

+

∫ t

0

σ
′

0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r) dWr

)
dWu

)
dWs

+

∫ t

0

σ
′′

0 (s)F
2(0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r) dWr

)
dWu

)
dWs

+
1

2

∫ t

0

σ
′′

0 (s)F
2(0, s)

(∫ s

0

σ2
0(u) dWu

)
dWs,

(2.19)

I1,2(t) ≈
∫ s

0

σ0(s)

(∫ s

0

σ
′

0(u)F (0, u)

(∫ u

0

σ0(r) dWr

)
dWu

)
dWs

+ 2

∫ t

0

σ
′

0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r) dWr

)
dWu

)
dWs

+

∫ t

0

σ
′

0(s)F (0, s)

(∫ s

0

σ2
0(u) dWu

)
dWs,

(2.20)

I2,1(t) ≈
∫ t

0

σ
′

0(s)F (0, s)

(∫ s

0

σ
′

0(u)F (0, u)

(∫ u

0

σ0(r) dWr

)
dWu

)
dWs. (2.21)

For m+ n ≥ 4, we have Im,n(t) ≈ 0.

At last, the approximated formula is obtained by substituting the terms in Eq.(2.15) with
their respective approximations: S̃(1)

t , I1,1(t), I1,2(t) and I2,1(t). The resulting third order
WIC expansion obtained is stated in the following Lemma 3 [26]:

Lemma 3. Let us denote σ(0)(t) = σ(F (0, t), V (0, t)) and γ(0)(t) = γ(V (0, t)) where
F (0, t) = e

∫ t
0 r(s) ds and V (0, t) = E(t)(ν0 +

∫ t

0
E(u)θ(u) du) with E(t) = e

∫ t
0 κ(u) du and

E(t) = 1/E(t), the asset price in section 1.1 is approximated by:

St = F (0, t)(1 + a1(t) + a2(t) + a3(t) +R4), (2.22)

where F (0, t) = e
∫ t
0 r(s) ds and

a1(t) =

∫ t

0

p1(s) dW
S
s , (2.23)

2| Chapter 2: Asymptotic Expansion 17

a2(t) =

∫ t

0

p2(s)

(∫ s

0

σ(0)(u) dW S
u

)
dW S

s +

∫ t

0

p3(s)

(∫ s

0

p4(u) dW
ν
u

)
dW S

s , (2.24)

a3(t) =

∫ t

0

p5(s)

(∫ s

0

σ(0)(u)

(∫ u

0

σ(0)(r) dW S
r

)
dW S

u

)
dW S

s

+

∫ t

0

p6(s)

(∫ s

0

p4(u)

(∫ u

0

p4(r) dW
ν
r

)
dW ν

u

)
dW S

s

+

∫ t

0

p7(s)

(∫ s

0

p4(u)

(∫ u

0

σ(0)(r) dW S
r

)
dW ν

u

)
dW S

s

+

∫ t

0

p7(s)

(∫ s

0

σ(0)(u)

(∫ u

0

p4(r) dW
ν
r

)
dW S

u

)
dW S

s

+

∫ t

0

p2(s)

(∫ s

0

p8(u)

(∫ u

0

σ(0)(r) dW S
r

)
dW S

u

)
dW S

s

+

∫ t

0

p2(s)

(∫ s

0

p3(u)

(∫ u

0

p4(r) dW
ν
r

)
dW S

u

)
dW S

s

+

∫ t

0

p3(s)

(∫ s

0

γ(0)ν (u)

(∫ u

0

p4(r) dW
ν
r

)
dW ν

u

)
dW S

s , (2.25)

where γ(0)ν (t) = ∂νγ(ν)|ν=ν
(0)
t

, and deterministic functions Σt and pk(t) being defined in
Appendix A.

Two important clarifications of the above Lemma 3 are needed. First, Rn indicates the
n-1 - order truncation remainder: in the case of Eq.(2.22), it contains all multiple stochas-
tic integrals after the sum truncation of the third order. According to Proposition 2.1,
the remainder Rn is null in L2 sense for large n [32]. This fact is recalled since it is truly
relevant for this thesis. Indeed, as an ANN is built to predict this remainder term, then
the option price is evaluated with the asymptotic formula: without this proven fact, its
convergence to the exact price for large n would not be assured.
Second, the above Lemma 3 states the approximated formula for the more general under-
lying dynamics given by Eq.(1.1) and not for the more specific case of Eq.(2.1). Clearly,
the approximated formula for the dynamics of Eq.(2.1) can be retrieved trivially.

The aim of the following steps is to obtain the probability distribution of St. Without
loss of generality, it is defined:

Xt :=
St

F (0, t)
− 1 ≈ a1(t) + a2(t) + a3(t)

18 2| Chapter 2: Asymptotic Expansion

It is observed that a1(t) follows a normal distribution centred in zero and with variance
Σt :=

∫ t

0
p21(s) ds. The moments of aj(t) conditional to a1(t) can be obtained explicitly.

This and the following steps are based on the work of Takahashi [62] and Yoshida [64].
Taking into account the characteristic function of Xt, denoted as Ψ(ξ) := E

[
eiξXt

]
, it can

be approximated as:

Ψ(ξ) ≈ E
[
eiξ(a1(t)+a2(t)+a3(t)

]
= E

[
eiξ(a1(t)(1 + iξa2(t) + iξa3(t)−

1

2
ξ2a22(t) +R4)

]
.

Recalling Proposition 2.1, the remainder R4 can be neglected. Indeed:

|E
[
eiξa1(t)R4

]
| ≤ E

[
|eiξa1(t)R4|

]
≤ (E[|eiξa1(t)|2])

1
2 (E[|R4|2])

1
2

= (E[|R4|2])
1
2 ≈ 0.

Evaluating the conditional expectation with respect to a1(t):

Ψ(ξ) ≈ E
[
eiξa1(t)

]
+ iξE

[
eiξa1(t)E [a2(t)|a1(t)]

]
+ iξE

[
eiξa1(t)E [a3(t)|a1(t)]

]
− 1

2
ξ2E

[
eiξa1(t)E

[
a22(t)|a1(t)

]]
.

(2.26)

The conditional expectations can be evaluated explicitly, according to Lemma 2.1 in
Takahashi’s work [62], are the following:

E [a2(t)|a1(t) = x] = q1(t)

(
x2

Σ2
t

− 1

Σt

)
,

E [a3(t)|a1(t) = x] = q2(t)

(
x3

Σ3
t

− 3x

Σ2
t

)
,

E
[
a22(t)|a1(t) = x

]
= q3(t)

(
x4

Σ4
t

− 6x2

Σ3
t

+
3

Σ2
t

)
+ q4(t)

(
x2

Σ2
t

− 1

Σt

)
+ q5(t),

(2.27)

(2.28)

(2.29)

where Σt and qk(t) are defined in Appendix A.
Next, the characteristic function can be inverted to retrieve the density function of Xt,
according to the following Lemma 4 [31], whose proof can be found in Takahashi’s work
[62]:

Lemma 4. Suppose that X follows the normal distribution with zero mean and variance
Σ. Then, for any polynomial functions f(x) and g(x), we have

2| Chapter 2: Asymptotic Expansion 19

1

2π

∫
R

e−ikyg(−ik)E
[
f(X)eikX

]
dk = g

(
∂

∂y

)
f(y)n(y; 0,Σ),

where n(x;a,b) denotes the normal density function with mean a and variance b.

Applying the above Lemma 4 to Eq.(2.26), the density function fXt is obtained as follows:

fXt(x) = n(x; 0,Σt)−
∂

∂x
{E [a2(t)|a1(t) = x]n(x; 0,Σt)}

− ∂

∂x
{E [a3(t)|a1(t) = x]n(x; 0,Σt)}

+
1

2

∂2

∂x2
{E
[
a22(t)|a1(t) = x

]
n(x; 0,Σt)}.

(2.30)

By substituting the Eqs. (2.27), (2.28) and (2.29) into Eq.(2.30), it follows [31]:

Theorem 2.1. The probability density function of Xt is approximated as:

fXt(x) ≈ f̃Xt(x) =
1

2Σ6
t

n(x; 0,Σt)
[
q3(t)(x

6 − 15x4Σt + 45x2Σ2
t − 15Σ3

t)

+ Σ2
t (2q2(t) + q4(t))(x

4 − 6x2Σt + 3Σ2
t)

+ Σ3
t

[
2q1(t)(x

3 − 3xΣt) + q5(t)(x
2Σt − Σ2

t) + 2Σ3
t

]]
,

(2.31)

where n(x;a,b) denotes the normal density function with mean a and variance b.

An alternative expression of the density function f̃Xt employs Hermite polynomials, de-
fined earlier in Eq.(2.3), is the following:

f̃Xt(x) =
1

2
n(x; 0,Σt)

[
q3(t)

Σ3
t

h6

(
x√
Σt

)
+

(2q2(t) + q4(t))

Σ2
t

h4

(
x√
Σt

)

+
2q1(t)

(
√
Σt)3

h3

(
x√
Σt

)
+
q5(t)

Σt

h2

(
x√
Σt

)
+ 2

]
.

To retrieve the approximated density function in terms of the underlying asset, this for-
mula is applied:

f̃St(x) =
f̃Xt

(
x

F (0,t)
− 1
)

F (0, t)
. (2.32)

20 2| Chapter 2: Asymptotic Expansion

Remark 1. The integral of the approximated density f̃Xt over the entire space might not
be unity. In that case, it can be replaced by f̂Xt :=

f̃Xt (x)∫
R f̃Xt (x) dx

, so that
∫
R
f̂Xt(x) dx = 1

[31].

Eventually, it is possible to evaluate trivially the European Call option pricing formula,
given strike K and maturity T .

C(T) = E
[
e−

∫ T
0 r(s) ds(ST −K)+

]
= F (0, T)E

[
e−

∫ T
0 r(s) ds(XT + K̃)+

]
where K̃ = 1 − K

F (0,t)
. Then, given the density function fXt , the European call option

price is the result of the following integral:

C(T) = S(0)

∫ ∞

−K̃

(x+ K̃)fXt(x) dx,

and it is stated in the following theorem [26]:

Theorem 2.2. The European call option price of S with maturity T and strike K is
approximated by that of S = F (0, t)(1 + a1(t) + a2(t) + a3(t))

CS(T,K) =
S0n(K̃; 0,ΣT)

2Σ4
T

[q3(T)(K̃
4 − 6K̃2ΣT + 3Σ2

T)

+ Σ2
T (q4(T) + 2q2(T))(K̃

2 − ΣT)

+ Σ3
T (−2q1(T)K̃ + q5(T)ΣT + 2Σ2

T)]

+
S0K̃√

2

(
1− Φ

(
−K̃√
ΣT

))
, (2.33)

where K̃ := 1 − K
F (0,t)

and Φ(x) is the cumulative distribution function of the standard
normal distribution. The deterministic functions qi(t) and Σt are defined in Appendix A.

2.2. Numerical examples

In these numerical examples presented, we assume an underlying dynamic such as the one
in Eq.(2.1) and a volatility term such that σ(S, t) := ν(t)Sβ(t)−1, where ν(t) and β(t) are
deterministic functions. In particular, let ν(t) = ν and β(t) = 1, so that the underlying
has a geometric Brownian motion dynamic as in the Black and Scholes model [13].
Two tests are executed. They replicate the numerical examples in [30] and in [31], re-

2| Chapter 2: Asymptotic Expansion 21

spectively. First, it is checked whether the density function f̃St is a good approximation
of fSt or not. Second, the European Call prices are computed with both the Black and
Scholes closed formula and the approximated one in Eq.(2.33) and compared in low and
high volatility scenarios.
In the specific case of the Black and Scholes model, St is distributed as a log-normal with
mean (r − ν2

2
)T + ln(S0) and variance ν

√
T , where S0 indicates the initial underlying

price at time 0 and T the maturity in years. In the following figures, it is assumed that
ν = 0.15, S0 = 80, r = 0.03 and T = 5 years. "Analytic" indicates the probability
density function evaluated as a log-normal, "WIC(3)" indicates the one obtained with
Eqs. (2.31) and (2.32), "WIC(2)" and "WIC(1)" indicate the densities derived from the
truncation, respectively, at the second and first order. Figure 2.1 shows that the WIC(3)
approximation is accurately close to the analytic density.

Figure 2.1: Comparison of the exact density of the underlying St and its Wiener-Itô Chaos
approximations, whose expansions are truncated at the third (WIC(3)), second (WIC(2))
and first (WIC(1)) order.

22 2| Chapter 2: Asymptotic Expansion

Strike BS WIC3 RE [%]

T = 3 months

84.735 0.92931 0.92932 0.001823

82.643 1.5441 1.5441 0.00040321

80.602 2.3931 2.3931 -4.9442e-06

78.612 3.4812 3.4812 -0.00018286

76.671 4.7856 4.7856 -0.00033005

T = 1 year

91.106 1.9034 1.9037 0.014785

86.663 3.124 3.1241 0.0031514

82.436 4.7828 4.7828 -7.9123e-05

78.416 6.8733 6.8732 -0.0014974

74.592 9.3353 9.3351 -0.0026202

T = 5 years

116.24 4.4993 4.5071 0.17273

103.94 7.1679 7.1702 0.033286

92.947 10.655 10.655 -0.0019802

83.115 14.872 14.869 -0.017718

74.323 19.627 19.622 -0.028928

T = 10 years

148.15 6.6128 6.6465 0.50972

126.49 10.308 10.317 0.09029

107.99 14.998 14.997 -0.0079312

92.196 20.5 20.49 -0.052246

78.712 26.509 26.487 -0.081513

Table 2.1: Evaluation of EU Call prices with Black&Scholes and the Wiener-Itô chaos
third order expansion, with varying strike and maturity T . The relative error defined in
Eq.(2.34) shows in percentage the accuracy of the approximated prices. This table shows
the scenario of low volatility (ν = 0.15).

2| Chapter 2: Asymptotic Expansion 23

Strike BS WIC3 RE [%]

T = 3 months

84.735 3.124 3.1241 0.0031514

82.643 3.8977 3.8978 0.0012974

80.602 4.7828 4.7828 -7.9123e-05

78.612 5.7767 5.7767 -0.00099268

76.671 6.8733 6.8732 -0.0014974

T = 1 year

91.106 6.3816 6.3831 0.024076

86.663 7.867 7.8678 0.0095716

82.436 9.5388 9.5387 -0.001267

78.416 11.385 11.384 -0.008514

74.592 13.387 13.386 -0.012543

T = 5 years

116.24 14.872 14.907 0.24099

103.94 17.823 17.838 0.085623

92.947 21.015 21.008 -0.031808

83.115 24.4 24.373 -0.11159

74.323 27.921 27.878 -0.15655

T = 10 years

148.15 21.476 21.612 0.62944

126.49 25.233 25.283 0.19882

107.99 29.179 29.142 -0.12788

92.196 33.242 33.125 -0.35199

78.712 37.343 37.164 -0.47928

Table 2.2: Evaluation of EU Call prices with Black&Scholes and the Wiener-Itô chaos
third order expansion, with varying strike and maturity T . The relative error defined in
Eq.(2.34) shows in percentage the accuracy of the approximated prices. This table shows
the scenario of high volatility (ν = 0.3).

The numerical experiments of the European Call prices consider two volatility scenarios,
with ν = 0.15 and ν = 0.3. Other parameters are set such as: S0 = 80, r = 0.03,

24 2| Chapter 2: Asymptotic Expansion

T = 0.25, 1, 5, 10 years and the strikes are given by Ki(T) = F (0, T)e(0.1
√
Tδi), with δi =

−1.0,−0.5, 0, 0.5, 1.0 and i = 1, 2, 3, 4, 5. To check the accuracy, the relative error (RE)
is evaluated as follows:

RE =
Approximated value− Exact value

Exact value
, (2.34)

and it is reported in Tables 2.1 and 2.2 as a percentage. The accuracy of the approximated
formula is evident, especially in the low volatility scenario, since the errors are in the order
of basis points or even lower, so low enough for applications in the market.
Additionally, Figure 2.2 shows the evolution of the option prices and their difference
(defined as Diff = Approximated Value - Exact Value) as the strike varies. The panels
on the left hand side show the low volatility scenario (ν = 0.15), the ones on the right
show the high volatility case (ν = 0.3). Then, the upper panels show the short maturity
case (T = 0.25), the lower ones the long maturity scenario (T = 5 years). The panels
prove that, for every case and strike, the difference between the prices is very small.
It increases in the long maturity scenario and for far in-the-money and out-of-the-money
strikes, even though it is still considerably smaller than the bid-ask spreads in the market.
This confirms, once again, the accuracy of the approximated formula.

Figure 2.2: Comparison of the European Call Black&Scholes and Wiener-Itô chaos third
order expansion prices and their errors

2| Chapter 2: Asymptotic Expansion 25

2.3. The approximation formula for single barrier op-

tions

Funahashi and Higuchi in [29] evaluated the asymptotic expansion formula of call and put
barrier options of all four types, among which the Up-and-In one, with a sum truncation at
the second order. They approximated the underlying asset dynamic with a polynomial of
the Wiener process. Therefore, the probability density function required is the one of the
Wiener process. After the application of Girsanov’s theorem and the reflection principle,
the asymptotic closed formula of the Up-and-In single barrier option is in Theorem 2.3
[26] below, whose proof is located in [29]:

Theorem 2.3. The value of an Up-and-In barrier option with barrier level B, maturity
T and strike K is approximated by:

UI(T,K) = e−
∫ T
0 r(s) ds

[
eΩT

2ΣT

√
2π

(
e−

(ω1
T (K)− ˙ωT)2

2T X1(T)− e−
(ω1

T (B)− ˙ωT)2

2T X2(T)

)
+
eΩT

2ΣT

X3(T)

(
Φ

(
ω1
T (B)− ω̇T√

T

)
− Φ

(
ω1
T (K)− ω̇T√

T

))

+
F (0, T)e

− B
2

2ΣT

√
2πΣ

5
2
T

(B
2
(B +KT)q(T)−KT q(T)ΣT + Σ3

T)

+ F (0, T)KT

(
1− Φ

(
B√
ΣT

))]

(2.35)

where KT = 1− K
F (0,T)

, B = B
F (0,T)

− 1, and Φ(x) is the cumulative distribution.
q(t),ΣT ,ω1

t (B), ΩT , ω̇T and Xi(T) are defined in Appendix B.

Similarly to the Up-and-In barrier option, all the other options are derived. Given the
maturity T and the strike K, for the Down-and-In barrier option the formula is the
following [29]:

DI(T,K) =
eΩT

2T 2ΣT

[
f1(T) + f2(T)

[
1 +

ω̈T√
ω̈T

2

(
2Φ

(√
ω̈T

2

T

)
− 1

)]]
, (2.36)

where Φ(x) is the cumulative distribution and ΣT , ΩT , ω̈T , f1(T) and f2(T) are defined
in Appendix B.
Eventually, the Up-and-Out and the Down-and-Out pricing formulae are obtained with

26 2| Chapter 2: Asymptotic Expansion

the relationship of barrier options [29]:

C(T,K) = UI(T,K) + UO(T,K),

C(T,K) = DI(T,K) +DO(T,K),

where C(T,K) indicates the European Call price computed with Eq.(2.33), UI(T,K)

is evaluated with Eq.(2.35) and DI(T,K) is computed with Eq.(2.36). UO(T,K) and
DO(T,K) stand for the Up-and-Out price and the Down-and-Out one, respectively.

27

3| Chapter 3: Artificial Neural

Networks

This chapter provides a brief introduction on artificial neural networks. This explanation
is tailored to have a better understanding of the concepts that will be mentioned in the
following chapters. The main sources of this chapter are [14, 15] and [26].
Artificial neural networks take their name from the human brain mesh that connects the
neurons. Indeed, they are a mathematical model that imitates this complex structure.
Originally, McCulloch and Pitts [50] proposed the first ANN model, called a formal neu-
ron. Then Rosenblatt [52] evolved this concept to present the perceptron, which could
only solve linear problems. This limitation was overcome by Rumelhart et al. [54], who
defined the algorithm of back-propagation, which allowed the neural networks to learn in
order to solve non-linear problems. Afterwards, research has progressed at a fast pace and
ANN have been applied in many fields, including option pricing. [39, 41, 46] and their
references therein offer some examples.
The architecture of a neural network is usually composed of an input layer, some hidden
layers and the output layer. The number of layers and nodes per layer is chosen depending
on the problem. In this thesis the number of layers varies between 3,5 or 7, while the
number of neurons is 16 or 64 per each layer. Moreover, as in most cases, the output layer
has only one node. This occurs when there is a single labelled quantity yd to compare the
estimated value ŷd with for each dth input-output pair (xd, yd) of the data set X.
In this thesis the neural network adopted are of the simplest type: the feed-forward neural
networks. Indeed, their connections between the units do not form cycles and information
travels only in one direction in each phase of the back-propagation algorithm. In the for-
ward phase, calculations begin in the input and end in the output layer, viceversa occurs
in the backward one.
This chapter is structured as follows: Section 3.1 examines the back-propagation algo-
rithm, Section 3.2 provides a description of the neural network hyper-parameters and
Section 3.3 describes briefly how such hyper-parameters are tuned to obtain optimal re-
sults.

28 3| Chapter 3: Artificial Neural Networks

3.1. Back-propagation algorithm

First of all, it is useful to define all the terms that are mentioned in the algorithm.

• X = {(x1, y1), ..., (xd, yd), ..., (xN , yN)} is the set of input-output pairs to pass to
the neural network. In this case it is assumed there is a scalar output for each pair;

• olj is the output of the jth node in the lth layer;

• ŷd is the estimated output, i.e. the output of the output layer;

• rl is the number of nodes in the lth layer;

• wl
i,j is the weight which measures the strength of the connection of the ith node in

the (l − 1)th layer with the jth node in the lth layer;

• blj is the bias of the jth node in the lth layer. For simplicity, it is assumed that it is
incorporated in the weights as wl

0,j, i.e. blj = wl
0,j, fixing the output of the previous

layer as ol−1
0 = 1;

• θ collectively represents the weights and the biases of the neural network;

• alj is the activation of the jth node in the lth layer. It is formally defined as: alj :=(∑rl−1

k=1 w
l
k,jo

l−1
k

)
+ blj =

(∑rl−1

k=0 w
l
k,jo

l−1
k

)
, due to blj = wl

0,j;

• f is the activation function. For simplicity it is assumed that it is the same for both
hidden and output layers;

• E(X, θ) is the total error function, while Ed (or, equally, E) indicates the error
function for the input-output pair (xd, yd).

The objective of the back-propagation algorithm is to determine the set of weights and
biases of the neural network for which the total error function is minimised. For this
reason, the algorithm makes use of the gradient descent (or a more efficient alternative
of it) in order to evaluate the best set θ. More precisely, each iteration of the back-
propagation algorithm which uses gradient descent has four steps:

• Forward phase;

• Backward phase;

• Evaluation of the total gradient;

• Update of the weights.

Each of these steps is treated in the following subsections.

3| Chapter 3: Artificial Neural Networks 29

3.1.1. Forward phase

At the end of this first back-propagation step these quantities are evaluated and stored:
the estimated output ŷd, the activation alj and the output olj. These values are retrieved
for each pair in X and for each node from the start. The input layer normally outputs the
input itself, i.e. o1i = x0i , where x0i is the input received by the ith node of the input layer
and o1i is the output of the input layer for the nodes of the first hidden layer. For these
and the nodes in the following layers the calculation of the output is different. Indeed,
every ith node in the (l − 1)th layer is coupled with the jth node of the lth layer. The
output olj of the jth node is expressed by olj = f(alj), where alj is the activation evaluated
as per its definition. Then, the output olj will be the input for the nodes in the subsequent
(l + 1)th layer. Eventually, the output layer node will produce the estimated output ŷd.

3.1.2. Backward phase

In this phase the main objective is to evaluate and store the term ∂Ed

∂wl
i,j

. This procedure
takes its name from the fact that these computations are executed from the output to the
input layer. From now on the subscript d will be omitted in this section for simplicity.
First of all, the chain rule is applied to the error function derivative, resulting in:

∂E

∂wl
i,j

=
∂E

∂alj

∂alj
∂wl

i,j

,

where alj is the activation. This expression can be rewritten by evaluating each term. The
first one is called error:

δlj :=
∂E

∂alj
.

The second term is calculated using the definition of activation:

∂alj
∂wl

i,j

=
∂

∂wl
i,j

(
rl−1∑
k=0

wl
k,jo

l−1
k

)
= ol−1

i .

In the end, the alternative expression of the partial derivative of the error function over
the weight is:

∂E

∂wl
i,j

= δljo
l−1
i .

In this thesis the error function chosen is the halved mean squared error:

E(X, θ) =
1

2N

N∑
d=1

(ŷd − yd)
2 =

1

N

N∑
d=1

Ed,

30 3| Chapter 3: Artificial Neural Networks

where yd is the desired output and ŷd is the estimated one, given the pair (xd, yd) of the
data set X. In this particular case the derivative can be rewritten in a different expression.
In the output layer, the halved mean squared error is:

E =
1

2
(ŷ − y)2 =

1

2
(f(aL1)− y)2,

given f as the activation function. Then the error term is:

δL1 = (f(aL1)− y)f
′
(aL1) = (ŷ − y)f

′
(aL1).

So the derivative is:
∂E

∂wL
i,1

= δL1 o
L−1
i = (ŷ − y)f

′
(aL1)o

L−1
i .

For any other lth layer with 1 ≤ l < L, the error term of the jth node is:

δlj =

rl+1∑
k=1

∂E

∂al+1
k

∂al+1
k

∂alk
=

rl+1∑
k=1

δl+1
k

∂al+1
k

∂alk
.

Reminding that

al+1
k =

rl∑
j=1

wl+1
j,k f(a

l
j),

then the partial derivative of al+1
k over alk is

∂al+1
k

∂alk
= wl+1

j,k f
′
(alj).

Therefore, the error term δlj is:

δlj =

rl+1∑
k=1

δl+1
k wl+1

j,k f
′
(alj).

Given this, each derivative of the error function E over the weight results in

∂E

∂wl
i,j

= δljo
l−1
i = f

′
(alj)o

l−1
i

rl+1∑
k=1

wl+1
j,k δ

l+1
k

and it is stored for the next step. This equation above gives the name to the algorithm:
back-propagation is the short term for "backward propagation by errors" and the last
equation shows that the error δlj is always dependent on the error δl+1

k in the following
layer.

3| Chapter 3: Artificial Neural Networks 31

3.1.3. Evaluation of the total gradient

Once all layers have been considered for each (xd, yd) pair, then the total error derivative
is computed. This value, independently on the choice of the error function, is the sum of
the derivatives of the error terms of each individual input-output pair with respect to the
weights. Indeed:

∂E(X, θ)

∂wl
i,j

=
1

N

N∑
d=1

∂

∂wl
i,j

(
1

2
(ŷd − yd)

2

)
=

1

N

N∑
d=1

∂Ed

∂wl
i,j

.

3.1.4. Update of the weights

Eventually the weights are updated using the gradient descent formula:

∆wl
i,j = −α∂E(X, θ)

∂wl
i,j

,

where α is the learning rate, a parameter which indicates the size of the step in the nega-
tive direction of the gradient. Due to the assumption that the biases are incorporated in
the weights, the update is done only on them. Otherwise, the biases are calibrated too.

This concludes one iteration of the back-propagation algorithm. These four steps are
repeated until a local minimum of the error function is reached or a convergence criterium
is met. Once this occurs, then the neural network has learnt the best mapping. This is
the one that best approximates the function that returns the output yd, given the paired
input xd. Thus, the result of this mapping is the best approximation of the desired output,
i.e. ŷd.

3.2. Designing an Artificial Neural Network

As mentioned in the introduction of this chapter, the neural network is customisable. For
example, the architecture of the network can be changed by selecting a different number
of layers or nodes per layer. Beside this, there are other elements that can be varied
to avoid underfitting or overfitting. These components are defined and discussed in this
section.
First of all, the activation function is quite crucial in the creation of the ANN. Usually, its
choice (at least for the output layer) is determined by the type of problem to be modelled
[8]: a classification one needs an activation function that has a dichotomous outcome,

32 3| Chapter 3: Artificial Neural Networks

otherwise in a regression one it should return a real value from a continuous range. In
this thesis the problem belongs to the latter category and in order to replicate the results
of [26], the two activation functions chosen are the following:

• ReLU: f : R 7→ R with f(x) := max(0, x) and x ∈ R [8];

• Softmax: f : RK 7→ (0, 1)K with f(x)i := exi∑K
i=0 e

xi
and x ∈ RK [8].

Another important aspect is the choice of the optimizer. In Section 3.1 it is described the
back-propagation which uses gradient descent. This is the simplest optimization algorithm
to understand. However, in practice, it is not the most computationally efficient and
research has examined different alternatives of it. One of them is the Adam algorithm,
first proposed in [43]. In brief, the weights and biases are calibrated at each iteration
depending on the exponential moving averages of the gradient and the squared gradient.
These quantities are the bias-corrected estimates of the first moment (the mean) and the
second moment (the uncentred variance) of the gradient. This is the optimizer that has
been chosen for this thesis. It has many great properties: it requires little memory since
it evaluates only the first order gradients, it is an adaptive algorithm that performs well
in many problems and it does not need much hyper-parameter tuning compared to other
optimization algorithms [43].
Indeed, the choice of the optimizer has a great influence on the hyper-parameters required.
For example, the Adam optimizer requires four tuning parameters: the learning rate α,
the exponential decay rates β1 and β2 for, respectively, the first and the second moment
estimates and the learning rate decay λ [17]. Among them, the learning rate is the most
relevant, since it is an upperbound for the magnitude of the step size of each iteration
[43] and has a great impact on the computation time [48].
Even though they are not parameters of the Adam optimizer, batch size and the number
of epochs allow to customise the neural network too. In the default case of the gradient
descent or Adam, the update of the weights occurs at the end of each epoch, i.e. once all
the input-output pairs of the training data are run. The batch size allows to adjust how
many optimisations are done in one epoch. Indeed, given a training data set of N paired
samples, then N

batch size
is the number of weight updates for each epoch. Therefore, the

total number of calibrations is given by # epochs×N
batch size

[6]. In practice, usually the number of
epochs stays fixed a priori and the batch size can be modified to improve the performance
[59]. Its values are powers of 2: lower the value, the higher the regularisation effect and
lower the memory capacity required, but the downside is that the gradient convergence
to a minimum is less direct [56].

3| Chapter 3: Artificial Neural Networks 33

3.3. Optimizing an Artificial Neural Network

The choice of the hyper-parameters impacts the performance of the ANN. For this reason,
often machine learning practitioners employ tuning techniques to obtain optimal results
from their model. Their main advantages are [2]:

• they reduce the human effort necessary for applying machine learning, since the
tuning procedure allows to evaluate the performance of several different models
automatically;

• they improve the performance of machine learning algorithms (by tailoring them to
the problem at hand) [51, 60];

• they improve the reproducibility and fairness of scientific studies [11, 55].

The simplest criterium to determine the best configuration of hyper-parameters is based
on the minimisation of the loss function. The best set is the one for which the loss func-
tion is minimised the most at the end of the optimization algorithm. However, there are
many tuning techniques, even more complex, which can be implemented.
Moreover, there is an immense variety of algorithms that indicate how to search the opti-
mal configuration in the given range of the hyper-parameters. In grid search, for example,
every combination of every hyper-parameter in the specified subset is evaluated. This al-
gorithm is easily parallelisable, but it suffers by the curse of dimensionality [45]. Another
example is random search. In this case, only some configurations, selected randomly from
the search space, are tested [45]. This method, according to [10], is more computationally
efficient than grid search.
The scheduler and the stopper are other means to a less computationally expensive tuning
phase. The scheduler can early terminate, pause or clone trials, i.e. the tests of hyper-
parameters configurations. The one used in this thesis is the asynchronous successive
halving (ASHA) scheduler [44]. It is based on the assumption that if the configuration
trial performs well over an initial short time interval, then it will perform well at longer
time intervals. In brief, it early stops the predefined portion of the least performing trials,
after a specified number of training iterations. The stopper stops the trial as soon as
the loss function reaches a plateau, i.e. does not decrease further. This allows to avoid
over-fitting.

35

4| Chapter 4: Numerical

Procedure

In this chapter, the procedure to compare the results of two pricing methods is described
in detail. Both of them make use of the same Neural Network model, except for the
information that they receive as input. Indeed, the first one uses as label the analytic
(or semi-analytic) option price, while the second one employs the difference between the
analytic (or semi-analytic) and the asymptotic expansion approximated price. These are
referred as method 1 and 2, respectively, throughout this chapter. These two methods
are compared across multiple aspects, by varying the model of the underlying dynamics
(i.e. Black & Scholes, Heston etc.), the option to price (i.e. European Call, Up-and-In
barrier or the Down-and-In barrier) and the architecture and other hyper-parameters of
the Neural Network.
The methodology followed is very similar to the one of Funahashi in [26]. It can be
summarized into four steps: creation of the data sets, building of the neural networks,
tuning of the hyper-parameters and comparison of the results of the two methods.

4.1. Creation of the data sets

This phase includes four consecutive steps: the simulation of the parameters, the evalua-
tion of the option price with the analytic or semi-analytic formula, and with the asymp-
totic expansion formula described in Chapter 2 and the standardization of the input
features and the label for the neural networks.

4.1.1. Simulation of the parameters

Each financial model requires a different set of parameters. In the following paragraphs,
their ranges are specified in each scenario dealt in this thesis. The exact subdivision of
cases is listed in Table 4.1 and it is referred in the whole chapter coherently.

36 4| Chapter 4: Numerical Procedure

Case Input vector Label (method 1)

0 [S0, r, ϵ,K] B&S EU Call price

1 [S0, r, ϵ,K] B&S EU Call price

2 [S0, r, ϵ,K] B&S EU Call price

3 [S0, r, ϵ,K] B&S EU Call price

4 [S0, r, ϵ,K] B&S EU Call price

5 [S0, r, ϵ,K] B&S EU Call price

6 [S0, r, ϵ,K] B&S EU Call price

7 [S0, r, ϵ,K] B&S EU Call price

8 [S0, r, ϵ,K] B&S EU Call price

9 [S0, r, ϵ,K] B&S EU Call price

10 [S0, r, ϵ,K] B&S & Eq.(4.1) EU Call price

11 [S0, r, ϵ,K] B&S EU Call Delta

12 [S0, r, ϵ,K] B&S EU Call Vega

13 [S0, ϵ] B&S EU Call Vega ATM

14 [r, T, S0, ν0, ρ, ϵ, κ, θ] Heston Up-and-In price

15 [r, T, S0, ν0, ρ, ϵ, κ, θ] Heston Up-and-In price

16 [T, S0, β, ϵ] CEV Down-and-In price

17 [T, S0, α, β, µ] NLV Down-and-In price

Table 4.1: Summary of the details to reproduce each case. The label of method 2 is always
the difference between the label quantity of method 1 and the respective asymptotic
expansion approximated value.

• Black & Scholes The generation of the Black & Scholes parameters differs depend-
ing on the case taken into account. In the first scenario (cases 1-8), the Black &

Scholes European Call price and its difference with the one obtained with Eq.(2.2)
are the labels of neural networks of, respectively, method 1 and method 2. The
input vector is the same for both methods and it consists of [S0, r, ϵ,K]. Table 4.2
summarises how the parameters are generated.
In the second scenario (cases 11 and 12), the Greeks and their difference with the
ones obtained with Eq.(2.2) are the labels of neural networks of, respectively, method
1 and method 2. In particular, the Delta and the Vega of a European Call option
are analysed. The input vector is the same as the one in the first scenario. The
parameters are described in Table 4.3.

4| Chapter 4: Numerical Procedure 37

In the third scenario (case 13), the label for the neural network of method 1 is the
Vega around the at-the-money scenario. Here, the unstable behaviour of this Greek
is evaluated. Naturally, the difference of this quantity with the one computed with
the differentiation of Eq.(2.2) with respect to ϵ is the label of the neural network of
method 2. In this case, the input vector consists of [S0, ϵ], since r and K are fixed.
Table 4.4 below reports the parameters used.
The fourth scenario (case 9) is analogous to the first one for what concerns the labels
and input vector. However, its parameters are mostly fixed to show the evolution
of the difference of the prices with respect to the varying strike. Table 4.5 lists this
choice of parameters.
The last scenario (case 10) compares the predicted European Call prices of both
methods with the European Call price computed with the approximated formula of
Eq.(4.1). In this case the parameters are the same as in the first scenario.

Variable Symbol Range Generation

Maturity T [1,5] Random integer

Initial asset price S0 [50,150] Random, uniformly distributed

Short interest rate r [0,0.05] Random, uniformly distributed

Volatility ϵ [0.01,1] Random, uniformly distributed

Uniform variable U [0.8,1.2] Random, uniformly distributed

Strike K [40,180] S0 × U

Table 4.2: Parameters used to evaluate the Black & Scholes price and the one obtained
with the asymptotic expansion formula (Eq.(2.2)).

Variable Symbol Range Generation

Maturity T [1,5] Random integer

Initial asset price S0 [80,150] Random, uniformly distributed

Short interest rate r [0.00001,0.1] Random, uniformly distributed

Volatility ϵ [0.01,1] Random, uniformly distributed

Strike K [64,180] S0 × U

Table 4.3: Parameters used to evaluate the Black & Scholes Delta and Vega and the one
obtained with the differentiation of the asymptotic expansion formula (Eq.(2.2)).

38 4| Chapter 4: Numerical Procedure

Variable Symbol Range Generation

Maturity T 1 Fixed

Initial asset price S0 [95,105] Random, uniformly distributed

Short interest rate r 0 Fixed

Volatility ϵ [0.001,0.1] Random, uniformly distributed

Strike K 100 Fixed

Table 4.4: Parameters used to evaluate the Black & Scholes Vega and the one obtained
with the differentiation of the asymptotic expansion formula (Eq.(2.2)) around the at-the-
money scenario.

Variable Symbol Range Generation

Maturity T 5 Fixed

Initial asset price S0 80 Fixed

Short interest rate r 0.03 Fixed

Volatility ϵ 0.3 Fixed

Strike K [50,150] Random, uniformly distributed

Table 4.5: Parameters used to evaluate the Black & Scholes price and the one obtained
with the asymptotic expansion formula (Eq.(2.2)), specifically in the fourth scenario (case
9).

• Heston For cases 14 and 15, Table 4.6 summarises the parameters used to price a
barrier option under the Heston model, which is defined in Section 1.2. The input
random vectors of the neural networks consist of [r, T, S0, ν0, ρ, ϵ, κ, θ].

4| Chapter 4: Numerical Procedure 39

Variable Symbol Range Generation

Maturity T [0,2] Random, uniformly distributed

Initial asset price S0 [80,120] Random, uniformly distributed

Short interest rate r [0,0.05] Random, uniformly distributed

Initial variance ν0 [0,1] Random, uniformly distributed

Correlation between

the Wiener processes ρ [-0.999,0.999] Random, uniformly distributed

Volatility of volatility ϵ [0.001,0.15] Random, uniformly distributed

Mean reversion rate κ [0.01,4] Random, uniformly distributed

Uniform variable 1 U1 [0.8,1.2] Random, uniformly distributed

Uniform variable 2 U2 [1.001,1.1] Random, uniformly distributed

Uniform variable 3 U3 [0.5,2] Random, uniformly distributed

Strike K [64,144] S0 × U1

Barrier level B [80.08,132] S0 × U2

Long-run average variance

times the mean reversion rate θ [0,2] ν0 × U3

Table 4.6: Parameters used to evaluate the price of a Up-and-In barrier option under the
Heston model.

• CEV For case 17, Table 4.7 indicates the parameters used to price a Down-and-In
single barrier option under the CEV model, defined by the Eqs. (1.8) and (1.9).
The input vector is composed of [T, S0, β, ϵ].

40 4| Chapter 4: Numerical Procedure

Variable Symbol Range Generation

Maturity T [0.25,5] Random, uniformly distributed

Initial asset price S0 [80,120] Random, uniformly distributed

Short interest rate r 0 Fixed

Elasticity factor β [0.65,0.85] Random, uniformly distributed

Uniform variable 1 U1 [0.15,0.25] Random, uniformly distributed

Uniform variable 2 U2 [0.8,1.1] Random, uniformly distributed

Uniform variable 3 U3 [0.95,0.999] Random, uniformly distributed

Volatility ϵ [0.29,1.34] S
(1−β)
0 × U1

Strike K [64,132] S0 × U2

Barrier level B [76,119.88] S0 × U3

Table 4.7: Parameters used to evaluate the price of a Down-and-In barrier option under
the CEV model.

• Non linear volatility model For case 18, Table 4.8 indicates the parameters used
to price a Down-and-In single barrier option under the non linear volatility model,
defined by the Eqs.(1.10) and (1.11). The input vector is composed of [T, S0, α, β, µ].

Variable Symbol Range Generation

Maturity T [0.25,5] Random, uniformly distributed

Initial asset price S0 [80,120] Random, uniformly distributed

Short interest rate r 0 Fixed

Parameter 1 α [0.01,0.1] Random, uniformly distributed

Parameter 2 β [0.005,0.085] Random, uniformly distributed

Parameter 3 µ [-0.05,-0.15] Random, uniformly distributed

Uniform variable 1 U1 [0.8,1.1] Random, uniformly distributed

Uniform variable 2 U2 [0.95,0.999] Random, uniformly distributed

Strike K [64,132] S0 × U1

Barrier level B [76,119.88] S0 × U2

Table 4.8: Parameters used to evaluate the price of a Down-and-In barrier option under
the non linear volatility model.

4| Chapter 4: Numerical Procedure 41

4.1.2. Evaluation of the option price with the analytic or semi-

analytic formula

Once the parameters are set, then the quantities which will serve as labels in the neural
networks should be calculated. In this subsection, the computation of the benchmark
values is analysed in depth, while the details for the calculations of the asymptotic expan-
sion approximations are referred in Subsection 4.1.3. The computation of these quantities
varies according to the model and the scenario chosen.

• Black & Scholes For this model there are analytic formulae to evaluate the required
quantities. Consider the same scenarios as listed in Section 4.1.1. In the first
and fourth scenarios (cases 1-9), the European Call price is evaluated according to
Eq.(1.12). In the second and third ones (cases 11-13), the Greeks are computed
with the Eqs. (1.20) and (1.21). In the last one (case 10), the European Call price
is calculated with the following formula:

C = e−rT max (S0e
rT −K, 0). (4.1)

• Heston The price of the Up-and-In barrier option under the Heston model (cases
14 and 15) is evaluated with Monte Carlo simulations and discretised with the QE
scheme [5]. As in the previous case, the time interval has been subdivided 104 times,
105 simulated paths of the Wiener process have been realised and the Numba JIT
compiler has been used. Furthermore, it is remarked that the Heston models defined
in [5] and Section 1.2 differ. Indeed, the Heston model defined in the former source
and used to evaluate the Monte Carlo prices is:

dSt

St

= r(t)dt+
√
νtdW

S
t

dνt = κ(t)(θ(t)− νt)dt+ ϵ
√
νtdW

ν
t ,

(4.2)

(4.3)

which means that θ(t) = θ(t)
κ(t)

must hold for the two model forms to be equiva-
lent. Therefore, the long-run average variance θ(t) is simulated according to this
relationship with the given parameters θ(t) and κ(t) set in Table 4.6.

• CEV The CEV model is adopted to price a Down-and-In barrier option. The
method to obtain the option price is the Brownian Bridge Monte Carlo [33]. It
is used for path-dependent options, such as barrier ones. Indeed, it evaluates the
option price taking into account the probability that the value of the underlying
touches the barrier level in a time instant between the initial time and the maturity.

42 4| Chapter 4: Numerical Procedure

Briefly, the probability of touching the barrier level B in a time instant τB ∈ (ti, ti+1),
given the asset values Si and Si+1, is [21]:
For Si > B:

P(τB ∈ (ti, ti+1)|Si, Si+1) = e

[
− 2(ln(Si)−ln(B))(ln(Si+1)−ln(B))

σ2
CEV

dt

]
, (4.4)

while for Si < B:

P(τB ∈ (ti, ti+1)|Si, Si+1) = e

[
− 2(ln(B)−ln(Si))(ln(B)−ln(Si+1))

σ2
CEV

dt

]
. (4.5)

In the specific case of a Down-and-In option, it is assumed S0 > B. Given this and
Eq. (4.4), the probability that the asset value trajectory touches the barrier level
at some instant τB ∈ [0, T] is [21]:

P(τB ∈ [0, T]|S0, ST = Sm) = 1−
m−1∏
i=0

(
1− e

[
− 2(ln(Si)−ln(B))(ln(Si+1)−ln(B))

σ2
CEV

dt

])+

.

In the end the price of the Down-and-In Call is obtained with [21]:

DI(T) = e−rT (ST −K)+(P(τB ∈ [0, T]|S0, ST = Sm)).

For the complete derivation of these probabilities see [9].
Additional details of the Monte Carlo pricing under the CEV model are that the
discretization of the underlying makes use of the Euler scheme, the time interval has
104 subdivisions and 105 simulated paths of the Wiener process have been computed.
As for the financial models above, the Numba JIT compiler is adopted.

• Non linear volatility model The procedure to price the Down-and-In option
under the non linear volatility model is identical to the one of the CEV model. The
only difference is the volatility in Eq. (4.4) is the one defined in Eq.(1.10).

4.1.3. Evaluation of the option price with the asymptotic ex-
pansion formula

The computation of the prices varies according to the option taken into account. For
the European Call option, the equations to obtain the approximated price are stated
in Lemma 2.22, Theorem 2.2 and Appendix A. For the Up-and-In and the Down-and-
In barrier options, the equations are Eqs.(2.35) and (2.36) and additional quantities are

4| Chapter 4: Numerical Procedure 43

defined in Appendix B.
Two remarks on the Up-and-In barrier option case are required. Firstly, the Heston model
form to obtain the approximated prices is the one in Section 1.2, therefore the one proposed
by Funahashi in [26] and previously in [29]. Secondly, sometimes the computation of the
approximated price results in a NaN value, in a negative value or a completely different
price to the Monte Carlo one. It is observed that this occurs since the integral to get Ω(t)
tends to diverge sometimes. To overcome this issue, two techniques have been adopted:

• Approximating the parameters. At the end of each iteration it is checked
whether the price is a NaN or a negative value or its difference with the Monte
Carlo price is greater than 1 in absolute value. If this is the case, every parameter
in Table 4.6 is truncated with one less final decimal and the computation is done all
over again. If the difference between the prices does not decrease in absolute value,
then the price got without approximating the parameters is stored, otherwise the
new price is saved and the truncation is iterated until its difference worsens. If the
new price is still a NaN or a negative value, then the truncation is iterated until a
positive number is obtained or the decimals end.

• Simulating few more prices than required. This foresight has allowed to
neglect the few remaining data instances with NaN prices and still have the input
neural network data set with the pre-estabilished size.

Concerning the Down-and-In under the non linear volatility model, some Monte Carlo
simulations resulted in a NaN value. For this reason, few more prices have been simulated.

4.1.4. Setting the neural network input features and labels

Once both option prices have been obtained, their difference is evaluated:

D(ξ) = CS(ξ)− CS(ξ), (4.6)

where CS(ξ) stands for the option price obtained with the analytic/semi-analytic formula,
CS(ξ) indicates the option price computed with the asymptotic expansion formula and ξ
is the parameter vector required to compute the prices.
In brief, the first method is represented by the map MC : ξ 7→ CS(ξ): the neural network
takes the parameter vector as input and the benchmark price as label and returns the
prediction of the benchmark price, indicated by CS

ANN(ξ). Whereas, the second method
is indicated by MD : ξ 7→ D(ξ): the neural network takes the parameter vector as input
and the difference between the prices as label and returns the prediction of the difference

44 4| Chapter 4: Numerical Procedure

of the prices DANN(ξ). Then, the prediction of option price is attained by:

CD
ANN(ξ) = CS(ξ) +DANN(ξ). (4.7)

Eventually, the comparison of the two methods is done by comparing CS
ANN(ξ) and

CD
ANN(ξ).

A relevant aspect of the asymptotic option pricing formula is that its difference obtained
with Eq.(4.6) results in a smooth and differential function. This property allows both to
improve the efficiency of the ANN and to stabilize the learning of the Greeks, such as
Delta and Vega. Their stable computation is guaranteed by Hornik et al. [38]:

Theorem 4.1. Let Nσ
d0,d1 be the set of ANN with activation function σ : R 7→ R, input

dimension d0 ∈ N and the output dimension d1 ∈ N. Let F ∈ Cn, and FANN : Rd0 7→ R.
Then, if the (non-constant) activation function is σ ∈ Cn(R), then Nσ

d0,d1 arbitrarily
approximate F and all its derivatives up to order n.

See, also [39, 41].
Furthermore, higher differentiations of Eq.(2.33) are accurate as well. For example, an
ulterior differentiation of delta results in a precise approximation of Gamma [31].
The input vectors and the labels differ according to the model used and the scenario taken
into account: see Table 4.1 to get to know them in depth for each case. However, they
have a common aspect: they are standardised before being passed to the neural network.
Both features and labels are scaled with the standard scaler, which removes the mean
and scales to unit variance. In the end, the predictions are rescaled back to compare the
predicted results with the true labels.

4.2. Building the artificial neural networks

The same cases listed in Table 4.1 are referred in Table 4.9 to state the aspects of the
neural networks considered. These are the data set dimension, the number of layers, the
number of nodes per layer and the activation function.
The data set was split into training, validation and test sets according to the following
proportions: 70, 15 and 15%. This proportion is a popular choice especially when the
data set size is only 103. Actually, Funahashi in [26] does not mention the validation set
and adopts the popular 80/20% split for the training and test set. However, in this thesis
it was preferred to include the validation set to have more insight on the hyperparameters.

4| Chapter 4: Numerical Procedure 45

Case Set size # layers # nodes per layer Act. function

0 103 3 16 ReLU

1 103 5 64 ReLU

2 103 7 64 ReLU

3 104 3 16 ReLU

4 104 5 64 ReLU

5 104 7 64 ReLU

6 103 3 16 softmax

7 104 3 16 softmax

8 104 5 16 softmax

9 103 3 16 ReLU

10 103 3 16 ReLU

11 103 5 64 ReLU

12 103 5 64 ReLU

13 103 3 64 softmax

14 103 3 64 ReLU

15 103 7 64 ReLU

16 103 3 16 ReLU

17 103 3 16 ReLU

Table 4.9: Summary of the details to build the neural networks.

4.3. Tuning the artificial neural network

All cases are examined twice: first they are executed with fixed hyper-parameters and
then with optimized ones. For the first case, the same hyper-parameters hold for the
models of both method. For the latter scenario, they vary for each method and each case.
The tuning phase has been implemented by using the Tune library of Ray [1]. Around
200 configurations have been sampled randomly from the search space defined in Table
4.10. For reproducible results, every configuration is associated with a seed. Moreover,
the maximum number of epochs is set to 20, even though most trials terminate early due
to the stopper or the ASHA scheduler. Concerning this object, it activates itself after 2
training iterations (grace period) and the proportion of trials that are periodically early
stopped is 1

2
of the total remaining trials (reduction factor).

46 4| Chapter 4: Numerical Procedure

Hyper-parameter Range

Nodes per each layer {4,8,16,32,64,128}

Learning rate Log-uniform in (10−4, 10−1)

Batch size {2,4,8,16}

Seed Integer in (0,106)

Table 4.10: The search space of hyper-parameters. The number of nodes is selected
separately for each layer. The seed is included to ensure reproducibility of configurations.

4.4. Comparison of the methods

The predicted quantities used to compare the two methods are respectively CS
ANN(ξ)

and CD
ANN(ξ). Each method is evaluated by analysing the test set data according to its

prediction accuracy, stability, robustness and speed of convergence. These aspects are
measured with the following quantities:

• Root Mean Squared (Prediction) Error (RMSE). It is a measure of error
defined as [37]:

RMSE :=

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where n is the sample dimension, yi is the true label and ŷi is the corresponding
prediction. Lower the RMSE, higher the predictive accuracy of the model. It is
preferred especially when errors are normally distributed and when error outliers
should be penalised, as it tends to overweight large errors.

• Mean Absolute Error (MAE). It is a measure of error defined as [37]:

RMSE :=
1

n

n∑
i=1

|yi − ŷi|,

where n is the sample dimension, yi is the true label and ŷi is the corresponding
prediction. Lower the MAE, higher the predictive accuracy. It is preferred when
errors have a Laplacian distribution and when a robust indicator is desired, as it
tends to weight equally small and large errors.

• Mean and Variance of the error density. They give insight on the error
distribution. In particular, the mean value indicates whether there is a tendency to
overestimate, if positive, or underestimate, if negative, the true value. The variance

4| Chapter 4: Numerical Procedure 47

indicates the dispersion of the error. Optimally, the mean and the variance should
be close to zero. These quantities assess the prediction stability over the range of
the true targets [22].

For every case, the predicted prices are displayed in a scatter plot with their true bench-
mark price on the x axis. Moreover, the density of the difference between the predicted
value and the true benchmark price is showed in a histogram. These plots are associated
with the mean and the variance of the error distributions. Furthermore, the computation
times of the neural networks are other means of comparison.

49

5| Chapter 5: Results Discussion

In this chapter the results of the two methods described in Chapter 4 are discussed. The
seed set to ensure reproducibility of the outcomes is 190598. The characteristics of the PC
adopted for the offline computations are: Processor Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30GHz 1.50 GHz; RAM 8.00 GB; Operating System Windows 10 Pro.
Following the subdivision of the cases according to Table 4.1 and 4.9, this chapter is
organised as follows: in Section 5.1 the cases 0-10 are analysed; next, in Section 5.2, the
cases 11-13 on the Greeks are discussed; subsequently, the Up-and-In barrier option cases
14 and 15 are examined in Section 5.3; eventually, case 16 and 17 are treated in Section
5.4 and 5.5, respectively.

5.1. Results of the EU Call under Black & Scholes

In this section, all cases have in common that the label of the first method is the European
Call price under the Black & Scholes model. Accordingly, the label of the second method
is the difference between the B&S price and its asymptotic approximation.
The computation times of simulating the prices 7.8850×10−4 seconds for the B&S price
only, 0.1159 seconds to simulate the asymptotic approximations too.

5.1.1. Using the same hyper-parameters: Black & Scholes

For what concerns the manually fixed hyper-parameters, for every case the optimizer is
Adam, the batch size is 2 and the number of epochs is 15. For cases 0 and between 7 and
10, the learning rate is 0.001, for cases between 1 and 5 it is 0.0001 and for case 6 it is
0.002. The other Adam algorithm parameters are set to their default values.
The results show an evident superiority of the second method compared to the first.
Method 2 offers more accurate predictions than method 1. This is shown in Figure 5.1
and 5.2, where the predictions CS

ANN and CD
ANN on the y-axis are compared with the

true B&S prices CS on the x-axis. The scatter plot indicates a more accurate bisector
for CD

ANN vs. CS. To quantify the predictive precision of the methods, Table 5.3 lists the
RMSEs and the MAEs. For every case, these measures of errors are lower for method 2

50 5| Chapter 5: Results Discussion

and this confirms the accuracy shown in Figure 5.1 and 5.2.

(a) Method 1. (b) Method 2.

Figure 5.1: Comparison of the Black & Scholes price on the x-axis and the predicted prices
CS

ANN (left) and CD
ANN (right) on the y-axis with 103 samples, 3 layers and 16 nodes per

layers (case 0).

(a) Method 1. (b) Method 2.

Figure 5.2: Comparison of the Black & Scholes price on the x-axis and the predicted prices
CS

ANN (left) and CD
ANN (right) on the y-axis with 104 samples, 5 layers and 64 nodes per

layers (case 4).

5| Chapter 5: Results Discussion 51

(a) Method 1. (b) Method 2.

Figure 5.3: Comparison of the densities of CS
ANN −CS (left) and CD

ANN −CS (right) with
103 samples, 3 layers and 16 nodes per layer (case 0).

(a) Method 1. (b) Method 2.

Figure 5.4: Comparison of the densities of CS
ANN −CS (left) and CD

ANN −CS (right) with
104 samples, 5 layers and 64 nodes per layer (case 4).

In addition, the density of CD
ANN −CS has always a mean value closer to zero and a lower

variance than the density of CS
ANN −CS. This is stated in Table 5.1 and showed in Figure

5.3 and 5.4, where the density curve of method 2 is more symmetrical with respect to the

52 5| Chapter 5: Results Discussion

mean, higher and steeper than the one of method 1. This means that predictions are more
stable over the price range, since there are no tendencies in over-pricing or under-pricing.
It is observed that simulating both prices takes always longer than evaluating only one, as
in the first method. Additionally, both models take the same time in training and testing.
This two reasons indicate that method 1 is more time efficient than method 2.

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

0 0.64953345 0.02428860 2.13209150 0.00816934 5.4551 4.5802

1 -0.73537450 -0.03367717 2.10095210 0.01659294 6.8981 6.3711

2 -0.25536546 -0.00428895 1.78199320 0.01566553 8.4778 8.0360

3 0.01564740 0.00094651 1.15133140 0.00403284 41.5646 38.5081

4 0.19343957 0.00292741 0.34188798 0.00093108 58.3401 59.0850

5 0.15136512 0.00207505 0.39750203 0.00088419 79.1596 81.9615

6 -0.28369760 0.01293834 5.51701500 0.08027811 4.2035 4.0202

7 -0.14649343 -0.00950860 0.39349675 0.00333944 38.1736 38.2335

8 -0.17817196 0.00370807 1.06156050 0.00412429 51.4651 56.0678

9 -0.01942846 1.2163×10−5 0.00218279 9.4174×10−6 4.2134 4.3020

10 0.64953345 0.02428860 2.1320915000 0.00816934 4.1731 4.1861

Table 5.1: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for each case.

Case Mean 3 Variance 3 Time 3 MAE 3 RMSE 3

9 0.00838507 0.0049391 - - -

10 29.4362200 511.508420 4.2011 29.455019 37.121414

Table 5.2: Mean and variance of the density of CS −CS (case 9) and of CANN −CS (case
10), where CANN is the prediction of the price evaluated with the intrinsic formula defined
in Eq.(4.1). Only in case 10 the neural network was needed and time (in seconds), MAE
and RMSE are reported.

5| Chapter 5: Results Discussion 53

Case MAE 1 MAE 2 RMSE 1 RMSE 2

0 1.27127680 0.05514089 1.598119 0.09359098

1 1.2767875 0.07081576 1.62533930 0.13314310

2 1.06652260 0.06178425 1.35911900 0.12523548

3 0.81012946 0.03869143 1.07311520 0.06351177

4 0.46702830 0.01677214 0.61587894 0.03065382

5 0.48383445 0.015674805 0.6483929 0.029807596

6 1.68569400 0.09924971 2.36590360 0.28362912

7 0.45113036 0.03106121 0.64417166 0.05856492

8 0.78010910 0.03053603 1.04561270 0.06432766

9 0.03897486 0.00223860 0.05059896 0.00306881

10 1.27127680 0.05514089 1.59811910 0.09359098

Table 5.3: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for each case.

Despite this, the comparison of the results with data set size of 1000 and 10000 leads to
an important observation. While method 2 performs optimally in both scenarios, method
1 requires a larger set to have acceptable results. Indeed, the RMSE and MAE of CS

ANN

with a 1000 set are always too large for practical uses. For this reason, it can be concluded
that for method 2 less simulations are necessary. This means that the computation time
and cost of generating trading data is significantly reduced.
Focusing on the activation functions, ReLU performs worse than softmax, especially ob-
serving the results of the first method, where the RMSE and MSE differ more. Hence,
the variation of the hyper-parameters impacts more on the results of method 1 than the
ones of method 2.
Case 9 and 10 give more insight on the goodness of method 2. Table 5.2 shows the addi-
tional quantities evaluated in these scenarios. For case 9, the values listed are the mean
and the variance of the density of CS − CS. There are no computation time, MAE and
RMSE, since no neural network has been used to evaluate these results. For case 10, the
values are the mean and the variance of the density of CANN − CS, where CANN is the
prediction of the price evaluated with the intrinsic formula defined in Eq.(4.1). In a low
volatility scenario, the Wiener-Itô Chaos expansion formula reduces to the intrinsic one.
However, in the market the volatility changes greatly. Consequently, MAE and RMSE
relative to CANN − CS are too high. This shows that this method is not suited for prac-
tical uses and that the additional computation time needed to evaluate CS rather than

54 5| Chapter 5: Results Discussion

the intrinsic price is worth.

(a) CS vs. CS . (b) Density of CS − CS .

Figure 5.5: Comparison of the Black & Scholes price on the x-axis and the predicted
prices CS (left) on the y-axis and density of CS − CS (right) (case 9).

Figure 5.6: Evolution of CS − CS (red) and CD
ANN − CS (blu) as the strike varies.

Concerning case 9, Figure 5.6 shows how CD
ANN − CS and CS − CS behave as the strike

K varies. While the difference between the asymptotic approximated price and the true
B&S price varies greatly as the strike increases, the other one stays constant around zero.

5| Chapter 5: Results Discussion 55

This means that adopting the neural network on the difference CS −CS reduces correctly
the residual term of the Wiener-Itô Chaos expansion.

(a) CS vs. CANN . (b) Density of CANN − CS .

Figure 5.7: Comparison of the Black & Scholes price on the x-axis and the predicted prices
CANN (left) on the y-axis and density of CANN − CS (right). CANN is the prediction of
the price evaluated with the intrinsic formula defined in Eq.(4.1) (case 10).

In brief, case 9 shows that applying the map MD : ξ 7→ D(ξ) improves the accuracy of
the results compared to when it is not applied. Case 10 shows that using the Wiener-
Itô Chaos expansion approximation rather than the intrinsic formula gives substantially
better results. In conclusion, the numerical procedure of method 2 is the best among its
alternatives examined.

5.1.2. Tuning the hyper-parameters: Black & Scholes

This subsection shows the results of the two methods applied to the European Call option
under Black&Scholes after the hyper-parameters tuning. The hyper-parameters tuned are
the number of nodes per each layer, the learning rate and the batch size. The optimizer is
Adam and the number of layers and the activation functions are fixed as listed in Table 4.9.

56 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.8: Comparison of the Black & Scholes price on the x-axis and the predicted
prices CS

ANN (left) and CD
ANN (right) on the y-axis with the tuned network (case 0).

(a) Method 1. (b) Method 2.

Figure 5.9: Comparison of the Black & Scholes price on the x-axis and the predicted
prices CS

ANN (left) and CD
ANN (right) on the y-axis with the tuned network (case 4).

5| Chapter 5: Results Discussion 57

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

0 -0.52866906 -0.00833111 2.31357500 0.01076713 57.84 78.54

1 -0.08879303 0.02518559 2.44720580 0.00948387 73.17 101.34

2 -0.66496290 -0.00262791 2.40615900 0.00905605 101.43 128.80

3 0.03008319 -0.00382848 0.61553615 0.00123348 362.80 450.62

4 0.15955998 0.00637127 0.62561274 0.00162823 470.53 490.68

5 -0.04603379 -0.00417670 0.43935603 0.00167634 633.56 610.78

6 -0.17212744 -0.04218440 2.48194000 0.01278232 86.54 96.33

7 0.02632081 0.00191633 0.33661693 0.00187232 313.29 365.66

8 0.08615202 -0.00126915 0.80851173 0.00175655 449.26 676.71

Table 5.4: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for each case.

(a) Method 1. (b) Method 2.

Figure 5.10: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 0).

58 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.11: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 4).

Case MAE 1 MAE 2 RMSE 1 RMSE 2

0 1.25805830 0.06403027 1.61030010 0.10409872

1 1.24421630 0.04707303 1.56687260 0.10058916

2 1.41560020 0.04565541 1.68770090 0.09519958

3 0.57613150 0.02320459 0.78513770 0.03532899

4 0.60486066 0.02380361 0.80689037 0.04085128

5 0.48987060 0.02288073 0.66443600 0.04115564

6 1.23808120 0.06737506 1.58479270 0.12067246

7 0.42066652 0.02185981 0.58078370 0.04331275

8 0.65041540 0.02106299 0.90329060 0.04193042

Table 5.5: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for each case.

Table 5.6 collects the configurations of hyper-parameters selected to minimise the loss
function, whose minimum value is listed in Table 5.7. Unfortunately, the comparison of
the loss values and the number of iterations before hitting a plateau do not give additional
insight on the methods, since the ANNs are applied to two different quantities: the call
price and the difference between the call price and its approximation. Therefore, they are

5| Chapter 5: Results Discussion 59

listed only for completeness. For what concerns the time of execution of the best trial, the
one of method 1 is lower than the one in method 2. This is due to the fact that method
1 converges faster since its best configurations have higher learning rate and larger batch
size.
Figures 5.8, 5.9, 5.10, 5.11 show that, even when the performance of the ANN of method
1 is maximised, is not accurate enough. In addition, observing Table 5.5, the MAE and
the RMSE of method 1 are higher than the ones of method 2 for every case investigated.
This means that the accuracy of method 2 is superior to the one of method 1.
Table 5.5 gives an additional insight through the comparison of the MAE and RMSE of
the cases which make use of a smaller data set (0,1,2) or a larger one (3,4,5). Indeed,
for method 1, the MAE and RMSE are almost halved by the increase of the train size.
Conversely, for method 2 the reduction is not as relevant as in the first method, even
though it is still more accurate overall. This means that method 2 is more robust with
respect to the size variation of the training data and it is more computationally efficient
since it does not require 10000 prices to achieve good results.

Best configuration 1 Best configuration 2

Case nodes per layer lr bs nodes per layer lr bs

0 64/32/64 0.0040 16 4/64/32 0.0014 2

1 64/64/8/32/16 0.0150 4 64/64/16/32/64 0.0014 8

2 64/32/32/32/8/8/16 0.0214 16 32/16/32/32/4/4/32 0.0013 2

3 64/32/64 0.0018 4 64/8/8 0.0018 4

4 64/8/64/16/32 0.0027 16 64/32/8/16/8 0.0012 2

5 64/64/4/4/32/4/16 0.0059 4 64/4/32/8/16/32/32 0.0004 8

6 64/64/64 0.0132 4 8/32/4 0.0543 16

7 64/32/64 0.0045 4 64/32/64 0.0037 4

8 64/16/16/8/16 0.0094 8 16/4/64/32/64 0.0100 16

Table 5.6: The NN hyper-parameters configurations for which the validation loss is min-
imised for each B&S case. The hyper-parameters tuned are the number of nodes per layer,
the learning rate (lr) and the batch size (bs).

60 5| Chapter 5: Results Discussion

Best performance 1 Best performance 2

Case Val. loss Test loss Iter. Time Val. loss Test loss Iter. Time

0 0.00462060 0.00533975 5 2.1114 0.01890393 0.02314137 10 5.7468

1 0.00441384 0.00505562 5 3.9914 0.01441606 0.02160741 18 7.1841

2 0.00608327 0.00586541 6 2.1499 0.01154766 0.01935381 20 22.4751

3 0.00125447 0.00130456 4 22.1660 0.00244253 0.00254948 5 27.4094

4 0.00129539 0.00137785 4 6.6511 0.00233191 0.00340884 4 46.2563

5 0.00084346 0.00093428 7 77.5056 0.00257590 0.00345979 5 18.3401

6 0.00352215 0.00517192 7 4.4831 0.03123731 0.03109669 20 6.0257

7 0.00074587 0.00071384 4 17.4377 0.00209584 0.00383200 5 15.7532

8 0.00168070 0.00172675 4 12.1992 0.00233407 0.00359132 11 25.2049

Table 5.7: The validation loss, test loss, number of iterations and computation time of
the best trial of each method for each case.

5.2. Results of the Greeks

This section deals with the application of method 1 and 2 to the Greeks. In case 11 the
label is the Delta of an European Call option under Black & Scholes. In case 12 and 13
the label is the corresponding Vega.
The computation time needed to simulate the Greeks for both methods is in total 0.8680
seconds.

5.2.1. Using the same hyper-parameters: Greeks

Here are listed some additional details concerning case 11, 12 and 13: for every case, the
batch size is 2, the optimizer is Adam and the number of epochs is 15; for case 11 the
learning rate is 0.0002, while for case 12 it is 0.0001 and for case 13 it is 0.01. The other
Adam algorithm parameters are set to their default values.
In every case, method 2 is more stable than method 1: in Table 5.8 the mean deviates
less from zero and the variance is lower. This difference is particularly relevant in case
13, in which the Vega is analysed in at-the-money scenario. Indeed, when it occurs, the
Vega assumes a bell-shape [26] and for this reason, the price variations with respect to ϵ
are rapid, especially with small volatility. So method 2 shows fast convergence and stable
results even in this scenario, while method 1 converges poorly.

5| Chapter 5: Results Discussion 61

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

11 0.00420489 7.7100×10−5 0.00235573 2.3611×10−6 6.8628 6.6115

12 0.66665140 -0.21314749 44.09313000 0.22350869 6.2195 7.1780

13 -0.27505130 -1.4157×10−7 0.59884006 6.3592×10−11 4.5443 4.4426

Table 5.8: Mean and variance of the densities of the difference of the predicted Greek and
the Black & Scholes Greek and time to run the neural networks (in seconds) for each case
and each method.

(a) Method 1. (b) Method 2.

Figure 5.12: Comparison of the Black & Scholes Delta on the x-axis and the predicted
DeltaSANN (left) and DeltaDANN (right) on the y-axis with 103 samples, 5 layers and 64
nodes per layers (case 11).

62 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.13: Comparison of the densities of DeltaSANN − DeltaS (left) and DeltaDANN −
DeltaS (right) with 103 samples, 5 layers and 64 nodes per layer (case 11).

Moreover, as shown in Table 5.9, method 2 produces more accurate estimates. Especially
for the Vega in a at-the-money scenario, the MAE and the RMSE of method 2 are ex-
tremely low.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

11 0.02429887 0.00105230 0.04987107 0.00153852

12 4.07167630 0.31870645 6.67364650 0.51859474

13 0.46027660 5.2967×10−6 0.82127540 9.2651×10−5

Table 5.9: RMSE and MAE of the predicted Greek for each case and each method.

5| Chapter 5: Results Discussion 63

(a) Method 1. (b) Method 2.

Figure 5.14: Comparison of the Black & Scholes Vega on the x-axis and the predicted
V egaSANN (left) and V egaDANN (right) on the y-axis with 103 samples, 5 layers and 64
nodes per layers (case 12).

(a) Method 1. (b) Method 2.

Figure 5.15: Comparison of the densities of V egaSANN−V egaS (left) and V egaDANN−V egaS

(right) with 103 samples, 5 layers and 64 nodes per layer (case 12).

64 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.16: Comparison of the Black & Scholes Vega on the x-axis and the predicted
V egaSANN (left) and V egaDANN (right) on the y-axis with 103 samples, 3 layers and 16
nodes per layers in a at-the-money scenario (case 13).

(a) Method 1. (b) Method 2.

Figure 5.17: Comparison of the densities of V egaSANN−V egaS (left) and V egaDANN−V egaS

(right) with 103 samples, 3 layers and 64 nodes per layer in a at-the-money scenario (case
13).

5| Chapter 5: Results Discussion 65

5.2.2. Tuning the hyper-parameters: Greeks

Here the Greeks results after the hyper-parameters tuning are discussed.
Table 5.12 shows the configurations attained by the optimized neural network, while Ta-
ble 5.13 lists its validation and test loss values. Moreover, Table 5.10 shows the mean and
the variance of the prediction errors. Especially for case 12, the variance of method 1 is
consistently reduced by the hyper-parameters optimization phase.

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

11 -0.00618268 -0.00059838 0.00204158 1.5244×10−6 106.18 103.70

12 1.906002 -0.05679214 15.1198600 0.09738996 98.21 124.10

13 -0.05719818 -9.1276×10−7 0.81977785 1.2329×10−10 109.70 96.00

Table 5.10: Mean and variance of the densities of the difference of the predicted Greek
and the Black & Scholes Greek and time to run the neural networks (in seconds) for each
case and each method.

For what concerns the measures of errors, Table 5.11 indicates that method 1 is less
accurate than method 2, since both its MAE and RMSE are higher than the ones of
method 2. This holds especially for case 13, where the Vega is measured in a at-the-
money scenario. This is due to the fact that method 2 does not face the exploding gradient
problem, since the partial derivation is operated on the difference and not directly on the
price, which is bell-shaped.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

11 0.02025129 0.00109659 0.04560494 0.00137203

12 3.0285408 0.2090156 4.330439 0.31719914

13 0.55224700 6.6031×10−6 0.90722070 1.1141×10−5

Table 5.11: RMSE and MAE of the predicted Greek for each case and each method.

66 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.18: Comparison of the Black & Scholes Delta on the x-axis and the predicted
DeltaSANN (left) and DeltaDANN (right) on the y-axis with the tuned network (case 11).

(a) Method 1. (b) Method 2.

Figure 5.19: Comparison of the densities of DeltaSANN − DeltaS (left) and DeltaDANN −
DeltaS (right) wwith the tuned network (case 11).

5| Chapter 5: Results Discussion 67

(a) Method 1. (b) Method 2.

Figure 5.20: Comparison of the Black & Scholes Vega on the x-axis and the predicted
V egaSANN (left) and V egaDANN (right) on the y-axis with the tuned network (case 12).

(a) Method 1. (b) Method 2.

Figure 5.21: Comparison of the densities of V egaSANN−V egaS (left) and V egaDANN−V egaS

(right) with the tuned network (case 12).

68 5| Chapter 5: Results Discussion

(a) Method 1. (b) Method 2.

Figure 5.22: Comparison of the Black & Scholes Vega on the x-axis and the predicted
V egaSANN (left) and V egaDANN (right) on the y-axis with 103 samples, 3 layers and 16
nodes per layers in a at-the-money scenario (case 13).

(a) Method 1. (b) Method 2.

Figure 5.23: Comparison of the densities of V egaSANN−V egaS (left) and V egaDANN−V egaS

(right) with the tuned network in a at-the-money scenario (case 13).

5| Chapter 5: Results Discussion 69

Best configuration 1 Best configuration 2

Case nodes per layer lr bs nodes per layer lr bs

11 64/32/4/4/4 0.0098 16 4/16/4/32/64 0.0051 4

12 16/64/4/8/64 0.0061 8 32/8/64/32/32 0.0010 2

13 32/16/8 0.0769 8 64/4/4 0.0292 8

Table 5.12: The NN hyper-parameters configurations for which the validation loss is
minimised for each B&S Greek case. The hyper-parameters tuned are the number of
nodes per layer, the learning rate (lr) and the batch size (bs).

Best performance 1 Best performance 2

Case Val. loss Test loss Iter. Time Val. loss Test loss Iter. Time

11 0.05271084 0.08757344 11 3.5498 0.00486848 0.00548440 6 4.5190

12 0.08365190 0.03262035 17 4.5190 0.00802126 0.01049336 16 24.3003

13 0.03819393 0.00839510 20 10.2698 0.46160635 0.49732201 20 21.9552

Table 5.13: The validation loss, test loss, number of iterations and computation time of
the best trial of each method for each case.

5.3. Results of the Up-and-In barrier under Heston

In this section, the cases 14 and 15 are examined. Both methods are applied to the Up-
and-In barrier price under the Heston model. The Monte Carlo simulation of the prices
took 208558.5848 seconds, while the evaluation of the asymptotic expansion price took
an additional 193494 seconds approximately. Compared to the previous cases, these price
simulations and the calculation of their approximations are very computationally expen-
sive.

70 5| Chapter 5: Results Discussion

5.3.1. Using the same hyper-parameters: Heston

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

14 -0.33899918 -0.08203293 6.12968870 2.17119960 5.7656 5.7487

15 -0.97843890 -0.14020070 7.04063460 1.95420720 10.6770 10.5278

Table 5.14: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for each case.

Regarding the neural networks, some hyper-parameters used are the same for both cases:
the batch size is 2, the optimizer is Adam and the number of epochs is 20. The Adam
algorithm parameters are set to their default values, with the exception of the learning
rate: for case 14 is 0.00005, while for case 15 it is 0.00002. Another difference between
the two cases is the number of layers used.
Observing Figure 5.24, we notice that in method 1 low prices (<20) are slightly over-
priced, while medium prices (between 20 and 30) are under-priced. This phenomenon
does not occur for method 2, whose predictions are more stable over the whole price
range.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

14 1.99540910 0.98431855 2.49892140 1.47578070

15 2.32346500 0.92629355 2.82806940 1.40494250

Table 5.15: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for each case.

This model confirms that method 2 is more accurate than method 1. Table 5.15 reports
lower values of RMSE and MAE for method 2.
Table 5.14 shows that the convergence is faster in method 2 and that the number of
layers does not impact much on the results. The huge additional time to compute the
approximated price CS is the great downside of method 2. However, the alternative
method 1 is not accurate enough for practical uses. In conclusion, method 2 is still
preferable than method 1.

5| Chapter 5: Results Discussion 71

(a) Method 1. (b) Method 2.

Figure 5.24: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 7 layers and 64 nodes per layer (case 15).

(a) Method 1. (b) Method 2.

Figure 5.25: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 7 layers and 64 nodes per layer (case 15).

5.3.2. Tuning the hyper-parameters: Heston

This subsections examines the results of the Up-and-In barrier option under Heston, after
the hyper-parameters optimization. Method 2 is more accurate than method 1, since its

72 5| Chapter 5: Results Discussion

MAE and RMSE in Table 5.17 are lower than the ones of method 1. Moreover, if the
measures of errors are compared between cases 14 and 15, their difference is much more
relevant for method 1 than method 2. This shows that method two has a greater stability
with respect to the choice of number of layers of the ANN.

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

14 -1.2137996 -0.07696503 5.0599985 1.6545022 82.40 96.00

15 -0.6335439 -0.18436617 10.556029 1.3943702 143.90 149.30

Table 5.16: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for each case.

Tables 5.19 and 5.18 list the best performance measures and the hyper-parameters best
performing sets, respectively.
Figures 5.26a and 5.27a show clearly that predicted prices are shifted with respect to their
true prices in method 1. In particular, this phenomenon occurs for low prices (lower than
20). Method 2 is more stable in predicting the prices independently of the price range.

(a) Method 1. (b) Method 2.

Figure 5.26: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 15).

5| Chapter 5: Results Discussion 73

(a) Method 1. (b) Method 2.

Figure 5.27: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with with the tuned network (case 15).

Case MAE 1 MAE 2 RMSE 1 RMSE 2

14 1.73985760 0.76840090 2.55603360 1.28857500

15 2.38384600 0.74057525 3.31019760 1.24215170

Table 5.17: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for each case.

Best configuration 1 Best configuration 2

Case nodes per layer lr bs nodes per layer lr bs

14 8/16/64 0.0197 8 32/32/64 0.0021 16

15 8/32/32/8/16/8 0.0130 8 16/32/32/32/32/64/16 0.0011 16

Table 5.18: The NN hyper-parameters configurations for which the validation loss is
minimised for each Heston case. The hyper-parameters tuned are the number of nodes
per layer, the learning rate (lr) and the batch size (bs).

74 5| Chapter 5: Results Discussion

Best performance 1 Best performance 2

Case Val. loss Test loss Iter. Time Val. loss Test loss Iter. Time

14 0.16490477 0.18632613 9 4.3440 0.12472408 0.45735435 14 6.8924

15 0.16304855 0.18545772 16 9.5927 0.14401061 0.47959751 11 4.8523

Table 5.19: The validation loss, test loss, number of iterations and computation time of
the best trial of each method for each case.

5.4. Results of the Down-and-In barrier under CEV

Case 16 is evaluated in this section. The Brownian Bridge Monte Carlo took 11907 sec-
onds, while the approximation pricing took 108 seconds circa. The latter computation
is quite fast since the short interest rate has been fixed to zero and this speeds up the
procedure compared to when r is not null.

5.4.1. Using the same hyper-parameters: CEV

The hyper-parameters are set as: the batch size is 2, the optimizer is Adam, the learning
rate is 0.001 and the number of epochs is 20.

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

16 -0.11889211 0.02371265 2.91692500 0.06843765 5.3125 5.3757

Table 5.20: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for case 16.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

16 1.18054200 0.20661426 1.71203400 0.26267840

Table 5.21: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for case 16.

5| Chapter 5: Results Discussion 75

(a) Method 1. (b) Method 2.

Figure 5.28: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 3 layers and 16 nodes per layer (case 16).

(a) Method 1. (b) Method 2.

Figure 5.29: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 3 layers and 16 nodes per layer (case 16).

Clearly method 1 is not accurate enough to price the Down-and-In barrier. Indeed,
Figures 5.28 and 5.29 show that method 2 is evidently superior, since it predicts correctly
the option price while method 1 is often not reliable at all. Especially in Figure 5.28, it

76 5| Chapter 5: Results Discussion

is shown that method 1 tends to over-price lower prices and under-price higher prices.
Method 2 does not have this tendency. Tables 5.20 and 5.21 confirm these results, listing
un-centred mean and high error variance and RMSE and MAE for method 1.

5.4.2. Tuning the hyper-parameters: CEV

Here the Down-and-In prices under the CEV model after the hyper-parameters tuning
are examined.
The resulting MAE and RMSE in Table 5.23 indicate that method 2 is more accurate
than method 1, since its measures of error are lower.
In this case, Figures 5.30a and 5.31a illustrate that in method 1 low (<5) and high (>20)
predicted prices are shifted with respect to their true prices. This event does not occur in
method 2, which indicates that this method is more stable than method 1 in every price
range.
Tables 5.24 and 5.25 state the hyper-parameters chosen and the loss values attained with
that particular configuration.

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

16 -0.40716386 0.01347228 2.61642340 0.05832489 105.88 97.20

Table 5.22: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for case 16.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

16 1.19669310 0.18829569 1.66799450 0.24188094

Table 5.23: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for case 16.

5| Chapter 5: Results Discussion 77

(a) Method 1. (b) Method 2.

Figure 5.30: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 16).

(a) Method 1. (b) Method 2.

Figure 5.31: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 16).

78 5| Chapter 5: Results Discussion

Best configuration 1 Best configuration 2

Case nodes per layer lr bs nodes per layer lr bs

16 8/8/4 0.0052 4 8/16/64 0.0124 4

Table 5.24: The NN hyper-parameters configurations for which the validation loss is
minimised for each the CEV case. The hyper-parameters tuned are the number of nodes
per layer, the learning rate (lr) and the batch size (bs).

Best performance 1 Best performance 2

Case Val. loss Test loss Iter. Time Val. loss Test loss Iter. Time

16 0.55564883 0.52166334 9 5.8292 0.32310065 0.27133182 9 6.3661

Table 5.25: The validation loss, test loss, number of iterations and computation time of
the best trial of each method for case 16.

5.5. Results of the Down-and-In barrier under the

non linear volatility model

This section examines case 16, so the Down-and-In barrier under the non linear volatility
model defined by Eqs. (1.10) and (1.11). The Brownian Bridge Monte Carlo took around
15018 seconds, while the computation of the approximation took only 127 seconds. Sim-
ilarly to the previous case 17, the evaluation of the approximated price is sped up by
setting r as null.

5.5.1. Using the same hyper-parameters: NLV

The hyper-parameters are selected as follows: the batch size is 2, the optimizer is Adam,
the number of epochs is 10 and the learning rate is 0.001.
This case confirms, once again, that method 1 performs much worse than method 2.
Figure 5.32 shows that the actual prices are predicted incorrectly in method 1. Figure
5.33 and Table 5.26 show that the density of the difference between the predicted price
and the true one of method 1 is not centred in zero and has a high variance. Conversely,
method 2 is more stable and is much more accurate, as the RMSE and MAE in Table
5.27 are much lower. For these reasons, the second method is preferable to the first one.

5| Chapter 5: Results Discussion 79

(a) Method 1. (b) Method 2.

Figure 5.32: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 3 layers and 16 nodes per layer (case 17).

(a) Method 1. (b) Method 2.

Figure 5.33: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with 103 samples, 3 layers and 16 nodes per layer (case 17).

80 5| Chapter 5: Results Discussion

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

17 -0.57579404 0.02639847 8.02863800 0.13829833 5.5129 6.5108

Table 5.26: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for case 17.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

17 2.31014540 0.26924598 2.89139700 0.37282062

Table 5.27: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for case 17.

5.5.2. Tuning the hyper-parameters: NLV

This subsection reports the results of the Down-and-In barrier option under the non-linear
volatility model.
Tables 5.31 and 5.30 list the best performance measures and the hyper-parameters best
performing sets, respectively.

(a) Method 1. (b) Method 2.

Figure 5.34: Comparison of the densities of CS
ANN −CS (left) and CD

ANN −CS (right)with
the tuned network (case 17).

5| Chapter 5: Results Discussion 81

(a) Method 1. (b) Method 2.

Figure 5.35: Comparison of the densities of CS
ANN − CS (left) and CD

ANN − CS (right)
with the tuned network (case 17).

Case Mean 1 Mean 2 Variance 1 Variance 2 Time 1 Time 2

17 -0.76990753 -0.00489157 7.15549660 0.06924574 96.40 102.9

Table 5.28: Mean and variance of the densities of CS
ANN −CS (method 1) and CD

ANN −CS

(method 2) and time to run the neural networks (in seconds) for case 17.

This case confirms that method 1 is less accurate than method 2. Table 5.29 indicates
that MAE and RMSE are lower in the second method rather than the first.
Figures 5.34a and 5.35a show that all predicted prices are shifted with respect to true
prices. This behaviour expresses that method 1 is unfeasible for practical applications.
This does not occur in Figure 5.34b and 5.35b. The small shift showed in the un-tuned
case in Figure 5.32b is corrected with the hyper-parameters optimization.

Case MAE 1 MAE 2 RMSE 1 RMSE 2

17 2.29631040 0.18381032 2.78356840 0.26319130

Table 5.29: RMSE and MAE of CS
ANN (method 1) and CD

ANN (method 2) for case 17.

82 5| Chapter 5: Results Discussion

Best configuration 1 Best configuration 2

Case nodes per layer lr bs nodes per layer lr bs

17 4/8/32 0.0242 16 4/16/16 0.0026 16

Table 5.30: The NN hyper-parameters configurations for which the validation loss is
minimised for the NLV case. The hyper-parameters tuned are the number of nodes per
layer, the learning rate (lr) and the batch size (bs).

Best performance 1 Best performance 2

Case Val. loss Test loss Iter. Time Val. loss Test loss Iter. Time

17 0.87517965 0.78418415 14 4.4946 0.81270048 0.53571040 8 4.1422

Table 5.31: The validation loss, test loss, number of iterations and computation time of
the best trial of each method for case 17.

83

6| Conclusions and future

developments

This work has studied the methodology, which combines Artificial Neural Networks and
Wiener-Itô Chaos expansion approximation formulae, first proposed by Funahashi in [26].
According to this paper, applying an ANN directly to the benchmark price (referred as
method 1) is inferior to the application of the model to the difference between a bench-
mark option price and its asymptotic expansion approximation (referred as method 2).
This work confirms this result through a deeper investigation.
The methods are tested for several options under different financial models. In particular,
the performance of the discussed method is investigated for the first time on a Down-and-
In barrier option under CEV and a non linear volatility model.
Moreover, this study gives additional insight on the impact of the hyper-parameters on
the two methods performance. The introduction of the validation set allowed to select the
hyper-parameters manually, with an educated guess, and automatically, by tuning them.
Overall, both methods improve slightly their results with the optimization procedure.
The prediction accuracy is evaluated with MAE and RMSE, two commonly used error
measures. The second method is more accurate for any case examined, producing lower
values of MAE and RMSE.
Method 2 offers more stable predictions than method 1. This occurs especially when
the underlying evolves according to Heston, CEV and the non linear volatility model: in
method 1 predictions are over-estimated or under-estimated in some price ranges, while
in method 2 this phenomenon does not occur.

Future studies might investigate method 2 in multiple directions.
First, the robustness with respect to hyper-parameters might be studied more in depth.
The comparison of only one tuned and one un-tuned model is not sufficient to state that
method 2 shows good accuracy independently on the hyper-parameter configuration. A
k-fold cross validation might be performed to have additional insight on this aspect.
Another interesting direction is to examine some variations of the method. For exam-

84 6| Conclusions and future developments

ple, a question to answer is whether the employment of a higher order Wiener-Itô Chaos
expansion approximation formula offers more accurate and stable results. Alternatively,
other machine learning models might be tested. Some suggestions are Support Vector
Regression, Random Forest, XGBoost, Light Gradient Boosting Machine and Genetic
Algorithms, which have already been tested in the option pricing field [23].
Another direction to explore is the application of the method on different options and
financial models. Examples to explore are American, Asian and double barrier options,
whose approximation closed formulae have been derived in [65] and [25, 58] and [29],
respectively. Otherwise, the method might be adopted for fractional volatility models,
whose asymptotic expansion of the underlying is discussed in [27].

85

Bibliography

[1] Ray tune documentation. URL https://docs.ray.io/en/latest/tune/index.

html.

[2] Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning, chap-
ter Hyperparameters Optimazation. The Springer Series on Challenges in Machine
Learning. Springer, 2019. doi: https://doi.org/10.1007/978-3-030-05318-5_1.

[3] I. A. Abramowitz, Milton Stegun. Handbook of Mathematical Functions With For-
mulas, Graphs, and Mathematical Tables, page 775. National Bureau of Standards
Applied Mathematics Series, 10 edition, 12 1972.

[4] H. Albrecher, P. A. Mayer, W. Schoutens, and J. Tistaert. The little heston trap.
Wilmott, pages 83–92, 2006.

[5] L. Andersen. Efficient Simulation of the Heston Stochastic Volatility Model. SSRN,
2007. URL https://dx.doi.org/10.2139/ssrn.946405.

[6] D. Aumiller. Mini batch gradient descent, adam and epochs. URL https:

//stackoverflow.com/questions/51373903.

[7] L. Bachelier. Théorie de la spéculation. Annales scientifiques de l’École Normale
Supérieure, 3e série, 17:21–86, 1900. doi: 10.24033/asens.476. URL http://www.

numdam.org/articles/10.24033/asens.476/.

[8] P. Baheti. Activation functions in neural networks [12 types use cases]. URL https:

//www.v7labs.com/blog/neural-networks-activation-functions.

[9] P. Baldi. Exact asymptotics for the probability of exit from a domain and applications
to simulations. The Annals of Probability, 23(4):1644–1670, 1995.

[10] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal
of machine learning research, 13(2), 2012.

[11] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparam-

https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://dx.doi.org/10.2139/ssrn.946405
https://stackoverflow.com/questions/51373903
https://stackoverflow.com/questions/51373903
http://www.numdam.org/articles/10.24033/asens.476/
http://www.numdam.org/articles/10.24033/asens.476/
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions

86 | Bibliography

eter optimization in hundreds of dimensions for vision architectures. In International
conference on machine learning, pages 115–123. PMLR, 2013.

[12] T. Björk. Arbitrage theory in continuous time, page 246. Oxford university press,
2020.

[13] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
of Political Economy, 81(3):637–654, 1973. ISSN 00223808, 1537534X. URL http:

//www.jstor.org/stable/1831029.

[14] Brilliant.org. Artificial neural network, . URL https://brilliant.org/wiki/

artificial-neural-network/. Retrieved February 2023.

[15] Brilliant.org. Backpropagation, . URL https://brilliant.org/wiki/

backpropagation/. Retrieved February 2023.

[16] P. Carr, K. Ellis, and V. Gupta. Static hedging of exotic options. The Journal
of Finance, 53(3):1165–1190, 1998. doi: https://doi.org/10.1111/0022-1082.00048.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.00048.

[17] V. Chugh. Tuning adam optimizer parameters in pytorch. URL https://www.

kdnuggets.com/2022/12/tuning-adam-optimizer-parameters-pytorch.html.

[18] M. Claesen and B. D. Moor. Hyperparameter search in machine learning. CoRR,
abs/1502.02127, 2015. URL http://arxiv.org/abs/1502.02127.

[19] J. Cox. Notes on option pricing i: Constant elasticity of variance diffusions. Unpub-
lished note, Stanford University, Graduate School of Business, 1975.

[20] G. Di Nunno, B. Øksendal, and F. Proske. Malliavin Calculus for Lévy Pro-
cesses with Applications to Finance. 01 2008. ISBN 978-3540785712. doi:
10.1007/978-3-540-78572-9.

[21] L. Di Santo. Formula approssimanta per la valutazione di opzioni a barriera singola
per modelli a volatilità locale. Master’s thesis, Politecnico di Milano, 2017.

[22] E. Dral. Learning from machine learning mistakes. URL https://

towardsdatascience.com/2cf3e91306b9.

[23] I. Florin. Option pricing using machine learning. Expert Systems with Applications,
163:113799, 07 2020. doi: 10.1016/j.eswa.2020.113799.

[24] J. Fouque, G. Papanicolaou, R. Sircar, and K. Solna. Singular perturbations in option
pricing. SIAM Journal on Applied Mathematics, 63(5):1648–1665, June 2003. ISSN
0036-1399. doi: 10.1137/S0036139902401550.

http://www.jstor.org/stable/1831029
http://www.jstor.org/stable/1831029
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/backpropagation/
https://brilliant.org/wiki/backpropagation/
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.00048
https://www.kdnuggets.com/2022/12/tuning-adam-optimizer-parameters-pytorch.html
https://www.kdnuggets.com/2022/12/tuning-adam-optimizer-parameters-pytorch.html
http://arxiv.org/abs/1502.02127
https://towardsdatascience.com/2cf3e91306b9
https://towardsdatascience.com/2cf3e91306b9

| Bibliography 87

[25] H. Funahashi. A chaos expansion approach under hybrid volatility models. Quanti-
tative Finance, 14:1923–1936, 11 2014. doi: 10.1080/14697688.2013.872283.

[26] H. Funahashi. Artificial neural network for option pricing with and without asymp-
totic correction. Quantitative Finance, 21(4):575–592, 2020. URL https://doi.

org/10.1080/14697688.2020.1812702.

[27] H. Funahashi. Replication scheme for the pricing of european options. International
Journal of Theoretical and Applied Finance, 24(3), 2021. URL https://doi.org/

10.1142/S021902492150014X.

[28] H. Funahashi. Sabr equipped with ai wings. Quantitative Finance, 23(2):229–249,
2023. URL https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:

2:p:229-249.

[29] H. Funahashi and T. Higuchi. An analytical approximation for single barrier options
under stochastic volatility models. Annals of Operations Research, 266:129–157, 2018.
URL https://doi.org/10.1007/s10479-017-2559-3.

[30] H. Funahashi and M. Kijima. A chaos expansion approach for the pricing of contin-
gent claims. Research Paper Series, 99, 2011. URL https://doi.org/10.21314/

JCF.2015.299.

[31] H. Funahashi and M. Kijima. A chaos expansion approach for the pricing of contin-
gent claims. 2012.

[32] H. Funahashi and M. Kijima. A chaos expansion approach for the pricing of
contingent claims. Journal of Computational Finance, 18(3):25–58, 2015. URL
https://doi.org/10.21314/JCF.2015.299.

[33] P. Glasserman. Monte Carlo Methods in Financial Engineering, pages 368–370.
Springer, New York, NY, USA, 2004.

[34] P. S. Hagan, D. Kumar, A. Lesniewski, and D. E. Woodward. Managing smile risk.
Wilmott Magazine, September:84–108, 2002.

[35] A. Hernandez. Model calibration with neural networks. Neuroeconomics eJournal,
2016.

[36] S. L. Heston. A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options. The Review of Financial Studies, 6(2):327–43,
1993. URL https://doi.org/10.1093/rfs/6.2.327.

[37] T. Hodson. Root-mean-square error (rmse) or mean absolute error (mae): when to

https://doi.org/10.1080/14697688.2020.1812702
https://doi.org/10.1080/14697688.2020.1812702
https://doi.org/10.1142/S021902492150014X
https://doi.org/10.1142/S021902492150014X
https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:2:p:229-249
https://EconPapers.repec.org/RePEc:taf:quantf:v:23:y:2023:i:2:p:229-249
https://doi.org/10.1007/s10479-017-2559-3
https://doi.org/10.21314/JCF.2015.299
https://doi.org/10.21314/JCF.2015.299
https://doi.org/10.21314/JCF.2015.299
https://doi.org/10.1093/rfs/6.2.327

88 | Bibliography

use them or not. Geoscientific Model Development, 15:5481–5487, 07 2022. URL
https://doi.org/10.5194/gmd-15-5481-2022.

[38] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural Networks,
3(5):551–560, 1990. URL https://doi.org/10.1016/0893-6080(90)90005-6.

[39] B. Horvath, A. Muguruza, and M. Tomas. Deep learning volatility: a deep neural
network perspective on pricing and calibration in (rough) volatility models. Quantita-
tive Finance, 21(1):11–27, 2020. URL https://doi.org/10.1080/14697688.2020.

1817974.

[40] J. Hull and A. White. The pricing of options on assets with stochastic volatili-
ties. The Journal of Finance, 42(2):281–300, 1987. doi: https://doi.org/10.1111/j.
1540-6261.1987.tb02568.x. URL https://onlinelibrary.wiley.com/doi/abs/10.

1111/j.1540-6261.1987.tb02568.x.

[41] A. Itkin. Deep learning calibration of option pricing models: some pitfalls and solu-
tions, 2019. URL https://arxiv.org/abs/1906.03507.

[42] K. Itô. Multiple wiener integral. Journal of the Mathematical Society of Japan, 3(1):
157–169, 1951. URL https://doi.org/10.2969/jmsj/00310157.

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

[44] L. Li, K. Jamieson, A. Rostamizadeh, K. Gonina, M. Hardt, B. Recht, and A. Tal-
walkar. Massively parallel hyperparameter tuning, 2018. URL https://openreview.

net/forum?id=S1Y7OOlRZ.

[45] P. Liashchynskyi and P. Liashchynskyi. Grid search, random search, genetic al-
gorithm: A big comparison for NAS. CoRR, abs/1912.06059, 2019. URL http:

//arxiv.org/abs/1912.06059.

[46] S. Liu, A. Borovykh, L. A. Grzelak, and C. W. Oosterlee. A neural network-based
framework for financial model calibration. Journal of Mathematics in Industry, 9(1),
sep 2019. doi: 10.1186/s13362-019-0066-7.

[47] J. D. Macbeth and L. J. Merville. Tests of the black-scholes and cox call option valu-
ation models. The Journal of Finance, 35(2):285–301, 1980. doi: https://doi.org/10.
1111/j.1540-6261.1980.tb02157.x. URL https://onlinelibrary.wiley.com/doi/

abs/10.1111/j.1540-6261.1980.tb02157.x.

https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1080/14697688.2020.1817974
https://doi.org/10.1080/14697688.2020.1817974
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1987.tb02568.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1987.tb02568.x
https://arxiv.org/abs/1906.03507
https://doi.org/10.2969/jmsj/00310157
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=S1Y7OOlRZ
https://openreview.net/forum?id=S1Y7OOlRZ
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1912.06059
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1980.tb02157.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1980.tb02157.x

| Bibliography 89

[48] D. Mack. How to pick the best learning rate for your machine learning project. URL
https://medium.com/octavian-ai/5acb418f9b2.

[49] D. Marris. Financial option pricing and skewed volatility. Master’s thesis, University
of Cambridge, 1999. MPhil Statistical Science. External Supervisor: Dr Martin
Baxter Nomura International Plc.

[50] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 12 1943. doi: https://doi.
org/10.1007/BF02478259.

[51] G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural
language models, 2017.

[52] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408, 6 1958. doi: https:
//doi.org/10.1037/h0042519.

[53] M. Rubinstein and E. Reiner. Breaking down the barriers. RISK, 4:28–35, 1991.

[54] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 10 1986. doi: https://doi.org/10.1038/
323533a0.

[55] D. Sculley, J. Snoek, A. B. Wiltschko, and A. Rahimi. Winner’s curse? on pace,
progress, and empirical rigor. In International Conference on Learning Representa-
tions, 2018.

[56] Y. Shevchuk. What is batch size in neural network? URL https://stats.

stackexchange.com/questions/153531.

[57] K. Shiraya. An approximation method for pricing continuous barrier options under
multi-asset local stochastic volatility models. International Journal of Theoretical
and Applied Finance, 23, 11 2020. doi: 10.1142/S021902492050051X.

[58] K. Shiraya and A. Takahashi. Pricing average options on commodity. Journal of
Futures Markets, 31:407 – 439, 05 2011. doi: 10.1002/fut.20481.

[59] L. N. Smith. A disciplined approach to neural network hyper-parameters: Part
1 – learning rate, batch size, momentum, and weight decay, 2018. URL https:

//arxiv.org/abs/1803.09820.

[60] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms, 2012.

https://medium.com/octavian-ai/5acb418f9b2
https://stats.stackexchange.com/questions/153531
https://stats.stackexchange.com/questions/153531
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820

90 6| BIBLIOGRAPHY

[61] J. D. Spiegeleer, D. B. Madan, S. Reyners, and W. Schoutens. Machine learning
for quantitative finance: fast derivative pricing, hedging and fitting. Quantitative
Finance, 18(10):1635–1643, October 2018. doi: 10.1080/14697688.2018.149. URL
https://ideas.repec.org/a/taf/quantf/v18y2018i10p1635-1643.html.

[62] A. Takahashi. An asymptotic expansion approach to pricing financial contingent
claims. Asia-Pacific Financial Markets, 6:115–151, 1999. URL https://doi.org/

10.1023/A:1010080610650.

[63] A. Takahashi and K. Takehara. An asymptotic expansion approach to currency op-
tions with a market model of interest rates under stochastic volatility processes of spot
exchange rates. Asia-Pacific Financial Markets, 14(1):69–121, 2007. URL https:

//EconPapers.repec.org/RePEc:kap:apfinm:v:14:y:2007:i:1:p:69-121.

[64] N. Yoshida. Asymptotic expansions for statistics related to small diffusions. Journal
of Japan Statistical Society, 22:139–159, 1992.

[65] S. M. Zhang and Y. Feng. American option pricing under the double Heston model
based on asymptotic expansion. Quantitative Finance, 19(2):211–226, February 2019.
doi: 10.1080/14697688.2018.147. URL https://ideas.repec.org/a/taf/quantf/

v19y2019i2p211-226.html.

[66] B. Øksendal. Stochastic Differential Equations, chapter 5, pages 65–84. Universitext.
Springer, Berlin, Heidelberg, 6 edition, 2003.

[67] B. Øksendal. Stochastic Differential Equations. Universitext. Springer, Berlin, Hei-
delberg, 6 edition, 2003. ISBN 978-3-540-04758-2. doi: https://doi.org/10.1007/
978-3-642-14394-6.

https://ideas.repec.org/a/taf/quantf/v18y2018i10p1635-1643.html
https://doi.org/10.1023/A:1010080610650
https://doi.org/10.1023/A:1010080610650
https://EconPapers.repec.org/RePEc:kap:apfinm:v:14:y:2007:i:1:p:69-121
https://EconPapers.repec.org/RePEc:kap:apfinm:v:14:y:2007:i:1:p:69-121
https://ideas.repec.org/a/taf/quantf/v19y2019i2p211-226.html
https://ideas.repec.org/a/taf/quantf/v19y2019i2p211-226.html

91

A| Appendix A

This appendix shows the exact formulae needed to compute the price of a European Call
option. They hold in the most general case, under the Local Stochastic Volatility Model
(LSVM). Funahashi derived them in [25].

Let σ(0)(t) = σ(F (0, t), V (0, t)) and γ(0)(t) = γ(V (0, t)) where F (0, t) = S0e
∫ t
0 r(s) ds and

V (0, t) = E(t)(ν0+
∫ t

0
E(u)θ(u) du) with E(t) = e

∫ t
0 κ(u) du and E(t) = 1

E(t)
. Then pi(t) are

defined as:

p1(s) := σ(0)(s) +

(
σ
(0)
S (s)F (0, s) +

1

2
F (0, s)2σ

(0)
SS(s)

)(∫ s

0

(σ0(u))
2 du

)
+

1

2
σ(0)
νν (s)E(s)

2

(∫ s

0

E(u)2γ(0)(u)2 du

)
+
(
σ(0)
ν (s)E(s) + σ

(0)
Sν (s)F (0, s)E(s)

)(∫ s

0

ρE(u)γ(0)(u)σ(0)(u) du

)
,

p2(s) := σ(0)(s) + F (0, s)σ
(0)
S (s),

p3(s) := σ(0)
ν E(s),

p4(s) := E(s)γ(0)(s),

p5(s) := σ(0)(s) + 3σ
(0)
S (s)F (0, s) + σ

(0)
SSF (0, s)

2,

p6(s) := σ(0)
νν E

2
,

p7(s) := σ(0)
ν E(s) + σ

(0)
SνF (0, s)E(s),

p8(s) := σ
(0)
S (s)F (0, s).

Given S(0)
t = F (0, t) and ν(0)t = V (0, t), the derivatives are defined as:

σ
(0)
S (t) := ∂Sσ(s, ν)|s=S

(0)
t ,ν=ν

(0)
t
, σ(0)

ν (t) := ∂νσ(s, ν)|s=S
(0)
t ,ν=ν

(0)
t
,

σ
(0)
SS(t) := ∂SSσ(s, ν)|s=S

(0)
t ,ν=ν

(0)
t
, σ(0)

νν (t) := ∂ννσ(s, ν)|s=S
(0)
t ,ν=ν

(0)
t
,

σ
(0)
Sν (t) := ∂Sνσ(s, ν)|s=S

(0)
t ,ν=ν

(0)
t
.

92 A| Appendix A

Σt, qi(t), q2,k(t) and q4,k(t) are defined as:

Σt :=

∫ t

0

p1(s)
2 ds,

q1(t) :=

∫ t

0

p1(s)p2(s)

(∫ s

0

σ(0)(u)p1(u) du

)
ds+

∫ t

0

p1(s)p3(s)

(∫ s

0

ρp1(u)p4(u) du

)
ds,

q2(t) := q2,1(t) + q2,2(t) + q2,3(t),

q3(t) := q1(t)
2,

q4(t) := q4,1(t) + q4,2(t) + q4,3(t),

q5(t) :=

∫ t

0

p2(s)
2

(∫ s

0

(σ(0)(u))2 du

)
ds+

∫ t

0

p3(s)
2

(∫ s

0

p4(u)
2 du

)
ds

+ 2

∫ t

0

p2(s)p3(s)

(∫ s

0

ρσ(0)(u)p4(u) du

)
ds,

q2,1(t) :=

∫ t

0

p1(s)p5(s)

(∫ s

0

σ(0)(u)p1(u)

(∫ u

0

σ(0)(v)p1(v) dv

)
du

)
ds

+

∫ t

0

p1(s)p2(s)

(∫ s

0

p1(u)p8(u)

(∫ u

0

σ(0)(v)p1(v) dv

)
du

)
ds,

q2,2(t) :=

∫ t

0

p1(s)p3(s)

(∫ s

0

ρp1(u)γ
(0)
ν (u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds,

q2,3(t) :=

∫ t

0

p1(s)p6(s)

(∫ s

0

ρp1(u)p4(u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds

+

∫ t

0

p1(s)p7(s)

(∫ s

0

σ(0)(u)p1(u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds

+

∫ t

0

p1(s)p2(s)

(∫ s

0

ρp1(u)p3(u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds,

q4,1(t) := 2

∫ t

0

p1(s)p2(s)

(∫ s

0

p1(u)p2(u)

(∫ v

0

(σ(0)(v))2 dv

)
du

)
ds

+ 2

∫ t

0

p1(s)p2(s)

(∫ s

0

σ(0)(u)p2(u)

(∫ v

0

σ(0)(v)p1(v) dv

)
du

)
ds

+

∫ t

0

p2(s)
2

(∫ s

0

σ(0)(u)p1(u) du

)2

ds,

q4,2(t) := 2

∫ t

0

p1(s)p3(s)

(∫ s

0

p1(u)p3(u)

(∫ v

0

p4(v)
2 dv

)
du

)
ds

+ 2

∫ t

0

p1(s)p3(s)

(∫ s

0

ρp3(u)p4(u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds

+

∫ t

0

p3(s)
2

(∫ s

0

ρp1(u)p4(u) du

)2

ds,

A| Appendix A 93

q4,3(t) := 2

∫ t

0

p1(s)p2(s)

(∫ s

0

p1(u)p3(u)

(∫ v

0

ρσ(0)(v)p4(v) dv

)
du

)
ds

+ 2

∫ t

0

p1(s)p3(s)

(∫ s

0

p1(u)p2(u)

(∫ v

0

ρσ(0)(v)p4(v) dv

)
du

)
ds

+ 2

∫ t

0

p1(s)p2(s)

(∫ s

0

σ(0)(u)p3(u)

(∫ v

0

ρp1(v)p4(v) dv

)
du

)
ds

+ 2

∫ t

0

p1(s)p3(s)

(∫ s

0

ρp2(u)p4(u)

(∫ v

0

σ(0)(v)p1(v) dv

)
du

)
ds

+ 2

∫ t

0

p2(s)p3(s)

(∫ s

0

σ(0)(u)p1(u)

(∫ u

0

ρp1(v)p4(v) dv

)
du

)
ds.

95

B| Appendix B

This appendix shows the exact formulae needed to compute the price of Barrier options.
They hold in the most general case, under the Local Stochastic Volatility Model (LSVM).
Funahashi derived them in [29].

Let σ(0)(t) = σ(F (0, t), V (0, t)) and γ(0)(t) = γ(V (0, t)) where F (0, t) = S0e
∫ t
0 r(s) ds and

V (0, t) = E(t)(ν0+
∫ t

0
E(u)θ(u) du) with E(t) = e

∫ t
0 κ(u) du and E(t) = 1

E(t)
. Moreover, the

derivatives of σ(0)(t) are σ(0)
S (t) := ∂Sσ(s, ν)|s=S

(0)
t ,ν=ν

(0)
t

, σ(0)
ν (t) := ∂νσ(s, ν)|s=S

(0)
t ,ν=ν

(0)
t

.

Let Σt :=
∫ t

0
(σ(0)(s))2 ds, and

q(t) :=

∫ t

0

p1(s)σ
(0)(s)

(∫ s

0

(σ(0)(u))2 du

)
ds+ ρ

∫ t

0

p2(s)σ
(0)(s)

(∫ s

0

p3(u)σ
(0)(u) du

)
ds,

where
p1(s) := σ(0)(s) + F (0, s)σ

(0)
S (s),

p2(s) := σ(0)
ν E(s),

p3(s) := E(s)γ(0)(s).

Then ω1
t (B), ΩT , ω̇T ,ω̈T , ϕ, Xi(T) and fi(T) are defined as:

ω1
t (B) := −

√
t(Σ

3
2
t −

√
Dt(B))

2q(t)
,

where
Dt(B) := Σ3

t + 4

(
B

F (0, t)
− 1

)
q(t)Σt + 4q2(t),

Ωt :=

∫ t

0

α2(s) ds,

where

α(t) := − ∂

∂t
ω1
t (B),

ω̇T := ω1
T (B) + ω1

0(B),

96 B| Appendix B

...
ω T := ω̇T − ω1

T (K),

ϕ :=

∫ t

0
α(s) ds

|
∫ t

0
α(s) ds|

,

X1(T) := F (0, T)q(T)
(
ω1
T (K) + ω̇T

) [
(ω1

T (K))2 + (ω̇T)
2
]
ΩTT

− 3
2

+ F (0, T)
[
(ω1

T (K))2 + ω1
T (K)ω̇T + (ω̇T)

2
] (

2ϕq(T)
√

ΩT + Σ
3
2
TΩT

)
T−1

+
(
ω1
T (K) + ω̇T

)
ΣT

[
F (0, T)

(
2ϕ
√

ΣTΩT + ΩT

)
−KΩT

]
T− 1

2

+ F (0, T)q(T)
[
ω1
T (K)(2 + ΩT) + ω̇T (2 + 3ΩT)

]
T− 1

2

+ F (0, T)ΣT

[
2ϕ
√

ΩT +
√

ΣT (2 + ΩT)
]

+ 2ϕ(F (0, T)q(T)−KΣT)
√
ΩT ,

X2(T) := F (0, T)q(T)
(
ω1
T (B) + ω̇T

) [
(ω1

T (B))2 + (ω̇T)
2
]
ΩTT

− 3
2

+ F (0, T)
[
(ω1

T (B))2 + ω1
T (B)ω̇T + (ω̇T)

2
] (

2ϕq(T)
√
ΩT + Σ

3
2
TΩT

)
T−1

+
(
ω1
T (B) + ω̇T

)
ΣT

[
F (0, T)

(
2ϕ
√

ΣTΩT + ΩT

)
−KΩT

]
T− 1

2

+ F (0, T)q(T)
[
ω1
T (B)(2 + ΩT) + ω̇T (2 + 3ΩT)

]
T− 1

2

+ F (0, T)ΣT

[
2ϕ
√

ΩT +
√

ΣT (2 + ΩT)
]

+ 2ϕ(F (0, T)q(T)−KΣT)
√
ΩT ,

X3(T) := F (0, T)q(T)ω̇4
TΩTT

−2

+ F (0, T)ω̇3
T

(
2ϕq(T)

√
ΩT + Σ

3
2
TΩT

)
T− 3

2

+ ω̇2
T

(
2ϕF (0, T)ΣT

√
ΣTΩT + F (0, T)ΣTΩT + 2F (0, T)q(T)(1 + 2ΩT)−KΣTΩT

)
T−1

+ 2F (0, T)ω̇T

(
2ϕq(T)

√
ΩT + Σ

3
2
T (1 + ΩT) + ϕΣT

√
ΩT

)
T− 1

2

− 2ϕKω̇T

√
ΩTΣTT

− 1
2

+ 2F (0, T)ΣT

(
1 + ϕ

√
ΣTΩT

)
+ F (0, T)q(T)ΩT − 2KΣT ,

f1(T) :=

√
2T

π
e−

ω̈2
T

2T

{
−KTΣT

√
ΩT

(
2ϕ

√
T +

√
ΩT (ω̇T + ω1

T (K))
)

+ F (0, T)
[
T

3
2

(
2ϕq(T)

√
ΩT + 2ϕΣT

√
ΩT + Σ

3
2
T (2 + ΩT)

)
+
√
T
(
2ϕq(T) + Σ

3
2
T

√
ΩT

)√
ΩT (ω̇

2
T + ω̇Tω

1
T (K) + (ω1

T (K))2)

+ T
(
ΣT

(
2ϕ
√

ΩTΣT + ΩT

)
(ω̇T + ω1

T (K))

+ q(T)(2 + 3ΩT)ω̇T + (2 + ΩT)ω
1
T (K))

)
+ q(T)ΩT (ω̈

3
T + 4ω1

T (K)ω̇2
T − 2(ω1

T (K))2ω̈T)
]}
,

B| Appendix B 97

f2(T) := −KTΣT (2T + 2ϕ
√
TΩT ω̇T + ΩT ω̇

2
T)

+ F (0, T)
[
2T 2(ΣT + ϕΣ

3
2
T

√
ΩT + q(T)ΩT)

+ 2T
3
2

(
2ϕq(T)

√
ΩT + ϕΣT

√
ΩT + Σ

3
2
T (1 + ΩT)

)
ω̇T + q(T)ΩT ω̇

4
T

+ T (2ϕΣ
3
2
T

√
ΩT + ΣTΩT + q(T)(2 + 4ΩT))ω̇

2
T +

√
TΩT (2ϕq(T) + Σ

3
2
TΩT)ω̇

3
T

]
.

99

List of Figures

2.1 WIC expansions and exact density of the underlying. 21
2.2 Exact and approximated prices and their errors, EU Call B&S. 24

5.1 CS vs CS
ANN (left) and CD

ANN (right) in case 0. 50
5.2 CS vs CS

ANN (left) and CD
ANN (right) in case 4. 50

5.3 Densities of CS
ANN − CS and (left) CD

ANN − CS (right) in case 0. 51
5.4 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 4. 51

5.5 CS vs. CS and density of CS − CS (case 9). 54
5.6 Evolution of CS − CS (red) and CD

ANN − CS (blu) as the strike varies. . . . 54
5.7 CS vs. CANN and density of CANN − CS (case 10). 55
5.8 CS vs CS

ANN (left) and CD
ANN (right) in case 0, tuned net. 56

5.9 CS vs CS
ANN (left) and CD

ANN (right) in case 4, tuned net. 56
5.10 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 0, tuned net. 57

5.11 Densities of CS
ANN − CS and (left) CD

ANN − CS (right) in case 4, tuned net. 58
5.12 DeltaS vs DeltaSANN (left) and DeltaDANN (right) in case 11. 61
5.13 Densities of DeltaSANN − DeltaS and (left) DeltaDANN − DeltaS (right) in

case 11. 62
5.14 V egaS vs V egaSANN (left) and V egaDANN (right) in case 12. 63
5.15 Densities of V egaSANN −V egaS and (left) V egaDANN −V egaS (right) in case

12. 63
5.16 V egaS vs V egaSANN (left) and V egaDANN (right) in case 13. 64
5.17 Densities of V egaSANN −V egaS and (left) V egaDANN −V egaS (right) in case

13. 64
5.18 DeltaS vs DeltaSANN (left) and DeltaDANN (right) in case 11, tuned net. . . 66
5.19 Densities of DeltaSANN − DeltaS and (left) DeltaDANN − DeltaS (right) in

case 11, tuned net. 66
5.20 V egaS vs V egaSANN (left) and V egaDANN (right) in case 12, tuned net. . . . 67
5.21 Densities of V egaSANN −V egaS and (left) V egaDANN −V egaS (right) in case

12, tuned net. 67
5.22 V egaS vs V egaSANN (left) and V egaDANN (right) in case 13, tuned net. . . . 68

100 | List of Figures

5.23 Densities of V egaSANN −V egaS and (left) V egaDANN −V egaS (right) in case
13, tuned net. 68

5.24 CS vs CS
ANN (left) and CD

ANN (right) in case 15. 71
5.25 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 15. 71

5.26 CS vs CS
ANN (left) and CD

ANN (right) in case 15, tuned net. 72
5.27 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 15, tuned net. 73

5.28 CS vs CS
ANN (left) and CD

ANN (right) in case 16. 75
5.29 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 16. 75

5.30 CS vs CS
ANN (left) and CD

ANN (right) in case 16, tuned net. 77
5.31 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 16, tuned net. 77

5.32 CS vs CS
ANN (left) and CD

ANN (right) in case 17. 79
5.33 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 17. 79

5.34 CS vs CS
ANN (left) and CD

ANN (right) in case 17, tuned net. 80
5.35 Densities of CS

ANN − CS and (left) CD
ANN − CS (right) in case 17, tuned net. 81

101

List of Tables

2.1 Exact and approximated prices and relative errors of EU Call B&S, low
volatility. 22

2.2 Exact and approximated prices and relative errors of EU Call B&S, high
volatility. 23

4.1 Cases, inputs, labels of each case. 36
4.2 Parameters of B&S. 37
4.3 Parameters of B&S Greeks. 37
4.4 Parameters of Vega at-the-money. 38
4.5 Parameters of B&S, case 9. 38
4.6 Parameters of Heston. 39
4.7 Parameters of CEV. 40
4.8 Parameters of NLV. 40
4.9 Summary of the details to build the neural networks. 45
4.10 The search space of hyper-parameters. 46

5.1 Mean, variance and time of cases 0-10. 52
5.2 Mean, variance, time, MAE and RMSE of additional cases 9 and 10. 52
5.3 RMSE and MAE of cases 0-10. 53
5.4 Mean, variance and time of cases 0-8, tuned net. 57
5.5 RMSE and MAE of cases 0-8, tuned net. 58
5.6 Configurations of cases 0-8. 59
5.7 Best trial performance, cases 0-8. 60
5.8 Mean, variance and time of cases 11-13. 61
5.9 RMSE and MAE of cases 11-13. 62
5.10 Mean, variance and time of cases 11-13, tuned net. 65
5.11 RMSE and MAE of cases 11-13, tuned net. 65
5.12 Configurations of cases 11-13. 69
5.13 Best trial performance, cases 11-13. 69
5.14 Mean, variance and time of cases 14 and 15. 70

102 | List of Tables

5.15 RMSE and MAE of cases 14 and 15. 70
5.16 Mean, variance and time of cases 14 and 15, tuned net. 72
5.17 RMSE and MAE of cases 14 and 15, tuned net. 73
5.18 Configurations of cases 14 and 15. 73
5.19 Best trial performance, case 14 and 15. 74
5.20 Mean, variance and time of case 16. 74
5.21 RMSE and MAE of case 16. 74
5.22 Mean, variance and time of case 16, tuned net. 76
5.23 RMSE and MAE of case 16, tuned net. 76
5.24 Configurations of case 16. 78
5.25 Best trial performance, case 16. 78
5.26 Mean, variance and time of case 17. 80
5.27 RMSE and MAE of case 17. 80
5.28 Mean, variance and time of case 17, tuned net. 81
5.29 RMSE and MAE of case 17, tuned net. 81
5.30 Configurations of case 17. 82
5.31 Best trial performance, case 17. 82

103

List of Symbols

Variable Description

ANN Artificial Neural Network

B&S Black & Scholes model

HES Heston model

CEV Constant Elasticity of Variance model

NLV Non linear volatility model

MC Monte Carlo

RMSE Root Mean Squared Error

MAE Mean Absolute Error

ATM At-the-money

105

Acknowledgements

Questo percorso al Politecnico di Milano che ho appena concluso sarebbe stato molto più
difficile se non avessi avuto attorno a me le persone che mi hanno sempre sostenuta. Non
posso dimenticare i tanti ostacoli che si sono presentati durante questi anni universitari
e, di conseguenza, l’aiuto fondamentale di parenti e amici per affrontare i momenti di
maggiore sconforto. Per questo motivo è molto importante per me condividere la soddis-
fazione di questo traguardo con le persone che più amo.
Grazie ai miei genitori, Annalisa e Raffaello, e mio fratello Leonardo che sono stati parte-
cipi di tutti i miei sacrifici e mi hanno sostenuta sempre attraverso il loro amore incon-
dizionato.
Grazie a tutti i miei parenti. In particolare, devo un grazie immenso ai miei nonni: Gino,
per avermi motivata negli studi sin da bambina; Dino, per avermi conferito il titolo di
"scienziata"; Adriana, per avermi trasmesso la passione per la matematica; Lucia, per
esser stata il mio più grande esempio di dedizione e meticolosità.
Grazie ai miei amici del liceo, soprattutto alle mie "raccattate", Elena, Caterina, Martina
ed Elisa, che sono il mio punto di riferimento per dare ascolto e ridimensionare tutte le
mie preoccupazioni da più di dieci anni.
Grazie ai miei amici "del giornalino", o "giornalisti". Anche se per qualcuno di loro questo
appellativo può risultare improprio, sanno bene che mi riferisco a Samantha, Riccardo,
Elena, gli Andrea, Paolo, Francesco e Marco. Mi hanno offerto tantissime occasioni per
distrarmi dagli studi e mi hanno permesso di credere di più in me stessa, dimostrando
tanta stima nei miei confronti, che è assolutamente reciproca.
Grazie ai miei coinquilini di Milano, in particolare alle fantastiche ragazze che hanno abi-
tato via Calzecchi: Anna, Marta, Stefania, Roberta, Carolina e Samira. Dal primo giorno
mi hanno guidata nel muovere i miei primi passi a Milano e mi hanno fatta sentire a
casa. Quella quotidianità non ritornerà mai più, ma custodirò sempre tanti bei ricordi di
momenti felici. Sono veramente fortunata che le loro strade si siano incrociate con la mia.
Grazie a Pilar, amica fidata e sincera. La distanza non avrà mai la meglio sulla nostra
amicizia.
Grazie ai "finti universitari", con cui ho condiviso tanti episodi divertenti nelle aule del

106 | Acknowledgements

Politecnico.
Grazie al mio relatore Professor Marazzina per la sua cortese disponibilità.
Merci beaucoup à mes amis français: Margaux, Alexandre, Arthur et Eliott. Vous m’avez
accueillie à bras ouvertes et, graçe à vous, j’ai veçu la meilleure expérience ERASMUS
que je pouvais imaginer.

Milano, 4 maggio 2023 Valentina

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Chapter 1: Financial Background
	Black and Scholes
	Heston
	Constant Elasticity of Variance
	Non linear volatility model
	European vanilla Call
	Barrier options
	Greeks

	Chapter 2: Asymptotic Expansion
	Derivation of the EU Call asymptotic formula
	Numerical examples
	The approximation formula for single barrier options

	Chapter 3: Artificial Neural Networks
	Back-propagation algorithm
	Forward phase
	Backward phase
	Evaluation of the total gradient
	Update of the weights

	Designing an Artificial Neural Network
	Optimizing an Artificial Neural Network

	Chapter 4: Numerical Procedure
	Creation of the data sets
	Simulation of the parameters
	Evaluation of the option price with the analytic or semi-analytic formula
	Evaluation of the option price with the asymptotic expansion formula
	Setting the neural network input features and labels

	Building the artificial neural networks
	Tuning the artificial neural network
	Comparison of the methods

	Chapter 5: Results Discussion
	Results of the EU Call under Black & Scholes
	Using the same hyper-parameters: Black & Scholes
	Tuning the hyper-parameters: Black & Scholes

	Results of the Greeks
	Using the same hyper-parameters: Greeks
	Tuning the hyper-parameters: Greeks

	Results of the Up-and-In barrier under Heston
	Using the same hyper-parameters: Heston
	Tuning the hyper-parameters: Heston

	Results of the Down-and-In barrier under CEV
	Using the same hyper-parameters: CEV
	Tuning the hyper-parameters: CEV

	Results of the Down-and-In barrier under the non linear volatility model
	Using the same hyper-parameters: NLV
	Tuning the hyper-parameters: NLV

	Conclusions and future developments
	Bibliography
	Appendix A
	Appendix B
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements

