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Abstract

Nowadays, access to Space is becoming more and more required since many services
are offered from space missions. If this represent a great achievement made by space
science, it also presents new challenges that have to be addressed. Among these,
space debris play a major role. Indeed, they might affect the entire cycle of a space
mission causing unexpected collisions and damages to the operational spacecraft.
Together with left in orbit parts and boosters defunct satellites are the major source
of space debris. Furthermore, the new rise of large constellations could lead to a
rapid increase of the number of object in space. Thus, it is of utmost importance
to develop strategies and missions able to remove the out-of-service satellites from
large constellation missions.
This thesis work is aimed to elaborate and compare two possible types of Active
Debris Removal solutions for large constellations systems to prevent the generation of
massive number of debris. The study was conducted in collaboration with D-Orbit,
a new space company founded in 2011, and Politecnico di Milano, participating in
a program as consortium to develop an Active Debris Removal (ADR) service for
large constellations. In this work, two possible mission architectures, exploiting one
or more type of spacecraft will be introduced. The first solution analysed emploies
a mother ship carrying de-orbiting kits, which operates attaching them to the failed
spacecraft of the constellation. Once a kit is attached to the defunct satellite it will
de-orbit the assembly towards an atmospheric re-entry. The second option analysed
concerns the use of a single chaser, reaching all the targets and de-orbiting them one
by one. For the sake of simplicity, chemical propulsion and impulsive manoeuvres
are considered for the analysis. Both architectures have been studied by adopting
different approaches.
In the first part of this work a mission analysis is conducted to verify the first
architecture feasibility in terms of ∆v and total mission time, while an optimal
design strategy is developed in the second part of the thesis in the framework of
the Travelling Salesman Problem. Results demonstrate the feasibility of the mission
architectures considered and the possibility of reducing the amount of propellant
required and the estimated mission time.
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Sommario

Al giorno d’oggi l’accesso allo spazio sta diventando sempre più richiesto dato che
molti servizi vengono offerti da missioni spaziali. Esso rappresenta un grande passo
avanti per la ricerca spaziale ma comporta anche delle nuove sfide che devono essere
affrontate. Tra tutte, quella riguardante la riduzione dei rifiuti spaziali gioca un
ruolo fondamentale. Essi, infatti, possono condizionare l’intero ciclo di una missione
spaziale, causando collisioni accidentali che possono danneggiare i satelliti operativi.
Le maggiori sorgenti di rifiuti spaziali sono rappresentate da stadi esauriti e sgan-
giati dai lanciatori, parti rimaste in orbita dopo il termine di attività extra veicolari
e satelliti dismessi. Inoltre, la nascita di nuove mega costellazioni può contribuire
enormemente alla generazione di nuovi detriti. Lo sviluppo di startegie e missioni
atte alla rimozione di satelliti non più operativi all’interno delle costellazioni è quindi
di vitale importanza.
Lo scopo di questa tesi è quello di elaborare e comparare due possibili tipologie di
soluzioni per la rimozione attiva dei detriti (Active Debris Removal service). Questo
studio è stato condotto in collaborazione con D-Orbit, un’azienda spaziale fondata
nel 2011, e il Politecnico di Milano, per sviluppare un servizio atti per la rimozione
dei detriti spaziali. All’interno di questo lavoro, sono analizzate due possibili ar-
chitetture di missione, che sfruttano l’utilizzo di uno o più tipi di veicoli spaziali.
La prima soluzione presa in considerazione considera l’utilizzo di un veicolo madre
equipaggiato con dei kit capaci di de-orbitare i satelliti ai quali vengono agganciati.
Una volta che il kit viene agganciato al satellite non più operativo, lo guida verso
un rientro in atmosfera. La seconda opzione analizzata riguarda l’utilizzo di un solo
satellite, capace di raggiungere tutti gli oggetti non più in funzione all’interno di
una costellazione e di guidarli verso un rientro atmosferico. Dato che si tratta di
analisi preliminari, viene considerato l’uso di propellenti chimici e le manovre sono
assunte come impulsive.
Le due proposte di missione sono state studiate con due metodi differenti. Le fat-
tibilità della prima architettura è stata studiata attraverso un’analisi di missione
finalizzata al calcolo del ∆v e del ∆t necessari, mentre il design della seconda pro-
posta è stato ottimizzato attraverso lo sviluppo di un algoritmo capace di risolvere
il Problema del Commesso Viaggiatore. I risultati dimostrano la fattibilità delle
due architetture di missione proposte e l’utilità di un’ottimizzazione, con lo scopo
di ridurre la quantità di carburante richiesta e il tempo totale di missione stimato.
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Chapter 1

Introduction

1.1 Background

A satellite constellation is a group of spacecraft with the same task, distributed in
one or more orbits around the Earth. Usually, constellations are composed by a
certain number of satellites, trying to cover as much terrestrial surface as possible.
They are widely used, especially in the telecommunications field. One of the most
important constellation is the Global Positioning System (GPS). It is constantly
used around the world for different applications: to get position information, to
drive an airplane’s autopilot or simply to find something that has been lost or
stolen. Every day, everyone makes use of a device that takes advantage of the
presence of a satellite or a constellation in space. Internet, Earth’s observation,
Internet of Things (IoT) and telecommunications are the most important fields
served by constellations. In the recent years, a new generation of constellations
containing hundreds of small satellites, is on the way. New companies, like SpaceX
and OneWeb, are going to create such large constellations, to spread the internet
connection around the world. These type of constellations will fly in Low Earth Orbit
(LEO), with all the pro and cons of such a position. Releasing a satellite in LEO
requires less fuel than a geostationary one, but it is supposed to be more affected by
atmospheric perturbation. Moreover, due to the less distance the coverage is reduced
and a larger amount of satellites is required to achieve a full coverage of the Earth.
Space companies are now pushing towards the development of smaller and cheapest
satellites with respect to the past. This could lead to lower manufacturing costs
and change the deployment strategy too. Indeed, dozens of this type of relatively
cheap and lightweight satellites can be placed in orbit by a single launcher. However,
since many satellites are needed, an efficient End-of-Life (EoL) strategy for them is
mandatory, otherwise, they are going to become debris after the end of their lifetime.

1.2 State of the art

The two best known large constellations that are being built are Starlink and
OneWeb. The first is going to be composed by multiple shells at different alti-
tudes between 550 and 1300 km [10], while the second has the goal to reach a full
coverage of the planet using 12 orbital planes inclined at 87.9◦ [9]. Up to now,
Starlink has 240 launched satellites and the expectation is to have an half opera-
tive constellation before next five years [10]. The other competitor, OneWeb, has
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74 satellites operating in space, before experiencing financial difficulties in the first
quarter of 2020 [9].

1.2.1 End of Life techniques

The EoL strategies of Starlink and OneWeb are similar, based on the controlled
re-entry, burning the satellite in atmosphere. This technique is valid only if the
satellite is not out of control. If the satellite is broken, it must be considered as an
uncontrolled object in orbit. The rise of large constellations could increase signif-
icantly the collision risk in LEO. Today, the band extending from 600 to 1000km
above the ground is the most populated by space debris [7].

Figure 1.1: Spatial density of LEO space debris by altitude, according to a NASA
report to the United Nations Office for Outer Space Affairs, 2011[7]

Rocket upper stages and dead spacecraft are the major sources of debris in space.
According to the international regulation, the post mission orbital decay of launched
objects shall be less than 25 years. This is the most important requirement con-
cerning disposal guideline for new satellites. Although the 25 years rule is respected
during the mission design, satellites may become unresponsive or uncontrollable
during operation. In this case, an Active Debris Removal (ADR) service is required
to prevent the growth of dead objects in space. Companies like Astroscale are de-
veloping future ADR services, trying to mitigate the problem of space debris [1].
It is of utmost importance to reduce as much as possible the number of dead ob-
jects around the Earth. Indeed, they can damage operative satellites and create a
cascade effect, named Kessler effect. Donald Kessler, a NASA space debris expert,
proposed a theoretical scenario in which the density of the objects in LEO is high
enough to increase the collision risk critically and create an uncontrolled amount of
space debris [5]. Besides, a chain reaction will be triggered once collision happens
to a constellation, posing a severe collision hazard to the space environment. An
end of life service called ELSA-d has been developed by Astroscale as a demonstra-
tive mission with the aim to demonstrate the core technologies necessary for debris
docking and removal [4].
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1.2.2 Travelling Salesman Problem

When the number of space debris to be removed by a single mission increases, an
optimal mission design is required to remove all the objects in the most cheapest
way making the service economically sustainable. In this thesis, the travelling sales-
man approach will be used to design an optimal ADR mission. The state of the art
concerning the solution of the TSP includes exact and heuristic algorithms. The
simplest way to compute an exact solution is the so called Brute Force method.
All the possible branches of the tree are calculated and compared to find the best
one. This method always leads to the correct solution, but it is feasible only when
the dimension of the problem is small. Indeed, it becomes impractical even for
only 20 cities. Although this approach seems useless, it can be exploited to test
the performances of heuristic and approximation algorithms. Comparing the re-
sults between brute force algorithm and a trial approximation or heuristic approach
for small values of n, it is possible to determine how the trial methods will work
when the dimension of the problem increases. Nowadays, high level algorithms have
been developed to solve the TSP. The best performing complete algorithms are the
Branch and cut methods, which are based on solving a series of linear programming
relaxations of an integer programming problem [6]. Branch and cut algorithms be-
long to the family of Branch and bound methods and are exploited to solve Integer
Linear Programming, where the unknown variables are constrained to be integer
values. These routines exploit the cutting planes technique to tighten the linear
programming relaxations. Indeed, the cutting plane approach allows to refine the
set of variables close to the optimal ones to minimise the objective function. Usually,
when the dimension of the problem is very large, another useful approach is to split
the problem into sub-problems, solving them separately. The state of the art branch
and cut methods are able to solve the TSPs characterised by 1000 to 3000 vertices
within modest computational times [6]. For larger problems the computational time
increases significantly. Currently, the largest TSP solved is instance d15112 hav-
ing 15112 vertices. The known optimal solution for this instance was calculated
in September 2003. Although these impressive results, complete algorithms suffer
from some limitations. The first one is that computational times becomes rapidly
prohibitive, as the instance size increases. Introducing the concept of CPU time it
is possible to have a clear idea on the performance of an algorithm. The CPU time
measures the time a CPU takes to elaborate a specific operation. It is expressed in
clock cycles and converted in seconds knowing the CPU operational frequency, and
it does not include the time spent to run input-output (I/O) operations. Exploiting
a single CPU it is always lower with respect to the real elapsed time, since this one
includes also I/O operations. Otherwise, using 2 CPU parallelly taking 2 seconds
each to run a program the total CPU time is equal to 4 seconds, while the real
elapsed time is 2 seconds since the two processors are working together. Instance
d15112 was solved by a network running 110 workstations, but the computational
time on a Compaq EV6 Alpha processor running at 500MHz CPU is estimated to
be 22.6 CPU years. Secondly, computational time is not only dependent on the
number of vertices of the graph but depends also on the type of instance. For exam-
ple, instance pr2392 with 2392 vertices required a computational time of 116 CPU
seconds on a 500MHz Compaq XP1000 workstation, while instance d2103 with 2103
vertices was solved using a network of 55 Alpha 21164 processors running at 400 and
500MHz. The estimated total run-time on the same test bench of instance pr2392
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was about 129 CPU days. Given the limitations of complete algorithms, there is
a large interest in others methods to face the TSP. Stochastic local search (SLS)
and heuristic algorithms are widely used today to solve optimisation problems. The
great advantage of these methods is the possibility to set a trade-off between the to-
tal computational time and the quality of the solution obtained. Problems that are
characterised by a family of good solutions closer to the optimal one, can be solved
rapidly without converging exactly to the lowest possible value, but to an acceptable
close one. SLS algorithms are able to reach optimal or near-optimal solutions for
symmetric graphs with thousands of cities with seconds or minutes of CPU times on
modern workstations [6]. For example, instance d15112 was solved using a 500MHz
Alpha processor in about seven hours of CPU time finding a solution with an error
of 0.0186% with respect to the known optimum. Other types of algorithms suitable
to solve TSP are based on iterative methods, like genetic algorithms. They require
the choice of an initial guess or population and the performances are strongly de-
pendent on the nature of the graph analysed. It has been demonstrated that the
asymmetric graphs are more difficult and they require more computational time to
solve, no matter which type of algorithm is used [6]. A graph is called asymmetric
when there is at least one pair {j, k}for which w(j, k) 6= w(k, j), being w(j, k) the
cost to go from {j} to {k} and vice versa. As it will be shown in this chapter, the
set of failed satellites to be reached inside a constellation can be modelled as an
asymmetric graph. Solving asymmetric TSP (ATSP) with large number of vertices
could become unfeasible also for the most efficient complete algorithm in terms of
computational time. In this case approximation methods are preferred. One of the
most famous approximation routine is called Nearest Neighbour Algorithm (NNA).
NNA solves the TSP starting from a random city and always visiting the nearest
until all cities are reached. In order to have a more precise result, within an instance
including n cities, NNA can be launched n times with one city selected as the start-
ing point at each time. In this way, among all n results, the best one can be found.
It was demonstrated that NNA rarely converged to the optimal solution.

1.3 Scope of the thesis

Designing an efficient ADR service is a challenging work, it has to be both reli-
able and economically sustainable. The study was conducted in collaboration with
D-Orbit, a new space company founded in 2011, and Politecnico di Milano, partic-
ipating in a program as consortium to develop an Active Debris Removal (ADR)
service for large constellations. The aim of this work of thesis is to perform the
mission analyses for two different mission architectures, in two respective ways. The
framework of architecture 1 exploits the use of a mother ship filled with kits to de-
orbit a set of failed satellites. Typical engineering requirements for space missions
will be taken into consideration, to study the feasibility of the this architecture.
Within the context of architecture 2 the operations conducted by a chaser will be
optimised to reduce as much as possible the total mission time. The goal of the
study is to define a set of rules, to optimise the sequence in which dead satellites
within a constellation are to be reached, to minimise the total time of flight. This
optimisation problem will be solved within the context of the Travelling Salesman
Problem (TSP). The idea is to develop an algorithm capable to identify the best se-
quence to reach dead spacecraft inside a given constellation. This could be a starting
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point to those companies developing ADR services for future large constellations.

1.4 Thesis structure

The remaining of this thesis is organised as follows:

• Chapter 2 gives a description and analysis about the orbital manoeuvres in-
volved, focusing on their optimisation. Orbital perturbations exploited to
design the manoeuvres are presented and analysed. In this chapter, the two
mission architectures proposed are described too, highlighting both differences
and common points between the set of orbital transfers required by these two
architectures.

• Chapter 3 presents the analysis and simulations concerning architecture 1,
given prescribed requirements. Results of this study are presented and dis-
cussed.

• Chapter 4 is divided into two parts. The first one is devoted to the presentation
and description of the Graph theory, the Travelling Salesman Problem and
how to apply it to the optimisation of an ADR service. The second part of
the chapter is devoted to the development of algorithms capable of solving the
TSP applied to architecture 2. Results are discussed at the end of the chapter.
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Chapter 2

Mission architectures and
manoeuvres design

This chapter will introduce two different mission architectures that have the appli-
cation potential for ADR services, following which, the design of the orbital ma-
noeuvres that are involved in the two architectures will be presented.

2.1 Architectures definition

2.1.1 Architecture 1 - Mother ship plus kits

In this framework, two different types of vehicle are exploited. The first, named
“mother ship”, has the task of reaching each target and perform the most critical
operations. Inside the mother ship, a set of kits are stored. They must be attached
to each target by the mother ship and they are in charge of de-orbiting operations.
Thus, the number of targets the mother ship shall be able to reach is equal to the
number of onboard kits. It is possible to remove an extra dead satellite from the
constellation considering a scenario in which the mother ship is able to de-orbit itself
with a target attached. The main vehicle (i.e. the mother ship), equipped with a
main thermochemical engine, is designed as a complex system, capable to execute
orbit raising and transfers within the constellation, relative navigation tasks and
to dock with each failed satellite. Sophisticated technologies, like a robotic arm or
other mechanical systems, will be required, to make the mother ship able to attach
the kit to the target once docked to it. The kit vehicle is provided with a smaller
engine and it is tasked to handle only de-orbiting operations, moving the satellites
to the disposal orbit. A detailed description of the orbital manoeuvres involved is
presented in section 2.3, while the mission analysis of the architecture is presented
in chapter 3. The complete operations sequence is explained here:

1. The mother ship is released by the launcher into a parking orbit whose altitude
is lower with respect to the operational altitude of the constellation. An orbit
raising manoeuvre performed by the mother ship brings the spacecraft into
the same constellation orbit where dead satellites need to be reached. If the
Right Ascension of the Ascending Node (RAAN) of the parking orbit does not
match with the RAAN of the operational plane, the different nodal regression
rate between the orbits induced by the effect of Zonal Harmonics is exploited
to adjust the RAAN parameter, as explained in section 2.2.
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2. Once the mother ship has completed the orbit raising phase, rendezvous op-
erations to attach a kit to the first satellite begin. To handle this phase, a
phasing manoeuvre is exploited in order to reach the first satellite. The design
of this type of transfer is explained in section 2.3.1.

3. The next step involves attaching the kit to the dead spacecraft through the
use of a robotic arm. Once the connection between the satellite and the kit is
established, the mother ship starts to move towards the next target exploiting
again a phasing manoeuvre.

4. The kit will exploit its engine to move the satellite into the disposal orbit.
Possible collisions with satellites must be avoided during this phase. For this
purpose, the apogee radius of the disposal orbit is designed to be at least
100 km below the constellation altitude.

5. The procedure is repeated until all the dead satellites have been reached.

2.1.2 Architecture 2 - Chaser

In this framework, a spacecraft named “chaser” is tasked with reaching and de-
orbiting every single target. It is equipped with a thermochemical engine which
is in charge of performing all the required manoeuvres. The maximum number
of targets the chaser is able to reach is constrained by the amount of propellant
onboard. A series of de-orbiting manoeuvres followed by subsequent orbit raising
will be exploited by the chaser to fulfil the mission tasks. The total mission time
depends on the order in which satellites are reached. An optimal design of this
architecture, aimed to minimise the total ∆t, is discussed in chapter 4. The complete
operations sequence is explained here:

1. The chaser is released by the launcher into a parking orbit where the orbit
raising phase starts. At the end of this phase the first satellite is reached by
the chaser.

2. The failed satellite is moved to the disposal orbit. The apogee altitude is
reduced to avoid collisions with operational satellites, while the perigee altitude
is decreased to exploit drag perturbation.

3. Once the satellite is placed into the correct disposal orbit, the chaser will
detach from it and will transfer towards the next one. If the next target lies
on the same orbital plane a simple coplanar phasing transfer is used to reach
the spacecraft, otherwise a change of RAAN is required before.

4. The procedure is repeated until all the spacecraft have been reached.

2.2 Secular effects from zonal harmonics

Both architectures may require an out-of-plane transfer when a satellite, which need
to be reached, lies in a different orbital plane. As it is well known a plane change
manoeuvre is very expensive in terms of ∆v. Thus, to reduce the cost of the transfer,
the idea is to let the ADR service spacecraft (mother ship or chaser) drift towards

20



the orbital plane of the target, by exploiting the zonal harmonics perturbations. The
first-order secular effects on an Earth satellite caused by the non spherical gravity
field come from the even zonal harmonics of the Earth’s gravity field. In particular,
only the secular effects associated with the J2 are considered in this work, discarding
the perturbations coming from other gravitational harmonics. Short period effects
are responsible for the change of all the orbital elements, while secular variations
due to J2 affect only the nodal regression and the apsidal rotation. Nodal regression
moves the RAAN backwards with respect to its original value. RAAN is measured
eastward starting from the γ direction (First point of Aries) to the node. It means
that the orbit is affected by a counter rotation around the polar axis. Moreover, J2
is responsible also for the secular effect of the apsidal rotation. Equations 2.1 and
2.2 refer to the secular variations of the right ascension of the ascending node and
the argument of perigee.

Ω̇sec = −
3nR2

⊕J2
2p2

cos(i) (2.1)

ẇsec =
3nR2

⊕J2
4p2

[
4− 5sin2(i)

]
(2.2)

where n is the mean motion, R⊕ the Earth’s radius, p the semi-parameter defined
as p = a(1 − e2) and i the orbit inclination. These effects have been considered
in this work to design cheaper out-of-plane transfers, in order to allow a spacecraft
to reach a target on a separated orbital plane without the use of large amount of
propellant. Indeed, it is of utmost importance to save as much fuel as possible to
move the ADR service spacecraft (mother ship or chaser) from one target to the
next, maximising the number of satellites de-orbited per mission. In section 2.3.3
out-of-plane transfers exploiting J2 perturbing effect are presented.

2.3 Orbital manoeuvres

The set of orbital manoeuvres involved for each architecture is different. Both
architecture 1 and architecture 2 requires the design of in-plane and out-of-plane
transfer to accomplish the mission. The former category refers to the manoeuvres
that change only the in-plane orbital elements, i.e. the semi-major axis, the eccen-
tricity, and the argument of latitude. The latter category refers to the manoeuvres
that change the inclination. Note that in this thesis the RAAN is always changed
by exploiting the J2 effects for the purpose of saving propellant.In this section the
two sets of manoeuvres concerning architecture 1 and architecture 2 are presented
and discussed.

2.3.1 Circular coplanar phasing

In the framework of architecture 1 the mother ship is supposed to move from a target
to the next on the same orbit by using a circular coplanar phasing. Indeed, it is
possible to exploit this transfer to reach a target on the same orbit with a different
argument of latitude u, as described in [3]. Two types of transfers are possible,
depending if the target is leading or trailing the mother ship. A phase angle θ is
defined measured from the target to the interceptor. At this point, the strategy is
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Figure 2.1: Target leading the interceptor, i.e the mother ship [3]

to move the interceptor to an elliptical phasing orbit with a period τphase equal to:

τphase =
ktgt(2π) + θ

wtgt

(2.3)

where ktgt is the number of revolutions of the target satellite and wtgt is the target
angular velocity, identified on the circular orbit as the mean motion n:

wtgt =

√
µ

a3tgt
= n (2.4)

with µ gravitational planetary constant and atgt semi-major axis (i.e. the radius
on the circular orbit). While the interceptor completes a revolution on the phasing
orbit the target completes a revolution minus the phase angle θ.
The the semi-major axis of the phasing orbit aphase is strictly related with the phasing
time through the number of revolutions of the interceptor kint:

aphase =

(
µ

(
τphase
kint2π

)2
) 1

3

(2.5)

The sum of the two tangential burns to enter and escape from the phasing orbit
represents the total ∆v required (eq2.6).

∆v = 2

∣∣∣∣∣
√

2µ

atgt
− µ

aphase
−
√

µ

atgt

∣∣∣∣∣ (2.6)

Formula 2.3 relates the time of flight with the number of revolution of the target,
while equation 2.6 relates the ∆v with the semi-major axis of the target. It is well
known that the period of an orbit increases along with the increase of the value of
the semi-major axis, while the ∆v required increases as the difference between the
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Figure 2.2: Target trailing interceptor, i.e the mother ship [3]

semi-major axis of the phasing orbit and the starting orbit becomes bigger. This
behaviour suggests that it is not possible to optimise both time of flight and ∆v
at the same time because when the first increases the second will decrease and vice
versa. In the following analysis a circular coplanar phasing between two satellites is
described. The orbital parameters referring to the following example are:

Orbital parameter Interceptor Target

Semi-major axis [km] 1200 1200
Eccentricity 0 0

Argument of latitude [degrees] 60 90

The number of revolutions for both the target and the interceptor is fixed to be equal
to 1. The possible optimal transfer can be theoretically found imposing ∆v and ∆t
as optimisation targets and ktgt, kint as optimisation variables. The constraints of
the multi-objective optimisation are possible limit values on ∆v and ∆t, and the
radius of perigee of the phasing orbit, that should be kept larger than the Earth’s
radius plus a contingency altitude. Although this could appear a fancy solution, it
should be kept into consideration that it will depends on the relative importance
between ∆v and ∆t, that could change depending on the situation. To reduce the
complexity of the problem the equality ktgt = kint = k can be imposed. In this
situation the interceptor and the target performs the same number of revolutions
to achieve the phasing. The set of solutions for the transfer is shown in figure 2.3.
All the possible solutions lie in a pareto front generated running the simulation for
different values of k.

2.3.2 Coplanar phasing between different orbits

In the framework of architecture 2 this transfer is required to move the chaser from
the disposal orbit to the next target. The chaser is supposed to move from an
internal elliptical orbit directly to the target on the outer circular orbit. The idea
is derived from the circular coplanar case, trying to exploit a phasing orbit to start
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Figure 2.3: ∆v vs ∆t for varying number of revolutions k = 1, 2, ..., 100

the engines at the exact time instant to make the interceptor and the target meet
on the final orbit. The transfer is shown in figure 2.4.

Figure 2.4: Coplanar phasing between different orbits

To make the transfer as cheapest as possible a bi-tangent manoeuvre has to be de-
signed. This can be achieved starting from the apogee or from the perigee of the
elliptical orbit, in order to have only a tangential variation of the velocity vector.
Once the chaser has reached one of the two apsidal points, it moves into an inter-
mediate orbit, waiting for the right position of the target to begin the transfer. In
this section it will be analysed the case where the manoeuvre is performed at the
apogee of the elliptical orbit. First of all, the time the chaser takes to reach the
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apogee has to be calculated. Defining the eccentric anomaly E:

sin(E) =
sin(ν)

√
1− e2

1 + ecos(ν)
(2.7)

cos(E) =
e+ cos(ν)

1 + ecos(ν)
(2.8)

being e and ν the eccentricity and the true anomaly of the orbit. It is now possible
to calculate the time to reach the apogee through the Kepler’s equation:

t− t0 =
1

n
[2kπ + E − esin(E)− (E0 − esin(E0))] (2.9)

with k = 0 additional revolutions of the chaser are discarded. To define the waiting
orbit, the required position of the target at the beginning of the transfer should be
computed. Target and chaser will meet at utgt = wint on the circular orbit, where
wint is the argument of perigee of the elliptical orbit. The angle spanned by the
target during the transfer is then:

α = Ptrntgt (2.10)

where Ptr is the period of the transfer orbit and ntgt the mean motion of the target.
The argument of latitude of the target at the beginning of the transfer is given as:

utgt = wint − α (2.11)

The calculation of the semi-major axis of the phasing orbit await is the last step. In
order to not waste energy with respect to a direct transfer from the apogee to the
circular orbit the apogee radius of the phasing orbit ra wait need to be less than the
target orbit radius Rc and greater than the perigee radius of the chaser orbit rp.

await =

(
µ

(
twait

2π

)2
) 1

3

(2.12)

with twait equal to:

twait =
utgt − utgt0

ntgt

(2.13)

where utgt0 is the position of the target at the time the chaser reaches the apogee.
If the constraint of equation 2.15 is not satisfied the whole procedure is repeated at
the next apogee passage.

ra wait = 2await − rp (2.14)

rp < ra wait < Rc (2.15)

The total cost of the transfer is calculated as the sum of these three ∆v:

∆v1 = va wait − va int (2.16)

∆v2 = vp phase − va wait (2.17)

∆v3 = vcirc − va phase (2.18)

∆v = |∆v1|+ |∆v2|+ |∆v3| (2.19)

being va wait the velocity at the apogee of the phasing orbit, va int the velocity at
the apogee of the chaser orbit, vp phase the velocity at the perigee of the transfer arc
and vcirc the target velocity on the circular orbit.
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2.3.3 Out-of-plane manoeuvres

Two types of out-of-plane manoeuvres are investigated in this work. The first one
is the inclination change manoeuvre between circular orbits, while the second one
is the change in RAAN. In the framework of architecture 1 the inclination change
is exploited to trigger a change of RAAN and to adjust the orbital inclination after
the orbit raising. It is a relative expensive manoeuvre devoted to the rotation of the
velocity vector of the spacecraft. Indeed, no gain in the velocity modulus is obtained
because the ∆v provided is aimed to change only the direction of the velocity vector.
The ∆v required is:

∆v = 2vcircsin(∆i) (2.20)

where vcirc is the velocity on the circular orbit and ∆i is the change in inclination.
In order to not lead to an undesired change of RAAN, the manoeuvre must be
performed in correspondence of the nodes. It is always better to perform this type
of manoeuvre when the tangential velocity is lower, to save as much fuel as possible.
Thus, this manoeuvre is performed at the end of the orbit raising, when the altitude
is increased and the velocity is decreased. Moreover, it can be exploited to modify
the nodal regression rate of the orbit changing the inclination. This will allow the
spacecraft to drift towards another orbital plane without the need to change the
RAAN with a single engine burn. Indeed, a small instantaneous variation of the
inclination value will lead to a big variation in terms of RAAN, due to the effects of
zonal harmonics perturbations. This strategy has been adopted within the context of
. architecture 1. Whenever the mother ship is required to move from a constellation
plane to another, a small variation of the inclination value is provided to trigger the
RAAN change. Thus, the change in RAAN manoeuvre for architecture 1 can be
summarised in three steps:

1. The inclination of the mother ship orbit is decreased with an inclination change
manoeuvre through an impulsive burn. Thus, a nodal regression rate different
with respect to the constellation planes is obtained.

2. The mother ship is let to drift freely towards the next operational plane ex-
ploiting the J2 effect. The time it takes to reach the next plane is:

∆t =
Ω0int − Ω0tgt

Ω̇tgt − Ω̇int

(2.21)

where Ω0int, Ω̇int and Ω0tgt, Ω̇tgt are the initial mother ship and target RAAN
and nodal regression rates.

3. Once the mother ship RAAN is equal to the target one another inclination
change manoeuvre is performed to adjust the inclination of the mother ship
orbit. The total ∆v required for the transfer is then two times the one required
by the inclination change manoeuvre:

∆v = 2 (2vcircsin(∆i)) (2.22)

In the framework of architecture 2 no inclination change manoeuvre are required
to trigger the RAAN change. Indeed, the chaser is supposed to move from the
disposal orbit directly towards the next operational plane. Since the disposal orbit
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is elliptical and it is characterised by a lower semi-major axis with respect to the
constellation, it has already a different nodal regression rate compared to the target
operational orbit. Thus, the chaser is ready to drift exploiting J2 effect immediately
after the disposal operations. The change in RAAN manoeuvre steps for architecture
2 are the followings:

1. The chaser performs the disposal manoeuvre and brings the first satellite to
the disposal orbit. At the apogee of the disposal orbit it detaches from the
dead spacecraft and starts the engine to raise its perigee altitude in order to
not be affected by drag effect during the drift time.

2. The chaser is let to drift freely towards the next operational plane exploiting
only J2 effect.

3. When the correct RAAN is reached a coplanar phasing is performed to match
the next satellite on the operational orbit.

Since the chaser is let to drift on an elliptical orbit the apsidal rotation shall be
taken into consideration too.

2.3.4 De-orbit manoeuvre

The de-orbiting operations are identical for both architectures. The adopted strategy
is aimed to move the target into an elliptical orbit and to exploit drag perturba-
tions, driving the satellite towards an atmospheric re-entry. Collisions with other
operational satellites shall be avoided. A bi-tangent transfer is adopted to decrease
the perigee and the apogee of the operational orbit. The perigee altitude is calcu-
lated taking into consideration the area to mass ratio of the satellite to exploit drag
effects, while the apogee altitude is fixed to be 100 km lower than the constellation
one for collision avoidance. In the framework of architecture 1 these operations are
in charge of the kit only, while within the context of architecture 2 the chaser is
tasked of performing the disposal transfer. The complete sequence is explained here:

1. The kit (or the chaser) performs an impulsive manoeuvre to decrease the
perigee altitude.

2. Once the kit (or the chaser) has reached the perigee of the transfer elliptical
orbit a second burn is performed to decrease the apogee altitude for collision
avoidance.

3. In the framework of architecture 1 the kit and the satellite will de-orbit to-
gether, conversely the chaser will detach from the satellite moving towards
the next one.

27



Chapter 3

Mission analysis for architecture 1

This chapter presents the mission analysis for the first mission architecture – mother
ship and kits. The aim is to evaluate the performances for the first architecture in
terms of the mission time and velocity change. Two different scenarios are consid-
ered:

1. Active Debris Removal Scenario 1 (ADR1): each plane of the constellation
is served by one mother ship.

2. Active Debris Removal Scenario 2 (ADR2): each mother ship is in charge of
serving more than one plane.

For this study the OneWeb constellation is taken into consideration. The orbital
parameters are listed in table 3.1.

3.1 Mission requirements

The mission requirements for the mother ship are the followings:

• The maximum available ∆v is 1km/s.

• The maximum lifetime is 2 years.

• ADR1: one mother ship is responsible for one plane of failed satellites.

• ADR2: one mother ship is responsible for multiple planes of failed satellites.

• The first failed satellite must be reached by the mother ship within six months
upon the mission start and the service request.

Mission requirements for the kits are the following:

• The maximum re-entry time is 5 years, starting from the separation from the
kit, and ending with a demise altitude of 78 km.

• Safety distance from internal constellation satellites for collision avoidance
shall be at least 100 km.
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Table 3.1: Constellation data

Prameter Value

Altitude [km] 1200
Eccentricity 0

Inclination [degrees] 87.9
Number of planes 12

Number of spacecrafts per plane 49

In the OneWeb constellation considered in this study, all orbital planes are evenly
spaced along the equatorial plane. They are assumed to be separated in altitude by
a distance of 4 km for collision avoidance. In each orbital plane, satellites are also
evenly distributed. A representation of the constellation is shown in figures 3.1 and
3.2.

Figure 3.1: Orbital planes distribution, polar view

The release orbit for both ADR1 and ADR2 missions is assumed to have the pa-
rameters listed in table 3.2. All the mother ships are released into the last orbital
plane such that the first service can be provided instantly without need to wait for
the RAAN match. It is worthy to note that the inclination is not the same of the
constellation to accelerate up the RAAN drifting rate of the mother ships towards
their operational planes. The drift will occur by exploiting J2 perturbations. Since
the altitude and the inclination of the release orbit are lower than those of the con-
stellation, the nodal regression of the mother ships will be faster than that of the
constellation. In this way no manoeuvres is performed for RAAN changing.
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Figure 3.2: Distribution of the satillets lying on a single orbital plane

Table 3.2: Orbital parameters of the release orbit for ADR1 and ADR2 missions

Prameter Value

Altitude [km] 500
Eccentricity 0

Inclination [degrees] 86
RAAN [degrees] 167.42

3.2 Mission analysis for ADR1

As stated in chapter 2.1.1, each mother ship is equipped with a set of de-orbit kits.
A set of 8 kits is considered in this analysis. Moreover, the mother ship is considered
to be capable to de-orbit itself with a target attached. Thus, every mother ship is
able to de-orbit a number of satellites equal to the number of kits onboard plus an
extra one during de-orbiting itself. To increase the robustness of the simulation, the
distribution of the failed satellite in the worst case is considered. Thus, they are
supposed to be equally spaced inside the plane. Input data of the simulation are
listed in table 3.3. The mission phases are summarised as the followings:

• Phase 1: After the launch all the mother ships lie on the same circular parking
orbit. Since ADR1 considers one mother ship working per each plane, 12
mother ships are needed for the mission. 11 of them need to drift at the
altitude of 500km to reach their respective operational planes. The time that
each mother ship will take to reach its operational plane by exploiting J2
perturbation is shown in figure 3.3.
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Table 3.3: Input data for ADR1 simulation

Prameter Value

Number of failed satellites per plane 9
Number of kits per mother ship 8

Number of mother ships 12
Separation angle between satellites [degrees] 40

• Phase 2: After each mother ship has reached the correct RAAN, an Hohmann
transfer will bring it to the altitude of the operational plane and then a plane
change manoeuvre is performed to adjust the inclination to 87.9◦.

• Phase 3: Each mother ship cleans its plane with a series of phasing manoeu-
vres.
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Simulation results and discussion

After the release by the launcher each mother ship starts to drift towards its opera-
tional plane. The x axis of figure 3.3 represents the mother ships sorted by numbers
from 1 to 12. The first refers to the mother ship serving the last orbital plane. It
is possible to observe how a considerable value of time the last mother ships take
to reach their respective planes. Indeed, since the difference of inclination between
the releasing orbit and the constellation orbit is only of 1.9 degrees, there is no
significant difference in the nodal regression rate. However, a bigger difference in
inclination would lead to a significant utilisation of propellant when the mother ship
will need to adjust its inclination according to constellation one. Results of the
orbit raising including the Hohmann transfer and the inclination change are shown
in figures 3.4 and 3.5. This phase requires less than one hour but it costs more than
an half of the ∆v available onboard. Increasing the altitude of the release orbit will
decrease the cost of this transfer, since the energy difference between the interceptor
and target orbits would become smaller. As a possible drawback of this choice, the
time required by Phase 1 will increase. Indeed, increasing the semi-major axis of
the release orbit will lower its nodal regression rate. Looking at formula 2.3, it is
clear that the phasing time between the interceptor and the target depends on the
number of revolutions selected. In this analysis kint and ktgt are set to be equal and
they was set in order to keep the total time of this phase lower than two months.
It is now possible to calculate the residual ∆v onboard available (figure 3.9) and
the residual lifetime (figure 3.8) for each mother ship. Looking at the results, it is
possible to say that the strategy adopted by ADR1 mission is capable to accomplish
all the requirements. The total mission time for each mother ship is lower than the
lifetime and a significant amount of ∆v is left to de-orbit itself together with the
last failed satellite.
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Figure 3.3: Phase 1: time needed for each mother ship to reach its operational
plane
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Figure 3.4: Phase 2: time required by the Hohmann transfer and the inclination
change to complete the orbit raising
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Figure 3.5: Phase 2: ∆v required by the Hohmann transfer and the inclination
change to complete the orbit raising
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Figure 3.6: Phase 3: time required by each mother ship to reach its 9 failed satellites
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Figure 3.7: Phase 3: ∆v required by each mother ship to complete the phasing
manoeuvres to reach the 9 failed satellites
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Figure 3.8: Phase 3: residual lifetime of each mother ship
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Figure 3.9: Phase 3: residual ∆v available onboard of each mother ship
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3.3 Mission analysis for ADR2

In ADR2 mission, one mother ship is in charge of multiple planes of failed satellites.
Each mother ship is required to finish cleaning the planes of failed satellites that it is
in charge of within its lifetime, given the maximum total ∆v. ADR2 is an extension
of ADR1. In both ADR1 and ADR2, the mother ship follows the same procedure
from launch until the removal of all the failed satellites in the first orbital plane.
However, in ADR2, after each mother ship has finished to clean its first plane of
failed satellites, it shall drift to the next plane exploiting the J2 effect, and then the
third plane, until it runs out of the propellant and lifetime. ADR2 simulation is
conducted considering a target rich environment with 4 failures along each orbital
plane. A set of 8 kits onboard each mother ship is considered. Each one is in charge
of cleaning two consecutive planes, drifting to the next exploiting J2 effect once it
has finished the work with the first plane. Input data for ADR2 mission are listed
in table 3.4. To increase the robustness of the simulation, the distribution of the
failed satellite in the worst case is considered. Thus, they are supposed to be equally
spaced inside the plane. Mission phases are here summarised:

Table 3.4: Input data for ADR2 simulation

Prameter Value

Number of failed satellites per plane 4
Number of kits per mother ship 8

Number of mother ships 6
Separation angle between satellites [degrees] 90

• Phase 1: As done for ADR1 after the launch, all the mother ships lie on the
same circular parking orbit (table 3.2). Since ADR2 considers one mother ship
working on 2 planes, 6 mother ships are needed for the mission. Five of them
need to drift at the altitude of 500 km to reach their respective operational
planes.

• Phase 2: After each mother ship has reached the correct RAAN, an Hohmann
transfer will bring it to the altitude of the operational plane where a plane
change manoeuvre is performed to adjust the inclination to 87.9◦.

• Phase 3: Each mother ship cleans its first plane with a series of phasing
manoeuvres.

• Phase 4: Each mother ship moves to the next operational plane by changing
its inclination to 87.67◦ (value selected from several analysis iterations) and
exploiting J2 effect for RAAN drifting. At the end of the drift phase a second
plane change manoeuvre will bring the value of inclination from 87.67◦ back
to 87.9◦, so two plane change manoeuvres need to be considered.

• Phase 5: Each mother ship cleans its second plane with a series of phasing
manoeuvres.
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Simulation results and discussion

There are no significant differences between ADR1 and ADR2 in the first phase,
both exploiting J2 for RAAN separation. The first mother ship can begin the orbit
raising after the release by the launcher, while the other five are supposed to drift
towards their operational planes. Again, to decrease the time of this phase, a possible
solution is to decrease the release altitude or the inclination. The major drawback
will be an increase of the ∆v implied in the next phase. Results of the orbit raising
through the Hohmann transfer and inclination change are shown in figures 3.4 and
3.5. In figure 3.19 it is possible to observe how all the mother ships do not respect
the requirement related to the lifetime. Indeed, all of them take more than 2 years
to complete the mission. The main factor affecting the total mission time is caused
by phase 4. Each mother ship takes almost 2 years to drift from the first plane to
the second one. This value can be related to the small inclination change implied to
accelerate up the J2 effect. Giving a larger inclination change to decrease the drifting
time, a larger amount of ∆v related to phase 4 would be required, exceeding the
maximum value of ∆v available onboard (1 kms). A solution could be relaxing the
constraint related to the maximum lifetime.
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Figure 3.10: Phase 1: time needed for each mother ship to reach its operational
plane
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Figure 3.11: Phase 2: time required by the Hohmann transfer and the inclination
change to complete the orbit raising
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Figure 3.12: Phase 2: ∆v required by the Hohmann transfer and the inclination
change to complete the orbit raising
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Figure 3.13: Phase 3: time required by each mother ship to reach the 4 failed
satellites that lie in the first operational plane

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 3.14: Phase 3: ∆v required by mother ships to reach the 4 failed satellites
that lie in the first operational plane
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Figure 3.15: Phase 4: time required by the mother ships to reach the second plane
by exploiting J2 effect
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Figure 3.16: Phase 4: ∆v required by the mother ships to reach the second plane
by exploiting J2 effect
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Figure 3.17: Phase 5: ∆v required by each mother ship to reach the 4 failed
satellites that lie in the second operational plane
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Figure 3.18: Phase 5: ∆v required by each mother ship to reach the 4 failed
satellites that lie in the second operational plane
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Figure 3.19: Total mission time required by each mother ship
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Figure 3.20: Residual ∆v available to de-orbit onboard each mother ship
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Chapter 4

Optimal design for architecture 2
based on travelling salesman
approach

This chapter will design the second architecture by solving a Travelling Salesman
Problem (TSP) within the context of graph theory. In mathematics, graph theory
is a specific field of study related to combinatorics, which can be exploited to solve
numerically complex optimisation problems, concerning different fields of study. In
this work, it is used to solve optimisations related to the design of an efficient Active
Debris Removal service. The modelling of the ADR problem is anticipated by an
overview about graph theory and existing TSP solving procedures.

4.1 Graph theory

Graph theory is devoted to the study of graphs, mathematical structures defining
the pairwise relations between objects. Graphs are composed by points called nodes
or vertices, connected by lines called edges or arcs, as shown in figure 4.1.

1 2

3 4

Figure 4.1: Representation of a graph characterised by four nodes and five edges

A generic graph G, composed by V vertices and E edges, is defined as G = (V,E)
. Thus, an example of graph G = (4, 5) is shown in figure 4.1. This is not the only
way to define a graph; indeed it is possible to declare it as:

• G = (V,E)

• G = (V (G), E(G))

• G = {12, 13, 34, 24, 14}
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the last declaration, referring to example in figure 4.1, gives more information with
respect to the previous two. Indeed, it describes all the connections among the
nodes providing an idea on how the graph is structured. Each number represents an
edge connecting two nodes, clarifying how the points are related one to each other.
Another interesting way to define a graph is:

G = (n, f(n)) (4.1)

where n is the generic node of the graph and f(n) is a function describing the
connection rules among the nodes. It is the most compact and meaningful way to
define the graph since it is expressed by the mathematical function f(n). Here is an
example for for this definition.

G = (n, 2n) with n = 2 (4.2)

1

3

4

n

5

6

Figure 4.2: Example of the graph G = (n, 2n) for n = 2

Nodes and vertices can have different properties inside the graph. A list of
fundamental properties is listed below:

• Adjacent nodes: nodes connected by an arc are called adjacent nodes

1 2

• Adjacent arcs: arcs with a common node are called adjacent arcs

1 2 3

arcs connecting 1− 2 2− 3 are adjacent arcs with the common node {2}

• Neighbourhood: a neighbourhood of {j} includes all the adjacent nodes to
a generic node {j}
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1 2 3

4

5

{1, 3, 4, 5} are the neighbourhood of {2}

The dimension of a graph is identified as the number of arcs inside of it. Calling m
as the number of arcs in a graph, the range of m is:

0 ≤ m ≤
(
n

2

)
(4.3)

where n is the number of graph nodes and the binomial coefficient is defined as:(
n

r

)
=

n!

(n− r)! r!
(4.4)

A complete graph is a graph with the maximum possible number of arcs. Thus,
each node is connected with all the remaining nodes in the graph.

• Path: a path is the sequence of edges going from a node to another. An
example of the path from node {1} to {6} is represented below.

1 2

3

4

5 6

• Independent paths: two different paths are called independent paths if there
is no intersection between them.

• Cycle or close path: a path having the same node as starting and arrival
point is called a cycle.
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• Connected graph: a graph is called connected graph if there exist a path
between any pair of nodes.

There are two more important definitions describing graphs, useful for the future
analysis of the ADR service: the orientation of a graph and the adjacency matrix.
A graph is called oriented graph when it is composed by edges which can only be
covered in one direction, while the adjacency matrix is a matrix composed by zeros
and ones identifying the connections between nodes.

A =


0 0 1 0
0 0 1 0
1 1 0 1
0 0 1 0

 (4.5)

It needs to be symmetric due to the structure of the problem, node {1} is connected
with node {3} and vice versa. Matrix A represents a graph like G = {13, 23, 34}.
Concerning the ADR service to be designed in this chapter, since it is always possible
to transfer from a satellite to another one, the adjacency matrix is filled with ones
except for the diagonal.

4.2 The Travelling Salesman Problem

In computer science the Travelling Salesman Problem (TSP) is one of the most
famous routing and scheduling problem. It tries to answer to the question: “Given
a prescribed set of cities and the distances between each pair of cities, what is the
shortest possible route that visits each city and returns to the origin one?” It is
one of the most important decision making-problem and it is used in many fields of
study: microchip design, logistic organisation, biology an many others. The solving
procedure of the TSP is used also as benchmark for optimisation algorithms, due to
the high computational cost of the problem.
From the mathematical point of view the TSP can be seen as a graph where cities
represent the nodes and the streets that connect them represent the edges. The
objective function to be minimised is the sum of the distances of the paths that
connect all the cities without any repetition. Let n be the number of cities and
assume that each city is connected with all the others. The dimension of the problem
is n!. Indeed, a tree representing all the possible choices can be built as shown in
figure 4.3. The example refers to a situation where n = 3.

1

2 3

3 2

2

1 3

3 1

3

1 2

2 1

Figure 4.3: Solution tree of a TSP with n = 3
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As indicated in figure 4.3, if any city can be connected with the others, six possible
paths should be calculated to select the best one. It is straightforward to understand
how exponentially the computational cost of such a problem can increase when n
becomes larger. Due to this fact, it is not feasible to compute all the possible
combinations, even exploiting a powerful computer. Other solution methods should
be used to solve the problem.

4.3 Mission design

The second architecture that has been introduced in chapter 2 can be modelled as
an Asymmetric TSP (ATSP). The mission steps 2,3 and 4 described in section 2.1.2
refer to a similar situation with respect to the TSP. The first one concerning the
initial orbit raising is not taken into consideration in this analysis. The chaser is in
charge of reaching all the dead spacecraft and moving them to the disposal orbit.
In this case, the chaser is the travelling salesman and the dead satellites are the
cities to be visited. Then the question is: “which is the best order to reach all
the satellites that minimise the total mission time?”. Since the velocity change to
move from a failed spacecraft to the next is fixed by the manoeuvres described in
sections 2.3.2 and 2.3.4, it is not an objective of the optimisation. Indeed, once the
characteristics of the disposal orbit are prescribed, transfers are not tunable and are
identified by a single value of ∆v. It is clear that, since satellites do not lie on a two
dimensional plane and the path going from one to the next is not a straight line,
calculating the costs is more complicated with respect to the classical TSP. Moreover,
exploiting the transfers described in sections 2.3.2 and 2.3.4 , the problem becomes
asymmetric. Indeed, the cost to move from the generic satellite A to B is not equal
to the transfer from B to A. In this chapter three trial constellations are taken as
case studies: OneWeb, Starlink and Globalstar. An optimal solution of the ADR
service is computed by exploiting three different methods that have been introduced
in section 1.2.2:

• Brute Force Algorithm

• Branch and Cut Algorithm

• Nearest Neighbour Algorithm

The feasibility and the computational time of all the three methods will be analised
to find the one with the best performances in terms of the CPU time. All the
simulations are run on a workstation with the following characteristics:

• CPU: Intel®Core i7-9750H CPU @ 2.60GHz × 12

• RAM: 16GB of physical memory + 16GB of virtual memory (swap)

• OS: Ubuntu 20.04 LTS

The program used to run the simulation is Matlab, version R2020a.
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Figure 4.4: u vs Ω representation for the OneWeb constellation. Satellites are sorted
from the first to the sixth in a descending order. Number 577 represents the first
and number 53 the last one.

4.3.1 Problem statement

Firstly, the problem domain has to be defined. Considering a circular-orbit constel-
lation, at given altitude and inclination, each satellite can be identified using only
two parameters, the right ascension of the ascending node Ω and the argument of
latitude u. An example representation of six randomly selected dead satellites inside
the OneWeb constellation is shown in figure 4.4. Secondly, the costs of the edges
have to be calculated. To compute this values, all the possible transfers among the
satellites are simulated and the output data are stored inside a n × n matrix. For
example the cell corresponding to the first row and second column stores the cost of
the transfer starting from the first satellite to the second. Obviously, the matrix is
non-symmetric and has an empty diagonal. Equation 4.6 is an example of the cost
matrix referring to the case shown in figure 4.4. The costs concerning the transfer
times are expressed in years.

C =


0 1.63928 1.6411 2.45 4.09 8.18

18.0 0 0.0019 0.82 2.45 6.54
18.0 0.00258 0 0.82 2.45 6.54
17.1 18.8253 18.827 0 1.63 5.72
15.5 17.1877 17.187 18.0 0 4.09
11.4 13.0955 13.095 13.9 15.5 0

 (4.6)
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4.3.2 Simulation code

The simulation code is written in Matlab. The code is built in a modular way
so that it can be simply modified and improved, without the need to re-write from
scratch. In this way it is possible to run the code for any constellation, changing
only the input file. The following assumptions are considered for the simulations:

• The input constellation is composed by circular orbits

• The input constellation has a common inclination for all orbital planes

In the code, the variables are stored in the structure format for the convenience of
being passed to the sub-functions. To compare the performances of the three solving
methods used, two different scenarios are considered.

• Scenario 1: failures are generated randomly over all orbital planes.

• Scenario 2: failures are generated randomly in only three orbital planes with
at least two dead spacecraft per plane. In this scenario, the failure density
within a single orbital plane is comparatively high. The aim of considering
this scenario is to investigate the performances of the three algorithms in case
of a higher failure density.

An additional Monte Carlo simulation is conducted to compare the performances
and the quality of the three solution methods.

Input module

The three input files used for the two scenarios are listed below. The input module
of the code consists of an input function collecting astronomical constants, orbital
parameters of the constellations and design data. The design data refer to the
characteristics of the disposal orbit introduced in section 2.3.4. Since the spacecraft
is supposed to re-enter exploiting drag perturbation, perigee and apogee radii are
calculated by PlanODyn, an in-house semi-analytical orbit propagator [2]. They are
different for each constellation (table 4.1). The disposal orbit is designed such that

Table 4.1: Disposal orbit parameters

Constellation Perigee altitude [km] Apogee altitude [km]

OneWeb 351 1100
Globalstar 338 1300
Starlink 368 450

the dead satellites can re-enter within 5 years under the drag.
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1 f unc t i on [ INPUT] = input mpOW ( )
2 %INPUT MPOW Input data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepOW( ) ;
9 INPUT. d i s p o s a l = [INPUT. Re+351;INPUT. Re+1100;INPUT. Re+380] ;

10 end

1 f unc t i on [ INPUT] = input mpGS ( )
2 %INPUT MPGS Input data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepGS ( ) ;
9 INPUT. d i s p o s a l = [INPUT. Re+338;INPUT. Re+1300;INPUT. Re+380] ;

10 end

1 f unc t i on [ INPUT] = input mpSL ( )
2 %INPUT MPSL INput data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepSL ( ) ;
9 INPUT. d i s p o s a l = [INPUT. Re+368;INPUT. Re+450;INPUT. Re+380] ;

10 end
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The only difference between the input functions for the two scenarios is the number
of constellations planes considered. In the first case all the constellation planes
are considered, while in the second one only the first three planes are taken into
consideration.

1 f unc t i on [ INPUT] = input 3pOW ( )
2 %INPUT 3POW Input data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepOW( ) ;
9 INPUT. ID mat = INPUT. ID mat ( 1 : 3 , : ) ;

10 INPUT. kep = INPUT. kep ( 1 : INPUT. ID mat ( end , end ) , : ) ;
11 INPUT. d i s p o s a l = [INPUT. Re+351;INPUT. Re+1100;INPUT. Re+380] ;
12 end

1 f unc t i on [ INPUT] = input 3pGS ( )
2 %INPUT 3PGS Input data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepGS ( ) ;
9 INPUT. ID mat = INPUT. ID mat ( 1 : 3 , : ) ;

10 INPUT. kep = INPUT. kep ( 1 : INPUT. ID mat ( end , end ) , : ) ;
11 INPUT. d i s p o s a l = [INPUT. Re+351;INPUT. Re+1100;INPUT. Re+380] ;
12 end

1 f unc t i on [ INPUT] = input 3pSL ( )
2 %INPUT 3PSL Input data func t i on
3

4 ac = astroConst ( ) ;
5 INPUT. Re = ac . R Earth ;
6 INPUT.mu = ac . mu Earth ;
7 INPUT. J2 = ac . J2 Earth ;
8 [ INPUT. kep , INPUT. ID mat , ˜ ] = kepSL ( ) ;
9 INPUT. ID mat = INPUT. ID mat ( 1 : 3 , : ) ;

10 INPUT. kep = INPUT. kep ( 1 : INPUT. ID mat ( end , end ) , : ) ;
11 INPUT. d i s p o s a l = [INPUT. Re+300;INPUT. Re+450;INPUT. Re+300] ;
12 end
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Modelling module

This module models the problem. The inputs of the modelling function are the
INPUT structure, built in the input module, and the number of dead spacecraft
considered. Failures are generated randomly according to the scenario taken into
consideration. In the first scenario, the function randomly selects a uniform dis-
tribution of failures over all orbital planes. In the second scenario, the function is
constrained to generate at least two failed satellites per plane. Moreover, the mod-
elling function is in charge of evaluating all the possible transfers creating the cost
matrix. Two possible transfers are possible depending on the position of the next
satellite:

1. The next satellite lies in the same orbital plane of the chaser. In this case, a bi-
tangent manoeuvre is performed to move the current satellite to the disposal
orbit (section 2.3.4) and a subsequent orbit raising moves the chaser towards
the next satellite (section 2.3.2).

2. The next satellite lies in a different orbital plane of the chaser. In this case,
after the disposal manoeuvre is performed, the chaser is let to drift towards
the target orbital plane by exploiting J2 perturbation (section 2.3.3). No
additional ∆v is is provided to the chaser during this phase. When the correct
RAAN is reached by the chaser, an orbit raising manoeuvre moves it towards
the next target (section 2.3.2).

It is clear that the ∆v is fixed and equal for each transfer, and they differ only in
terms of time of flight . Thus, the only variable to be minimised is the transfer time,
which represents the cost of each transfer. The maximum number of failed spacecraft
considered is 12, due to the computational costs and time of the simulation. Using
more powerful technologies, like a cluster of multiple CPUs, it is possible to run
simulations for large-scale problems. The codes for the two scenarios are presented
in the next pages.
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1 f unc t i on [MODEL] = model mp (INPUT, n f a i l )
2

3 MODEL. ID mat = INPUT. ID mat ’ ;
4 [ r , c ] = s i z e (MODEL. ID mat ) ;
5 MODEL. ID mat = reshape (MODEL. ID mat , 1 , r ∗c ) ;
6 MODEL. f a i l s = randperm ( r ∗c , n f a i l ) ;
7 MODEL. f a i l s = s o r t (MODEL. f a i l s ) ;
8 MODEL. f a i l s = f l i p l r (MODEL. f a i l s ) ;
9 MODEL. kep = INPUT. kep (MODEL. f a i l s , : ) ;

10 MODEL. n f a i l = n f a i l ;
11

12 kep = MODEL. kep ;
13 dt = ze ro s ( n f a i l , n f a i l ) ;
14

15 f o r k = 1 : n f a i l
16 kep in t = kep (k , : ) ;
17 f o r kk = 1 : n f a i l
18 i f k == kk
19 dt (k , kk ) = nan ;
20 e l s e i f k ˜= kk
21 kep tgt = kep ( kk , : ) ;
22 [ ˜ , dt (k , kk ) , ˜ , ˜ ] = adrTrans fe r ( kep int , kep tgt ,

INPUT) ;
23 end
24 end
25 end
26

27 cmat = dt/ year2sec ;
28 MODEL. cmat = cmat ;
29

30 end % func t i on

53



1 f unc t i on [MODEL] = model 3p (INPUT, n f a i l )
2

3 MODEL. ID mat = INPUT. ID mat ’ ;
4 [ r , c ] = s i z e (MODEL. ID mat ) ;
5 MODEL. ID mat = reshape (MODEL. ID mat , 1 , r ∗c ) ;
6 nMin = 2 ;
7 f l a g = 0 ;
8 whi le f l a g == 0
9 f a i l s = randperm ( r ∗c , n f a i l ) ;

10 f o r k = length ( f a i l s ) :−1:1
11 [ f p l ane ( k ) , ˜ ] = f i n d (INPUT. ID mat == f a i l s ( k ) ) ;
12 end
13 A = accumarray ( fp l ane ( : ) , 1 ) ;
14 f l a g = 1 ;
15 f o r k = 1 : l ength (A)
16 i f A( k ) < nMin
17 f l a g = 0 ;
18 end
19 end
20 end
21 MODEL. f a i l s = f a i l s ;
22 MODEL. f a i l s = s o r t (MODEL. f a i l s ) ;
23 MODEL. f a i l s = f l i p l r (MODEL. f a i l s ) ;
24 MODEL. kep = INPUT. kep (MODEL. f a i l s , : ) ;
25 MODEL. n f a i l = n f a i l ;
26

27 kep = MODEL. kep ;
28 dt = ze ro s ( n f a i l , n f a i l ) ;
29

30 f o r k = 1 : n f a i l
31 kep in t = kep (k , : ) ;
32 f o r kk = 1 : n f a i l
33 i f k == kk
34 dt (k , kk ) = nan ;
35 e l s e i f k ˜= kk
36 kep tgt = kep ( kk , : ) ;
37 [ ˜ , dt (k , kk ) , ˜ , ˜ ] = adrTrans fe r ( kep int , kep tgt ,

INPUT) ;
38 end
39 end
40 end
41

42 cmat = dt/ year2sec ;
43 MODEL. cmat = cmat ;
44

45 end % func t i on
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Solver module

This is the most important part of the code. The problem is solved exploiting the
three algorithms selected. Here is a detailed description of all the methods adopted.

Brute Force Algorithm This solver tries all the possible combinations to get the
best one. Within the scope of the current ATSP, all the possibilities are represented
by the permutations of n elements, where n is the number of failures to be reached.
To compute the permutations, a built-in Matlab function called perms is used.
The function perms returns a matrix in which each row represents a permutation of
the elements of the input array. A for cycle is exploited to evaluate the cost of each
permutation. During each iteration the cycle selects a row of the matrix and compute
the cost of the sequence. This method can always guarantee to find the best solution
but it is not suitable for large-scale problems. Indeed, the major drawback of this
approach, in addition to the high computational time, is the amount of memory
required. Data inside the matrix P , containing all the possible permutations, are
stored as variables of type double. A variable of type double requires 8 bytes to
be stored. With this information it is not difficult to calculate the total memory a
matrix is supposed to occupy. For instance the P matrix related to a problem with
n = 3 is:

P =


1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

 (4.7)

P has n! rows and n columns. Thus, it consists of n! × n elements of type double,
each requiring 8 bytes. The total memory required is:

RAM = n!× n× 8 bytes (4.8)

From equation 4.8, when n = 3, RAM = 144 bytes but it is straightforward to
understand how RAM can increase exponentially. Indeed, when n = 12 the total
memory required is 42.8 Gigabytes. Looking at the code, the algorithm is composed
by two nested simple for cycles. The external one selects the sequence to test and
the internal one calculates the cost of the branch. Computational time is very low
for small values of n but it increases rapidly as n increases. Indeed, only 0.0007
seconds are required to solve a graph with 7 vertices, while for an instance with
10 vertices it takes 0.7 seconds. Increasing the dimension of three units the time
is increased on the order of 103. Thus, solving an ATSP through the brute force
method with a larger n will be unfeasible. Despite the limitations on the memory
can be avoided generating the branches one by one, instead of storing all of them in
a matrix, the bottleneck related to the computational time cannot be neglected.
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The code is presented here.

1 f unc t i on [SOLUTION] = s o l v e r b f (MODEL)
2

3 kep = MODEL. kep ;
4 [ r , ˜ ] = s i z e ( kep ) ;
5 cmat = MODEL. cmat ;
6 P = perms ( 1 : r ) ;
7 [ n comb , c ] = s i z e (P) ;
8 SOLUTION = ze ro s ( n comb , 1 ) ;
9

10 f o r k = 1 : n comb
11 p = P(k , : ) ;
12 co s t = 0 ;
13 f o r kk = 1 : ( c−1)
14 cost temp = cmat (p( kk ) ,p ( kk+1) ) ;
15 co s t = cos t + cost temp ;
16 end
17 SOLUTION( k ) = cos t ;
18 end
19 SOLUTION = [P,SOLUTION ] ;
20 end % func t i on
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Nearest Neighbour Algorithm Due to its simplicity, the nearest neighbour
algorithm is one of the prime algorithms used to solve the TSP. Instead of selecting
randomly the initial point, the NNA is executed as many times as the number of
problem vertices. In this way, each city is selected one time as the starting point of
the algorithm. The following steps summarise the attached code:

1. Choosing a starting vertex.

2. Through the cost matrix the nearest vertex is selected as the next one and the
corresponding row is eliminated, marking the city as visited.

3. Repeating Step 2 until all the vertices are visited.

4. A new starting vertex is chosen and repeating Step 1 to 3.

5. Once all the NNA sequences have been calculated the one with the lowest cost
is selected as the optimum.

The code is presented here.

1 f unc t i on [SOLUTION] = so lv e r nna (MODEL)
2

3 cmat = MODEL. cmat ;
4 n f a i l = MODEL. n f a i l ;
5 comb = ze ro s ( n f a i l , n f a i l ) ;
6 va l = ze ro s ( n f a i l , 1 ) ;
7

8 f o r k = 1 : n f a i l
9 ind = k ;

10 mat = cmat ;
11 n t = 0 ;
12 comb(k , 1 ) = ind ;
13 whi le n t < ( n f a i l − 1)
14 mat ( : , ind ) = nan ;
15 [ ˜ , ind2 ] = min (mat( ind , : ) ) ;
16 temp = mat( ind , ind2 ) ;
17 n t = n t + 1 ;
18 comb(k , n t + 1) = ind2 ;
19 va l ( k ) = va l ( k ) + temp ;
20 ind = ind2 ;
21 end
22 end
23

24 SOLUTION= [ comb , va l ] ;
25

26 end % func t i on
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Branch and Cut algorithm This algorithm is derived from the branch and bound
theory, and it is the specific algorithm used to solve this problem is based on a prun-
ing action. Pruning is a common approach used in branch and bound algorithm to
reduce the size of the graph analysed. A subset of branches are evaluated a priori as
non optimal and are discarded by the algorithm to reduce the computational costs.
Based on J2 perturbation theory and manoeuvres design described in chapter 2, it
has been observed that optimal solutions are always found starting from spacecraft
lying on the last orbital planes. Indeed, when the chaser is let to drift after the
disposal of one satellite, it tends to move naturally towards the next plane char-
acterised by a lower RAAN. Thus, it is possible to drive the algorithm to discard
the sequences which include transfers towards planes with larger values of RAAN.
Branches are generated one by one and then checked. If the branch does not belong
to the “optimal solutions family”, it is discarded a priori without being evaluated.
Within the set of branches evaluated the one with the lowest cost is marked as the
best solution. Branches generation is a crucial part of the algorithm, due to the fact
that permutations are not created using the built-in function perms, avoiding the
bottleneck due to RAM demand. The method used to generate the sorted permu-
tations is based on the work of the mathematician Derrick Norman Lehmer. The
Lehmer code is able to associate an integer number to a specific permutation of an
elements set [8]. For instance, it is known that the total number of permutations
given a set of n elements is n!. If n = 4 the question is: It is possible to associate the
rank of a permutation with the corresponding one? It can be done exploiting the
factoradic method. The integer number of the rank can be expressed as a polyno-
mial in which the base is composed by the factorial numbers going from 0 to n− 1.
Referring to the example in table 4.2, rank 16 can be expressed as:

16 = 2× 3! + 2× 2! + 0× 1! + 0× 0! (4.9)

The coefficients of the base elements compose the so called factoradic code. Con-
verting all the ranks into factoradic codes table 4.3 is obtained. Once the factoradic
code has been generated, with a few steps it is possible to convert it to the corre-
sponding permutation. For instance taking rank 16 the associated factoradic code
is 2200. All the values in the factoradic array indicate how many lower numbers
there are to the right of that specific position, with respect to the number stored in
that position. Number 2 in the first position indicates that the first number of the
sequence is greater than two number at its right. The same for position two. The
permutation is then [3, 4, 1, 2]. Indeed, the number in position one {3} is greater
than two numbers to its right {1, 2}, and the same for number {4} in position two.
Exploiting this method, all the paths of the graph can be generated, tested and
evaluated one by one, without the need to store them. To speed up the code it can
be run in parallel pool. Parallel computation is faster with respect to the sequential
one when the cycles involved requires a lot of time for the iterations. After the
branch generation a pruning algorithm decides if the branch should be evaluated
or not. To understand better the following example concerning 10 dead satellites
inside the OneWeb constellation is considered. Figure 4.5 shows the problem do-
main. Numbers identify the identity of the failed satellites inside the constellation.
Ten satellites randomly selected inside three orbital planes are considered. Since
the chaser can only drift backwards (see section 2.3.3), the most convenient choice
is to clean each plane before moving to next one, starting from the last plane that
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Figure 4.5: Representationof 10 dead satellites inside the OneWeb constellation.
The satellites are sorted from the first to the last in a descending order. Satellite
141 is considered to be the failed satellite number 1 and satellite 18 the failed satellite
number 10.
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Figure 4.6: Solution sequence of the n = 10 example
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Table 4.2: Permutations related to a 4 elements set

Rank Permutation

0 [1, 2, 3, 4]
1 [1, 2, 4, 3]
2 [1, 3, 2, 4]
3 [1, 3, 4, 2]
4 [1, 4, 2, 3]
5 [1, 4, 3, 2]
6 [2, 1, 3, 4]
7 [2, 1, 4, 3]
8 [2, 3, 1, 4]
9 [2, 3, 4, 1]
10 [2, 4, 1, 3]
11 [2, 4, 3, 1]
12 [3, 1, 2, 4]
13 [3, 1, 4, 2]
14 [3, 2, 1, 4]
15 [3, 2, 4, 1]
16 [3, 4, 1, 2]
17 [3, 4, 2, 1]
18 [4, 1, 2, 3]
19 [4, 1, 3, 2]
20 [4, 2, 1, 3]
21 [4, 2, 3, 1]
22 [4, 3, 1, 2]
23 [4, 3, 2, 1]

has the largest RAAN. The idea is to reduce the n! combinations, to a much lower
value, basing on heuristic observations. The first group to be reached by the chaser
will be {108, 129, 141}, the second one {63, 74, 79, 89} and the last one {18, 20, 25}.
Pruning all the combinations not respecting this rule the number of sequences to be
evaluated becomes:

N = 3× 4× 3 = 36 (4.10)

which is much more smaller than 10!. The solution of the example in figure 4.5 is
shown in figure 4.6. The algorithm is summarised in the following steps:

1. A storing matrix is generated with the aid of the Lehmer code to save the
evaluated branches. The dimensions can be defined according to the amount
of memory available. While the number of column is fixed by the number of
vertices of the problem, the maximum number of rows can be set to not exceed
a certain amount of RAM.

2. Generating the first branch.

3. Passing the branch to the pruning routine to check if it shall be evaluated or
not.
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Table 4.3: Factoradic codes related to a 4 elements set

Rank Factoradic Permutation

0 0000 [1, 2, 3, 4]
1 0010 [1, 2, 4, 3]
2 0100 [1, 3, 2, 4]
3 0110 [1, 3, 4, 2]
4 0200 [1, 4, 2, 3]
5 0210 [1, 4, 3, 2]
6 1000 [2, 1, 3, 4]
7 1010 [2, 1, 4, 3]
8 1100 [2, 3, 1, 4]
9 1110 [2, 3, 4, 1]
10 1200 [2, 4, 1, 3]
11 1210 [2, 4, 3, 1]
12 2000 [3, 1, 2, 4]
13 2010 [3, 1, 4, 2]
14 2100 [3, 2, 1, 4]
15 2110 [3, 2, 4, 1]
16 2200 [3, 4, 1, 2]
17 2210 [3, 4, 2, 1]
18 3000 [4, 1, 2, 3]
19 3010 [4, 1, 3, 2]
20 3100 [4, 2, 1, 3]
21 3110 [4, 2, 3, 1]
22 3200 [4, 3, 1, 2]
23 3210 [4, 3, 2, 1]

4. If the branch is not pruned it is evaluated and stored, otherwise switch to the
next branch.

5. Repeating Step 2 to 4 until all the branches are pruned or evaluated. Whenever
the matrix storing the evaluated branches is full, the best solution is stored
deleting all the others. The storing matrix is cleared to to collect other possible
branches.

6. At the end of the algorithm the best sequence is selected as the optimum.
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The code is presented here.

1 f unc t i on [ SOLUTION ] = s o l v e r b c p p ( INPUT,MODEL )
2

3 % Getting data
4 IDmat = INPUT. ID mat ;
5 f a i l s = MODEL. f a i l s ;
6 cmat = MODEL. cmat ;
7 f o r k = length ( f a i l s ) :−1:1
8 [ f p l ane ( k ) , ˜ ] = f i n d ( IDmat == f a i l s ( k ) ) ;
9 end

10 n = length ( f a i l s ) ;
11

12 % Analyze the o r b i t a l p lanes
13 np = 1 ;
14 nplanes = length ( unique ( fp l ane ) ) ;
15 scmat = ze ro s ( nplanes , n ) ;
16 scmat (1 , 1 ) = 1 ;
17 scPerPlane = ones ( nplanes , 1 ) ;
18 f o r k = 2 : n
19 i f f p l ane ( k ) == fp l ane (k−1)
20 scPerPlane (np) = scPerPlane (np) + 1 ;
21 scmat (np , scPerPlane (np) ) = k ;
22 e l s e i f f p l ane ( k ) ˜= fp l ane (k−1)
23 np = np + 1 ;
24 scmat (np , scPerPlane (np) ) = k ;
25 end
26 end
27

28 RAM = 3 ;
29 nC = n+1;
30 nR = f l o o r (RAM∗1024ˆ3/nC/8) ;
31 f ixnR = nR;
32 nSol = f a c t o r i a l (n−1)∗ scPerPlane (1 ) ;
33

34 totRAM = nSol ∗nC∗8/(1024ˆ3) ;
35 nSolver = c e i l (totRAM/RAM) ;
36

37 counter = 1 ;
38 SOLUTION = ze ro s ( nSolver ,nC) ;
39

40 whi le counter <= nSolver
41 solMAT = ze ro s (nR,nC) ;
42 i f counter == nSolver
43 i f mod( nSol ,nR) == 0
44 e l s e
45 nR = mod( nSol ,nR) ;
46 end
47 end
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48 pa r f o r k = 1 :nR
49 % Branch gene ra t i on
50 numFact = ( counter−1)∗ f ixnR+(k−1) ;
51 [ branch ] = factperms (numFact , n ) ;
52 % Pruning func t i on
53 check = 0 ;
54 f o r kk = 1 : l ength ( branch )
55 p = 1 ;
56 whi le kk > sum( scPerPlane ( 1 : p) )
57 p = p + 1 ;
58 end
59 i f sum( ismember ( scmat (p , : ) , branch ( kk ) ) ) > 0
60 check = 1 ;
61 e l s e
62 check = 0 ;
63 break ;
64 end
65 end
66

67 i f check == 1
68 % Test the branch
69 co s t = 0 ;
70 f o r b = 1 : ( l ength ( branch )−1)
71 cost temp = cmat ( branch (b) , branch (b+1) ) ;
72 co s t = cos t + cost temp ;
73 end
74 solMAT(k , : ) = [ branch , co s t ] ;
75 e l s e i f check == 0
76 end
77

78 end
79 [ r , ˜ ] = f i n d (solMAT ( : , 1 ) == 0) ;
80 solMAT( r , : ) = [ ] ;
81 c l e a r r ;
82 solMAT = sort rows (solMAT ,nC) ;
83 [ rMat , ˜ ] = s i z e (solMAT) ;
84 i f rMat ˜= 0
85 SOLUTION( counter , : ) = solMAT ( 1 , : ) ;
86 end
87 c l e a r solMAT ;
88 counter = counter + 1 ;
89 end
90 [ r , ˜ ] = f i n d (SOLUTION == 0) ;
91 SOLUTION( r , : ) = [ ] ;
92 SOLUTION = sort rows (SOLUTION,nC) ;
93 SOLUTION = SOLUTION( 1 , : ) ;
94

95 end % s o l v e r b b
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Figure 4.7: Distribution of the failures for the OneWeb constellation, for scenario 1

4.3.3 Simulations results and discussion

In this section the simulation results are presented and discussed. The aim of the
simulations is to understand which is the best solving method in terms of quality of
the solution and computational time. Two types of scenarios have been considered as
discussed in section 4.3.2. In addition, a Monte Carlo simulation has been conducted
to check the robustness of the algorithms. Brute force method is used only when
the number of vertices of the problem was less than 12, due to memory limitations.

Scenario 1 - Failures randomly distributed over all orbital planes

OneWeb The distribution of the failures for the OneWeb constellation is pre-
sented in figure 4.7. The satellites are identified by an ID number inside the con-
stellation, represented attached to the asterisks in figure 4.7. Simulation data and
results are listed in table 4.4.

Table 4.4: Simulation data and results for OneWeb constellation for scenario 1

Parameter Value

Constellation OneWeb
Number of failed satellites 11
Brute force CPU time [seconds] 9.35
Branch and cut CPU time [seconds] 37.20
Nearest Neighbour CPU time [seconds] 0.000287
Brute force solution [years] 8.1999
Branch and cut solution [years] 8.1999
Nearest Neigbour solution [years] 8.2001
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Figure 4.8: Brute force solution for the OneWeb constellation, for scenario 1
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Figure 4.9: Branch and cut solution for the OneWeb constellation, for scenario 1
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Figure 4.10: Nearest Neighbour solution for the OneWeb constellation, for scenario
1

Globalstar The distribution of the failures for the Globalstar constellation is pre-
sented in figure 4.11. The satellites are identified by an ID number inside the
constellation, represented attached to the asterisks in figure 4.11. Simulation data
and results are listed in table 4.5.

Table 4.5: Simulation data and results for Globalstar constellation for scenario 1

Parameter Value

Constellation Globalstar
Number of failed satellites 11
Brute force CPU time [seconds] 10.44
Branch and cut CPU time [seconds] 34.76
Nearest Neighbour CPU time [seconds] 0.000325
Brute force solution [months] 5.59
Branch and cut solution [months] 5.59
Nearest Neigbour solution [months] 5.59
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Figure 4.11: Distribution of the failures for the Globalstar constellation, for scenario
1
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Figure 4.12: Brute force solution for the Globalstar constellation, for scenario 1
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Figure 4.13: Branch and cut solution for the Globalstar constellation, for scenario 1
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Figure 4.14: Nearest Neighbour solution for the Globalstar constellation, for scenario
1
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Figure 4.15: Distribution of the failures for the Starlink constellation, for scenario 1

Starlink The distribution of the failures for the Starlink constellation is presented
in figure 4.15. The satellites are identified by an ID number inside the constellation,
represented attached to the asterisks in figure 4.15. Simulation data and results are
listed in table 4.6.

Table 4.6: Simulation data and results for Starlink constellation for scenario 1

Parameter Value

Constellation Starlink
Number of failed satellites 11
Brute force CPU time [seconds] 9.35
Branch and cut CPU time [seconds] 43.38
Nearest Neighbour CPU time [seconds] 0.000343
Brute force solution [years] 1.1955
Branch and cut solution [years] 1.1955
Nearest Neigbour solution [years] 1.1955
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Figure 4.16: Brute force solution for the Starlink constellation, for scenario 1
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Figure 4.17: Branch and cut solution for the Starlink constellation, for scenario 1

70



0 20 40 60 80 100 120 140 160

50

100

150

200

250

300

350

  1

  2

  3  4

  5

  6

  7

  8

  9

  10

  11

Figure 4.18: Nearest Neighbour solution for the Starlink constellation, for scenario
1

Scenario 2 - Failures randomly distributed in three orbital planes

OneWeb The distribution of the failures for the OneWeb constellation is pre-
sented in figure 4.19. The satellites are identified by an ID number inside the
constellation, represented attached to the asterisks in figure 4.19. Simulation data
and results are listed in table 4.7.

Table 4.7: Simulation data and results for OneWeb constellation for scenario 2

Parameter Value

Constellation OneWeb
Number of failed satellites 11
Brute force CPU time [seconds] 21.41
Branch and cut CPU time [seconds] 193.16
Nearest Neighbour CPU time [seconds] 0.0197
Brute force solution [years] 1.6480
Branch and cut solution [years] 1.6480
Nearest Neigbour solution [years] 1.6488
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Figure 4.19: Distribution of the failures for the OneWeb constellation, for scenario
2
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Figure 4.20: Brute force solution for the OneWeb constellation, for scenario 2
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Figure 4.21: Branch and cut solution for the OneWeb constellation, for scenario 2
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Figure 4.22: Nearest Neighbour solution for the OneWeb constellation, for scenario
2
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Figure 4.23: Distribution of the failures for the Globalstar constellation, for scenario
2

Globalstar The distribution of the failures for the Globalstar constellation is pre-
sented in figure 4.23. The satellites are identified by an ID number inside the
constellation, represented attached to the asterisks in figure 4.23. Simulation data
and results are listed in table 4.8.

Table 4.8: Simulation data and results for Globalstar constellation for scenario 2

Parameter Value

Constellation Globalstar
Number of failed satellites 11
Brute force CPU time [seconds] 10.17
Branch and cut CPU time [seconds] 148.72
Nearest Neighbour CPU time [seconds] 0.0016
Brute force solution [years] 0.1147
Branch and cut solution [years] 0.1147
Nearest Neigbour solution [years] 0.1147
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Figure 4.24: Brute force solution for the Globalstar constellation, for scenario 2
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Figure 4.25: Branch and cut solution for the Globalstar constellation, for scenario 2
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Figure 4.26: Nearest Neighbour solution for the Globalstar constellation, for scenario
2

Starlink The distribution of the failures for the Starlink constellation is presented
in figure 4.27. The satellites are identified by an ID number inside the constellation,
represented attached to the asterisks in figure 4.27. Simulation data and results are
listed in table 4.9.

Table 4.9: Simulation data and results for Globalstar constellation for scenario 2

Parameter Value

Constellation Starlink
Number of failed satellites 11
Brute force CPU time [seconds] 9.68
Branch and cut CPU time [seconds] 146.18
Nearest Neighbour CPU time [seconds] 0.000295
Brute force solution [days] 18.56
Branch and cut solution [days] 18.56
Nearest Neigbour solution [days] 18.69
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Figure 4.27: Distribution of the failures for the Starlink constellation, for scenario 2
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Figure 4.28: Brute force solution for the Starlink constellation, for scenario 2
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Figure 4.29: Branch and cut solution for the Starlink constellation, for scenario 2
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Figure 4.30: Nearest Neighbour solution for the Starlink constellation, for scenario
2
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Monte Carlo simulations

To compare the performances of the three algorithms the Monte Carlo simulations
are performed for the two scenarios. Tables 4.10 and 4.11 summarise the results.

Table 4.10: Monte Carlo for scenario 1 simulation - 100 samples

OneWeb Globalstar Starlink

Number of dead satellites 10 10 10
Brute force mean

CPU time [seconds] 0.6356 0.6350 0.6502
Branch and cut mean
CPU time [seconds] 5.2431 5.8604 4.2113

Nearest Neigbour mean
CPU time [seconds] 2.2469× 10−4 1.8841× 10−4 1.9286× 10−4

Branch and cut maximum
percentage error [%] 0 0 0

Nearest Neigbour maximum
percentage error [%] 0.05643 0.4884 0.5017

Table 4.11: Monte Carlo for scenario 2 simulation - 100 samples

OneWeb Globalstar Starlink

Number of dead satellites 10 10 10
Brute force mean

CPU time [seconds] 0.6439 0.6632 0.6451
Branch and cut mean
CPU time [seconds] 11.0941 11.2890 11.3926

Nearest Neigbour mean
CPU time [seconds] 1.9187× 10−4 1.9289× 10−4 1.9238× 10−4

Branch and cut maximum
percentage error [%] 0 0 0

Nearest Neigbour maximum
percentage error [%] 0.1505 0.8211 23.44

Note that the mean CPU time for each algorithm is calculated as the average
of all the k CPU times, where k is the number of samples for the Monte Carlo
simulation. The maximum percentage error compares the solution by the NNA or
branch and cut method with the exact solution by the brute force method. It is
expressed in this way:

e = max

∣∣∣∣ybf − yiybf

∣∣∣∣ (4.11)

where ybf is the solution found with the brute force algorithm and yi is the solution
found with NNA or branch and cut algorithm.
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Figure 4.31: Monte Carlo for scenario 1 simulation - OneWeb: NNA and Branch
and cut quality performances
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Figure 4.32: Monte Carlo for scenario 1 simulation - Globalstar : NNA and Branch
and cut quality performances
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Figure 4.33: Monte Carlo for scenario 1 simulation - Starlink : NNA and Branch
and cut quality performances
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Figure 4.34: Monte Carlo for scenario 2 simulation - OneWeb: NNA and Branch
and cut quality performances
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Figure 4.35: Monte Carlo for scenario 2 simulation - Globalstar : NNA and Branch
and cut quality performances
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Figure 4.36: Monte Carlo for scenario 2 simulation - Starlink : NNA and Branch
and cut quality performances
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Results discussion

Three different methods have been used for the optimal design of the ADR service.
The main difference among all the algorithms is the computational time. Nearest
Neighbour algorithm is the fastest one in all the situations, and it is slightly affected
by the increasing number of vertices or by the mission scenarios. In the two scenarios
the order of magnitude of the CPU time is the same, much lower than the others.
The slower method is represented by the Branch and cut algorithm. Despite the
fact that parallel computation is exploited, it is always slower than the Brute force
approach. Because the maximum number of vertices analysed was relatively small
(n = 11), checking all the branches before evaluating or pruning them slows down
the code, which is a drawback of this approach. Moreover, the function generating
the branches one by one, is much more slower than the built-in Matlab function
perms, which creates the branches much faster. Although these limitations, the
branch and cut algorithm developed for this work, allows the problem to be solved
even for a large value of n, while it is impossible for the brute force algorithm to face
problems with a number of vertices larger than 11, due to memory time limitations.
Furthermore, the performances of the branch and cut approach can significantly
be improved exploiting workstation with multiple processors. The second aspect
analysed is related to the quality of the solution obtained by the three approaches.
Obviously, when it is feasible to apply the brute force method the global optimum is
always found. Moreover, the branch and cut algorithm used in the simulations have
a percentage of success of 100% when compared to the known optimum solutions.
Thus, a good percentage of success is expected even with large-scale problems. The
most interesting results came from the Near Neighbour algorithm. Although it is well
known that for complicated problems this approach is not reliable, in the case study
analysed, the quality of the solutions generated are very impressive. In the Monte
Carlo simulation for scenario 1 the maximum percentage of error with respect to
known optima was 0.5017%. When the density of the failures increases in scenario 2,
NNA shows worst performances. The maximum percentage error related to Starlink
constellation was 23.44%. Looking at figures 4.33a and 4.36a it is possible to observe
that this values are represented by isolated points and do not follow a specific trend.
Thus, it is possible to say that:

• The brute force method can always find the optimal solution because it checks
all the possible paths. However, it does not suit for large-scale problems due
to the high computational time and the demanding requirement for memory.

• The branch and cut method can cope with the drawback of the brute force
method in terms of the demanding memory requirement, although it takes
more computational time due to a pruning process. In addition, the branch
and cut method can also find the optimal solution.

• The nearest neighbour algorithm reaches the optimal or close optimal solution
in most cases when the failures density is relatively small. Moreover, the
computational time is much lower than the other two approaches, since a
lower number of operations need to be performed by the algorithm.
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Chapter 5

Conslusions

The aim of this study was to analyse two possible architectures that have the ap-
plication potential for the ADR services applied to large constellations. The first
architecture makes use of two different types of vehicle to accomplish the mission.
The main vehicle named mother ship is in charge of reaching the failed satellites
in the constellation. Then, a de-orbiting kit is attached to the dead spacecraft to
transfer it towards a disposal orbit. The disposal orbit is designed to drive the failed
satellite towards an atmospheric re-entry. The second architecture exploits a single
vehicle named chaser, which is in charge of reaching and transferring to the disposal
orbit the failed satellites.
A mission analysis has been conducted to check the performances of the first archi-
tecture in terms of velocity change and mission time. Two scenarios has been taken
into consideration, to study the feasibility of the mission depending on the number
of planes each mother ship is in charge of. Results show that the feasibility of the
mission architecture strongly depends on the number of mother ship involved. In
the first scenario (ADR1) the mission requirements were totally satisfied, while for
the second scenario where the number of orbital planes is a half of the first scenario,
the total mission time exceeded the maximum lifetime of the mother ship. Indeed,
most of the time is spent by the mother ships during the drifting phase, when they
transfer from the first orbital plane towards the second one.
The second architecture has been analysed within the framework of the TSP. An
optimal strategy to minimise the total mission time has been developed by exploit-
ing three different optimisation methods: brute force, branch and cut, and nearest
neighbour. A branch and cut algorithm has been developed based on the popular
branch and bound method. It has been compared to brute force approach to check
the quality of the solution found and the relative computational time. It has been
observed that the branch and cut algorithm can overcome the limitations of the
brute force method in terms of required memory, although an increased computa-
tional time. The nearest neighbour algorithm is the one requiring less computational
time, while the quality of the solution decreases as the failure density increases.
The performances of the three algorithms have been compared. Implementing the
three algorithms to different case studies, it has been demonstrated that the total
time required to reach the same quantity of dead objects, depends strongly on the
type of satellite constellation considered.
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